gdb: Use C++11 std::chrono
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void info_ext_lang_command (char *args, int from_tty);
392a587b 118
31d99776
DJ
119static void symfile_find_segment_sections (struct objfile *objfile);
120
a14ed312 121void _initialize_symfile (void);
c906108c
SS
122
123/* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
c378eb4e 125 prepared to read. */
c906108c 126
c256e171
DE
127typedef struct
128{
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134} registered_sym_fns;
00b5771c 135
c256e171
DE
136DEF_VEC_O (registered_sym_fns);
137
138static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 139
770e7fc7
DE
140/* Values for "set print symbol-loading". */
141
142const char print_symbol_loading_off[] = "off";
143const char print_symbol_loading_brief[] = "brief";
144const char print_symbol_loading_full[] = "full";
145static const char *print_symbol_loading_enums[] =
146{
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151};
152static const char *print_symbol_loading = print_symbol_loading_full;
153
b7209cb4
FF
154/* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
c906108c 161 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 162 report all the functions that are actually present. */
c906108c
SS
163
164int auto_solib_add = 1;
c906108c 165\f
c5aa993b 166
770e7fc7
DE
167/* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175int
176print_symbol_loading_p (int from_tty, int exec, int full)
177{
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190}
191
0d14a781 192/* True if we are reading a symbol table. */
c906108c
SS
193
194int currently_reading_symtab = 0;
195
196static void
fba45db2 197decrement_reading_symtab (void *dummy)
c906108c
SS
198{
199 currently_reading_symtab--;
2cb9c859 200 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
201}
202
ccefe4c4
TT
203/* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
3b7bacac 205
ccefe4c4
TT
206struct cleanup *
207increment_reading_symtab (void)
c906108c 208{
ccefe4c4 209 ++currently_reading_symtab;
2cb9c859 210 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 211 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
212}
213
5417f6dc
RM
214/* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
c906108c
SS
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223void
4efb68b1 224find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 225{
c5aa993b 226 asection **lowest = (asection **) obj;
c906108c 227
eb73e134 228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238}
239
d76488d8
TT
240/* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
a39a16c4
MM
243
244struct section_addr_info *
245alloc_section_addr_info (size_t num_sections)
246{
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
a39a16c4
MM
254
255 return sap;
256}
62557bbc
KB
257
258/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 259 an existing section table. */
62557bbc
KB
260
261extern struct section_addr_info *
0542c86d
PA
262build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
62557bbc
KB
264{
265 struct section_addr_info *sap;
0542c86d 266 const struct target_section *stp;
62557bbc
KB
267 int oidx;
268
a39a16c4 269 sap = alloc_section_addr_info (end - start);
62557bbc
KB
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
2b2848e2
DE
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 277 && oidx < end - start)
62557bbc
KB
278 {
279 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
282 oidx++;
283 }
284 }
285
d76488d8
TT
286 sap->num_sections = oidx;
287
62557bbc
KB
288 return sap;
289}
290
82ccf5a5 291/* Create a section_addr_info from section offsets in ABFD. */
089b4803 292
82ccf5a5
JK
293static struct section_addr_info *
294build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
295{
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
82ccf5a5
JK
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 303 {
82ccf5a5
JK
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
307 i++;
308 }
d76488d8
TT
309
310 sap->num_sections = i;
311
089b4803
TG
312 return sap;
313}
314
82ccf5a5
JK
315/* Create a section_addr_info from section offsets in OBJFILE. */
316
317struct section_addr_info *
318build_section_addr_info_from_objfile (const struct objfile *objfile)
319{
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 327 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334}
62557bbc 335
c378eb4e 336/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
337
338extern void
339free_section_addr_info (struct section_addr_info *sap)
340{
341 int idx;
342
a39a16c4 343 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 344 xfree (sap->other[idx].name);
b8c9b27d 345 xfree (sap);
62557bbc
KB
346}
347
e8289572 348/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 349
e8289572
JB
350static void
351init_objfile_sect_indices (struct objfile *objfile)
c906108c 352{
e8289572 353 asection *sect;
c906108c 354 int i;
5417f6dc 355
b8fbeb18 356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 357 if (sect)
b8fbeb18
EZ
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_rodata = sect->index;
371
bbcd32ad
FF
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
31d99776
DJ
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
bbcd32ad
FF
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
b8fbeb18 407}
c906108c 408
c1bd25fd
DJ
409/* The arguments to place_section. */
410
411struct place_section_arg
412{
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415};
416
417/* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
2c0b251b 420static void
c1bd25fd
DJ
421place_section (bfd *abfd, asection *sect, void *obj)
422{
19ba03f4 423 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
3bd72c6f 426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 427
2711e456
DJ
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
430 return;
431
432 /* If the user specified an offset, honor it. */
65cf3563 433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
437 start_addr = (arg->lowest + align - 1) & -align;
438
c1bd25fd
DJ
439 do {
440 asection *cur_sec;
c1bd25fd 441
c1bd25fd
DJ
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
c1bd25fd
DJ
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
2711e456
DJ
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
3bd72c6f 469 break;
c1bd25fd
DJ
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
65cf3563 477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 478 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 479}
e8289572 480
75242ef4
JK
481/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
e8289572
JB
484
485void
75242ef4
JK
486relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
3189cb12 488 const struct section_addr_info *addrs)
e8289572
JB
489{
490 int i;
491
75242ef4 492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 493
c378eb4e 494 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 495 for (i = 0; i < addrs->num_sections; i++)
e8289572 496 {
3189cb12 497 const struct other_sections *osp;
e8289572 498
75242ef4 499 osp = &addrs->other[i];
5488dafb 500 if (osp->sectindex == -1)
e8289572
JB
501 continue;
502
c378eb4e 503 /* Record all sections in offsets. */
e8289572 504 /* The section_offsets in the objfile are here filled in using
c378eb4e 505 the BFD index. */
75242ef4
JK
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508}
509
1276c759
JK
510/* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516static const char *
517addr_section_name (const char *s)
518{
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525}
526
82ccf5a5
JK
527/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530static int
531addrs_section_compar (const void *ap, const void *bp)
532{
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 535 int retval;
82ccf5a5 536
1276c759 537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
538 if (retval)
539 return retval;
540
5488dafb 541 return a->sectindex - b->sectindex;
82ccf5a5
JK
542}
543
544/* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547static struct other_sections **
548addrs_section_sort (struct section_addr_info *addrs)
549{
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
8d749320 554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 555 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562}
563
75242ef4 564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
567
568void
569addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570{
571 asection *lower_sect;
75242ef4
JK
572 CORE_ADDR lower_offset;
573 int i;
82ccf5a5
JK
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
578
579 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
e8289572 588 }
75242ef4
JK
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
82ccf5a5
JK
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
c378eb4e
MS
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
82ccf5a5 612
8d749320 613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
1276c759 618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
619
620 while (*abfd_addrs_sorted
1276c759
JK
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
82ccf5a5
JK
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
82ccf5a5
JK
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
75242ef4
JK
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
d76488d8 653 for (i = 0; i < addrs->num_sections; i++)
75242ef4 654 {
82ccf5a5 655 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
656
657 if (sect)
75242ef4 658 {
c378eb4e 659 /* This is the index used by BFD. */
82ccf5a5 660 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
661
662 if (addrs->other[i].addr != 0)
75242ef4 663 {
82ccf5a5 664 addrs->other[i].addr -= sect->addr;
75242ef4 665 lower_offset = addrs->other[i].addr;
75242ef4
JK
666 }
667 else
672d9c23 668 addrs->other[i].addr = lower_offset;
75242ef4
JK
669 }
670 else
672d9c23 671 {
1276c759
JK
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
b0fcb67f
JK
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
4d9743af
JK
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
1276c759
JK
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 690 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
672d9c23 702 addrs->other[i].addr = 0;
5488dafb 703 addrs->other[i].sectindex = -1;
672d9c23 704 }
75242ef4 705 }
82ccf5a5
JK
706
707 do_cleanups (my_cleanup);
75242ef4
JK
708}
709
710/* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716void
717default_symfile_offsets (struct objfile *objfile,
3189cb12 718 const struct section_addr_info *addrs)
75242ef4 719{
d445b2f6 720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
e8289572 726
c1bd25fd
DJ
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
2711e456
DJ
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
2711e456
DJ
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
30510692 789 offsets[cur_sec->index]);
2711e456
DJ
790 offsets[cur_sec->index] = 0;
791 }
792 }
c1bd25fd
DJ
793 }
794
e8289572 795 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 796 .rodata sections. */
e8289572
JB
797 init_objfile_sect_indices (objfile);
798}
799
31d99776
DJ
800/* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806struct symfile_segment_data *
807default_symfile_segments (bfd *abfd)
808{
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
41bf6aca 834 data = XCNEW (struct symfile_segment_data);
31d99776 835 data->num_segments = 1;
fc270c35
TT
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
838
839 num_sections = bfd_count_sections (abfd);
fc270c35 840 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862}
863
608e2dbb
TT
864/* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867static void
b15cc25c 868read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
869{
870 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 871 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
878 {
879 bfd *abfd = find_separate_debug_file_in_section (objfile);
880 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
881
882 if (abfd != NULL)
24ba069a
JK
883 {
884 /* find_separate_debug_file_in_section uses the same filename for the
885 virtual section-as-bfd like the bfd filename containing the
886 section. Therefore use also non-canonical name form for the same
887 file containing the section. */
888 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
889 objfile);
890 }
608e2dbb
TT
891
892 do_cleanups (cleanup);
893 }
894 if ((add_flags & SYMFILE_NO_READ) == 0)
895 require_partial_symbols (objfile, 0);
896}
897
3d6e24f0
JB
898/* Initialize entry point information for this objfile. */
899
900static void
901init_entry_point_info (struct objfile *objfile)
902{
6ef55de7
TT
903 struct entry_info *ei = &objfile->per_bfd->ei;
904
905 if (ei->initialized)
906 return;
907 ei->initialized = 1;
908
3d6e24f0
JB
909 /* Save startup file's range of PC addresses to help blockframe.c
910 decide where the bottom of the stack is. */
911
912 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
913 {
914 /* Executable file -- record its entry point so we'll recognize
915 the startup file because it contains the entry point. */
6ef55de7
TT
916 ei->entry_point = bfd_get_start_address (objfile->obfd);
917 ei->entry_point_p = 1;
3d6e24f0
JB
918 }
919 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
920 && bfd_get_start_address (objfile->obfd) != 0)
921 {
922 /* Some shared libraries may have entry points set and be
923 runnable. There's no clear way to indicate this, so just check
924 for values other than zero. */
6ef55de7
TT
925 ei->entry_point = bfd_get_start_address (objfile->obfd);
926 ei->entry_point_p = 1;
3d6e24f0
JB
927 }
928 else
929 {
930 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 931 ei->entry_point_p = 0;
3d6e24f0
JB
932 }
933
6ef55de7 934 if (ei->entry_point_p)
3d6e24f0 935 {
53eddfa6 936 struct obj_section *osect;
6ef55de7 937 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 938 int found;
3d6e24f0
JB
939
940 /* Make certain that the address points at real code, and not a
941 function descriptor. */
942 entry_point
df6d5441 943 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
944 entry_point,
945 &current_target);
946
947 /* Remove any ISA markers, so that this matches entries in the
948 symbol table. */
6ef55de7 949 ei->entry_point
df6d5441 950 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
951
952 found = 0;
953 ALL_OBJFILE_OSECTIONS (objfile, osect)
954 {
955 struct bfd_section *sect = osect->the_bfd_section;
956
957 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
958 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
959 + bfd_get_section_size (sect)))
960 {
6ef55de7 961 ei->the_bfd_section_index
53eddfa6
TT
962 = gdb_bfd_section_index (objfile->obfd, sect);
963 found = 1;
964 break;
965 }
966 }
967
968 if (!found)
6ef55de7 969 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
970 }
971}
972
c906108c
SS
973/* Process a symbol file, as either the main file or as a dynamically
974 loaded file.
975
36e4d068
JB
976 This function does not set the OBJFILE's entry-point info.
977
96baa820
JM
978 OBJFILE is where the symbols are to be read from.
979
7e8580c1
JB
980 ADDRS is the list of section load addresses. If the user has given
981 an 'add-symbol-file' command, then this is the list of offsets and
982 addresses he or she provided as arguments to the command; or, if
983 we're handling a shared library, these are the actual addresses the
984 sections are loaded at, according to the inferior's dynamic linker
985 (as gleaned by GDB's shared library code). We convert each address
986 into an offset from the section VMA's as it appears in the object
987 file, and then call the file's sym_offsets function to convert this
988 into a format-specific offset table --- a `struct section_offsets'.
96baa820 989
7eedccfa
PP
990 ADD_FLAGS encodes verbosity level, whether this is main symbol or
991 an extra symbol file such as dynamically loaded code, and wether
992 breakpoint reset should be deferred. */
c906108c 993
36e4d068
JB
994static void
995syms_from_objfile_1 (struct objfile *objfile,
996 struct section_addr_info *addrs,
b15cc25c 997 symfile_add_flags add_flags)
c906108c 998{
a39a16c4 999 struct section_addr_info *local_addr = NULL;
c906108c 1000 struct cleanup *old_chain;
7eedccfa 1001 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1002
8fb8eb5c 1003 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1004
75245b24 1005 if (objfile->sf == NULL)
36e4d068
JB
1006 {
1007 /* No symbols to load, but we still need to make sure
1008 that the section_offsets table is allocated. */
d445b2f6 1009 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1010 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1011
1012 objfile->num_sections = num_sections;
1013 objfile->section_offsets
224c3ddb
SM
1014 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1015 size);
36e4d068
JB
1016 memset (objfile->section_offsets, 0, size);
1017 return;
1018 }
75245b24 1019
c906108c
SS
1020 /* Make sure that partially constructed symbol tables will be cleaned up
1021 if an error occurs during symbol reading. */
74b7792f 1022 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1023
6bf667bb
DE
1024 /* If ADDRS is NULL, put together a dummy address list.
1025 We now establish the convention that an addr of zero means
c378eb4e 1026 no load address was specified. */
6bf667bb 1027 if (! addrs)
a39a16c4 1028 {
d445b2f6 1029 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1030 make_cleanup (xfree, local_addr);
1031 addrs = local_addr;
1032 }
1033
c5aa993b 1034 if (mainline)
c906108c
SS
1035 {
1036 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1037 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1038 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1039
1040 /* Since no error yet, throw away the old symbol table. */
1041
1042 if (symfile_objfile != NULL)
1043 {
1044 free_objfile (symfile_objfile);
adb7f338 1045 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1046 }
1047
1048 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1049 If the user wants to get rid of them, they should do "symbol-file"
1050 without arguments first. Not sure this is the best behavior
1051 (PR 2207). */
c906108c 1052
c5aa993b 1053 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1054 }
1055
1056 /* Convert addr into an offset rather than an absolute address.
1057 We find the lowest address of a loaded segment in the objfile,
53a5351d 1058 and assume that <addr> is where that got loaded.
c906108c 1059
53a5351d
JM
1060 We no longer warn if the lowest section is not a text segment (as
1061 happens for the PA64 port. */
6bf667bb 1062 if (addrs->num_sections > 0)
75242ef4 1063 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1064
1065 /* Initialize symbol reading routines for this objfile, allow complaints to
1066 appear for this new file, and record how verbose to be, then do the
c378eb4e 1067 initial symbol reading for this file. */
c906108c 1068
c5aa993b 1069 (*objfile->sf->sym_init) (objfile);
7eedccfa 1070 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1071
6bf667bb 1072 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1073
608e2dbb 1074 read_symbols (objfile, add_flags);
b11896a5 1075
c906108c
SS
1076 /* Discard cleanups as symbol reading was successful. */
1077
1078 discard_cleanups (old_chain);
f7545552 1079 xfree (local_addr);
c906108c
SS
1080}
1081
36e4d068
JB
1082/* Same as syms_from_objfile_1, but also initializes the objfile
1083 entry-point info. */
1084
6bf667bb 1085static void
36e4d068
JB
1086syms_from_objfile (struct objfile *objfile,
1087 struct section_addr_info *addrs,
b15cc25c 1088 symfile_add_flags add_flags)
36e4d068 1089{
6bf667bb 1090 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1091 init_entry_point_info (objfile);
1092}
1093
c906108c
SS
1094/* Perform required actions after either reading in the initial
1095 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1096 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1097
e7d52ed3 1098static void
b15cc25c 1099finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1100{
c906108c 1101 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1102 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1103 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1104 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1105 {
1106 /* OK, make it the "real" symbol file. */
1107 symfile_objfile = objfile;
1108
c1e56572 1109 clear_symtab_users (add_flags);
c906108c 1110 }
7eedccfa 1111 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1112 {
69de3c6a 1113 breakpoint_re_set ();
c906108c
SS
1114 }
1115
1116 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1117 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1118}
1119
1120/* Process a symbol file, as either the main file or as a dynamically
1121 loaded file.
1122
5417f6dc 1123 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1124 A new reference is acquired by this function.
7904e09f 1125
24ba069a
JK
1126 For NAME description see allocate_objfile's definition.
1127
7eedccfa
PP
1128 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1129 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1130
6bf667bb 1131 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1132 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1133
63524580
JK
1134 PARENT is the original objfile if ABFD is a separate debug info file.
1135 Otherwise PARENT is NULL.
1136
c906108c 1137 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1138 Upon failure, jumps back to command level (never returns). */
7eedccfa 1139
7904e09f 1140static struct objfile *
b15cc25c
PA
1141symbol_file_add_with_addrs (bfd *abfd, const char *name,
1142 symfile_add_flags add_flags,
6bf667bb 1143 struct section_addr_info *addrs,
b15cc25c 1144 objfile_flags flags, struct objfile *parent)
c906108c
SS
1145{
1146 struct objfile *objfile;
7eedccfa 1147 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1148 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1149 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1150 && (readnow_symbol_files
1151 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1152
9291a0cd 1153 if (readnow_symbol_files)
b11896a5
TT
1154 {
1155 flags |= OBJF_READNOW;
1156 add_flags &= ~SYMFILE_NO_READ;
1157 }
9291a0cd 1158
5417f6dc
RM
1159 /* Give user a chance to burp if we'd be
1160 interactively wiping out any existing symbols. */
c906108c
SS
1161
1162 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1163 && mainline
c906108c 1164 && from_tty
9e2f0ad4 1165 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1166 error (_("Not confirmed."));
c906108c 1167
b15cc25c
PA
1168 if (mainline)
1169 flags |= OBJF_MAINLINE;
1170 objfile = allocate_objfile (abfd, name, flags);
c906108c 1171
63524580
JK
1172 if (parent)
1173 add_separate_debug_objfile (objfile, parent);
1174
78a4a9b9
AC
1175 /* We either created a new mapped symbol table, mapped an existing
1176 symbol table file which has not had initial symbol reading
c378eb4e 1177 performed, or need to read an unmapped symbol table. */
b11896a5 1178 if (should_print)
c906108c 1179 {
769d7dc4
AC
1180 if (deprecated_pre_add_symbol_hook)
1181 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1182 else
c906108c 1183 {
55333a84
DE
1184 printf_unfiltered (_("Reading symbols from %s..."), name);
1185 wrap_here ("");
1186 gdb_flush (gdb_stdout);
c906108c 1187 }
c906108c 1188 }
6bf667bb 1189 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1190
1191 /* We now have at least a partial symbol table. Check to see if the
1192 user requested that all symbols be read on initial access via either
1193 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1194 all partial symbol tables for this objfile if so. */
c906108c 1195
9291a0cd 1196 if ((flags & OBJF_READNOW))
c906108c 1197 {
b11896a5 1198 if (should_print)
c906108c 1199 {
a3f17187 1200 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1201 wrap_here ("");
1202 gdb_flush (gdb_stdout);
1203 }
1204
ccefe4c4
TT
1205 if (objfile->sf)
1206 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1207 }
1208
b11896a5 1209 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1210 {
1211 wrap_here ("");
55333a84 1212 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1213 wrap_here ("");
1214 }
1215
b11896a5 1216 if (should_print)
c906108c 1217 {
769d7dc4
AC
1218 if (deprecated_post_add_symbol_hook)
1219 deprecated_post_add_symbol_hook ();
c906108c 1220 else
55333a84 1221 printf_unfiltered (_("done.\n"));
c906108c
SS
1222 }
1223
481d0f41
JB
1224 /* We print some messages regardless of whether 'from_tty ||
1225 info_verbose' is true, so make sure they go out at the right
1226 time. */
1227 gdb_flush (gdb_stdout);
1228
109f874e 1229 if (objfile->sf == NULL)
8caee43b
PP
1230 {
1231 observer_notify_new_objfile (objfile);
c378eb4e 1232 return objfile; /* No symbols. */
8caee43b 1233 }
109f874e 1234
e7d52ed3 1235 finish_new_objfile (objfile, add_flags);
c906108c 1236
06d3b283 1237 observer_notify_new_objfile (objfile);
c906108c 1238
ce7d4522 1239 bfd_cache_close_all ();
c906108c
SS
1240 return (objfile);
1241}
1242
24ba069a
JK
1243/* Add BFD as a separate debug file for OBJFILE. For NAME description
1244 see allocate_objfile's definition. */
9cce227f
TG
1245
1246void
b15cc25c
PA
1247symbol_file_add_separate (bfd *bfd, const char *name,
1248 symfile_add_flags symfile_flags,
24ba069a 1249 struct objfile *objfile)
9cce227f 1250{
089b4803
TG
1251 struct section_addr_info *sap;
1252 struct cleanup *my_cleanup;
1253
1254 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1255 because sections of BFD may not match sections of OBJFILE and because
1256 vma may have been modified by tools such as prelink. */
1257 sap = build_section_addr_info_from_objfile (objfile);
1258 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1259
870f88f7 1260 symbol_file_add_with_addrs
24ba069a 1261 (bfd, name, symfile_flags, sap,
9cce227f 1262 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1263 | OBJF_USERLOADED),
1264 objfile);
089b4803
TG
1265
1266 do_cleanups (my_cleanup);
9cce227f 1267}
7904e09f 1268
eb4556d7
JB
1269/* Process the symbol file ABFD, as either the main file or as a
1270 dynamically loaded file.
6bf667bb 1271 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1272
eb4556d7 1273struct objfile *
b15cc25c
PA
1274symbol_file_add_from_bfd (bfd *abfd, const char *name,
1275 symfile_add_flags add_flags,
eb4556d7 1276 struct section_addr_info *addrs,
b15cc25c 1277 objfile_flags flags, struct objfile *parent)
eb4556d7 1278{
24ba069a
JK
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
eb4556d7
JB
1281}
1282
7904e09f 1283/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1285
7904e09f 1286struct objfile *
b15cc25c
PA
1287symbol_file_add (const char *name, symfile_add_flags add_flags,
1288 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1289{
8ac244b4
TT
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
24ba069a 1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1295 do_cleanups (cleanup);
1296 return objf;
7904e09f
JB
1297}
1298
d7db6da9
FN
1299/* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
5417f6dc 1306
1adeb98a 1307void
ecf45d2c 1308symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1309{
ecf45d2c 1310 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1311}
1312
1313static void
ecf45d2c
SL
1314symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1315 objfile_flags flags)
d7db6da9 1316{
ecf45d2c 1317 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1318
7eedccfa 1319 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1320
d7db6da9
FN
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
b15cc25c 1325 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1326 set_initial_language ();
1adeb98a
FN
1327}
1328
1329void
1330symbol_file_clear (int from_tty)
1331{
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
0430b0d6
AS
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1336 objfile_name (symfile_objfile))
0430b0d6 1337 : !query (_("Discard symbol table? "))))
8a3fe4f8 1338 error (_("Not confirmed."));
1adeb98a 1339
0133421a
JK
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1342 no_shared_libraries (NULL, from_tty);
1343
0133421a
JK
1344 free_all_objfiles ();
1345
adb7f338 1346 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1349}
1350
5b5d99cf 1351static int
287ccc17 1352separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1353 struct objfile *parent_objfile)
5b5d99cf 1354{
904578ed
JK
1355 unsigned long file_crc;
1356 int file_crc_p;
f1838a98 1357 bfd *abfd;
32a0e547 1358 struct stat parent_stat, abfd_stat;
904578ed 1359 int verified_as_different;
32a0e547
JK
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1365 the separate debug infos with the same basename can exist. */
32a0e547 1366
4262abfb 1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1368 return 0;
5b5d99cf 1369
2938e6cf 1370 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1371
1372 if (!abfd)
5b5d99cf
JB
1373 return 0;
1374
0ba1096a 1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
0a93529c
GB
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
904578ed 1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
325fac50 1468 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
224c3ddb
SM
1473 debugfile
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
5b5d99cf
JB
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1db33378 1483 strcat (debugfile, debuglink);
5b5d99cf 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1486 return debugfile;
5417f6dc 1487
5b5d99cf
JB
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1db33378 1492 strcat (debugfile, debuglink);
5b5d99cf 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
5417f6dc 1496
24ddea62 1497 /* Then try in the global debugfile directories.
f888f159 1498
24ddea62
JK
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
5417f6dc 1501
e4ab2fad
JK
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1504
e4ab2fad
JK
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
aa28a74e 1508 strcat (debugfile, "/");
24ddea62 1509 strcat (debugfile, dir);
1db33378 1510 strcat (debugfile, debuglink);
aa28a74e 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
24ddea62
JK
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1db33378
PP
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1522 strlen (gdb_sysroot)) == 0
1db33378 1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1524 {
e4ab2fad 1525 strcpy (debugfile, debugdir);
1db33378 1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1527 strcat (debugfile, "/");
1db33378 1528 strcat (debugfile, debuglink);
24ddea62 1529
32a0e547 1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
24ddea62 1535 }
aa28a74e 1536 }
f888f159 1537
e4ab2fad 1538 do_cleanups (back_to);
25522fae 1539 xfree (debugfile);
1db33378
PP
1540 return NULL;
1541}
1542
7edbb660 1543/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547static void
1548terminate_after_last_dir_separator (char *path)
1549{
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560}
1561
1562/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565char *
1566find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567{
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
cc0ea93c 1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
71bdabee 1583 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1584 dir = xstrdup (objfile_name (objfile));
71bdabee 1585 make_cleanup (xfree, dir);
1db33378
PP
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1db33378
PP
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1db33378 1621 }
aa28a74e 1622
1db33378 1623 do_cleanups (cleanups);
25522fae 1624 return debugfile;
5b5d99cf
JB
1625}
1626
c906108c
SS
1627/* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
c906108c
SS
1639 conventions (because it is confusing and inconvenient). */
1640
1641void
fba45db2 1642symbol_file_command (char *args, int from_tty)
c906108c 1643{
c906108c
SS
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1adeb98a 1648 symbol_file_clear (from_tty);
c906108c
SS
1649 }
1650 else
1651 {
d1a41061 1652 char **argv = gdb_buildargv (args);
b15cc25c 1653 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1654 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
ecf45d2c
SL
1658 if (from_tty)
1659 add_flags |= SYMFILE_VERBOSE;
1660
7a292a7a 1661 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1662 while (*argv != NULL)
1663 {
78a4a9b9
AC
1664 if (strcmp (*argv, "-readnow") == 0)
1665 flags |= OBJF_READNOW;
1666 else if (**argv == '-')
8a3fe4f8 1667 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1668 else
1669 {
ecf45d2c 1670 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1671 name = *argv;
78a4a9b9 1672 }
cb2f3a29 1673
c906108c
SS
1674 argv++;
1675 }
1676
1677 if (name == NULL)
cb2f3a29
MK
1678 error (_("no symbol file name was specified"));
1679
c906108c
SS
1680 do_cleanups (cleanups);
1681 }
1682}
1683
1684/* Set the initial language.
1685
cb2f3a29
MK
1686 FIXME: A better solution would be to record the language in the
1687 psymtab when reading partial symbols, and then use it (if known) to
1688 set the language. This would be a win for formats that encode the
1689 language in an easily discoverable place, such as DWARF. For
1690 stabs, we can jump through hoops looking for specially named
1691 symbols or try to intuit the language from the specific type of
1692 stabs we find, but we can't do that until later when we read in
1693 full symbols. */
c906108c 1694
8b60591b 1695void
fba45db2 1696set_initial_language (void)
c906108c 1697{
9e6c82ad 1698 enum language lang = main_language ();
c906108c 1699
9e6c82ad 1700 if (lang == language_unknown)
01f8c46d 1701 {
bf6d8a91 1702 char *name = main_name ();
d12307c1 1703 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1704
bf6d8a91
TT
1705 if (sym != NULL)
1706 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1707 }
cb2f3a29 1708
ccefe4c4
TT
1709 if (lang == language_unknown)
1710 {
1711 /* Make C the default language */
1712 lang = language_c;
c906108c 1713 }
ccefe4c4
TT
1714
1715 set_language (lang);
1716 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1717}
1718
cb2f3a29
MK
1719/* Open the file specified by NAME and hand it off to BFD for
1720 preliminary analysis. Return a newly initialized bfd *, which
1721 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1722 absolute). In case of trouble, error() is called. */
c906108c
SS
1723
1724bfd *
97a41605 1725symfile_bfd_open (const char *name)
c906108c
SS
1726{
1727 bfd *sym_bfd;
97a41605
GB
1728 int desc = -1;
1729 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1730
97a41605 1731 if (!is_target_filename (name))
f1838a98 1732 {
97a41605 1733 char *expanded_name, *absolute_name;
f1838a98 1734
97a41605 1735 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1736
97a41605
GB
1737 /* Look down path for it, allocate 2nd new malloc'd copy. */
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1741#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1742 if (desc < 0)
1743 {
0ae1c716 1744 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1745
97a41605
GB
1746 strcat (strcpy (exename, expanded_name), ".exe");
1747 desc = openp (getenv ("PATH"),
1748 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1749 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 }
c906108c 1751#endif
97a41605
GB
1752 if (desc < 0)
1753 {
1754 make_cleanup (xfree, expanded_name);
1755 perror_with_name (expanded_name);
1756 }
cb2f3a29 1757
97a41605
GB
1758 xfree (expanded_name);
1759 make_cleanup (xfree, absolute_name);
1760 name = absolute_name;
1761 }
c906108c 1762
1c00ec6b 1763 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1764 if (!sym_bfd)
faab9922
JK
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1767
1768 if (!gdb_bfd_has_target_filename (sym_bfd))
1769 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1770
1771 if (!bfd_check_format (sym_bfd, bfd_object))
1772 {
f9a062ff 1773 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1774 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1775 bfd_errmsg (bfd_get_error ()));
1776 }
cb2f3a29 1777
faab9922
JK
1778 do_cleanups (back_to);
1779
cb2f3a29 1780 return sym_bfd;
c906108c
SS
1781}
1782
cb2f3a29
MK
1783/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1784 the section was not found. */
1785
0e931cf0
JB
1786int
1787get_section_index (struct objfile *objfile, char *section_name)
1788{
1789 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1790
0e931cf0
JB
1791 if (sect)
1792 return sect->index;
1793 else
1794 return -1;
1795}
1796
c256e171
DE
1797/* Link SF into the global symtab_fns list.
1798 FLAVOUR is the file format that SF handles.
1799 Called on startup by the _initialize routine in each object file format
1800 reader, to register information about each format the reader is prepared
1801 to handle. */
c906108c
SS
1802
1803void
c256e171 1804add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1805{
c256e171
DE
1806 registered_sym_fns fns = { flavour, sf };
1807
1808 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1809}
1810
cb2f3a29
MK
1811/* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
c906108c 1815
00b5771c 1816static const struct sym_fns *
31d99776 1817find_sym_fns (bfd *abfd)
c906108c 1818{
c256e171 1819 registered_sym_fns *rsf;
31d99776 1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1821 int i;
c906108c 1822
75245b24
MS
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1826 return NULL; /* No symbols. */
75245b24 1827
c256e171
DE
1828 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1829 if (our_flavour == rsf->sym_flavour)
1830 return rsf->sym_fns;
cb2f3a29 1831
8a3fe4f8 1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1833 bfd_get_target (abfd));
c906108c
SS
1834}
1835\f
cb2f3a29 1836
c906108c
SS
1837/* This function runs the load command of our current target. */
1838
1839static void
fba45db2 1840load_command (char *arg, int from_tty)
c906108c 1841{
5b3fca71
TT
1842 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1843
e5cc9f32
JB
1844 dont_repeat ();
1845
4487aabf
PA
1846 /* The user might be reloading because the binary has changed. Take
1847 this opportunity to check. */
1848 reopen_exec_file ();
1849 reread_symbols ();
1850
c906108c 1851 if (arg == NULL)
1986bccd
AS
1852 {
1853 char *parg;
1854 int count = 0;
1855
1856 parg = arg = get_exec_file (1);
1857
1858 /* Count how many \ " ' tab space there are in the name. */
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 parg++;
1862 count++;
1863 }
1864
1865 if (count)
1866 {
1867 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1868 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1869 char *ptemp = temp;
1870 char *prev;
1871
1872 make_cleanup (xfree, temp);
1873
1874 prev = parg = arg;
1875 while ((parg = strpbrk (parg, "\\\"'\t ")))
1876 {
1877 strncpy (ptemp, prev, parg - prev);
1878 ptemp += parg - prev;
1879 prev = parg++;
1880 *ptemp++ = '\\';
1881 }
1882 strcpy (ptemp, prev);
1883
1884 arg = temp;
1885 }
1886 }
1887
c906108c 1888 target_load (arg, from_tty);
2889e661
JB
1889
1890 /* After re-loading the executable, we don't really know which
1891 overlays are mapped any more. */
1892 overlay_cache_invalid = 1;
5b3fca71
TT
1893
1894 do_cleanups (cleanup);
c906108c
SS
1895}
1896
1897/* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
917317f4 1905
917317f4
JM
1906static int validate_download = 0;
1907
e4f9b4d5
MS
1908/* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910static void
1911add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912{
19ba03f4 1913 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1914
2c500098 1915 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1916}
1917
1918/* Opaque data for load_section_callback. */
1919struct load_section_data {
f698ca8e 1920 CORE_ADDR load_offset;
a76d924d
DJ
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923};
1924
1925/* Opaque data for load_progress. */
1926struct load_progress_data {
1927 /* Cumulative data. */
e4f9b4d5
MS
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
a76d924d
DJ
1931};
1932
1933/* Opaque data for load_progress for a single section. */
1934struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
cf7a04e8 1936
a76d924d 1937 /* Per-section data. */
cf7a04e8
DJ
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
e4f9b4d5
MS
1943};
1944
a76d924d 1945/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1946
1947static void
1948load_progress (ULONGEST bytes, void *untyped_arg)
1949{
19ba03f4
SM
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
79a45e25 1965 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1966 args->section_name, hex_string (args->section_size),
f5656ead 1967 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1968 return;
1969 }
cf7a04e8
DJ
1970
1971 if (validate_download)
1972 {
1973 /* Broken memories and broken monitors manifest themselves here
1974 when bring new computers to life. This doubles already slow
1975 downloads. */
1976 /* NOTE: cagney/1999-10-18: A more efficient implementation
1977 might add a verify_memory() method to the target vector and
1978 then use that. remote.c could implement that method using
1979 the ``qCRC'' packet. */
224c3ddb 1980 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1981 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1982
1983 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1984 error (_("Download verify read failed at %s"),
f5656ead 1985 paddress (target_gdbarch (), args->lma));
cf7a04e8 1986 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1987 error (_("Download verify compare failed at %s"),
f5656ead 1988 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1989 do_cleanups (verify_cleanups);
1990 }
a76d924d 1991 totals->data_count += bytes;
cf7a04e8
DJ
1992 args->lma += bytes;
1993 args->buffer += bytes;
a76d924d 1994 totals->write_count += 1;
cf7a04e8 1995 args->section_sent += bytes;
522002f9 1996 if (check_quit_flag ()
cf7a04e8
DJ
1997 || (deprecated_ui_load_progress_hook != NULL
1998 && deprecated_ui_load_progress_hook (args->section_name,
1999 args->section_sent)))
2000 error (_("Canceled the download"));
2001
2002 if (deprecated_show_load_progress != NULL)
2003 deprecated_show_load_progress (args->section_name,
2004 args->section_sent,
2005 args->section_size,
a76d924d
DJ
2006 totals->data_count,
2007 totals->total_size);
cf7a04e8
DJ
2008}
2009
e4f9b4d5
MS
2010/* Callback service function for generic_load (bfd_map_over_sections). */
2011
2012static void
2013load_section_callback (bfd *abfd, asection *asec, void *data)
2014{
a76d924d 2015 struct memory_write_request *new_request;
19ba03f4 2016 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2017 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2018 bfd_size_type size = bfd_get_section_size (asec);
2019 gdb_byte *buffer;
cf7a04e8 2020 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2021
cf7a04e8
DJ
2022 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2023 return;
e4f9b4d5 2024
cf7a04e8
DJ
2025 if (size == 0)
2026 return;
e4f9b4d5 2027
a76d924d
DJ
2028 new_request = VEC_safe_push (memory_write_request_s,
2029 args->requests, NULL);
2030 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2031 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2032 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2033 new_request->end = new_request->begin + size; /* FIXME Should size
2034 be in instead? */
224c3ddb 2035 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2036 new_request->baton = section_data;
cf7a04e8 2037
a76d924d 2038 buffer = new_request->data;
cf7a04e8 2039
a76d924d
DJ
2040 section_data->cumulative = args->progress_data;
2041 section_data->section_name = sect_name;
2042 section_data->section_size = size;
2043 section_data->lma = new_request->begin;
2044 section_data->buffer = buffer;
cf7a04e8
DJ
2045
2046 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2047}
2048
2049/* Clean up an entire memory request vector, including load
2050 data and progress records. */
cf7a04e8 2051
a76d924d
DJ
2052static void
2053clear_memory_write_data (void *arg)
2054{
19ba03f4 2055 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2056 VEC(memory_write_request_s) *vec = *vec_p;
2057 int i;
2058 struct memory_write_request *mr;
cf7a04e8 2059
a76d924d
DJ
2060 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2061 {
2062 xfree (mr->data);
2063 xfree (mr->baton);
2064 }
2065 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2066}
2067
dcb07cfa
PA
2068static void print_transfer_performance (struct ui_file *stream,
2069 unsigned long data_count,
2070 unsigned long write_count,
2071 std::chrono::steady_clock::duration d);
2072
c906108c 2073void
9cbe5fff 2074generic_load (const char *args, int from_tty)
c906108c 2075{
c906108c 2076 bfd *loadfile_bfd;
917317f4 2077 char *filename;
1986bccd 2078 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2079 struct load_section_data cbdata;
a76d924d 2080 struct load_progress_data total_progress;
79a45e25 2081 struct ui_out *uiout = current_uiout;
a76d924d 2082
e4f9b4d5 2083 CORE_ADDR entry;
1986bccd 2084 char **argv;
e4f9b4d5 2085
a76d924d
DJ
2086 memset (&cbdata, 0, sizeof (cbdata));
2087 memset (&total_progress, 0, sizeof (total_progress));
2088 cbdata.progress_data = &total_progress;
2089
2090 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2091
d1a41061
PP
2092 if (args == NULL)
2093 error_no_arg (_("file to load"));
1986bccd 2094
d1a41061 2095 argv = gdb_buildargv (args);
1986bccd
AS
2096 make_cleanup_freeargv (argv);
2097
2098 filename = tilde_expand (argv[0]);
2099 make_cleanup (xfree, filename);
2100
2101 if (argv[1] != NULL)
917317f4 2102 {
f698ca8e 2103 const char *endptr;
ba5f2f8a 2104
f698ca8e 2105 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2106
2107 /* If the last word was not a valid number then
2108 treat it as a file name with spaces in. */
2109 if (argv[1] == endptr)
2110 error (_("Invalid download offset:%s."), argv[1]);
2111
2112 if (argv[2] != NULL)
2113 error (_("Too many parameters."));
917317f4 2114 }
c906108c 2115
c378eb4e 2116 /* Open the file for loading. */
1c00ec6b 2117 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2118 if (loadfile_bfd == NULL)
2119 {
2120 perror_with_name (filename);
2121 return;
2122 }
917317f4 2123
f9a062ff 2124 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2125
c5aa993b 2126 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2127 {
8a3fe4f8 2128 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2129 bfd_errmsg (bfd_get_error ()));
2130 }
c5aa993b 2131
5417f6dc 2132 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2133 (void *) &total_progress.total_size);
2134
2135 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2136
dcb07cfa
PA
2137 using namespace std::chrono;
2138
2139 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2140
a76d924d
DJ
2141 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2142 load_progress) != 0)
2143 error (_("Load failed"));
c906108c 2144
dcb07cfa 2145 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2146
e4f9b4d5 2147 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2148 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2149 ui_out_text (uiout, "Start address ");
f5656ead 2150 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2151 ui_out_text (uiout, ", load size ");
a76d924d 2152 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2153 ui_out_text (uiout, "\n");
fb14de7b 2154 regcache_write_pc (get_current_regcache (), entry);
c906108c 2155
38963c97
DJ
2156 /* Reset breakpoints, now that we have changed the load image. For
2157 instance, breakpoints may have been set (or reset, by
2158 post_create_inferior) while connected to the target but before we
2159 loaded the program. In that case, the prologue analyzer could
2160 have read instructions from the target to find the right
2161 breakpoint locations. Loading has changed the contents of that
2162 memory. */
2163
2164 breakpoint_re_set ();
2165
a76d924d
DJ
2166 print_transfer_performance (gdb_stdout, total_progress.data_count,
2167 total_progress.write_count,
dcb07cfa 2168 end_time - start_time);
c906108c
SS
2169
2170 do_cleanups (old_cleanups);
2171}
2172
dcb07cfa
PA
2173/* Report on STREAM the performance of a memory transfer operation,
2174 such as 'load'. DATA_COUNT is the number of bytes transferred.
2175 WRITE_COUNT is the number of separate write operations, or 0, if
2176 that information is not available. TIME is how long the operation
2177 lasted. */
c906108c 2178
dcb07cfa 2179static void
d9fcf2fb 2180print_transfer_performance (struct ui_file *stream,
917317f4
JM
2181 unsigned long data_count,
2182 unsigned long write_count,
dcb07cfa 2183 std::chrono::steady_clock::duration time)
917317f4 2184{
dcb07cfa 2185 using namespace std::chrono;
79a45e25 2186 struct ui_out *uiout = current_uiout;
2b71414d 2187
dcb07cfa 2188 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2189
8b93c638 2190 ui_out_text (uiout, "Transfer rate: ");
dcb07cfa 2191 if (ms.count () > 0)
8b93c638 2192 {
dcb07cfa 2193 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c
DJ
2194
2195 if (ui_out_is_mi_like_p (uiout))
2196 {
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2198 ui_out_text (uiout, " bits/sec");
2199 }
2200 else if (rate < 1024)
2201 {
2202 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2203 ui_out_text (uiout, " bytes/sec");
2204 }
2205 else
2206 {
2207 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2208 ui_out_text (uiout, " KB/sec");
2209 }
8b93c638
JM
2210 }
2211 else
2212 {
ba5f2f8a 2213 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2214 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2215 }
2216 if (write_count > 0)
2217 {
2218 ui_out_text (uiout, ", ");
ba5f2f8a 2219 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2220 ui_out_text (uiout, " bytes/write");
2221 }
2222 ui_out_text (uiout, ".\n");
c906108c
SS
2223}
2224
2225/* This function allows the addition of incrementally linked object files.
2226 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2227/* Note: ezannoni 2000-04-13 This function/command used to have a
2228 special case syntax for the rombug target (Rombug is the boot
2229 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2230 rombug case, the user doesn't need to supply a text address,
2231 instead a call to target_link() (in target.c) would supply the
c378eb4e 2232 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2233
c906108c 2234static void
fba45db2 2235add_symbol_file_command (char *args, int from_tty)
c906108c 2236{
5af949e3 2237 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2238 char *filename = NULL;
c906108c 2239 char *arg;
db162d44 2240 int section_index = 0;
2acceee2
JM
2241 int argcnt = 0;
2242 int sec_num = 0;
2243 int i;
db162d44
EZ
2244 int expecting_sec_name = 0;
2245 int expecting_sec_addr = 0;
5b96932b 2246 char **argv;
76ad5e1e 2247 struct objfile *objf;
b15cc25c
PA
2248 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2249 symfile_add_flags add_flags = 0;
2250
2251 if (from_tty)
2252 add_flags |= SYMFILE_VERBOSE;
db162d44 2253
a39a16c4 2254 struct sect_opt
2acceee2 2255 {
2acceee2
JM
2256 char *name;
2257 char *value;
a39a16c4 2258 };
db162d44 2259
a39a16c4
MM
2260 struct section_addr_info *section_addrs;
2261 struct sect_opt *sect_opts = NULL;
2262 size_t num_sect_opts = 0;
3017564a 2263 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2264
a39a16c4 2265 num_sect_opts = 16;
8d749320 2266 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2267
c906108c
SS
2268 dont_repeat ();
2269
2270 if (args == NULL)
8a3fe4f8 2271 error (_("add-symbol-file takes a file name and an address"));
c906108c 2272
d1a41061 2273 argv = gdb_buildargv (args);
5b96932b 2274 make_cleanup_freeargv (argv);
db162d44 2275
5b96932b
AS
2276 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2277 {
c378eb4e 2278 /* Process the argument. */
db162d44 2279 if (argcnt == 0)
c906108c 2280 {
c378eb4e 2281 /* The first argument is the file name. */
db162d44 2282 filename = tilde_expand (arg);
3017564a 2283 make_cleanup (xfree, filename);
c906108c 2284 }
41dc8db8
MB
2285 else if (argcnt == 1)
2286 {
2287 /* The second argument is always the text address at which
2288 to load the program. */
2289 sect_opts[section_index].name = ".text";
2290 sect_opts[section_index].value = arg;
2291 if (++section_index >= num_sect_opts)
2292 {
2293 num_sect_opts *= 2;
2294 sect_opts = ((struct sect_opt *)
2295 xrealloc (sect_opts,
2296 num_sect_opts
2297 * sizeof (struct sect_opt)));
2298 }
2299 }
db162d44 2300 else
41dc8db8
MB
2301 {
2302 /* It's an option (starting with '-') or it's an argument
2303 to an option. */
41dc8db8
MB
2304 if (expecting_sec_name)
2305 {
2306 sect_opts[section_index].name = arg;
2307 expecting_sec_name = 0;
2308 }
2309 else if (expecting_sec_addr)
2310 {
2311 sect_opts[section_index].value = arg;
2312 expecting_sec_addr = 0;
2313 if (++section_index >= num_sect_opts)
2314 {
2315 num_sect_opts *= 2;
2316 sect_opts = ((struct sect_opt *)
2317 xrealloc (sect_opts,
2318 num_sect_opts
2319 * sizeof (struct sect_opt)));
2320 }
2321 }
2322 else if (strcmp (arg, "-readnow") == 0)
2323 flags |= OBJF_READNOW;
2324 else if (strcmp (arg, "-s") == 0)
2325 {
2326 expecting_sec_name = 1;
2327 expecting_sec_addr = 1;
2328 }
2329 else
2330 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2331 " [-readnow] [-s <secname> <addr>]*"));
2332 }
c906108c 2333 }
c906108c 2334
927890d0
JB
2335 /* This command takes at least two arguments. The first one is a
2336 filename, and the second is the address where this file has been
2337 loaded. Abort now if this address hasn't been provided by the
2338 user. */
2339 if (section_index < 1)
2340 error (_("The address where %s has been loaded is missing"), filename);
2341
c378eb4e 2342 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2343 a sect_addr_info structure to be passed around to other
2344 functions. We have to split this up into separate print
bb599908 2345 statements because hex_string returns a local static
c378eb4e 2346 string. */
5417f6dc 2347
a3f17187 2348 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2349 section_addrs = alloc_section_addr_info (section_index);
2350 make_cleanup (xfree, section_addrs);
db162d44 2351 for (i = 0; i < section_index; i++)
c906108c 2352 {
db162d44
EZ
2353 CORE_ADDR addr;
2354 char *val = sect_opts[i].value;
2355 char *sec = sect_opts[i].name;
5417f6dc 2356
ae822768 2357 addr = parse_and_eval_address (val);
db162d44 2358
db162d44 2359 /* Here we store the section offsets in the order they were
c378eb4e 2360 entered on the command line. */
a39a16c4
MM
2361 section_addrs->other[sec_num].name = sec;
2362 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2363 printf_unfiltered ("\t%s_addr = %s\n", sec,
2364 paddress (gdbarch, addr));
db162d44
EZ
2365 sec_num++;
2366
5417f6dc 2367 /* The object's sections are initialized when a
db162d44 2368 call is made to build_objfile_section_table (objfile).
5417f6dc 2369 This happens in reread_symbols.
db162d44
EZ
2370 At this point, we don't know what file type this is,
2371 so we can't determine what section names are valid. */
2acceee2 2372 }
d76488d8 2373 section_addrs->num_sections = sec_num;
db162d44 2374
2acceee2 2375 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2376 error (_("Not confirmed."));
c906108c 2377
b15cc25c 2378 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2379
2380 add_target_sections_of_objfile (objf);
c906108c
SS
2381
2382 /* Getting new symbols may change our opinion about what is
2383 frameless. */
2384 reinit_frame_cache ();
db162d44 2385 do_cleanups (my_cleanups);
c906108c
SS
2386}
2387\f
70992597 2388
63644780
NB
2389/* This function removes a symbol file that was added via add-symbol-file. */
2390
2391static void
2392remove_symbol_file_command (char *args, int from_tty)
2393{
2394 char **argv;
2395 struct objfile *objf = NULL;
2396 struct cleanup *my_cleanups;
2397 struct program_space *pspace = current_program_space;
63644780
NB
2398
2399 dont_repeat ();
2400
2401 if (args == NULL)
2402 error (_("remove-symbol-file: no symbol file provided"));
2403
2404 my_cleanups = make_cleanup (null_cleanup, NULL);
2405
2406 argv = gdb_buildargv (args);
2407
2408 if (strcmp (argv[0], "-a") == 0)
2409 {
2410 /* Interpret the next argument as an address. */
2411 CORE_ADDR addr;
2412
2413 if (argv[1] == NULL)
2414 error (_("Missing address argument"));
2415
2416 if (argv[2] != NULL)
2417 error (_("Junk after %s"), argv[1]);
2418
2419 addr = parse_and_eval_address (argv[1]);
2420
2421 ALL_OBJFILES (objf)
2422 {
d03de421
PA
2423 if ((objf->flags & OBJF_USERLOADED) != 0
2424 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2425 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2426 break;
2427 }
2428 }
2429 else if (argv[0] != NULL)
2430 {
2431 /* Interpret the current argument as a file name. */
2432 char *filename;
2433
2434 if (argv[1] != NULL)
2435 error (_("Junk after %s"), argv[0]);
2436
2437 filename = tilde_expand (argv[0]);
2438 make_cleanup (xfree, filename);
2439
2440 ALL_OBJFILES (objf)
2441 {
d03de421
PA
2442 if ((objf->flags & OBJF_USERLOADED) != 0
2443 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2444 && objf->pspace == pspace
2445 && filename_cmp (filename, objfile_name (objf)) == 0)
2446 break;
2447 }
2448 }
2449
2450 if (objf == NULL)
2451 error (_("No symbol file found"));
2452
2453 if (from_tty
2454 && !query (_("Remove symbol table from file \"%s\"? "),
2455 objfile_name (objf)))
2456 error (_("Not confirmed."));
2457
2458 free_objfile (objf);
2459 clear_symtab_users (0);
2460
2461 do_cleanups (my_cleanups);
2462}
2463
4ac39b97
JK
2464typedef struct objfile *objfilep;
2465
2466DEF_VEC_P (objfilep);
2467
c906108c 2468/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2469
c906108c 2470void
fba45db2 2471reread_symbols (void)
c906108c
SS
2472{
2473 struct objfile *objfile;
2474 long new_modtime;
c906108c
SS
2475 struct stat new_statbuf;
2476 int res;
4ac39b97
JK
2477 VEC (objfilep) *new_objfiles = NULL;
2478 struct cleanup *all_cleanups;
2479
2480 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2481
2482 /* With the addition of shared libraries, this should be modified,
2483 the load time should be saved in the partial symbol tables, since
2484 different tables may come from different source files. FIXME.
2485 This routine should then walk down each partial symbol table
c378eb4e 2486 and see if the symbol table that it originates from has been changed. */
c906108c 2487
c5aa993b
JM
2488 for (objfile = object_files; objfile; objfile = objfile->next)
2489 {
9cce227f
TG
2490 if (objfile->obfd == NULL)
2491 continue;
2492
2493 /* Separate debug objfiles are handled in the main objfile. */
2494 if (objfile->separate_debug_objfile_backlink)
2495 continue;
2496
02aeec7b
JB
2497 /* If this object is from an archive (what you usually create with
2498 `ar', often called a `static library' on most systems, though
2499 a `shared library' on AIX is also an archive), then you should
2500 stat on the archive name, not member name. */
9cce227f
TG
2501 if (objfile->obfd->my_archive)
2502 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2503 else
4262abfb 2504 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2505 if (res != 0)
2506 {
c378eb4e 2507 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2508 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2509 objfile_name (objfile));
9cce227f
TG
2510 continue;
2511 }
2512 new_modtime = new_statbuf.st_mtime;
2513 if (new_modtime != objfile->mtime)
2514 {
2515 struct cleanup *old_cleanups;
2516 struct section_offsets *offsets;
2517 int num_offsets;
24ba069a 2518 char *original_name;
9cce227f
TG
2519
2520 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2521 objfile_name (objfile));
9cce227f
TG
2522
2523 /* There are various functions like symbol_file_add,
2524 symfile_bfd_open, syms_from_objfile, etc., which might
2525 appear to do what we want. But they have various other
2526 effects which we *don't* want. So we just do stuff
2527 ourselves. We don't worry about mapped files (for one thing,
2528 any mapped file will be out of date). */
2529
2530 /* If we get an error, blow away this objfile (not sure if
2531 that is the correct response for things like shared
2532 libraries). */
2533 old_cleanups = make_cleanup_free_objfile (objfile);
2534 /* We need to do this whenever any symbols go away. */
2535 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2536
0ba1096a
KT
2537 if (exec_bfd != NULL
2538 && filename_cmp (bfd_get_filename (objfile->obfd),
2539 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2540 {
2541 /* Reload EXEC_BFD without asking anything. */
2542
2543 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2544 }
2545
f6eeced0
JK
2546 /* Keep the calls order approx. the same as in free_objfile. */
2547
2548 /* Free the separate debug objfiles. It will be
2549 automatically recreated by sym_read. */
2550 free_objfile_separate_debug (objfile);
2551
2552 /* Remove any references to this objfile in the global
2553 value lists. */
2554 preserve_values (objfile);
2555
2556 /* Nuke all the state that we will re-read. Much of the following
2557 code which sets things to NULL really is necessary to tell
2558 other parts of GDB that there is nothing currently there.
2559
2560 Try to keep the freeing order compatible with free_objfile. */
2561
2562 if (objfile->sf != NULL)
2563 {
2564 (*objfile->sf->sym_finish) (objfile);
2565 }
2566
2567 clear_objfile_data (objfile);
2568
e1507e95 2569 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2570 {
2571 struct bfd *obfd = objfile->obfd;
d3846e71 2572 char *obfd_filename;
a4453b7e
TT
2573
2574 obfd_filename = bfd_get_filename (objfile->obfd);
2575 /* Open the new BFD before freeing the old one, so that
2576 the filename remains live. */
2938e6cf 2577 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2578 if (objfile->obfd == NULL)
2579 {
2580 /* We have to make a cleanup and error here, rather
2581 than erroring later, because once we unref OBFD,
2582 OBFD_FILENAME will be freed. */
2583 make_cleanup_bfd_unref (obfd);
2584 error (_("Can't open %s to read symbols."), obfd_filename);
2585 }
a4453b7e
TT
2586 gdb_bfd_unref (obfd);
2587 }
2588
24ba069a
JK
2589 original_name = xstrdup (objfile->original_name);
2590 make_cleanup (xfree, original_name);
2591
9cce227f
TG
2592 /* bfd_openr sets cacheable to true, which is what we want. */
2593 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2594 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2595 bfd_errmsg (bfd_get_error ()));
2596
2597 /* Save the offsets, we will nuke them with the rest of the
2598 objfile_obstack. */
2599 num_offsets = objfile->num_sections;
2600 offsets = ((struct section_offsets *)
2601 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2602 memcpy (offsets, objfile->section_offsets,
2603 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2604
9cce227f
TG
2605 /* FIXME: Do we have to free a whole linked list, or is this
2606 enough? */
2607 if (objfile->global_psymbols.list)
2608 xfree (objfile->global_psymbols.list);
2609 memset (&objfile->global_psymbols, 0,
2610 sizeof (objfile->global_psymbols));
2611 if (objfile->static_psymbols.list)
2612 xfree (objfile->static_psymbols.list);
2613 memset (&objfile->static_psymbols, 0,
2614 sizeof (objfile->static_psymbols));
2615
c378eb4e 2616 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2617 psymbol_bcache_free (objfile->psymbol_cache);
2618 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2619 obstack_free (&objfile->objfile_obstack, 0);
2620 objfile->sections = NULL;
43f3e411 2621 objfile->compunit_symtabs = NULL;
9cce227f
TG
2622 objfile->psymtabs = NULL;
2623 objfile->psymtabs_addrmap = NULL;
2624 objfile->free_psymtabs = NULL;
34eaf542 2625 objfile->template_symbols = NULL;
9cce227f 2626
9cce227f
TG
2627 /* obstack_init also initializes the obstack so it is
2628 empty. We could use obstack_specify_allocation but
d82ea6a8 2629 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2630 obstack_init (&objfile->objfile_obstack);
779bd270 2631
846060df
JB
2632 /* set_objfile_per_bfd potentially allocates the per-bfd
2633 data on the objfile's obstack (if sharing data across
2634 multiple users is not possible), so it's important to
2635 do it *after* the obstack has been initialized. */
2636 set_objfile_per_bfd (objfile);
2637
224c3ddb
SM
2638 objfile->original_name
2639 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2640 strlen (original_name));
24ba069a 2641
779bd270
DE
2642 /* Reset the sym_fns pointer. The ELF reader can change it
2643 based on whether .gdb_index is present, and we need it to
2644 start over. PR symtab/15885 */
8fb8eb5c 2645 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2646
d82ea6a8 2647 build_objfile_section_table (objfile);
9cce227f
TG
2648 terminate_minimal_symbol_table (objfile);
2649
2650 /* We use the same section offsets as from last time. I'm not
2651 sure whether that is always correct for shared libraries. */
2652 objfile->section_offsets = (struct section_offsets *)
2653 obstack_alloc (&objfile->objfile_obstack,
2654 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2655 memcpy (objfile->section_offsets, offsets,
2656 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2657 objfile->num_sections = num_offsets;
2658
2659 /* What the hell is sym_new_init for, anyway? The concept of
2660 distinguishing between the main file and additional files
2661 in this way seems rather dubious. */
2662 if (objfile == symfile_objfile)
c906108c 2663 {
9cce227f 2664 (*objfile->sf->sym_new_init) (objfile);
c906108c 2665 }
9cce227f
TG
2666
2667 (*objfile->sf->sym_init) (objfile);
2668 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2669
2670 objfile->flags &= ~OBJF_PSYMTABS_READ;
2671 read_symbols (objfile, 0);
b11896a5 2672
9cce227f 2673 if (!objfile_has_symbols (objfile))
c906108c 2674 {
9cce227f
TG
2675 wrap_here ("");
2676 printf_unfiltered (_("(no debugging symbols found)\n"));
2677 wrap_here ("");
c5aa993b 2678 }
9cce227f
TG
2679
2680 /* We're done reading the symbol file; finish off complaints. */
2681 clear_complaints (&symfile_complaints, 0, 1);
2682
2683 /* Getting new symbols may change our opinion about what is
2684 frameless. */
2685
2686 reinit_frame_cache ();
2687
2688 /* Discard cleanups as symbol reading was successful. */
2689 discard_cleanups (old_cleanups);
2690
2691 /* If the mtime has changed between the time we set new_modtime
2692 and now, we *want* this to be out of date, so don't call stat
2693 again now. */
2694 objfile->mtime = new_modtime;
9cce227f 2695 init_entry_point_info (objfile);
4ac39b97
JK
2696
2697 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2698 }
2699 }
c906108c 2700
4ac39b97 2701 if (new_objfiles)
ea53e89f 2702 {
4ac39b97
JK
2703 int ix;
2704
ff3536bc
UW
2705 /* Notify objfiles that we've modified objfile sections. */
2706 objfiles_changed ();
2707
c1e56572 2708 clear_symtab_users (0);
4ac39b97
JK
2709
2710 /* clear_objfile_data for each objfile was called before freeing it and
2711 observer_notify_new_objfile (NULL) has been called by
2712 clear_symtab_users above. Notify the new files now. */
2713 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2714 observer_notify_new_objfile (objfile);
2715
ea53e89f
JB
2716 /* At least one objfile has changed, so we can consider that
2717 the executable we're debugging has changed too. */
781b42b0 2718 observer_notify_executable_changed ();
ea53e89f 2719 }
4ac39b97
JK
2720
2721 do_cleanups (all_cleanups);
c906108c 2722}
c906108c
SS
2723\f
2724
c5aa993b
JM
2725typedef struct
2726{
2727 char *ext;
c906108c 2728 enum language lang;
3fcf0b0d
TT
2729} filename_language;
2730
2731DEF_VEC_O (filename_language);
c906108c 2732
3fcf0b0d 2733static VEC (filename_language) *filename_language_table;
c906108c 2734
56618e20
TT
2735/* See symfile.h. */
2736
2737void
2738add_filename_language (const char *ext, enum language lang)
c906108c 2739{
3fcf0b0d
TT
2740 filename_language entry;
2741
2742 entry.ext = xstrdup (ext);
2743 entry.lang = lang;
c906108c 2744
3fcf0b0d 2745 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2746}
2747
2748static char *ext_args;
920d2a44
AC
2749static void
2750show_ext_args (struct ui_file *file, int from_tty,
2751 struct cmd_list_element *c, const char *value)
2752{
3e43a32a
MS
2753 fprintf_filtered (file,
2754 _("Mapping between filename extension "
2755 "and source language is \"%s\".\n"),
920d2a44
AC
2756 value);
2757}
c906108c
SS
2758
2759static void
26c41df3 2760set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2761{
2762 int i;
2763 char *cp = ext_args;
2764 enum language lang;
3fcf0b0d 2765 filename_language *entry;
c906108c 2766
c378eb4e 2767 /* First arg is filename extension, starting with '.' */
c906108c 2768 if (*cp != '.')
8a3fe4f8 2769 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2770
2771 /* Find end of first arg. */
c5aa993b 2772 while (*cp && !isspace (*cp))
c906108c
SS
2773 cp++;
2774
2775 if (*cp == '\0')
3e43a32a
MS
2776 error (_("'%s': two arguments required -- "
2777 "filename extension and language"),
c906108c
SS
2778 ext_args);
2779
c378eb4e 2780 /* Null-terminate first arg. */
c5aa993b 2781 *cp++ = '\0';
c906108c
SS
2782
2783 /* Find beginning of second arg, which should be a source language. */
529480d0 2784 cp = skip_spaces (cp);
c906108c
SS
2785
2786 if (*cp == '\0')
3e43a32a
MS
2787 error (_("'%s': two arguments required -- "
2788 "filename extension and language"),
c906108c
SS
2789 ext_args);
2790
2791 /* Lookup the language from among those we know. */
2792 lang = language_enum (cp);
2793
2794 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2795 for (i = 0;
2796 VEC_iterate (filename_language, filename_language_table, i, entry);
2797 ++i)
2798 {
2799 if (0 == strcmp (ext_args, entry->ext))
2800 break;
2801 }
c906108c 2802
3fcf0b0d 2803 if (entry == NULL)
c906108c 2804 {
c378eb4e 2805 /* New file extension. */
c906108c
SS
2806 add_filename_language (ext_args, lang);
2807 }
2808 else
2809 {
c378eb4e 2810 /* Redefining a previously known filename extension. */
c906108c
SS
2811
2812 /* if (from_tty) */
2813 /* query ("Really make files of type %s '%s'?", */
2814 /* ext_args, language_str (lang)); */
2815
3fcf0b0d
TT
2816 xfree (entry->ext);
2817 entry->ext = xstrdup (ext_args);
2818 entry->lang = lang;
c906108c
SS
2819 }
2820}
2821
2822static void
fba45db2 2823info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2824{
2825 int i;
3fcf0b0d 2826 filename_language *entry;
c906108c 2827
a3f17187 2828 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2829 printf_filtered ("\n\n");
3fcf0b0d
TT
2830 for (i = 0;
2831 VEC_iterate (filename_language, filename_language_table, i, entry);
2832 ++i)
2833 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2834}
2835
c906108c 2836enum language
dd786858 2837deduce_language_from_filename (const char *filename)
c906108c
SS
2838{
2839 int i;
e6a959d6 2840 const char *cp;
c906108c
SS
2841
2842 if (filename != NULL)
2843 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2844 {
2845 filename_language *entry;
2846
2847 for (i = 0;
2848 VEC_iterate (filename_language, filename_language_table, i, entry);
2849 ++i)
2850 if (strcmp (cp, entry->ext) == 0)
2851 return entry->lang;
2852 }
c906108c
SS
2853
2854 return language_unknown;
2855}
2856\f
43f3e411
DE
2857/* Allocate and initialize a new symbol table.
2858 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2859
2860struct symtab *
43f3e411 2861allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2862{
43f3e411
DE
2863 struct objfile *objfile = cust->objfile;
2864 struct symtab *symtab
2865 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2866
19ba03f4
SM
2867 symtab->filename
2868 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2869 objfile->per_bfd->filename_cache);
c5aa993b
JM
2870 symtab->fullname = NULL;
2871 symtab->language = deduce_language_from_filename (filename);
c906108c 2872
db0fec5c
DE
2873 /* This can be very verbose with lots of headers.
2874 Only print at higher debug levels. */
2875 if (symtab_create_debug >= 2)
45cfd468
DE
2876 {
2877 /* Be a bit clever with debugging messages, and don't print objfile
2878 every time, only when it changes. */
2879 static char *last_objfile_name = NULL;
2880
2881 if (last_objfile_name == NULL
4262abfb 2882 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2883 {
2884 xfree (last_objfile_name);
4262abfb 2885 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2886 fprintf_unfiltered (gdb_stdlog,
2887 "Creating one or more symtabs for objfile %s ...\n",
2888 last_objfile_name);
2889 }
2890 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2891 "Created symtab %s for module %s.\n",
2892 host_address_to_string (symtab), filename);
45cfd468
DE
2893 }
2894
43f3e411
DE
2895 /* Add it to CUST's list of symtabs. */
2896 if (cust->filetabs == NULL)
2897 {
2898 cust->filetabs = symtab;
2899 cust->last_filetab = symtab;
2900 }
2901 else
2902 {
2903 cust->last_filetab->next = symtab;
2904 cust->last_filetab = symtab;
2905 }
2906
2907 /* Backlink to the containing compunit symtab. */
2908 symtab->compunit_symtab = cust;
2909
2910 return symtab;
2911}
2912
2913/* Allocate and initialize a new compunit.
2914 NAME is the name of the main source file, if there is one, or some
2915 descriptive text if there are no source files. */
2916
2917struct compunit_symtab *
2918allocate_compunit_symtab (struct objfile *objfile, const char *name)
2919{
2920 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2921 struct compunit_symtab);
2922 const char *saved_name;
2923
2924 cu->objfile = objfile;
2925
2926 /* The name we record here is only for display/debugging purposes.
2927 Just save the basename to avoid path issues (too long for display,
2928 relative vs absolute, etc.). */
2929 saved_name = lbasename (name);
224c3ddb
SM
2930 cu->name
2931 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2932 strlen (saved_name));
43f3e411
DE
2933
2934 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2935
2936 if (symtab_create_debug)
2937 {
2938 fprintf_unfiltered (gdb_stdlog,
2939 "Created compunit symtab %s for %s.\n",
2940 host_address_to_string (cu),
2941 cu->name);
2942 }
2943
2944 return cu;
2945}
2946
2947/* Hook CU to the objfile it comes from. */
2948
2949void
2950add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2951{
2952 cu->next = cu->objfile->compunit_symtabs;
2953 cu->objfile->compunit_symtabs = cu;
c906108c 2954}
c906108c 2955\f
c5aa993b 2956
b15cc25c
PA
2957/* Reset all data structures in gdb which may contain references to
2958 symbol table data. */
c906108c
SS
2959
2960void
b15cc25c 2961clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2962{
2963 /* Someday, we should do better than this, by only blowing away
2964 the things that really need to be blown. */
c0501be5
DJ
2965
2966 /* Clear the "current" symtab first, because it is no longer valid.
2967 breakpoint_re_set may try to access the current symtab. */
2968 clear_current_source_symtab_and_line ();
2969
c906108c 2970 clear_displays ();
1bfeeb0f 2971 clear_last_displayed_sal ();
c906108c 2972 clear_pc_function_cache ();
06d3b283 2973 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2974
2975 /* Clear globals which might have pointed into a removed objfile.
2976 FIXME: It's not clear which of these are supposed to persist
2977 between expressions and which ought to be reset each time. */
2978 expression_context_block = NULL;
2979 innermost_block = NULL;
8756216b
DP
2980
2981 /* Varobj may refer to old symbols, perform a cleanup. */
2982 varobj_invalidate ();
2983
e700d1b2
JB
2984 /* Now that the various caches have been cleared, we can re_set
2985 our breakpoints without risking it using stale data. */
2986 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2987 breakpoint_re_set ();
c906108c
SS
2988}
2989
74b7792f
AC
2990static void
2991clear_symtab_users_cleanup (void *ignore)
2992{
c1e56572 2993 clear_symtab_users (0);
74b7792f 2994}
c906108c 2995\f
c906108c
SS
2996/* OVERLAYS:
2997 The following code implements an abstraction for debugging overlay sections.
2998
2999 The target model is as follows:
3000 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3001 same VMA, each with its own unique LMA (or load address).
c906108c 3002 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3003 sections, one by one, from the load address into the VMA address.
5417f6dc 3004 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3005 sections should be considered to be mapped from the VMA to the LMA.
3006 This information is used for symbol lookup, and memory read/write.
5417f6dc 3007 For instance, if a section has been mapped then its contents
c5aa993b 3008 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3009
3010 Two levels of debugger support for overlays are available. One is
3011 "manual", in which the debugger relies on the user to tell it which
3012 overlays are currently mapped. This level of support is
3013 implemented entirely in the core debugger, and the information about
3014 whether a section is mapped is kept in the objfile->obj_section table.
3015
3016 The second level of support is "automatic", and is only available if
3017 the target-specific code provides functionality to read the target's
3018 overlay mapping table, and translate its contents for the debugger
3019 (by updating the mapped state information in the obj_section tables).
3020
3021 The interface is as follows:
c5aa993b
JM
3022 User commands:
3023 overlay map <name> -- tell gdb to consider this section mapped
3024 overlay unmap <name> -- tell gdb to consider this section unmapped
3025 overlay list -- list the sections that GDB thinks are mapped
3026 overlay read-target -- get the target's state of what's mapped
3027 overlay off/manual/auto -- set overlay debugging state
3028 Functional interface:
3029 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3030 section, return that section.
5417f6dc 3031 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3032 the pc, either in its VMA or its LMA
714835d5 3033 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3034 section_is_overlay(sect): true if section's VMA != LMA
3035 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3036 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3037 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3038 overlay_mapped_address(...): map an address from section's LMA to VMA
3039 overlay_unmapped_address(...): map an address from section's VMA to LMA
3040 symbol_overlayed_address(...): Return a "current" address for symbol:
3041 either in VMA or LMA depending on whether
c378eb4e 3042 the symbol's section is currently mapped. */
c906108c
SS
3043
3044/* Overlay debugging state: */
3045
d874f1e2 3046enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3047int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3048
c906108c 3049/* Function: section_is_overlay (SECTION)
5417f6dc 3050 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3051 SECTION is loaded at an address different from where it will "run". */
3052
3053int
714835d5 3054section_is_overlay (struct obj_section *section)
c906108c 3055{
714835d5
UW
3056 if (overlay_debugging && section)
3057 {
3058 bfd *abfd = section->objfile->obfd;
3059 asection *bfd_section = section->the_bfd_section;
f888f159 3060
714835d5
UW
3061 if (bfd_section_lma (abfd, bfd_section) != 0
3062 && bfd_section_lma (abfd, bfd_section)
3063 != bfd_section_vma (abfd, bfd_section))
3064 return 1;
3065 }
c906108c
SS
3066
3067 return 0;
3068}
3069
3070/* Function: overlay_invalidate_all (void)
3071 Invalidate the mapped state of all overlay sections (mark it as stale). */
3072
3073static void
fba45db2 3074overlay_invalidate_all (void)
c906108c 3075{
c5aa993b 3076 struct objfile *objfile;
c906108c
SS
3077 struct obj_section *sect;
3078
3079 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3080 if (section_is_overlay (sect))
3081 sect->ovly_mapped = -1;
c906108c
SS
3082}
3083
714835d5 3084/* Function: section_is_mapped (SECTION)
5417f6dc 3085 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3086
3087 Access to the ovly_mapped flag is restricted to this function, so
3088 that we can do automatic update. If the global flag
3089 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3090 overlay_invalidate_all. If the mapped state of the particular
3091 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3092
714835d5
UW
3093int
3094section_is_mapped (struct obj_section *osect)
c906108c 3095{
9216df95
UW
3096 struct gdbarch *gdbarch;
3097
714835d5 3098 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3099 return 0;
3100
c5aa993b 3101 switch (overlay_debugging)
c906108c
SS
3102 {
3103 default:
d874f1e2 3104 case ovly_off:
c5aa993b 3105 return 0; /* overlay debugging off */
d874f1e2 3106 case ovly_auto: /* overlay debugging automatic */
1c772458 3107 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3108 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3109 gdbarch = get_objfile_arch (osect->objfile);
3110 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3111 {
3112 if (overlay_cache_invalid)
3113 {
3114 overlay_invalidate_all ();
3115 overlay_cache_invalid = 0;
3116 }
3117 if (osect->ovly_mapped == -1)
9216df95 3118 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3119 }
3120 /* fall thru to manual case */
d874f1e2 3121 case ovly_on: /* overlay debugging manual */
c906108c
SS
3122 return osect->ovly_mapped == 1;
3123 }
3124}
3125
c906108c
SS
3126/* Function: pc_in_unmapped_range
3127 If PC falls into the lma range of SECTION, return true, else false. */
3128
3129CORE_ADDR
714835d5 3130pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3131{
714835d5
UW
3132 if (section_is_overlay (section))
3133 {
3134 bfd *abfd = section->objfile->obfd;
3135 asection *bfd_section = section->the_bfd_section;
fbd35540 3136
714835d5
UW
3137 /* We assume the LMA is relocated by the same offset as the VMA. */
3138 bfd_vma size = bfd_get_section_size (bfd_section);
3139 CORE_ADDR offset = obj_section_offset (section);
3140
3141 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3142 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3143 return 1;
3144 }
c906108c 3145
c906108c
SS
3146 return 0;
3147}
3148
3149/* Function: pc_in_mapped_range
3150 If PC falls into the vma range of SECTION, return true, else false. */
3151
3152CORE_ADDR
714835d5 3153pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3154{
714835d5
UW
3155 if (section_is_overlay (section))
3156 {
3157 if (obj_section_addr (section) <= pc
3158 && pc < obj_section_endaddr (section))
3159 return 1;
3160 }
c906108c 3161
c906108c
SS
3162 return 0;
3163}
3164
9ec8e6a0
JB
3165/* Return true if the mapped ranges of sections A and B overlap, false
3166 otherwise. */
3b7bacac 3167
b9362cc7 3168static int
714835d5 3169sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3170{
714835d5
UW
3171 CORE_ADDR a_start = obj_section_addr (a);
3172 CORE_ADDR a_end = obj_section_endaddr (a);
3173 CORE_ADDR b_start = obj_section_addr (b);
3174 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3175
3176 return (a_start < b_end && b_start < a_end);
3177}
3178
c906108c
SS
3179/* Function: overlay_unmapped_address (PC, SECTION)
3180 Returns the address corresponding to PC in the unmapped (load) range.
3181 May be the same as PC. */
3182
3183CORE_ADDR
714835d5 3184overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3185{
714835d5
UW
3186 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3187 {
3188 bfd *abfd = section->objfile->obfd;
3189 asection *bfd_section = section->the_bfd_section;
fbd35540 3190
714835d5
UW
3191 return pc + bfd_section_lma (abfd, bfd_section)
3192 - bfd_section_vma (abfd, bfd_section);
3193 }
c906108c
SS
3194
3195 return pc;
3196}
3197
3198/* Function: overlay_mapped_address (PC, SECTION)
3199 Returns the address corresponding to PC in the mapped (runtime) range.
3200 May be the same as PC. */
3201
3202CORE_ADDR
714835d5 3203overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3204{
714835d5
UW
3205 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3206 {
3207 bfd *abfd = section->objfile->obfd;
3208 asection *bfd_section = section->the_bfd_section;
fbd35540 3209
714835d5
UW
3210 return pc + bfd_section_vma (abfd, bfd_section)
3211 - bfd_section_lma (abfd, bfd_section);
3212 }
c906108c
SS
3213
3214 return pc;
3215}
3216
5417f6dc 3217/* Function: symbol_overlayed_address
c906108c
SS
3218 Return one of two addresses (relative to the VMA or to the LMA),
3219 depending on whether the section is mapped or not. */
3220
c5aa993b 3221CORE_ADDR
714835d5 3222symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3223{
3224 if (overlay_debugging)
3225 {
c378eb4e 3226 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3227 if (section == 0)
3228 return address;
c378eb4e
MS
3229 /* If the symbol's section is not an overlay, just return its
3230 address. */
c906108c
SS
3231 if (!section_is_overlay (section))
3232 return address;
c378eb4e 3233 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3234 if (section_is_mapped (section))
3235 return address;
3236 /*
3237 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3238 * then return its LOADED address rather than its vma address!!
3239 */
3240 return overlay_unmapped_address (address, section);
3241 }
3242 return address;
3243}
3244
5417f6dc 3245/* Function: find_pc_overlay (PC)
c906108c
SS
3246 Return the best-match overlay section for PC:
3247 If PC matches a mapped overlay section's VMA, return that section.
3248 Else if PC matches an unmapped section's VMA, return that section.
3249 Else if PC matches an unmapped section's LMA, return that section. */
3250
714835d5 3251struct obj_section *
fba45db2 3252find_pc_overlay (CORE_ADDR pc)
c906108c 3253{
c5aa993b 3254 struct objfile *objfile;
c906108c
SS
3255 struct obj_section *osect, *best_match = NULL;
3256
3257 if (overlay_debugging)
b631e59b
KT
3258 {
3259 ALL_OBJSECTIONS (objfile, osect)
3260 if (section_is_overlay (osect))
c5aa993b 3261 {
b631e59b
KT
3262 if (pc_in_mapped_range (pc, osect))
3263 {
3264 if (section_is_mapped (osect))
3265 return osect;
3266 else
3267 best_match = osect;
3268 }
3269 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3270 best_match = osect;
3271 }
b631e59b 3272 }
714835d5 3273 return best_match;
c906108c
SS
3274}
3275
3276/* Function: find_pc_mapped_section (PC)
5417f6dc 3277 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3278 currently marked as MAPPED, return that section. Else return NULL. */
3279
714835d5 3280struct obj_section *
fba45db2 3281find_pc_mapped_section (CORE_ADDR pc)
c906108c 3282{
c5aa993b 3283 struct objfile *objfile;
c906108c
SS
3284 struct obj_section *osect;
3285
3286 if (overlay_debugging)
b631e59b
KT
3287 {
3288 ALL_OBJSECTIONS (objfile, osect)
3289 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3290 return osect;
3291 }
c906108c
SS
3292
3293 return NULL;
3294}
3295
3296/* Function: list_overlays_command
c378eb4e 3297 Print a list of mapped sections and their PC ranges. */
c906108c 3298
5d3055ad 3299static void
fba45db2 3300list_overlays_command (char *args, int from_tty)
c906108c 3301{
c5aa993b
JM
3302 int nmapped = 0;
3303 struct objfile *objfile;
c906108c
SS
3304 struct obj_section *osect;
3305
3306 if (overlay_debugging)
b631e59b
KT
3307 {
3308 ALL_OBJSECTIONS (objfile, osect)
714835d5 3309 if (section_is_mapped (osect))
b631e59b
KT
3310 {
3311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3312 const char *name;
3313 bfd_vma lma, vma;
3314 int size;
3315
3316 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3317 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3318 size = bfd_get_section_size (osect->the_bfd_section);
3319 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3320
3321 printf_filtered ("Section %s, loaded at ", name);
3322 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3323 puts_filtered (" - ");
3324 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3325 printf_filtered (", mapped at ");
3326 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3327 puts_filtered (" - ");
3328 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3329 puts_filtered ("\n");
3330
3331 nmapped++;
3332 }
3333 }
c906108c 3334 if (nmapped == 0)
a3f17187 3335 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3336}
3337
3338/* Function: map_overlay_command
3339 Mark the named section as mapped (ie. residing at its VMA address). */
3340
5d3055ad 3341static void
fba45db2 3342map_overlay_command (char *args, int from_tty)
c906108c 3343{
c5aa993b
JM
3344 struct objfile *objfile, *objfile2;
3345 struct obj_section *sec, *sec2;
c906108c
SS
3346
3347 if (!overlay_debugging)
3e43a32a
MS
3348 error (_("Overlay debugging not enabled. Use "
3349 "either the 'overlay auto' or\n"
3350 "the 'overlay manual' command."));
c906108c
SS
3351
3352 if (args == 0 || *args == 0)
8a3fe4f8 3353 error (_("Argument required: name of an overlay section"));
c906108c 3354
c378eb4e 3355 /* First, find a section matching the user supplied argument. */
c906108c
SS
3356 ALL_OBJSECTIONS (objfile, sec)
3357 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3358 {
c378eb4e 3359 /* Now, check to see if the section is an overlay. */
714835d5 3360 if (!section_is_overlay (sec))
c5aa993b
JM
3361 continue; /* not an overlay section */
3362
c378eb4e 3363 /* Mark the overlay as "mapped". */
c5aa993b
JM
3364 sec->ovly_mapped = 1;
3365
3366 /* Next, make a pass and unmap any sections that are
3367 overlapped by this new section: */
3368 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3369 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3370 {
3371 if (info_verbose)
a3f17187 3372 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3373 bfd_section_name (objfile->obfd,
3374 sec2->the_bfd_section));
c378eb4e 3375 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3376 }
3377 return;
3378 }
8a3fe4f8 3379 error (_("No overlay section called %s"), args);
c906108c
SS
3380}
3381
3382/* Function: unmap_overlay_command
5417f6dc 3383 Mark the overlay section as unmapped
c906108c
SS
3384 (ie. resident in its LMA address range, rather than the VMA range). */
3385
5d3055ad 3386static void
fba45db2 3387unmap_overlay_command (char *args, int from_tty)
c906108c 3388{
c5aa993b 3389 struct objfile *objfile;
7a270e0c 3390 struct obj_section *sec = NULL;
c906108c
SS
3391
3392 if (!overlay_debugging)
3e43a32a
MS
3393 error (_("Overlay debugging not enabled. "
3394 "Use either the 'overlay auto' or\n"
3395 "the 'overlay manual' command."));
c906108c
SS
3396
3397 if (args == 0 || *args == 0)
8a3fe4f8 3398 error (_("Argument required: name of an overlay section"));
c906108c 3399
c378eb4e 3400 /* First, find a section matching the user supplied argument. */
c906108c
SS
3401 ALL_OBJSECTIONS (objfile, sec)
3402 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3403 {
3404 if (!sec->ovly_mapped)
8a3fe4f8 3405 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3406 sec->ovly_mapped = 0;
3407 return;
3408 }
8a3fe4f8 3409 error (_("No overlay section called %s"), args);
c906108c
SS
3410}
3411
3412/* Function: overlay_auto_command
3413 A utility command to turn on overlay debugging.
c378eb4e 3414 Possibly this should be done via a set/show command. */
c906108c
SS
3415
3416static void
fba45db2 3417overlay_auto_command (char *args, int from_tty)
c906108c 3418{
d874f1e2 3419 overlay_debugging = ovly_auto;
1900040c 3420 enable_overlay_breakpoints ();
c906108c 3421 if (info_verbose)
a3f17187 3422 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3423}
3424
3425/* Function: overlay_manual_command
3426 A utility command to turn on overlay debugging.
c378eb4e 3427 Possibly this should be done via a set/show command. */
c906108c
SS
3428
3429static void
fba45db2 3430overlay_manual_command (char *args, int from_tty)
c906108c 3431{
d874f1e2 3432 overlay_debugging = ovly_on;
1900040c 3433 disable_overlay_breakpoints ();
c906108c 3434 if (info_verbose)
a3f17187 3435 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3436}
3437
3438/* Function: overlay_off_command
3439 A utility command to turn on overlay debugging.
c378eb4e 3440 Possibly this should be done via a set/show command. */
c906108c
SS
3441
3442static void
fba45db2 3443overlay_off_command (char *args, int from_tty)
c906108c 3444{
d874f1e2 3445 overlay_debugging = ovly_off;
1900040c 3446 disable_overlay_breakpoints ();
c906108c 3447 if (info_verbose)
a3f17187 3448 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3449}
3450
3451static void
fba45db2 3452overlay_load_command (char *args, int from_tty)
c906108c 3453{
e17c207e
UW
3454 struct gdbarch *gdbarch = get_current_arch ();
3455
3456 if (gdbarch_overlay_update_p (gdbarch))
3457 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3458 else
8a3fe4f8 3459 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3460}
3461
3462/* Function: overlay_command
c378eb4e 3463 A place-holder for a mis-typed command. */
c906108c 3464
c378eb4e 3465/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3466static struct cmd_list_element *overlaylist;
c906108c
SS
3467
3468static void
fba45db2 3469overlay_command (char *args, int from_tty)
c906108c 3470{
c5aa993b 3471 printf_unfiltered
c906108c 3472 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3473 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3474}
3475
c906108c
SS
3476/* Target Overlays for the "Simplest" overlay manager:
3477
5417f6dc
RM
3478 This is GDB's default target overlay layer. It works with the
3479 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3480 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3481 so targets that use a different runtime overlay manager can
c906108c
SS
3482 substitute their own overlay_update function and take over the
3483 function pointer.
3484
3485 The overlay_update function pokes around in the target's data structures
3486 to see what overlays are mapped, and updates GDB's overlay mapping with
3487 this information.
3488
3489 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3490 unsigned _novlys; /# number of overlay sections #/
3491 unsigned _ovly_table[_novlys][4] = {
438e1e42 3492 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3493 {..., ..., ..., ...},
3494 }
3495 unsigned _novly_regions; /# number of overlay regions #/
3496 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3497 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3498 {..., ..., ...},
3499 }
c906108c
SS
3500 These functions will attempt to update GDB's mappedness state in the
3501 symbol section table, based on the target's mappedness state.
3502
3503 To do this, we keep a cached copy of the target's _ovly_table, and
3504 attempt to detect when the cached copy is invalidated. The main
3505 entry point is "simple_overlay_update(SECT), which looks up SECT in
3506 the cached table and re-reads only the entry for that section from
c378eb4e 3507 the target (whenever possible). */
c906108c
SS
3508
3509/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3510static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3511static unsigned cache_novlys = 0;
c906108c 3512static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3513enum ovly_index
3514 {
438e1e42 3515 VMA, OSIZE, LMA, MAPPED
c5aa993b 3516 };
c906108c 3517
c378eb4e 3518/* Throw away the cached copy of _ovly_table. */
3b7bacac 3519
c906108c 3520static void
fba45db2 3521simple_free_overlay_table (void)
c906108c
SS
3522{
3523 if (cache_ovly_table)
b8c9b27d 3524 xfree (cache_ovly_table);
c5aa993b 3525 cache_novlys = 0;
c906108c
SS
3526 cache_ovly_table = NULL;
3527 cache_ovly_table_base = 0;
3528}
3529
9216df95 3530/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3531 Convert to host order. int LEN is number of ints. */
3b7bacac 3532
c906108c 3533static void
9216df95 3534read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3535 int len, int size, enum bfd_endian byte_order)
c906108c 3536{
c378eb4e 3537 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3538 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3539 int i;
c906108c 3540
9216df95 3541 read_memory (memaddr, buf, len * size);
c906108c 3542 for (i = 0; i < len; i++)
e17a4113 3543 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3544}
3545
3546/* Find and grab a copy of the target _ovly_table
c378eb4e 3547 (and _novlys, which is needed for the table's size). */
3b7bacac 3548
c5aa993b 3549static int
fba45db2 3550simple_read_overlay_table (void)
c906108c 3551{
3b7344d5 3552 struct bound_minimal_symbol novlys_msym;
7c7b6655 3553 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3554 struct gdbarch *gdbarch;
3555 int word_size;
e17a4113 3556 enum bfd_endian byte_order;
c906108c
SS
3557
3558 simple_free_overlay_table ();
9b27852e 3559 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3560 if (! novlys_msym.minsym)
c906108c 3561 {
8a3fe4f8 3562 error (_("Error reading inferior's overlay table: "
0d43edd1 3563 "couldn't find `_novlys' variable\n"
8a3fe4f8 3564 "in inferior. Use `overlay manual' mode."));
0d43edd1 3565 return 0;
c906108c 3566 }
0d43edd1 3567
7c7b6655
TT
3568 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3569 if (! ovly_table_msym.minsym)
0d43edd1 3570 {
8a3fe4f8 3571 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3572 "`_ovly_table' array\n"
8a3fe4f8 3573 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3574 return 0;
3575 }
3576
7c7b6655 3577 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3578 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3579 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3580
77e371c0
TT
3581 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3582 4, byte_order);
0d43edd1 3583 cache_ovly_table
224c3ddb 3584 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3585 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3586 read_target_long_array (cache_ovly_table_base,
777ea8f1 3587 (unsigned int *) cache_ovly_table,
e17a4113 3588 cache_novlys * 4, word_size, byte_order);
0d43edd1 3589
c5aa993b 3590 return 1; /* SUCCESS */
c906108c
SS
3591}
3592
5417f6dc 3593/* Function: simple_overlay_update_1
c906108c
SS
3594 A helper function for simple_overlay_update. Assuming a cached copy
3595 of _ovly_table exists, look through it to find an entry whose vma,
3596 lma and size match those of OSECT. Re-read the entry and make sure
3597 it still matches OSECT (else the table may no longer be valid).
3598 Set OSECT's mapped state to match the entry. Return: 1 for
3599 success, 0 for failure. */
3600
3601static int
fba45db2 3602simple_overlay_update_1 (struct obj_section *osect)
c906108c 3603{
764c99c1 3604 int i;
fbd35540
MS
3605 bfd *obfd = osect->objfile->obfd;
3606 asection *bsect = osect->the_bfd_section;
9216df95
UW
3607 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3608 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3610
c906108c 3611 for (i = 0; i < cache_novlys; i++)
fbd35540 3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3614 {
9216df95
UW
3615 read_target_long_array (cache_ovly_table_base + i * word_size,
3616 (unsigned int *) cache_ovly_table[i],
e17a4113 3617 4, word_size, byte_order);
fbd35540 3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3620 {
3621 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3622 return 1;
3623 }
c378eb4e 3624 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3625 return 0;
3626 }
3627 return 0;
3628}
3629
3630/* Function: simple_overlay_update
5417f6dc
RM
3631 If OSECT is NULL, then update all sections' mapped state
3632 (after re-reading the entire target _ovly_table).
3633 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3634 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3635 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3636 re-read the entire cache, and go ahead and update all sections. */
3637
1c772458 3638void
fba45db2 3639simple_overlay_update (struct obj_section *osect)
c906108c 3640{
c5aa993b 3641 struct objfile *objfile;
c906108c 3642
c378eb4e 3643 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3644 if (osect)
c378eb4e 3645 /* Have we got a cached copy of the target's overlay table? */
c906108c 3646 if (cache_ovly_table != NULL)
9cc89665
MS
3647 {
3648 /* Does its cached location match what's currently in the
3649 symtab? */
3b7344d5 3650 struct bound_minimal_symbol minsym
9cc89665
MS
3651 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3652
3b7344d5 3653 if (minsym.minsym == NULL)
9cc89665
MS
3654 error (_("Error reading inferior's overlay table: couldn't "
3655 "find `_ovly_table' array\n"
3656 "in inferior. Use `overlay manual' mode."));
3657
77e371c0 3658 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3659 /* Then go ahead and try to look up this single section in
3660 the cache. */
3661 if (simple_overlay_update_1 (osect))
3662 /* Found it! We're done. */
3663 return;
3664 }
c906108c
SS
3665
3666 /* Cached table no good: need to read the entire table anew.
3667 Or else we want all the sections, in which case it's actually
3668 more efficient to read the whole table in one block anyway. */
3669
0d43edd1
JB
3670 if (! simple_read_overlay_table ())
3671 return;
3672
c378eb4e 3673 /* Now may as well update all sections, even if only one was requested. */
c906108c 3674 ALL_OBJSECTIONS (objfile, osect)
714835d5 3675 if (section_is_overlay (osect))
c5aa993b 3676 {
764c99c1 3677 int i;
fbd35540
MS
3678 bfd *obfd = osect->objfile->obfd;
3679 asection *bsect = osect->the_bfd_section;
c5aa993b 3680
c5aa993b 3681 for (i = 0; i < cache_novlys; i++)
fbd35540 3682 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3683 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3684 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3685 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3686 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3687 }
3688 }
c906108c
SS
3689}
3690
086df311
DJ
3691/* Set the output sections and output offsets for section SECTP in
3692 ABFD. The relocation code in BFD will read these offsets, so we
3693 need to be sure they're initialized. We map each section to itself,
3694 with no offset; this means that SECTP->vma will be honored. */
3695
3696static void
3697symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3698{
3699 sectp->output_section = sectp;
3700 sectp->output_offset = 0;
3701}
3702
ac8035ab
TG
3703/* Default implementation for sym_relocate. */
3704
ac8035ab
TG
3705bfd_byte *
3706default_symfile_relocate (struct objfile *objfile, asection *sectp,
3707 bfd_byte *buf)
3708{
3019eac3
DE
3709 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3710 DWO file. */
3711 bfd *abfd = sectp->owner;
ac8035ab
TG
3712
3713 /* We're only interested in sections with relocation
3714 information. */
3715 if ((sectp->flags & SEC_RELOC) == 0)
3716 return NULL;
3717
3718 /* We will handle section offsets properly elsewhere, so relocate as if
3719 all sections begin at 0. */
3720 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3721
3722 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3723}
3724
086df311
DJ
3725/* Relocate the contents of a debug section SECTP in ABFD. The
3726 contents are stored in BUF if it is non-NULL, or returned in a
3727 malloc'd buffer otherwise.
3728
3729 For some platforms and debug info formats, shared libraries contain
3730 relocations against the debug sections (particularly for DWARF-2;
3731 one affected platform is PowerPC GNU/Linux, although it depends on
3732 the version of the linker in use). Also, ELF object files naturally
3733 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3734 the relocations in order to get the locations of symbols correct.
3735 Another example that may require relocation processing, is the
3736 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3737 debug section. */
086df311
DJ
3738
3739bfd_byte *
ac8035ab
TG
3740symfile_relocate_debug_section (struct objfile *objfile,
3741 asection *sectp, bfd_byte *buf)
086df311 3742{
ac8035ab 3743 gdb_assert (objfile->sf->sym_relocate);
086df311 3744
ac8035ab 3745 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3746}
c906108c 3747
31d99776
DJ
3748struct symfile_segment_data *
3749get_symfile_segment_data (bfd *abfd)
3750{
00b5771c 3751 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3752
3753 if (sf == NULL)
3754 return NULL;
3755
3756 return sf->sym_segments (abfd);
3757}
3758
3759void
3760free_symfile_segment_data (struct symfile_segment_data *data)
3761{
3762 xfree (data->segment_bases);
3763 xfree (data->segment_sizes);
3764 xfree (data->segment_info);
3765 xfree (data);
3766}
3767
28c32713
JB
3768/* Given:
3769 - DATA, containing segment addresses from the object file ABFD, and
3770 the mapping from ABFD's sections onto the segments that own them,
3771 and
3772 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3773 segment addresses reported by the target,
3774 store the appropriate offsets for each section in OFFSETS.
3775
3776 If there are fewer entries in SEGMENT_BASES than there are segments
3777 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3778
8d385431
DJ
3779 If there are more entries, then ignore the extra. The target may
3780 not be able to distinguish between an empty data segment and a
3781 missing data segment; a missing text segment is less plausible. */
3b7bacac 3782
31d99776 3783int
3189cb12
DE
3784symfile_map_offsets_to_segments (bfd *abfd,
3785 const struct symfile_segment_data *data,
31d99776
DJ
3786 struct section_offsets *offsets,
3787 int num_segment_bases,
3788 const CORE_ADDR *segment_bases)
3789{
3790 int i;
3791 asection *sect;
3792
28c32713
JB
3793 /* It doesn't make sense to call this function unless you have some
3794 segment base addresses. */
202b96c1 3795 gdb_assert (num_segment_bases > 0);
28c32713 3796
31d99776
DJ
3797 /* If we do not have segment mappings for the object file, we
3798 can not relocate it by segments. */
3799 gdb_assert (data != NULL);
3800 gdb_assert (data->num_segments > 0);
3801
31d99776
DJ
3802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3803 {
31d99776
DJ
3804 int which = data->segment_info[i];
3805
28c32713
JB
3806 gdb_assert (0 <= which && which <= data->num_segments);
3807
3808 /* Don't bother computing offsets for sections that aren't
3809 loaded as part of any segment. */
3810 if (! which)
3811 continue;
3812
3813 /* Use the last SEGMENT_BASES entry as the address of any extra
3814 segments mentioned in DATA->segment_info. */
31d99776 3815 if (which > num_segment_bases)
28c32713 3816 which = num_segment_bases;
31d99776 3817
28c32713
JB
3818 offsets->offsets[i] = (segment_bases[which - 1]
3819 - data->segment_bases[which - 1]);
31d99776
DJ
3820 }
3821
3822 return 1;
3823}
3824
3825static void
3826symfile_find_segment_sections (struct objfile *objfile)
3827{
3828 bfd *abfd = objfile->obfd;
3829 int i;
3830 asection *sect;
3831 struct symfile_segment_data *data;
3832
3833 data = get_symfile_segment_data (objfile->obfd);
3834 if (data == NULL)
3835 return;
3836
3837 if (data->num_segments != 1 && data->num_segments != 2)
3838 {
3839 free_symfile_segment_data (data);
3840 return;
3841 }
3842
3843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3844 {
31d99776
DJ
3845 int which = data->segment_info[i];
3846
3847 if (which == 1)
3848 {
3849 if (objfile->sect_index_text == -1)
3850 objfile->sect_index_text = sect->index;
3851
3852 if (objfile->sect_index_rodata == -1)
3853 objfile->sect_index_rodata = sect->index;
3854 }
3855 else if (which == 2)
3856 {
3857 if (objfile->sect_index_data == -1)
3858 objfile->sect_index_data = sect->index;
3859
3860 if (objfile->sect_index_bss == -1)
3861 objfile->sect_index_bss = sect->index;
3862 }
3863 }
3864
3865 free_symfile_segment_data (data);
3866}
3867
76ad5e1e
NB
3868/* Listen for free_objfile events. */
3869
3870static void
3871symfile_free_objfile (struct objfile *objfile)
3872{
c33b2f12
MM
3873 /* Remove the target sections owned by this objfile. */
3874 if (objfile != NULL)
76ad5e1e
NB
3875 remove_target_sections ((void *) objfile);
3876}
3877
540c2971
DE
3878/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3879 Expand all symtabs that match the specified criteria.
3880 See quick_symbol_functions.expand_symtabs_matching for details. */
3881
3882void
bb4142cf
DE
3883expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3884 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3885 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3886 enum search_domain kind,
3887 void *data)
540c2971
DE
3888{
3889 struct objfile *objfile;
3890
3891 ALL_OBJFILES (objfile)
3892 {
3893 if (objfile->sf)
bb4142cf 3894 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3895 symbol_matcher,
3896 expansion_notify, kind,
bb4142cf 3897 data);
540c2971
DE
3898 }
3899}
3900
3901/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3902 Map function FUN over every file.
3903 See quick_symbol_functions.map_symbol_filenames for details. */
3904
3905void
bb4142cf
DE
3906map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3907 int need_fullname)
540c2971
DE
3908{
3909 struct objfile *objfile;
3910
3911 ALL_OBJFILES (objfile)
3912 {
3913 if (objfile->sf)
3914 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3915 need_fullname);
3916 }
3917}
3918
c906108c 3919void
fba45db2 3920_initialize_symfile (void)
c906108c
SS
3921{
3922 struct cmd_list_element *c;
c5aa993b 3923
76ad5e1e
NB
3924 observer_attach_free_objfile (symfile_free_objfile);
3925
1a966eab
AC
3926 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3927Load symbol table from executable file FILE.\n\
c906108c 3928The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3929to execute."), &cmdlist);
5ba2abeb 3930 set_cmd_completer (c, filename_completer);
c906108c 3931
1a966eab 3932 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3933Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3934Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3935 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3936The optional arguments are section-name section-address pairs and\n\
3937should be specified if the data and bss segments are not contiguous\n\
1a966eab 3938with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3939 &cmdlist);
5ba2abeb 3940 set_cmd_completer (c, filename_completer);
c906108c 3941
63644780
NB
3942 c = add_cmd ("remove-symbol-file", class_files,
3943 remove_symbol_file_command, _("\
3944Remove a symbol file added via the add-symbol-file command.\n\
3945Usage: remove-symbol-file FILENAME\n\
3946 remove-symbol-file -a ADDRESS\n\
3947The file to remove can be identified by its filename or by an address\n\
3948that lies within the boundaries of this symbol file in memory."),
3949 &cmdlist);
3950
1a966eab
AC
3951 c = add_cmd ("load", class_files, load_command, _("\
3952Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3953for access from GDB.\n\
3954A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3955 set_cmd_completer (c, filename_completer);
c906108c 3956
c5aa993b 3957 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3958 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3959 "overlay ", 0, &cmdlist);
3960
3961 add_com_alias ("ovly", "overlay", class_alias, 1);
3962 add_com_alias ("ov", "overlay", class_alias, 1);
3963
c5aa993b 3964 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3965 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3966
c5aa993b 3967 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3968 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3969
c5aa993b 3970 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3971 _("List mappings of overlay sections."), &overlaylist);
c906108c 3972
c5aa993b 3973 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3974 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3975 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3976 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3977 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3978 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3979 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3980 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3981
3982 /* Filename extension to source language lookup table: */
26c41df3
AC
3983 add_setshow_string_noescape_cmd ("extension-language", class_files,
3984 &ext_args, _("\
3985Set mapping between filename extension and source language."), _("\
3986Show mapping between filename extension and source language."), _("\
3987Usage: set extension-language .foo bar"),
3988 set_ext_lang_command,
920d2a44 3989 show_ext_args,
26c41df3 3990 &setlist, &showlist);
c906108c 3991
c5aa993b 3992 add_info ("extensions", info_ext_lang_command,
1bedd215 3993 _("All filename extensions associated with a source language."));
917317f4 3994
525226b5
AC
3995 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3996 &debug_file_directory, _("\
24ddea62
JK
3997Set the directories where separate debug symbols are searched for."), _("\
3998Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3999Separate debug symbols are first searched for in the same\n\
4000directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4001and lastly at the path of the directory of the binary with\n\
24ddea62 4002each global debug-file-directory component prepended."),
525226b5 4003 NULL,
920d2a44 4004 show_debug_file_directory,
525226b5 4005 &setlist, &showlist);
770e7fc7
DE
4006
4007 add_setshow_enum_cmd ("symbol-loading", no_class,
4008 print_symbol_loading_enums, &print_symbol_loading,
4009 _("\
4010Set printing of symbol loading messages."), _("\
4011Show printing of symbol loading messages."), _("\
4012off == turn all messages off\n\
4013brief == print messages for the executable,\n\
4014 and brief messages for shared libraries\n\
4015full == print messages for the executable,\n\
4016 and messages for each shared library."),
4017 NULL,
4018 NULL,
4019 &setprintlist, &showprintlist);
c906108c 4020}
This page took 2.342594 seconds and 4 git commands to generate.