* cli/cli-script.c (define_command): Check for a bad hook value in
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
d9fcf2fb 2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "breakpoint.h"
33#include "language.h"
34#include "complaints.h"
35#include "demangle.h"
c5aa993b 36#include "inferior.h" /* for write_pc */
c906108c
SS
37#include "gdb-stabs.h"
38#include "obstack.h"
c5f0f3d0 39#include "completer.h"
c906108c
SS
40
41#include <assert.h>
42#include <sys/types.h>
43#include <fcntl.h>
44#include "gdb_string.h"
45#include "gdb_stat.h"
46#include <ctype.h>
47#include <time.h>
c906108c
SS
48
49#ifndef O_BINARY
50#define O_BINARY 0
51#endif
52
53#ifdef HPUXHPPA
54
55/* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58extern int hp_som_som_object_present;
59extern int hp_cxx_exception_support_initialized;
60#define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64#endif
65
917317f4 66int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
67void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
507f3c78
KB
72void (*pre_add_symbol_hook) (char *);
73void (*post_add_symbol_hook) (void);
74void (*target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c5aa993b
JM
81struct complaint oldsyms_complaint =
82{
c906108c
SS
83 "Replacing old symbols for `%s'", 0, 0
84};
85
c5aa993b
JM
86struct complaint empty_symtab_complaint =
87{
c906108c
SS
88 "Empty symbol table found for `%s'", 0, 0
89};
90
2acceee2
JM
91struct complaint unknown_option_complaint =
92{
93 "Unknown option `%s' ignored", 0, 0
94};
95
c906108c
SS
96/* External variables and functions referenced. */
97
98extern int info_verbose;
99
a14ed312 100extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
101
102/* Functions this file defines */
103
104#if 0
a14ed312
KB
105static int simple_read_overlay_region_table (void);
106static void simple_free_overlay_region_table (void);
c906108c
SS
107#endif
108
a14ed312 109static void set_initial_language (void);
c906108c 110
a14ed312 111static void load_command (char *, int);
c906108c 112
a14ed312 113static void add_symbol_file_command (char *, int);
c906108c 114
a14ed312 115static void add_shared_symbol_files_command (char *, int);
c906108c 116
a14ed312 117static void cashier_psymtab (struct partial_symtab *);
c906108c 118
a14ed312 119static int compare_psymbols (const void *, const void *);
c906108c 120
a14ed312 121static int compare_symbols (const void *, const void *);
c906108c 122
a14ed312 123bfd *symfile_bfd_open (char *);
c906108c 124
a14ed312 125static void find_sym_fns (struct objfile *);
c906108c 126
a14ed312 127static void decrement_reading_symtab (void *);
c906108c 128
a14ed312 129static void overlay_invalidate_all (void);
c906108c 130
a14ed312 131static int overlay_is_mapped (struct obj_section *);
c906108c 132
a14ed312 133void list_overlays_command (char *, int);
c906108c 134
a14ed312 135void map_overlay_command (char *, int);
c906108c 136
a14ed312 137void unmap_overlay_command (char *, int);
c906108c 138
a14ed312 139static void overlay_auto_command (char *, int);
c906108c 140
a14ed312 141static void overlay_manual_command (char *, int);
c906108c 142
a14ed312 143static void overlay_off_command (char *, int);
c906108c 144
a14ed312 145static void overlay_load_command (char *, int);
c906108c 146
a14ed312 147static void overlay_command (char *, int);
c906108c 148
a14ed312 149static void simple_free_overlay_table (void);
c906108c 150
a14ed312 151static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 152
a14ed312 153static int simple_read_overlay_table (void);
c906108c 154
a14ed312 155static int simple_overlay_update_1 (struct obj_section *);
c906108c 156
a14ed312 157static void add_filename_language (char *ext, enum language lang);
392a587b 158
a14ed312 159static void set_ext_lang_command (char *args, int from_tty);
392a587b 160
a14ed312 161static void info_ext_lang_command (char *args, int from_tty);
392a587b 162
a14ed312 163static void init_filename_language_table (void);
392a587b 164
a14ed312 165void _initialize_symfile (void);
c906108c
SS
166
167/* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171static struct sym_fns *symtab_fns = NULL;
172
173/* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176#ifdef SYMBOL_RELOADING_DEFAULT
177int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178#else
179int symbol_reloading = 0;
180#endif
181
182/* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
183 this variable is interpreted as a threshhold. If adding a new
184 library's symbol table to those already known to the debugger would
185 exceed this threshhold, then the shlib's symbols are not added.
186
187 If non-zero on other platforms, shared library symbols will be added
188 automatically when the inferior is created, new libraries are loaded,
189 or when attaching to the inferior. This is almost always what users
190 will want to have happen; but for very large programs, the startup
191 time will be excessive, and so if this is a problem, the user can
192 clear this flag and then add the shared library symbols as needed.
193 Note that there is a potential for confusion, since if the shared
194 library symbols are not loaded, commands like "info fun" will *not*
195 report all the functions that are actually present.
196
197 Note that HP-UX interprets this variable to mean, "threshhold size
198 in megabytes, where zero means never add". Other platforms interpret
199 this variable to mean, "always add if non-zero, never add if zero."
c5aa993b 200 */
c906108c
SS
201
202int auto_solib_add = 1;
c906108c 203\f
c5aa993b 204
c906108c
SS
205/* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209static int
fba45db2 210compare_symbols (const PTR s1p, const PTR s2p)
c906108c
SS
211{
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
494b7ec9 216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
217}
218
219/*
220
c5aa993b 221 LOCAL FUNCTION
c906108c 222
c5aa993b 223 compare_psymbols -- compare two partial symbols by name
c906108c 224
c5aa993b 225 DESCRIPTION
c906108c 226
c5aa993b
JM
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
c906108c 230
c5aa993b 231 NOTES
c906108c 232
c5aa993b
JM
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
c906108c
SS
238
239 */
240
241static int
fba45db2 242compare_psymbols (const PTR s1p, const PTR s2p)
c906108c 243{
fba7f19c
EZ
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
c906108c
SS
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
c5aa993b 263 return (strcmp (st1, st2));
c906108c
SS
264 }
265}
266
267void
fba45db2 268sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
269{
270 /* Sort the global list; don't sort the static list */
271
c5aa993b
JM
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
274 compare_psymbols);
275}
276
277/* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279void
fba45db2 280sort_block_syms (register struct block *b)
c906108c
SS
281{
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284}
285
286/* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289void
fba45db2 290sort_symtab_syms (register struct symtab *s)
c906108c
SS
291{
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307}
308
309/* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314char *
fba45db2 315obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
316{
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330}
331
332/* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335char *
fba45db2
KB
336obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
c906108c
SS
338{
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345}
346
347/* True if we are nested inside psymtab_to_symtab. */
348
349int currently_reading_symtab = 0;
350
351static void
fba45db2 352decrement_reading_symtab (void *dummy)
c906108c
SS
353{
354 currently_reading_symtab--;
355}
356
357/* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362struct symtab *
fba45db2 363psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
364{
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
c5aa993b 371 {
c906108c
SS
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379}
380
381/* Initialize entry point information for this objfile. */
382
383void
fba45db2 384init_entry_point_info (struct objfile *objfile)
c906108c
SS
385{
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
c5aa993b 389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
390 {
391 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 399 }
c5aa993b
JM
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
406}
407
408/* Get current entry point address. */
409
410CORE_ADDR
fba45db2 411entry_point_address (void)
c906108c
SS
412{
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414}
415
416/* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425void
fba45db2 426find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 427{
c5aa993b 428 asection **lowest = (asection **) obj;
c906108c
SS
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440}
441
62557bbc
KB
442
443/* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446extern struct section_addr_info *
447build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449{
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
62557bbc
KB
459 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
460 && oidx < MAX_SECTIONS)
461 {
462 sap->other[oidx].addr = stp->addr;
463 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
464 sap->other[oidx].sectindex = stp->the_bfd_section->index;
465 oidx++;
466 }
467 }
468
469 return sap;
470}
471
472
473/* Free all memory allocated by build_section_addr_info_from_section_table. */
474
475extern void
476free_section_addr_info (struct section_addr_info *sap)
477{
478 int idx;
479
480 for (idx = 0; idx < MAX_SECTIONS; idx++)
481 if (sap->other[idx].name)
b8c9b27d
KB
482 xfree (sap->other[idx].name);
483 xfree (sap);
62557bbc
KB
484}
485
486
c906108c
SS
487/* Parse the user's idea of an offset for dynamic linking, into our idea
488 of how to represent it for fast symbol reading. This is the default
489 version of the sym_fns.sym_offsets function for symbol readers that
490 don't need to do anything special. It allocates a section_offsets table
491 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
492
d4f3574e 493void
fba45db2
KB
494default_symfile_offsets (struct objfile *objfile,
495 struct section_addr_info *addrs)
c906108c 496{
c906108c 497 int i;
b8fbeb18 498 asection *sect = NULL;
c906108c
SS
499
500 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 501 objfile->section_offsets = (struct section_offsets *)
c5aa993b 502 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 503 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 504
b8fbeb18
EZ
505 /* Now calculate offsets for section that were specified by the
506 caller. */
2acceee2
JM
507 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp ;
510
511 osp = &addrs->other[i] ;
b8fbeb18 512 if (osp->addr == 0)
2acceee2 513 continue;
b8fbeb18 514
2acceee2 515 /* Record all sections in offsets */
b8fbeb18
EZ
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
a4c8257b 518 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 519 }
c906108c 520
b8fbeb18
EZ
521 /* Remember the bfd indexes for the .text, .data, .bss and
522 .rodata sections. */
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".text");
525 if (sect)
526 objfile->sect_index_text = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".data");
529 if (sect)
530 objfile->sect_index_data = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
533 if (sect)
534 objfile->sect_index_bss = sect->index;
535
536 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
537 if (sect)
538 objfile->sect_index_rodata = sect->index;
539
540}
c906108c
SS
541
542/* Process a symbol file, as either the main file or as a dynamically
543 loaded file.
544
96baa820
JM
545 OBJFILE is where the symbols are to be read from.
546
547 ADDR is the address where the text segment was loaded, unless the
548 objfile is the main symbol file, in which case it is zero.
549
550 MAINLINE is nonzero if this is the main symbol file, or zero if
551 it's an extra symbol file such as dynamically loaded code.
552
553 VERBO is nonzero if the caller has printed a verbose message about
554 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
555
556void
fba45db2
KB
557syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
558 int mainline, int verbo)
c906108c 559{
2acceee2
JM
560 asection *lower_sect;
561 asection *sect;
562 CORE_ADDR lower_offset;
563 struct section_addr_info local_addr;
c906108c 564 struct cleanup *old_chain;
2acceee2
JM
565 int i;
566
567 /* If ADDRS is NULL, initialize the local section_addr_info struct and
568 point ADDRS to it. We now establish the convention that an addr of
569 zero means no load address was specified. */
570
571 if (addrs == NULL)
572 {
573 memset (&local_addr, 0, sizeof (local_addr));
574 addrs = &local_addr;
575 }
c906108c
SS
576
577 init_entry_point_info (objfile);
578 find_sym_fns (objfile);
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
74b7792f 582 old_chain = make_cleanup_free_objfile (objfile);
c906108c 583
c5aa993b 584 if (mainline)
c906108c
SS
585 {
586 /* We will modify the main symbol table, make sure that all its users
c5aa993b 587 will be cleaned up if an error occurs during symbol reading. */
74b7792f 588 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
589
590 /* Since no error yet, throw away the old symbol table. */
591
592 if (symfile_objfile != NULL)
593 {
594 free_objfile (symfile_objfile);
595 symfile_objfile = NULL;
596 }
597
598 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
599 If the user wants to get rid of them, they should do "symbol-file"
600 without arguments first. Not sure this is the best behavior
601 (PR 2207). */
c906108c 602
c5aa993b 603 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
604 }
605
606 /* Convert addr into an offset rather than an absolute address.
607 We find the lowest address of a loaded segment in the objfile,
53a5351d 608 and assume that <addr> is where that got loaded.
c906108c 609
53a5351d
JM
610 We no longer warn if the lowest section is not a text segment (as
611 happens for the PA64 port. */
e7cf9df1 612 if (!mainline)
c906108c 613 {
2acceee2
JM
614 /* Find lowest loadable section to be used as starting point for
615 continguous sections. FIXME!! won't work without call to find
616 .text first, but this assumes text is lowest section. */
617 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
618 if (lower_sect == NULL)
c906108c 619 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
620 (PTR) &lower_sect);
621 if (lower_sect == NULL)
c906108c
SS
622 warning ("no loadable sections found in added symbol-file %s",
623 objfile->name);
b8fbeb18
EZ
624 else
625 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
626 warning ("Lowest section in %s is %s at %s",
627 objfile->name,
628 bfd_section_name (objfile->obfd, lower_sect),
629 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
630 if (lower_sect != NULL)
631 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
632 else
633 lower_offset = 0;
634
635 /* Calculate offsets for the loadable sections.
636 FIXME! Sections must be in order of increasing loadable section
637 so that contiguous sections can use the lower-offset!!!
638
639 Adjust offsets if the segments are not contiguous.
640 If the section is contiguous, its offset should be set to
641 the offset of the highest loadable section lower than it
642 (the loadable section directly below it in memory).
643 this_offset = lower_offset = lower_addr - lower_orig_addr */
644
e7cf9df1 645 /* Calculate offsets for sections. */
2acceee2
JM
646 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
647 {
e7cf9df1 648 if (addrs->other[i].addr != 0)
2acceee2 649 {
e7cf9df1 650 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
651 if (sect)
652 {
653 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
654 lower_offset = addrs->other[i].addr;
e7cf9df1 655 /* This is the index used by BFD. */
2acceee2
JM
656 addrs->other[i].sectindex = sect->index ;
657 }
658 else
659 {
660 warning ("section %s not found in %s", addrs->other[i].name,
661 objfile->name);
662 addrs->other[i].addr = 0;
663 }
664 }
665 else
666 addrs->other[i].addr = lower_offset;
667 }
c906108c
SS
668 }
669
670 /* Initialize symbol reading routines for this objfile, allow complaints to
671 appear for this new file, and record how verbose to be, then do the
672 initial symbol reading for this file. */
673
c5aa993b 674 (*objfile->sf->sym_init) (objfile);
c906108c
SS
675 clear_complaints (1, verbo);
676
2acceee2 677 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
678
679#ifndef IBM6000_TARGET
680 /* This is a SVR4/SunOS specific hack, I think. In any event, it
681 screws RS/6000. sym_offsets should be doing this sort of thing,
682 because it knows the mapping between bfd sections and
683 section_offsets. */
684 /* This is a hack. As far as I can tell, section offsets are not
685 target dependent. They are all set to addr with a couple of
686 exceptions. The exceptions are sysvr4 shared libraries, whose
687 offsets are kept in solib structures anyway and rs6000 xcoff
688 which handles shared libraries in a completely unique way.
689
690 Section offsets are built similarly, except that they are built
691 by adding addr in all cases because there is no clear mapping
692 from section_offsets into actual sections. Note that solib.c
96baa820 693 has a different algorithm for finding section offsets.
c906108c
SS
694
695 These should probably all be collapsed into some target
696 independent form of shared library support. FIXME. */
697
2acceee2 698 if (addrs)
c906108c
SS
699 {
700 struct obj_section *s;
701
2acceee2
JM
702 /* Map section offsets in "addr" back to the object's
703 sections by comparing the section names with bfd's
704 section names. Then adjust the section address by
705 the offset. */ /* for gdb/13815 */
706
96baa820 707 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 708 {
2acceee2
JM
709 CORE_ADDR s_addr = 0;
710 int i;
711
62557bbc
KB
712 for (i = 0;
713 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
714 i++)
2acceee2
JM
715 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
717
c906108c 718 s->addr -= s->offset;
2acceee2 719 s->addr += s_addr;
c906108c 720 s->endaddr -= s->offset;
2acceee2
JM
721 s->endaddr += s_addr;
722 s->offset += s_addr;
c906108c
SS
723 }
724 }
725#endif /* not IBM6000_TARGET */
726
96baa820 727 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
728
729 if (!have_partial_symbols () && !have_full_symbols ())
730 {
731 wrap_here ("");
732 printf_filtered ("(no debugging symbols found)...");
733 wrap_here ("");
734 }
735
736 /* Don't allow char * to have a typename (else would get caddr_t).
737 Ditto void *. FIXME: Check whether this is now done by all the
738 symbol readers themselves (many of them now do), and if so remove
739 it from here. */
740
741 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
742 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
743
744 /* Mark the objfile has having had initial symbol read attempted. Note
745 that this does not mean we found any symbols... */
746
c5aa993b 747 objfile->flags |= OBJF_SYMS;
c906108c
SS
748
749 /* Discard cleanups as symbol reading was successful. */
750
751 discard_cleanups (old_chain);
752
96baa820 753 /* Call this after reading in a new symbol table to give target
38c2ef12 754 dependent code a crack at the new symbols. For instance, this
96baa820
JM
755 could be used to update the values of target-specific symbols GDB
756 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
757
758 TARGET_SYMFILE_POSTREAD (objfile);
759}
760
761/* Perform required actions after either reading in the initial
762 symbols for a new objfile, or mapping in the symbols from a reusable
763 objfile. */
c5aa993b 764
c906108c 765void
fba45db2 766new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
767{
768
769 /* If this is the main symbol file we have to clean up all users of the
770 old main symbol file. Otherwise it is sufficient to fixup all the
771 breakpoints that may have been redefined by this symbol file. */
772 if (mainline)
773 {
774 /* OK, make it the "real" symbol file. */
775 symfile_objfile = objfile;
776
777 clear_symtab_users ();
778 }
779 else
780 {
781 breakpoint_re_set ();
782 }
783
784 /* We're done reading the symbol file; finish off complaints. */
785 clear_complaints (0, verbo);
786}
787
788/* Process a symbol file, as either the main file or as a dynamically
789 loaded file.
790
791 NAME is the file name (which will be tilde-expanded and made
792 absolute herein) (but we don't free or modify NAME itself).
793 FROM_TTY says how verbose to be. MAINLINE specifies whether this
794 is the main symbol file, or whether it's an extra symbol file such
795 as dynamically loaded code. If !mainline, ADDR is the address
796 where the text segment was loaded.
797
c906108c
SS
798 Upon success, returns a pointer to the objfile that was added.
799 Upon failure, jumps back to command level (never returns). */
800
801struct objfile *
fba45db2
KB
802symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
803 int mainline, int flags)
c906108c
SS
804{
805 struct objfile *objfile;
806 struct partial_symtab *psymtab;
807 bfd *abfd;
808
809 /* Open a bfd for the file, and give user a chance to burp if we'd be
810 interactively wiping out any existing symbols. */
811
812 abfd = symfile_bfd_open (name);
813
814 if ((have_full_symbols () || have_partial_symbols ())
815 && mainline
816 && from_tty
817 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 818 error ("Not confirmed.");
c906108c 819
2df3850c 820 objfile = allocate_objfile (abfd, flags);
c906108c
SS
821
822 /* If the objfile uses a mapped symbol file, and we have a psymtab for
823 it, then skip reading any symbols at this time. */
824
c5aa993b 825 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
826 {
827 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
828 initial symbol reading performed, so we can skip that part. Notify
829 the user that instead of reading the symbols, they have been mapped.
830 */
c906108c
SS
831 if (from_tty || info_verbose)
832 {
833 printf_filtered ("Mapped symbols for %s...", name);
834 wrap_here ("");
835 gdb_flush (gdb_stdout);
836 }
837 init_entry_point_info (objfile);
838 find_sym_fns (objfile);
839 }
840 else
841 {
842 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
843 symbol table file which has not had initial symbol reading
844 performed, or need to read an unmapped symbol table. */
c906108c
SS
845 if (from_tty || info_verbose)
846 {
847 if (pre_add_symbol_hook)
848 pre_add_symbol_hook (name);
849 else
850 {
851 printf_filtered ("Reading symbols from %s...", name);
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855 }
2acceee2 856 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
857 }
858
859 /* We now have at least a partial symbol table. Check to see if the
860 user requested that all symbols be read on initial access via either
861 the gdb startup command line or on a per symbol file basis. Expand
862 all partial symbol tables for this objfile if so. */
863
2acceee2 864 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
865 {
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("expanding to full symbols...");
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872
c5aa993b 873 for (psymtab = objfile->psymtabs;
c906108c 874 psymtab != NULL;
c5aa993b 875 psymtab = psymtab->next)
c906108c
SS
876 {
877 psymtab_to_symtab (psymtab);
878 }
879 }
880
881 if (from_tty || info_verbose)
882 {
883 if (post_add_symbol_hook)
c5aa993b 884 post_add_symbol_hook ();
c906108c 885 else
c5aa993b
JM
886 {
887 printf_filtered ("done.\n");
888 gdb_flush (gdb_stdout);
889 }
c906108c
SS
890 }
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
11cf8741
JM
894 if (target_new_objfile_hook)
895 target_new_objfile_hook (objfile);
c906108c
SS
896
897 return (objfile);
898}
899
1adeb98a
FN
900/* Just call the above with default values.
901 Used when the file is supplied in the gdb command line. */
902
903void
904symbol_file_add_main (char *args, int from_tty)
905{
906 symbol_file_add (args, from_tty, NULL, 1, 0);
907}
908
909void
910symbol_file_clear (int from_tty)
911{
912 if ((have_full_symbols () || have_partial_symbols ())
913 && from_tty
914 && !query ("Discard symbol table from `%s'? ",
915 symfile_objfile->name))
916 error ("Not confirmed.");
917 free_all_objfiles ();
918
919 /* solib descriptors may have handles to objfiles. Since their
920 storage has just been released, we'd better wipe the solib
921 descriptors as well.
922 */
923#if defined(SOLIB_RESTART)
924 SOLIB_RESTART ();
925#endif
926
927 symfile_objfile = NULL;
928 if (from_tty)
929 printf_unfiltered ("No symbol file now.\n");
930#ifdef HPUXHPPA
931 RESET_HP_UX_GLOBALS ();
932#endif
933}
934
c906108c
SS
935/* This is the symbol-file command. Read the file, analyze its
936 symbols, and add a struct symtab to a symtab list. The syntax of
937 the command is rather bizarre--(1) buildargv implements various
938 quoting conventions which are undocumented and have little or
939 nothing in common with the way things are quoted (or not quoted)
940 elsewhere in GDB, (2) options are used, which are not generally
941 used in GDB (perhaps "set mapped on", "set readnow on" would be
942 better), (3) the order of options matters, which is contrary to GNU
943 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
944/* Note: ezannoni 2000-04-17. This function used to have support for
945 rombug (see remote-os9k.c). It consisted of a call to target_link()
946 (target.c) to get the address of the text segment from the target,
947 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
948
949void
fba45db2 950symbol_file_command (char *args, int from_tty)
c906108c
SS
951{
952 char **argv;
953 char *name = NULL;
c906108c 954 struct cleanup *cleanups;
2df3850c 955 int flags = OBJF_USERLOADED;
c906108c
SS
956
957 dont_repeat ();
958
959 if (args == NULL)
960 {
1adeb98a 961 symbol_file_clear (from_tty);
c906108c
SS
962 }
963 else
964 {
965 if ((argv = buildargv (args)) == NULL)
966 {
967 nomem (0);
968 }
7a292a7a 969 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
970 while (*argv != NULL)
971 {
972 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
973 flags |= OBJF_MAPPED;
974 else
975 if (STREQ (*argv, "-readnow"))
2acceee2 976 flags |= OBJF_READNOW;
4da95fc4
EZ
977 else
978 if (**argv == '-')
979 error ("unknown option `%s'", *argv);
c5aa993b 980 else
c5aa993b 981 {
4da95fc4 982 name = *argv;
2df3850c 983 symbol_file_add (name, from_tty, NULL, 1, flags);
c906108c 984#ifdef HPUXHPPA
c5aa993b 985 RESET_HP_UX_GLOBALS ();
c906108c 986#endif
4da95fc4
EZ
987 /* Getting new symbols may change our opinion about
988 what is frameless. */
989 reinit_frame_cache ();
c906108c 990
4da95fc4
EZ
991 set_initial_language ();
992 }
c906108c
SS
993 argv++;
994 }
995
996 if (name == NULL)
997 {
998 error ("no symbol file name was specified");
999 }
c5aa993b 1000 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
c906108c
SS
1001 do_cleanups (cleanups);
1002 }
1003}
1004
1005/* Set the initial language.
1006
1007 A better solution would be to record the language in the psymtab when reading
1008 partial symbols, and then use it (if known) to set the language. This would
1009 be a win for formats that encode the language in an easily discoverable place,
1010 such as DWARF. For stabs, we can jump through hoops looking for specially
1011 named symbols or try to intuit the language from the specific type of stabs
1012 we find, but we can't do that until later when we read in full symbols.
1013 FIXME. */
1014
1015static void
fba45db2 1016set_initial_language (void)
c906108c
SS
1017{
1018 struct partial_symtab *pst;
c5aa993b 1019 enum language lang = language_unknown;
c906108c
SS
1020
1021 pst = find_main_psymtab ();
1022 if (pst != NULL)
1023 {
c5aa993b 1024 if (pst->filename != NULL)
c906108c 1025 {
c5aa993b
JM
1026 lang = deduce_language_from_filename (pst->filename);
1027 }
c906108c
SS
1028 if (lang == language_unknown)
1029 {
c5aa993b
JM
1030 /* Make C the default language */
1031 lang = language_c;
c906108c
SS
1032 }
1033 set_language (lang);
1034 expected_language = current_language; /* Don't warn the user */
1035 }
1036}
1037
1038/* Open file specified by NAME and hand it off to BFD for preliminary
1039 analysis. Result is a newly initialized bfd *, which includes a newly
1040 malloc'd` copy of NAME (tilde-expanded and made absolute).
1041 In case of trouble, error() is called. */
1042
1043bfd *
fba45db2 1044symfile_bfd_open (char *name)
c906108c
SS
1045{
1046 bfd *sym_bfd;
1047 int desc;
1048 char *absolute_name;
1049
1050
1051
1052 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1053
1054 /* Look down path for it, allocate 2nd new malloc'd copy. */
1055 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1056#if defined(__GO32__) || defined(_WIN32)
1057 if (desc < 0)
1058 {
1059 char *exename = alloca (strlen (name) + 5);
1060 strcat (strcpy (exename, name), ".exe");
1061 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1062 0, &absolute_name);
c906108c
SS
1063 }
1064#endif
1065 if (desc < 0)
1066 {
b8c9b27d 1067 make_cleanup (xfree, name);
c906108c
SS
1068 perror_with_name (name);
1069 }
b8c9b27d 1070 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1071 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1072 /* It'll be freed in free_objfile(). */
c906108c
SS
1073
1074 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1075 if (!sym_bfd)
1076 {
1077 close (desc);
b8c9b27d 1078 make_cleanup (xfree, name);
c906108c
SS
1079 error ("\"%s\": can't open to read symbols: %s.", name,
1080 bfd_errmsg (bfd_get_error ()));
1081 }
1082 sym_bfd->cacheable = true;
1083
1084 if (!bfd_check_format (sym_bfd, bfd_object))
1085 {
1086 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1087 on error it does not free all the storage associated with the
1088 bfd). */
c906108c 1089 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1090 make_cleanup (xfree, name);
c906108c
SS
1091 error ("\"%s\": can't read symbols: %s.", name,
1092 bfd_errmsg (bfd_get_error ()));
1093 }
1094 return (sym_bfd);
1095}
1096
1097/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1098 startup by the _initialize routine in each object file format reader,
1099 to register information about each format the the reader is prepared
1100 to handle. */
1101
1102void
fba45db2 1103add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1104{
1105 sf->next = symtab_fns;
1106 symtab_fns = sf;
1107}
1108
1109
1110/* Initialize to read symbols from the symbol file sym_bfd. It either
1111 returns or calls error(). The result is an initialized struct sym_fns
1112 in the objfile structure, that contains cached information about the
1113 symbol file. */
1114
1115static void
fba45db2 1116find_sym_fns (struct objfile *objfile)
c906108c
SS
1117{
1118 struct sym_fns *sf;
c5aa993b
JM
1119 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1120 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1121
c906108c
SS
1122 /* Special kludge for apollo. See dstread.c. */
1123 if (STREQN (our_target, "apollo", 6))
c5aa993b 1124 our_flavour = (enum bfd_flavour) -2;
c906108c 1125
c5aa993b 1126 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1127 {
c5aa993b 1128 if (our_flavour == sf->sym_flavour)
c906108c 1129 {
c5aa993b 1130 objfile->sf = sf;
c906108c
SS
1131 return;
1132 }
1133 }
1134 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1135 bfd_get_target (objfile->obfd));
c906108c
SS
1136}
1137\f
1138/* This function runs the load command of our current target. */
1139
1140static void
fba45db2 1141load_command (char *arg, int from_tty)
c906108c
SS
1142{
1143 if (arg == NULL)
1144 arg = get_exec_file (1);
1145 target_load (arg, from_tty);
1146}
1147
1148/* This version of "load" should be usable for any target. Currently
1149 it is just used for remote targets, not inftarg.c or core files,
1150 on the theory that only in that case is it useful.
1151
1152 Avoiding xmodem and the like seems like a win (a) because we don't have
1153 to worry about finding it, and (b) On VMS, fork() is very slow and so
1154 we don't want to run a subprocess. On the other hand, I'm not sure how
1155 performance compares. */
917317f4
JM
1156
1157static int download_write_size = 512;
1158static int validate_download = 0;
1159
c906108c 1160void
917317f4 1161generic_load (char *args, int from_tty)
c906108c 1162{
c906108c
SS
1163 asection *s;
1164 bfd *loadfile_bfd;
1165 time_t start_time, end_time; /* Start and end times of download */
1166 unsigned long data_count = 0; /* Number of bytes transferred to memory */
917317f4
JM
1167 unsigned long write_count = 0; /* Number of writes needed. */
1168 unsigned long load_offset; /* offset to add to vma for each section */
1169 char *filename;
1170 struct cleanup *old_cleanups;
1171 char *offptr;
c2d11a7d
JM
1172 CORE_ADDR total_size = 0;
1173 CORE_ADDR total_sent = 0;
917317f4
JM
1174
1175 /* Parse the input argument - the user can specify a load offset as
1176 a second argument. */
1177 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1178 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1179 strcpy (filename, args);
1180 offptr = strchr (filename, ' ');
1181 if (offptr != NULL)
1182 {
1183 char *endptr;
1184 load_offset = strtoul (offptr, &endptr, 0);
1185 if (offptr == endptr)
1186 error ("Invalid download offset:%s\n", offptr);
1187 *offptr = '\0';
1188 }
c906108c
SS
1189 else
1190 load_offset = 0;
1191
917317f4 1192 /* Open the file for loading. */
c906108c
SS
1193 loadfile_bfd = bfd_openr (filename, gnutarget);
1194 if (loadfile_bfd == NULL)
1195 {
1196 perror_with_name (filename);
1197 return;
1198 }
917317f4 1199
c906108c
SS
1200 /* FIXME: should be checking for errors from bfd_close (for one thing,
1201 on error it does not free all the storage associated with the
1202 bfd). */
5c65bbb6 1203 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1204
c5aa993b 1205 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1206 {
1207 error ("\"%s\" is not an object file: %s", filename,
1208 bfd_errmsg (bfd_get_error ()));
1209 }
c5aa993b 1210
c2d11a7d
JM
1211 for (s = loadfile_bfd->sections; s; s = s->next)
1212 if (s->flags & SEC_LOAD)
1213 total_size += bfd_get_section_size_before_reloc (s);
1214
c906108c
SS
1215 start_time = time (NULL);
1216
c5aa993b
JM
1217 for (s = loadfile_bfd->sections; s; s = s->next)
1218 {
1219 if (s->flags & SEC_LOAD)
1220 {
917317f4 1221 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
c5aa993b
JM
1222 if (size > 0)
1223 {
1224 char *buffer;
1225 struct cleanup *old_chain;
917317f4
JM
1226 CORE_ADDR lma = s->lma + load_offset;
1227 CORE_ADDR block_size;
c5aa993b 1228 int err;
917317f4
JM
1229 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1230 CORE_ADDR sent;
c5aa993b 1231
917317f4
JM
1232 if (download_write_size > 0 && size > download_write_size)
1233 block_size = download_write_size;
1234 else
1235 block_size = size;
c5aa993b
JM
1236
1237 buffer = xmalloc (size);
b8c9b27d 1238 old_chain = make_cleanup (xfree, buffer);
c5aa993b 1239
c5aa993b
JM
1240 /* Is this really necessary? I guess it gives the user something
1241 to look at during a long download. */
8b93c638
JM
1242#ifdef UI_OUT
1243 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1244 sect_name, paddr_nz (size), paddr_nz (lma));
1245#else
917317f4
JM
1246 fprintf_unfiltered (gdb_stdout,
1247 "Loading section %s, size 0x%s lma 0x%s\n",
1248 sect_name, paddr_nz (size), paddr_nz (lma));
8b93c638 1249#endif
c5aa993b
JM
1250
1251 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1252
c5aa993b
JM
1253 sent = 0;
1254 do
1255 {
917317f4
JM
1256 CORE_ADDR len;
1257 CORE_ADDR this_transfer = size - sent;
1258 if (this_transfer >= block_size)
1259 this_transfer = block_size;
1260 len = target_write_memory_partial (lma, buffer,
1261 this_transfer, &err);
c5aa993b
JM
1262 if (err)
1263 break;
917317f4
JM
1264 if (validate_download)
1265 {
1266 /* Broken memories and broken monitors manifest
1267 themselves here when bring new computers to
1268 life. This doubles already slow downloads. */
1269 /* NOTE: cagney/1999-10-18: A more efficient
1270 implementation might add a verify_memory()
1271 method to the target vector and then use
1272 that. remote.c could implement that method
1273 using the ``qCRC'' packet. */
1274 char *check = xmalloc (len);
b8c9b27d 1275 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
917317f4
JM
1276 if (target_read_memory (lma, check, len) != 0)
1277 error ("Download verify read failed at 0x%s",
1278 paddr (lma));
1279 if (memcmp (buffer, check, len) != 0)
1280 error ("Download verify compare failed at 0x%s",
1281 paddr (lma));
1282 do_cleanups (verify_cleanups);
1283 }
c5aa993b
JM
1284 data_count += len;
1285 lma += len;
1286 buffer += len;
917317f4
JM
1287 write_count += 1;
1288 sent += len;
c2d11a7d 1289 total_sent += len;
917317f4
JM
1290 if (quit_flag
1291 || (ui_load_progress_hook != NULL
1292 && ui_load_progress_hook (sect_name, sent)))
1293 error ("Canceled the download");
c2d11a7d
JM
1294
1295 if (show_load_progress != NULL)
1296 show_load_progress (sect_name, sent, size, total_sent, total_size);
917317f4
JM
1297 }
1298 while (sent < size);
c5aa993b
JM
1299
1300 if (err != 0)
917317f4 1301 error ("Memory access error while loading section %s.", sect_name);
c906108c 1302
c5aa993b
JM
1303 do_cleanups (old_chain);
1304 }
1305 }
c906108c
SS
1306 }
1307
1308 end_time = time (NULL);
1309 {
917317f4 1310 CORE_ADDR entry;
c5aa993b 1311 entry = bfd_get_start_address (loadfile_bfd);
8b93c638
JM
1312#ifdef UI_OUT
1313 ui_out_text (uiout, "Start address ");
1314 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1315 ui_out_text (uiout, ", load size ");
1316 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1317 ui_out_text (uiout, "\n");
1318
1319#else
917317f4
JM
1320 fprintf_unfiltered (gdb_stdout,
1321 "Start address 0x%s , load size %ld\n",
1322 paddr_nz (entry), data_count);
8b93c638 1323#endif
c906108c
SS
1324 /* We were doing this in remote-mips.c, I suspect it is right
1325 for other targets too. */
1326 write_pc (entry);
1327 }
1328
1329 /* FIXME: are we supposed to call symbol_file_add or not? According to
1330 a comment from remote-mips.c (where a call to symbol_file_add was
1331 commented out), making the call confuses GDB if more than one file is
1332 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1333 does. */
1334
917317f4
JM
1335 print_transfer_performance (gdb_stdout, data_count, write_count,
1336 end_time - start_time);
c906108c
SS
1337
1338 do_cleanups (old_cleanups);
1339}
1340
1341/* Report how fast the transfer went. */
1342
917317f4
JM
1343/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1344 replaced by print_transfer_performance (with a very different
1345 function signature). */
1346
c906108c 1347void
fba45db2
KB
1348report_transfer_performance (unsigned long data_count, time_t start_time,
1349 time_t end_time)
c906108c 1350{
917317f4
JM
1351 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1352}
1353
1354void
d9fcf2fb 1355print_transfer_performance (struct ui_file *stream,
917317f4
JM
1356 unsigned long data_count,
1357 unsigned long write_count,
1358 unsigned long time_count)
1359{
8b93c638
JM
1360#ifdef UI_OUT
1361 ui_out_text (uiout, "Transfer rate: ");
1362 if (time_count > 0)
1363 {
1364 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1365 (data_count * 8) / time_count);
1366 ui_out_text (uiout, " bits/sec");
1367 }
1368 else
1369 {
1370 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1371 ui_out_text (uiout, " bits in <1 sec");
1372 }
1373 if (write_count > 0)
1374 {
1375 ui_out_text (uiout, ", ");
1376 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1377 ui_out_text (uiout, " bytes/write");
1378 }
1379 ui_out_text (uiout, ".\n");
1380#else
917317f4
JM
1381 fprintf_unfiltered (stream, "Transfer rate: ");
1382 if (time_count > 0)
1383 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
c906108c 1384 else
917317f4
JM
1385 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1386 if (write_count > 0)
1387 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1388 fprintf_unfiltered (stream, ".\n");
8b93c638 1389#endif
c906108c
SS
1390}
1391
1392/* This function allows the addition of incrementally linked object files.
1393 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1394/* Note: ezannoni 2000-04-13 This function/command used to have a
1395 special case syntax for the rombug target (Rombug is the boot
1396 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1397 rombug case, the user doesn't need to supply a text address,
1398 instead a call to target_link() (in target.c) would supply the
1399 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1400
1401/* ARGSUSED */
1402static void
fba45db2 1403add_symbol_file_command (char *args, int from_tty)
c906108c 1404{
db162d44 1405 char *filename = NULL;
2df3850c 1406 int flags = OBJF_USERLOADED;
c906108c 1407 char *arg;
2acceee2 1408 int expecting_option = 0;
db162d44 1409 int section_index = 0;
2acceee2
JM
1410 int argcnt = 0;
1411 int sec_num = 0;
1412 int i;
db162d44
EZ
1413 int expecting_sec_name = 0;
1414 int expecting_sec_addr = 0;
1415
2acceee2
JM
1416 struct
1417 {
2acceee2
JM
1418 char *name;
1419 char *value;
db162d44
EZ
1420 } sect_opts[SECT_OFF_MAX];
1421
2acceee2 1422 struct section_addr_info section_addrs;
db162d44 1423 struct cleanup *my_cleanups;
c5aa993b 1424
c906108c
SS
1425 dont_repeat ();
1426
1427 if (args == NULL)
db162d44 1428 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1429
1430 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1431 args = xstrdup (args);
c906108c 1432
2acceee2
JM
1433 /* Ensure section_addrs is initialized */
1434 memset (&section_addrs, 0, sizeof (section_addrs));
1435
2acceee2 1436 while (*args != '\000')
c906108c 1437 {
db162d44 1438 /* Any leading spaces? */
c5aa993b 1439 while (isspace (*args))
db162d44
EZ
1440 args++;
1441
1442 /* Point arg to the beginning of the argument. */
c906108c 1443 arg = args;
db162d44
EZ
1444
1445 /* Move args pointer over the argument. */
c5aa993b 1446 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1447 args++;
1448
1449 /* If there are more arguments, terminate arg and
1450 proceed past it. */
c906108c 1451 if (*args != '\000')
db162d44
EZ
1452 *args++ = '\000';
1453
1454 /* Now process the argument. */
1455 if (argcnt == 0)
c906108c 1456 {
db162d44
EZ
1457 /* The first argument is the file name. */
1458 filename = tilde_expand (arg);
b8c9b27d 1459 my_cleanups = make_cleanup (xfree, filename);
c906108c 1460 }
db162d44 1461 else
7a78ae4e
ND
1462 if (argcnt == 1)
1463 {
1464 /* The second argument is always the text address at which
1465 to load the program. */
1466 sect_opts[section_index].name = ".text";
1467 sect_opts[section_index].value = arg;
1468 section_index++;
1469 }
1470 else
1471 {
1472 /* It's an option (starting with '-') or it's an argument
1473 to an option */
1474
1475 if (*arg == '-')
1476 {
1477 if (strcmp (arg, "-mapped") == 0)
1478 flags |= OBJF_MAPPED;
1479 else
1480 if (strcmp (arg, "-readnow") == 0)
1481 flags |= OBJF_READNOW;
1482 else
1483 if (strcmp (arg, "-s") == 0)
1484 {
1485 if (section_index >= SECT_OFF_MAX)
1486 error ("Too many sections specified.");
1487 expecting_sec_name = 1;
1488 expecting_sec_addr = 1;
1489 }
1490 }
1491 else
1492 {
1493 if (expecting_sec_name)
db162d44 1494 {
7a78ae4e
ND
1495 sect_opts[section_index].name = arg;
1496 expecting_sec_name = 0;
db162d44
EZ
1497 }
1498 else
7a78ae4e
ND
1499 if (expecting_sec_addr)
1500 {
1501 sect_opts[section_index].value = arg;
1502 expecting_sec_addr = 0;
1503 section_index++;
1504 }
1505 else
1506 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1507 }
1508 }
db162d44 1509 argcnt++;
c906108c 1510 }
c906108c 1511
db162d44
EZ
1512 /* Print the prompt for the query below. And save the arguments into
1513 a sect_addr_info structure to be passed around to other
1514 functions. We have to split this up into separate print
1515 statements because local_hex_string returns a local static
1516 string. */
2acceee2 1517
db162d44
EZ
1518 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1519 for (i = 0; i < section_index; i++)
c906108c 1520 {
db162d44
EZ
1521 CORE_ADDR addr;
1522 char *val = sect_opts[i].value;
1523 char *sec = sect_opts[i].name;
1524
1525 val = sect_opts[i].value;
1526 if (val[0] == '0' && val[1] == 'x')
1527 addr = strtoul (val+2, NULL, 16);
1528 else
1529 addr = strtoul (val, NULL, 10);
1530
db162d44
EZ
1531 /* Here we store the section offsets in the order they were
1532 entered on the command line. */
1533 section_addrs.other[sec_num].name = sec;
1534 section_addrs.other[sec_num].addr = addr;
1535 printf_filtered ("\t%s_addr = %s\n",
1536 sec,
1537 local_hex_string ((unsigned long)addr));
1538 sec_num++;
1539
1540 /* The object's sections are initialized when a
1541 call is made to build_objfile_section_table (objfile).
1542 This happens in reread_symbols.
1543 At this point, we don't know what file type this is,
1544 so we can't determine what section names are valid. */
2acceee2 1545 }
db162d44 1546
2acceee2 1547 if (from_tty && (!query ("%s", "")))
c906108c
SS
1548 error ("Not confirmed.");
1549
db162d44 1550 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1551
1552 /* Getting new symbols may change our opinion about what is
1553 frameless. */
1554 reinit_frame_cache ();
db162d44 1555 do_cleanups (my_cleanups);
c906108c
SS
1556}
1557\f
1558static void
fba45db2 1559add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1560{
1561#ifdef ADD_SHARED_SYMBOL_FILES
1562 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1563#else
1564 error ("This command is not available in this configuration of GDB.");
c5aa993b 1565#endif
c906108c
SS
1566}
1567\f
1568/* Re-read symbols if a symbol-file has changed. */
1569void
fba45db2 1570reread_symbols (void)
c906108c
SS
1571{
1572 struct objfile *objfile;
1573 long new_modtime;
1574 int reread_one = 0;
1575 struct stat new_statbuf;
1576 int res;
1577
1578 /* With the addition of shared libraries, this should be modified,
1579 the load time should be saved in the partial symbol tables, since
1580 different tables may come from different source files. FIXME.
1581 This routine should then walk down each partial symbol table
1582 and see if the symbol table that it originates from has been changed */
1583
c5aa993b
JM
1584 for (objfile = object_files; objfile; objfile = objfile->next)
1585 {
1586 if (objfile->obfd)
1587 {
c906108c 1588#ifdef IBM6000_TARGET
c5aa993b
JM
1589 /* If this object is from a shared library, then you should
1590 stat on the library name, not member name. */
c906108c 1591
c5aa993b
JM
1592 if (objfile->obfd->my_archive)
1593 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1594 else
c906108c 1595#endif
c5aa993b
JM
1596 res = stat (objfile->name, &new_statbuf);
1597 if (res != 0)
c906108c 1598 {
c5aa993b
JM
1599 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1600 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1601 objfile->name);
1602 continue;
c906108c 1603 }
c5aa993b
JM
1604 new_modtime = new_statbuf.st_mtime;
1605 if (new_modtime != objfile->mtime)
c906108c 1606 {
c5aa993b
JM
1607 struct cleanup *old_cleanups;
1608 struct section_offsets *offsets;
1609 int num_offsets;
c5aa993b
JM
1610 char *obfd_filename;
1611
1612 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1613 objfile->name);
1614
1615 /* There are various functions like symbol_file_add,
1616 symfile_bfd_open, syms_from_objfile, etc., which might
1617 appear to do what we want. But they have various other
1618 effects which we *don't* want. So we just do stuff
1619 ourselves. We don't worry about mapped files (for one thing,
1620 any mapped file will be out of date). */
1621
1622 /* If we get an error, blow away this objfile (not sure if
1623 that is the correct response for things like shared
1624 libraries). */
74b7792f 1625 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1626 /* We need to do this whenever any symbols go away. */
74b7792f 1627 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1628
1629 /* Clean up any state BFD has sitting around. We don't need
1630 to close the descriptor but BFD lacks a way of closing the
1631 BFD without closing the descriptor. */
1632 obfd_filename = bfd_get_filename (objfile->obfd);
1633 if (!bfd_close (objfile->obfd))
1634 error ("Can't close BFD for %s: %s", objfile->name,
1635 bfd_errmsg (bfd_get_error ()));
1636 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1637 if (objfile->obfd == NULL)
1638 error ("Can't open %s to read symbols.", objfile->name);
1639 /* bfd_openr sets cacheable to true, which is what we want. */
1640 if (!bfd_check_format (objfile->obfd, bfd_object))
1641 error ("Can't read symbols from %s: %s.", objfile->name,
1642 bfd_errmsg (bfd_get_error ()));
1643
1644 /* Save the offsets, we will nuke them with the rest of the
1645 psymbol_obstack. */
1646 num_offsets = objfile->num_sections;
d4f3574e
SS
1647 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1648 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1649
1650 /* Nuke all the state that we will re-read. Much of the following
1651 code which sets things to NULL really is necessary to tell
1652 other parts of GDB that there is nothing currently there. */
1653
1654 /* FIXME: Do we have to free a whole linked list, or is this
1655 enough? */
1656 if (objfile->global_psymbols.list)
1657 mfree (objfile->md, objfile->global_psymbols.list);
1658 memset (&objfile->global_psymbols, 0,
1659 sizeof (objfile->global_psymbols));
1660 if (objfile->static_psymbols.list)
1661 mfree (objfile->md, objfile->static_psymbols.list);
1662 memset (&objfile->static_psymbols, 0,
1663 sizeof (objfile->static_psymbols));
1664
1665 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 1666 free_bcache (&objfile->psymbol_cache);
c5aa993b
JM
1667 obstack_free (&objfile->psymbol_obstack, 0);
1668 obstack_free (&objfile->symbol_obstack, 0);
1669 obstack_free (&objfile->type_obstack, 0);
1670 objfile->sections = NULL;
1671 objfile->symtabs = NULL;
1672 objfile->psymtabs = NULL;
1673 objfile->free_psymtabs = NULL;
1674 objfile->msymbols = NULL;
1675 objfile->minimal_symbol_count = 0;
0a83117a
MS
1676 memset (&objfile->msymbol_hash, 0,
1677 sizeof (objfile->msymbol_hash));
1678 memset (&objfile->msymbol_demangled_hash, 0,
1679 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1680 objfile->fundamental_types = NULL;
1681 if (objfile->sf != NULL)
1682 {
1683 (*objfile->sf->sym_finish) (objfile);
1684 }
1685
1686 /* We never make this a mapped file. */
1687 objfile->md = NULL;
1688 /* obstack_specify_allocation also initializes the obstack so
1689 it is empty. */
1690 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 1691 xmalloc, xfree);
c5aa993b 1692 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1693 xmalloc, xfree);
c5aa993b 1694 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1695 xmalloc, xfree);
c5aa993b 1696 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1697 xmalloc, xfree);
c5aa993b
JM
1698 if (build_objfile_section_table (objfile))
1699 {
1700 error ("Can't find the file sections in `%s': %s",
1701 objfile->name, bfd_errmsg (bfd_get_error ()));
1702 }
1703
1704 /* We use the same section offsets as from last time. I'm not
1705 sure whether that is always correct for shared libraries. */
1706 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1707 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1708 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1709 objfile->num_sections = num_offsets;
1710
1711 /* What the hell is sym_new_init for, anyway? The concept of
1712 distinguishing between the main file and additional files
1713 in this way seems rather dubious. */
1714 if (objfile == symfile_objfile)
1715 {
1716 (*objfile->sf->sym_new_init) (objfile);
c906108c 1717#ifdef HPUXHPPA
c5aa993b 1718 RESET_HP_UX_GLOBALS ();
c906108c 1719#endif
c5aa993b
JM
1720 }
1721
1722 (*objfile->sf->sym_init) (objfile);
1723 clear_complaints (1, 1);
1724 /* The "mainline" parameter is a hideous hack; I think leaving it
1725 zero is OK since dbxread.c also does what it needs to do if
1726 objfile->global_psymbols.size is 0. */
96baa820 1727 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1728 if (!have_partial_symbols () && !have_full_symbols ())
1729 {
1730 wrap_here ("");
1731 printf_filtered ("(no debugging symbols found)\n");
1732 wrap_here ("");
1733 }
1734 objfile->flags |= OBJF_SYMS;
1735
1736 /* We're done reading the symbol file; finish off complaints. */
1737 clear_complaints (0, 1);
c906108c 1738
c5aa993b
JM
1739 /* Getting new symbols may change our opinion about what is
1740 frameless. */
c906108c 1741
c5aa993b 1742 reinit_frame_cache ();
c906108c 1743
c5aa993b
JM
1744 /* Discard cleanups as symbol reading was successful. */
1745 discard_cleanups (old_cleanups);
c906108c 1746
c5aa993b
JM
1747 /* If the mtime has changed between the time we set new_modtime
1748 and now, we *want* this to be out of date, so don't call stat
1749 again now. */
1750 objfile->mtime = new_modtime;
1751 reread_one = 1;
c906108c 1752
c5aa993b 1753 /* Call this after reading in a new symbol table to give target
38c2ef12 1754 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1755 could be used to update the values of target-specific symbols GDB
1756 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1757
c5aa993b
JM
1758 TARGET_SYMFILE_POSTREAD (objfile);
1759 }
c906108c
SS
1760 }
1761 }
c906108c
SS
1762
1763 if (reread_one)
1764 clear_symtab_users ();
1765}
c906108c
SS
1766\f
1767
c5aa993b
JM
1768
1769typedef struct
1770{
1771 char *ext;
c906108c 1772 enum language lang;
c5aa993b
JM
1773}
1774filename_language;
c906108c 1775
c5aa993b 1776static filename_language *filename_language_table;
c906108c
SS
1777static int fl_table_size, fl_table_next;
1778
1779static void
fba45db2 1780add_filename_language (char *ext, enum language lang)
c906108c
SS
1781{
1782 if (fl_table_next >= fl_table_size)
1783 {
1784 fl_table_size += 10;
c5aa993b 1785 filename_language_table = realloc (filename_language_table,
c906108c
SS
1786 fl_table_size);
1787 }
1788
c5aa993b 1789 filename_language_table[fl_table_next].ext = strsave (ext);
c906108c
SS
1790 filename_language_table[fl_table_next].lang = lang;
1791 fl_table_next++;
1792}
1793
1794static char *ext_args;
1795
1796static void
fba45db2 1797set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1798{
1799 int i;
1800 char *cp = ext_args;
1801 enum language lang;
1802
1803 /* First arg is filename extension, starting with '.' */
1804 if (*cp != '.')
1805 error ("'%s': Filename extension must begin with '.'", ext_args);
1806
1807 /* Find end of first arg. */
c5aa993b 1808 while (*cp && !isspace (*cp))
c906108c
SS
1809 cp++;
1810
1811 if (*cp == '\0')
1812 error ("'%s': two arguments required -- filename extension and language",
1813 ext_args);
1814
1815 /* Null-terminate first arg */
c5aa993b 1816 *cp++ = '\0';
c906108c
SS
1817
1818 /* Find beginning of second arg, which should be a source language. */
1819 while (*cp && isspace (*cp))
1820 cp++;
1821
1822 if (*cp == '\0')
1823 error ("'%s': two arguments required -- filename extension and language",
1824 ext_args);
1825
1826 /* Lookup the language from among those we know. */
1827 lang = language_enum (cp);
1828
1829 /* Now lookup the filename extension: do we already know it? */
1830 for (i = 0; i < fl_table_next; i++)
1831 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1832 break;
1833
1834 if (i >= fl_table_next)
1835 {
1836 /* new file extension */
1837 add_filename_language (ext_args, lang);
1838 }
1839 else
1840 {
1841 /* redefining a previously known filename extension */
1842
1843 /* if (from_tty) */
1844 /* query ("Really make files of type %s '%s'?", */
1845 /* ext_args, language_str (lang)); */
1846
b8c9b27d 1847 xfree (filename_language_table[i].ext);
c5aa993b 1848 filename_language_table[i].ext = strsave (ext_args);
c906108c
SS
1849 filename_language_table[i].lang = lang;
1850 }
1851}
1852
1853static void
fba45db2 1854info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1855{
1856 int i;
1857
1858 printf_filtered ("Filename extensions and the languages they represent:");
1859 printf_filtered ("\n\n");
1860 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1861 printf_filtered ("\t%s\t- %s\n",
1862 filename_language_table[i].ext,
c906108c
SS
1863 language_str (filename_language_table[i].lang));
1864}
1865
1866static void
fba45db2 1867init_filename_language_table (void)
c906108c
SS
1868{
1869 if (fl_table_size == 0) /* protect against repetition */
1870 {
1871 fl_table_size = 20;
1872 fl_table_next = 0;
c5aa993b 1873 filename_language_table =
c906108c 1874 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1875 add_filename_language (".c", language_c);
1876 add_filename_language (".C", language_cplus);
1877 add_filename_language (".cc", language_cplus);
1878 add_filename_language (".cp", language_cplus);
1879 add_filename_language (".cpp", language_cplus);
1880 add_filename_language (".cxx", language_cplus);
1881 add_filename_language (".c++", language_cplus);
1882 add_filename_language (".java", language_java);
c906108c 1883 add_filename_language (".class", language_java);
c5aa993b
JM
1884 add_filename_language (".ch", language_chill);
1885 add_filename_language (".c186", language_chill);
1886 add_filename_language (".c286", language_chill);
1887 add_filename_language (".f", language_fortran);
1888 add_filename_language (".F", language_fortran);
1889 add_filename_language (".s", language_asm);
1890 add_filename_language (".S", language_asm);
c6fd39cd
PM
1891 add_filename_language (".pas", language_pascal);
1892 add_filename_language (".p", language_pascal);
1893 add_filename_language (".pp", language_pascal);
c906108c
SS
1894 }
1895}
1896
1897enum language
fba45db2 1898deduce_language_from_filename (char *filename)
c906108c
SS
1899{
1900 int i;
1901 char *cp;
1902
1903 if (filename != NULL)
1904 if ((cp = strrchr (filename, '.')) != NULL)
1905 for (i = 0; i < fl_table_next; i++)
1906 if (strcmp (cp, filename_language_table[i].ext) == 0)
1907 return filename_language_table[i].lang;
1908
1909 return language_unknown;
1910}
1911\f
1912/* allocate_symtab:
1913
1914 Allocate and partly initialize a new symbol table. Return a pointer
1915 to it. error() if no space.
1916
1917 Caller must set these fields:
c5aa993b
JM
1918 LINETABLE(symtab)
1919 symtab->blockvector
1920 symtab->dirname
1921 symtab->free_code
1922 symtab->free_ptr
1923 possibly free_named_symtabs (symtab->filename);
c906108c
SS
1924 */
1925
1926struct symtab *
fba45db2 1927allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
1928{
1929 register struct symtab *symtab;
1930
1931 symtab = (struct symtab *)
c5aa993b 1932 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 1933 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
1934 symtab->filename = obsavestring (filename, strlen (filename),
1935 &objfile->symbol_obstack);
1936 symtab->fullname = NULL;
1937 symtab->language = deduce_language_from_filename (filename);
1938 symtab->debugformat = obsavestring ("unknown", 7,
1939 &objfile->symbol_obstack);
c906108c
SS
1940
1941 /* Hook it to the objfile it comes from */
1942
c5aa993b
JM
1943 symtab->objfile = objfile;
1944 symtab->next = objfile->symtabs;
1945 objfile->symtabs = symtab;
c906108c
SS
1946
1947 /* FIXME: This should go away. It is only defined for the Z8000,
1948 and the Z8000 definition of this macro doesn't have anything to
1949 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1950 here for convenience. */
1951#ifdef INIT_EXTRA_SYMTAB_INFO
1952 INIT_EXTRA_SYMTAB_INFO (symtab);
1953#endif
1954
1955 return (symtab);
1956}
1957
1958struct partial_symtab *
fba45db2 1959allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
1960{
1961 struct partial_symtab *psymtab;
1962
c5aa993b 1963 if (objfile->free_psymtabs)
c906108c 1964 {
c5aa993b
JM
1965 psymtab = objfile->free_psymtabs;
1966 objfile->free_psymtabs = psymtab->next;
c906108c
SS
1967 }
1968 else
1969 psymtab = (struct partial_symtab *)
c5aa993b 1970 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
1971 sizeof (struct partial_symtab));
1972
1973 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
1974 psymtab->filename = obsavestring (filename, strlen (filename),
1975 &objfile->psymbol_obstack);
1976 psymtab->symtab = NULL;
c906108c
SS
1977
1978 /* Prepend it to the psymtab list for the objfile it belongs to.
1979 Psymtabs are searched in most recent inserted -> least recent
1980 inserted order. */
1981
c5aa993b
JM
1982 psymtab->objfile = objfile;
1983 psymtab->next = objfile->psymtabs;
1984 objfile->psymtabs = psymtab;
c906108c
SS
1985#if 0
1986 {
1987 struct partial_symtab **prev_pst;
c5aa993b
JM
1988 psymtab->objfile = objfile;
1989 psymtab->next = NULL;
1990 prev_pst = &(objfile->psymtabs);
c906108c 1991 while ((*prev_pst) != NULL)
c5aa993b 1992 prev_pst = &((*prev_pst)->next);
c906108c 1993 (*prev_pst) = psymtab;
c5aa993b 1994 }
c906108c 1995#endif
c5aa993b 1996
c906108c
SS
1997 return (psymtab);
1998}
1999
2000void
fba45db2 2001discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2002{
2003 struct partial_symtab **prev_pst;
2004
2005 /* From dbxread.c:
2006 Empty psymtabs happen as a result of header files which don't
2007 have any symbols in them. There can be a lot of them. But this
2008 check is wrong, in that a psymtab with N_SLINE entries but
2009 nothing else is not empty, but we don't realize that. Fixing
2010 that without slowing things down might be tricky. */
2011
2012 /* First, snip it out of the psymtab chain */
2013
2014 prev_pst = &(pst->objfile->psymtabs);
2015 while ((*prev_pst) != pst)
2016 prev_pst = &((*prev_pst)->next);
2017 (*prev_pst) = pst->next;
2018
2019 /* Next, put it on a free list for recycling */
2020
2021 pst->next = pst->objfile->free_psymtabs;
2022 pst->objfile->free_psymtabs = pst;
2023}
c906108c 2024\f
c5aa993b 2025
c906108c
SS
2026/* Reset all data structures in gdb which may contain references to symbol
2027 table data. */
2028
2029void
fba45db2 2030clear_symtab_users (void)
c906108c
SS
2031{
2032 /* Someday, we should do better than this, by only blowing away
2033 the things that really need to be blown. */
2034 clear_value_history ();
2035 clear_displays ();
2036 clear_internalvars ();
2037 breakpoint_re_set ();
2038 set_default_breakpoint (0, 0, 0, 0);
2039 current_source_symtab = 0;
2040 current_source_line = 0;
2041 clear_pc_function_cache ();
11cf8741
JM
2042 if (target_new_objfile_hook)
2043 target_new_objfile_hook (NULL);
c906108c
SS
2044}
2045
74b7792f
AC
2046static void
2047clear_symtab_users_cleanup (void *ignore)
2048{
2049 clear_symtab_users ();
2050}
2051
c906108c
SS
2052/* clear_symtab_users_once:
2053
2054 This function is run after symbol reading, or from a cleanup.
2055 If an old symbol table was obsoleted, the old symbol table
2056 has been blown away, but the other GDB data structures that may
2057 reference it have not yet been cleared or re-directed. (The old
2058 symtab was zapped, and the cleanup queued, in free_named_symtab()
2059 below.)
2060
2061 This function can be queued N times as a cleanup, or called
2062 directly; it will do all the work the first time, and then will be a
2063 no-op until the next time it is queued. This works by bumping a
2064 counter at queueing time. Much later when the cleanup is run, or at
2065 the end of symbol processing (in case the cleanup is discarded), if
2066 the queued count is greater than the "done-count", we do the work
2067 and set the done-count to the queued count. If the queued count is
2068 less than or equal to the done-count, we just ignore the call. This
2069 is needed because reading a single .o file will often replace many
2070 symtabs (one per .h file, for example), and we don't want to reset
2071 the breakpoints N times in the user's face.
2072
2073 The reason we both queue a cleanup, and call it directly after symbol
2074 reading, is because the cleanup protects us in case of errors, but is
2075 discarded if symbol reading is successful. */
2076
2077#if 0
2078/* FIXME: As free_named_symtabs is currently a big noop this function
2079 is no longer needed. */
a14ed312 2080static void clear_symtab_users_once (void);
c906108c
SS
2081
2082static int clear_symtab_users_queued;
2083static int clear_symtab_users_done;
2084
2085static void
fba45db2 2086clear_symtab_users_once (void)
c906108c
SS
2087{
2088 /* Enforce once-per-`do_cleanups'-semantics */
2089 if (clear_symtab_users_queued <= clear_symtab_users_done)
2090 return;
2091 clear_symtab_users_done = clear_symtab_users_queued;
2092
2093 clear_symtab_users ();
2094}
2095#endif
2096
2097/* Delete the specified psymtab, and any others that reference it. */
2098
2099static void
fba45db2 2100cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2101{
2102 struct partial_symtab *ps, *pprev = NULL;
2103 int i;
2104
2105 /* Find its previous psymtab in the chain */
c5aa993b
JM
2106 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2107 {
2108 if (ps == pst)
2109 break;
2110 pprev = ps;
2111 }
c906108c 2112
c5aa993b
JM
2113 if (ps)
2114 {
2115 /* Unhook it from the chain. */
2116 if (ps == pst->objfile->psymtabs)
2117 pst->objfile->psymtabs = ps->next;
2118 else
2119 pprev->next = ps->next;
2120
2121 /* FIXME, we can't conveniently deallocate the entries in the
2122 partial_symbol lists (global_psymbols/static_psymbols) that
2123 this psymtab points to. These just take up space until all
2124 the psymtabs are reclaimed. Ditto the dependencies list and
2125 filename, which are all in the psymbol_obstack. */
2126
2127 /* We need to cashier any psymtab that has this one as a dependency... */
2128 again:
2129 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2130 {
2131 for (i = 0; i < ps->number_of_dependencies; i++)
2132 {
2133 if (ps->dependencies[i] == pst)
2134 {
2135 cashier_psymtab (ps);
2136 goto again; /* Must restart, chain has been munged. */
2137 }
2138 }
c906108c 2139 }
c906108c 2140 }
c906108c
SS
2141}
2142
2143/* If a symtab or psymtab for filename NAME is found, free it along
2144 with any dependent breakpoints, displays, etc.
2145 Used when loading new versions of object modules with the "add-file"
2146 command. This is only called on the top-level symtab or psymtab's name;
2147 it is not called for subsidiary files such as .h files.
2148
2149 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2150 FIXME. The return value appears to never be used.
c906108c
SS
2151
2152 FIXME. I think this is not the best way to do this. We should
2153 work on being gentler to the environment while still cleaning up
2154 all stray pointers into the freed symtab. */
2155
2156int
fba45db2 2157free_named_symtabs (char *name)
c906108c
SS
2158{
2159#if 0
2160 /* FIXME: With the new method of each objfile having it's own
2161 psymtab list, this function needs serious rethinking. In particular,
2162 why was it ever necessary to toss psymtabs with specific compilation
2163 unit filenames, as opposed to all psymtabs from a particular symbol
2164 file? -- fnf
2165 Well, the answer is that some systems permit reloading of particular
2166 compilation units. We want to blow away any old info about these
2167 compilation units, regardless of which objfiles they arrived in. --gnu. */
2168
2169 register struct symtab *s;
2170 register struct symtab *prev;
2171 register struct partial_symtab *ps;
2172 struct blockvector *bv;
2173 int blewit = 0;
2174
2175 /* We only wack things if the symbol-reload switch is set. */
2176 if (!symbol_reloading)
2177 return 0;
2178
2179 /* Some symbol formats have trouble providing file names... */
2180 if (name == 0 || *name == '\0')
2181 return 0;
2182
2183 /* Look for a psymtab with the specified name. */
2184
2185again2:
c5aa993b
JM
2186 for (ps = partial_symtab_list; ps; ps = ps->next)
2187 {
2188 if (STREQ (name, ps->filename))
2189 {
2190 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2191 goto again2; /* Must restart, chain has been munged */
2192 }
c906108c 2193 }
c906108c
SS
2194
2195 /* Look for a symtab with the specified name. */
2196
2197 for (s = symtab_list; s; s = s->next)
2198 {
2199 if (STREQ (name, s->filename))
2200 break;
2201 prev = s;
2202 }
2203
2204 if (s)
2205 {
2206 if (s == symtab_list)
2207 symtab_list = s->next;
2208 else
2209 prev->next = s->next;
2210
2211 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2212 or not they depend on the symtab being freed. This should be
2213 changed so that only those data structures affected are deleted. */
c906108c
SS
2214
2215 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2216 This test is necessary due to a bug in "dbxread.c" that
2217 causes empty symtabs to be created for N_SO symbols that
2218 contain the pathname of the object file. (This problem
2219 has been fixed in GDB 3.9x). */
c906108c
SS
2220
2221 bv = BLOCKVECTOR (s);
2222 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2223 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2224 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2225 {
2226 complain (&oldsyms_complaint, name);
2227
2228 clear_symtab_users_queued++;
2229 make_cleanup (clear_symtab_users_once, 0);
2230 blewit = 1;
c5aa993b
JM
2231 }
2232 else
2233 {
c906108c
SS
2234 complain (&empty_symtab_complaint, name);
2235 }
2236
2237 free_symtab (s);
2238 }
2239 else
2240 {
2241 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2242 even though no symtab was found, since the file might have
2243 been compiled without debugging, and hence not be associated
2244 with a symtab. In order to handle this correctly, we would need
2245 to keep a list of text address ranges for undebuggable files.
2246 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2247 ;
2248 }
2249
2250 /* FIXME, what about the minimal symbol table? */
2251 return blewit;
2252#else
2253 return (0);
2254#endif
2255}
2256\f
2257/* Allocate and partially fill a partial symtab. It will be
2258 completely filled at the end of the symbol list.
2259
d4f3574e 2260 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2261
2262struct partial_symtab *
fba45db2
KB
2263start_psymtab_common (struct objfile *objfile,
2264 struct section_offsets *section_offsets, char *filename,
2265 CORE_ADDR textlow, struct partial_symbol **global_syms,
2266 struct partial_symbol **static_syms)
c906108c
SS
2267{
2268 struct partial_symtab *psymtab;
2269
2270 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2271 psymtab->section_offsets = section_offsets;
2272 psymtab->textlow = textlow;
2273 psymtab->texthigh = psymtab->textlow; /* default */
2274 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2275 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2276 return (psymtab);
2277}
2278\f
2279/* Add a symbol with a long value to a psymtab.
2280 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2281
2282void
fba45db2
KB
2283add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2284 enum address_class class,
2285 struct psymbol_allocation_list *list, long val, /* Value as a long */
2286 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2287 enum language language, struct objfile *objfile)
c906108c
SS
2288{
2289 register struct partial_symbol *psym;
2290 char *buf = alloca (namelength + 1);
2291 /* psymbol is static so that there will be no uninitialized gaps in the
2292 structure which might contain random data, causing cache misses in
2293 bcache. */
2294 static struct partial_symbol psymbol;
2295
2296 /* Create local copy of the partial symbol */
2297 memcpy (buf, name, namelength);
2298 buf[namelength] = '\0';
2299 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2300 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2301 if (val != 0)
2302 {
2303 SYMBOL_VALUE (&psymbol) = val;
2304 }
2305 else
2306 {
2307 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2308 }
2309 SYMBOL_SECTION (&psymbol) = 0;
2310 SYMBOL_LANGUAGE (&psymbol) = language;
2311 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2312 PSYMBOL_CLASS (&psymbol) = class;
2313 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2314
2315 /* Stash the partial symbol away in the cache */
2316 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2317
2318 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2319 if (list->next >= list->list + list->size)
2320 {
2321 extend_psymbol_list (list, objfile);
2322 }
2323 *list->next++ = psym;
2324 OBJSTAT (objfile, n_psyms++);
2325}
2326
2327/* Add a symbol with a long value to a psymtab. This differs from
2328 * add_psymbol_to_list above in taking both a mangled and a demangled
2329 * name. */
2330
2331void
fba45db2
KB
2332add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2333 int dem_namelength, namespace_enum namespace,
2334 enum address_class class,
2335 struct psymbol_allocation_list *list, long val, /* Value as a long */
2336 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2337 enum language language,
2338 struct objfile *objfile)
c906108c
SS
2339{
2340 register struct partial_symbol *psym;
2341 char *buf = alloca (namelength + 1);
2342 /* psymbol is static so that there will be no uninitialized gaps in the
2343 structure which might contain random data, causing cache misses in
2344 bcache. */
2345 static struct partial_symbol psymbol;
2346
2347 /* Create local copy of the partial symbol */
2348
2349 memcpy (buf, name, namelength);
2350 buf[namelength] = '\0';
2351 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2352
2353 buf = alloca (dem_namelength + 1);
2354 memcpy (buf, dem_name, dem_namelength);
2355 buf[dem_namelength] = '\0';
c5aa993b 2356
c906108c
SS
2357 switch (language)
2358 {
c5aa993b
JM
2359 case language_c:
2360 case language_cplus:
2361 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2362 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2363 break;
2364 case language_chill:
2365 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2366 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2367
c906108c
SS
2368 /* FIXME What should be done for the default case? Ignoring for now. */
2369 }
2370
2371 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2372 if (val != 0)
2373 {
2374 SYMBOL_VALUE (&psymbol) = val;
2375 }
2376 else
2377 {
2378 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2379 }
2380 SYMBOL_SECTION (&psymbol) = 0;
2381 SYMBOL_LANGUAGE (&psymbol) = language;
2382 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2383 PSYMBOL_CLASS (&psymbol) = class;
2384 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2385
2386 /* Stash the partial symbol away in the cache */
2387 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2388
2389 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2390 if (list->next >= list->list + list->size)
2391 {
2392 extend_psymbol_list (list, objfile);
2393 }
2394 *list->next++ = psym;
2395 OBJSTAT (objfile, n_psyms++);
2396}
2397
2398/* Initialize storage for partial symbols. */
2399
2400void
fba45db2 2401init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2402{
2403 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2404
2405 if (objfile->global_psymbols.list)
c906108c 2406 {
c5aa993b 2407 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2408 }
c5aa993b 2409 if (objfile->static_psymbols.list)
c906108c 2410 {
c5aa993b 2411 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2412 }
c5aa993b 2413
c906108c
SS
2414 /* Current best guess is that approximately a twentieth
2415 of the total symbols (in a debugging file) are global or static
2416 oriented symbols */
c906108c 2417
c5aa993b
JM
2418 objfile->global_psymbols.size = total_symbols / 10;
2419 objfile->static_psymbols.size = total_symbols / 10;
2420
2421 if (objfile->global_psymbols.size > 0)
c906108c 2422 {
c5aa993b
JM
2423 objfile->global_psymbols.next =
2424 objfile->global_psymbols.list = (struct partial_symbol **)
2425 xmmalloc (objfile->md, (objfile->global_psymbols.size
2426 * sizeof (struct partial_symbol *)));
c906108c 2427 }
c5aa993b 2428 if (objfile->static_psymbols.size > 0)
c906108c 2429 {
c5aa993b
JM
2430 objfile->static_psymbols.next =
2431 objfile->static_psymbols.list = (struct partial_symbol **)
2432 xmmalloc (objfile->md, (objfile->static_psymbols.size
2433 * sizeof (struct partial_symbol *)));
c906108c
SS
2434 }
2435}
2436
2437/* OVERLAYS:
2438 The following code implements an abstraction for debugging overlay sections.
2439
2440 The target model is as follows:
2441 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2442 same VMA, each with its own unique LMA (or load address).
c906108c 2443 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2444 sections, one by one, from the load address into the VMA address.
c906108c 2445 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2446 sections should be considered to be mapped from the VMA to the LMA.
2447 This information is used for symbol lookup, and memory read/write.
2448 For instance, if a section has been mapped then its contents
2449 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2450
2451 Two levels of debugger support for overlays are available. One is
2452 "manual", in which the debugger relies on the user to tell it which
2453 overlays are currently mapped. This level of support is
2454 implemented entirely in the core debugger, and the information about
2455 whether a section is mapped is kept in the objfile->obj_section table.
2456
2457 The second level of support is "automatic", and is only available if
2458 the target-specific code provides functionality to read the target's
2459 overlay mapping table, and translate its contents for the debugger
2460 (by updating the mapped state information in the obj_section tables).
2461
2462 The interface is as follows:
c5aa993b
JM
2463 User commands:
2464 overlay map <name> -- tell gdb to consider this section mapped
2465 overlay unmap <name> -- tell gdb to consider this section unmapped
2466 overlay list -- list the sections that GDB thinks are mapped
2467 overlay read-target -- get the target's state of what's mapped
2468 overlay off/manual/auto -- set overlay debugging state
2469 Functional interface:
2470 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2471 section, return that section.
2472 find_pc_overlay(pc): find any overlay section that contains
2473 the pc, either in its VMA or its LMA
2474 overlay_is_mapped(sect): true if overlay is marked as mapped
2475 section_is_overlay(sect): true if section's VMA != LMA
2476 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2477 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2478 overlay_mapped_address(...): map an address from section's LMA to VMA
2479 overlay_unmapped_address(...): map an address from section's VMA to LMA
2480 symbol_overlayed_address(...): Return a "current" address for symbol:
2481 either in VMA or LMA depending on whether
2482 the symbol's section is currently mapped
c906108c
SS
2483 */
2484
2485/* Overlay debugging state: */
2486
2487int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2488int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2489
2490/* Target vector for refreshing overlay mapped state */
a14ed312 2491static void simple_overlay_update (struct obj_section *);
507f3c78 2492void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2493
2494/* Function: section_is_overlay (SECTION)
2495 Returns true if SECTION has VMA not equal to LMA, ie.
2496 SECTION is loaded at an address different from where it will "run". */
2497
2498int
fba45db2 2499section_is_overlay (asection *section)
c906108c
SS
2500{
2501 if (overlay_debugging)
2502 if (section && section->lma != 0 &&
2503 section->vma != section->lma)
2504 return 1;
2505
2506 return 0;
2507}
2508
2509/* Function: overlay_invalidate_all (void)
2510 Invalidate the mapped state of all overlay sections (mark it as stale). */
2511
2512static void
fba45db2 2513overlay_invalidate_all (void)
c906108c 2514{
c5aa993b 2515 struct objfile *objfile;
c906108c
SS
2516 struct obj_section *sect;
2517
2518 ALL_OBJSECTIONS (objfile, sect)
2519 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2520 sect->ovly_mapped = -1;
c906108c
SS
2521}
2522
2523/* Function: overlay_is_mapped (SECTION)
2524 Returns true if section is an overlay, and is currently mapped.
2525 Private: public access is thru function section_is_mapped.
2526
2527 Access to the ovly_mapped flag is restricted to this function, so
2528 that we can do automatic update. If the global flag
2529 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2530 overlay_invalidate_all. If the mapped state of the particular
2531 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2532
c5aa993b 2533static int
fba45db2 2534overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2535{
2536 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2537 return 0;
2538
c5aa993b 2539 switch (overlay_debugging)
c906108c
SS
2540 {
2541 default:
c5aa993b
JM
2542 case 0:
2543 return 0; /* overlay debugging off */
c906108c
SS
2544 case -1: /* overlay debugging automatic */
2545 /* Unles there is a target_overlay_update function,
c5aa993b 2546 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2547 if (target_overlay_update)
2548 {
2549 if (overlay_cache_invalid)
2550 {
2551 overlay_invalidate_all ();
2552 overlay_cache_invalid = 0;
2553 }
2554 if (osect->ovly_mapped == -1)
2555 (*target_overlay_update) (osect);
2556 }
2557 /* fall thru to manual case */
2558 case 1: /* overlay debugging manual */
2559 return osect->ovly_mapped == 1;
2560 }
2561}
2562
2563/* Function: section_is_mapped
2564 Returns true if section is an overlay, and is currently mapped. */
2565
2566int
fba45db2 2567section_is_mapped (asection *section)
c906108c 2568{
c5aa993b 2569 struct objfile *objfile;
c906108c
SS
2570 struct obj_section *osect;
2571
2572 if (overlay_debugging)
2573 if (section && section_is_overlay (section))
2574 ALL_OBJSECTIONS (objfile, osect)
2575 if (osect->the_bfd_section == section)
c5aa993b 2576 return overlay_is_mapped (osect);
c906108c
SS
2577
2578 return 0;
2579}
2580
2581/* Function: pc_in_unmapped_range
2582 If PC falls into the lma range of SECTION, return true, else false. */
2583
2584CORE_ADDR
fba45db2 2585pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2586{
2587 int size;
2588
2589 if (overlay_debugging)
2590 if (section && section_is_overlay (section))
2591 {
2592 size = bfd_get_section_size_before_reloc (section);
2593 if (section->lma <= pc && pc < section->lma + size)
2594 return 1;
2595 }
2596 return 0;
2597}
2598
2599/* Function: pc_in_mapped_range
2600 If PC falls into the vma range of SECTION, return true, else false. */
2601
2602CORE_ADDR
fba45db2 2603pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2604{
2605 int size;
2606
2607 if (overlay_debugging)
2608 if (section && section_is_overlay (section))
2609 {
2610 size = bfd_get_section_size_before_reloc (section);
2611 if (section->vma <= pc && pc < section->vma + size)
2612 return 1;
2613 }
2614 return 0;
2615}
2616
2617/* Function: overlay_unmapped_address (PC, SECTION)
2618 Returns the address corresponding to PC in the unmapped (load) range.
2619 May be the same as PC. */
2620
2621CORE_ADDR
fba45db2 2622overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2623{
2624 if (overlay_debugging)
2625 if (section && section_is_overlay (section) &&
2626 pc_in_mapped_range (pc, section))
2627 return pc + section->lma - section->vma;
2628
2629 return pc;
2630}
2631
2632/* Function: overlay_mapped_address (PC, SECTION)
2633 Returns the address corresponding to PC in the mapped (runtime) range.
2634 May be the same as PC. */
2635
2636CORE_ADDR
fba45db2 2637overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2638{
2639 if (overlay_debugging)
2640 if (section && section_is_overlay (section) &&
2641 pc_in_unmapped_range (pc, section))
2642 return pc + section->vma - section->lma;
2643
2644 return pc;
2645}
2646
2647
2648/* Function: symbol_overlayed_address
2649 Return one of two addresses (relative to the VMA or to the LMA),
2650 depending on whether the section is mapped or not. */
2651
c5aa993b 2652CORE_ADDR
fba45db2 2653symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2654{
2655 if (overlay_debugging)
2656 {
2657 /* If the symbol has no section, just return its regular address. */
2658 if (section == 0)
2659 return address;
2660 /* If the symbol's section is not an overlay, just return its address */
2661 if (!section_is_overlay (section))
2662 return address;
2663 /* If the symbol's section is mapped, just return its address */
2664 if (section_is_mapped (section))
2665 return address;
2666 /*
2667 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2668 * then return its LOADED address rather than its vma address!!
2669 */
2670 return overlay_unmapped_address (address, section);
2671 }
2672 return address;
2673}
2674
2675/* Function: find_pc_overlay (PC)
2676 Return the best-match overlay section for PC:
2677 If PC matches a mapped overlay section's VMA, return that section.
2678 Else if PC matches an unmapped section's VMA, return that section.
2679 Else if PC matches an unmapped section's LMA, return that section. */
2680
2681asection *
fba45db2 2682find_pc_overlay (CORE_ADDR pc)
c906108c 2683{
c5aa993b 2684 struct objfile *objfile;
c906108c
SS
2685 struct obj_section *osect, *best_match = NULL;
2686
2687 if (overlay_debugging)
2688 ALL_OBJSECTIONS (objfile, osect)
2689 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2690 {
2691 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2692 {
2693 if (overlay_is_mapped (osect))
2694 return osect->the_bfd_section;
2695 else
2696 best_match = osect;
2697 }
2698 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2699 best_match = osect;
2700 }
c906108c
SS
2701 return best_match ? best_match->the_bfd_section : NULL;
2702}
2703
2704/* Function: find_pc_mapped_section (PC)
2705 If PC falls into the VMA address range of an overlay section that is
2706 currently marked as MAPPED, return that section. Else return NULL. */
2707
2708asection *
fba45db2 2709find_pc_mapped_section (CORE_ADDR pc)
c906108c 2710{
c5aa993b 2711 struct objfile *objfile;
c906108c
SS
2712 struct obj_section *osect;
2713
2714 if (overlay_debugging)
2715 ALL_OBJSECTIONS (objfile, osect)
2716 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2717 overlay_is_mapped (osect))
c5aa993b 2718 return osect->the_bfd_section;
c906108c
SS
2719
2720 return NULL;
2721}
2722
2723/* Function: list_overlays_command
2724 Print a list of mapped sections and their PC ranges */
2725
2726void
fba45db2 2727list_overlays_command (char *args, int from_tty)
c906108c 2728{
c5aa993b
JM
2729 int nmapped = 0;
2730 struct objfile *objfile;
c906108c
SS
2731 struct obj_section *osect;
2732
2733 if (overlay_debugging)
2734 ALL_OBJSECTIONS (objfile, osect)
2735 if (overlay_is_mapped (osect))
c5aa993b
JM
2736 {
2737 const char *name;
2738 bfd_vma lma, vma;
2739 int size;
2740
2741 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2742 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2743 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2744 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2745
2746 printf_filtered ("Section %s, loaded at ", name);
2747 print_address_numeric (lma, 1, gdb_stdout);
2748 puts_filtered (" - ");
2749 print_address_numeric (lma + size, 1, gdb_stdout);
2750 printf_filtered (", mapped at ");
2751 print_address_numeric (vma, 1, gdb_stdout);
2752 puts_filtered (" - ");
2753 print_address_numeric (vma + size, 1, gdb_stdout);
2754 puts_filtered ("\n");
2755
2756 nmapped++;
2757 }
c906108c
SS
2758 if (nmapped == 0)
2759 printf_filtered ("No sections are mapped.\n");
2760}
2761
2762/* Function: map_overlay_command
2763 Mark the named section as mapped (ie. residing at its VMA address). */
2764
2765void
fba45db2 2766map_overlay_command (char *args, int from_tty)
c906108c 2767{
c5aa993b
JM
2768 struct objfile *objfile, *objfile2;
2769 struct obj_section *sec, *sec2;
2770 asection *bfdsec;
c906108c
SS
2771
2772 if (!overlay_debugging)
515ad16c
EZ
2773 error ("\
2774Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2775the 'overlay manual' command.");
c906108c
SS
2776
2777 if (args == 0 || *args == 0)
2778 error ("Argument required: name of an overlay section");
2779
2780 /* First, find a section matching the user supplied argument */
2781 ALL_OBJSECTIONS (objfile, sec)
2782 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2783 {
2784 /* Now, check to see if the section is an overlay. */
2785 bfdsec = sec->the_bfd_section;
2786 if (!section_is_overlay (bfdsec))
2787 continue; /* not an overlay section */
2788
2789 /* Mark the overlay as "mapped" */
2790 sec->ovly_mapped = 1;
2791
2792 /* Next, make a pass and unmap any sections that are
2793 overlapped by this new section: */
2794 ALL_OBJSECTIONS (objfile2, sec2)
2795 if (sec2->ovly_mapped &&
2796 sec != sec2 &&
2797 sec->the_bfd_section != sec2->the_bfd_section &&
2798 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2799 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2800 {
2801 if (info_verbose)
2802 printf_filtered ("Note: section %s unmapped by overlap\n",
2803 bfd_section_name (objfile->obfd,
2804 sec2->the_bfd_section));
2805 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2806 }
2807 return;
2808 }
c906108c
SS
2809 error ("No overlay section called %s", args);
2810}
2811
2812/* Function: unmap_overlay_command
2813 Mark the overlay section as unmapped
2814 (ie. resident in its LMA address range, rather than the VMA range). */
2815
2816void
fba45db2 2817unmap_overlay_command (char *args, int from_tty)
c906108c 2818{
c5aa993b 2819 struct objfile *objfile;
c906108c
SS
2820 struct obj_section *sec;
2821
2822 if (!overlay_debugging)
515ad16c
EZ
2823 error ("\
2824Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2825the 'overlay manual' command.");
c906108c
SS
2826
2827 if (args == 0 || *args == 0)
2828 error ("Argument required: name of an overlay section");
2829
2830 /* First, find a section matching the user supplied argument */
2831 ALL_OBJSECTIONS (objfile, sec)
2832 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2833 {
2834 if (!sec->ovly_mapped)
2835 error ("Section %s is not mapped", args);
2836 sec->ovly_mapped = 0;
2837 return;
2838 }
c906108c
SS
2839 error ("No overlay section called %s", args);
2840}
2841
2842/* Function: overlay_auto_command
2843 A utility command to turn on overlay debugging.
2844 Possibly this should be done via a set/show command. */
2845
2846static void
fba45db2 2847overlay_auto_command (char *args, int from_tty)
c906108c
SS
2848{
2849 overlay_debugging = -1;
2850 if (info_verbose)
2851 printf_filtered ("Automatic overlay debugging enabled.");
2852}
2853
2854/* Function: overlay_manual_command
2855 A utility command to turn on overlay debugging.
2856 Possibly this should be done via a set/show command. */
2857
2858static void
fba45db2 2859overlay_manual_command (char *args, int from_tty)
c906108c
SS
2860{
2861 overlay_debugging = 1;
2862 if (info_verbose)
2863 printf_filtered ("Overlay debugging enabled.");
2864}
2865
2866/* Function: overlay_off_command
2867 A utility command to turn on overlay debugging.
2868 Possibly this should be done via a set/show command. */
2869
2870static void
fba45db2 2871overlay_off_command (char *args, int from_tty)
c906108c 2872{
c5aa993b 2873 overlay_debugging = 0;
c906108c
SS
2874 if (info_verbose)
2875 printf_filtered ("Overlay debugging disabled.");
2876}
2877
2878static void
fba45db2 2879overlay_load_command (char *args, int from_tty)
c906108c
SS
2880{
2881 if (target_overlay_update)
2882 (*target_overlay_update) (NULL);
2883 else
2884 error ("This target does not know how to read its overlay state.");
2885}
2886
2887/* Function: overlay_command
2888 A place-holder for a mis-typed command */
2889
2890/* Command list chain containing all defined "overlay" subcommands. */
2891struct cmd_list_element *overlaylist;
2892
2893static void
fba45db2 2894overlay_command (char *args, int from_tty)
c906108c 2895{
c5aa993b 2896 printf_unfiltered
c906108c
SS
2897 ("\"overlay\" must be followed by the name of an overlay command.\n");
2898 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2899}
2900
2901
2902/* Target Overlays for the "Simplest" overlay manager:
2903
2904 This is GDB's default target overlay layer. It works with the
2905 minimal overlay manager supplied as an example by Cygnus. The
2906 entry point is via a function pointer "target_overlay_update",
2907 so targets that use a different runtime overlay manager can
2908 substitute their own overlay_update function and take over the
2909 function pointer.
2910
2911 The overlay_update function pokes around in the target's data structures
2912 to see what overlays are mapped, and updates GDB's overlay mapping with
2913 this information.
2914
2915 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
2916 unsigned _novlys; /# number of overlay sections #/
2917 unsigned _ovly_table[_novlys][4] = {
2918 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2919 {..., ..., ..., ...},
2920 }
2921 unsigned _novly_regions; /# number of overlay regions #/
2922 unsigned _ovly_region_table[_novly_regions][3] = {
2923 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2924 {..., ..., ...},
2925 }
c906108c
SS
2926 These functions will attempt to update GDB's mappedness state in the
2927 symbol section table, based on the target's mappedness state.
2928
2929 To do this, we keep a cached copy of the target's _ovly_table, and
2930 attempt to detect when the cached copy is invalidated. The main
2931 entry point is "simple_overlay_update(SECT), which looks up SECT in
2932 the cached table and re-reads only the entry for that section from
2933 the target (whenever possible).
2934 */
2935
2936/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 2937static unsigned (*cache_ovly_table)[4] = 0;
c906108c 2938#if 0
c5aa993b 2939static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 2940#endif
c5aa993b 2941static unsigned cache_novlys = 0;
c906108c 2942#if 0
c5aa993b 2943static unsigned cache_novly_regions = 0;
c906108c
SS
2944#endif
2945static CORE_ADDR cache_ovly_table_base = 0;
2946#if 0
2947static CORE_ADDR cache_ovly_region_table_base = 0;
2948#endif
c5aa993b
JM
2949enum ovly_index
2950 {
2951 VMA, SIZE, LMA, MAPPED
2952 };
c906108c
SS
2953#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2954
2955/* Throw away the cached copy of _ovly_table */
2956static void
fba45db2 2957simple_free_overlay_table (void)
c906108c
SS
2958{
2959 if (cache_ovly_table)
b8c9b27d 2960 xfree (cache_ovly_table);
c5aa993b 2961 cache_novlys = 0;
c906108c
SS
2962 cache_ovly_table = NULL;
2963 cache_ovly_table_base = 0;
2964}
2965
2966#if 0
2967/* Throw away the cached copy of _ovly_region_table */
2968static void
fba45db2 2969simple_free_overlay_region_table (void)
c906108c
SS
2970{
2971 if (cache_ovly_region_table)
b8c9b27d 2972 xfree (cache_ovly_region_table);
c5aa993b 2973 cache_novly_regions = 0;
c906108c
SS
2974 cache_ovly_region_table = NULL;
2975 cache_ovly_region_table_base = 0;
2976}
2977#endif
2978
2979/* Read an array of ints from the target into a local buffer.
2980 Convert to host order. int LEN is number of ints */
2981static void
fba45db2 2982read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c
SS
2983{
2984 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 2985 int i;
c906108c
SS
2986
2987 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2988 for (i = 0; i < len; i++)
c5aa993b 2989 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
2990 TARGET_LONG_BYTES);
2991}
2992
2993/* Find and grab a copy of the target _ovly_table
2994 (and _novlys, which is needed for the table's size) */
c5aa993b 2995static int
fba45db2 2996simple_read_overlay_table (void)
c906108c
SS
2997{
2998 struct minimal_symbol *msym;
2999
3000 simple_free_overlay_table ();
3001 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3002 if (msym != NULL)
3003 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3004 else
3005 return 0; /* failure */
3006 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
c906108c
SS
3007 if (cache_ovly_table != NULL)
3008 {
3009 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3010 if (msym != NULL)
3011 {
3012 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3013 read_target_long_array (cache_ovly_table_base,
3014 (int *) cache_ovly_table,
c906108c
SS
3015 cache_novlys * 4);
3016 }
c5aa993b
JM
3017 else
3018 return 0; /* failure */
c906108c 3019 }
c5aa993b
JM
3020 else
3021 return 0; /* failure */
3022 return 1; /* SUCCESS */
c906108c
SS
3023}
3024
3025#if 0
3026/* Find and grab a copy of the target _ovly_region_table
3027 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3028static int
fba45db2 3029simple_read_overlay_region_table (void)
c906108c
SS
3030{
3031 struct minimal_symbol *msym;
3032
3033 simple_free_overlay_region_table ();
3034 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3035 if (msym != NULL)
3036 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3037 else
3038 return 0; /* failure */
c906108c
SS
3039 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3040 if (cache_ovly_region_table != NULL)
3041 {
3042 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3043 if (msym != NULL)
3044 {
3045 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3046 read_target_long_array (cache_ovly_region_table_base,
3047 (int *) cache_ovly_region_table,
c906108c
SS
3048 cache_novly_regions * 3);
3049 }
c5aa993b
JM
3050 else
3051 return 0; /* failure */
c906108c 3052 }
c5aa993b
JM
3053 else
3054 return 0; /* failure */
3055 return 1; /* SUCCESS */
c906108c
SS
3056}
3057#endif
3058
3059/* Function: simple_overlay_update_1
3060 A helper function for simple_overlay_update. Assuming a cached copy
3061 of _ovly_table exists, look through it to find an entry whose vma,
3062 lma and size match those of OSECT. Re-read the entry and make sure
3063 it still matches OSECT (else the table may no longer be valid).
3064 Set OSECT's mapped state to match the entry. Return: 1 for
3065 success, 0 for failure. */
3066
3067static int
fba45db2 3068simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3069{
3070 int i, size;
3071
3072 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3073 for (i = 0; i < cache_novlys; i++)
c5aa993b
JM
3074 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3075 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3076 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3077 {
3078 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3079 (int *) cache_ovly_table[i], 4);
c5aa993b
JM
3080 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3081 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3082 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3083 {
3084 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3085 return 1;
3086 }
c5aa993b 3087 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3088 return 0;
3089 }
3090 return 0;
3091}
3092
3093/* Function: simple_overlay_update
3094 If OSECT is NULL, then update all sections' mapped state
3095 (after re-reading the entire target _ovly_table).
3096 If OSECT is non-NULL, then try to find a matching entry in the
3097 cached ovly_table and update only OSECT's mapped state.
3098 If a cached entry can't be found or the cache isn't valid, then
3099 re-read the entire cache, and go ahead and update all sections. */
3100
3101static void
fba45db2 3102simple_overlay_update (struct obj_section *osect)
c906108c 3103{
c5aa993b 3104 struct objfile *objfile;
c906108c
SS
3105
3106 /* Were we given an osect to look up? NULL means do all of them. */
3107 if (osect)
3108 /* Have we got a cached copy of the target's overlay table? */
3109 if (cache_ovly_table != NULL)
3110 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3111 if (cache_ovly_table_base ==
c906108c
SS
3112 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3113 /* Then go ahead and try to look up this single section in the cache */
3114 if (simple_overlay_update_1 (osect))
3115 /* Found it! We're done. */
3116 return;
3117
3118 /* Cached table no good: need to read the entire table anew.
3119 Or else we want all the sections, in which case it's actually
3120 more efficient to read the whole table in one block anyway. */
3121
3122 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3123 {
3124 warning ("Failed to read the target overlay mapping table.");
3125 return;
3126 }
3127 /* Now may as well update all sections, even if only one was requested. */
3128 ALL_OBJSECTIONS (objfile, osect)
3129 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3130 {
3131 int i, size;
3132
3133 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3134 for (i = 0; i < cache_novlys; i++)
3135 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3136 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3137 cache_ovly_table[i][SIZE] == size */ )
3138 { /* obj_section matches i'th entry in ovly_table */
3139 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3140 break; /* finished with inner for loop: break out */
3141 }
3142 }
c906108c
SS
3143}
3144
3145
3146void
fba45db2 3147_initialize_symfile (void)
c906108c
SS
3148{
3149 struct cmd_list_element *c;
c5aa993b 3150
c906108c 3151 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3152 "Load symbol table from executable file FILE.\n\
c906108c
SS
3153The `file' command can also load symbol tables, as well as setting the file\n\
3154to execute.", &cmdlist);
3155 c->completer = filename_completer;
3156
3157 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3158 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3159Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3160ADDR is the starting address of the file's text.\n\
db162d44
EZ
3161The optional arguments are section-name section-address pairs and\n\
3162should be specified if the data and bss segments are not contiguous\n\
3163with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c
SS
3164 &cmdlist);
3165 c->completer = filename_completer;
3166
3167 c = add_cmd ("add-shared-symbol-files", class_files,
3168 add_shared_symbol_files_command,
3169 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3170 &cmdlist);
c906108c
SS
3171 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3172 &cmdlist);
3173
3174 c = add_cmd ("load", class_files, load_command,
c5aa993b 3175 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c
SS
3176for access from GDB.", &cmdlist);
3177 c->completer = filename_completer;
3178
3179 add_show_from_set
3180 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3181 (char *) &symbol_reloading,
3182 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3183 &setlist),
3184 &showlist);
3185
c5aa993b
JM
3186 add_prefix_cmd ("overlay", class_support, overlay_command,
3187 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3188 "overlay ", 0, &cmdlist);
3189
3190 add_com_alias ("ovly", "overlay", class_alias, 1);
3191 add_com_alias ("ov", "overlay", class_alias, 1);
3192
c5aa993b 3193 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3194 "Assert that an overlay section is mapped.", &overlaylist);
3195
c5aa993b 3196 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3197 "Assert that an overlay section is unmapped.", &overlaylist);
3198
c5aa993b 3199 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3200 "List mappings of overlay sections.", &overlaylist);
3201
c5aa993b 3202 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3203 "Enable overlay debugging.", &overlaylist);
c5aa993b 3204 add_cmd ("off", class_support, overlay_off_command,
c906108c 3205 "Disable overlay debugging.", &overlaylist);
c5aa993b 3206 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3207 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3208 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3209 "Read the overlay mapping state from the target.", &overlaylist);
3210
3211 /* Filename extension to source language lookup table: */
3212 init_filename_language_table ();
3213 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3214 (char *) &ext_args,
c906108c
SS
3215 "Set mapping between filename extension and source language.\n\
3216Usage: set extension-language .foo bar",
c5aa993b 3217 &setlist);
c906108c
SS
3218 c->function.cfunc = set_ext_lang_command;
3219
c5aa993b 3220 add_info ("extensions", info_ext_lang_command,
c906108c 3221 "All filename extensions associated with a source language.");
917317f4
JM
3222
3223 add_show_from_set
3224 (add_set_cmd ("download-write-size", class_obscure,
3225 var_integer, (char *) &download_write_size,
3226 "Set the write size used when downloading a program.\n"
3227 "Only used when downloading a program onto a remote\n"
3228 "target. Specify zero, or a negative value, to disable\n"
3229 "blocked writes. The actual size of each transfer is also\n"
3230 "limited by the size of the target packet and the memory\n"
3231 "cache.\n",
3232 &setlist),
3233 &showlist);
c906108c 3234}
This page took 0.318062 seconds and 4 git commands to generate.