Fix normal_stop latent bug
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
cd4b7848 60#include "common/pathstuff.h"
0747795c 61#include "common/selftest.h"
47fd17cd 62#include "cli/cli-style.h"
286526c1 63#include "common/forward-scope-exit.h"
c906108c 64
c906108c
SS
65#include <sys/types.h>
66#include <fcntl.h>
53ce3c39 67#include <sys/stat.h>
c906108c 68#include <ctype.h>
dcb07cfa 69#include <chrono>
37e136b1 70#include <algorithm>
c906108c 71
ccefe4c4 72#include "psymtab.h"
c906108c 73
3e43a32a
MS
74int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
9a4105ab 76void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
c2d11a7d 80 unsigned long total_size);
769d7dc4
AC
81void (*deprecated_pre_add_symbol_hook) (const char *);
82void (*deprecated_post_add_symbol_hook) (void);
c906108c 83
286526c1
TT
84using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
74b7792f 86
c378eb4e
MS
87/* Global variables owned by this file. */
88int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 89int readnever_symbol_files; /* Never read full symbols. */
c906108c 90
c378eb4e 91/* Functions this file defines. */
c906108c 92
ecf45d2c 93static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 94 objfile_flags flags, CORE_ADDR reloff);
d7db6da9 95
00b5771c 96static const struct sym_fns *find_sym_fns (bfd *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void simple_free_overlay_table (void);
c906108c 101
e17a4113
UW
102static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
c906108c 104
a14ed312 105static int simple_read_overlay_table (void);
c906108c 106
a14ed312 107static int simple_overlay_update_1 (struct obj_section *);
c906108c 108
31d99776
DJ
109static void symfile_find_segment_sections (struct objfile *objfile);
110
c906108c
SS
111/* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
c378eb4e 113 prepared to read. */
c906108c 114
905014d7 115struct registered_sym_fns
c256e171 116{
905014d7
SM
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
c256e171
DE
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
905014d7 126};
c256e171 127
905014d7 128static std::vector<registered_sym_fns> symtab_fns;
c906108c 129
770e7fc7
DE
130/* Values for "set print symbol-loading". */
131
132const char print_symbol_loading_off[] = "off";
133const char print_symbol_loading_brief[] = "brief";
134const char print_symbol_loading_full[] = "full";
135static const char *print_symbol_loading_enums[] =
136{
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141};
142static const char *print_symbol_loading = print_symbol_loading_full;
143
b7209cb4
FF
144/* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
c906108c 151 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 152 report all the functions that are actually present. */
c906108c
SS
153
154int auto_solib_add = 1;
c906108c 155\f
c5aa993b 156
770e7fc7
DE
157/* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165int
166print_symbol_loading_p (int from_tty, int exec, int full)
167{
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180}
181
0d14a781 182/* True if we are reading a symbol table. */
c906108c
SS
183
184int currently_reading_symtab = 0;
185
ccefe4c4
TT
186/* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
3b7bacac 188
c83dd867 189scoped_restore_tmpl<int>
ccefe4c4 190increment_reading_symtab (void)
c906108c 191{
c83dd867
TT
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
c906108c
SS
195}
196
5417f6dc
RM
197/* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
c906108c
SS
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206void
4efb68b1 207find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 208{
c5aa993b 209 asection **lowest = (asection **) obj;
c906108c 210
eb73e134 211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221}
222
62557bbc 223/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 224 an existing section table. */
62557bbc 225
37e136b1 226section_addr_info
0542c86d
PA
227build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
62557bbc 229{
0542c86d 230 const struct target_section *stp;
62557bbc 231
37e136b1 232 section_addr_info sap;
62557bbc 233
37e136b1 234 for (stp = start; stp != end; stp++)
62557bbc 235 {
2b2848e2
DE
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
244 }
245
246 return sap;
247}
248
82ccf5a5 249/* Create a section_addr_info from section offsets in ABFD. */
089b4803 250
37e136b1 251static section_addr_info
82ccf5a5 252build_section_addr_info_from_bfd (bfd *abfd)
089b4803 253{
089b4803
TG
254 struct bfd_section *sec;
255
37e136b1
TT
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
d76488d8 262
089b4803
TG
263 return sap;
264}
265
82ccf5a5
JK
266/* Create a section_addr_info from section offsets in OBJFILE. */
267
37e136b1 268section_addr_info
82ccf5a5
JK
269build_section_addr_info_from_objfile (const struct objfile *objfile)
270{
82ccf5a5
JK
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
37e136b1
TT
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
82ccf5a5 278 {
37e136b1 279 int sectindex = sap[i].sectindex;
82ccf5a5 280
37e136b1 281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
282 }
283 return sap;
284}
62557bbc 285
e8289572 286/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 287
e8289572
JB
288static void
289init_objfile_sect_indices (struct objfile *objfile)
c906108c 290{
e8289572 291 asection *sect;
c906108c 292 int i;
5417f6dc 293
b8fbeb18 294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 307 if (sect)
b8fbeb18
EZ
308 objfile->sect_index_rodata = sect->index;
309
bbcd32ad
FF
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
31d99776
DJ
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
bbcd32ad
FF
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
b8fbeb18 345}
c906108c 346
c1bd25fd
DJ
347/* The arguments to place_section. */
348
349struct place_section_arg
350{
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353};
354
355/* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
2c0b251b 358static void
c1bd25fd
DJ
359place_section (bfd *abfd, asection *sect, void *obj)
360{
19ba03f4 361 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
3bd72c6f 364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 365
2711e456
DJ
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
368 return;
369
370 /* If the user specified an offset, honor it. */
65cf3563 371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
375 start_addr = (arg->lowest + align - 1) & -align;
376
c1bd25fd
DJ
377 do {
378 asection *cur_sec;
c1bd25fd 379
c1bd25fd
DJ
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
c1bd25fd
DJ
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
2711e456
DJ
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
3bd72c6f 407 break;
c1bd25fd
DJ
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
65cf3563 415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 416 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 417}
e8289572 418
4f7ae6f5 419/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
e8289572
JB
422
423void
75242ef4
JK
424relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
37e136b1 426 const section_addr_info &addrs)
e8289572
JB
427{
428 int i;
429
75242ef4 430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 431
c378eb4e 432 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 433 for (i = 0; i < addrs.size (); i++)
e8289572 434 {
3189cb12 435 const struct other_sections *osp;
e8289572 436
37e136b1 437 osp = &addrs[i];
5488dafb 438 if (osp->sectindex == -1)
e8289572
JB
439 continue;
440
c378eb4e 441 /* Record all sections in offsets. */
e8289572 442 /* The section_offsets in the objfile are here filled in using
c378eb4e 443 the BFD index. */
75242ef4
JK
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446}
447
1276c759
JK
448/* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454static const char *
455addr_section_name (const char *s)
456{
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463}
464
37e136b1
TT
465/* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
82ccf5a5 468
37e136b1
TT
469static bool
470addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
82ccf5a5 472{
22e048c9 473 int retval;
82ccf5a5 474
37e136b1
TT
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
82ccf5a5 479
37e136b1 480 return a->sectindex < b->sectindex;
82ccf5a5
JK
481}
482
37e136b1 483/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 484
37e136b1
TT
485static std::vector<const struct other_sections *>
486addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 487{
82ccf5a5
JK
488 int i;
489
37e136b1
TT
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
82ccf5a5 493
37e136b1 494 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
495
496 return array;
497}
498
75242ef4 499/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
502
503void
37e136b1 504addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
505{
506 asection *lower_sect;
75242ef4
JK
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
e8289572 519 }
75242ef4
JK
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
82ccf5a5
JK
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
37e136b1
TT
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
82ccf5a5 535
37e136b1
TT
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
82ccf5a5 539
c378eb4e
MS
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
82ccf5a5 542
37e136b1
TT
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 545
37e136b1
TT
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
52941706 548 for (const other_sections *sect : addrs_sorted)
82ccf5a5 549 {
37e136b1 550 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 551
37e136b1
TT
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 554 sect_name) < 0)
37e136b1 555 abfd_sorted_iter++;
82ccf5a5 556
37e136b1
TT
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 559 sect_name) == 0)
82ccf5a5
JK
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
37e136b1 564 index_in_addrs = sect - addrs->data ();
82ccf5a5 565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
567
568 /* Never use the same ABFD entry twice. */
37e136b1 569 abfd_sorted_iter++;
82ccf5a5 570 }
82ccf5a5
JK
571 }
572
75242ef4
JK
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
37e136b1 583 for (i = 0; i < addrs->size (); i++)
75242ef4 584 {
37e136b1 585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
586
587 if (sect)
75242ef4 588 {
c378eb4e 589 /* This is the index used by BFD. */
37e136b1 590 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 591
37e136b1 592 if ((*addrs)[i].addr != 0)
75242ef4 593 {
37e136b1
TT
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
75242ef4
JK
596 }
597 else
37e136b1 598 (*addrs)[i].addr = lower_offset;
75242ef4
JK
599 }
600 else
672d9c23 601 {
1276c759 602 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 603 const std::string &sect_name = (*addrs)[i].name;
1276c759 604
b0fcb67f
JK
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
4d9743af
JK
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
1276c759
JK
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 618
37e136b1
TT
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".dynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 625 || (sect_name == ".sbss"
1276c759 626 && i > 0
37e136b1 627 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 628 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 629 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
630 bfd_get_filename (abfd));
631
37e136b1
TT
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
672d9c23 634 }
75242ef4
JK
635 }
636}
637
638/* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644void
645default_symfile_offsets (struct objfile *objfile,
37e136b1 646 const section_addr_info &addrs)
75242ef4 647{
d445b2f6 648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
e8289572 654
c1bd25fd
DJ
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
2711e456
DJ
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
2711e456
DJ
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
30510692 717 offsets[cur_sec->index]);
2711e456
DJ
718 offsets[cur_sec->index] = 0;
719 }
720 }
c1bd25fd
DJ
721 }
722
e8289572 723 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 724 .rodata sections. */
e8289572
JB
725 init_objfile_sect_indices (objfile);
726}
727
31d99776
DJ
728/* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734struct symfile_segment_data *
735default_symfile_segments (bfd *abfd)
736{
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
41bf6aca 762 data = XCNEW (struct symfile_segment_data);
31d99776 763 data->num_segments = 1;
fc270c35
TT
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
766
767 num_sections = bfd_count_sections (abfd);
fc270c35 768 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790}
791
608e2dbb
TT
792/* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795static void
b15cc25c 796read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
797{
798 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 799 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 806 {
192b62ce 807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
808
809 if (abfd != NULL)
24ba069a
JK
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
921222e2
TT
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 818 }
608e2dbb
TT
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822}
823
3d6e24f0
JB
824/* Initialize entry point information for this objfile. */
825
826static void
827init_entry_point_info (struct objfile *objfile)
828{
6ef55de7
TT
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
3d6e24f0
JB
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
6ef55de7
TT
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
3d6e24f0
JB
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
6ef55de7
TT
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
3d6e24f0
JB
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 857 ei->entry_point_p = 0;
3d6e24f0
JB
858 }
859
6ef55de7 860 if (ei->entry_point_p)
3d6e24f0 861 {
53eddfa6 862 struct obj_section *osect;
6ef55de7 863 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 864 int found;
3d6e24f0
JB
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
df6d5441 869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 870 entry_point,
8b88a78e 871 current_top_target ());
3d6e24f0
JB
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
6ef55de7 875 ei->entry_point
df6d5441 876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
6ef55de7 887 ei->the_bfd_section_index
53eddfa6
TT
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
6ef55de7 895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
896 }
897}
898
c906108c
SS
899/* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
36e4d068
JB
902 This function does not set the OBJFILE's entry-point info.
903
96baa820
JM
904 OBJFILE is where the symbols are to be read from.
905
7e8580c1
JB
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
d81a3eaf
PT
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
96baa820 918
7eedccfa
PP
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
c906108c 922
36e4d068
JB
923static void
924syms_from_objfile_1 (struct objfile *objfile,
37e136b1 925 section_addr_info *addrs,
b15cc25c 926 symfile_add_flags add_flags)
c906108c 927{
37e136b1 928 section_addr_info local_addr;
7eedccfa 929 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 930
8fb8eb5c 931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 932
75245b24 933 if (objfile->sf == NULL)
36e4d068
JB
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
d445b2f6 937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
224c3ddb
SM
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
36e4d068
JB
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
75245b24 947
c906108c
SS
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
286526c1
TT
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
ed2b3126 952 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 953
6bf667bb
DE
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
c378eb4e 956 no load address was specified. */
6bf667bb 957 if (! addrs)
37e136b1 958 addrs = &local_addr;
a39a16c4 959
c5aa993b 960 if (mainline)
c906108c
SS
961 {
962 /* We will modify the main symbol table, make sure that all its users
c5aa993b 963 will be cleaned up if an error occurs during symbol reading. */
286526c1 964 defer_clear_users.emplace ((symfile_add_flag) 0);
c906108c
SS
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
9e86da07 970 delete symfile_objfile;
adb7f338 971 gdb_assert (symfile_objfile == NULL);
c906108c
SS
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
c906108c 978
c5aa993b 979 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
53a5351d 984 and assume that <addr> is where that got loaded.
c906108c 985
53a5351d
JM
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
37e136b1 988 if (addrs->size () > 0)
75242ef4 989 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
c378eb4e 993 initial symbol reading for this file. */
c906108c 994
c5aa993b 995 (*objfile->sf->sym_init) (objfile);
5ca8c39f 996 clear_complaints ();
c906108c 997
37e136b1 998 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 999
608e2dbb 1000 read_symbols (objfile, add_flags);
b11896a5 1001
c906108c
SS
1002 /* Discard cleanups as symbol reading was successful. */
1003
ed2b3126 1004 objfile_holder.release ();
286526c1
TT
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
c906108c
SS
1007}
1008
36e4d068
JB
1009/* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
6bf667bb 1012static void
36e4d068 1013syms_from_objfile (struct objfile *objfile,
37e136b1 1014 section_addr_info *addrs,
b15cc25c 1015 symfile_add_flags add_flags)
36e4d068 1016{
6bf667bb 1017 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1018 init_entry_point_info (objfile);
1019}
1020
c906108c
SS
1021/* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1024
e7d52ed3 1025static void
b15cc25c 1026finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1027{
c906108c 1028 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1029 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1030 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1031 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
c1e56572 1036 clear_symtab_users (add_flags);
c906108c 1037 }
7eedccfa 1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1039 {
69de3c6a 1040 breakpoint_re_set ();
c906108c
SS
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 1044 clear_complaints ();
c906108c
SS
1045}
1046
1047/* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
5417f6dc 1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1051 A new reference is acquired by this function.
7904e09f 1052
9e86da07 1053 For NAME description see the objfile constructor.
24ba069a 1054
7eedccfa
PP
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1057
6bf667bb 1058 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1060
63524580
JK
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
c906108c 1064 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1065 Upon failure, jumps back to command level (never returns). */
7eedccfa 1066
7904e09f 1067static struct objfile *
b15cc25c
PA
1068symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
37e136b1 1070 section_addr_info *addrs,
b15cc25c 1071 objfile_flags flags, struct objfile *parent)
c906108c
SS
1072{
1073 struct objfile *objfile;
7eedccfa 1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1075 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1079
9291a0cd 1080 if (readnow_symbol_files)
b11896a5
TT
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
97cbe998
SDJ
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
921222e2
TT
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
9291a0cd 1093
5417f6dc
RM
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
c906108c
SS
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1098 && mainline
c906108c 1099 && from_tty
9e2f0ad4 1100 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1101 error (_("Not confirmed."));
c906108c 1102
b15cc25c
PA
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
9e86da07 1105 objfile = new struct objfile (abfd, name, flags);
c906108c 1106
63524580
JK
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
78a4a9b9
AC
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
c378eb4e 1112 performed, or need to read an unmapped symbol table. */
b11896a5 1113 if (should_print)
c906108c 1114 {
769d7dc4
AC
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1117 else
47fd17cd
TT
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
c906108c 1123 }
6bf667bb 1124 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1129 all partial symbol tables for this objfile if so. */
c906108c 1130
9291a0cd 1131 if ((flags & OBJF_READNOW))
c906108c 1132 {
b11896a5 1133 if (should_print)
3453e7e4 1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
c906108c 1135
ccefe4c4
TT
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1138 }
1139
e79497a1
TT
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
3453e7e4 1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
cb3c37b2 1147
b11896a5 1148 if (should_print)
c906108c 1149 {
769d7dc4
AC
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
c906108c
SS
1152 }
1153
481d0f41
JB
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
109f874e 1159 if (objfile->sf == NULL)
8caee43b 1160 {
76727919 1161 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1162 return objfile; /* No symbols. */
8caee43b 1163 }
109f874e 1164
e7d52ed3 1165 finish_new_objfile (objfile, add_flags);
c906108c 1166
76727919 1167 gdb::observers::new_objfile.notify (objfile);
c906108c 1168
ce7d4522 1169 bfd_cache_close_all ();
c906108c
SS
1170 return (objfile);
1171}
1172
24ba069a 1173/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1174 see the objfile constructor. */
9cce227f
TG
1175
1176void
b15cc25c
PA
1177symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
24ba069a 1179 struct objfile *objfile)
9cce227f 1180{
089b4803
TG
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
37e136b1 1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1185
870f88f7 1186 symbol_file_add_with_addrs
37e136b1 1187 (bfd, name, symfile_flags, &sap,
9cce227f 1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1189 | OBJF_USERLOADED),
1190 objfile);
9cce227f 1191}
7904e09f 1192
eb4556d7
JB
1193/* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
6bf667bb 1195 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1196
eb4556d7 1197struct objfile *
b15cc25c
PA
1198symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
37e136b1 1200 section_addr_info *addrs,
b15cc25c 1201 objfile_flags flags, struct objfile *parent)
eb4556d7 1202{
24ba069a
JK
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
eb4556d7
JB
1205}
1206
7904e09f 1207/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1209
7904e09f 1210struct objfile *
b15cc25c 1211symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1212 section_addr_info *addrs, objfile_flags flags)
7904e09f 1213{
192b62ce 1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1215
192b62ce
TT
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
7904e09f
JB
1218}
1219
d7db6da9
FN
1220/* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
5417f6dc 1227
1adeb98a 1228void
ecf45d2c 1229symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1230{
d4d429d5 1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
d7db6da9
FN
1232}
1233
1234static void
ecf45d2c 1235symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 1236 objfile_flags flags, CORE_ADDR reloff)
d7db6da9 1237{
ecf45d2c 1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1239
d4d429d5
PT
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
d7db6da9 1243
d7db6da9
FN
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
b15cc25c 1248 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1249 set_initial_language ();
1adeb98a
FN
1250}
1251
1252void
1253symbol_file_clear (int from_tty)
1254{
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
0430b0d6
AS
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1259 objfile_name (symfile_objfile))
0430b0d6 1260 : !query (_("Discard symbol table? "))))
8a3fe4f8 1261 error (_("Not confirmed."));
1adeb98a 1262
0133421a
JK
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1265 no_shared_libraries (NULL, from_tty);
1266
0133421a
JK
1267 free_all_objfiles ();
1268
adb7f338 1269 gdb_assert (symfile_objfile == NULL);
d10c338d 1270 if (from_tty)
22068491 1271 printf_filtered (_("No symbol file now.\n"));
1adeb98a
FN
1272}
1273
c4dcb155
SM
1274/* See symfile.h. */
1275
1276int separate_debug_file_debug = 0;
1277
5b5d99cf 1278static int
a8dbfd58 1279separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1280 struct objfile *parent_objfile)
5b5d99cf 1281{
904578ed
JK
1282 unsigned long file_crc;
1283 int file_crc_p;
32a0e547 1284 struct stat parent_stat, abfd_stat;
904578ed 1285 int verified_as_different;
32a0e547
JK
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1291 the separate debug infos with the same basename can exist. */
32a0e547 1292
a8dbfd58 1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1294 return 0;
5b5d99cf 1295
c4dcb155 1296 if (separate_debug_file_debug)
50794b45
SM
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
c4dcb155 1301
a8dbfd58 1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1303
192b62ce 1304 if (abfd == NULL)
50794b45
SM
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
5b5d99cf 1311
0ba1096a 1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
32a0e547 1322
192b62ce 1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1326 {
904578ed
JK
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
50794b45
SM
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
904578ed 1335 verified_as_different = 1;
32a0e547 1336 }
904578ed
JK
1337 else
1338 verified_as_different = 0;
32a0e547 1339
192b62ce 1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1341
904578ed 1342 if (!file_crc_p)
50794b45
SM
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
904578ed 1349
287ccc17
JK
1350 if (crc != file_crc)
1351 {
dccee2de
TT
1352 unsigned long parent_crc;
1353
0a93529c
GB
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
904578ed 1357
dccee2de 1358 if (!verified_as_different)
904578ed 1359 {
dccee2de 1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
50794b45
SM
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
904578ed
JK
1367 }
1368
dccee2de 1369 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1372 name.c_str (), objfile_name (parent_objfile));
904578ed 1373
50794b45
SM
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
287ccc17
JK
1377 return 0;
1378 }
1379
50794b45
SM
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
287ccc17 1383 return 1;
5b5d99cf
JB
1384}
1385
aa28a74e 1386char *debug_file_directory = NULL;
920d2a44
AC
1387static void
1388show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390{
3e43a32a
MS
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1394 value);
1395}
5b5d99cf
JB
1396
1397#if ! defined (DEBUG_SUBDIRECTORY)
1398#define DEBUG_SUBDIRECTORY ".debug"
1399#endif
1400
1db33378
PP
1401/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
a8dbfd58
SM
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1db33378 1408
a8dbfd58 1409static std::string
1db33378
PP
1410find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
9cce227f 1414{
c4dcb155 1415 if (separate_debug_file_debug)
22068491
TT
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
c4dcb155 1418
5b5d99cf 1419 /* First try in the same directory as the original file. */
a8dbfd58
SM
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
5b5d99cf 1422
32a0e547 1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1424 return debugfile;
5417f6dc 1425
5b5d99cf 1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
5b5d99cf 1431
32a0e547 1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1433 return debugfile;
5417f6dc 1434
24ddea62 1435 /* Then try in the global debugfile directories.
f888f159 1436
24ddea62
JK
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
5417f6dc 1439
5d36dfb9
AU
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
e80aaf61
SM
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
f62318e9 1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
24ddea62 1445
e80aaf61 1446 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1447 {
5d36dfb9
AU
1448 debugfile = target_prefix ? "target:" : "";
1449 debugfile += debugdir.get ();
a8dbfd58 1450 debugfile += "/";
5d36dfb9 1451 debugfile += dir_notarget;
a8dbfd58 1452 debugfile += debuglink;
aa28a74e 1453
32a0e547 1454 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1455 return debugfile;
24ddea62 1456
f62318e9
JB
1457 const char *base_path = NULL;
1458 if (canon_dir != NULL)
1459 {
1460 if (canon_sysroot.get () != NULL)
1461 base_path = child_path (canon_sysroot.get (), canon_dir);
1462 else
1463 base_path = child_path (gdb_sysroot, canon_dir);
1464 }
1465 if (base_path != NULL)
24ddea62 1466 {
402d2bfe
JB
1467 /* If the file is in the sysroot, try using its base path in
1468 the global debugfile directory. */
5d36dfb9
AU
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
cd4b7848
JB
1471 debugfile += "/";
1472 debugfile += base_path;
a8dbfd58
SM
1473 debugfile += "/";
1474 debugfile += debuglink;
24ddea62 1475
402d2bfe
JB
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 /* If the file is in the sysroot, try using its base path in
1480 the sysroot's global debugfile directory. */
1481 debugfile = target_prefix ? "target:" : "";
1482 debugfile += gdb_sysroot;
1483 debugfile += debugdir.get ();
cd4b7848
JB
1484 debugfile += "/";
1485 debugfile += base_path;
402d2bfe
JB
1486 debugfile += "/";
1487 debugfile += debuglink;
1488
32a0e547 1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1490 return debugfile;
24ddea62 1491 }
402d2bfe 1492
aa28a74e 1493 }
f888f159 1494
a8dbfd58 1495 return std::string ();
1db33378
PP
1496}
1497
7edbb660 1498/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502static void
1503terminate_after_last_dir_separator (char *path)
1504{
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515}
1516
1517/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1518 Returns pathname, or an empty string. */
1db33378 1519
a8dbfd58 1520std::string
1db33378
PP
1521find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522{
1db33378 1523 unsigned long crc32;
1db33378 1524
5eae7aea
TT
1525 gdb::unique_xmalloc_ptr<char> debuglink
1526 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1527
1528 if (debuglink == NULL)
1529 {
1530 /* There's no separate debug info, hence there's no way we could
1531 load it => no warning. */
a8dbfd58 1532 return std::string ();
1db33378
PP
1533 }
1534
5eae7aea
TT
1535 std::string dir = objfile_name (objfile);
1536 terminate_after_last_dir_separator (&dir[0]);
1537 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1538
a8dbfd58
SM
1539 std::string debugfile
1540 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1541 debuglink.get (), crc32, objfile);
1db33378 1542
a8dbfd58 1543 if (debugfile.empty ())
1db33378 1544 {
1db33378
PP
1545 /* For PR gdb/9538, try again with realpath (if different from the
1546 original). */
1547
1548 struct stat st_buf;
1549
4262abfb
JK
1550 if (lstat (objfile_name (objfile), &st_buf) == 0
1551 && S_ISLNK (st_buf.st_mode))
1db33378 1552 {
5eae7aea
TT
1553 gdb::unique_xmalloc_ptr<char> symlink_dir
1554 (lrealpath (objfile_name (objfile)));
1db33378
PP
1555 if (symlink_dir != NULL)
1556 {
5eae7aea
TT
1557 terminate_after_last_dir_separator (symlink_dir.get ());
1558 if (dir != symlink_dir.get ())
1db33378
PP
1559 {
1560 /* Different directory, so try using it. */
5eae7aea
TT
1561 debugfile = find_separate_debug_file (symlink_dir.get (),
1562 symlink_dir.get (),
1563 debuglink.get (),
1db33378
PP
1564 crc32,
1565 objfile);
1566 }
1567 }
1568 }
1db33378 1569 }
aa28a74e 1570
25522fae 1571 return debugfile;
5b5d99cf
JB
1572}
1573
97cbe998
SDJ
1574/* Make sure that OBJF_{READNOW,READNEVER} are not set
1575 simultaneously. */
1576
1577static void
1578validate_readnow_readnever (objfile_flags flags)
1579{
1580 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1581 error (_("-readnow and -readnever cannot be used simultaneously"));
1582}
1583
c906108c
SS
1584/* This is the symbol-file command. Read the file, analyze its
1585 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1586 the command is rather bizarre:
1587
1588 1. The function buildargv implements various quoting conventions
1589 which are undocumented and have little or nothing in common with
1590 the way things are quoted (or not quoted) elsewhere in GDB.
1591
1592 2. Options are used, which are not generally used in GDB (perhaps
1593 "set mapped on", "set readnow on" would be better)
1594
1595 3. The order of options matters, which is contrary to GNU
c906108c
SS
1596 conventions (because it is confusing and inconvenient). */
1597
1598void
1d8b34a7 1599symbol_file_command (const char *args, int from_tty)
c906108c 1600{
c906108c
SS
1601 dont_repeat ();
1602
1603 if (args == NULL)
1604 {
1adeb98a 1605 symbol_file_clear (from_tty);
c906108c
SS
1606 }
1607 else
1608 {
b15cc25c 1609 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1610 symfile_add_flags add_flags = 0;
cb2f3a29 1611 char *name = NULL;
40fc416f 1612 bool stop_processing_options = false;
d4d429d5 1613 CORE_ADDR offset = 0;
40fc416f
SDJ
1614 int idx;
1615 char *arg;
cb2f3a29 1616
ecf45d2c
SL
1617 if (from_tty)
1618 add_flags |= SYMFILE_VERBOSE;
1619
773a1edc 1620 gdb_argv built_argv (args);
40fc416f 1621 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1622 {
40fc416f 1623 if (stop_processing_options || *arg != '-')
7f0f8ac8 1624 {
40fc416f
SDJ
1625 if (name == NULL)
1626 name = arg;
1627 else
1628 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1629 }
40fc416f
SDJ
1630 else if (strcmp (arg, "-readnow") == 0)
1631 flags |= OBJF_READNOW;
97cbe998
SDJ
1632 else if (strcmp (arg, "-readnever") == 0)
1633 flags |= OBJF_READNEVER;
d4d429d5
PT
1634 else if (strcmp (arg, "-o") == 0)
1635 {
1636 arg = built_argv[++idx];
1637 if (arg == NULL)
1638 error (_("Missing argument to -o"));
1639
1640 offset = parse_and_eval_address (arg);
1641 }
40fc416f
SDJ
1642 else if (strcmp (arg, "--") == 0)
1643 stop_processing_options = true;
1644 else
1645 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1646 }
1647
1648 if (name == NULL)
cb2f3a29 1649 error (_("no symbol file name was specified"));
40fc416f 1650
97cbe998
SDJ
1651 validate_readnow_readnever (flags);
1652
d4d429d5 1653 symbol_file_add_main_1 (name, add_flags, flags, offset);
c906108c
SS
1654 }
1655}
1656
1657/* Set the initial language.
1658
cb2f3a29
MK
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
c906108c 1667
8b60591b 1668void
fba45db2 1669set_initial_language (void)
c906108c 1670{
9e6c82ad 1671 enum language lang = main_language ();
c906108c 1672
9e6c82ad 1673 if (lang == language_unknown)
01f8c46d 1674 {
bf6d8a91 1675 char *name = main_name ();
d12307c1 1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1677
bf6d8a91
TT
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1680 }
cb2f3a29 1681
ccefe4c4
TT
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
c906108c 1686 }
ccefe4c4
TT
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1690}
1691
cb2f3a29
MK
1692/* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
c906108c 1696
192b62ce 1697gdb_bfd_ref_ptr
97a41605 1698symfile_bfd_open (const char *name)
c906108c 1699{
97a41605 1700 int desc = -1;
c906108c 1701
e0cc99a6 1702 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1703 if (!is_target_filename (name))
f1838a98 1704 {
ee0c3293 1705 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1706
97a41605
GB
1707 /* Look down path for it, allocate 2nd new malloc'd copy. */
1708 desc = openp (getenv ("PATH"),
1709 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1710 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1711#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1712 if (desc < 0)
1713 {
ee0c3293 1714 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1715
ee0c3293 1716 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1717 desc = openp (getenv ("PATH"),
1718 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1719 exename, O_RDONLY | O_BINARY, &absolute_name);
1720 }
c906108c 1721#endif
97a41605 1722 if (desc < 0)
ee0c3293 1723 perror_with_name (expanded_name.get ());
cb2f3a29 1724
e0cc99a6 1725 name = absolute_name.get ();
97a41605 1726 }
c906108c 1727
192b62ce
TT
1728 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1729 if (sym_bfd == NULL)
faab9922
JK
1730 error (_("`%s': can't open to read symbols: %s."), name,
1731 bfd_errmsg (bfd_get_error ()));
97a41605 1732
192b62ce
TT
1733 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1734 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1735
192b62ce
TT
1736 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1737 error (_("`%s': can't read symbols: %s."), name,
1738 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1739
1740 return sym_bfd;
c906108c
SS
1741}
1742
cb2f3a29
MK
1743/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
0e931cf0 1746int
a121b7c1 1747get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1748{
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1750
0e931cf0
JB
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755}
1756
c256e171
DE
1757/* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
c906108c
SS
1762
1763void
c256e171 1764add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1765{
905014d7 1766 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1767}
1768
cb2f3a29
MK
1769/* Initialize OBJFILE to read symbols from its associated BFD. It
1770 either returns or calls error(). The result is an initialized
1771 struct sym_fns in the objfile structure, that contains cached
1772 information about the symbol file. */
c906108c 1773
00b5771c 1774static const struct sym_fns *
31d99776 1775find_sym_fns (bfd *abfd)
c906108c 1776{
31d99776 1777 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1778
75245b24
MS
1779 if (our_flavour == bfd_target_srec_flavour
1780 || our_flavour == bfd_target_ihex_flavour
1781 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1782 return NULL; /* No symbols. */
75245b24 1783
905014d7
SM
1784 for (const registered_sym_fns &rsf : symtab_fns)
1785 if (our_flavour == rsf.sym_flavour)
1786 return rsf.sym_fns;
cb2f3a29 1787
8a3fe4f8 1788 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1789 bfd_get_target (abfd));
c906108c
SS
1790}
1791\f
cb2f3a29 1792
c906108c
SS
1793/* This function runs the load command of our current target. */
1794
1795static void
5fed81ff 1796load_command (const char *arg, int from_tty)
c906108c 1797{
e5cc9f32
JB
1798 dont_repeat ();
1799
4487aabf
PA
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
b577b6af 1805 std::string temp;
c906108c 1806 if (arg == NULL)
1986bccd 1807 {
b577b6af 1808 const char *parg, *prev;
1986bccd 1809
b577b6af 1810 arg = get_exec_file (1);
1986bccd 1811
b577b6af
TT
1812 /* We may need to quote this string so buildargv can pull it
1813 apart. */
1814 prev = parg = arg;
1986bccd
AS
1815 while ((parg = strpbrk (parg, "\\\"'\t ")))
1816 {
b577b6af
TT
1817 temp.append (prev, parg - prev);
1818 prev = parg++;
1819 temp.push_back ('\\');
1986bccd 1820 }
b577b6af
TT
1821 /* If we have not copied anything yet, then we didn't see a
1822 character to quote, and we can just leave ARG unchanged. */
1823 if (!temp.empty ())
1986bccd 1824 {
b577b6af
TT
1825 temp.append (prev);
1826 arg = temp.c_str ();
1986bccd
AS
1827 }
1828 }
1829
c906108c 1830 target_load (arg, from_tty);
2889e661
JB
1831
1832 /* After re-loading the executable, we don't really know which
1833 overlays are mapped any more. */
1834 overlay_cache_invalid = 1;
c906108c
SS
1835}
1836
1837/* This version of "load" should be usable for any target. Currently
1838 it is just used for remote targets, not inftarg.c or core files,
1839 on the theory that only in that case is it useful.
1840
1841 Avoiding xmodem and the like seems like a win (a) because we don't have
1842 to worry about finding it, and (b) On VMS, fork() is very slow and so
1843 we don't want to run a subprocess. On the other hand, I'm not sure how
1844 performance compares. */
917317f4 1845
917317f4
JM
1846static int validate_download = 0;
1847
e4f9b4d5
MS
1848/* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850static void
1851add_section_size_callback (bfd *abfd, asection *asec, void *data)
1852{
19ba03f4 1853 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1854
2c500098 1855 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1856}
1857
a76d924d 1858/* Opaque data for load_progress. */
55089490
TT
1859struct load_progress_data
1860{
a76d924d 1861 /* Cumulative data. */
55089490
TT
1862 unsigned long write_count = 0;
1863 unsigned long data_count = 0;
1864 bfd_size_type total_size = 0;
a76d924d
DJ
1865};
1866
1867/* Opaque data for load_progress for a single section. */
55089490
TT
1868struct load_progress_section_data
1869{
1870 load_progress_section_data (load_progress_data *cumulative_,
1871 const char *section_name_, ULONGEST section_size_,
1872 CORE_ADDR lma_, gdb_byte *buffer_)
1873 : cumulative (cumulative_), section_name (section_name_),
1874 section_size (section_size_), lma (lma_), buffer (buffer_)
1875 {}
1876
a76d924d 1877 struct load_progress_data *cumulative;
cf7a04e8 1878
a76d924d 1879 /* Per-section data. */
cf7a04e8 1880 const char *section_name;
55089490 1881 ULONGEST section_sent = 0;
cf7a04e8
DJ
1882 ULONGEST section_size;
1883 CORE_ADDR lma;
1884 gdb_byte *buffer;
e4f9b4d5
MS
1885};
1886
55089490
TT
1887/* Opaque data for load_section_callback. */
1888struct load_section_data
1889{
1890 load_section_data (load_progress_data *progress_data_)
1891 : progress_data (progress_data_)
1892 {}
1893
1894 ~load_section_data ()
1895 {
1896 for (auto &&request : requests)
1897 {
1898 xfree (request.data);
1899 delete ((load_progress_section_data *) request.baton);
1900 }
1901 }
1902
1903 CORE_ADDR load_offset = 0;
1904 struct load_progress_data *progress_data;
1905 std::vector<struct memory_write_request> requests;
1906};
1907
a76d924d 1908/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1909
1910static void
1911load_progress (ULONGEST bytes, void *untyped_arg)
1912{
19ba03f4
SM
1913 struct load_progress_section_data *args
1914 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1915 struct load_progress_data *totals;
1916
1917 if (args == NULL)
1918 /* Writing padding data. No easy way to get at the cumulative
1919 stats, so just ignore this. */
1920 return;
1921
1922 totals = args->cumulative;
1923
1924 if (bytes == 0 && args->section_sent == 0)
1925 {
1926 /* The write is just starting. Let the user know we've started
1927 this section. */
112e8700
SM
1928 current_uiout->message ("Loading section %s, size %s lma %s\n",
1929 args->section_name,
1930 hex_string (args->section_size),
1931 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1932 return;
1933 }
cf7a04e8
DJ
1934
1935 if (validate_download)
1936 {
1937 /* Broken memories and broken monitors manifest themselves here
1938 when bring new computers to life. This doubles already slow
1939 downloads. */
1940 /* NOTE: cagney/1999-10-18: A more efficient implementation
1941 might add a verify_memory() method to the target vector and
1942 then use that. remote.c could implement that method using
1943 the ``qCRC'' packet. */
0efef640 1944 gdb::byte_vector check (bytes);
cf7a04e8 1945
0efef640 1946 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1947 error (_("Download verify read failed at %s"),
f5656ead 1948 paddress (target_gdbarch (), args->lma));
0efef640 1949 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1950 error (_("Download verify compare failed at %s"),
f5656ead 1951 paddress (target_gdbarch (), args->lma));
cf7a04e8 1952 }
a76d924d 1953 totals->data_count += bytes;
cf7a04e8
DJ
1954 args->lma += bytes;
1955 args->buffer += bytes;
a76d924d 1956 totals->write_count += 1;
cf7a04e8 1957 args->section_sent += bytes;
522002f9 1958 if (check_quit_flag ()
cf7a04e8
DJ
1959 || (deprecated_ui_load_progress_hook != NULL
1960 && deprecated_ui_load_progress_hook (args->section_name,
1961 args->section_sent)))
1962 error (_("Canceled the download"));
1963
1964 if (deprecated_show_load_progress != NULL)
1965 deprecated_show_load_progress (args->section_name,
1966 args->section_sent,
1967 args->section_size,
a76d924d
DJ
1968 totals->data_count,
1969 totals->total_size);
cf7a04e8
DJ
1970}
1971
e4f9b4d5
MS
1972/* Callback service function for generic_load (bfd_map_over_sections). */
1973
1974static void
1975load_section_callback (bfd *abfd, asection *asec, void *data)
1976{
19ba03f4 1977 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1978 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1979 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1980
cf7a04e8
DJ
1981 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1982 return;
e4f9b4d5 1983
cf7a04e8
DJ
1984 if (size == 0)
1985 return;
e4f9b4d5 1986
55089490
TT
1987 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1988 ULONGEST end = begin + size;
1989 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1990 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1991
55089490
TT
1992 load_progress_section_data *section_data
1993 = new load_progress_section_data (args->progress_data, sect_name, size,
1994 begin, buffer);
cf7a04e8 1995
55089490 1996 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1997}
1998
dcb07cfa
PA
1999static void print_transfer_performance (struct ui_file *stream,
2000 unsigned long data_count,
2001 unsigned long write_count,
2002 std::chrono::steady_clock::duration d);
2003
c906108c 2004void
9cbe5fff 2005generic_load (const char *args, int from_tty)
c906108c 2006{
a76d924d 2007 struct load_progress_data total_progress;
55089490 2008 struct load_section_data cbdata (&total_progress);
79a45e25 2009 struct ui_out *uiout = current_uiout;
a76d924d 2010
d1a41061
PP
2011 if (args == NULL)
2012 error_no_arg (_("file to load"));
1986bccd 2013
773a1edc 2014 gdb_argv argv (args);
1986bccd 2015
ee0c3293 2016 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2017
2018 if (argv[1] != NULL)
917317f4 2019 {
f698ca8e 2020 const char *endptr;
ba5f2f8a 2021
f698ca8e 2022 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2023
2024 /* If the last word was not a valid number then
2025 treat it as a file name with spaces in. */
2026 if (argv[1] == endptr)
2027 error (_("Invalid download offset:%s."), argv[1]);
2028
2029 if (argv[2] != NULL)
2030 error (_("Too many parameters."));
917317f4 2031 }
c906108c 2032
c378eb4e 2033 /* Open the file for loading. */
ee0c3293 2034 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2035 if (loadfile_bfd == NULL)
ee0c3293 2036 perror_with_name (filename.get ());
917317f4 2037
192b62ce 2038 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2039 {
ee0c3293 2040 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2041 bfd_errmsg (bfd_get_error ()));
2042 }
c5aa993b 2043
192b62ce 2044 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2045 (void *) &total_progress.total_size);
2046
192b62ce 2047 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2048
dcb07cfa
PA
2049 using namespace std::chrono;
2050
2051 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2052
a76d924d
DJ
2053 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2054 load_progress) != 0)
2055 error (_("Load failed"));
c906108c 2056
dcb07cfa 2057 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2058
55089490 2059 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2060 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2061 uiout->text ("Start address ");
2062 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2063 uiout->text (", load size ");
2064 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2065 uiout->text ("\n");
fb14de7b 2066 regcache_write_pc (get_current_regcache (), entry);
c906108c 2067
38963c97
DJ
2068 /* Reset breakpoints, now that we have changed the load image. For
2069 instance, breakpoints may have been set (or reset, by
2070 post_create_inferior) while connected to the target but before we
2071 loaded the program. In that case, the prologue analyzer could
2072 have read instructions from the target to find the right
2073 breakpoint locations. Loading has changed the contents of that
2074 memory. */
2075
2076 breakpoint_re_set ();
2077
a76d924d
DJ
2078 print_transfer_performance (gdb_stdout, total_progress.data_count,
2079 total_progress.write_count,
dcb07cfa 2080 end_time - start_time);
c906108c
SS
2081}
2082
dcb07cfa
PA
2083/* Report on STREAM the performance of a memory transfer operation,
2084 such as 'load'. DATA_COUNT is the number of bytes transferred.
2085 WRITE_COUNT is the number of separate write operations, or 0, if
2086 that information is not available. TIME is how long the operation
2087 lasted. */
c906108c 2088
dcb07cfa 2089static void
d9fcf2fb 2090print_transfer_performance (struct ui_file *stream,
917317f4
JM
2091 unsigned long data_count,
2092 unsigned long write_count,
dcb07cfa 2093 std::chrono::steady_clock::duration time)
917317f4 2094{
dcb07cfa 2095 using namespace std::chrono;
79a45e25 2096 struct ui_out *uiout = current_uiout;
2b71414d 2097
dcb07cfa 2098 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2099
112e8700 2100 uiout->text ("Transfer rate: ");
dcb07cfa 2101 if (ms.count () > 0)
8b93c638 2102 {
dcb07cfa 2103 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2104
112e8700 2105 if (uiout->is_mi_like_p ())
9f43d28c 2106 {
112e8700
SM
2107 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2108 uiout->text (" bits/sec");
9f43d28c
DJ
2109 }
2110 else if (rate < 1024)
2111 {
112e8700
SM
2112 uiout->field_fmt ("transfer-rate", "%lu", rate);
2113 uiout->text (" bytes/sec");
9f43d28c
DJ
2114 }
2115 else
2116 {
112e8700
SM
2117 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2118 uiout->text (" KB/sec");
9f43d28c 2119 }
8b93c638
JM
2120 }
2121 else
2122 {
112e8700
SM
2123 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2124 uiout->text (" bits in <1 sec");
8b93c638
JM
2125 }
2126 if (write_count > 0)
2127 {
112e8700
SM
2128 uiout->text (", ");
2129 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2130 uiout->text (" bytes/write");
8b93c638 2131 }
112e8700 2132 uiout->text (".\n");
c906108c
SS
2133}
2134
291f9a96
PT
2135/* Add an OFFSET to the start address of each section in OBJF, except
2136 sections that were specified in ADDRS. */
2137
2138static void
2139set_objfile_default_section_offset (struct objfile *objf,
2140 const section_addr_info &addrs,
2141 CORE_ADDR offset)
2142{
2143 /* Add OFFSET to all sections by default. */
2144 std::vector<struct section_offsets> offsets (objf->num_sections,
027a4c30 2145 { { offset } });
291f9a96
PT
2146
2147 /* Create sorted lists of all sections in ADDRS as well as all
2148 sections in OBJF. */
2149
2150 std::vector<const struct other_sections *> addrs_sorted
2151 = addrs_section_sort (addrs);
2152
2153 section_addr_info objf_addrs
2154 = build_section_addr_info_from_objfile (objf);
2155 std::vector<const struct other_sections *> objf_addrs_sorted
2156 = addrs_section_sort (objf_addrs);
2157
2158 /* Walk the BFD section list, and if a matching section is found in
2159 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2160 unchanged.
2161
2162 Note that both lists may contain multiple sections with the same
2163 name, and then the sections from ADDRS are matched in BFD order
2164 (thanks to sectindex). */
2165
2166 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2167 = addrs_sorted.begin ();
ff27d073 2168 for (const other_sections *objf_sect : objf_addrs_sorted)
291f9a96
PT
2169 {
2170 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2171 int cmp = -1;
2172
2173 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2174 {
2175 const struct other_sections *sect = *addrs_sorted_iter;
2176 const char *sect_name = addr_section_name (sect->name.c_str ());
2177 cmp = strcmp (sect_name, objf_name);
2178 if (cmp <= 0)
2179 ++addrs_sorted_iter;
2180 }
2181
2182 if (cmp == 0)
2183 offsets[objf_sect->sectindex].offsets[0] = 0;
2184 }
2185
2186 /* Apply the new section offsets. */
2187 objfile_relocate (objf, offsets.data ());
2188}
2189
c906108c
SS
2190/* This function allows the addition of incrementally linked object files.
2191 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2192/* Note: ezannoni 2000-04-13 This function/command used to have a
2193 special case syntax for the rombug target (Rombug is the boot
2194 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2195 rombug case, the user doesn't need to supply a text address,
2196 instead a call to target_link() (in target.c) would supply the
c378eb4e 2197 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2198
c906108c 2199static void
2cf311eb 2200add_symbol_file_command (const char *args, int from_tty)
c906108c 2201{
5af949e3 2202 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2203 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2204 char *arg;
2acceee2 2205 int argcnt = 0;
76ad5e1e 2206 struct objfile *objf;
b15cc25c
PA
2207 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2208 symfile_add_flags add_flags = 0;
2209
2210 if (from_tty)
2211 add_flags |= SYMFILE_VERBOSE;
db162d44 2212
a39a16c4 2213 struct sect_opt
2acceee2 2214 {
a121b7c1
PA
2215 const char *name;
2216 const char *value;
a39a16c4 2217 };
db162d44 2218
40fc416f
SDJ
2219 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2220 bool stop_processing_options = false;
291f9a96 2221 CORE_ADDR offset = 0;
c5aa993b 2222
c906108c
SS
2223 dont_repeat ();
2224
2225 if (args == NULL)
8a3fe4f8 2226 error (_("add-symbol-file takes a file name and an address"));
c906108c 2227
40fc416f 2228 bool seen_addr = false;
291f9a96 2229 bool seen_offset = false;
773a1edc 2230 gdb_argv argv (args);
db162d44 2231
5b96932b
AS
2232 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2233 {
40fc416f 2234 if (stop_processing_options || *arg != '-')
41dc8db8 2235 {
40fc416f 2236 if (filename == NULL)
41dc8db8 2237 {
40fc416f
SDJ
2238 /* First non-option argument is always the filename. */
2239 filename.reset (tilde_expand (arg));
41dc8db8 2240 }
40fc416f 2241 else if (!seen_addr)
41dc8db8 2242 {
40fc416f
SDJ
2243 /* The second non-option argument is always the text
2244 address at which to load the program. */
2245 sect_opts[0].value = arg;
2246 seen_addr = true;
41dc8db8
MB
2247 }
2248 else
02ca603a 2249 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2250 }
40fc416f
SDJ
2251 else if (strcmp (arg, "-readnow") == 0)
2252 flags |= OBJF_READNOW;
97cbe998
SDJ
2253 else if (strcmp (arg, "-readnever") == 0)
2254 flags |= OBJF_READNEVER;
40fc416f
SDJ
2255 else if (strcmp (arg, "-s") == 0)
2256 {
2257 if (argv[argcnt + 1] == NULL)
2258 error (_("Missing section name after \"-s\""));
2259 else if (argv[argcnt + 2] == NULL)
2260 error (_("Missing section address after \"-s\""));
2261
2262 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2263
2264 sect_opts.push_back (sect);
2265 argcnt += 2;
2266 }
291f9a96
PT
2267 else if (strcmp (arg, "-o") == 0)
2268 {
2269 arg = argv[++argcnt];
2270 if (arg == NULL)
2271 error (_("Missing argument to -o"));
2272
2273 offset = parse_and_eval_address (arg);
2274 seen_offset = true;
2275 }
40fc416f
SDJ
2276 else if (strcmp (arg, "--") == 0)
2277 stop_processing_options = true;
2278 else
2279 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2280 }
c906108c 2281
40fc416f
SDJ
2282 if (filename == NULL)
2283 error (_("You must provide a filename to be loaded."));
2284
97cbe998
SDJ
2285 validate_readnow_readnever (flags);
2286
c378eb4e 2287 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
bb599908 2290 statements because hex_string returns a local static
c378eb4e 2291 string. */
5417f6dc 2292
ed6dfe51 2293 printf_unfiltered (_("add symbol table from file \"%s\""),
ee0c3293 2294 filename.get ());
37e136b1 2295 section_addr_info section_addrs;
ed6dfe51
PT
2296 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2297 if (!seen_addr)
2298 ++it;
2299 for (; it != sect_opts.end (); ++it)
c906108c 2300 {
db162d44 2301 CORE_ADDR addr;
ed6dfe51
PT
2302 const char *val = it->value;
2303 const char *sec = it->name;
5417f6dc 2304
ed6dfe51
PT
2305 if (section_addrs.empty ())
2306 printf_unfiltered (_(" at\n"));
ae822768 2307 addr = parse_and_eval_address (val);
db162d44 2308
db162d44 2309 /* Here we store the section offsets in the order they were
d81a3eaf
PT
2310 entered on the command line. Every array element is
2311 assigned an ascending section index to preserve the above
2312 order over an unstable sorting algorithm. This dummy
2313 index is not used for any other purpose.
2314 */
2315 section_addrs.emplace_back (addr, sec, section_addrs.size ());
22068491
TT
2316 printf_filtered ("\t%s_addr = %s\n", sec,
2317 paddress (gdbarch, addr));
db162d44 2318
5417f6dc 2319 /* The object's sections are initialized when a
db162d44 2320 call is made to build_objfile_section_table (objfile).
5417f6dc 2321 This happens in reread_symbols.
db162d44
EZ
2322 At this point, we don't know what file type this is,
2323 so we can't determine what section names are valid. */
2acceee2 2324 }
291f9a96
PT
2325 if (seen_offset)
2326 printf_unfiltered (_("%s offset by %s\n"),
2327 (section_addrs.empty ()
2328 ? _(" with all sections")
2329 : _("with other sections")),
2330 paddress (gdbarch, offset));
2331 else if (section_addrs.empty ())
ed6dfe51 2332 printf_unfiltered ("\n");
db162d44 2333
2acceee2 2334 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2335 error (_("Not confirmed."));
c906108c 2336
37e136b1
TT
2337 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2338 flags);
76ad5e1e 2339
291f9a96
PT
2340 if (seen_offset)
2341 set_objfile_default_section_offset (objf, section_addrs, offset);
2342
76ad5e1e 2343 add_target_sections_of_objfile (objf);
c906108c
SS
2344
2345 /* Getting new symbols may change our opinion about what is
2346 frameless. */
2347 reinit_frame_cache ();
2348}
2349\f
70992597 2350
63644780
NB
2351/* This function removes a symbol file that was added via add-symbol-file. */
2352
2353static void
2cf311eb 2354remove_symbol_file_command (const char *args, int from_tty)
63644780 2355{
63644780 2356 struct objfile *objf = NULL;
63644780 2357 struct program_space *pspace = current_program_space;
63644780
NB
2358
2359 dont_repeat ();
2360
2361 if (args == NULL)
2362 error (_("remove-symbol-file: no symbol file provided"));
2363
773a1edc 2364 gdb_argv argv (args);
63644780
NB
2365
2366 if (strcmp (argv[0], "-a") == 0)
2367 {
2368 /* Interpret the next argument as an address. */
2369 CORE_ADDR addr;
2370
2371 if (argv[1] == NULL)
2372 error (_("Missing address argument"));
2373
2374 if (argv[2] != NULL)
2375 error (_("Junk after %s"), argv[1]);
2376
2377 addr = parse_and_eval_address (argv[1]);
2378
2030c079 2379 for (objfile *objfile : current_program_space->objfiles ())
63644780 2380 {
aed57c53
TT
2381 if ((objfile->flags & OBJF_USERLOADED) != 0
2382 && (objfile->flags & OBJF_SHARED) != 0
2383 && objfile->pspace == pspace
2384 && is_addr_in_objfile (addr, objfile))
2385 {
2386 objf = objfile;
2387 break;
2388 }
63644780
NB
2389 }
2390 }
2391 else if (argv[0] != NULL)
2392 {
2393 /* Interpret the current argument as a file name. */
63644780
NB
2394
2395 if (argv[1] != NULL)
2396 error (_("Junk after %s"), argv[0]);
2397
ee0c3293 2398 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780 2399
2030c079 2400 for (objfile *objfile : current_program_space->objfiles ())
63644780 2401 {
aed57c53
TT
2402 if ((objfile->flags & OBJF_USERLOADED) != 0
2403 && (objfile->flags & OBJF_SHARED) != 0
2404 && objfile->pspace == pspace
2405 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2406 {
2407 objf = objfile;
2408 break;
2409 }
63644780
NB
2410 }
2411 }
2412
2413 if (objf == NULL)
2414 error (_("No symbol file found"));
2415
2416 if (from_tty
2417 && !query (_("Remove symbol table from file \"%s\"? "),
2418 objfile_name (objf)))
2419 error (_("Not confirmed."));
2420
9e86da07 2421 delete objf;
63644780 2422 clear_symtab_users (0);
63644780
NB
2423}
2424
c906108c 2425/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2426
c906108c 2427void
fba45db2 2428reread_symbols (void)
c906108c
SS
2429{
2430 struct objfile *objfile;
2431 long new_modtime;
c906108c
SS
2432 struct stat new_statbuf;
2433 int res;
4c404b8b 2434 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2435
2436 /* With the addition of shared libraries, this should be modified,
2437 the load time should be saved in the partial symbol tables, since
2438 different tables may come from different source files. FIXME.
2439 This routine should then walk down each partial symbol table
c378eb4e 2440 and see if the symbol table that it originates from has been changed. */
c906108c 2441
c5aa993b
JM
2442 for (objfile = object_files; objfile; objfile = objfile->next)
2443 {
9cce227f
TG
2444 if (objfile->obfd == NULL)
2445 continue;
2446
2447 /* Separate debug objfiles are handled in the main objfile. */
2448 if (objfile->separate_debug_objfile_backlink)
2449 continue;
2450
02aeec7b
JB
2451 /* If this object is from an archive (what you usually create with
2452 `ar', often called a `static library' on most systems, though
2453 a `shared library' on AIX is also an archive), then you should
2454 stat on the archive name, not member name. */
9cce227f
TG
2455 if (objfile->obfd->my_archive)
2456 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2457 else
4262abfb 2458 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2459 if (res != 0)
2460 {
c378eb4e 2461 /* FIXME, should use print_sys_errmsg but it's not filtered. */
22068491
TT
2462 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2463 objfile_name (objfile));
9cce227f
TG
2464 continue;
2465 }
2466 new_modtime = new_statbuf.st_mtime;
2467 if (new_modtime != objfile->mtime)
2468 {
9cce227f
TG
2469 struct section_offsets *offsets;
2470 int num_offsets;
9cce227f 2471
22068491
TT
2472 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2473 objfile_name (objfile));
9cce227f
TG
2474
2475 /* There are various functions like symbol_file_add,
2476 symfile_bfd_open, syms_from_objfile, etc., which might
2477 appear to do what we want. But they have various other
2478 effects which we *don't* want. So we just do stuff
2479 ourselves. We don't worry about mapped files (for one thing,
2480 any mapped file will be out of date). */
2481
2482 /* If we get an error, blow away this objfile (not sure if
2483 that is the correct response for things like shared
2484 libraries). */
ed2b3126
TT
2485 std::unique_ptr<struct objfile> objfile_holder (objfile);
2486
9cce227f 2487 /* We need to do this whenever any symbols go away. */
286526c1 2488 clear_symtab_users_cleanup defer_clear_users (0);
9cce227f 2489
0ba1096a
KT
2490 if (exec_bfd != NULL
2491 && filename_cmp (bfd_get_filename (objfile->obfd),
2492 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2493 {
2494 /* Reload EXEC_BFD without asking anything. */
2495
2496 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2497 }
2498
f6eeced0
JK
2499 /* Keep the calls order approx. the same as in free_objfile. */
2500
2501 /* Free the separate debug objfiles. It will be
2502 automatically recreated by sym_read. */
2503 free_objfile_separate_debug (objfile);
2504
2505 /* Remove any references to this objfile in the global
2506 value lists. */
2507 preserve_values (objfile);
2508
2509 /* Nuke all the state that we will re-read. Much of the following
2510 code which sets things to NULL really is necessary to tell
2511 other parts of GDB that there is nothing currently there.
2512
2513 Try to keep the freeing order compatible with free_objfile. */
2514
2515 if (objfile->sf != NULL)
2516 {
2517 (*objfile->sf->sym_finish) (objfile);
2518 }
2519
2520 clear_objfile_data (objfile);
2521
e1507e95 2522 /* Clean up any state BFD has sitting around. */
a4453b7e 2523 {
192b62ce 2524 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2525 char *obfd_filename;
a4453b7e
TT
2526
2527 obfd_filename = bfd_get_filename (objfile->obfd);
2528 /* Open the new BFD before freeing the old one, so that
2529 the filename remains live. */
192b62ce
TT
2530 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2531 objfile->obfd = temp.release ();
e1507e95 2532 if (objfile->obfd == NULL)
192b62ce 2533 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2534 }
2535
c0c9f665 2536 std::string original_name = objfile->original_name;
24ba069a 2537
9cce227f
TG
2538 /* bfd_openr sets cacheable to true, which is what we want. */
2539 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2540 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2541 bfd_errmsg (bfd_get_error ()));
2542
2543 /* Save the offsets, we will nuke them with the rest of the
2544 objfile_obstack. */
2545 num_offsets = objfile->num_sections;
2546 offsets = ((struct section_offsets *)
2547 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2548 memcpy (offsets, objfile->section_offsets,
2549 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550
6d6a12bf 2551 objfile->reset_psymtabs ();
41664b45
DG
2552
2553 /* NB: after this call to obstack_free, objfiles_changed
2554 will need to be called (see discussion below). */
9cce227f
TG
2555 obstack_free (&objfile->objfile_obstack, 0);
2556 objfile->sections = NULL;
43f3e411 2557 objfile->compunit_symtabs = NULL;
34eaf542 2558 objfile->template_symbols = NULL;
22ad8107 2559 objfile->static_links = NULL;
9cce227f 2560
9cce227f
TG
2561 /* obstack_init also initializes the obstack so it is
2562 empty. We could use obstack_specify_allocation but
d82ea6a8 2563 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2564 obstack_init (&objfile->objfile_obstack);
779bd270 2565
846060df
JB
2566 /* set_objfile_per_bfd potentially allocates the per-bfd
2567 data on the objfile's obstack (if sharing data across
2568 multiple users is not possible), so it's important to
2569 do it *after* the obstack has been initialized. */
2570 set_objfile_per_bfd (objfile);
2571
224c3ddb 2572 objfile->original_name
c0c9f665
TT
2573 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2574 original_name.c_str (),
2575 original_name.size ());
24ba069a 2576
779bd270
DE
2577 /* Reset the sym_fns pointer. The ELF reader can change it
2578 based on whether .gdb_index is present, and we need it to
2579 start over. PR symtab/15885 */
8fb8eb5c 2580 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2581
d82ea6a8 2582 build_objfile_section_table (objfile);
9cce227f
TG
2583 terminate_minimal_symbol_table (objfile);
2584
2585 /* We use the same section offsets as from last time. I'm not
2586 sure whether that is always correct for shared libraries. */
2587 objfile->section_offsets = (struct section_offsets *)
2588 obstack_alloc (&objfile->objfile_obstack,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 memcpy (objfile->section_offsets, offsets,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 objfile->num_sections = num_offsets;
2593
2594 /* What the hell is sym_new_init for, anyway? The concept of
2595 distinguishing between the main file and additional files
2596 in this way seems rather dubious. */
2597 if (objfile == symfile_objfile)
c906108c 2598 {
9cce227f 2599 (*objfile->sf->sym_new_init) (objfile);
c906108c 2600 }
9cce227f
TG
2601
2602 (*objfile->sf->sym_init) (objfile);
5ca8c39f 2603 clear_complaints ();
608e2dbb
TT
2604
2605 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2606
2607 /* We are about to read new symbols and potentially also
2608 DWARF information. Some targets may want to pass addresses
2609 read from DWARF DIE's through an adjustment function before
2610 saving them, like MIPS, which may call into
2611 "find_pc_section". When called, that function will make
2612 use of per-objfile program space data.
2613
2614 Since we discarded our section information above, we have
2615 dangling pointers in the per-objfile program space data
2616 structure. Force GDB to update the section mapping
2617 information by letting it know the objfile has changed,
2618 making the dangling pointers point to correct data
2619 again. */
2620
2621 objfiles_changed ();
2622
608e2dbb 2623 read_symbols (objfile, 0);
b11896a5 2624
9cce227f 2625 if (!objfile_has_symbols (objfile))
c906108c 2626 {
9cce227f 2627 wrap_here ("");
22068491 2628 printf_filtered (_("(no debugging symbols found)\n"));
9cce227f 2629 wrap_here ("");
c5aa993b 2630 }
9cce227f
TG
2631
2632 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 2633 clear_complaints ();
9cce227f
TG
2634
2635 /* Getting new symbols may change our opinion about what is
2636 frameless. */
2637
2638 reinit_frame_cache ();
2639
2640 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2641 objfile_holder.release ();
286526c1 2642 defer_clear_users.release ();
9cce227f
TG
2643
2644 /* If the mtime has changed between the time we set new_modtime
2645 and now, we *want* this to be out of date, so don't call stat
2646 again now. */
2647 objfile->mtime = new_modtime;
9cce227f 2648 init_entry_point_info (objfile);
4ac39b97 2649
4c404b8b 2650 new_objfiles.push_back (objfile);
c906108c
SS
2651 }
2652 }
c906108c 2653
4c404b8b 2654 if (!new_objfiles.empty ())
ea53e89f 2655 {
c1e56572 2656 clear_symtab_users (0);
4ac39b97
JK
2657
2658 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2659 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2660 clear_symtab_users above. Notify the new files now. */
4c404b8b 2661 for (auto iter : new_objfiles)
c486b610 2662 gdb::observers::new_objfile.notify (iter);
4ac39b97 2663
ea53e89f
JB
2664 /* At least one objfile has changed, so we can consider that
2665 the executable we're debugging has changed too. */
76727919 2666 gdb::observers::executable_changed.notify ();
ea53e89f 2667 }
c906108c 2668}
c906108c
SS
2669\f
2670
593e3209 2671struct filename_language
c5aa993b 2672{
593e3209
SM
2673 filename_language (const std::string &ext_, enum language lang_)
2674 : ext (ext_), lang (lang_)
2675 {}
3fcf0b0d 2676
593e3209
SM
2677 std::string ext;
2678 enum language lang;
2679};
c906108c 2680
593e3209 2681static std::vector<filename_language> filename_language_table;
c906108c 2682
56618e20
TT
2683/* See symfile.h. */
2684
2685void
2686add_filename_language (const char *ext, enum language lang)
c906108c 2687{
593e3209 2688 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2689}
2690
2691static char *ext_args;
920d2a44
AC
2692static void
2693show_ext_args (struct ui_file *file, int from_tty,
2694 struct cmd_list_element *c, const char *value)
2695{
3e43a32a
MS
2696 fprintf_filtered (file,
2697 _("Mapping between filename extension "
2698 "and source language is \"%s\".\n"),
920d2a44
AC
2699 value);
2700}
c906108c
SS
2701
2702static void
eb4c3f4a
TT
2703set_ext_lang_command (const char *args,
2704 int from_tty, struct cmd_list_element *e)
c906108c 2705{
c906108c
SS
2706 char *cp = ext_args;
2707 enum language lang;
2708
c378eb4e 2709 /* First arg is filename extension, starting with '.' */
c906108c 2710 if (*cp != '.')
8a3fe4f8 2711 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2712
2713 /* Find end of first arg. */
c5aa993b 2714 while (*cp && !isspace (*cp))
c906108c
SS
2715 cp++;
2716
2717 if (*cp == '\0')
3e43a32a
MS
2718 error (_("'%s': two arguments required -- "
2719 "filename extension and language"),
c906108c
SS
2720 ext_args);
2721
c378eb4e 2722 /* Null-terminate first arg. */
c5aa993b 2723 *cp++ = '\0';
c906108c
SS
2724
2725 /* Find beginning of second arg, which should be a source language. */
529480d0 2726 cp = skip_spaces (cp);
c906108c
SS
2727
2728 if (*cp == '\0')
3e43a32a
MS
2729 error (_("'%s': two arguments required -- "
2730 "filename extension and language"),
c906108c
SS
2731 ext_args);
2732
2733 /* Lookup the language from among those we know. */
2734 lang = language_enum (cp);
2735
593e3209 2736 auto it = filename_language_table.begin ();
c906108c 2737 /* Now lookup the filename extension: do we already know it? */
593e3209 2738 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2739 {
593e3209 2740 if (it->ext == ext_args)
3fcf0b0d
TT
2741 break;
2742 }
c906108c 2743
593e3209 2744 if (it == filename_language_table.end ())
c906108c 2745 {
c378eb4e 2746 /* New file extension. */
c906108c
SS
2747 add_filename_language (ext_args, lang);
2748 }
2749 else
2750 {
c378eb4e 2751 /* Redefining a previously known filename extension. */
c906108c
SS
2752
2753 /* if (from_tty) */
2754 /* query ("Really make files of type %s '%s'?", */
2755 /* ext_args, language_str (lang)); */
2756
593e3209 2757 it->lang = lang;
c906108c
SS
2758 }
2759}
2760
2761static void
1d12d88f 2762info_ext_lang_command (const char *args, int from_tty)
c906108c 2763{
a3f17187 2764 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2765 printf_filtered ("\n\n");
593e3209
SM
2766 for (const filename_language &entry : filename_language_table)
2767 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2768 language_str (entry.lang));
c906108c
SS
2769}
2770
c906108c 2771enum language
dd786858 2772deduce_language_from_filename (const char *filename)
c906108c 2773{
e6a959d6 2774 const char *cp;
c906108c
SS
2775
2776 if (filename != NULL)
2777 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2778 {
593e3209
SM
2779 for (const filename_language &entry : filename_language_table)
2780 if (entry.ext == cp)
2781 return entry.lang;
3fcf0b0d 2782 }
c906108c
SS
2783
2784 return language_unknown;
2785}
2786\f
43f3e411
DE
2787/* Allocate and initialize a new symbol table.
2788 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2789
2790struct symtab *
43f3e411 2791allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2792{
43f3e411
DE
2793 struct objfile *objfile = cust->objfile;
2794 struct symtab *symtab
2795 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2796
19ba03f4
SM
2797 symtab->filename
2798 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2799 objfile->per_bfd->filename_cache);
c5aa993b
JM
2800 symtab->fullname = NULL;
2801 symtab->language = deduce_language_from_filename (filename);
c906108c 2802
db0fec5c
DE
2803 /* This can be very verbose with lots of headers.
2804 Only print at higher debug levels. */
2805 if (symtab_create_debug >= 2)
45cfd468
DE
2806 {
2807 /* Be a bit clever with debugging messages, and don't print objfile
2808 every time, only when it changes. */
2809 static char *last_objfile_name = NULL;
2810
2811 if (last_objfile_name == NULL
4262abfb 2812 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2813 {
2814 xfree (last_objfile_name);
4262abfb 2815 last_objfile_name = xstrdup (objfile_name (objfile));
22068491
TT
2816 fprintf_filtered (gdb_stdlog,
2817 "Creating one or more symtabs for objfile %s ...\n",
2818 last_objfile_name);
45cfd468 2819 }
22068491
TT
2820 fprintf_filtered (gdb_stdlog,
2821 "Created symtab %s for module %s.\n",
2822 host_address_to_string (symtab), filename);
45cfd468
DE
2823 }
2824
43f3e411
DE
2825 /* Add it to CUST's list of symtabs. */
2826 if (cust->filetabs == NULL)
2827 {
2828 cust->filetabs = symtab;
2829 cust->last_filetab = symtab;
2830 }
2831 else
2832 {
2833 cust->last_filetab->next = symtab;
2834 cust->last_filetab = symtab;
2835 }
2836
2837 /* Backlink to the containing compunit symtab. */
2838 symtab->compunit_symtab = cust;
2839
2840 return symtab;
2841}
2842
2843/* Allocate and initialize a new compunit.
2844 NAME is the name of the main source file, if there is one, or some
2845 descriptive text if there are no source files. */
2846
2847struct compunit_symtab *
2848allocate_compunit_symtab (struct objfile *objfile, const char *name)
2849{
2850 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2851 struct compunit_symtab);
2852 const char *saved_name;
2853
2854 cu->objfile = objfile;
2855
2856 /* The name we record here is only for display/debugging purposes.
2857 Just save the basename to avoid path issues (too long for display,
2858 relative vs absolute, etc.). */
2859 saved_name = lbasename (name);
224c3ddb
SM
2860 cu->name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2862 strlen (saved_name));
43f3e411
DE
2863
2864 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2865
2866 if (symtab_create_debug)
2867 {
22068491
TT
2868 fprintf_filtered (gdb_stdlog,
2869 "Created compunit symtab %s for %s.\n",
2870 host_address_to_string (cu),
2871 cu->name);
43f3e411
DE
2872 }
2873
2874 return cu;
2875}
2876
2877/* Hook CU to the objfile it comes from. */
2878
2879void
2880add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2881{
2882 cu->next = cu->objfile->compunit_symtabs;
2883 cu->objfile->compunit_symtabs = cu;
c906108c 2884}
c906108c 2885\f
c5aa993b 2886
b15cc25c
PA
2887/* Reset all data structures in gdb which may contain references to
2888 symbol table data. */
c906108c
SS
2889
2890void
b15cc25c 2891clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2892{
2893 /* Someday, we should do better than this, by only blowing away
2894 the things that really need to be blown. */
c0501be5
DJ
2895
2896 /* Clear the "current" symtab first, because it is no longer valid.
2897 breakpoint_re_set may try to access the current symtab. */
2898 clear_current_source_symtab_and_line ();
2899
c906108c 2900 clear_displays ();
1bfeeb0f 2901 clear_last_displayed_sal ();
c906108c 2902 clear_pc_function_cache ();
76727919 2903 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2904
2905 /* Clear globals which might have pointed into a removed objfile.
2906 FIXME: It's not clear which of these are supposed to persist
2907 between expressions and which ought to be reset each time. */
2908 expression_context_block = NULL;
aee1fcdf 2909 innermost_block.reset ();
8756216b
DP
2910
2911 /* Varobj may refer to old symbols, perform a cleanup. */
2912 varobj_invalidate ();
2913
e700d1b2
JB
2914 /* Now that the various caches have been cleared, we can re_set
2915 our breakpoints without risking it using stale data. */
2916 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2917 breakpoint_re_set ();
c906108c 2918}
c906108c 2919\f
c906108c
SS
2920/* OVERLAYS:
2921 The following code implements an abstraction for debugging overlay sections.
2922
2923 The target model is as follows:
2924 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2925 same VMA, each with its own unique LMA (or load address).
c906108c 2926 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2927 sections, one by one, from the load address into the VMA address.
5417f6dc 2928 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2929 sections should be considered to be mapped from the VMA to the LMA.
2930 This information is used for symbol lookup, and memory read/write.
5417f6dc 2931 For instance, if a section has been mapped then its contents
c5aa993b 2932 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2933
2934 Two levels of debugger support for overlays are available. One is
2935 "manual", in which the debugger relies on the user to tell it which
2936 overlays are currently mapped. This level of support is
2937 implemented entirely in the core debugger, and the information about
2938 whether a section is mapped is kept in the objfile->obj_section table.
2939
2940 The second level of support is "automatic", and is only available if
2941 the target-specific code provides functionality to read the target's
2942 overlay mapping table, and translate its contents for the debugger
2943 (by updating the mapped state information in the obj_section tables).
2944
2945 The interface is as follows:
c5aa993b
JM
2946 User commands:
2947 overlay map <name> -- tell gdb to consider this section mapped
2948 overlay unmap <name> -- tell gdb to consider this section unmapped
2949 overlay list -- list the sections that GDB thinks are mapped
2950 overlay read-target -- get the target's state of what's mapped
2951 overlay off/manual/auto -- set overlay debugging state
2952 Functional interface:
2953 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2954 section, return that section.
5417f6dc 2955 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2956 the pc, either in its VMA or its LMA
714835d5 2957 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2958 section_is_overlay(sect): true if section's VMA != LMA
2959 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2960 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2961 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2962 overlay_mapped_address(...): map an address from section's LMA to VMA
2963 overlay_unmapped_address(...): map an address from section's VMA to LMA
2964 symbol_overlayed_address(...): Return a "current" address for symbol:
2965 either in VMA or LMA depending on whether
c378eb4e 2966 the symbol's section is currently mapped. */
c906108c
SS
2967
2968/* Overlay debugging state: */
2969
d874f1e2 2970enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2971int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2972
c906108c 2973/* Function: section_is_overlay (SECTION)
5417f6dc 2974 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2975 SECTION is loaded at an address different from where it will "run". */
2976
2977int
714835d5 2978section_is_overlay (struct obj_section *section)
c906108c 2979{
714835d5
UW
2980 if (overlay_debugging && section)
2981 {
714835d5 2982 asection *bfd_section = section->the_bfd_section;
f888f159 2983
714835d5
UW
2984 if (bfd_section_lma (abfd, bfd_section) != 0
2985 && bfd_section_lma (abfd, bfd_section)
2986 != bfd_section_vma (abfd, bfd_section))
2987 return 1;
2988 }
c906108c
SS
2989
2990 return 0;
2991}
2992
2993/* Function: overlay_invalidate_all (void)
2994 Invalidate the mapped state of all overlay sections (mark it as stale). */
2995
2996static void
fba45db2 2997overlay_invalidate_all (void)
c906108c 2998{
c906108c
SS
2999 struct obj_section *sect;
3000
2030c079 3001 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3002 ALL_OBJFILE_OSECTIONS (objfile, sect)
3003 if (section_is_overlay (sect))
3004 sect->ovly_mapped = -1;
c906108c
SS
3005}
3006
714835d5 3007/* Function: section_is_mapped (SECTION)
5417f6dc 3008 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3009
3010 Access to the ovly_mapped flag is restricted to this function, so
3011 that we can do automatic update. If the global flag
3012 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3013 overlay_invalidate_all. If the mapped state of the particular
3014 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3015
714835d5
UW
3016int
3017section_is_mapped (struct obj_section *osect)
c906108c 3018{
9216df95
UW
3019 struct gdbarch *gdbarch;
3020
714835d5 3021 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3022 return 0;
3023
c5aa993b 3024 switch (overlay_debugging)
c906108c
SS
3025 {
3026 default:
d874f1e2 3027 case ovly_off:
c5aa993b 3028 return 0; /* overlay debugging off */
d874f1e2 3029 case ovly_auto: /* overlay debugging automatic */
1c772458 3030 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3031 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3032 gdbarch = get_objfile_arch (osect->objfile);
3033 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3034 {
3035 if (overlay_cache_invalid)
3036 {
3037 overlay_invalidate_all ();
3038 overlay_cache_invalid = 0;
3039 }
3040 if (osect->ovly_mapped == -1)
9216df95 3041 gdbarch_overlay_update (gdbarch, osect);
c906108c 3042 }
86a73007 3043 /* fall thru */
d874f1e2 3044 case ovly_on: /* overlay debugging manual */
c906108c
SS
3045 return osect->ovly_mapped == 1;
3046 }
3047}
3048
c906108c
SS
3049/* Function: pc_in_unmapped_range
3050 If PC falls into the lma range of SECTION, return true, else false. */
3051
3052CORE_ADDR
714835d5 3053pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3054{
714835d5
UW
3055 if (section_is_overlay (section))
3056 {
3057 bfd *abfd = section->objfile->obfd;
3058 asection *bfd_section = section->the_bfd_section;
fbd35540 3059
714835d5
UW
3060 /* We assume the LMA is relocated by the same offset as the VMA. */
3061 bfd_vma size = bfd_get_section_size (bfd_section);
3062 CORE_ADDR offset = obj_section_offset (section);
3063
3064 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3065 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3066 return 1;
3067 }
c906108c 3068
c906108c
SS
3069 return 0;
3070}
3071
3072/* Function: pc_in_mapped_range
3073 If PC falls into the vma range of SECTION, return true, else false. */
3074
3075CORE_ADDR
714835d5 3076pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3077{
714835d5
UW
3078 if (section_is_overlay (section))
3079 {
3080 if (obj_section_addr (section) <= pc
3081 && pc < obj_section_endaddr (section))
3082 return 1;
3083 }
c906108c 3084
c906108c
SS
3085 return 0;
3086}
3087
9ec8e6a0
JB
3088/* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
3b7bacac 3090
b9362cc7 3091static int
714835d5 3092sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3093{
714835d5
UW
3094 CORE_ADDR a_start = obj_section_addr (a);
3095 CORE_ADDR a_end = obj_section_endaddr (a);
3096 CORE_ADDR b_start = obj_section_addr (b);
3097 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3098
3099 return (a_start < b_end && b_start < a_end);
3100}
3101
c906108c
SS
3102/* Function: overlay_unmapped_address (PC, SECTION)
3103 Returns the address corresponding to PC in the unmapped (load) range.
3104 May be the same as PC. */
3105
3106CORE_ADDR
714835d5 3107overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3108{
714835d5
UW
3109 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3110 {
714835d5 3111 asection *bfd_section = section->the_bfd_section;
fbd35540 3112
714835d5
UW
3113 return pc + bfd_section_lma (abfd, bfd_section)
3114 - bfd_section_vma (abfd, bfd_section);
3115 }
c906108c
SS
3116
3117 return pc;
3118}
3119
3120/* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124CORE_ADDR
714835d5 3125overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3126{
714835d5
UW
3127 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3128 {
714835d5 3129 asection *bfd_section = section->the_bfd_section;
fbd35540 3130
714835d5
UW
3131 return pc + bfd_section_vma (abfd, bfd_section)
3132 - bfd_section_lma (abfd, bfd_section);
3133 }
c906108c
SS
3134
3135 return pc;
3136}
3137
5417f6dc 3138/* Function: symbol_overlayed_address
c906108c
SS
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
c5aa993b 3142CORE_ADDR
714835d5 3143symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3144{
3145 if (overlay_debugging)
3146 {
c378eb4e 3147 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3148 if (section == 0)
3149 return address;
c378eb4e
MS
3150 /* If the symbol's section is not an overlay, just return its
3151 address. */
c906108c
SS
3152 if (!section_is_overlay (section))
3153 return address;
c378eb4e 3154 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164}
3165
5417f6dc 3166/* Function: find_pc_overlay (PC)
c906108c
SS
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
714835d5 3172struct obj_section *
fba45db2 3173find_pc_overlay (CORE_ADDR pc)
c906108c 3174{
c906108c
SS
3175 struct obj_section *osect, *best_match = NULL;
3176
3177 if (overlay_debugging)
b631e59b 3178 {
2030c079 3179 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3180 ALL_OBJFILE_OSECTIONS (objfile, osect)
3181 if (section_is_overlay (osect))
3182 {
3183 if (pc_in_mapped_range (pc, osect))
3184 {
3185 if (section_is_mapped (osect))
3186 return osect;
3187 else
3188 best_match = osect;
3189 }
3190 else if (pc_in_unmapped_range (pc, osect))
3191 best_match = osect;
3192 }
b631e59b 3193 }
714835d5 3194 return best_match;
c906108c
SS
3195}
3196
3197/* Function: find_pc_mapped_section (PC)
5417f6dc 3198 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3199 currently marked as MAPPED, return that section. Else return NULL. */
3200
714835d5 3201struct obj_section *
fba45db2 3202find_pc_mapped_section (CORE_ADDR pc)
c906108c 3203{
c906108c
SS
3204 struct obj_section *osect;
3205
3206 if (overlay_debugging)
b631e59b 3207 {
2030c079 3208 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3209 ALL_OBJFILE_OSECTIONS (objfile, osect)
3210 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3211 return osect;
b631e59b 3212 }
c906108c
SS
3213
3214 return NULL;
3215}
3216
3217/* Function: list_overlays_command
c378eb4e 3218 Print a list of mapped sections and their PC ranges. */
c906108c 3219
5d3055ad 3220static void
2cf311eb 3221list_overlays_command (const char *args, int from_tty)
c906108c 3222{
c5aa993b 3223 int nmapped = 0;
c906108c
SS
3224 struct obj_section *osect;
3225
3226 if (overlay_debugging)
b631e59b 3227 {
2030c079 3228 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3229 ALL_OBJFILE_OSECTIONS (objfile, osect)
3230 if (section_is_mapped (osect))
3231 {
3232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3233 const char *name;
3234 bfd_vma lma, vma;
3235 int size;
3236
3237 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3238 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3239 size = bfd_get_section_size (osect->the_bfd_section);
3240 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3241
3242 printf_filtered ("Section %s, loaded at ", name);
3243 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3244 puts_filtered (" - ");
3245 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3246 printf_filtered (", mapped at ");
3247 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3250 puts_filtered ("\n");
3251
3252 nmapped++;
3253 }
b631e59b 3254 }
c906108c 3255 if (nmapped == 0)
a3f17187 3256 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3257}
3258
3259/* Function: map_overlay_command
3260 Mark the named section as mapped (ie. residing at its VMA address). */
3261
5d3055ad 3262static void
2cf311eb 3263map_overlay_command (const char *args, int from_tty)
c906108c 3264{
c5aa993b 3265 struct obj_section *sec, *sec2;
c906108c
SS
3266
3267 if (!overlay_debugging)
3e43a32a
MS
3268 error (_("Overlay debugging not enabled. Use "
3269 "either the 'overlay auto' or\n"
3270 "the 'overlay manual' command."));
c906108c
SS
3271
3272 if (args == 0 || *args == 0)
8a3fe4f8 3273 error (_("Argument required: name of an overlay section"));
c906108c 3274
c378eb4e 3275 /* First, find a section matching the user supplied argument. */
2030c079 3276 for (objfile *obj_file : current_program_space->objfiles ())
3b9d3ac2
TT
3277 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3278 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3279 args))
c5aa993b 3280 {
3b9d3ac2
TT
3281 /* Now, check to see if the section is an overlay. */
3282 if (!section_is_overlay (sec))
3283 continue; /* not an overlay section */
3284
3285 /* Mark the overlay as "mapped". */
3286 sec->ovly_mapped = 1;
3287
3288 /* Next, make a pass and unmap any sections that are
3289 overlapped by this new section: */
2030c079 3290 for (objfile *objfile2 : current_program_space->objfiles ())
3b9d3ac2
TT
3291 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3292 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3293 sec2))
3294 {
3295 if (info_verbose)
3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3297 bfd_section_name (obj_file->obfd,
3298 sec2->the_bfd_section));
3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3300 }
3301 return;
c5aa993b 3302 }
8a3fe4f8 3303 error (_("No overlay section called %s"), args);
c906108c
SS
3304}
3305
3306/* Function: unmap_overlay_command
5417f6dc 3307 Mark the overlay section as unmapped
c906108c
SS
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
5d3055ad 3310static void
2cf311eb 3311unmap_overlay_command (const char *args, int from_tty)
c906108c 3312{
7a270e0c 3313 struct obj_section *sec = NULL;
c906108c
SS
3314
3315 if (!overlay_debugging)
3e43a32a
MS
3316 error (_("Overlay debugging not enabled. "
3317 "Use either the 'overlay auto' or\n"
3318 "the 'overlay manual' command."));
c906108c
SS
3319
3320 if (args == 0 || *args == 0)
8a3fe4f8 3321 error (_("Argument required: name of an overlay section"));
c906108c 3322
c378eb4e 3323 /* First, find a section matching the user supplied argument. */
2030c079 3324 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3325 ALL_OBJFILE_OSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3327 {
3328 if (!sec->ovly_mapped)
3329 error (_("Section %s is not mapped"), args);
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
8a3fe4f8 3333 error (_("No overlay section called %s"), args);
c906108c
SS
3334}
3335
3336/* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
c378eb4e 3338 Possibly this should be done via a set/show command. */
c906108c
SS
3339
3340static void
2cf311eb 3341overlay_auto_command (const char *args, int from_tty)
c906108c 3342{
d874f1e2 3343 overlay_debugging = ovly_auto;
1900040c 3344 enable_overlay_breakpoints ();
c906108c 3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3347}
3348
3349/* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
c378eb4e 3351 Possibly this should be done via a set/show command. */
c906108c
SS
3352
3353static void
2cf311eb 3354overlay_manual_command (const char *args, int from_tty)
c906108c 3355{
d874f1e2 3356 overlay_debugging = ovly_on;
1900040c 3357 disable_overlay_breakpoints ();
c906108c 3358 if (info_verbose)
a3f17187 3359 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3360}
3361
3362/* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
c378eb4e 3364 Possibly this should be done via a set/show command. */
c906108c
SS
3365
3366static void
2cf311eb 3367overlay_off_command (const char *args, int from_tty)
c906108c 3368{
d874f1e2 3369 overlay_debugging = ovly_off;
1900040c 3370 disable_overlay_breakpoints ();
c906108c 3371 if (info_verbose)
a3f17187 3372 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3373}
3374
3375static void
2cf311eb 3376overlay_load_command (const char *args, int from_tty)
c906108c 3377{
e17c207e
UW
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3382 else
8a3fe4f8 3383 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3384}
3385
3386/* Function: overlay_command
c378eb4e 3387 A place-holder for a mis-typed command. */
c906108c 3388
c378eb4e 3389/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3390static struct cmd_list_element *overlaylist;
c906108c
SS
3391
3392static void
981a3fb3 3393overlay_command (const char *args, int from_tty)
c906108c 3394{
c5aa993b 3395 printf_unfiltered
c906108c 3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3397 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3398}
3399
c906108c
SS
3400/* Target Overlays for the "Simplest" overlay manager:
3401
5417f6dc
RM
3402 This is GDB's default target overlay layer. It works with the
3403 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3404 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3405 so targets that use a different runtime overlay manager can
c906108c
SS
3406 substitute their own overlay_update function and take over the
3407 function pointer.
3408
3409 The overlay_update function pokes around in the target's data structures
3410 to see what overlays are mapped, and updates GDB's overlay mapping with
3411 this information.
3412
3413 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3414 unsigned _novlys; /# number of overlay sections #/
3415 unsigned _ovly_table[_novlys][4] = {
438e1e42 3416 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3417 {..., ..., ..., ...},
3418 }
3419 unsigned _novly_regions; /# number of overlay regions #/
3420 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3421 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3422 {..., ..., ...},
3423 }
c906108c
SS
3424 These functions will attempt to update GDB's mappedness state in the
3425 symbol section table, based on the target's mappedness state.
3426
3427 To do this, we keep a cached copy of the target's _ovly_table, and
3428 attempt to detect when the cached copy is invalidated. The main
3429 entry point is "simple_overlay_update(SECT), which looks up SECT in
3430 the cached table and re-reads only the entry for that section from
c378eb4e 3431 the target (whenever possible). */
c906108c
SS
3432
3433/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3434static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3435static unsigned cache_novlys = 0;
c906108c 3436static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3437enum ovly_index
3438 {
438e1e42 3439 VMA, OSIZE, LMA, MAPPED
c5aa993b 3440 };
c906108c 3441
c378eb4e 3442/* Throw away the cached copy of _ovly_table. */
3b7bacac 3443
c906108c 3444static void
fba45db2 3445simple_free_overlay_table (void)
c906108c
SS
3446{
3447 if (cache_ovly_table)
b8c9b27d 3448 xfree (cache_ovly_table);
c5aa993b 3449 cache_novlys = 0;
c906108c
SS
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452}
3453
9216df95 3454/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3455 Convert to host order. int LEN is number of ints. */
3b7bacac 3456
c906108c 3457static void
9216df95 3458read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3459 int len, int size, enum bfd_endian byte_order)
c906108c 3460{
c378eb4e 3461 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3462 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3463 int i;
c906108c 3464
9216df95 3465 read_memory (memaddr, buf, len * size);
c906108c 3466 for (i = 0; i < len; i++)
e17a4113 3467 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3468}
3469
3470/* Find and grab a copy of the target _ovly_table
c378eb4e 3471 (and _novlys, which is needed for the table's size). */
3b7bacac 3472
c5aa993b 3473static int
fba45db2 3474simple_read_overlay_table (void)
c906108c 3475{
3b7344d5 3476 struct bound_minimal_symbol novlys_msym;
7c7b6655 3477 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3478 struct gdbarch *gdbarch;
3479 int word_size;
e17a4113 3480 enum bfd_endian byte_order;
c906108c
SS
3481
3482 simple_free_overlay_table ();
9b27852e 3483 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3484 if (! novlys_msym.minsym)
c906108c 3485 {
8a3fe4f8 3486 error (_("Error reading inferior's overlay table: "
0d43edd1 3487 "couldn't find `_novlys' variable\n"
8a3fe4f8 3488 "in inferior. Use `overlay manual' mode."));
0d43edd1 3489 return 0;
c906108c 3490 }
0d43edd1 3491
7c7b6655
TT
3492 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3493 if (! ovly_table_msym.minsym)
0d43edd1 3494 {
8a3fe4f8 3495 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3496 "`_ovly_table' array\n"
8a3fe4f8 3497 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3498 return 0;
3499 }
3500
7c7b6655 3501 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3502 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3503 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3504
77e371c0
TT
3505 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3506 4, byte_order);
0d43edd1 3507 cache_ovly_table
224c3ddb 3508 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3509 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3510 read_target_long_array (cache_ovly_table_base,
777ea8f1 3511 (unsigned int *) cache_ovly_table,
e17a4113 3512 cache_novlys * 4, word_size, byte_order);
0d43edd1 3513
c5aa993b 3514 return 1; /* SUCCESS */
c906108c
SS
3515}
3516
5417f6dc 3517/* Function: simple_overlay_update_1
c906108c
SS
3518 A helper function for simple_overlay_update. Assuming a cached copy
3519 of _ovly_table exists, look through it to find an entry whose vma,
3520 lma and size match those of OSECT. Re-read the entry and make sure
3521 it still matches OSECT (else the table may no longer be valid).
3522 Set OSECT's mapped state to match the entry. Return: 1 for
3523 success, 0 for failure. */
3524
3525static int
fba45db2 3526simple_overlay_update_1 (struct obj_section *osect)
c906108c 3527{
764c99c1 3528 int i;
fbd35540 3529 asection *bsect = osect->the_bfd_section;
9216df95
UW
3530 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3531 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3532 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3533
c906108c 3534 for (i = 0; i < cache_novlys; i++)
fbd35540 3535 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3536 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3537 {
9216df95
UW
3538 read_target_long_array (cache_ovly_table_base + i * word_size,
3539 (unsigned int *) cache_ovly_table[i],
e17a4113 3540 4, word_size, byte_order);
fbd35540 3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3543 {
3544 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3545 return 1;
3546 }
c378eb4e 3547 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3548 return 0;
3549 }
3550 return 0;
3551}
3552
3553/* Function: simple_overlay_update
5417f6dc
RM
3554 If OSECT is NULL, then update all sections' mapped state
3555 (after re-reading the entire target _ovly_table).
3556 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3557 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3558 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3559 re-read the entire cache, and go ahead and update all sections. */
3560
1c772458 3561void
fba45db2 3562simple_overlay_update (struct obj_section *osect)
c906108c 3563{
c378eb4e 3564 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3565 if (osect)
c378eb4e 3566 /* Have we got a cached copy of the target's overlay table? */
c906108c 3567 if (cache_ovly_table != NULL)
9cc89665
MS
3568 {
3569 /* Does its cached location match what's currently in the
3570 symtab? */
3b7344d5 3571 struct bound_minimal_symbol minsym
9cc89665
MS
3572 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3573
3b7344d5 3574 if (minsym.minsym == NULL)
9cc89665
MS
3575 error (_("Error reading inferior's overlay table: couldn't "
3576 "find `_ovly_table' array\n"
3577 "in inferior. Use `overlay manual' mode."));
3578
77e371c0 3579 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3580 /* Then go ahead and try to look up this single section in
3581 the cache. */
3582 if (simple_overlay_update_1 (osect))
3583 /* Found it! We're done. */
3584 return;
3585 }
c906108c
SS
3586
3587 /* Cached table no good: need to read the entire table anew.
3588 Or else we want all the sections, in which case it's actually
3589 more efficient to read the whole table in one block anyway. */
3590
0d43edd1
JB
3591 if (! simple_read_overlay_table ())
3592 return;
3593
c378eb4e 3594 /* Now may as well update all sections, even if only one was requested. */
2030c079 3595 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3596 ALL_OBJFILE_OSECTIONS (objfile, osect)
3597 if (section_is_overlay (osect))
3598 {
3599 int i;
3600 asection *bsect = osect->the_bfd_section;
3601
3602 for (i = 0; i < cache_novlys; i++)
3603 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3604 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3605 { /* obj_section matches i'th entry in ovly_table. */
3606 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3607 break; /* finished with inner for loop: break out. */
3608 }
3609 }
c906108c
SS
3610}
3611
086df311
DJ
3612/* Set the output sections and output offsets for section SECTP in
3613 ABFD. The relocation code in BFD will read these offsets, so we
3614 need to be sure they're initialized. We map each section to itself,
3615 with no offset; this means that SECTP->vma will be honored. */
3616
3617static void
3618symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3619{
3620 sectp->output_section = sectp;
3621 sectp->output_offset = 0;
3622}
3623
ac8035ab
TG
3624/* Default implementation for sym_relocate. */
3625
ac8035ab
TG
3626bfd_byte *
3627default_symfile_relocate (struct objfile *objfile, asection *sectp,
3628 bfd_byte *buf)
3629{
3019eac3
DE
3630 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3631 DWO file. */
3632 bfd *abfd = sectp->owner;
ac8035ab
TG
3633
3634 /* We're only interested in sections with relocation
3635 information. */
3636 if ((sectp->flags & SEC_RELOC) == 0)
3637 return NULL;
3638
3639 /* We will handle section offsets properly elsewhere, so relocate as if
3640 all sections begin at 0. */
3641 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3642
3643 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3644}
3645
086df311
DJ
3646/* Relocate the contents of a debug section SECTP in ABFD. The
3647 contents are stored in BUF if it is non-NULL, or returned in a
3648 malloc'd buffer otherwise.
3649
3650 For some platforms and debug info formats, shared libraries contain
3651 relocations against the debug sections (particularly for DWARF-2;
3652 one affected platform is PowerPC GNU/Linux, although it depends on
3653 the version of the linker in use). Also, ELF object files naturally
3654 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3655 the relocations in order to get the locations of symbols correct.
3656 Another example that may require relocation processing, is the
3657 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3658 debug section. */
086df311
DJ
3659
3660bfd_byte *
ac8035ab
TG
3661symfile_relocate_debug_section (struct objfile *objfile,
3662 asection *sectp, bfd_byte *buf)
086df311 3663{
ac8035ab 3664 gdb_assert (objfile->sf->sym_relocate);
086df311 3665
ac8035ab 3666 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3667}
c906108c 3668
31d99776
DJ
3669struct symfile_segment_data *
3670get_symfile_segment_data (bfd *abfd)
3671{
00b5771c 3672 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3673
3674 if (sf == NULL)
3675 return NULL;
3676
3677 return sf->sym_segments (abfd);
3678}
3679
3680void
3681free_symfile_segment_data (struct symfile_segment_data *data)
3682{
3683 xfree (data->segment_bases);
3684 xfree (data->segment_sizes);
3685 xfree (data->segment_info);
3686 xfree (data);
3687}
3688
28c32713
JB
3689/* Given:
3690 - DATA, containing segment addresses from the object file ABFD, and
3691 the mapping from ABFD's sections onto the segments that own them,
3692 and
3693 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3694 segment addresses reported by the target,
3695 store the appropriate offsets for each section in OFFSETS.
3696
3697 If there are fewer entries in SEGMENT_BASES than there are segments
3698 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3699
8d385431
DJ
3700 If there are more entries, then ignore the extra. The target may
3701 not be able to distinguish between an empty data segment and a
3702 missing data segment; a missing text segment is less plausible. */
3b7bacac 3703
31d99776 3704int
3189cb12
DE
3705symfile_map_offsets_to_segments (bfd *abfd,
3706 const struct symfile_segment_data *data,
31d99776
DJ
3707 struct section_offsets *offsets,
3708 int num_segment_bases,
3709 const CORE_ADDR *segment_bases)
3710{
3711 int i;
3712 asection *sect;
3713
28c32713
JB
3714 /* It doesn't make sense to call this function unless you have some
3715 segment base addresses. */
202b96c1 3716 gdb_assert (num_segment_bases > 0);
28c32713 3717
31d99776
DJ
3718 /* If we do not have segment mappings for the object file, we
3719 can not relocate it by segments. */
3720 gdb_assert (data != NULL);
3721 gdb_assert (data->num_segments > 0);
3722
31d99776
DJ
3723 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3724 {
31d99776
DJ
3725 int which = data->segment_info[i];
3726
28c32713
JB
3727 gdb_assert (0 <= which && which <= data->num_segments);
3728
3729 /* Don't bother computing offsets for sections that aren't
3730 loaded as part of any segment. */
3731 if (! which)
3732 continue;
3733
3734 /* Use the last SEGMENT_BASES entry as the address of any extra
3735 segments mentioned in DATA->segment_info. */
31d99776 3736 if (which > num_segment_bases)
28c32713 3737 which = num_segment_bases;
31d99776 3738
28c32713
JB
3739 offsets->offsets[i] = (segment_bases[which - 1]
3740 - data->segment_bases[which - 1]);
31d99776
DJ
3741 }
3742
3743 return 1;
3744}
3745
3746static void
3747symfile_find_segment_sections (struct objfile *objfile)
3748{
3749 bfd *abfd = objfile->obfd;
3750 int i;
3751 asection *sect;
3752 struct symfile_segment_data *data;
3753
3754 data = get_symfile_segment_data (objfile->obfd);
3755 if (data == NULL)
3756 return;
3757
3758 if (data->num_segments != 1 && data->num_segments != 2)
3759 {
3760 free_symfile_segment_data (data);
3761 return;
3762 }
3763
3764 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3765 {
31d99776
DJ
3766 int which = data->segment_info[i];
3767
3768 if (which == 1)
3769 {
3770 if (objfile->sect_index_text == -1)
3771 objfile->sect_index_text = sect->index;
3772
3773 if (objfile->sect_index_rodata == -1)
3774 objfile->sect_index_rodata = sect->index;
3775 }
3776 else if (which == 2)
3777 {
3778 if (objfile->sect_index_data == -1)
3779 objfile->sect_index_data = sect->index;
3780
3781 if (objfile->sect_index_bss == -1)
3782 objfile->sect_index_bss = sect->index;
3783 }
3784 }
3785
3786 free_symfile_segment_data (data);
3787}
3788
76ad5e1e
NB
3789/* Listen for free_objfile events. */
3790
3791static void
3792symfile_free_objfile (struct objfile *objfile)
3793{
c33b2f12
MM
3794 /* Remove the target sections owned by this objfile. */
3795 if (objfile != NULL)
76ad5e1e
NB
3796 remove_target_sections ((void *) objfile);
3797}
3798
540c2971
DE
3799/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3800 Expand all symtabs that match the specified criteria.
3801 See quick_symbol_functions.expand_symtabs_matching for details. */
3802
3803void
14bc53a8
PA
3804expand_symtabs_matching
3805 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3806 const lookup_name_info &lookup_name,
14bc53a8
PA
3807 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3808 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3809 enum search_domain kind)
540c2971 3810{
2030c079 3811 for (objfile *objfile : current_program_space->objfiles ())
aed57c53
TT
3812 {
3813 if (objfile->sf)
3814 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3815 lookup_name,
3816 symbol_matcher,
3817 expansion_notify, kind);
3818 }
540c2971
DE
3819}
3820
3821/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3822 Map function FUN over every file.
3823 See quick_symbol_functions.map_symbol_filenames for details. */
3824
3825void
bb4142cf
DE
3826map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3827 int need_fullname)
540c2971 3828{
2030c079 3829 for (objfile *objfile : current_program_space->objfiles ())
aed57c53
TT
3830 {
3831 if (objfile->sf)
3832 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3833 need_fullname);
3834 }
540c2971
DE
3835}
3836
32fa66eb
SM
3837#if GDB_SELF_TEST
3838
3839namespace selftests {
3840namespace filename_language {
3841
32fa66eb
SM
3842static void test_filename_language ()
3843{
3844 /* This test messes up the filename_language_table global. */
593e3209 3845 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3846
3847 /* Test deducing an unknown extension. */
3848 language lang = deduce_language_from_filename ("myfile.blah");
3849 SELF_CHECK (lang == language_unknown);
3850
3851 /* Test deducing a known extension. */
3852 lang = deduce_language_from_filename ("myfile.c");
3853 SELF_CHECK (lang == language_c);
3854
3855 /* Test adding a new extension using the internal API. */
3856 add_filename_language (".blah", language_pascal);
3857 lang = deduce_language_from_filename ("myfile.blah");
3858 SELF_CHECK (lang == language_pascal);
3859}
3860
3861static void
3862test_set_ext_lang_command ()
3863{
3864 /* This test messes up the filename_language_table global. */
593e3209 3865 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3866
3867 /* Confirm that the .hello extension is not known. */
3868 language lang = deduce_language_from_filename ("cake.hello");
3869 SELF_CHECK (lang == language_unknown);
3870
3871 /* Test adding a new extension using the CLI command. */
3872 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3873 ext_args = args_holder.get ();
3874 set_ext_lang_command (NULL, 1, NULL);
3875
3876 lang = deduce_language_from_filename ("cake.hello");
3877 SELF_CHECK (lang == language_rust);
3878
3879 /* Test overriding an existing extension using the CLI command. */
593e3209 3880 int size_before = filename_language_table.size ();
32fa66eb
SM
3881 args_holder.reset (xstrdup (".hello pascal"));
3882 ext_args = args_holder.get ();
3883 set_ext_lang_command (NULL, 1, NULL);
593e3209 3884 int size_after = filename_language_table.size ();
32fa66eb
SM
3885
3886 lang = deduce_language_from_filename ("cake.hello");
3887 SELF_CHECK (lang == language_pascal);
3888 SELF_CHECK (size_before == size_after);
3889}
3890
3891} /* namespace filename_language */
3892} /* namespace selftests */
3893
3894#endif /* GDB_SELF_TEST */
3895
c906108c 3896void
fba45db2 3897_initialize_symfile (void)
c906108c
SS
3898{
3899 struct cmd_list_element *c;
c5aa993b 3900
76727919 3901 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3902
97cbe998 3903#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3904 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3905immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3906faster.\n\
3907The '-readnever' option will prevent GDB from reading the symbol file's\n\
3908symbolic debug information."
8ca2f0b9 3909
1a966eab
AC
3910 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3911Load symbol table from executable file FILE.\n\
d4d429d5
PT
3912Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3913OFF is an optional offset which is added to each section address.\n\
c906108c 3914The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3915to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3916 set_cmd_completer (c, filename_completer);
c906108c 3917
1a966eab 3918 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3919Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
291f9a96 3920Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
ed6dfe51 3921[-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3922ADDR is the starting address of the file's text.\n\
3923Each '-s' argument provides a section name and address, and\n\
db162d44 3924should be specified if the data and bss segments are not contiguous\n\
291f9a96
PT
3925with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3926OFF is an optional offset which is added to the default load addresses\n\
3927of all sections for which no other address was specified.\n"
97cbe998 3928READNOW_READNEVER_HELP),
c906108c 3929 &cmdlist);
5ba2abeb 3930 set_cmd_completer (c, filename_completer);
c906108c 3931
63644780
NB
3932 c = add_cmd ("remove-symbol-file", class_files,
3933 remove_symbol_file_command, _("\
3934Remove a symbol file added via the add-symbol-file command.\n\
3935Usage: remove-symbol-file FILENAME\n\
3936 remove-symbol-file -a ADDRESS\n\
3937The file to remove can be identified by its filename or by an address\n\
3938that lies within the boundaries of this symbol file in memory."),
3939 &cmdlist);
3940
1a966eab
AC
3941 c = add_cmd ("load", class_files, load_command, _("\
3942Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3943for access from GDB.\n\
8ca2f0b9 3944Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3945An optional load OFFSET may also be given as a literal address.\n\
3946When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3947on its own."), &cmdlist);
5ba2abeb 3948 set_cmd_completer (c, filename_completer);
c906108c 3949
c5aa993b 3950 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3951 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3952 "overlay ", 0, &cmdlist);
3953
3954 add_com_alias ("ovly", "overlay", class_alias, 1);
3955 add_com_alias ("ov", "overlay", class_alias, 1);
3956
c5aa993b 3957 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3958 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3959
c5aa993b 3960 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3961 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3962
c5aa993b 3963 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3964 _("List mappings of overlay sections."), &overlaylist);
c906108c 3965
c5aa993b 3966 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3967 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3968 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3969 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3970 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3971 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3972 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3973 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3974
3975 /* Filename extension to source language lookup table: */
26c41df3
AC
3976 add_setshow_string_noescape_cmd ("extension-language", class_files,
3977 &ext_args, _("\
3978Set mapping between filename extension and source language."), _("\
3979Show mapping between filename extension and source language."), _("\
3980Usage: set extension-language .foo bar"),
3981 set_ext_lang_command,
920d2a44 3982 show_ext_args,
26c41df3 3983 &setlist, &showlist);
c906108c 3984
c5aa993b 3985 add_info ("extensions", info_ext_lang_command,
1bedd215 3986 _("All filename extensions associated with a source language."));
917317f4 3987
525226b5
AC
3988 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3989 &debug_file_directory, _("\
24ddea62
JK
3990Set the directories where separate debug symbols are searched for."), _("\
3991Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3992Separate debug symbols are first searched for in the same\n\
3993directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3994and lastly at the path of the directory of the binary with\n\
24ddea62 3995each global debug-file-directory component prepended."),
525226b5 3996 NULL,
920d2a44 3997 show_debug_file_directory,
525226b5 3998 &setlist, &showlist);
770e7fc7
DE
3999
4000 add_setshow_enum_cmd ("symbol-loading", no_class,
4001 print_symbol_loading_enums, &print_symbol_loading,
4002 _("\
4003Set printing of symbol loading messages."), _("\
4004Show printing of symbol loading messages."), _("\
4005off == turn all messages off\n\
4006brief == print messages for the executable,\n\
4007 and brief messages for shared libraries\n\
4008full == print messages for the executable,\n\
4009 and messages for each shared library."),
4010 NULL,
4011 NULL,
4012 &setprintlist, &showprintlist);
c4dcb155
SM
4013
4014 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4015 &separate_debug_file_debug, _("\
4016Set printing of separate debug info file search debug."), _("\
4017Show printing of separate debug info file search debug."), _("\
4018When on, GDB prints the searched locations while looking for separate debug \
4019info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4020
4021#if GDB_SELF_TEST
4022 selftests::register_test
4023 ("filename_language", selftests::filename_language::test_filename_language);
4024 selftests::register_test
4025 ("set_ext_lang_command",
4026 selftests::filename_language::test_set_ext_lang_command);
4027#endif
c906108c 4028}
This page took 2.333648 seconds and 4 git commands to generate.