2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
CommitLineData
c906108c 1/* Symbol table lookup for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4c38e0a4
JB
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
88987551 33#include "gdb_regex.h"
c906108c
SS
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
c5f0f3d0 38#include "linespec.h"
0378c332 39#include "source.h"
a7fdf62f 40#include "filenames.h" /* for FILENAME_CMP */
1bae87b9 41#include "objc-lang.h"
6aecb9c2 42#include "d-lang.h"
1f8173e6 43#include "ada-lang.h"
cd6c7346 44#include "p-lang.h"
ff013f42 45#include "addrmap.h"
c906108c 46
2de7ced7
DJ
47#include "hashtab.h"
48
04ea0df1 49#include "gdb_obstack.h"
fe898f56 50#include "block.h"
de4f826b 51#include "dictionary.h"
c906108c
SS
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include "gdb_string.h"
56#include "gdb_stat.h"
57#include <ctype.h>
015a42b4 58#include "cp-abi.h"
71c25dea 59#include "cp-support.h"
ea53e89f 60#include "observer.h"
94277a38 61#include "gdb_assert.h"
3a40aaa0 62#include "solist.h"
9a044a89
TT
63#include "macrotab.h"
64#include "macroscope.h"
c906108c 65
ccefe4c4
TT
66#include "psymtab.h"
67
c906108c
SS
68/* Prototypes for local functions */
69
a14ed312 70static void completion_list_add_name (char *, char *, int, char *, char *);
c906108c 71
a14ed312 72static void rbreak_command (char *, int);
c906108c 73
a14ed312 74static void types_info (char *, int);
c906108c 75
a14ed312 76static void functions_info (char *, int);
c906108c 77
a14ed312 78static void variables_info (char *, int);
c906108c 79
a14ed312 80static void sources_info (char *, int);
c906108c 81
d092d1a2 82static void output_source_filename (const char *, int *);
c906108c 83
a14ed312 84static int find_line_common (struct linetable *, int, int *);
c906108c 85
50641945
FN
86/* This one is used by linespec.c */
87
88char *operator_chars (char *p, char **end);
89
3121eff0 90static struct symbol *lookup_symbol_aux (const char *name,
3121eff0 91 const struct block *block,
176620f1 92 const domain_enum domain,
53c5240f 93 enum language language,
21b556f4 94 int *is_a_field_of_this);
fba7f19c 95
e4051eeb
DC
96static
97struct symbol *lookup_symbol_aux_local (const char *name,
e4051eeb 98 const struct block *block,
13387711
SW
99 const domain_enum domain,
100 enum language language);
8155455b
DC
101
102static
103struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
21b556f4 105 const domain_enum domain);
8155455b
DC
106
107static
ccefe4c4
TT
108struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
c906108c 112
176620f1 113static void print_symbol_info (domain_enum,
a14ed312 114 struct symtab *, struct symbol *, int, char *);
c906108c 115
a14ed312 116static void print_msymbol_info (struct minimal_symbol *);
c906108c 117
176620f1 118static void symtab_symbol_info (char *, domain_enum, int);
c906108c 119
a14ed312 120void _initialize_symtab (void);
c906108c
SS
121
122/* */
123
717d2f5a
JB
124/* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
7fc830e2
MK
128const char multiple_symbols_ask[] = "ask";
129const char multiple_symbols_all[] = "all";
130const char multiple_symbols_cancel[] = "cancel";
717d2f5a
JB
131static const char *multiple_symbols_modes[] =
132{
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137};
138static const char *multiple_symbols_mode = multiple_symbols_all;
139
140/* Read-only accessor to AUTO_SELECT_MODE. */
141
142const char *
143multiple_symbols_select_mode (void)
144{
145 return multiple_symbols_mode;
146}
147
c906108c 148/* Block in which the most recently searched-for symbol was found.
9af17804 149 Might be better to make this a parameter to lookup_symbol and
c906108c
SS
150 value_of_this. */
151
152const struct block *block_found;
153
c906108c
SS
154/* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
1b15f1fa
TT
158struct symtab *
159lookup_symtab (const char *name)
c906108c 160{
ccefe4c4
TT
161 int found;
162 struct symtab *s = NULL;
52f0bd74 163 struct objfile *objfile;
58d370e0 164 char *real_path = NULL;
f079a2e5 165 char *full_path = NULL;
58d370e0
TT
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
f079a2e5
JB
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
c906108c 176
c5aa993b 177got_symtab:
c906108c
SS
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
58d370e0 182 {
a7fdf62f 183 if (FILENAME_CMP (name, s->filename) == 0)
58d370e0 184 {
58d370e0
TT
185 return s;
186 }
9af17804 187
58d370e0
TT
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
9af17804 190
f079a2e5
JB
191 if (full_path != NULL)
192 {
09bcec80
BR
193 const char *fp = symtab_to_fullname (s);
194 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
195 {
196 return s;
197 }
f079a2e5
JB
198 }
199
58d370e0
TT
200 if (real_path != NULL)
201 {
09bcec80
BR
202 char *fullname = symtab_to_fullname (s);
203 if (fullname != NULL)
204 {
205 char *rp = gdb_realpath (fullname);
206 make_cleanup (xfree, rp);
207 if (FILENAME_CMP (real_path, rp) == 0)
208 {
209 return s;
210 }
211 }
58d370e0
TT
212 }
213 }
214
c906108c
SS
215 /* Now, search for a matching tail (only if name doesn't have any dirs) */
216
caadab2c 217 if (lbasename (name) == name)
c906108c 218 ALL_SYMTABS (objfile, s)
c5aa993b 219 {
31889e00 220 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
c5aa993b
JM
221 return s;
222 }
c906108c
SS
223
224 /* Same search rules as above apply here, but now we look thru the
225 psymtabs. */
226
ccefe4c4
TT
227 found = 0;
228 ALL_OBJFILES (objfile)
229 {
230 if (objfile->sf
231 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
232 &s))
233 {
234 found = 1;
235 break;
236 }
237 }
c906108c 238
ccefe4c4 239 if (s != NULL)
c906108c 240 return s;
ccefe4c4
TT
241 if (!found)
242 return NULL;
c906108c
SS
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253}
c906108c
SS
254\f
255/* Mangle a GDB method stub type. This actually reassembles the pieces of the
256 full method name, which consist of the class name (from T), the unadorned
257 method name from METHOD_ID, and the signature for the specific overload,
258 specified by SIGNATURE_ID. Note that this function is g++ specific. */
259
260char *
fba45db2 261gdb_mangle_name (struct type *type, int method_id, int signature_id)
c906108c
SS
262{
263 int mangled_name_len;
264 char *mangled_name;
265 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
266 struct fn_field *method = &f[signature_id];
267 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
268 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
269 char *newname = type_name_no_tag (type);
270
271 /* Does the form of physname indicate that it is the full mangled name
272 of a constructor (not just the args)? */
273 int is_full_physname_constructor;
274
275 int is_constructor;
015a42b4 276 int is_destructor = is_destructor_name (physname);
c906108c
SS
277 /* Need a new type prefix. */
278 char *const_prefix = method->is_const ? "C" : "";
279 char *volatile_prefix = method->is_volatile ? "V" : "";
280 char buf[20];
281 int len = (newname == NULL ? 0 : strlen (newname));
282
43630227
PS
283 /* Nothing to do if physname already contains a fully mangled v3 abi name
284 or an operator name. */
285 if ((physname[0] == '_' && physname[1] == 'Z')
286 || is_operator_name (field_name))
235d1e03
EZ
287 return xstrdup (physname);
288
015a42b4 289 is_full_physname_constructor = is_constructor_name (physname);
c906108c
SS
290
291 is_constructor =
6314a349 292 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
c906108c
SS
293
294 if (!is_destructor)
c5aa993b 295 is_destructor = (strncmp (physname, "__dt", 4) == 0);
c906108c
SS
296
297 if (is_destructor || is_full_physname_constructor)
298 {
c5aa993b
JM
299 mangled_name = (char *) xmalloc (strlen (physname) + 1);
300 strcpy (mangled_name, physname);
c906108c
SS
301 return mangled_name;
302 }
303
304 if (len == 0)
305 {
306 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
307 }
308 else if (physname[0] == 't' || physname[0] == 'Q')
309 {
310 /* The physname for template and qualified methods already includes
c5aa993b 311 the class name. */
c906108c
SS
312 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
313 newname = NULL;
314 len = 0;
315 }
316 else
317 {
318 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
319 }
320 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
235d1e03 321 + strlen (buf) + len + strlen (physname) + 1);
c906108c 322
c906108c 323 {
c5aa993b 324 mangled_name = (char *) xmalloc (mangled_name_len);
c906108c
SS
325 if (is_constructor)
326 mangled_name[0] = '\0';
327 else
328 strcpy (mangled_name, field_name);
329 }
330 strcat (mangled_name, buf);
331 /* If the class doesn't have a name, i.e. newname NULL, then we just
332 mangle it using 0 for the length of the class. Thus it gets mangled
c5aa993b 333 as something starting with `::' rather than `classname::'. */
c906108c
SS
334 if (newname != NULL)
335 strcat (mangled_name, newname);
336
337 strcat (mangled_name, physname);
338 return (mangled_name);
339}
12af6855
JB
340
341\f
89aad1f9
EZ
342/* Initialize the language dependent portion of a symbol
343 depending upon the language for the symbol. */
344void
345symbol_init_language_specific (struct general_symbol_info *gsymbol,
346 enum language language)
347{
348 gsymbol->language = language;
349 if (gsymbol->language == language_cplus
6aecb9c2 350 || gsymbol->language == language_d
5784d15e
AF
351 || gsymbol->language == language_java
352 || gsymbol->language == language_objc)
89aad1f9
EZ
353 {
354 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
355 }
89aad1f9
EZ
356 else
357 {
358 memset (&gsymbol->language_specific, 0,
359 sizeof (gsymbol->language_specific));
360 }
361}
362
2de7ced7
DJ
363/* Functions to initialize a symbol's mangled name. */
364
04a679b8
TT
365/* Objects of this type are stored in the demangled name hash table. */
366struct demangled_name_entry
367{
368 char *mangled;
369 char demangled[1];
370};
371
372/* Hash function for the demangled name hash. */
373static hashval_t
374hash_demangled_name_entry (const void *data)
375{
376 const struct demangled_name_entry *e = data;
377 return htab_hash_string (e->mangled);
378}
379
380/* Equality function for the demangled name hash. */
381static int
382eq_demangled_name_entry (const void *a, const void *b)
383{
384 const struct demangled_name_entry *da = a;
385 const struct demangled_name_entry *db = b;
386 return strcmp (da->mangled, db->mangled) == 0;
387}
388
2de7ced7
DJ
389/* Create the hash table used for demangled names. Each hash entry is
390 a pair of strings; one for the mangled name and one for the demangled
391 name. The entry is hashed via just the mangled name. */
392
393static void
394create_demangled_names_hash (struct objfile *objfile)
395{
396 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
9af17804 397 The hash table code will round this up to the next prime number.
2de7ced7
DJ
398 Choosing a much larger table size wastes memory, and saves only about
399 1% in symbol reading. */
400
aa2ee5f6 401 objfile->demangled_names_hash = htab_create_alloc
04a679b8 402 (256, hash_demangled_name_entry, eq_demangled_name_entry,
aa2ee5f6 403 NULL, xcalloc, xfree);
2de7ced7 404}
12af6855 405
2de7ced7 406/* Try to determine the demangled name for a symbol, based on the
12af6855
JB
407 language of that symbol. If the language is set to language_auto,
408 it will attempt to find any demangling algorithm that works and
2de7ced7
DJ
409 then set the language appropriately. The returned name is allocated
410 by the demangler and should be xfree'd. */
12af6855 411
2de7ced7
DJ
412static char *
413symbol_find_demangled_name (struct general_symbol_info *gsymbol,
414 const char *mangled)
12af6855 415{
12af6855
JB
416 char *demangled = NULL;
417
418 if (gsymbol->language == language_unknown)
419 gsymbol->language = language_auto;
1bae87b9
AF
420
421 if (gsymbol->language == language_objc
422 || gsymbol->language == language_auto)
423 {
424 demangled =
425 objc_demangle (mangled, 0);
426 if (demangled != NULL)
427 {
428 gsymbol->language = language_objc;
429 return demangled;
430 }
431 }
12af6855
JB
432 if (gsymbol->language == language_cplus
433 || gsymbol->language == language_auto)
434 {
435 demangled =
94af9270 436 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
12af6855 437 if (demangled != NULL)
2de7ced7
DJ
438 {
439 gsymbol->language = language_cplus;
440 return demangled;
441 }
12af6855
JB
442 }
443 if (gsymbol->language == language_java)
444 {
445 demangled =
2de7ced7 446 cplus_demangle (mangled,
12af6855
JB
447 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
448 if (demangled != NULL)
2de7ced7
DJ
449 {
450 gsymbol->language = language_java;
451 return demangled;
452 }
453 }
6aecb9c2
JB
454 if (gsymbol->language == language_d
455 || gsymbol->language == language_auto)
456 {
457 demangled = d_demangle(mangled, 0);
458 if (demangled != NULL)
459 {
460 gsymbol->language = language_d;
461 return demangled;
462 }
463 }
2de7ced7
DJ
464 return NULL;
465}
466
980cae7a 467/* Set both the mangled and demangled (if any) names for GSYMBOL based
04a679b8
TT
468 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
469 objfile's obstack; but if COPY_NAME is 0 and if NAME is
470 NUL-terminated, then this function assumes that NAME is already
471 correctly saved (either permanently or with a lifetime tied to the
472 objfile), and it will not be copied.
473
474 The hash table corresponding to OBJFILE is used, and the memory
475 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
476 so the pointer can be discarded after calling this function. */
2de7ced7 477
d2a52b27
DC
478/* We have to be careful when dealing with Java names: when we run
479 into a Java minimal symbol, we don't know it's a Java symbol, so it
480 gets demangled as a C++ name. This is unfortunate, but there's not
481 much we can do about it: but when demangling partial symbols and
482 regular symbols, we'd better not reuse the wrong demangled name.
483 (See PR gdb/1039.) We solve this by putting a distinctive prefix
484 on Java names when storing them in the hash table. */
485
486/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
487 don't mind the Java prefix so much: different languages have
488 different demangling requirements, so it's only natural that we
489 need to keep language data around in our demangling cache. But
490 it's not good that the minimal symbol has the wrong demangled name.
491 Unfortunately, I can't think of any easy solution to that
492 problem. */
493
494#define JAVA_PREFIX "##JAVA$$"
495#define JAVA_PREFIX_LEN 8
496
2de7ced7
DJ
497void
498symbol_set_names (struct general_symbol_info *gsymbol,
04a679b8
TT
499 const char *linkage_name, int len, int copy_name,
500 struct objfile *objfile)
2de7ced7 501{
04a679b8 502 struct demangled_name_entry **slot;
980cae7a
DC
503 /* A 0-terminated copy of the linkage name. */
504 const char *linkage_name_copy;
d2a52b27
DC
505 /* A copy of the linkage name that might have a special Java prefix
506 added to it, for use when looking names up in the hash table. */
507 const char *lookup_name;
508 /* The length of lookup_name. */
509 int lookup_len;
04a679b8 510 struct demangled_name_entry entry;
2de7ced7 511
b06ead72
JB
512 if (gsymbol->language == language_ada)
513 {
514 /* In Ada, we do the symbol lookups using the mangled name, so
515 we can save some space by not storing the demangled name.
516
517 As a side note, we have also observed some overlap between
518 the C++ mangling and Ada mangling, similarly to what has
519 been observed with Java. Because we don't store the demangled
520 name with the symbol, we don't need to use the same trick
521 as Java. */
04a679b8
TT
522 if (!copy_name)
523 gsymbol->name = (char *) linkage_name;
524 else
525 {
526 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
527 memcpy (gsymbol->name, linkage_name, len);
528 gsymbol->name[len] = '\0';
529 }
b06ead72
JB
530 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
531
532 return;
533 }
534
04a679b8
TT
535 if (objfile->demangled_names_hash == NULL)
536 create_demangled_names_hash (objfile);
537
980cae7a
DC
538 /* The stabs reader generally provides names that are not
539 NUL-terminated; most of the other readers don't do this, so we
d2a52b27
DC
540 can just use the given copy, unless we're in the Java case. */
541 if (gsymbol->language == language_java)
542 {
543 char *alloc_name;
544 lookup_len = len + JAVA_PREFIX_LEN;
545
546 alloc_name = alloca (lookup_len + 1);
547 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
548 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
549 alloc_name[lookup_len] = '\0';
550
551 lookup_name = alloc_name;
552 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
553 }
554 else if (linkage_name[len] != '\0')
2de7ced7 555 {
980cae7a 556 char *alloc_name;
d2a52b27 557 lookup_len = len;
980cae7a 558
d2a52b27 559 alloc_name = alloca (lookup_len + 1);
980cae7a 560 memcpy (alloc_name, linkage_name, len);
d2a52b27 561 alloc_name[lookup_len] = '\0';
980cae7a 562
d2a52b27 563 lookup_name = alloc_name;
980cae7a 564 linkage_name_copy = alloc_name;
2de7ced7
DJ
565 }
566 else
980cae7a 567 {
d2a52b27
DC
568 lookup_len = len;
569 lookup_name = linkage_name;
980cae7a
DC
570 linkage_name_copy = linkage_name;
571 }
2de7ced7 572
04a679b8
TT
573 entry.mangled = (char *) lookup_name;
574 slot = ((struct demangled_name_entry **)
575 htab_find_slot (objfile->demangled_names_hash,
576 &entry, INSERT));
2de7ced7
DJ
577
578 /* If this name is not in the hash table, add it. */
579 if (*slot == NULL)
580 {
980cae7a
DC
581 char *demangled_name = symbol_find_demangled_name (gsymbol,
582 linkage_name_copy);
2de7ced7
DJ
583 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
584
04a679b8
TT
585 /* Suppose we have demangled_name==NULL, copy_name==0, and
586 lookup_name==linkage_name. In this case, we already have the
587 mangled name saved, and we don't have a demangled name. So,
588 you might think we could save a little space by not recording
589 this in the hash table at all.
590
591 It turns out that it is actually important to still save such
592 an entry in the hash table, because storing this name gives
705b5767 593 us better bcache hit rates for partial symbols. */
04a679b8
TT
594 if (!copy_name && lookup_name == linkage_name)
595 {
596 *slot = obstack_alloc (&objfile->objfile_obstack,
597 offsetof (struct demangled_name_entry,
598 demangled)
599 + demangled_len + 1);
600 (*slot)->mangled = (char *) lookup_name;
601 }
602 else
603 {
604 /* If we must copy the mangled name, put it directly after
605 the demangled name so we can have a single
606 allocation. */
607 *slot = obstack_alloc (&objfile->objfile_obstack,
608 offsetof (struct demangled_name_entry,
609 demangled)
610 + lookup_len + demangled_len + 2);
611 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
612 strcpy ((*slot)->mangled, lookup_name);
613 }
614
980cae7a 615 if (demangled_name != NULL)
2de7ced7 616 {
04a679b8 617 strcpy ((*slot)->demangled, demangled_name);
2de7ced7
DJ
618 xfree (demangled_name);
619 }
620 else
04a679b8 621 (*slot)->demangled[0] = '\0';
2de7ced7
DJ
622 }
623
72dcaf82 624 gsymbol->name = (*slot)->mangled + lookup_len - len;
04a679b8 625 if ((*slot)->demangled[0] != '\0')
2de7ced7 626 gsymbol->language_specific.cplus_specific.demangled_name
04a679b8 627 = (*slot)->demangled;
2de7ced7
DJ
628 else
629 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
630}
631
22abf04a
DC
632/* Return the source code name of a symbol. In languages where
633 demangling is necessary, this is the demangled name. */
634
635char *
636symbol_natural_name (const struct general_symbol_info *gsymbol)
637{
9af17804 638 switch (gsymbol->language)
22abf04a 639 {
1f8173e6 640 case language_cplus:
6aecb9c2 641 case language_d:
1f8173e6
PH
642 case language_java:
643 case language_objc:
644 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
645 return gsymbol->language_specific.cplus_specific.demangled_name;
646 break;
647 case language_ada:
648 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
649 return gsymbol->language_specific.cplus_specific.demangled_name;
650 else
651 return ada_decode_symbol (gsymbol);
652 break;
653 default:
654 break;
22abf04a 655 }
1f8173e6 656 return gsymbol->name;
22abf04a
DC
657}
658
9cc0d196
EZ
659/* Return the demangled name for a symbol based on the language for
660 that symbol. If no demangled name exists, return NULL. */
661char *
df8a16a1 662symbol_demangled_name (const struct general_symbol_info *gsymbol)
9cc0d196 663{
9af17804 664 switch (gsymbol->language)
1f8173e6
PH
665 {
666 case language_cplus:
6aecb9c2 667 case language_d:
1f8173e6
PH
668 case language_java:
669 case language_objc:
670 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
671 return gsymbol->language_specific.cplus_specific.demangled_name;
672 break;
673 case language_ada:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 else
677 return ada_decode_symbol (gsymbol);
678 break;
679 default:
680 break;
681 }
682 return NULL;
9cc0d196 683}
fe39c653 684
4725b721
PH
685/* Return the search name of a symbol---generally the demangled or
686 linkage name of the symbol, depending on how it will be searched for.
9af17804 687 If there is no distinct demangled name, then returns the same value
4725b721 688 (same pointer) as SYMBOL_LINKAGE_NAME. */
fc062ac6
JB
689char *
690symbol_search_name (const struct general_symbol_info *gsymbol)
691{
1f8173e6
PH
692 if (gsymbol->language == language_ada)
693 return gsymbol->name;
694 else
695 return symbol_natural_name (gsymbol);
4725b721
PH
696}
697
fe39c653
EZ
698/* Initialize the structure fields to zero values. */
699void
700init_sal (struct symtab_and_line *sal)
701{
6c95b8df 702 sal->pspace = NULL;
fe39c653
EZ
703 sal->symtab = 0;
704 sal->section = 0;
705 sal->line = 0;
706 sal->pc = 0;
707 sal->end = 0;
ed0616c6
VP
708 sal->explicit_pc = 0;
709 sal->explicit_line = 0;
fe39c653 710}
c906108c
SS
711\f
712
94277a38
DJ
713/* Return 1 if the two sections are the same, or if they could
714 plausibly be copies of each other, one in an original object
715 file and another in a separated debug file. */
716
717int
714835d5
UW
718matching_obj_sections (struct obj_section *obj_first,
719 struct obj_section *obj_second)
94277a38 720{
714835d5
UW
721 asection *first = obj_first? obj_first->the_bfd_section : NULL;
722 asection *second = obj_second? obj_second->the_bfd_section : NULL;
94277a38
DJ
723 struct objfile *obj;
724
725 /* If they're the same section, then they match. */
726 if (first == second)
727 return 1;
728
729 /* If either is NULL, give up. */
730 if (first == NULL || second == NULL)
731 return 0;
732
733 /* This doesn't apply to absolute symbols. */
734 if (first->owner == NULL || second->owner == NULL)
735 return 0;
736
737 /* If they're in the same object file, they must be different sections. */
738 if (first->owner == second->owner)
739 return 0;
740
741 /* Check whether the two sections are potentially corresponding. They must
742 have the same size, address, and name. We can't compare section indexes,
743 which would be more reliable, because some sections may have been
744 stripped. */
745 if (bfd_get_section_size (first) != bfd_get_section_size (second))
746 return 0;
747
818f79f6 748 /* In-memory addresses may start at a different offset, relativize them. */
94277a38 749 if (bfd_get_section_vma (first->owner, first)
818f79f6
DJ
750 - bfd_get_start_address (first->owner)
751 != bfd_get_section_vma (second->owner, second)
752 - bfd_get_start_address (second->owner))
94277a38
DJ
753 return 0;
754
755 if (bfd_get_section_name (first->owner, first) == NULL
756 || bfd_get_section_name (second->owner, second) == NULL
757 || strcmp (bfd_get_section_name (first->owner, first),
758 bfd_get_section_name (second->owner, second)) != 0)
759 return 0;
760
761 /* Otherwise check that they are in corresponding objfiles. */
762
763 ALL_OBJFILES (obj)
764 if (obj->obfd == first->owner)
765 break;
766 gdb_assert (obj != NULL);
767
768 if (obj->separate_debug_objfile != NULL
769 && obj->separate_debug_objfile->obfd == second->owner)
770 return 1;
771 if (obj->separate_debug_objfile_backlink != NULL
772 && obj->separate_debug_objfile_backlink->obfd == second->owner)
773 return 1;
774
775 return 0;
776}
c5aa993b 777
ccefe4c4
TT
778struct symtab *
779find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
c906108c 780{
52f0bd74 781 struct objfile *objfile;
8a48e967
DJ
782 struct minimal_symbol *msymbol;
783
784 /* If we know that this is not a text address, return failure. This is
785 necessary because we loop based on texthigh and textlow, which do
786 not include the data ranges. */
787 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
788 if (msymbol
712f90be
TT
789 && (MSYMBOL_TYPE (msymbol) == mst_data
790 || MSYMBOL_TYPE (msymbol) == mst_bss
791 || MSYMBOL_TYPE (msymbol) == mst_abs
792 || MSYMBOL_TYPE (msymbol) == mst_file_data
793 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 794 return NULL;
c906108c 795
ff013f42 796 ALL_OBJFILES (objfile)
ccefe4c4
TT
797 {
798 struct symtab *result = NULL;
799 if (objfile->sf)
800 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
801 pc, section, 0);
802 if (result)
803 return result;
804 }
ff013f42
JK
805
806 return NULL;
c906108c 807}
c906108c
SS
808\f
809/* Debug symbols usually don't have section information. We need to dig that
810 out of the minimal symbols and stash that in the debug symbol. */
811
ccefe4c4 812void
907fc202
UW
813fixup_section (struct general_symbol_info *ginfo,
814 CORE_ADDR addr, struct objfile *objfile)
c906108c
SS
815{
816 struct minimal_symbol *msym;
c906108c 817
bccdca4a
UW
818 /* First, check whether a minimal symbol with the same name exists
819 and points to the same address. The address check is required
820 e.g. on PowerPC64, where the minimal symbol for a function will
821 point to the function descriptor, while the debug symbol will
822 point to the actual function code. */
907fc202
UW
823 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
824 if (msym)
7a78d0ee 825 {
714835d5 826 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
7a78d0ee
KB
827 ginfo->section = SYMBOL_SECTION (msym);
828 }
907fc202 829 else
19e2d14b
KB
830 {
831 /* Static, function-local variables do appear in the linker
832 (minimal) symbols, but are frequently given names that won't
833 be found via lookup_minimal_symbol(). E.g., it has been
834 observed in frv-uclinux (ELF) executables that a static,
835 function-local variable named "foo" might appear in the
836 linker symbols as "foo.6" or "foo.3". Thus, there is no
837 point in attempting to extend the lookup-by-name mechanism to
838 handle this case due to the fact that there can be multiple
839 names.
9af17804 840
19e2d14b
KB
841 So, instead, search the section table when lookup by name has
842 failed. The ``addr'' and ``endaddr'' fields may have already
843 been relocated. If so, the relocation offset (i.e. the
844 ANOFFSET value) needs to be subtracted from these values when
845 performing the comparison. We unconditionally subtract it,
846 because, when no relocation has been performed, the ANOFFSET
847 value will simply be zero.
9af17804 848
19e2d14b
KB
849 The address of the symbol whose section we're fixing up HAS
850 NOT BEEN adjusted (relocated) yet. It can't have been since
851 the section isn't yet known and knowing the section is
852 necessary in order to add the correct relocation value. In
853 other words, we wouldn't even be in this function (attempting
854 to compute the section) if it were already known.
855
856 Note that it is possible to search the minimal symbols
857 (subtracting the relocation value if necessary) to find the
858 matching minimal symbol, but this is overkill and much less
859 efficient. It is not necessary to find the matching minimal
9af17804
DE
860 symbol, only its section.
861
19e2d14b
KB
862 Note that this technique (of doing a section table search)
863 can fail when unrelocated section addresses overlap. For
864 this reason, we still attempt a lookup by name prior to doing
865 a search of the section table. */
9af17804 866
19e2d14b 867 struct obj_section *s;
19e2d14b
KB
868 ALL_OBJFILE_OSECTIONS (objfile, s)
869 {
870 int idx = s->the_bfd_section->index;
871 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
872
f1f6aadf
PA
873 if (obj_section_addr (s) - offset <= addr
874 && addr < obj_section_endaddr (s) - offset)
19e2d14b 875 {
714835d5 876 ginfo->obj_section = s;
19e2d14b
KB
877 ginfo->section = idx;
878 return;
879 }
880 }
881 }
c906108c
SS
882}
883
884struct symbol *
fba45db2 885fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
c906108c 886{
907fc202
UW
887 CORE_ADDR addr;
888
c906108c
SS
889 if (!sym)
890 return NULL;
891
714835d5 892 if (SYMBOL_OBJ_SECTION (sym))
c906108c
SS
893 return sym;
894
907fc202
UW
895 /* We either have an OBJFILE, or we can get at it from the sym's
896 symtab. Anything else is a bug. */
897 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
898
899 if (objfile == NULL)
900 objfile = SYMBOL_SYMTAB (sym)->objfile;
901
902 /* We should have an objfile by now. */
903 gdb_assert (objfile);
904
905 switch (SYMBOL_CLASS (sym))
906 {
907 case LOC_STATIC:
908 case LOC_LABEL:
907fc202
UW
909 addr = SYMBOL_VALUE_ADDRESS (sym);
910 break;
911 case LOC_BLOCK:
912 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
913 break;
914
915 default:
916 /* Nothing else will be listed in the minsyms -- no use looking
917 it up. */
918 return sym;
919 }
920
921 fixup_section (&sym->ginfo, addr, objfile);
c906108c
SS
922
923 return sym;
924}
925
c906108c 926/* Find the definition for a specified symbol name NAME
176620f1 927 in domain DOMAIN, visible from lexical block BLOCK.
c906108c 928 Returns the struct symbol pointer, or zero if no symbol is found.
c906108c
SS
929 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
930 NAME is a field of the current implied argument `this'. If so set
9af17804 931 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
c906108c
SS
932 BLOCK_FOUND is set to the block in which NAME is found (in the case of
933 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
934
935/* This function has a bunch of loops in it and it would seem to be
936 attractive to put in some QUIT's (though I'm not really sure
937 whether it can run long enough to be really important). But there
938 are a few calls for which it would appear to be bad news to quit
7ca9f392
AC
939 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
940 that there is C++ code below which can error(), but that probably
941 doesn't affect these calls since they are looking for a known
942 variable and thus can probably assume it will never hit the C++
943 code). */
c906108c
SS
944
945struct symbol *
53c5240f
PA
946lookup_symbol_in_language (const char *name, const struct block *block,
947 const domain_enum domain, enum language lang,
2570f2b7 948 int *is_a_field_of_this)
c906108c 949{
729051e6
DJ
950 char *demangled_name = NULL;
951 const char *modified_name = NULL;
fba7f19c 952 struct symbol *returnval;
9ee6bb93 953 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
c906108c 954
729051e6
DJ
955 modified_name = name;
956
6aecb9c2 957 /* If we are using C++, D, or Java, demangle the name before doing a lookup, so
729051e6 958 we can always binary search. */
53c5240f 959 if (lang == language_cplus)
729051e6
DJ
960 {
961 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
962 if (demangled_name)
963 {
729051e6 964 modified_name = demangled_name;
9ee6bb93 965 make_cleanup (xfree, demangled_name);
729051e6 966 }
71c25dea
TT
967 else
968 {
969 /* If we were given a non-mangled name, canonicalize it
970 according to the language (so far only for C++). */
971 demangled_name = cp_canonicalize_string (name);
972 if (demangled_name)
973 {
974 modified_name = demangled_name;
975 make_cleanup (xfree, demangled_name);
976 }
977 }
729051e6 978 }
53c5240f 979 else if (lang == language_java)
987504bb 980 {
9af17804 981 demangled_name = cplus_demangle (name,
987504bb
JJ
982 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
983 if (demangled_name)
984 {
987504bb 985 modified_name = demangled_name;
9ee6bb93 986 make_cleanup (xfree, demangled_name);
987504bb
JJ
987 }
988 }
6aecb9c2
JB
989 else if (lang == language_d)
990 {
991 demangled_name = d_demangle (name, 0);
992 if (demangled_name)
993 {
994 modified_name = demangled_name;
995 make_cleanup (xfree, demangled_name);
996 }
997 }
729051e6 998
63872f9d
JG
999 if (case_sensitivity == case_sensitive_off)
1000 {
1001 char *copy;
1002 int len, i;
1003
1004 len = strlen (name);
1005 copy = (char *) alloca (len + 1);
1006 for (i= 0; i < len; i++)
1007 copy[i] = tolower (name[i]);
1008 copy[len] = 0;
fba7f19c 1009 modified_name = copy;
63872f9d 1010 }
fba7f19c 1011
94af9270
KS
1012 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1013 is_a_field_of_this);
9ee6bb93 1014 do_cleanups (cleanup);
fba7f19c 1015
9af17804 1016 return returnval;
fba7f19c
EZ
1017}
1018
53c5240f
PA
1019/* Behave like lookup_symbol_in_language, but performed with the
1020 current language. */
1021
1022struct symbol *
1023lookup_symbol (const char *name, const struct block *block,
2570f2b7 1024 domain_enum domain, int *is_a_field_of_this)
53c5240f
PA
1025{
1026 return lookup_symbol_in_language (name, block, domain,
1027 current_language->la_language,
2570f2b7 1028 is_a_field_of_this);
53c5240f
PA
1029}
1030
1031/* Behave like lookup_symbol except that NAME is the natural name
5ad1c190
DC
1032 of the symbol that we're looking for and, if LINKAGE_NAME is
1033 non-NULL, ensure that the symbol's linkage name matches as
1034 well. */
1035
fba7f19c 1036static struct symbol *
94af9270
KS
1037lookup_symbol_aux (const char *name, const struct block *block,
1038 const domain_enum domain, enum language language,
1039 int *is_a_field_of_this)
fba7f19c 1040{
8155455b 1041 struct symbol *sym;
53c5240f 1042 const struct language_defn *langdef;
ccefe4c4 1043 struct objfile *objfile;
406bc4de 1044
9a146a11
EZ
1045 /* Make sure we do something sensible with is_a_field_of_this, since
1046 the callers that set this parameter to some non-null value will
1047 certainly use it later and expect it to be either 0 or 1.
1048 If we don't set it, the contents of is_a_field_of_this are
1049 undefined. */
1050 if (is_a_field_of_this != NULL)
1051 *is_a_field_of_this = 0;
1052
e4051eeb
DC
1053 /* Search specified block and its superiors. Don't search
1054 STATIC_BLOCK or GLOBAL_BLOCK. */
c906108c 1055
13387711 1056 sym = lookup_symbol_aux_local (name, block, domain, language);
8155455b
DC
1057 if (sym != NULL)
1058 return sym;
c906108c 1059
53c5240f 1060 /* If requested to do so by the caller and if appropriate for LANGUAGE,
13387711 1061 check to see if NAME is a field of `this'. */
53c5240f
PA
1062
1063 langdef = language_def (language);
5f9a71c3 1064
2b2d9e11
VP
1065 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1066 && block != NULL)
c906108c 1067 {
2b2d9e11 1068 struct symbol *sym = NULL;
8540c487 1069 const struct block *function_block = block;
2b2d9e11
VP
1070 /* 'this' is only defined in the function's block, so find the
1071 enclosing function block. */
8540c487
SW
1072 for (; function_block && !BLOCK_FUNCTION (function_block);
1073 function_block = BLOCK_SUPERBLOCK (function_block));
2b2d9e11 1074
8540c487
SW
1075 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1076 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
94af9270 1077 VAR_DOMAIN);
2b2d9e11 1078 if (sym)
c906108c 1079 {
2b2d9e11 1080 struct type *t = sym->type;
9af17804 1081
2b2d9e11
VP
1082 /* I'm not really sure that type of this can ever
1083 be typedefed; just be safe. */
1084 CHECK_TYPEDEF (t);
1085 if (TYPE_CODE (t) == TYPE_CODE_PTR
1086 || TYPE_CODE (t) == TYPE_CODE_REF)
1087 t = TYPE_TARGET_TYPE (t);
9af17804 1088
2b2d9e11
VP
1089 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1090 && TYPE_CODE (t) != TYPE_CODE_UNION)
9af17804 1091 error (_("Internal error: `%s' is not an aggregate"),
2b2d9e11 1092 langdef->la_name_of_this);
9af17804 1093
2b2d9e11
VP
1094 if (check_field (t, name))
1095 {
1096 *is_a_field_of_this = 1;
2b2d9e11
VP
1097 return NULL;
1098 }
c906108c
SS
1099 }
1100 }
1101
53c5240f 1102 /* Now do whatever is appropriate for LANGUAGE to look
5f9a71c3 1103 up static and global variables. */
c906108c 1104
94af9270 1105 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
8155455b
DC
1106 if (sym != NULL)
1107 return sym;
c906108c 1108
8155455b
DC
1109 /* Now search all static file-level symbols. Not strictly correct,
1110 but more useful than an error. Do the symtabs first, then check
1111 the psymtabs. If a psymtab indicates the existence of the
1112 desired name as a file-level static, then do psymtab-to-symtab
c906108c
SS
1113 conversion on the fly and return the found symbol. */
1114
94af9270 1115 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
8155455b
DC
1116 if (sym != NULL)
1117 return sym;
9af17804 1118
ccefe4c4
TT
1119 ALL_OBJFILES (objfile)
1120 {
1121 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1122 if (sym != NULL)
1123 return sym;
1124 }
c906108c 1125
8155455b 1126 return NULL;
c906108c 1127}
8155455b 1128
e4051eeb 1129/* Check to see if the symbol is defined in BLOCK or its superiors.
89a9d1b1 1130 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
8155455b
DC
1131
1132static struct symbol *
94af9270 1133lookup_symbol_aux_local (const char *name, const struct block *block,
13387711
SW
1134 const domain_enum domain,
1135 enum language language)
8155455b
DC
1136{
1137 struct symbol *sym;
89a9d1b1 1138 const struct block *static_block = block_static_block (block);
13387711
SW
1139 const char *scope = block_scope (block);
1140
e4051eeb
DC
1141 /* Check if either no block is specified or it's a global block. */
1142
89a9d1b1
DC
1143 if (static_block == NULL)
1144 return NULL;
e4051eeb 1145
89a9d1b1 1146 while (block != static_block)
f61e8913 1147 {
94af9270 1148 sym = lookup_symbol_aux_block (name, block, domain);
f61e8913
DC
1149 if (sym != NULL)
1150 return sym;
edb3359d 1151
13387711
SW
1152 if (language == language_cplus)
1153 {
1154 sym = cp_lookup_symbol_imports (scope,
1155 name,
1156 block,
1157 domain,
1158 1,
1159 1);
1160 if (sym != NULL)
1161 return sym;
1162 }
1163
edb3359d
DJ
1164 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1165 break;
f61e8913
DC
1166 block = BLOCK_SUPERBLOCK (block);
1167 }
1168
edb3359d 1169 /* We've reached the edge of the function without finding a result. */
e4051eeb 1170
f61e8913
DC
1171 return NULL;
1172}
1173
3a40aaa0
UW
1174/* Look up OBJFILE to BLOCK. */
1175
c0201579 1176struct objfile *
3a40aaa0
UW
1177lookup_objfile_from_block (const struct block *block)
1178{
1179 struct objfile *obj;
1180 struct symtab *s;
1181
1182 if (block == NULL)
1183 return NULL;
1184
1185 block = block_global_block (block);
1186 /* Go through SYMTABS. */
1187 ALL_SYMTABS (obj, s)
1188 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
61f0d762
JK
1189 {
1190 if (obj->separate_debug_objfile_backlink)
1191 obj = obj->separate_debug_objfile_backlink;
1192
1193 return obj;
1194 }
3a40aaa0
UW
1195
1196 return NULL;
1197}
1198
6c9353d3
PA
1199/* Look up a symbol in a block; if found, fixup the symbol, and set
1200 block_found appropriately. */
f61e8913 1201
5f9a71c3 1202struct symbol *
94af9270 1203lookup_symbol_aux_block (const char *name, const struct block *block,
21b556f4 1204 const domain_enum domain)
f61e8913
DC
1205{
1206 struct symbol *sym;
f61e8913 1207
94af9270 1208 sym = lookup_block_symbol (block, name, domain);
f61e8913 1209 if (sym)
8155455b 1210 {
f61e8913 1211 block_found = block;
21b556f4 1212 return fixup_symbol_section (sym, NULL);
8155455b
DC
1213 }
1214
1215 return NULL;
1216}
1217
3a40aaa0
UW
1218/* Check all global symbols in OBJFILE in symtabs and
1219 psymtabs. */
1220
1221struct symbol *
15d123c9 1222lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
3a40aaa0 1223 const char *name,
21b556f4 1224 const domain_enum domain)
3a40aaa0 1225{
15d123c9 1226 const struct objfile *objfile;
3a40aaa0
UW
1227 struct symbol *sym;
1228 struct blockvector *bv;
1229 const struct block *block;
1230 struct symtab *s;
3a40aaa0 1231
15d123c9
TG
1232 for (objfile = main_objfile;
1233 objfile;
1234 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1235 {
1236 /* Go through symtabs. */
1237 ALL_OBJFILE_SYMTABS (objfile, s)
1238 {
1239 bv = BLOCKVECTOR (s);
1240 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1241 sym = lookup_block_symbol (block, name, domain);
15d123c9
TG
1242 if (sym)
1243 {
1244 block_found = block;
1245 return fixup_symbol_section (sym, (struct objfile *)objfile);
1246 }
1247 }
1248
ccefe4c4
TT
1249 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1250 name, domain);
1251 if (sym)
1252 return sym;
15d123c9 1253 }
56e3f43c 1254
3a40aaa0
UW
1255 return NULL;
1256}
1257
8155455b
DC
1258/* Check to see if the symbol is defined in one of the symtabs.
1259 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1260 depending on whether or not we want to search global symbols or
1261 static symbols. */
1262
1263static struct symbol *
94af9270 1264lookup_symbol_aux_symtabs (int block_index, const char *name,
21b556f4 1265 const domain_enum domain)
8155455b
DC
1266{
1267 struct symbol *sym;
1268 struct objfile *objfile;
1269 struct blockvector *bv;
1270 const struct block *block;
1271 struct symtab *s;
1272
11309657 1273 ALL_PRIMARY_SYMTABS (objfile, s)
8155455b
DC
1274 {
1275 bv = BLOCKVECTOR (s);
1276 block = BLOCKVECTOR_BLOCK (bv, block_index);
94af9270 1277 sym = lookup_block_symbol (block, name, domain);
8155455b
DC
1278 if (sym)
1279 {
1280 block_found = block;
8155455b
DC
1281 return fixup_symbol_section (sym, objfile);
1282 }
1283 }
1284
1285 return NULL;
1286}
1287
ccefe4c4
TT
1288/* A helper function for lookup_symbol_aux that interfaces with the
1289 "quick" symbol table functions. */
8155455b
DC
1290
1291static struct symbol *
ccefe4c4
TT
1292lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1293 const char *name, const domain_enum domain)
8155455b 1294{
ccefe4c4 1295 struct symtab *symtab;
8155455b
DC
1296 struct blockvector *bv;
1297 const struct block *block;
ccefe4c4 1298 struct symbol *sym;
8155455b 1299
ccefe4c4
TT
1300 if (!objfile->sf)
1301 return NULL;
1302 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1303 if (!symtab)
1304 return NULL;
8155455b 1305
ccefe4c4
TT
1306 bv = BLOCKVECTOR (symtab);
1307 block = BLOCKVECTOR_BLOCK (bv, kind);
1308 sym = lookup_block_symbol (block, name, domain);
1309 if (!sym)
1310 {
1311 /* This shouldn't be necessary, but as a last resort try
1312 looking in the statics even though the psymtab claimed
1313 the symbol was global, or vice-versa. It's possible
1314 that the psymtab gets it wrong in some cases. */
1315
1316 /* FIXME: carlton/2002-09-30: Should we really do that?
1317 If that happens, isn't it likely to be a GDB error, in
1318 which case we should fix the GDB error rather than
1319 silently dealing with it here? So I'd vote for
1320 removing the check for the symbol in the other
1321 block. */
1322 block = BLOCKVECTOR_BLOCK (bv,
1323 kind == GLOBAL_BLOCK ?
1324 STATIC_BLOCK : GLOBAL_BLOCK);
1325 sym = lookup_block_symbol (block, name, domain);
1326 if (!sym)
1327 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1328 kind == GLOBAL_BLOCK ? "global" : "static",
1329 name, symtab->filename, name, name);
1330 }
1331 return fixup_symbol_section (sym, objfile);
8155455b
DC
1332}
1333
5f9a71c3
DC
1334/* A default version of lookup_symbol_nonlocal for use by languages
1335 that can't think of anything better to do. This implements the C
1336 lookup rules. */
1337
1338struct symbol *
1339basic_lookup_symbol_nonlocal (const char *name,
5f9a71c3 1340 const struct block *block,
21b556f4 1341 const domain_enum domain)
5f9a71c3
DC
1342{
1343 struct symbol *sym;
1344
1345 /* NOTE: carlton/2003-05-19: The comments below were written when
1346 this (or what turned into this) was part of lookup_symbol_aux;
1347 I'm much less worried about these questions now, since these
1348 decisions have turned out well, but I leave these comments here
1349 for posterity. */
1350
1351 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1352 not it would be appropriate to search the current global block
1353 here as well. (That's what this code used to do before the
1354 is_a_field_of_this check was moved up.) On the one hand, it's
1355 redundant with the lookup_symbol_aux_symtabs search that happens
1356 next. On the other hand, if decode_line_1 is passed an argument
1357 like filename:var, then the user presumably wants 'var' to be
1358 searched for in filename. On the third hand, there shouldn't be
1359 multiple global variables all of which are named 'var', and it's
1360 not like decode_line_1 has ever restricted its search to only
1361 global variables in a single filename. All in all, only
1362 searching the static block here seems best: it's correct and it's
1363 cleanest. */
1364
1365 /* NOTE: carlton/2002-12-05: There's also a possible performance
1366 issue here: if you usually search for global symbols in the
1367 current file, then it would be slightly better to search the
1368 current global block before searching all the symtabs. But there
1369 are other factors that have a much greater effect on performance
1370 than that one, so I don't think we should worry about that for
1371 now. */
1372
94af9270 1373 sym = lookup_symbol_static (name, block, domain);
5f9a71c3
DC
1374 if (sym != NULL)
1375 return sym;
1376
94af9270 1377 return lookup_symbol_global (name, block, domain);
5f9a71c3
DC
1378}
1379
1380/* Lookup a symbol in the static block associated to BLOCK, if there
1381 is one; do nothing if BLOCK is NULL or a global block. */
1382
1383struct symbol *
1384lookup_symbol_static (const char *name,
5f9a71c3 1385 const struct block *block,
21b556f4 1386 const domain_enum domain)
5f9a71c3
DC
1387{
1388 const struct block *static_block = block_static_block (block);
1389
1390 if (static_block != NULL)
94af9270 1391 return lookup_symbol_aux_block (name, static_block, domain);
5f9a71c3
DC
1392 else
1393 return NULL;
1394}
1395
1396/* Lookup a symbol in all files' global blocks (searching psymtabs if
1397 necessary). */
1398
1399struct symbol *
1400lookup_symbol_global (const char *name,
3a40aaa0 1401 const struct block *block,
21b556f4 1402 const domain_enum domain)
5f9a71c3 1403{
3a40aaa0
UW
1404 struct symbol *sym = NULL;
1405 struct objfile *objfile = NULL;
1406
1407 /* Call library-specific lookup procedure. */
1408 objfile = lookup_objfile_from_block (block);
1409 if (objfile != NULL)
94af9270 1410 sym = solib_global_lookup (objfile, name, domain);
3a40aaa0
UW
1411 if (sym != NULL)
1412 return sym;
5f9a71c3 1413
94af9270 1414 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
5f9a71c3
DC
1415 if (sym != NULL)
1416 return sym;
1417
ccefe4c4
TT
1418 ALL_OBJFILES (objfile)
1419 {
1420 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1421 if (sym)
1422 return sym;
1423 }
1424
1425 return NULL;
5f9a71c3
DC
1426}
1427
5eeb2539 1428int
9af17804 1429symbol_matches_domain (enum language symbol_language,
5eeb2539
AR
1430 domain_enum symbol_domain,
1431 domain_enum domain)
1432{
9af17804 1433 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
5eeb2539
AR
1434 A Java class declaration also defines a typedef for the class.
1435 Similarly, any Ada type declaration implicitly defines a typedef. */
1436 if (symbol_language == language_cplus
6aecb9c2 1437 || symbol_language == language_d
5eeb2539
AR
1438 || symbol_language == language_java
1439 || symbol_language == language_ada)
1440 {
1441 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1442 && symbol_domain == STRUCT_DOMAIN)
1443 return 1;
1444 }
1445 /* For all other languages, strict match is required. */
1446 return (symbol_domain == domain);
1447}
1448
ccefe4c4
TT
1449/* Look up a type named NAME in the struct_domain. The type returned
1450 must not be opaque -- i.e., must have at least one field
1451 defined. */
c906108c 1452
ccefe4c4
TT
1453struct type *
1454lookup_transparent_type (const char *name)
c906108c 1455{
ccefe4c4
TT
1456 return current_language->la_lookup_transparent_type (name);
1457}
9af17804 1458
ccefe4c4
TT
1459/* A helper for basic_lookup_transparent_type that interfaces with the
1460 "quick" symbol table functions. */
357e46e7 1461
ccefe4c4
TT
1462static struct type *
1463basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1464 const char *name)
1465{
1466 struct symtab *symtab;
1467 struct blockvector *bv;
1468 struct block *block;
1469 struct symbol *sym;
c906108c 1470
ccefe4c4
TT
1471 if (!objfile->sf)
1472 return NULL;
1473 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1474 if (!symtab)
1475 return NULL;
c906108c 1476
ccefe4c4
TT
1477 bv = BLOCKVECTOR (symtab);
1478 block = BLOCKVECTOR_BLOCK (bv, kind);
1479 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1480 if (!sym)
9af17804 1481 {
ccefe4c4
TT
1482 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1483
1484 /* This shouldn't be necessary, but as a last resort
1485 * try looking in the 'other kind' even though the psymtab
1486 * claimed the symbol was one thing. It's possible that
1487 * the psymtab gets it wrong in some cases.
1488 */
1489 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1490 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1491 if (!sym)
1492 /* FIXME; error is wrong in one case */
1493 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1494%s may be an inlined function, or may be a template function\n\
1495(if a template, try specifying an instantiation: %s<type>)."),
1496 name, symtab->filename, name, name);
c906108c 1497 }
ccefe4c4
TT
1498 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1499 return SYMBOL_TYPE (sym);
c906108c 1500
ccefe4c4 1501 return NULL;
b368761e 1502}
c906108c 1503
b368761e
DC
1504/* The standard implementation of lookup_transparent_type. This code
1505 was modeled on lookup_symbol -- the parts not relevant to looking
1506 up types were just left out. In particular it's assumed here that
1507 types are available in struct_domain and only at file-static or
1508 global blocks. */
c906108c
SS
1509
1510struct type *
b368761e 1511basic_lookup_transparent_type (const char *name)
c906108c 1512{
52f0bd74
AC
1513 struct symbol *sym;
1514 struct symtab *s = NULL;
c906108c 1515 struct blockvector *bv;
52f0bd74
AC
1516 struct objfile *objfile;
1517 struct block *block;
ccefe4c4 1518 struct type *t;
c906108c
SS
1519
1520 /* Now search all the global symbols. Do the symtab's first, then
1521 check the psymtab's. If a psymtab indicates the existence
1522 of the desired name as a global, then do psymtab-to-symtab
1523 conversion on the fly and return the found symbol. */
c5aa993b 1524
11309657 1525 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1526 {
1527 bv = BLOCKVECTOR (s);
1528 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1529 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1530 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1531 {
1532 return SYMBOL_TYPE (sym);
1533 }
1534 }
c906108c 1535
ccefe4c4 1536 ALL_OBJFILES (objfile)
c5aa993b 1537 {
ccefe4c4
TT
1538 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1539 if (t)
1540 return t;
c5aa993b 1541 }
c906108c
SS
1542
1543 /* Now search the static file-level symbols.
1544 Not strictly correct, but more useful than an error.
1545 Do the symtab's first, then
1546 check the psymtab's. If a psymtab indicates the existence
1547 of the desired name as a file-level static, then do psymtab-to-symtab
1548 conversion on the fly and return the found symbol.
1549 */
1550
11309657 1551 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1552 {
1553 bv = BLOCKVECTOR (s);
1554 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
94af9270 1555 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1556 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1557 {
1558 return SYMBOL_TYPE (sym);
1559 }
1560 }
c906108c 1561
ccefe4c4 1562 ALL_OBJFILES (objfile)
c5aa993b 1563 {
ccefe4c4
TT
1564 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1565 if (t)
1566 return t;
c5aa993b 1567 }
ccefe4c4 1568
c906108c
SS
1569 return (struct type *) 0;
1570}
1571
1572
ccefe4c4 1573/* Find the name of the file containing main(). */
c906108c
SS
1574/* FIXME: What about languages without main() or specially linked
1575 executables that have no main() ? */
1576
ccefe4c4
TT
1577char *
1578find_main_filename (void)
c906108c 1579{
52f0bd74 1580 struct objfile *objfile;
ccefe4c4 1581 char *result, *name = main_name ();
c906108c 1582
ccefe4c4 1583 ALL_OBJFILES (objfile)
c5aa993b 1584 {
ccefe4c4
TT
1585 if (!objfile->sf)
1586 continue;
1587 result = objfile->sf->qf->find_symbol_file (objfile, name);
1588 if (result)
1589 return result;
c5aa993b 1590 }
c906108c
SS
1591 return (NULL);
1592}
1593
176620f1 1594/* Search BLOCK for symbol NAME in DOMAIN.
c906108c
SS
1595
1596 Note that if NAME is the demangled form of a C++ symbol, we will fail
1597 to find a match during the binary search of the non-encoded names, but
1598 for now we don't worry about the slight inefficiency of looking for
1599 a match we'll never find, since it will go pretty quick. Once the
1600 binary search terminates, we drop through and do a straight linear
1bae87b9 1601 search on the symbols. Each symbol which is marked as being a ObjC/C++
9af17804 1602 symbol (language_cplus or language_objc set) has both the encoded and
1bae87b9 1603 non-encoded names tested for a match.
3121eff0 1604*/
c906108c
SS
1605
1606struct symbol *
aa1ee363 1607lookup_block_symbol (const struct block *block, const char *name,
176620f1 1608 const domain_enum domain)
c906108c 1609{
de4f826b
DC
1610 struct dict_iterator iter;
1611 struct symbol *sym;
c906108c 1612
de4f826b 1613 if (!BLOCK_FUNCTION (block))
261397f8 1614 {
de4f826b
DC
1615 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1616 sym != NULL;
1617 sym = dict_iter_name_next (name, &iter))
261397f8 1618 {
5eeb2539 1619 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1620 SYMBOL_DOMAIN (sym), domain))
261397f8
DJ
1621 return sym;
1622 }
1623 return NULL;
1624 }
526e70c0 1625 else
c906108c 1626 {
526e70c0
DC
1627 /* Note that parameter symbols do not always show up last in the
1628 list; this loop makes sure to take anything else other than
1629 parameter symbols first; it only uses parameter symbols as a
1630 last resort. Note that this only takes up extra computation
1631 time on a match. */
de4f826b
DC
1632
1633 struct symbol *sym_found = NULL;
1634
1635 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1636 sym != NULL;
1637 sym = dict_iter_name_next (name, &iter))
c906108c 1638 {
5eeb2539 1639 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1640 SYMBOL_DOMAIN (sym), domain))
c906108c 1641 {
c906108c 1642 sym_found = sym;
2a2d4dc3 1643 if (!SYMBOL_IS_ARGUMENT (sym))
c906108c
SS
1644 {
1645 break;
1646 }
1647 }
c906108c 1648 }
de4f826b 1649 return (sym_found); /* Will be NULL if not found. */
c906108c 1650 }
c906108c
SS
1651}
1652
c906108c
SS
1653/* Find the symtab associated with PC and SECTION. Look through the
1654 psymtabs and read in another symtab if necessary. */
1655
1656struct symtab *
714835d5 1657find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
c906108c 1658{
52f0bd74 1659 struct block *b;
c906108c 1660 struct blockvector *bv;
52f0bd74
AC
1661 struct symtab *s = NULL;
1662 struct symtab *best_s = NULL;
52f0bd74 1663 struct objfile *objfile;
6c95b8df 1664 struct program_space *pspace;
c906108c 1665 CORE_ADDR distance = 0;
8a48e967
DJ
1666 struct minimal_symbol *msymbol;
1667
6c95b8df
PA
1668 pspace = current_program_space;
1669
8a48e967
DJ
1670 /* If we know that this is not a text address, return failure. This is
1671 necessary because we loop based on the block's high and low code
1672 addresses, which do not include the data ranges, and because
1673 we call find_pc_sect_psymtab which has a similar restriction based
1674 on the partial_symtab's texthigh and textlow. */
1675 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1676 if (msymbol
712f90be
TT
1677 && (MSYMBOL_TYPE (msymbol) == mst_data
1678 || MSYMBOL_TYPE (msymbol) == mst_bss
1679 || MSYMBOL_TYPE (msymbol) == mst_abs
1680 || MSYMBOL_TYPE (msymbol) == mst_file_data
1681 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 1682 return NULL;
c906108c
SS
1683
1684 /* Search all symtabs for the one whose file contains our address, and which
1685 is the smallest of all the ones containing the address. This is designed
1686 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1687 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1688 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1689
1690 This happens for native ecoff format, where code from included files
1691 gets its own symtab. The symtab for the included file should have
1692 been read in already via the dependency mechanism.
1693 It might be swifter to create several symtabs with the same name
1694 like xcoff does (I'm not sure).
1695
1696 It also happens for objfiles that have their functions reordered.
1697 For these, the symtab we are looking for is not necessarily read in. */
1698
11309657 1699 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1700 {
1701 bv = BLOCKVECTOR (s);
1702 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
c906108c 1703
c5aa993b 1704 if (BLOCK_START (b) <= pc
c5aa993b 1705 && BLOCK_END (b) > pc
c5aa993b
JM
1706 && (distance == 0
1707 || BLOCK_END (b) - BLOCK_START (b) < distance))
1708 {
1709 /* For an objfile that has its functions reordered,
1710 find_pc_psymtab will find the proper partial symbol table
1711 and we simply return its corresponding symtab. */
1712 /* In order to better support objfiles that contain both
1713 stabs and coff debugging info, we continue on if a psymtab
1714 can't be found. */
ccefe4c4 1715 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
c5aa993b 1716 {
ccefe4c4
TT
1717 struct symtab *result;
1718 result
1719 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1720 msymbol,
1721 pc, section,
1722 0);
1723 if (result)
1724 return result;
c5aa993b
JM
1725 }
1726 if (section != 0)
1727 {
de4f826b 1728 struct dict_iterator iter;
261397f8 1729 struct symbol *sym = NULL;
c906108c 1730
de4f826b 1731 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 1732 {
261397f8 1733 fixup_symbol_section (sym, objfile);
714835d5 1734 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
c5aa993b
JM
1735 break;
1736 }
de4f826b 1737 if (sym == NULL)
c5aa993b
JM
1738 continue; /* no symbol in this symtab matches section */
1739 }
1740 distance = BLOCK_END (b) - BLOCK_START (b);
1741 best_s = s;
1742 }
1743 }
c906108c
SS
1744
1745 if (best_s != NULL)
c5aa993b 1746 return (best_s);
c906108c 1747
ccefe4c4
TT
1748 ALL_OBJFILES (objfile)
1749 {
1750 struct symtab *result;
1751 if (!objfile->sf)
1752 continue;
1753 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1754 msymbol,
1755 pc, section,
1756 1);
1757 if (result)
1758 return result;
1759 }
1760
1761 return NULL;
c906108c
SS
1762}
1763
1764/* Find the symtab associated with PC. Look through the psymtabs and
1765 read in another symtab if necessary. Backward compatibility, no section */
1766
1767struct symtab *
fba45db2 1768find_pc_symtab (CORE_ADDR pc)
c906108c
SS
1769{
1770 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1771}
c906108c 1772\f
c5aa993b 1773
7e73cedf 1774/* Find the source file and line number for a given PC value and SECTION.
c906108c
SS
1775 Return a structure containing a symtab pointer, a line number,
1776 and a pc range for the entire source line.
1777 The value's .pc field is NOT the specified pc.
1778 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1779 use the line that ends there. Otherwise, in that case, the line
1780 that begins there is used. */
1781
1782/* The big complication here is that a line may start in one file, and end just
1783 before the start of another file. This usually occurs when you #include
1784 code in the middle of a subroutine. To properly find the end of a line's PC
1785 range, we must search all symtabs associated with this compilation unit, and
1786 find the one whose first PC is closer than that of the next line in this
1787 symtab. */
1788
1789/* If it's worth the effort, we could be using a binary search. */
1790
1791struct symtab_and_line
714835d5 1792find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
c906108c
SS
1793{
1794 struct symtab *s;
52f0bd74
AC
1795 struct linetable *l;
1796 int len;
1797 int i;
1798 struct linetable_entry *item;
c906108c
SS
1799 struct symtab_and_line val;
1800 struct blockvector *bv;
1801 struct minimal_symbol *msymbol;
1802 struct minimal_symbol *mfunsym;
1803
1804 /* Info on best line seen so far, and where it starts, and its file. */
1805
1806 struct linetable_entry *best = NULL;
1807 CORE_ADDR best_end = 0;
1808 struct symtab *best_symtab = 0;
1809
1810 /* Store here the first line number
1811 of a file which contains the line at the smallest pc after PC.
1812 If we don't find a line whose range contains PC,
1813 we will use a line one less than this,
1814 with a range from the start of that file to the first line's pc. */
1815 struct linetable_entry *alt = NULL;
1816 struct symtab *alt_symtab = 0;
1817
1818 /* Info on best line seen in this file. */
1819
1820 struct linetable_entry *prev;
1821
1822 /* If this pc is not from the current frame,
1823 it is the address of the end of a call instruction.
1824 Quite likely that is the start of the following statement.
1825 But what we want is the statement containing the instruction.
1826 Fudge the pc to make sure we get that. */
1827
fe39c653 1828 init_sal (&val); /* initialize to zeroes */
c906108c 1829
6c95b8df
PA
1830 val.pspace = current_program_space;
1831
b77b1eb7
JB
1832 /* It's tempting to assume that, if we can't find debugging info for
1833 any function enclosing PC, that we shouldn't search for line
1834 number info, either. However, GAS can emit line number info for
1835 assembly files --- very helpful when debugging hand-written
1836 assembly code. In such a case, we'd have no debug info for the
1837 function, but we would have line info. */
648f4f79 1838
c906108c
SS
1839 if (notcurrent)
1840 pc -= 1;
1841
c5aa993b 1842 /* elz: added this because this function returned the wrong
c906108c
SS
1843 information if the pc belongs to a stub (import/export)
1844 to call a shlib function. This stub would be anywhere between
9af17804
DE
1845 two functions in the target, and the line info was erroneously
1846 taken to be the one of the line before the pc.
c5aa993b 1847 */
c906108c 1848 /* RT: Further explanation:
c5aa993b 1849
c906108c
SS
1850 * We have stubs (trampolines) inserted between procedures.
1851 *
1852 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1853 * exists in the main image.
1854 *
1855 * In the minimal symbol table, we have a bunch of symbols
1856 * sorted by start address. The stubs are marked as "trampoline",
1857 * the others appear as text. E.g.:
1858 *
9af17804 1859 * Minimal symbol table for main image
c906108c
SS
1860 * main: code for main (text symbol)
1861 * shr1: stub (trampoline symbol)
1862 * foo: code for foo (text symbol)
1863 * ...
1864 * Minimal symbol table for "shr1" image:
1865 * ...
1866 * shr1: code for shr1 (text symbol)
1867 * ...
1868 *
1869 * So the code below is trying to detect if we are in the stub
1870 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1871 * and if found, do the symbolization from the real-code address
1872 * rather than the stub address.
1873 *
1874 * Assumptions being made about the minimal symbol table:
1875 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1876 * if we're really in the trampoline. If we're beyond it (say
9af17804 1877 * we're in "foo" in the above example), it'll have a closer
c906108c
SS
1878 * symbol (the "foo" text symbol for example) and will not
1879 * return the trampoline.
1880 * 2. lookup_minimal_symbol_text() will find a real text symbol
1881 * corresponding to the trampoline, and whose address will
1882 * be different than the trampoline address. I put in a sanity
1883 * check for the address being the same, to avoid an
1884 * infinite recursion.
1885 */
c5aa993b
JM
1886 msymbol = lookup_minimal_symbol_by_pc (pc);
1887 if (msymbol != NULL)
c906108c 1888 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
c5aa993b 1889 {
2335f48e 1890 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
5520a790 1891 NULL);
c5aa993b
JM
1892 if (mfunsym == NULL)
1893 /* I eliminated this warning since it is coming out
1894 * in the following situation:
1895 * gdb shmain // test program with shared libraries
1896 * (gdb) break shr1 // function in shared lib
1897 * Warning: In stub for ...
9af17804 1898 * In the above situation, the shared lib is not loaded yet,
c5aa993b
JM
1899 * so of course we can't find the real func/line info,
1900 * but the "break" still works, and the warning is annoying.
1901 * So I commented out the warning. RT */
2335f48e 1902 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b 1903 /* fall through */
82cf6c60 1904 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
c5aa993b
JM
1905 /* Avoid infinite recursion */
1906 /* See above comment about why warning is commented out */
2335f48e 1907 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b
JM
1908 /* fall through */
1909 else
82cf6c60 1910 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
c5aa993b 1911 }
c906108c
SS
1912
1913
1914 s = find_pc_sect_symtab (pc, section);
1915 if (!s)
1916 {
1917 /* if no symbol information, return previous pc */
1918 if (notcurrent)
1919 pc++;
1920 val.pc = pc;
1921 return val;
1922 }
1923
1924 bv = BLOCKVECTOR (s);
1925
1926 /* Look at all the symtabs that share this blockvector.
1927 They all have the same apriori range, that we found was right;
1928 but they have different line tables. */
1929
1930 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1931 {
1932 /* Find the best line in this symtab. */
1933 l = LINETABLE (s);
1934 if (!l)
c5aa993b 1935 continue;
c906108c
SS
1936 len = l->nitems;
1937 if (len <= 0)
1938 {
1939 /* I think len can be zero if the symtab lacks line numbers
1940 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1941 I'm not sure which, and maybe it depends on the symbol
1942 reader). */
1943 continue;
1944 }
1945
1946 prev = NULL;
1947 item = l->item; /* Get first line info */
1948
1949 /* Is this file's first line closer than the first lines of other files?
c5aa993b 1950 If so, record this file, and its first line, as best alternate. */
c906108c
SS
1951 if (item->pc > pc && (!alt || item->pc < alt->pc))
1952 {
1953 alt = item;
1954 alt_symtab = s;
1955 }
1956
1957 for (i = 0; i < len; i++, item++)
1958 {
1959 /* Leave prev pointing to the linetable entry for the last line
1960 that started at or before PC. */
1961 if (item->pc > pc)
1962 break;
1963
1964 prev = item;
1965 }
1966
1967 /* At this point, prev points at the line whose start addr is <= pc, and
c5aa993b
JM
1968 item points at the next line. If we ran off the end of the linetable
1969 (pc >= start of the last line), then prev == item. If pc < start of
1970 the first line, prev will not be set. */
c906108c
SS
1971
1972 /* Is this file's best line closer than the best in the other files?
083ae935
DJ
1973 If so, record this file, and its best line, as best so far. Don't
1974 save prev if it represents the end of a function (i.e. line number
1975 0) instead of a real line. */
c906108c 1976
083ae935 1977 if (prev && prev->line && (!best || prev->pc > best->pc))
c906108c
SS
1978 {
1979 best = prev;
1980 best_symtab = s;
25d53da1
KB
1981
1982 /* Discard BEST_END if it's before the PC of the current BEST. */
1983 if (best_end <= best->pc)
1984 best_end = 0;
c906108c 1985 }
25d53da1
KB
1986
1987 /* If another line (denoted by ITEM) is in the linetable and its
1988 PC is after BEST's PC, but before the current BEST_END, then
1989 use ITEM's PC as the new best_end. */
1990 if (best && i < len && item->pc > best->pc
1991 && (best_end == 0 || best_end > item->pc))
1992 best_end = item->pc;
c906108c
SS
1993 }
1994
1995 if (!best_symtab)
1996 {
e86e87f7
DJ
1997 /* If we didn't find any line number info, just return zeros.
1998 We used to return alt->line - 1 here, but that could be
1999 anywhere; if we don't have line number info for this PC,
2000 don't make some up. */
2001 val.pc = pc;
c906108c 2002 }
e8717518
FF
2003 else if (best->line == 0)
2004 {
2005 /* If our best fit is in a range of PC's for which no line
2006 number info is available (line number is zero) then we didn't
2007 find any valid line information. */
2008 val.pc = pc;
2009 }
c906108c
SS
2010 else
2011 {
2012 val.symtab = best_symtab;
2013 val.line = best->line;
2014 val.pc = best->pc;
2015 if (best_end && (!alt || best_end < alt->pc))
2016 val.end = best_end;
2017 else if (alt)
2018 val.end = alt->pc;
2019 else
2020 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2021 }
2022 val.section = section;
2023 return val;
2024}
2025
2026/* Backward compatibility (no section) */
2027
2028struct symtab_and_line
fba45db2 2029find_pc_line (CORE_ADDR pc, int notcurrent)
c906108c 2030{
714835d5 2031 struct obj_section *section;
c906108c
SS
2032
2033 section = find_pc_overlay (pc);
2034 if (pc_in_unmapped_range (pc, section))
2035 pc = overlay_mapped_address (pc, section);
2036 return find_pc_sect_line (pc, section, notcurrent);
2037}
c906108c 2038\f
c906108c
SS
2039/* Find line number LINE in any symtab whose name is the same as
2040 SYMTAB.
2041
2042 If found, return the symtab that contains the linetable in which it was
2043 found, set *INDEX to the index in the linetable of the best entry
2044 found, and set *EXACT_MATCH nonzero if the value returned is an
2045 exact match.
2046
2047 If not found, return NULL. */
2048
50641945 2049struct symtab *
fba45db2 2050find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
c906108c 2051{
6f43c46f 2052 int exact = 0; /* Initialized here to avoid a compiler warning. */
c906108c
SS
2053
2054 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2055 so far seen. */
2056
2057 int best_index;
2058 struct linetable *best_linetable;
2059 struct symtab *best_symtab;
2060
2061 /* First try looking it up in the given symtab. */
2062 best_linetable = LINETABLE (symtab);
2063 best_symtab = symtab;
2064 best_index = find_line_common (best_linetable, line, &exact);
2065 if (best_index < 0 || !exact)
2066 {
2067 /* Didn't find an exact match. So we better keep looking for
c5aa993b
JM
2068 another symtab with the same name. In the case of xcoff,
2069 multiple csects for one source file (produced by IBM's FORTRAN
2070 compiler) produce multiple symtabs (this is unavoidable
2071 assuming csects can be at arbitrary places in memory and that
2072 the GLOBAL_BLOCK of a symtab has a begin and end address). */
c906108c
SS
2073
2074 /* BEST is the smallest linenumber > LINE so far seen,
c5aa993b
JM
2075 or 0 if none has been seen so far.
2076 BEST_INDEX and BEST_LINETABLE identify the item for it. */
c906108c
SS
2077 int best;
2078
2079 struct objfile *objfile;
2080 struct symtab *s;
2081
2082 if (best_index >= 0)
2083 best = best_linetable->item[best_index].line;
2084 else
2085 best = 0;
2086
ccefe4c4 2087 ALL_OBJFILES (objfile)
51432cca 2088 {
ccefe4c4
TT
2089 if (objfile->sf)
2090 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2091 symtab->filename);
51432cca
CES
2092 }
2093
3ffc00b8
JB
2094 /* Get symbol full file name if possible. */
2095 symtab_to_fullname (symtab);
2096
c906108c 2097 ALL_SYMTABS (objfile, s)
c5aa993b
JM
2098 {
2099 struct linetable *l;
2100 int ind;
c906108c 2101
3ffc00b8 2102 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
c5aa993b 2103 continue;
3ffc00b8
JB
2104 if (symtab->fullname != NULL
2105 && symtab_to_fullname (s) != NULL
2106 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2107 continue;
c5aa993b
JM
2108 l = LINETABLE (s);
2109 ind = find_line_common (l, line, &exact);
2110 if (ind >= 0)
2111 {
2112 if (exact)
2113 {
2114 best_index = ind;
2115 best_linetable = l;
2116 best_symtab = s;
2117 goto done;
2118 }
2119 if (best == 0 || l->item[ind].line < best)
2120 {
2121 best = l->item[ind].line;
2122 best_index = ind;
2123 best_linetable = l;
2124 best_symtab = s;
2125 }
2126 }
2127 }
c906108c 2128 }
c5aa993b 2129done:
c906108c
SS
2130 if (best_index < 0)
2131 return NULL;
2132
2133 if (index)
2134 *index = best_index;
2135 if (exact_match)
2136 *exact_match = exact;
2137
2138 return best_symtab;
2139}
2140\f
2141/* Set the PC value for a given source file and line number and return true.
2142 Returns zero for invalid line number (and sets the PC to 0).
2143 The source file is specified with a struct symtab. */
2144
2145int
fba45db2 2146find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
c906108c
SS
2147{
2148 struct linetable *l;
2149 int ind;
2150
2151 *pc = 0;
2152 if (symtab == 0)
2153 return 0;
2154
2155 symtab = find_line_symtab (symtab, line, &ind, NULL);
2156 if (symtab != NULL)
2157 {
2158 l = LINETABLE (symtab);
2159 *pc = l->item[ind].pc;
2160 return 1;
2161 }
2162 else
2163 return 0;
2164}
2165
2166/* Find the range of pc values in a line.
2167 Store the starting pc of the line into *STARTPTR
2168 and the ending pc (start of next line) into *ENDPTR.
2169 Returns 1 to indicate success.
2170 Returns 0 if could not find the specified line. */
2171
2172int
fba45db2
KB
2173find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2174 CORE_ADDR *endptr)
c906108c
SS
2175{
2176 CORE_ADDR startaddr;
2177 struct symtab_and_line found_sal;
2178
2179 startaddr = sal.pc;
c5aa993b 2180 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
c906108c
SS
2181 return 0;
2182
2183 /* This whole function is based on address. For example, if line 10 has
2184 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2185 "info line *0x123" should say the line goes from 0x100 to 0x200
2186 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2187 This also insures that we never give a range like "starts at 0x134
2188 and ends at 0x12c". */
2189
2190 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2191 if (found_sal.line != sal.line)
2192 {
2193 /* The specified line (sal) has zero bytes. */
2194 *startptr = found_sal.pc;
2195 *endptr = found_sal.pc;
2196 }
2197 else
2198 {
2199 *startptr = found_sal.pc;
2200 *endptr = found_sal.end;
2201 }
2202 return 1;
2203}
2204
2205/* Given a line table and a line number, return the index into the line
2206 table for the pc of the nearest line whose number is >= the specified one.
2207 Return -1 if none is found. The value is >= 0 if it is an index.
2208
2209 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2210
2211static int
aa1ee363 2212find_line_common (struct linetable *l, int lineno,
fba45db2 2213 int *exact_match)
c906108c 2214{
52f0bd74
AC
2215 int i;
2216 int len;
c906108c
SS
2217
2218 /* BEST is the smallest linenumber > LINENO so far seen,
2219 or 0 if none has been seen so far.
2220 BEST_INDEX identifies the item for it. */
2221
2222 int best_index = -1;
2223 int best = 0;
2224
b7589f7d
DJ
2225 *exact_match = 0;
2226
c906108c
SS
2227 if (lineno <= 0)
2228 return -1;
2229 if (l == 0)
2230 return -1;
2231
2232 len = l->nitems;
2233 for (i = 0; i < len; i++)
2234 {
aa1ee363 2235 struct linetable_entry *item = &(l->item[i]);
c906108c
SS
2236
2237 if (item->line == lineno)
2238 {
2239 /* Return the first (lowest address) entry which matches. */
2240 *exact_match = 1;
2241 return i;
2242 }
2243
2244 if (item->line > lineno && (best == 0 || item->line < best))
2245 {
2246 best = item->line;
2247 best_index = i;
2248 }
2249 }
2250
2251 /* If we got here, we didn't get an exact match. */
c906108c
SS
2252 return best_index;
2253}
2254
2255int
fba45db2 2256find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
c906108c
SS
2257{
2258 struct symtab_and_line sal;
2259 sal = find_pc_line (pc, 0);
2260 *startptr = sal.pc;
2261 *endptr = sal.end;
2262 return sal.symtab != 0;
2263}
2264
8c7a1ee8
EZ
2265/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2266 address for that function that has an entry in SYMTAB's line info
2267 table. If such an entry cannot be found, return FUNC_ADDR
2268 unaltered. */
2269CORE_ADDR
2270skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2271{
2272 CORE_ADDR func_start, func_end;
2273 struct linetable *l;
952a6d41 2274 int i;
8c7a1ee8
EZ
2275
2276 /* Give up if this symbol has no lineinfo table. */
2277 l = LINETABLE (symtab);
2278 if (l == NULL)
2279 return func_addr;
2280
2281 /* Get the range for the function's PC values, or give up if we
2282 cannot, for some reason. */
2283 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2284 return func_addr;
2285
2286 /* Linetable entries are ordered by PC values, see the commentary in
2287 symtab.h where `struct linetable' is defined. Thus, the first
2288 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2289 address we are looking for. */
2290 for (i = 0; i < l->nitems; i++)
2291 {
2292 struct linetable_entry *item = &(l->item[i]);
2293
2294 /* Don't use line numbers of zero, they mark special entries in
2295 the table. See the commentary on symtab.h before the
2296 definition of struct linetable. */
2297 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2298 return item->pc;
2299 }
2300
2301 return func_addr;
2302}
2303
c906108c
SS
2304/* Given a function symbol SYM, find the symtab and line for the start
2305 of the function.
2306 If the argument FUNFIRSTLINE is nonzero, we want the first line
2307 of real code inside the function. */
2308
50641945 2309struct symtab_and_line
fba45db2 2310find_function_start_sal (struct symbol *sym, int funfirstline)
c906108c 2311{
059acae7
UW
2312 struct symtab_and_line sal;
2313
2314 fixup_symbol_section (sym, NULL);
2315 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2316 SYMBOL_OBJ_SECTION (sym), 0);
2317
86da934b
UW
2318 /* We always should have a line for the function start address.
2319 If we don't, something is odd. Create a plain SAL refering
2320 just the PC and hope that skip_prologue_sal (if requested)
2321 can find a line number for after the prologue. */
2322 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2323 {
2324 init_sal (&sal);
2325 sal.pspace = current_program_space;
2326 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2327 sal.section = SYMBOL_OBJ_SECTION (sym);
2328 }
2329
059acae7
UW
2330 if (funfirstline)
2331 skip_prologue_sal (&sal);
bccdca4a 2332
059acae7
UW
2333 return sal;
2334}
2335
2336/* Adjust SAL to the first instruction past the function prologue.
2337 If the PC was explicitly specified, the SAL is not changed.
2338 If the line number was explicitly specified, at most the SAL's PC
2339 is updated. If SAL is already past the prologue, then do nothing. */
2340void
2341skip_prologue_sal (struct symtab_and_line *sal)
2342{
2343 struct symbol *sym;
2344 struct symtab_and_line start_sal;
2345 struct cleanup *old_chain;
c906108c 2346 CORE_ADDR pc;
059acae7
UW
2347 struct obj_section *section;
2348 const char *name;
2349 struct objfile *objfile;
2350 struct gdbarch *gdbarch;
edb3359d 2351 struct block *b, *function_block;
c906108c 2352
059acae7
UW
2353 /* Do not change the SAL is PC was specified explicitly. */
2354 if (sal->explicit_pc)
2355 return;
6c95b8df
PA
2356
2357 old_chain = save_current_space_and_thread ();
059acae7 2358 switch_to_program_space_and_thread (sal->pspace);
6c95b8df 2359
059acae7
UW
2360 sym = find_pc_sect_function (sal->pc, sal->section);
2361 if (sym != NULL)
bccdca4a 2362 {
059acae7
UW
2363 fixup_symbol_section (sym, NULL);
2364
2365 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2366 section = SYMBOL_OBJ_SECTION (sym);
2367 name = SYMBOL_LINKAGE_NAME (sym);
2368 objfile = SYMBOL_SYMTAB (sym)->objfile;
c906108c 2369 }
059acae7
UW
2370 else
2371 {
2372 struct minimal_symbol *msymbol
2373 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2374 if (msymbol == NULL)
2375 {
2376 do_cleanups (old_chain);
2377 return;
2378 }
2379
2380 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2381 section = SYMBOL_OBJ_SECTION (msymbol);
2382 name = SYMBOL_LINKAGE_NAME (msymbol);
2383 objfile = msymbol_objfile (msymbol);
2384 }
2385
2386 gdbarch = get_objfile_arch (objfile);
2387
2388 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2389 so that gdbarch_skip_prologue has something unique to work on. */
2390 if (section_is_overlay (section) && !section_is_mapped (section))
2391 pc = overlay_unmapped_address (pc, section);
2392
2393 /* Skip "first line" of function (which is actually its prologue). */
2394 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2395 pc = gdbarch_skip_prologue (gdbarch, pc);
2396
2397 /* For overlays, map pc back into its mapped VMA range. */
2398 pc = overlay_mapped_address (pc, section);
2399
2400 /* Calculate line number. */
2401 start_sal = find_pc_sect_line (pc, section, 0);
c906108c 2402
a433963d 2403 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
c906108c 2404 line is still part of the same function. */
059acae7
UW
2405 if (start_sal.pc != pc
2406 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2407 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2408 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2409 == lookup_minimal_symbol_by_pc_section (pc, section))))
c906108c
SS
2410 {
2411 /* First pc of next line */
059acae7 2412 pc = start_sal.end;
c906108c 2413 /* Recalculate the line number (might not be N+1). */
059acae7 2414 start_sal = find_pc_sect_line (pc, section, 0);
c906108c 2415 }
4309257c
PM
2416
2417 /* On targets with executable formats that don't have a concept of
2418 constructors (ELF with .init has, PE doesn't), gcc emits a call
2419 to `__main' in `main' between the prologue and before user
2420 code. */
059acae7
UW
2421 if (gdbarch_skip_main_prologue_p (gdbarch)
2422 && name && strcmp (name, "main") == 0)
4309257c 2423 {
d80b854b 2424 pc = gdbarch_skip_main_prologue (gdbarch, pc);
4309257c 2425 /* Recalculate the line number (might not be N+1). */
059acae7 2426 start_sal = find_pc_sect_line (pc, section, 0);
4309257c
PM
2427 }
2428
8c7a1ee8
EZ
2429 /* If we still don't have a valid source line, try to find the first
2430 PC in the lineinfo table that belongs to the same function. This
2431 happens with COFF debug info, which does not seem to have an
2432 entry in lineinfo table for the code after the prologue which has
2433 no direct relation to source. For example, this was found to be
2434 the case with the DJGPP target using "gcc -gcoff" when the
2435 compiler inserted code after the prologue to make sure the stack
2436 is aligned. */
059acae7 2437 if (sym && start_sal.symtab == NULL)
8c7a1ee8
EZ
2438 {
2439 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2440 /* Recalculate the line number. */
059acae7 2441 start_sal = find_pc_sect_line (pc, section, 0);
8c7a1ee8
EZ
2442 }
2443
059acae7
UW
2444 do_cleanups (old_chain);
2445
2446 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2447 forward SAL to the end of the prologue. */
2448 if (sal->pc >= pc)
2449 return;
2450
2451 sal->pc = pc;
2452 sal->section = section;
2453
2454 /* Unless the explicit_line flag was set, update the SAL line
2455 and symtab to correspond to the modified PC location. */
2456 if (sal->explicit_line)
2457 return;
2458
2459 sal->symtab = start_sal.symtab;
2460 sal->line = start_sal.line;
2461 sal->end = start_sal.end;
c906108c 2462
edb3359d
DJ
2463 /* Check if we are now inside an inlined function. If we can,
2464 use the call site of the function instead. */
059acae7 2465 b = block_for_pc_sect (sal->pc, sal->section);
edb3359d
DJ
2466 function_block = NULL;
2467 while (b != NULL)
2468 {
2469 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2470 function_block = b;
2471 else if (BLOCK_FUNCTION (b) != NULL)
2472 break;
2473 b = BLOCK_SUPERBLOCK (b);
2474 }
2475 if (function_block != NULL
2476 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2477 {
059acae7
UW
2478 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2479 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
edb3359d 2480 }
c906108c 2481}
50641945 2482
c906108c
SS
2483/* If P is of the form "operator[ \t]+..." where `...' is
2484 some legitimate operator text, return a pointer to the
2485 beginning of the substring of the operator text.
2486 Otherwise, return "". */
2487char *
fba45db2 2488operator_chars (char *p, char **end)
c906108c
SS
2489{
2490 *end = "";
2491 if (strncmp (p, "operator", 8))
2492 return *end;
2493 p += 8;
2494
2495 /* Don't get faked out by `operator' being part of a longer
2496 identifier. */
c5aa993b 2497 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
c906108c
SS
2498 return *end;
2499
2500 /* Allow some whitespace between `operator' and the operator symbol. */
2501 while (*p == ' ' || *p == '\t')
2502 p++;
2503
2504 /* Recognize 'operator TYPENAME'. */
2505
c5aa993b 2506 if (isalpha (*p) || *p == '_' || *p == '$')
c906108c 2507 {
aa1ee363 2508 char *q = p + 1;
c5aa993b 2509 while (isalnum (*q) || *q == '_' || *q == '$')
c906108c
SS
2510 q++;
2511 *end = q;
2512 return p;
2513 }
2514
53e8ad3d
MS
2515 while (*p)
2516 switch (*p)
2517 {
2518 case '\\': /* regexp quoting */
2519 if (p[1] == '*')
2520 {
2521 if (p[2] == '=') /* 'operator\*=' */
2522 *end = p + 3;
2523 else /* 'operator\*' */
2524 *end = p + 2;
2525 return p;
2526 }
2527 else if (p[1] == '[')
2528 {
2529 if (p[2] == ']')
8a3fe4f8 2530 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
53e8ad3d
MS
2531 else if (p[2] == '\\' && p[3] == ']')
2532 {
2533 *end = p + 4; /* 'operator\[\]' */
2534 return p;
2535 }
2536 else
8a3fe4f8 2537 error (_("nothing is allowed between '[' and ']'"));
53e8ad3d 2538 }
9af17804 2539 else
53e8ad3d
MS
2540 {
2541 /* Gratuitous qoute: skip it and move on. */
2542 p++;
2543 continue;
2544 }
2545 break;
2546 case '!':
2547 case '=':
2548 case '*':
2549 case '/':
2550 case '%':
2551 case '^':
2552 if (p[1] == '=')
2553 *end = p + 2;
2554 else
2555 *end = p + 1;
2556 return p;
2557 case '<':
2558 case '>':
2559 case '+':
2560 case '-':
2561 case '&':
2562 case '|':
2563 if (p[0] == '-' && p[1] == '>')
2564 {
2565 /* Struct pointer member operator 'operator->'. */
2566 if (p[2] == '*')
2567 {
2568 *end = p + 3; /* 'operator->*' */
2569 return p;
2570 }
2571 else if (p[2] == '\\')
2572 {
2573 *end = p + 4; /* Hopefully 'operator->\*' */
2574 return p;
2575 }
2576 else
2577 {
2578 *end = p + 2; /* 'operator->' */
2579 return p;
2580 }
2581 }
2582 if (p[1] == '=' || p[1] == p[0])
2583 *end = p + 2;
2584 else
2585 *end = p + 1;
2586 return p;
2587 case '~':
2588 case ',':
c5aa993b 2589 *end = p + 1;
53e8ad3d
MS
2590 return p;
2591 case '(':
2592 if (p[1] != ')')
8a3fe4f8 2593 error (_("`operator ()' must be specified without whitespace in `()'"));
c5aa993b 2594 *end = p + 2;
53e8ad3d
MS
2595 return p;
2596 case '?':
2597 if (p[1] != ':')
8a3fe4f8 2598 error (_("`operator ?:' must be specified without whitespace in `?:'"));
53e8ad3d
MS
2599 *end = p + 2;
2600 return p;
2601 case '[':
2602 if (p[1] != ']')
8a3fe4f8 2603 error (_("`operator []' must be specified without whitespace in `[]'"));
53e8ad3d
MS
2604 *end = p + 2;
2605 return p;
2606 default:
8a3fe4f8 2607 error (_("`operator %s' not supported"), p);
53e8ad3d
MS
2608 break;
2609 }
2610
c906108c
SS
2611 *end = "";
2612 return *end;
2613}
c906108c 2614\f
c5aa993b 2615
c94fdfd0
EZ
2616/* If FILE is not already in the table of files, return zero;
2617 otherwise return non-zero. Optionally add FILE to the table if ADD
2618 is non-zero. If *FIRST is non-zero, forget the old table
2619 contents. */
2620static int
2621filename_seen (const char *file, int add, int *first)
c906108c 2622{
c94fdfd0
EZ
2623 /* Table of files seen so far. */
2624 static const char **tab = NULL;
c906108c
SS
2625 /* Allocated size of tab in elements.
2626 Start with one 256-byte block (when using GNU malloc.c).
2627 24 is the malloc overhead when range checking is in effect. */
2628 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2629 /* Current size of tab in elements. */
2630 static int tab_cur_size;
c94fdfd0 2631 const char **p;
c906108c
SS
2632
2633 if (*first)
2634 {
2635 if (tab == NULL)
c94fdfd0 2636 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
c906108c
SS
2637 tab_cur_size = 0;
2638 }
2639
c94fdfd0 2640 /* Is FILE in tab? */
c906108c 2641 for (p = tab; p < tab + tab_cur_size; p++)
c94fdfd0
EZ
2642 if (strcmp (*p, file) == 0)
2643 return 1;
2644
2645 /* No; maybe add it to tab. */
2646 if (add)
c906108c 2647 {
c94fdfd0
EZ
2648 if (tab_cur_size == tab_alloc_size)
2649 {
2650 tab_alloc_size *= 2;
2651 tab = (const char **) xrealloc ((char *) tab,
2652 tab_alloc_size * sizeof (*tab));
2653 }
2654 tab[tab_cur_size++] = file;
c906108c 2655 }
c906108c 2656
c94fdfd0
EZ
2657 return 0;
2658}
2659
2660/* Slave routine for sources_info. Force line breaks at ,'s.
2661 NAME is the name to print and *FIRST is nonzero if this is the first
2662 name printed. Set *FIRST to zero. */
2663static void
d092d1a2 2664output_source_filename (const char *name, int *first)
c94fdfd0
EZ
2665{
2666 /* Since a single source file can result in several partial symbol
2667 tables, we need to avoid printing it more than once. Note: if
2668 some of the psymtabs are read in and some are not, it gets
2669 printed both under "Source files for which symbols have been
2670 read" and "Source files for which symbols will be read in on
2671 demand". I consider this a reasonable way to deal with the
2672 situation. I'm not sure whether this can also happen for
2673 symtabs; it doesn't hurt to check. */
2674
2675 /* Was NAME already seen? */
2676 if (filename_seen (name, 1, first))
2677 {
2678 /* Yes; don't print it again. */
2679 return;
2680 }
2681 /* No; print it and reset *FIRST. */
c906108c
SS
2682 if (*first)
2683 {
2684 *first = 0;
2685 }
2686 else
2687 {
2688 printf_filtered (", ");
2689 }
2690
2691 wrap_here ("");
2692 fputs_filtered (name, gdb_stdout);
c5aa993b 2693}
c906108c 2694
ccefe4c4
TT
2695/* A callback for map_partial_symbol_filenames. */
2696static void
2697output_partial_symbol_filename (const char *fullname, const char *filename,
2698 void *data)
2699{
2700 output_source_filename (fullname ? fullname : filename, data);
2701}
2702
c906108c 2703static void
fba45db2 2704sources_info (char *ignore, int from_tty)
c906108c 2705{
52f0bd74 2706 struct symtab *s;
52f0bd74 2707 struct objfile *objfile;
c906108c 2708 int first;
c5aa993b 2709
c906108c
SS
2710 if (!have_full_symbols () && !have_partial_symbols ())
2711 {
8a3fe4f8 2712 error (_("No symbol table is loaded. Use the \"file\" command."));
c906108c 2713 }
c5aa993b 2714
c906108c
SS
2715 printf_filtered ("Source files for which symbols have been read in:\n\n");
2716
2717 first = 1;
2718 ALL_SYMTABS (objfile, s)
c5aa993b 2719 {
d092d1a2
DJ
2720 const char *fullname = symtab_to_fullname (s);
2721 output_source_filename (fullname ? fullname : s->filename, &first);
c5aa993b 2722 }
c906108c 2723 printf_filtered ("\n\n");
c5aa993b 2724
c906108c
SS
2725 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2726
2727 first = 1;
ccefe4c4 2728 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
c906108c
SS
2729 printf_filtered ("\n");
2730}
2731
2732static int
ccefe4c4 2733file_matches (const char *file, char *files[], int nfiles)
c906108c
SS
2734{
2735 int i;
2736
2737 if (file != NULL && nfiles != 0)
2738 {
2739 for (i = 0; i < nfiles; i++)
c5aa993b 2740 {
31889e00 2741 if (strcmp (files[i], lbasename (file)) == 0)
c5aa993b
JM
2742 return 1;
2743 }
c906108c
SS
2744 }
2745 else if (nfiles == 0)
2746 return 1;
2747 return 0;
2748}
2749
2750/* Free any memory associated with a search. */
2751void
fba45db2 2752free_search_symbols (struct symbol_search *symbols)
c906108c
SS
2753{
2754 struct symbol_search *p;
2755 struct symbol_search *next;
2756
2757 for (p = symbols; p != NULL; p = next)
2758 {
2759 next = p->next;
b8c9b27d 2760 xfree (p);
c906108c
SS
2761 }
2762}
2763
5bd98722
AC
2764static void
2765do_free_search_symbols_cleanup (void *symbols)
2766{
2767 free_search_symbols (symbols);
2768}
2769
2770struct cleanup *
2771make_cleanup_free_search_symbols (struct symbol_search *symbols)
2772{
2773 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2774}
2775
434d2d4f
DJ
2776/* Helper function for sort_search_symbols and qsort. Can only
2777 sort symbols, not minimal symbols. */
2778static int
2779compare_search_syms (const void *sa, const void *sb)
2780{
2781 struct symbol_search **sym_a = (struct symbol_search **) sa;
2782 struct symbol_search **sym_b = (struct symbol_search **) sb;
2783
de5ad195
DC
2784 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2785 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
434d2d4f
DJ
2786}
2787
2788/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2789 prevtail where it is, but update its next pointer to point to
2790 the first of the sorted symbols. */
2791static struct symbol_search *
2792sort_search_symbols (struct symbol_search *prevtail, int nfound)
2793{
2794 struct symbol_search **symbols, *symp, *old_next;
2795 int i;
2796
2797 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2798 * nfound);
2799 symp = prevtail->next;
2800 for (i = 0; i < nfound; i++)
2801 {
2802 symbols[i] = symp;
2803 symp = symp->next;
2804 }
2805 /* Generally NULL. */
2806 old_next = symp;
2807
2808 qsort (symbols, nfound, sizeof (struct symbol_search *),
2809 compare_search_syms);
2810
2811 symp = prevtail;
2812 for (i = 0; i < nfound; i++)
2813 {
2814 symp->next = symbols[i];
2815 symp = symp->next;
2816 }
2817 symp->next = old_next;
2818
8ed32cc0 2819 xfree (symbols);
434d2d4f
DJ
2820 return symp;
2821}
5bd98722 2822
ccefe4c4
TT
2823/* An object of this type is passed as the user_data to the
2824 expand_symtabs_matching method. */
2825struct search_symbols_data
2826{
2827 int nfiles;
2828 char **files;
2829 char *regexp;
2830};
2831
2832/* A callback for expand_symtabs_matching. */
2833static int
2834search_symbols_file_matches (const char *filename, void *user_data)
2835{
2836 struct search_symbols_data *data = user_data;
2837 return file_matches (filename, data->files, data->nfiles);
2838}
2839
2840/* A callback for expand_symtabs_matching. */
2841static int
2842search_symbols_name_matches (const char *symname, void *user_data)
2843{
2844 struct search_symbols_data *data = user_data;
2845 return data->regexp == NULL || re_exec (symname);
2846}
2847
c906108c
SS
2848/* Search the symbol table for matches to the regular expression REGEXP,
2849 returning the results in *MATCHES.
2850
2851 Only symbols of KIND are searched:
176620f1
EZ
2852 FUNCTIONS_DOMAIN - search all functions
2853 TYPES_DOMAIN - search all type names
176620f1 2854 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
c5aa993b 2855 and constants (enums)
c906108c
SS
2856
2857 free_search_symbols should be called when *MATCHES is no longer needed.
434d2d4f
DJ
2858
2859 The results are sorted locally; each symtab's global and static blocks are
2860 separately alphabetized.
c5aa993b 2861 */
c906108c 2862void
176620f1 2863search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
fd118b61 2864 struct symbol_search **matches)
c906108c 2865{
52f0bd74 2866 struct symtab *s;
52f0bd74 2867 struct blockvector *bv;
52f0bd74
AC
2868 struct block *b;
2869 int i = 0;
de4f826b 2870 struct dict_iterator iter;
52f0bd74 2871 struct symbol *sym;
c906108c
SS
2872 struct objfile *objfile;
2873 struct minimal_symbol *msymbol;
2874 char *val;
2875 int found_misc = 0;
2876 static enum minimal_symbol_type types[]
c5aa993b
JM
2877 =
2878 {mst_data, mst_text, mst_abs, mst_unknown};
c906108c 2879 static enum minimal_symbol_type types2[]
c5aa993b
JM
2880 =
2881 {mst_bss, mst_file_text, mst_abs, mst_unknown};
c906108c 2882 static enum minimal_symbol_type types3[]
c5aa993b
JM
2883 =
2884 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
c906108c 2885 static enum minimal_symbol_type types4[]
c5aa993b
JM
2886 =
2887 {mst_file_bss, mst_text, mst_abs, mst_unknown};
c906108c
SS
2888 enum minimal_symbol_type ourtype;
2889 enum minimal_symbol_type ourtype2;
2890 enum minimal_symbol_type ourtype3;
2891 enum minimal_symbol_type ourtype4;
2892 struct symbol_search *sr;
2893 struct symbol_search *psr;
2894 struct symbol_search *tail;
2895 struct cleanup *old_chain = NULL;
ccefe4c4 2896 struct search_symbols_data datum;
c906108c 2897
176620f1 2898 if (kind < VARIABLES_DOMAIN)
8a3fe4f8 2899 error (_("must search on specific domain"));
c906108c 2900
176620f1
EZ
2901 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2902 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2903 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2904 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
c906108c
SS
2905
2906 sr = *matches = NULL;
2907 tail = NULL;
2908
2909 if (regexp != NULL)
2910 {
2911 /* Make sure spacing is right for C++ operators.
2912 This is just a courtesy to make the matching less sensitive
2913 to how many spaces the user leaves between 'operator'
2914 and <TYPENAME> or <OPERATOR>. */
2915 char *opend;
2916 char *opname = operator_chars (regexp, &opend);
2917 if (*opname)
c5aa993b
JM
2918 {
2919 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2920 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2921 {
2922 /* There should 1 space between 'operator' and 'TYPENAME'. */
2923 if (opname[-1] != ' ' || opname[-2] == ' ')
2924 fix = 1;
2925 }
2926 else
2927 {
2928 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2929 if (opname[-1] == ' ')
2930 fix = 0;
2931 }
2932 /* If wrong number of spaces, fix it. */
2933 if (fix >= 0)
2934 {
045f55a6 2935 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
c5aa993b
JM
2936 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2937 regexp = tmp;
2938 }
2939 }
2940
c906108c 2941 if (0 != (val = re_comp (regexp)))
8a3fe4f8 2942 error (_("Invalid regexp (%s): %s"), val, regexp);
c906108c
SS
2943 }
2944
2945 /* Search through the partial symtabs *first* for all symbols
2946 matching the regexp. That way we don't have to reproduce all of
2947 the machinery below. */
2948
ccefe4c4
TT
2949 datum.nfiles = nfiles;
2950 datum.files = files;
2951 datum.regexp = regexp;
2952 ALL_OBJFILES (objfile)
c5aa993b 2953 {
ccefe4c4
TT
2954 if (objfile->sf)
2955 objfile->sf->qf->expand_symtabs_matching (objfile,
2956 search_symbols_file_matches,
2957 search_symbols_name_matches,
2958 kind,
2959 &datum);
c5aa993b 2960 }
c906108c
SS
2961
2962 /* Here, we search through the minimal symbol tables for functions
2963 and variables that match, and force their symbols to be read.
2964 This is in particular necessary for demangled variable names,
2965 which are no longer put into the partial symbol tables.
2966 The symbol will then be found during the scan of symtabs below.
2967
2968 For functions, find_pc_symtab should succeed if we have debug info
2969 for the function, for variables we have to call lookup_symbol
2970 to determine if the variable has debug info.
2971 If the lookup fails, set found_misc so that we will rescan to print
2972 any matching symbols without debug info.
c5aa993b 2973 */
c906108c 2974
176620f1 2975 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
c906108c
SS
2976 {
2977 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 2978 {
89295b4d
PP
2979 QUIT;
2980
c5aa993b
JM
2981 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2982 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2983 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2984 MSYMBOL_TYPE (msymbol) == ourtype4)
2985 {
25120b0d
DC
2986 if (regexp == NULL
2987 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
2988 {
2989 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2990 {
b1262a02
DC
2991 /* FIXME: carlton/2003-02-04: Given that the
2992 semantics of lookup_symbol keeps on changing
2993 slightly, it would be a nice idea if we had a
2994 function lookup_symbol_minsym that found the
2995 symbol associated to a given minimal symbol (if
2996 any). */
176620f1 2997 if (kind == FUNCTIONS_DOMAIN
2335f48e 2998 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
b1262a02 2999 (struct block *) NULL,
2570f2b7 3000 VAR_DOMAIN, 0)
53c5240f 3001 == NULL)
b1262a02 3002 found_misc = 1;
c5aa993b
JM
3003 }
3004 }
3005 }
3006 }
c906108c
SS
3007 }
3008
11309657 3009 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3010 {
3011 bv = BLOCKVECTOR (s);
c5aa993b
JM
3012 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3013 {
434d2d4f
DJ
3014 struct symbol_search *prevtail = tail;
3015 int nfound = 0;
c5aa993b 3016 b = BLOCKVECTOR_BLOCK (bv, i);
de4f826b 3017 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3018 {
cb1df416 3019 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
c5aa993b 3020 QUIT;
cb1df416
DJ
3021
3022 if (file_matches (real_symtab->filename, files, nfiles)
25120b0d
DC
3023 && ((regexp == NULL
3024 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
176620f1 3025 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
0fe7935b 3026 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
c5aa993b
JM
3027 && SYMBOL_CLASS (sym) != LOC_BLOCK
3028 && SYMBOL_CLASS (sym) != LOC_CONST)
176620f1 3029 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
bd2e94ce 3030 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
c5aa993b
JM
3031 {
3032 /* match */
3033 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3034 psr->block = i;
cb1df416 3035 psr->symtab = real_symtab;
c5aa993b
JM
3036 psr->symbol = sym;
3037 psr->msymbol = NULL;
3038 psr->next = NULL;
3039 if (tail == NULL)
434d2d4f 3040 sr = psr;
c5aa993b
JM
3041 else
3042 tail->next = psr;
3043 tail = psr;
434d2d4f
DJ
3044 nfound ++;
3045 }
3046 }
3047 if (nfound > 0)
3048 {
3049 if (prevtail == NULL)
3050 {
3051 struct symbol_search dummy;
3052
3053 dummy.next = sr;
3054 tail = sort_search_symbols (&dummy, nfound);
3055 sr = dummy.next;
3056
3057 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b 3058 }
434d2d4f
DJ
3059 else
3060 tail = sort_search_symbols (prevtail, nfound);
c5aa993b
JM
3061 }
3062 }
c5aa993b 3063 }
c906108c
SS
3064
3065 /* If there are no eyes, avoid all contact. I mean, if there are
3066 no debug symbols, then print directly from the msymbol_vector. */
3067
176620f1 3068 if (found_misc || kind != FUNCTIONS_DOMAIN)
c906108c
SS
3069 {
3070 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 3071 {
89295b4d
PP
3072 QUIT;
3073
c5aa993b
JM
3074 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3075 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3076 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3077 MSYMBOL_TYPE (msymbol) == ourtype4)
3078 {
25120b0d
DC
3079 if (regexp == NULL
3080 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3081 {
3082 /* Functions: Look up by address. */
176620f1 3083 if (kind != FUNCTIONS_DOMAIN ||
c5aa993b
JM
3084 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3085 {
3086 /* Variables/Absolutes: Look up by name */
2335f48e 3087 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2570f2b7
UW
3088 (struct block *) NULL, VAR_DOMAIN, 0)
3089 == NULL)
c5aa993b
JM
3090 {
3091 /* match */
3092 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3093 psr->block = i;
3094 psr->msymbol = msymbol;
3095 psr->symtab = NULL;
3096 psr->symbol = NULL;
3097 psr->next = NULL;
3098 if (tail == NULL)
3099 {
3100 sr = psr;
5bd98722 3101 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b
JM
3102 }
3103 else
3104 tail->next = psr;
3105 tail = psr;
3106 }
3107 }
3108 }
3109 }
3110 }
c906108c
SS
3111 }
3112
3113 *matches = sr;
3114 if (sr != NULL)
3115 discard_cleanups (old_chain);
3116}
3117
3118/* Helper function for symtab_symbol_info, this function uses
3119 the data returned from search_symbols() to print information
3120 regarding the match to gdb_stdout.
c5aa993b 3121 */
c906108c 3122static void
176620f1 3123print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
fba45db2 3124 int block, char *last)
c906108c
SS
3125{
3126 if (last == NULL || strcmp (last, s->filename) != 0)
3127 {
3128 fputs_filtered ("\nFile ", gdb_stdout);
3129 fputs_filtered (s->filename, gdb_stdout);
3130 fputs_filtered (":\n", gdb_stdout);
3131 }
3132
176620f1 3133 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
c906108c 3134 printf_filtered ("static ");
c5aa993b 3135
c906108c 3136 /* Typedef that is not a C++ class */
176620f1
EZ
3137 if (kind == TYPES_DOMAIN
3138 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
a5238fbc 3139 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
c906108c 3140 /* variable, func, or typedef-that-is-c++-class */
176620f1
EZ
3141 else if (kind < TYPES_DOMAIN ||
3142 (kind == TYPES_DOMAIN &&
3143 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
c906108c
SS
3144 {
3145 type_print (SYMBOL_TYPE (sym),
c5aa993b 3146 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
de5ad195 3147 ? "" : SYMBOL_PRINT_NAME (sym)),
c5aa993b 3148 gdb_stdout, 0);
c906108c
SS
3149
3150 printf_filtered (";\n");
3151 }
c906108c
SS
3152}
3153
3154/* This help function for symtab_symbol_info() prints information
3155 for non-debugging symbols to gdb_stdout.
c5aa993b 3156 */
c906108c 3157static void
fba45db2 3158print_msymbol_info (struct minimal_symbol *msymbol)
c906108c 3159{
d80b854b 3160 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3ac4495a
MS
3161 char *tmp;
3162
d80b854b 3163 if (gdbarch_addr_bit (gdbarch) <= 32)
bb599908
PH
3164 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3165 & (CORE_ADDR) 0xffffffff,
3166 8);
3ac4495a 3167 else
bb599908
PH
3168 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3169 16);
3ac4495a 3170 printf_filtered ("%s %s\n",
de5ad195 3171 tmp, SYMBOL_PRINT_NAME (msymbol));
c906108c
SS
3172}
3173
3174/* This is the guts of the commands "info functions", "info types", and
3175 "info variables". It calls search_symbols to find all matches and then
3176 print_[m]symbol_info to print out some useful information about the
3177 matches.
c5aa993b 3178 */
c906108c 3179static void
176620f1 3180symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
c906108c
SS
3181{
3182 static char *classnames[]
c5aa993b
JM
3183 =
3184 {"variable", "function", "type", "method"};
c906108c
SS
3185 struct symbol_search *symbols;
3186 struct symbol_search *p;
3187 struct cleanup *old_chain;
3188 char *last_filename = NULL;
3189 int first = 1;
3190
3191 /* must make sure that if we're interrupted, symbols gets freed */
3192 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
5bd98722 3193 old_chain = make_cleanup_free_search_symbols (symbols);
c906108c
SS
3194
3195 printf_filtered (regexp
c5aa993b
JM
3196 ? "All %ss matching regular expression \"%s\":\n"
3197 : "All defined %ss:\n",
176620f1 3198 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
c906108c
SS
3199
3200 for (p = symbols; p != NULL; p = p->next)
3201 {
3202 QUIT;
3203
3204 if (p->msymbol != NULL)
c5aa993b
JM
3205 {
3206 if (first)
3207 {
3208 printf_filtered ("\nNon-debugging symbols:\n");
3209 first = 0;
3210 }
3211 print_msymbol_info (p->msymbol);
3212 }
c906108c 3213 else
c5aa993b
JM
3214 {
3215 print_symbol_info (kind,
3216 p->symtab,
3217 p->symbol,
3218 p->block,
3219 last_filename);
3220 last_filename = p->symtab->filename;
3221 }
c906108c
SS
3222 }
3223
3224 do_cleanups (old_chain);
3225}
3226
3227static void
fba45db2 3228variables_info (char *regexp, int from_tty)
c906108c 3229{
176620f1 3230 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
c906108c
SS
3231}
3232
3233static void
fba45db2 3234functions_info (char *regexp, int from_tty)
c906108c 3235{
176620f1 3236 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
c906108c
SS
3237}
3238
357e46e7 3239
c906108c 3240static void
fba45db2 3241types_info (char *regexp, int from_tty)
c906108c 3242{
176620f1 3243 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
c906108c
SS
3244}
3245
c906108c 3246/* Breakpoint all functions matching regular expression. */
8926118c 3247
8b93c638 3248void
fba45db2 3249rbreak_command_wrapper (char *regexp, int from_tty)
8b93c638
JM
3250{
3251 rbreak_command (regexp, from_tty);
3252}
8926118c 3253
95a42b64
TT
3254/* A cleanup function that calls end_rbreak_breakpoints. */
3255
3256static void
3257do_end_rbreak_breakpoints (void *ignore)
3258{
3259 end_rbreak_breakpoints ();
3260}
3261
c906108c 3262static void
fba45db2 3263rbreak_command (char *regexp, int from_tty)
c906108c
SS
3264{
3265 struct symbol_search *ss;
3266 struct symbol_search *p;
3267 struct cleanup *old_chain;
95a42b64
TT
3268 char *string = NULL;
3269 int len = 0;
8bd10a10
CM
3270 char **files = NULL;
3271 int nfiles = 0;
c906108c 3272
8bd10a10
CM
3273 if (regexp)
3274 {
3275 char *colon = strchr (regexp, ':');
3276 if (colon && *(colon + 1) != ':')
3277 {
3278 int colon_index;
3279 char * file_name;
3280
3281 colon_index = colon - regexp;
3282 file_name = alloca (colon_index + 1);
3283 memcpy (file_name, regexp, colon_index);
3284 file_name[colon_index--] = 0;
3285 while (isspace (file_name[colon_index]))
3286 file_name[colon_index--] = 0;
3287 files = &file_name;
3288 nfiles = 1;
3289 regexp = colon + 1;
3290 while (isspace (*regexp)) regexp++;
3291 }
3292 }
3293
3294 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
5bd98722 3295 old_chain = make_cleanup_free_search_symbols (ss);
95a42b64 3296 make_cleanup (free_current_contents, &string);
c906108c 3297
95a42b64
TT
3298 start_rbreak_breakpoints ();
3299 make_cleanup (do_end_rbreak_breakpoints, NULL);
c906108c
SS
3300 for (p = ss; p != NULL; p = p->next)
3301 {
3302 if (p->msymbol == NULL)
c5aa993b 3303 {
95a42b64
TT
3304 int newlen = (strlen (p->symtab->filename)
3305 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3306 + 4);
3307 if (newlen > len)
3308 {
3309 string = xrealloc (string, newlen);
3310 len = newlen;
3311 }
c5aa993b
JM
3312 strcpy (string, p->symtab->filename);
3313 strcat (string, ":'");
2335f48e 3314 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
c5aa993b
JM
3315 strcat (string, "'");
3316 break_command (string, from_tty);
176620f1 3317 print_symbol_info (FUNCTIONS_DOMAIN,
c5aa993b
JM
3318 p->symtab,
3319 p->symbol,
3320 p->block,
3321 p->symtab->filename);
3322 }
c906108c 3323 else
c5aa993b 3324 {
95a42b64
TT
3325 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3326 + 3);
3327 if (newlen > len)
3328 {
3329 string = xrealloc (string, newlen);
3330 len = newlen;
3331 }
6214f497
DJ
3332 strcpy (string, "'");
3333 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3334 strcat (string, "'");
3335
3336 break_command (string, from_tty);
c5aa993b 3337 printf_filtered ("<function, no debug info> %s;\n",
de5ad195 3338 SYMBOL_PRINT_NAME (p->msymbol));
c5aa993b 3339 }
c906108c
SS
3340 }
3341
3342 do_cleanups (old_chain);
3343}
c906108c 3344\f
c5aa993b 3345
c906108c
SS
3346/* Helper routine for make_symbol_completion_list. */
3347
3348static int return_val_size;
3349static int return_val_index;
3350static char **return_val;
3351
3352#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
c906108c 3353 completion_list_add_name \
2335f48e 3354 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
c906108c
SS
3355
3356/* Test to see if the symbol specified by SYMNAME (which is already
c5aa993b
JM
3357 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3358 characters. If so, add it to the current completion list. */
c906108c
SS
3359
3360static void
fba45db2
KB
3361completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3362 char *text, char *word)
c906108c
SS
3363{
3364 int newsize;
c906108c
SS
3365
3366 /* clip symbols that cannot match */
3367
3368 if (strncmp (symname, sym_text, sym_text_len) != 0)
3369 {
3370 return;
3371 }
3372
c906108c
SS
3373 /* We have a match for a completion, so add SYMNAME to the current list
3374 of matches. Note that the name is moved to freshly malloc'd space. */
3375
3376 {
3377 char *new;
3378 if (word == sym_text)
3379 {
3380 new = xmalloc (strlen (symname) + 5);
3381 strcpy (new, symname);
3382 }
3383 else if (word > sym_text)
3384 {
3385 /* Return some portion of symname. */
3386 new = xmalloc (strlen (symname) + 5);
3387 strcpy (new, symname + (word - sym_text));
3388 }
3389 else
3390 {
3391 /* Return some of SYM_TEXT plus symname. */
3392 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3393 strncpy (new, word, sym_text - word);
3394 new[sym_text - word] = '\0';
3395 strcat (new, symname);
3396 }
3397
c906108c
SS
3398 if (return_val_index + 3 > return_val_size)
3399 {
3400 newsize = (return_val_size *= 2) * sizeof (char *);
3401 return_val = (char **) xrealloc ((char *) return_val, newsize);
3402 }
3403 return_val[return_val_index++] = new;
3404 return_val[return_val_index] = NULL;
3405 }
3406}
3407
69636828
AF
3408/* ObjC: In case we are completing on a selector, look as the msymbol
3409 again and feed all the selectors into the mill. */
3410
3411static void
3412completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3413 int sym_text_len, char *text, char *word)
3414{
3415 static char *tmp = NULL;
3416 static unsigned int tmplen = 0;
9af17804 3417
69636828
AF
3418 char *method, *category, *selector;
3419 char *tmp2 = NULL;
9af17804 3420
69636828
AF
3421 method = SYMBOL_NATURAL_NAME (msymbol);
3422
3423 /* Is it a method? */
3424 if ((method[0] != '-') && (method[0] != '+'))
3425 return;
3426
3427 if (sym_text[0] == '[')
3428 /* Complete on shortened method method. */
3429 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
9af17804 3430
69636828
AF
3431 while ((strlen (method) + 1) >= tmplen)
3432 {
3433 if (tmplen == 0)
3434 tmplen = 1024;
3435 else
3436 tmplen *= 2;
3437 tmp = xrealloc (tmp, tmplen);
3438 }
3439 selector = strchr (method, ' ');
3440 if (selector != NULL)
3441 selector++;
9af17804 3442
69636828 3443 category = strchr (method, '(');
9af17804 3444
69636828
AF
3445 if ((category != NULL) && (selector != NULL))
3446 {
3447 memcpy (tmp, method, (category - method));
3448 tmp[category - method] = ' ';
3449 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3450 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3451 if (sym_text[0] == '[')
3452 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3453 }
9af17804 3454
69636828
AF
3455 if (selector != NULL)
3456 {
3457 /* Complete on selector only. */
3458 strcpy (tmp, selector);
3459 tmp2 = strchr (tmp, ']');
3460 if (tmp2 != NULL)
3461 *tmp2 = '\0';
9af17804 3462
69636828
AF
3463 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3464 }
3465}
3466
3467/* Break the non-quoted text based on the characters which are in
3468 symbols. FIXME: This should probably be language-specific. */
3469
3470static char *
3471language_search_unquoted_string (char *text, char *p)
3472{
3473 for (; p > text; --p)
3474 {
3475 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3476 continue;
3477 else
3478 {
3479 if ((current_language->la_language == language_objc))
3480 {
3481 if (p[-1] == ':') /* might be part of a method name */
3482 continue;
3483 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3484 p -= 2; /* beginning of a method name */
3485 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3486 { /* might be part of a method name */
3487 char *t = p;
3488
3489 /* Seeing a ' ' or a '(' is not conclusive evidence
3490 that we are in the middle of a method name. However,
3491 finding "-[" or "+[" should be pretty un-ambiguous.
3492 Unfortunately we have to find it now to decide. */
3493
3494 while (t > text)
3495 if (isalnum (t[-1]) || t[-1] == '_' ||
3496 t[-1] == ' ' || t[-1] == ':' ||
3497 t[-1] == '(' || t[-1] == ')')
3498 --t;
3499 else
3500 break;
3501
3502 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3503 p = t - 2; /* method name detected */
3504 /* else we leave with p unchanged */
3505 }
3506 }
3507 break;
3508 }
3509 }
3510 return p;
3511}
3512
edb3359d
DJ
3513static void
3514completion_list_add_fields (struct symbol *sym, char *sym_text,
3515 int sym_text_len, char *text, char *word)
3516{
3517 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3518 {
3519 struct type *t = SYMBOL_TYPE (sym);
3520 enum type_code c = TYPE_CODE (t);
3521 int j;
3522
3523 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3524 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3525 if (TYPE_FIELD_NAME (t, j))
3526 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3527 sym_text, sym_text_len, text, word);
3528 }
3529}
3530
ccefe4c4
TT
3531/* Type of the user_data argument passed to add_macro_name or
3532 add_partial_symbol_name. The contents are simply whatever is
3533 needed by completion_list_add_name. */
3534struct add_name_data
9a044a89
TT
3535{
3536 char *sym_text;
3537 int sym_text_len;
3538 char *text;
3539 char *word;
3540};
3541
3542/* A callback used with macro_for_each and macro_for_each_in_scope.
3543 This adds a macro's name to the current completion list. */
3544static void
3545add_macro_name (const char *name, const struct macro_definition *ignore,
3546 void *user_data)
3547{
ccefe4c4
TT
3548 struct add_name_data *datum = (struct add_name_data *) user_data;
3549 completion_list_add_name ((char *) name,
3550 datum->sym_text, datum->sym_text_len,
3551 datum->text, datum->word);
3552}
3553
3554/* A callback for map_partial_symbol_names. */
3555static void
3556add_partial_symbol_name (const char *name, void *user_data)
3557{
3558 struct add_name_data *datum = (struct add_name_data *) user_data;
9a044a89
TT
3559 completion_list_add_name ((char *) name,
3560 datum->sym_text, datum->sym_text_len,
3561 datum->text, datum->word);
3562}
3563
c906108c 3564char **
41d27058 3565default_make_symbol_completion_list (char *text, char *word)
c906108c 3566{
41d27058
JB
3567 /* Problem: All of the symbols have to be copied because readline
3568 frees them. I'm not going to worry about this; hopefully there
3569 won't be that many. */
3570
de4f826b
DC
3571 struct symbol *sym;
3572 struct symtab *s;
de4f826b
DC
3573 struct minimal_symbol *msymbol;
3574 struct objfile *objfile;
edb3359d
DJ
3575 struct block *b;
3576 const struct block *surrounding_static_block, *surrounding_global_block;
de4f826b 3577 struct dict_iterator iter;
c906108c
SS
3578 /* The symbol we are completing on. Points in same buffer as text. */
3579 char *sym_text;
3580 /* Length of sym_text. */
3581 int sym_text_len;
ccefe4c4 3582 struct add_name_data datum;
c906108c 3583
41d27058 3584 /* Now look for the symbol we are supposed to complete on. */
c906108c
SS
3585 {
3586 char *p;
3587 char quote_found;
3588 char *quote_pos = NULL;
3589
3590 /* First see if this is a quoted string. */
3591 quote_found = '\0';
3592 for (p = text; *p != '\0'; ++p)
3593 {
3594 if (quote_found != '\0')
3595 {
3596 if (*p == quote_found)
3597 /* Found close quote. */
3598 quote_found = '\0';
3599 else if (*p == '\\' && p[1] == quote_found)
3600 /* A backslash followed by the quote character
c5aa993b 3601 doesn't end the string. */
c906108c
SS
3602 ++p;
3603 }
3604 else if (*p == '\'' || *p == '"')
3605 {
3606 quote_found = *p;
3607 quote_pos = p;
3608 }
3609 }
3610 if (quote_found == '\'')
3611 /* A string within single quotes can be a symbol, so complete on it. */
3612 sym_text = quote_pos + 1;
3613 else if (quote_found == '"')
3614 /* A double-quoted string is never a symbol, nor does it make sense
c5aa993b 3615 to complete it any other way. */
c94fdfd0
EZ
3616 {
3617 return_val = (char **) xmalloc (sizeof (char *));
3618 return_val[0] = NULL;
3619 return return_val;
3620 }
c906108c
SS
3621 else
3622 {
3623 /* It is not a quoted string. Break it based on the characters
3624 which are in symbols. */
3625 while (p > text)
3626 {
95699ff0
KS
3627 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3628 || p[-1] == ':')
c906108c
SS
3629 --p;
3630 else
3631 break;
3632 }
3633 sym_text = p;
3634 }
3635 }
3636
3637 sym_text_len = strlen (sym_text);
3638
3639 return_val_size = 100;
3640 return_val_index = 0;
3641 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3642 return_val[0] = NULL;
3643
ccefe4c4
TT
3644 datum.sym_text = sym_text;
3645 datum.sym_text_len = sym_text_len;
3646 datum.text = text;
3647 datum.word = word;
3648
c906108c
SS
3649 /* Look through the partial symtabs for all symbols which begin
3650 by matching SYM_TEXT. Add each one that you find to the list. */
ccefe4c4 3651 map_partial_symbol_names (add_partial_symbol_name, &datum);
c906108c
SS
3652
3653 /* At this point scan through the misc symbol vectors and add each
3654 symbol you find to the list. Eventually we want to ignore
3655 anything that isn't a text symbol (everything else will be
3656 handled by the psymtab code above). */
3657
3658 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3659 {
3660 QUIT;
3661 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
9af17804 3662
69636828 3663 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
c5aa993b 3664 }
c906108c
SS
3665
3666 /* Search upwards from currently selected frame (so that we can
edb3359d
DJ
3667 complete on local vars). Also catch fields of types defined in
3668 this places which match our text string. Only complete on types
3669 visible from current context. */
3670
3671 b = get_selected_block (0);
3672 surrounding_static_block = block_static_block (b);
3673 surrounding_global_block = block_global_block (b);
3674 if (surrounding_static_block != NULL)
3675 while (b != surrounding_static_block)
3676 {
3677 QUIT;
c906108c 3678
edb3359d
DJ
3679 ALL_BLOCK_SYMBOLS (b, iter, sym)
3680 {
3681 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3682 word);
3683 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3684 word);
3685 }
c5aa993b 3686
edb3359d
DJ
3687 /* Stop when we encounter an enclosing function. Do not stop for
3688 non-inlined functions - the locals of the enclosing function
3689 are in scope for a nested function. */
3690 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3691 break;
3692 b = BLOCK_SUPERBLOCK (b);
3693 }
c906108c 3694
edb3359d 3695 /* Add fields from the file's types; symbols will be added below. */
c906108c 3696
edb3359d
DJ
3697 if (surrounding_static_block != NULL)
3698 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3699 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3700
3701 if (surrounding_global_block != NULL)
3702 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3703 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
c906108c
SS
3704
3705 /* Go through the symtabs and check the externs and statics for
3706 symbols which match. */
3707
11309657 3708 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3709 {
3710 QUIT;
3711 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3712 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3713 {
c5aa993b
JM
3714 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3715 }
3716 }
c906108c 3717
11309657 3718 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3719 {
3720 QUIT;
3721 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3722 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3723 {
c5aa993b
JM
3724 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3725 }
3726 }
c906108c 3727
9a044a89
TT
3728 if (current_language->la_macro_expansion == macro_expansion_c)
3729 {
3730 struct macro_scope *scope;
9a044a89
TT
3731
3732 /* Add any macros visible in the default scope. Note that this
3733 may yield the occasional wrong result, because an expression
3734 might be evaluated in a scope other than the default. For
3735 example, if the user types "break file:line if <TAB>", the
3736 resulting expression will be evaluated at "file:line" -- but
3737 at there does not seem to be a way to detect this at
3738 completion time. */
3739 scope = default_macro_scope ();
3740 if (scope)
3741 {
3742 macro_for_each_in_scope (scope->file, scope->line,
3743 add_macro_name, &datum);
3744 xfree (scope);
3745 }
3746
3747 /* User-defined macros are always visible. */
3748 macro_for_each (macro_user_macros, add_macro_name, &datum);
3749 }
3750
c906108c
SS
3751 return (return_val);
3752}
3753
41d27058
JB
3754/* Return a NULL terminated array of all symbols (regardless of class)
3755 which begin by matching TEXT. If the answer is no symbols, then
3756 the return value is an array which contains only a NULL pointer. */
3757
3758char **
3759make_symbol_completion_list (char *text, char *word)
3760{
3761 return current_language->la_make_symbol_completion_list (text, word);
3762}
3763
d8906c6f
TJB
3764/* Like make_symbol_completion_list, but suitable for use as a
3765 completion function. */
3766
3767char **
3768make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3769 char *text, char *word)
3770{
3771 return make_symbol_completion_list (text, word);
3772}
3773
c94fdfd0
EZ
3774/* Like make_symbol_completion_list, but returns a list of symbols
3775 defined in a source file FILE. */
3776
3777char **
3778make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3779{
52f0bd74
AC
3780 struct symbol *sym;
3781 struct symtab *s;
3782 struct block *b;
de4f826b 3783 struct dict_iterator iter;
c94fdfd0
EZ
3784 /* The symbol we are completing on. Points in same buffer as text. */
3785 char *sym_text;
3786 /* Length of sym_text. */
3787 int sym_text_len;
3788
3789 /* Now look for the symbol we are supposed to complete on.
3790 FIXME: This should be language-specific. */
3791 {
3792 char *p;
3793 char quote_found;
3794 char *quote_pos = NULL;
3795
3796 /* First see if this is a quoted string. */
3797 quote_found = '\0';
3798 for (p = text; *p != '\0'; ++p)
3799 {
3800 if (quote_found != '\0')
3801 {
3802 if (*p == quote_found)
3803 /* Found close quote. */
3804 quote_found = '\0';
3805 else if (*p == '\\' && p[1] == quote_found)
3806 /* A backslash followed by the quote character
3807 doesn't end the string. */
3808 ++p;
3809 }
3810 else if (*p == '\'' || *p == '"')
3811 {
3812 quote_found = *p;
3813 quote_pos = p;
3814 }
3815 }
3816 if (quote_found == '\'')
3817 /* A string within single quotes can be a symbol, so complete on it. */
3818 sym_text = quote_pos + 1;
3819 else if (quote_found == '"')
3820 /* A double-quoted string is never a symbol, nor does it make sense
3821 to complete it any other way. */
3822 {
3823 return_val = (char **) xmalloc (sizeof (char *));
3824 return_val[0] = NULL;
3825 return return_val;
3826 }
3827 else
3828 {
69636828
AF
3829 /* Not a quoted string. */
3830 sym_text = language_search_unquoted_string (text, p);
c94fdfd0
EZ
3831 }
3832 }
3833
3834 sym_text_len = strlen (sym_text);
3835
3836 return_val_size = 10;
3837 return_val_index = 0;
3838 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3839 return_val[0] = NULL;
3840
3841 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3842 in). */
3843 s = lookup_symtab (srcfile);
3844 if (s == NULL)
3845 {
3846 /* Maybe they typed the file with leading directories, while the
3847 symbol tables record only its basename. */
31889e00 3848 const char *tail = lbasename (srcfile);
c94fdfd0
EZ
3849
3850 if (tail > srcfile)
3851 s = lookup_symtab (tail);
3852 }
3853
3854 /* If we have no symtab for that file, return an empty list. */
3855 if (s == NULL)
3856 return (return_val);
3857
3858 /* Go through this symtab and check the externs and statics for
3859 symbols which match. */
3860
3861 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3862 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3863 {
c94fdfd0
EZ
3864 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3865 }
3866
3867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3868 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3869 {
c94fdfd0
EZ
3870 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3871 }
3872
3873 return (return_val);
3874}
3875
3876/* A helper function for make_source_files_completion_list. It adds
3877 another file name to a list of possible completions, growing the
3878 list as necessary. */
3879
3880static void
3881add_filename_to_list (const char *fname, char *text, char *word,
3882 char ***list, int *list_used, int *list_alloced)
3883{
3884 char *new;
3885 size_t fnlen = strlen (fname);
3886
3887 if (*list_used + 1 >= *list_alloced)
3888 {
3889 *list_alloced *= 2;
3890 *list = (char **) xrealloc ((char *) *list,
3891 *list_alloced * sizeof (char *));
3892 }
3893
3894 if (word == text)
3895 {
3896 /* Return exactly fname. */
3897 new = xmalloc (fnlen + 5);
3898 strcpy (new, fname);
3899 }
3900 else if (word > text)
3901 {
3902 /* Return some portion of fname. */
3903 new = xmalloc (fnlen + 5);
3904 strcpy (new, fname + (word - text));
3905 }
3906 else
3907 {
3908 /* Return some of TEXT plus fname. */
3909 new = xmalloc (fnlen + (text - word) + 5);
3910 strncpy (new, word, text - word);
3911 new[text - word] = '\0';
3912 strcat (new, fname);
3913 }
3914 (*list)[*list_used] = new;
3915 (*list)[++*list_used] = NULL;
3916}
3917
3918static int
3919not_interesting_fname (const char *fname)
3920{
3921 static const char *illegal_aliens[] = {
3922 "_globals_", /* inserted by coff_symtab_read */
3923 NULL
3924 };
3925 int i;
3926
3927 for (i = 0; illegal_aliens[i]; i++)
3928 {
3929 if (strcmp (fname, illegal_aliens[i]) == 0)
3930 return 1;
3931 }
3932 return 0;
3933}
3934
ccefe4c4
TT
3935/* An object of this type is passed as the user_data argument to
3936 map_partial_symbol_filenames. */
3937struct add_partial_filename_data
3938{
3939 int *first;
3940 char *text;
3941 char *word;
3942 int text_len;
3943 char ***list;
3944 int *list_used;
3945 int *list_alloced;
3946};
3947
3948/* A callback for map_partial_symbol_filenames. */
3949static void
3950maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3951 void *user_data)
3952{
3953 struct add_partial_filename_data *data = user_data;
3954
3955 if (not_interesting_fname (filename))
3956 return;
3957 if (!filename_seen (filename, 1, data->first)
3958#if HAVE_DOS_BASED_FILE_SYSTEM
3959 && strncasecmp (filename, data->text, data->text_len) == 0
3960#else
3961 && strncmp (filename, data->text, data->text_len) == 0
3962#endif
3963 )
3964 {
3965 /* This file matches for a completion; add it to the
3966 current list of matches. */
3967 add_filename_to_list (filename, data->text, data->word,
3968 data->list, data->list_used, data->list_alloced);
3969 }
3970 else
3971 {
3972 const char *base_name = lbasename (filename);
3973 if (base_name != filename
3974 && !filename_seen (base_name, 1, data->first)
3975#if HAVE_DOS_BASED_FILE_SYSTEM
3976 && strncasecmp (base_name, data->text, data->text_len) == 0
3977#else
3978 && strncmp (base_name, data->text, data->text_len) == 0
3979#endif
3980 )
3981 add_filename_to_list (base_name, data->text, data->word,
3982 data->list, data->list_used, data->list_alloced);
3983 }
3984}
3985
c94fdfd0
EZ
3986/* Return a NULL terminated array of all source files whose names
3987 begin with matching TEXT. The file names are looked up in the
3988 symbol tables of this program. If the answer is no matchess, then
3989 the return value is an array which contains only a NULL pointer. */
3990
3991char **
3992make_source_files_completion_list (char *text, char *word)
3993{
52f0bd74 3994 struct symtab *s;
52f0bd74 3995 struct objfile *objfile;
c94fdfd0
EZ
3996 int first = 1;
3997 int list_alloced = 1;
3998 int list_used = 0;
3999 size_t text_len = strlen (text);
4000 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
31889e00 4001 const char *base_name;
ccefe4c4 4002 struct add_partial_filename_data datum;
c94fdfd0
EZ
4003
4004 list[0] = NULL;
4005
4006 if (!have_full_symbols () && !have_partial_symbols ())
4007 return list;
4008
4009 ALL_SYMTABS (objfile, s)
4010 {
4011 if (not_interesting_fname (s->filename))
4012 continue;
4013 if (!filename_seen (s->filename, 1, &first)
4014#if HAVE_DOS_BASED_FILE_SYSTEM
4015 && strncasecmp (s->filename, text, text_len) == 0
4016#else
4017 && strncmp (s->filename, text, text_len) == 0
4018#endif
4019 )
4020 {
4021 /* This file matches for a completion; add it to the current
4022 list of matches. */
4023 add_filename_to_list (s->filename, text, word,
4024 &list, &list_used, &list_alloced);
4025 }
4026 else
4027 {
4028 /* NOTE: We allow the user to type a base name when the
4029 debug info records leading directories, but not the other
4030 way around. This is what subroutines of breakpoint
4031 command do when they parse file names. */
31889e00 4032 base_name = lbasename (s->filename);
c94fdfd0
EZ
4033 if (base_name != s->filename
4034 && !filename_seen (base_name, 1, &first)
4035#if HAVE_DOS_BASED_FILE_SYSTEM
4036 && strncasecmp (base_name, text, text_len) == 0
4037#else
4038 && strncmp (base_name, text, text_len) == 0
4039#endif
4040 )
4041 add_filename_to_list (base_name, text, word,
4042 &list, &list_used, &list_alloced);
4043 }
4044 }
4045
ccefe4c4
TT
4046 datum.first = &first;
4047 datum.text = text;
4048 datum.word = word;
4049 datum.text_len = text_len;
4050 datum.list = &list;
4051 datum.list_used = &list_used;
4052 datum.list_alloced = &list_alloced;
4053 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
c94fdfd0
EZ
4054
4055 return list;
4056}
4057
c906108c
SS
4058/* Determine if PC is in the prologue of a function. The prologue is the area
4059 between the first instruction of a function, and the first executable line.
4060 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4061
4062 If non-zero, func_start is where we think the prologue starts, possibly
4063 by previous examination of symbol table information.
4064 */
4065
4066int
d80b854b 4067in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
c906108c
SS
4068{
4069 struct symtab_and_line sal;
4070 CORE_ADDR func_addr, func_end;
4071
54cf9c03
EZ
4072 /* We have several sources of information we can consult to figure
4073 this out.
4074 - Compilers usually emit line number info that marks the prologue
4075 as its own "source line". So the ending address of that "line"
4076 is the end of the prologue. If available, this is the most
4077 reliable method.
4078 - The minimal symbols and partial symbols, which can usually tell
4079 us the starting and ending addresses of a function.
4080 - If we know the function's start address, we can call the
a433963d 4081 architecture-defined gdbarch_skip_prologue function to analyze the
54cf9c03
EZ
4082 instruction stream and guess where the prologue ends.
4083 - Our `func_start' argument; if non-zero, this is the caller's
4084 best guess as to the function's entry point. At the time of
4085 this writing, handle_inferior_event doesn't get this right, so
4086 it should be our last resort. */
4087
4088 /* Consult the partial symbol table, to find which function
4089 the PC is in. */
4090 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4091 {
4092 CORE_ADDR prologue_end;
c906108c 4093
54cf9c03
EZ
4094 /* We don't even have minsym information, so fall back to using
4095 func_start, if given. */
4096 if (! func_start)
4097 return 1; /* We *might* be in a prologue. */
c906108c 4098
d80b854b 4099 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
c906108c 4100
54cf9c03
EZ
4101 return func_start <= pc && pc < prologue_end;
4102 }
c906108c 4103
54cf9c03
EZ
4104 /* If we have line number information for the function, that's
4105 usually pretty reliable. */
4106 sal = find_pc_line (func_addr, 0);
c906108c 4107
54cf9c03
EZ
4108 /* Now sal describes the source line at the function's entry point,
4109 which (by convention) is the prologue. The end of that "line",
4110 sal.end, is the end of the prologue.
4111
4112 Note that, for functions whose source code is all on a single
4113 line, the line number information doesn't always end up this way.
4114 So we must verify that our purported end-of-prologue address is
4115 *within* the function, not at its start or end. */
4116 if (sal.line == 0
4117 || sal.end <= func_addr
4118 || func_end <= sal.end)
4119 {
4120 /* We don't have any good line number info, so use the minsym
4121 information, together with the architecture-specific prologue
4122 scanning code. */
d80b854b 4123 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
c906108c 4124
54cf9c03
EZ
4125 return func_addr <= pc && pc < prologue_end;
4126 }
c906108c 4127
54cf9c03
EZ
4128 /* We have line number info, and it looks good. */
4129 return func_addr <= pc && pc < sal.end;
c906108c
SS
4130}
4131
634aa483
AC
4132/* Given PC at the function's start address, attempt to find the
4133 prologue end using SAL information. Return zero if the skip fails.
4134
4135 A non-optimized prologue traditionally has one SAL for the function
4136 and a second for the function body. A single line function has
4137 them both pointing at the same line.
4138
4139 An optimized prologue is similar but the prologue may contain
4140 instructions (SALs) from the instruction body. Need to skip those
4141 while not getting into the function body.
4142
4143 The functions end point and an increasing SAL line are used as
4144 indicators of the prologue's endpoint.
4145
4146 This code is based on the function refine_prologue_limit (versions
4147 found in both ia64 and ppc). */
4148
4149CORE_ADDR
d80b854b 4150skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
634aa483
AC
4151{
4152 struct symtab_and_line prologue_sal;
4153 CORE_ADDR start_pc;
4154 CORE_ADDR end_pc;
d54be744 4155 struct block *bl;
634aa483
AC
4156
4157 /* Get an initial range for the function. */
4158 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
d80b854b 4159 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
634aa483
AC
4160
4161 prologue_sal = find_pc_line (start_pc, 0);
4162 if (prologue_sal.line != 0)
4163 {
d54be744
DJ
4164 /* For langauges other than assembly, treat two consecutive line
4165 entries at the same address as a zero-instruction prologue.
4166 The GNU assembler emits separate line notes for each instruction
4167 in a multi-instruction macro, but compilers generally will not
4168 do this. */
4169 if (prologue_sal.symtab->language != language_asm)
4170 {
4171 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
d54be744
DJ
4172 int idx = 0;
4173
4174 /* Skip any earlier lines, and any end-of-sequence marker
4175 from a previous function. */
4176 while (linetable->item[idx].pc != prologue_sal.pc
4177 || linetable->item[idx].line == 0)
4178 idx++;
4179
4180 if (idx+1 < linetable->nitems
4181 && linetable->item[idx+1].line != 0
4182 && linetable->item[idx+1].pc == start_pc)
4183 return start_pc;
4184 }
4185
576c2025
FF
4186 /* If there is only one sal that covers the entire function,
4187 then it is probably a single line function, like
4188 "foo(){}". */
91934273 4189 if (prologue_sal.end >= end_pc)
4e463ff5 4190 return 0;
d54be744 4191
634aa483
AC
4192 while (prologue_sal.end < end_pc)
4193 {
4194 struct symtab_and_line sal;
4195
4196 sal = find_pc_line (prologue_sal.end, 0);
4197 if (sal.line == 0)
4198 break;
4199 /* Assume that a consecutive SAL for the same (or larger)
4200 line mark the prologue -> body transition. */
4201 if (sal.line >= prologue_sal.line)
4202 break;
edb3359d
DJ
4203
4204 /* The line number is smaller. Check that it's from the
4205 same function, not something inlined. If it's inlined,
4206 then there is no point comparing the line numbers. */
4207 bl = block_for_pc (prologue_sal.end);
4208 while (bl)
4209 {
4210 if (block_inlined_p (bl))
4211 break;
4212 if (BLOCK_FUNCTION (bl))
4213 {
4214 bl = NULL;
4215 break;
4216 }
4217 bl = BLOCK_SUPERBLOCK (bl);
4218 }
4219 if (bl != NULL)
4220 break;
4221
634aa483
AC
4222 /* The case in which compiler's optimizer/scheduler has
4223 moved instructions into the prologue. We look ahead in
4224 the function looking for address ranges whose
4225 corresponding line number is less the first one that we
4226 found for the function. This is more conservative then
4227 refine_prologue_limit which scans a large number of SALs
4228 looking for any in the prologue */
4229 prologue_sal = sal;
4230 }
4231 }
d54be744
DJ
4232
4233 if (prologue_sal.end < end_pc)
4234 /* Return the end of this line, or zero if we could not find a
4235 line. */
4236 return prologue_sal.end;
4237 else
4238 /* Don't return END_PC, which is past the end of the function. */
4239 return prologue_sal.pc;
634aa483 4240}
c906108c 4241\f
50641945
FN
4242struct symtabs_and_lines
4243decode_line_spec (char *string, int funfirstline)
4244{
4245 struct symtabs_and_lines sals;
0378c332 4246 struct symtab_and_line cursal;
9af17804 4247
50641945 4248 if (string == 0)
8a3fe4f8 4249 error (_("Empty line specification."));
9af17804 4250
0378c332 4251 /* We use whatever is set as the current source line. We do not try
9af17804 4252 and get a default or it will recursively call us! */
0378c332 4253 cursal = get_current_source_symtab_and_line ();
9af17804 4254
50641945 4255 sals = decode_line_1 (&string, funfirstline,
0378c332 4256 cursal.symtab, cursal.line,
bffe1ece 4257 (char ***) NULL, NULL);
0378c332 4258
50641945 4259 if (*string)
8a3fe4f8 4260 error (_("Junk at end of line specification: %s"), string);
50641945
FN
4261 return sals;
4262}
c5aa993b 4263
51cc5b07
AC
4264/* Track MAIN */
4265static char *name_of_main;
4266
4267void
4268set_main_name (const char *name)
4269{
4270 if (name_of_main != NULL)
4271 {
4272 xfree (name_of_main);
4273 name_of_main = NULL;
4274 }
4275 if (name != NULL)
4276 {
4277 name_of_main = xstrdup (name);
4278 }
4279}
4280
ea53e89f
JB
4281/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4282 accordingly. */
4283
4284static void
4285find_main_name (void)
4286{
cd6c7346 4287 const char *new_main_name;
ea53e89f
JB
4288
4289 /* Try to see if the main procedure is in Ada. */
4290 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4291 be to add a new method in the language vector, and call this
4292 method for each language until one of them returns a non-empty
4293 name. This would allow us to remove this hard-coded call to
4294 an Ada function. It is not clear that this is a better approach
4295 at this point, because all methods need to be written in a way
4296 such that false positives never be returned. For instance, it is
4297 important that a method does not return a wrong name for the main
4298 procedure if the main procedure is actually written in a different
4299 language. It is easy to guaranty this with Ada, since we use a
4300 special symbol generated only when the main in Ada to find the name
4301 of the main procedure. It is difficult however to see how this can
4302 be guarantied for languages such as C, for instance. This suggests
4303 that order of call for these methods becomes important, which means
4304 a more complicated approach. */
4305 new_main_name = ada_main_name ();
4306 if (new_main_name != NULL)
9af17804 4307 {
ea53e89f
JB
4308 set_main_name (new_main_name);
4309 return;
4310 }
4311
cd6c7346
PM
4312 new_main_name = pascal_main_name ();
4313 if (new_main_name != NULL)
9af17804 4314 {
cd6c7346
PM
4315 set_main_name (new_main_name);
4316 return;
4317 }
4318
ea53e89f
JB
4319 /* The languages above didn't identify the name of the main procedure.
4320 Fallback to "main". */
4321 set_main_name ("main");
4322}
4323
51cc5b07
AC
4324char *
4325main_name (void)
4326{
ea53e89f
JB
4327 if (name_of_main == NULL)
4328 find_main_name ();
4329
4330 return name_of_main;
51cc5b07
AC
4331}
4332
ea53e89f
JB
4333/* Handle ``executable_changed'' events for the symtab module. */
4334
4335static void
781b42b0 4336symtab_observer_executable_changed (void)
ea53e89f
JB
4337{
4338 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4339 set_main_name (NULL);
4340}
51cc5b07 4341
ed0616c6
VP
4342/* Helper to expand_line_sal below. Appends new sal to SAL,
4343 initializing it from SYMTAB, LINENO and PC. */
4344static void
4345append_expanded_sal (struct symtabs_and_lines *sal,
6c95b8df 4346 struct program_space *pspace,
ed0616c6
VP
4347 struct symtab *symtab,
4348 int lineno, CORE_ADDR pc)
4349{
9af17804
DE
4350 sal->sals = xrealloc (sal->sals,
4351 sizeof (sal->sals[0])
ed0616c6
VP
4352 * (sal->nelts + 1));
4353 init_sal (sal->sals + sal->nelts);
6c95b8df 4354 sal->sals[sal->nelts].pspace = pspace;
ed0616c6
VP
4355 sal->sals[sal->nelts].symtab = symtab;
4356 sal->sals[sal->nelts].section = NULL;
4357 sal->sals[sal->nelts].end = 0;
9af17804 4358 sal->sals[sal->nelts].line = lineno;
ed0616c6 4359 sal->sals[sal->nelts].pc = pc;
9af17804 4360 ++sal->nelts;
ed0616c6
VP
4361}
4362
aad80b26 4363/* Helper to expand_line_sal below. Search in the symtabs for any
3ffc00b8
JB
4364 linetable entry that exactly matches FULLNAME and LINENO and append
4365 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4366 use FILENAME and LINENO instead. If there is at least one match,
4367 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4368 and BEST_SYMTAB. */
aad80b26
JG
4369
4370static int
3ffc00b8 4371append_exact_match_to_sals (char *filename, char *fullname, int lineno,
aad80b26
JG
4372 struct symtabs_and_lines *ret,
4373 struct linetable_entry **best_item,
4374 struct symtab **best_symtab)
4375{
6c95b8df 4376 struct program_space *pspace;
aad80b26
JG
4377 struct objfile *objfile;
4378 struct symtab *symtab;
4379 int exact = 0;
4380 int j;
4381 *best_item = 0;
4382 *best_symtab = 0;
6c95b8df
PA
4383
4384 ALL_PSPACES (pspace)
4385 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
aad80b26 4386 {
3ffc00b8 4387 if (FILENAME_CMP (filename, symtab->filename) == 0)
aad80b26
JG
4388 {
4389 struct linetable *l;
4390 int len;
3ffc00b8
JB
4391 if (fullname != NULL
4392 && symtab_to_fullname (symtab) != NULL
4393 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4394 continue;
aad80b26
JG
4395 l = LINETABLE (symtab);
4396 if (!l)
4397 continue;
4398 len = l->nitems;
4399
4400 for (j = 0; j < len; j++)
4401 {
4402 struct linetable_entry *item = &(l->item[j]);
4403
4404 if (item->line == lineno)
4405 {
4406 exact = 1;
6c95b8df
PA
4407 append_expanded_sal (ret, objfile->pspace,
4408 symtab, lineno, item->pc);
aad80b26
JG
4409 }
4410 else if (!exact && item->line > lineno
4411 && (*best_item == NULL
4412 || item->line < (*best_item)->line))
4413 {
4414 *best_item = item;
4415 *best_symtab = symtab;
4416 }
4417 }
4418 }
4419 }
4420 return exact;
4421}
4422
6c95b8df
PA
4423/* Compute a set of all sals in all program spaces that correspond to
4424 same file and line as SAL and return those. If there are several
4425 sals that belong to the same block, only one sal for the block is
4426 included in results. */
9af17804 4427
ed0616c6
VP
4428struct symtabs_and_lines
4429expand_line_sal (struct symtab_and_line sal)
4430{
952a6d41 4431 struct symtabs_and_lines ret;
ed0616c6
VP
4432 int i, j;
4433 struct objfile *objfile;
ed0616c6
VP
4434 int lineno;
4435 int deleted = 0;
4436 struct block **blocks = NULL;
4437 int *filter;
6c95b8df 4438 struct cleanup *old_chain;
ed0616c6
VP
4439
4440 ret.nelts = 0;
4441 ret.sals = NULL;
4442
6c95b8df 4443 /* Only expand sals that represent file.c:line. */
ed0616c6
VP
4444 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4445 {
4446 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4447 ret.sals[0] = sal;
4448 ret.nelts = 1;
4449 return ret;
4450 }
4451 else
4452 {
6c95b8df 4453 struct program_space *pspace;
ed0616c6
VP
4454 struct linetable_entry *best_item = 0;
4455 struct symtab *best_symtab = 0;
4456 int exact = 0;
6c95b8df 4457 char *match_filename;
ed0616c6
VP
4458
4459 lineno = sal.line;
6c95b8df 4460 match_filename = sal.symtab->filename;
ed0616c6 4461
9af17804
DE
4462 /* We need to find all symtabs for a file which name
4463 is described by sal. We cannot just directly
ed0616c6 4464 iterate over symtabs, since a symtab might not be
9af17804 4465 yet created. We also cannot iterate over psymtabs,
ed0616c6
VP
4466 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4467 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
9af17804 4468 corresponding to an included file. Therefore, we do
ed0616c6
VP
4469 first pass over psymtabs, reading in those with
4470 the right name. Then, we iterate over symtabs, knowing
4471 that all symtabs we're interested in are loaded. */
4472
6c95b8df
PA
4473 old_chain = save_current_program_space ();
4474 ALL_PSPACES (pspace)
ccefe4c4
TT
4475 {
4476 set_current_program_space (pspace);
4477 ALL_PSPACE_OBJFILES (pspace, objfile)
ed0616c6 4478 {
ccefe4c4
TT
4479 if (objfile->sf)
4480 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4481 sal.symtab->filename);
ed0616c6 4482 }
ccefe4c4 4483 }
6c95b8df 4484 do_cleanups (old_chain);
ed0616c6 4485
aad80b26
JG
4486 /* Now search the symtab for exact matches and append them. If
4487 none is found, append the best_item and all its exact
4488 matches. */
3ffc00b8
JB
4489 symtab_to_fullname (sal.symtab);
4490 exact = append_exact_match_to_sals (sal.symtab->filename,
4491 sal.symtab->fullname, lineno,
aad80b26 4492 &ret, &best_item, &best_symtab);
ed0616c6 4493 if (!exact && best_item)
3ffc00b8
JB
4494 append_exact_match_to_sals (best_symtab->filename,
4495 best_symtab->fullname, best_item->line,
aad80b26 4496 &ret, &best_item, &best_symtab);
ed0616c6
VP
4497 }
4498
4499 /* For optimized code, compiler can scatter one source line accross
4500 disjoint ranges of PC values, even when no duplicate functions
4501 or inline functions are involved. For example, 'for (;;)' inside
4502 non-template non-inline non-ctor-or-dtor function can result
4503 in two PC ranges. In this case, we don't want to set breakpoint
4504 on first PC of each range. To filter such cases, we use containing
4505 blocks -- for each PC found above we see if there are other PCs
9af17804 4506 that are in the same block. If yes, the other PCs are filtered out. */
ed0616c6 4507
6c95b8df 4508 old_chain = save_current_program_space ();
db009c8a
JB
4509 filter = alloca (ret.nelts * sizeof (int));
4510 blocks = alloca (ret.nelts * sizeof (struct block *));
ed0616c6
VP
4511 for (i = 0; i < ret.nelts; ++i)
4512 {
6c95b8df
PA
4513 set_current_program_space (ret.sals[i].pspace);
4514
ed0616c6 4515 filter[i] = 1;
6c95b8df
PA
4516 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4517
ed0616c6 4518 }
6c95b8df 4519 do_cleanups (old_chain);
ed0616c6
VP
4520
4521 for (i = 0; i < ret.nelts; ++i)
4522 if (blocks[i] != NULL)
4523 for (j = i+1; j < ret.nelts; ++j)
4524 if (blocks[j] == blocks[i])
4525 {
4526 filter[j] = 0;
4527 ++deleted;
4528 break;
4529 }
9af17804 4530
ed0616c6 4531 {
9af17804 4532 struct symtab_and_line *final =
ed0616c6 4533 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
9af17804 4534
ed0616c6
VP
4535 for (i = 0, j = 0; i < ret.nelts; ++i)
4536 if (filter[i])
4537 final[j++] = ret.sals[i];
9af17804 4538
ed0616c6
VP
4539 ret.nelts -= deleted;
4540 xfree (ret.sals);
4541 ret.sals = final;
4542 }
4543
4544 return ret;
4545}
4546
a6c727b2
DJ
4547/* Return 1 if the supplied producer string matches the ARM RealView
4548 compiler (armcc). */
4549
4550int
4551producer_is_realview (const char *producer)
4552{
4553 static const char *const arm_idents[] = {
4554 "ARM C Compiler, ADS",
4555 "Thumb C Compiler, ADS",
4556 "ARM C++ Compiler, ADS",
4557 "Thumb C++ Compiler, ADS",
4558 "ARM/Thumb C/C++ Compiler, RVCT",
4559 "ARM C/C++ Compiler, RVCT"
4560 };
4561 int i;
4562
4563 if (producer == NULL)
4564 return 0;
4565
4566 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4567 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4568 return 1;
4569
4570 return 0;
4571}
ed0616c6 4572
c906108c 4573void
fba45db2 4574_initialize_symtab (void)
c906108c 4575{
1bedd215
AC
4576 add_info ("variables", variables_info, _("\
4577All global and static variable names, or those matching REGEXP."));
c906108c 4578 if (dbx_commands)
1bedd215
AC
4579 add_com ("whereis", class_info, variables_info, _("\
4580All global and static variable names, or those matching REGEXP."));
c906108c
SS
4581
4582 add_info ("functions", functions_info,
1bedd215 4583 _("All function names, or those matching REGEXP."));
c906108c
SS
4584
4585 /* FIXME: This command has at least the following problems:
4586 1. It prints builtin types (in a very strange and confusing fashion).
4587 2. It doesn't print right, e.g. with
c5aa993b
JM
4588 typedef struct foo *FOO
4589 type_print prints "FOO" when we want to make it (in this situation)
4590 print "struct foo *".
c906108c
SS
4591 I also think "ptype" or "whatis" is more likely to be useful (but if
4592 there is much disagreement "info types" can be fixed). */
4593 add_info ("types", types_info,
1bedd215 4594 _("All type names, or those matching REGEXP."));
c906108c 4595
c906108c 4596 add_info ("sources", sources_info,
1bedd215 4597 _("Source files in the program."));
c906108c
SS
4598
4599 add_com ("rbreak", class_breakpoint, rbreak_command,
1bedd215 4600 _("Set a breakpoint for all functions matching REGEXP."));
c906108c
SS
4601
4602 if (xdb_commands)
4603 {
1bedd215
AC
4604 add_com ("lf", class_info, sources_info,
4605 _("Source files in the program"));
4606 add_com ("lg", class_info, variables_info, _("\
4607All global and static variable names, or those matching REGEXP."));
c906108c
SS
4608 }
4609
717d2f5a
JB
4610 add_setshow_enum_cmd ("multiple-symbols", no_class,
4611 multiple_symbols_modes, &multiple_symbols_mode,
4612 _("\
4613Set the debugger behavior when more than one symbol are possible matches\n\
4614in an expression."), _("\
4615Show how the debugger handles ambiguities in expressions."), _("\
4616Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4617 NULL, NULL, &setlist, &showlist);
4618
ea53e89f 4619 observer_attach_executable_changed (symtab_observer_executable_changed);
c906108c 4620}
This page took 1.337975 seconds and 4 git commands to generate.