Make dprintf-non-stop.exp cope with remote testing
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
19ba03f4 350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
7afa63c6 447static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
d9d2d8b6
PA
469void
470target_terminal_inferior (void)
471{
472 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 473 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
477 return;
478
5842f62a
PA
479 if (terminal_state == terminal_is_inferior)
480 return;
481
d9d2d8b6
PA
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
d2f640d4 484 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
485 terminal_state = terminal_is_inferior;
486}
487
488/* See target.h. */
489
490void
491target_terminal_ours (void)
492{
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498}
499
500/* See target.h. */
501
502void
503target_terminal_ours_for_output (void)
504{
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 509}
136d6dae 510
b0ed115f
TT
511/* See target.h. */
512
513int
514target_supports_terminal_ours (void)
515{
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526}
527
1abf3a14
SM
528/* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531static void
532cleanup_restore_target_terminal (void *arg)
533{
19ba03f4 534 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548}
549
550/* See target.h. */
551
552struct cleanup *
553make_cleanup_restore_target_terminal (void)
554{
8d749320 555 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560}
561
c906108c 562static void
fba45db2 563tcomplain (void)
c906108c 564{
8a3fe4f8 565 error (_("You can't do that when your target is `%s'"),
c906108c
SS
566 current_target.to_shortname);
567}
568
569void
fba45db2 570noprocess (void)
c906108c 571{
8a3fe4f8 572 error (_("You can't do that without a process to debug."));
c906108c
SS
573}
574
c906108c 575static void
0a4f40a2 576default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 577{
a3f17187 578 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
579}
580
0ef643c8
JB
581/* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
2c0b251b 587static ptid_t
1e6b91a4 588default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
589{
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591}
592
32231432 593static enum exec_direction_kind
4c612759 594default_execution_direction (struct target_ops *self)
32231432
PA
595{
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602to_execution_direction must be implemented for reverse async");
603}
604
7998dfc3
AC
605/* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
c906108c
SS
616
617static void
7998dfc3 618update_current_target (void)
c906108c 619{
7998dfc3
AC
620 struct target_ops *t;
621
08d8bcd7 622 /* First, reset current's contents. */
7998dfc3
AC
623 memset (&current_target, 0, sizeof (current_target));
624
1101cb7b
TT
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
be4ddd36
TT
628 current_target.to_stratum = target_stack->to_stratum;
629
7998dfc3
AC
630#define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
be4ddd36
TT
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
7998dfc3
AC
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
dc177b7a 640 INHERIT (to_attach_no_wait, t);
74174d2e 641 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 642 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 643 INHERIT (to_has_thread_control, t);
7998dfc3
AC
644 }
645#undef INHERIT
646
7998dfc3
AC
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
b4b61fdb
DJ
651
652 if (targetdebug)
653 setup_target_debug ();
c906108c
SS
654}
655
656/* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
c906108c
SS
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
b26a4dcb 663void
fba45db2 664push_target (struct target_ops *t)
c906108c 665{
258b763a 666 struct target_ops **cur;
c906108c
SS
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
c5aa993b
JM
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
3e43a32a
MS
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
c906108c
SS
677 }
678
258b763a
AC
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 681 {
258b763a 682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
683 break;
684 }
685
258b763a 686 /* If there's already targets at this stratum, remove them. */
88c231eb 687 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
5d502164 694
258b763a
AC
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
460014f5 697 target_close (tmp);
258b763a 698 }
c906108c
SS
699
700 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
701 t->beneath = (*cur);
702 (*cur) = t;
c906108c
SS
703
704 update_current_target ();
c906108c
SS
705}
706
2bc416ba 707/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
708 Return how many times it was removed (0 or 1). */
709
710int
fba45db2 711unpush_target (struct target_ops *t)
c906108c 712{
258b763a
AC
713 struct target_ops **cur;
714 struct target_ops *tmp;
c906108c 715
c8d104ad
PA
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
9b20d036 718 _("Attempt to unpush the dummy target"));
c8d104ad 719
c906108c 720 /* Look for the specified target. Note that we assume that a target
c378eb4e 721 can only occur once in the target stack. */
c906108c 722
258b763a
AC
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
c906108c 728
305436e0
PA
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
258b763a 731 if ((*cur) == NULL)
305436e0 732 return 0;
5269965e 733
c378eb4e 734 /* Unchain the target. */
258b763a
AC
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
c906108c
SS
738
739 update_current_target ();
c906108c 740
305436e0
PA
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
460014f5 744 target_close (t);
305436e0 745
c906108c
SS
746 return 1;
747}
748
915ef8b1
PA
749/* Unpush TARGET and assert that it worked. */
750
751static void
752unpush_target_and_assert (struct target_ops *target)
753{
754 if (!unpush_target (target))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 }
762}
763
aa76d38d 764void
460014f5 765pop_all_targets_above (enum strata above_stratum)
aa76d38d 766{
87ab71f0 767 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
768 unpush_target_and_assert (target_stack);
769}
770
771/* See target.h. */
772
773void
774pop_all_targets_at_and_above (enum strata stratum)
775{
776 while ((int) (current_target.to_stratum) >= (int) stratum)
777 unpush_target_and_assert (target_stack);
aa76d38d
PA
778}
779
87ab71f0 780void
460014f5 781pop_all_targets (void)
87ab71f0 782{
460014f5 783 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
784}
785
c0edd9ed
JK
786/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
787
788int
789target_is_pushed (struct target_ops *t)
790{
84202f9c 791 struct target_ops *cur;
c0edd9ed
JK
792
793 /* Check magic number. If wrong, it probably means someone changed
794 the struct definition, but not all the places that initialize one. */
795 if (t->to_magic != OPS_MAGIC)
796 {
797 fprintf_unfiltered (gdb_stderr,
798 "Magic number of %s target struct wrong\n",
799 t->to_shortname);
3e43a32a
MS
800 internal_error (__FILE__, __LINE__,
801 _("failed internal consistency check"));
c0edd9ed
JK
802 }
803
84202f9c
TT
804 for (cur = target_stack; cur != NULL; cur = cur->beneath)
805 if (cur == t)
c0edd9ed
JK
806 return 1;
807
808 return 0;
809}
810
f0f9ff95
TT
811/* Default implementation of to_get_thread_local_address. */
812
813static void
814generic_tls_error (void)
815{
816 throw_error (TLS_GENERIC_ERROR,
817 _("Cannot find thread-local variables on this target"));
818}
819
72f5cf0e 820/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
821 current thread's thread-local storage with offset OFFSET. */
822CORE_ADDR
823target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
824{
825 volatile CORE_ADDR addr = 0;
f0f9ff95 826 struct target_ops *target = &current_target;
9e35dae4 827
f0f9ff95 828 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
829 {
830 ptid_t ptid = inferior_ptid;
9e35dae4 831
492d29ea 832 TRY
9e35dae4
DJ
833 {
834 CORE_ADDR lm_addr;
835
836 /* Fetch the load module address for this objfile. */
f5656ead 837 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 838 objfile);
9e35dae4 839
3e43a32a
MS
840 addr = target->to_get_thread_local_address (target, ptid,
841 lm_addr, offset);
9e35dae4
DJ
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
492d29ea 845 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
852 error (_("Cannot find thread-local variables "
853 "in this thread library."));
9e35dae4
DJ
854 break;
855 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 858 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
859 else
860 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 861 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
862 break;
863 case TLS_NOT_ALLOCATED_YET_ERROR:
864 if (objfile_is_library)
865 error (_("The inferior has not yet allocated storage for"
866 " thread-local variables in\n"
867 "the shared library `%s'\n"
868 "for %s"),
4262abfb 869 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
870 else
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the executable `%s'\n"
874 "for %s"),
4262abfb 875 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
876 break;
877 case TLS_GENERIC_ERROR:
878 if (objfile_is_library)
879 error (_("Cannot find thread-local storage for %s, "
880 "shared library %s:\n%s"),
881 target_pid_to_str (ptid),
4262abfb 882 objfile_name (objfile), ex.message);
9e35dae4
DJ
883 else
884 error (_("Cannot find thread-local storage for %s, "
885 "executable file %s:\n%s"),
886 target_pid_to_str (ptid),
4262abfb 887 objfile_name (objfile), ex.message);
9e35dae4
DJ
888 break;
889 default:
890 throw_exception (ex);
891 break;
892 }
893 }
492d29ea 894 END_CATCH
9e35dae4
DJ
895 }
896 /* It wouldn't be wrong here to try a gdbarch method, too; finding
897 TLS is an ABI-specific thing. But we don't do that yet. */
898 else
899 error (_("Cannot find thread-local variables on this target"));
900
901 return addr;
902}
903
6be7b56e 904const char *
01cb8804 905target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
906{
907#define CASE(X) case X: return #X
01cb8804 908 switch (status)
6be7b56e
PA
909 {
910 CASE(TARGET_XFER_E_IO);
bc113b4e 911 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
912 default:
913 return "<unknown>";
914 }
915#undef CASE
916};
917
918
c906108c
SS
919#undef MIN
920#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
921
922/* target_read_string -- read a null terminated string, up to LEN bytes,
923 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
924 Set *STRING to a pointer to malloc'd memory containing the data; the caller
925 is responsible for freeing it. Return the number of bytes successfully
926 read. */
927
928int
fba45db2 929target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 930{
c2e8b827 931 int tlen, offset, i;
1b0ba102 932 gdb_byte buf[4];
c906108c
SS
933 int errcode = 0;
934 char *buffer;
935 int buffer_allocated;
936 char *bufptr;
937 unsigned int nbytes_read = 0;
938
6217bf3e
MS
939 gdb_assert (string);
940
c906108c
SS
941 /* Small for testing. */
942 buffer_allocated = 4;
224c3ddb 943 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
944 bufptr = buffer;
945
c906108c
SS
946 while (len > 0)
947 {
948 tlen = MIN (len, 4 - (memaddr & 3));
949 offset = memaddr & 3;
950
1b0ba102 951 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
952 if (errcode != 0)
953 {
954 /* The transfer request might have crossed the boundary to an
c378eb4e 955 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
956 a single byte. */
957 tlen = 1;
958 offset = 0;
b8eb5af0 959 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
960 if (errcode != 0)
961 goto done;
962 }
963
964 if (bufptr - buffer + tlen > buffer_allocated)
965 {
966 unsigned int bytes;
5d502164 967
c906108c
SS
968 bytes = bufptr - buffer;
969 buffer_allocated *= 2;
224c3ddb 970 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
971 bufptr = buffer + bytes;
972 }
973
974 for (i = 0; i < tlen; i++)
975 {
976 *bufptr++ = buf[i + offset];
977 if (buf[i + offset] == '\000')
978 {
979 nbytes_read += i + 1;
980 goto done;
981 }
982 }
983
984 memaddr += tlen;
985 len -= tlen;
986 nbytes_read += tlen;
987 }
c5aa993b 988done:
6217bf3e 989 *string = buffer;
c906108c
SS
990 if (errnop != NULL)
991 *errnop = errcode;
c906108c
SS
992 return nbytes_read;
993}
994
07b82ea5
PA
995struct target_section_table *
996target_get_section_table (struct target_ops *target)
997{
7e35c012 998 return (*target->to_get_section_table) (target);
07b82ea5
PA
999}
1000
8db32d44 1001/* Find a section containing ADDR. */
07b82ea5 1002
0542c86d 1003struct target_section *
8db32d44
AC
1004target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1005{
07b82ea5 1006 struct target_section_table *table = target_get_section_table (target);
0542c86d 1007 struct target_section *secp;
07b82ea5
PA
1008
1009 if (table == NULL)
1010 return NULL;
1011
1012 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1013 {
1014 if (addr >= secp->addr && addr < secp->endaddr)
1015 return secp;
1016 }
1017 return NULL;
1018}
1019
0fec99e8
PA
1020
1021/* Helper for the memory xfer routines. Checks the attributes of the
1022 memory region of MEMADDR against the read or write being attempted.
1023 If the access is permitted returns true, otherwise returns false.
1024 REGION_P is an optional output parameter. If not-NULL, it is
1025 filled with a pointer to the memory region of MEMADDR. REG_LEN
1026 returns LEN trimmed to the end of the region. This is how much the
1027 caller can continue requesting, if the access is permitted. A
1028 single xfer request must not straddle memory region boundaries. */
1029
1030static int
1031memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1032 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1033 struct mem_region **region_p)
1034{
1035 struct mem_region *region;
1036
1037 region = lookup_mem_region (memaddr);
1038
1039 if (region_p != NULL)
1040 *region_p = region;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return 0;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return 0;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return 0;
1062 }
1063
1064 /* region->hi == 0 means there's no upper bound. */
1065 if (memaddr + len < region->hi || region->hi == 0)
1066 *reg_len = len;
1067 else
1068 *reg_len = region->hi - memaddr;
1069
1070 return 1;
1071}
1072
9f713294
YQ
1073/* Read memory from more than one valid target. A core file, for
1074 instance, could have some of memory but delegate other bits to
1075 the target below it. So, we must manually try all targets. */
1076
cc9f16aa 1077enum target_xfer_status
17fde6d0 1078raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1079 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1080 ULONGEST *xfered_len)
9f713294 1081{
9b409511 1082 enum target_xfer_status res;
9f713294
YQ
1083
1084 do
1085 {
1086 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1087 readbuf, writebuf, memaddr, len,
1088 xfered_len);
1089 if (res == TARGET_XFER_OK)
9f713294
YQ
1090 break;
1091
633785ff 1092 /* Stop if the target reports that the memory is not available. */
bc113b4e 1093 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1094 break;
1095
9f713294
YQ
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory (ops))
1099 break;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
0f26cec1
PA
1105 /* The cache works at the raw memory level. Make sure the cache
1106 gets updated with raw contents no matter what kind of memory
1107 object was originally being written. Note we do write-through
1108 first, so that if it fails, we don't write to the cache contents
1109 that never made it to the target. */
1110 if (writebuf != NULL
1111 && !ptid_equal (inferior_ptid, null_ptid)
1112 && target_dcache_init_p ()
1113 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1114 {
1115 DCACHE *dcache = target_dcache_get ();
1116
1117 /* Note that writing to an area of memory which wasn't present
1118 in the cache doesn't cause it to be loaded in. */
1119 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1120 }
1121
9f713294
YQ
1122 return res;
1123}
1124
7f79c47e
DE
1125/* Perform a partial memory transfer.
1126 For docs see target.h, to_xfer_partial. */
cf7a04e8 1127
9b409511 1128static enum target_xfer_status
f0ba3972 1129memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1130 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1131 ULONGEST len, ULONGEST *xfered_len)
0779438d 1132{
9b409511 1133 enum target_xfer_status res;
0fec99e8 1134 ULONGEST reg_len;
cf7a04e8 1135 struct mem_region *region;
4e5d721f 1136 struct inferior *inf;
cf7a04e8 1137
07b82ea5
PA
1138 /* For accesses to unmapped overlay sections, read directly from
1139 files. Must do this first, as MEMADDR may need adjustment. */
1140 if (readbuf != NULL && overlay_debugging)
1141 {
1142 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1143
07b82ea5
PA
1144 if (pc_in_unmapped_range (memaddr, section))
1145 {
1146 struct target_section_table *table
1147 = target_get_section_table (ops);
1148 const char *section_name = section->the_bfd_section->name;
5d502164 1149
07b82ea5
PA
1150 memaddr = overlay_mapped_address (memaddr, section);
1151 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1152 memaddr, len, xfered_len,
07b82ea5
PA
1153 table->sections,
1154 table->sections_end,
1155 section_name);
1156 }
1157 }
1158
1159 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1160 if (readbuf != NULL && trust_readonly)
1161 {
0542c86d 1162 struct target_section *secp;
07b82ea5 1163 struct target_section_table *table;
cf7a04e8
DJ
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
2b2848e2
DE
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
cf7a04e8 1169 & SEC_READONLY))
07b82ea5
PA
1170 {
1171 table = target_get_section_table (ops);
1172 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1173 memaddr, len, xfered_len,
07b82ea5
PA
1174 table->sections,
1175 table->sections_end,
1176 NULL);
1177 }
98646950
UW
1178 }
1179
cf7a04e8 1180 /* Try GDB's internal data cache. */
cf7a04e8 1181
0fec99e8
PA
1182 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1183 &region))
1184 return TARGET_XFER_E_IO;
cf7a04e8 1185
6c95b8df 1186 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1187 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1188 else
1189 inf = NULL;
4e5d721f
DE
1190
1191 if (inf != NULL
0f26cec1 1192 && readbuf != NULL
2f4d8875
PA
1193 /* The dcache reads whole cache lines; that doesn't play well
1194 with reading from a trace buffer, because reading outside of
1195 the collected memory range fails. */
1196 && get_traceframe_number () == -1
4e5d721f 1197 && (region->attrib.cache
29453a14
YQ
1198 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1199 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1200 {
2a2f9fe4
YQ
1201 DCACHE *dcache = target_dcache_get_or_init ();
1202
0f26cec1
PA
1203 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1204 reg_len, xfered_len);
cf7a04e8
DJ
1205 }
1206
1207 /* If none of those methods found the memory we wanted, fall back
1208 to a target partial transfer. Normally a single call to
1209 to_xfer_partial is enough; if it doesn't recognize an object
1210 it will call the to_xfer_partial of the next target down.
1211 But for memory this won't do. Memory is the only target
9b409511
YQ
1212 object which can be read from more than one valid target.
1213 A core file, for instance, could have some of memory but
1214 delegate other bits to the target below it. So, we must
1215 manually try all targets. */
1216
1217 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1218 xfered_len);
cf7a04e8
DJ
1219
1220 /* If we still haven't got anything, return the last error. We
1221 give up. */
1222 return res;
0779438d
AC
1223}
1224
f0ba3972
PA
1225/* Perform a partial memory transfer. For docs see target.h,
1226 to_xfer_partial. */
1227
9b409511 1228static enum target_xfer_status
f0ba3972 1229memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1230 gdb_byte *readbuf, const gdb_byte *writebuf,
1231 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1232{
9b409511 1233 enum target_xfer_status res;
f0ba3972
PA
1234
1235 /* Zero length requests are ok and require no work. */
1236 if (len == 0)
9b409511 1237 return TARGET_XFER_EOF;
f0ba3972
PA
1238
1239 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1240 breakpoint insns, thus hiding out from higher layers whether
1241 there are software breakpoints inserted in the code stream. */
1242 if (readbuf != NULL)
1243 {
9b409511
YQ
1244 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1245 xfered_len);
f0ba3972 1246
9b409511 1247 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1248 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1249 }
1250 else
1251 {
d7f3ff3e 1252 gdb_byte *buf;
f0ba3972
PA
1253 struct cleanup *old_chain;
1254
67c059c2
AB
1255 /* A large write request is likely to be partially satisfied
1256 by memory_xfer_partial_1. We will continually malloc
1257 and free a copy of the entire write request for breakpoint
1258 shadow handling even though we only end up writing a small
1259 subset of it. Cap writes to 4KB to mitigate this. */
1260 len = min (4096, len);
1261
d7f3ff3e 1262 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1263 old_chain = make_cleanup (xfree, buf);
1264 memcpy (buf, writebuf, len);
1265
1266 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1267 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1268 xfered_len);
f0ba3972
PA
1269
1270 do_cleanups (old_chain);
1271 }
1272
1273 return res;
1274}
1275
8defab1a
DJ
1276static void
1277restore_show_memory_breakpoints (void *arg)
1278{
1279 show_memory_breakpoints = (uintptr_t) arg;
1280}
1281
1282struct cleanup *
1283make_show_memory_breakpoints_cleanup (int show)
1284{
1285 int current = show_memory_breakpoints;
8defab1a 1286
5d502164 1287 show_memory_breakpoints = show;
8defab1a
DJ
1288 return make_cleanup (restore_show_memory_breakpoints,
1289 (void *) (uintptr_t) current);
1290}
1291
7f79c47e
DE
1292/* For docs see target.h, to_xfer_partial. */
1293
9b409511 1294enum target_xfer_status
27394598
AC
1295target_xfer_partial (struct target_ops *ops,
1296 enum target_object object, const char *annex,
4ac248ca 1297 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1298 ULONGEST offset, ULONGEST len,
1299 ULONGEST *xfered_len)
27394598 1300{
9b409511 1301 enum target_xfer_status retval;
27394598
AC
1302
1303 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1304
ce6d0892
YQ
1305 /* Transfer is done when LEN is zero. */
1306 if (len == 0)
9b409511 1307 return TARGET_XFER_EOF;
ce6d0892 1308
d914c394
SS
1309 if (writebuf && !may_write_memory)
1310 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1311 core_addr_to_string_nz (offset), plongest (len));
1312
9b409511
YQ
1313 *xfered_len = 0;
1314
cf7a04e8
DJ
1315 /* If this is a memory transfer, let the memory-specific code
1316 have a look at it instead. Memory transfers are more
1317 complicated. */
29453a14
YQ
1318 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1319 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1320 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1321 writebuf, offset, len, xfered_len);
9f713294 1322 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1323 {
0fec99e8
PA
1324 /* Skip/avoid accessing the target if the memory region
1325 attributes block the access. Check this here instead of in
1326 raw_memory_xfer_partial as otherwise we'd end up checking
1327 this twice in the case of the memory_xfer_partial path is
1328 taken; once before checking the dcache, and another in the
1329 tail call to raw_memory_xfer_partial. */
1330 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1331 NULL))
1332 return TARGET_XFER_E_IO;
1333
9f713294 1334 /* Request the normal memory object from other layers. */
9b409511
YQ
1335 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1336 xfered_len);
cf7a04e8 1337 }
9f713294
YQ
1338 else
1339 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1340 writebuf, offset, len, xfered_len);
cf7a04e8 1341
27394598
AC
1342 if (targetdebug)
1343 {
1344 const unsigned char *myaddr = NULL;
1345
1346 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1347 "%s:target_xfer_partial "
9b409511 1348 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1349 ops->to_shortname,
1350 (int) object,
1351 (annex ? annex : "(null)"),
53b71562
JB
1352 host_address_to_string (readbuf),
1353 host_address_to_string (writebuf),
0b1553bc 1354 core_addr_to_string_nz (offset),
9b409511
YQ
1355 pulongest (len), retval,
1356 pulongest (*xfered_len));
27394598
AC
1357
1358 if (readbuf)
1359 myaddr = readbuf;
1360 if (writebuf)
1361 myaddr = writebuf;
9b409511 1362 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1363 {
1364 int i;
2bc416ba 1365
27394598 1366 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1367 for (i = 0; i < *xfered_len; i++)
27394598 1368 {
53b71562 1369 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1370 {
1371 if (targetdebug < 2 && i > 0)
1372 {
1373 fprintf_unfiltered (gdb_stdlog, " ...");
1374 break;
1375 }
1376 fprintf_unfiltered (gdb_stdlog, "\n");
1377 }
2bc416ba 1378
27394598
AC
1379 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1380 }
1381 }
2bc416ba 1382
27394598
AC
1383 fputc_unfiltered ('\n', gdb_stdlog);
1384 }
9b409511
YQ
1385
1386 /* Check implementations of to_xfer_partial update *XFERED_LEN
1387 properly. Do assertion after printing debug messages, so that we
1388 can find more clues on assertion failure from debugging messages. */
bc113b4e 1389 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1390 gdb_assert (*xfered_len > 0);
1391
27394598
AC
1392 return retval;
1393}
1394
578d3588
PA
1395/* Read LEN bytes of target memory at address MEMADDR, placing the
1396 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1397 -1 if any error occurs.
c906108c
SS
1398
1399 If an error occurs, no guarantee is made about the contents of the data at
1400 MYADDR. In particular, the caller should not depend upon partial reads
1401 filling the buffer with good data. There is no way for the caller to know
1402 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1403 deal with partial reads should call target_read (which will retry until
c378eb4e 1404 it makes no progress, and then return how much was transferred). */
c906108c
SS
1405
1406int
1b162304 1407target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1408{
c35b1492
PA
1409 /* Dispatch to the topmost target, not the flattened current_target.
1410 Memory accesses check target->to_has_(all_)memory, and the
1411 flattened target doesn't inherit those. */
1412 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1413 myaddr, memaddr, len) == len)
1414 return 0;
0779438d 1415 else
d09f2c3f 1416 return -1;
c906108c
SS
1417}
1418
721ec300
GB
1419/* See target/target.h. */
1420
1421int
1422target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1423{
1424 gdb_byte buf[4];
1425 int r;
1426
1427 r = target_read_memory (memaddr, buf, sizeof buf);
1428 if (r != 0)
1429 return r;
1430 *result = extract_unsigned_integer (buf, sizeof buf,
1431 gdbarch_byte_order (target_gdbarch ()));
1432 return 0;
1433}
1434
aee4bf85
PA
1435/* Like target_read_memory, but specify explicitly that this is a read
1436 from the target's raw memory. That is, this read bypasses the
1437 dcache, breakpoint shadowing, etc. */
1438
1439int
1440target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1441{
1442 /* See comment in target_read_memory about why the request starts at
1443 current_target.beneath. */
1444 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1445 myaddr, memaddr, len) == len)
1446 return 0;
1447 else
d09f2c3f 1448 return -1;
aee4bf85
PA
1449}
1450
4e5d721f
DE
1451/* Like target_read_memory, but specify explicitly that this is a read from
1452 the target's stack. This may trigger different cache behavior. */
1453
1454int
45aa4659 1455target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1456{
aee4bf85
PA
1457 /* See comment in target_read_memory about why the request starts at
1458 current_target.beneath. */
4e5d721f
DE
1459 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1460 myaddr, memaddr, len) == len)
1461 return 0;
1462 else
d09f2c3f 1463 return -1;
4e5d721f
DE
1464}
1465
29453a14
YQ
1466/* Like target_read_memory, but specify explicitly that this is a read from
1467 the target's code. This may trigger different cache behavior. */
1468
1469int
1470target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1471{
aee4bf85
PA
1472 /* See comment in target_read_memory about why the request starts at
1473 current_target.beneath. */
29453a14
YQ
1474 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1475 myaddr, memaddr, len) == len)
1476 return 0;
1477 else
d09f2c3f 1478 return -1;
29453a14
YQ
1479}
1480
7f79c47e 1481/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1482 Returns either 0 for success or -1 if any error occurs. If an
1483 error occurs, no guarantee is made about how much data got written.
1484 Callers that can deal with partial writes should call
1485 target_write. */
7f79c47e 1486
c906108c 1487int
45aa4659 1488target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1489{
aee4bf85
PA
1490 /* See comment in target_read_memory about why the request starts at
1491 current_target.beneath. */
c35b1492 1492 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1493 myaddr, memaddr, len) == len)
1494 return 0;
0779438d 1495 else
d09f2c3f 1496 return -1;
c906108c 1497}
c5aa993b 1498
f0ba3972 1499/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1500 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1501 If an error occurs, no guarantee is made about how much data got
1502 written. Callers that can deal with partial writes should call
1503 target_write. */
f0ba3972
PA
1504
1505int
45aa4659 1506target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1507{
aee4bf85
PA
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
f0ba3972
PA
1510 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
d09f2c3f 1514 return -1;
f0ba3972
PA
1515}
1516
fd79ecee
DJ
1517/* Fetch the target's memory map. */
1518
1519VEC(mem_region_s) *
1520target_memory_map (void)
1521{
1522 VEC(mem_region_s) *result;
1523 struct mem_region *last_one, *this_one;
1524 int ix;
1525 struct target_ops *t;
1526
6b2c5a57 1527 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1528 if (result == NULL)
1529 return NULL;
1530
1531 qsort (VEC_address (mem_region_s, result),
1532 VEC_length (mem_region_s, result),
1533 sizeof (struct mem_region), mem_region_cmp);
1534
1535 /* Check that regions do not overlap. Simultaneously assign
1536 a numbering for the "mem" commands to use to refer to
1537 each region. */
1538 last_one = NULL;
1539 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1540 {
1541 this_one->number = ix;
1542
1543 if (last_one && last_one->hi > this_one->lo)
1544 {
1545 warning (_("Overlapping regions in memory map: ignoring"));
1546 VEC_free (mem_region_s, result);
1547 return NULL;
1548 }
1549 last_one = this_one;
1550 }
1551
1552 return result;
1553}
1554
a76d924d
DJ
1555void
1556target_flash_erase (ULONGEST address, LONGEST length)
1557{
e8a6c6ac 1558 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1559}
1560
1561void
1562target_flash_done (void)
1563{
f6fb2925 1564 current_target.to_flash_done (&current_target);
a76d924d
DJ
1565}
1566
920d2a44
AC
1567static void
1568show_trust_readonly (struct ui_file *file, int from_tty,
1569 struct cmd_list_element *c, const char *value)
1570{
3e43a32a
MS
1571 fprintf_filtered (file,
1572 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1573 value);
1574}
3a11626d 1575
7f79c47e 1576/* Target vector read/write partial wrapper functions. */
0088c768 1577
9b409511 1578static enum target_xfer_status
1e3ff5ad
AC
1579target_read_partial (struct target_ops *ops,
1580 enum target_object object,
1b0ba102 1581 const char *annex, gdb_byte *buf,
9b409511
YQ
1582 ULONGEST offset, ULONGEST len,
1583 ULONGEST *xfered_len)
1e3ff5ad 1584{
9b409511
YQ
1585 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1586 xfered_len);
1e3ff5ad
AC
1587}
1588
8a55ffb0 1589static enum target_xfer_status
1e3ff5ad
AC
1590target_write_partial (struct target_ops *ops,
1591 enum target_object object,
1b0ba102 1592 const char *annex, const gdb_byte *buf,
9b409511 1593 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1594{
9b409511
YQ
1595 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1596 xfered_len);
1e3ff5ad
AC
1597}
1598
1599/* Wrappers to perform the full transfer. */
7f79c47e
DE
1600
1601/* For docs on target_read see target.h. */
1602
1e3ff5ad
AC
1603LONGEST
1604target_read (struct target_ops *ops,
1605 enum target_object object,
1b0ba102 1606 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1607 ULONGEST offset, LONGEST len)
1608{
279a6fed 1609 LONGEST xfered_total = 0;
d309493c
SM
1610 int unit_size = 1;
1611
1612 /* If we are reading from a memory object, find the length of an addressable
1613 unit for that architecture. */
1614 if (object == TARGET_OBJECT_MEMORY
1615 || object == TARGET_OBJECT_STACK_MEMORY
1616 || object == TARGET_OBJECT_CODE_MEMORY
1617 || object == TARGET_OBJECT_RAW_MEMORY)
1618 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1619
279a6fed 1620 while (xfered_total < len)
1e3ff5ad 1621 {
279a6fed 1622 ULONGEST xfered_partial;
9b409511
YQ
1623 enum target_xfer_status status;
1624
1625 status = target_read_partial (ops, object, annex,
d309493c 1626 buf + xfered_total * unit_size,
279a6fed
SM
1627 offset + xfered_total, len - xfered_total,
1628 &xfered_partial);
5d502164 1629
1e3ff5ad 1630 /* Call an observer, notifying them of the xfer progress? */
9b409511 1631 if (status == TARGET_XFER_EOF)
279a6fed 1632 return xfered_total;
9b409511
YQ
1633 else if (status == TARGET_XFER_OK)
1634 {
279a6fed 1635 xfered_total += xfered_partial;
9b409511
YQ
1636 QUIT;
1637 }
1638 else
279a6fed 1639 return TARGET_XFER_E_IO;
9b409511 1640
1e3ff5ad
AC
1641 }
1642 return len;
1643}
1644
f1a507a1
JB
1645/* Assuming that the entire [begin, end) range of memory cannot be
1646 read, try to read whatever subrange is possible to read.
1647
1648 The function returns, in RESULT, either zero or one memory block.
1649 If there's a readable subrange at the beginning, it is completely
1650 read and returned. Any further readable subrange will not be read.
1651 Otherwise, if there's a readable subrange at the end, it will be
1652 completely read and returned. Any readable subranges before it
1653 (obviously, not starting at the beginning), will be ignored. In
1654 other cases -- either no readable subrange, or readable subrange(s)
1655 that is neither at the beginning, or end, nothing is returned.
1656
1657 The purpose of this function is to handle a read across a boundary
1658 of accessible memory in a case when memory map is not available.
1659 The above restrictions are fine for this case, but will give
1660 incorrect results if the memory is 'patchy'. However, supporting
1661 'patchy' memory would require trying to read every single byte,
1662 and it seems unacceptable solution. Explicit memory map is
1663 recommended for this case -- and target_read_memory_robust will
1664 take care of reading multiple ranges then. */
8dedea02
VP
1665
1666static void
3e43a32a 1667read_whatever_is_readable (struct target_ops *ops,
279a6fed 1668 const ULONGEST begin, const ULONGEST end,
d309493c 1669 int unit_size,
8dedea02 1670 VEC(memory_read_result_s) **result)
d5086790 1671{
224c3ddb 1672 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1673 ULONGEST current_begin = begin;
1674 ULONGEST current_end = end;
1675 int forward;
1676 memory_read_result_s r;
9b409511 1677 ULONGEST xfered_len;
8dedea02
VP
1678
1679 /* If we previously failed to read 1 byte, nothing can be done here. */
1680 if (end - begin <= 1)
13b3fd9b
MS
1681 {
1682 xfree (buf);
1683 return;
1684 }
8dedea02
VP
1685
1686 /* Check that either first or the last byte is readable, and give up
c378eb4e 1687 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1688 at the boundary of accessible region. */
1689 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1690 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1691 {
1692 forward = 1;
1693 ++current_begin;
1694 }
1695 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1696 buf + (end - begin) - 1, end - 1, 1,
9b409511 1697 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1698 {
1699 forward = 0;
1700 --current_end;
1701 }
1702 else
1703 {
13b3fd9b 1704 xfree (buf);
8dedea02
VP
1705 return;
1706 }
1707
1708 /* Loop invariant is that the [current_begin, current_end) was previously
1709 found to be not readable as a whole.
1710
1711 Note loop condition -- if the range has 1 byte, we can't divide the range
1712 so there's no point trying further. */
1713 while (current_end - current_begin > 1)
1714 {
1715 ULONGEST first_half_begin, first_half_end;
1716 ULONGEST second_half_begin, second_half_end;
1717 LONGEST xfer;
279a6fed 1718 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1719
8dedea02
VP
1720 if (forward)
1721 {
1722 first_half_begin = current_begin;
1723 first_half_end = middle;
1724 second_half_begin = middle;
1725 second_half_end = current_end;
1726 }
1727 else
1728 {
1729 first_half_begin = middle;
1730 first_half_end = current_end;
1731 second_half_begin = current_begin;
1732 second_half_end = middle;
1733 }
1734
1735 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1736 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1737 first_half_begin,
1738 first_half_end - first_half_begin);
1739
1740 if (xfer == first_half_end - first_half_begin)
1741 {
c378eb4e 1742 /* This half reads up fine. So, the error must be in the
3e43a32a 1743 other half. */
8dedea02
VP
1744 current_begin = second_half_begin;
1745 current_end = second_half_end;
1746 }
1747 else
1748 {
c378eb4e 1749 /* This half is not readable. Because we've tried one byte, we
279a6fed 1750 know some part of this half if actually readable. Go to the next
8dedea02
VP
1751 iteration to divide again and try to read.
1752
1753 We don't handle the other half, because this function only tries
1754 to read a single readable subrange. */
1755 current_begin = first_half_begin;
1756 current_end = first_half_end;
1757 }
1758 }
1759
1760 if (forward)
1761 {
1762 /* The [begin, current_begin) range has been read. */
1763 r.begin = begin;
1764 r.end = current_begin;
1765 r.data = buf;
1766 }
1767 else
1768 {
1769 /* The [current_end, end) range has been read. */
279a6fed 1770 LONGEST region_len = end - current_end;
f1a507a1 1771
224c3ddb 1772 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1773 memcpy (r.data, buf + (current_end - begin) * unit_size,
1774 region_len * unit_size);
8dedea02
VP
1775 r.begin = current_end;
1776 r.end = end;
1777 xfree (buf);
1778 }
1779 VEC_safe_push(memory_read_result_s, (*result), &r);
1780}
1781
1782void
1783free_memory_read_result_vector (void *x)
1784{
19ba03f4 1785 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
8dedea02
VP
1786 memory_read_result_s *current;
1787 int ix;
1788
1789 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1790 {
1791 xfree (current->data);
1792 }
1793 VEC_free (memory_read_result_s, v);
1794}
1795
1796VEC(memory_read_result_s) *
279a6fed
SM
1797read_memory_robust (struct target_ops *ops,
1798 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1799{
1800 VEC(memory_read_result_s) *result = 0;
d309493c 1801 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
8dedea02 1802
279a6fed
SM
1803 LONGEST xfered_total = 0;
1804 while (xfered_total < len)
d5086790 1805 {
279a6fed
SM
1806 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1807 LONGEST region_len;
5d502164 1808
8dedea02
VP
1809 /* If there is no explicit region, a fake one should be created. */
1810 gdb_assert (region);
1811
1812 if (region->hi == 0)
279a6fed 1813 region_len = len - xfered_total;
8dedea02 1814 else
279a6fed 1815 region_len = region->hi - offset;
8dedea02
VP
1816
1817 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1818 {
c378eb4e 1819 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1820 if the region is explicitly marked inaccessible, or
1821 'inaccessible-by-default' is in effect. */
279a6fed 1822 xfered_total += region_len;
8dedea02
VP
1823 }
1824 else
1825 {
279a6fed 1826 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1827 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
8dedea02 1828
279a6fed
SM
1829 LONGEST xfered_partial =
1830 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1831 (gdb_byte *) buffer,
1832 offset + xfered_total, to_read);
8dedea02 1833 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1834 if (xfered_partial <= 0)
d5086790 1835 {
c378eb4e 1836 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1837 some subrange. */
1838 xfree (buffer);
e084c964
DB
1839 read_whatever_is_readable (ops, offset + xfered_total,
1840 offset + xfered_total + to_read,
1841 unit_size, &result);
279a6fed 1842 xfered_total += to_read;
d5086790 1843 }
8dedea02
VP
1844 else
1845 {
1846 struct memory_read_result r;
1847 r.data = buffer;
279a6fed
SM
1848 r.begin = offset + xfered_total;
1849 r.end = r.begin + xfered_partial;
8dedea02 1850 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1851 xfered_total += xfered_partial;
8dedea02
VP
1852 }
1853 QUIT;
d5086790 1854 }
d5086790 1855 }
8dedea02 1856 return result;
d5086790
VP
1857}
1858
8dedea02 1859
cf7a04e8
DJ
1860/* An alternative to target_write with progress callbacks. */
1861
1e3ff5ad 1862LONGEST
cf7a04e8
DJ
1863target_write_with_progress (struct target_ops *ops,
1864 enum target_object object,
1865 const char *annex, const gdb_byte *buf,
1866 ULONGEST offset, LONGEST len,
1867 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1868{
279a6fed 1869 LONGEST xfered_total = 0;
d309493c
SM
1870 int unit_size = 1;
1871
1872 /* If we are writing to a memory object, find the length of an addressable
1873 unit for that architecture. */
1874 if (object == TARGET_OBJECT_MEMORY
1875 || object == TARGET_OBJECT_STACK_MEMORY
1876 || object == TARGET_OBJECT_CODE_MEMORY
1877 || object == TARGET_OBJECT_RAW_MEMORY)
1878 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1879
1880 /* Give the progress callback a chance to set up. */
1881 if (progress)
1882 (*progress) (0, baton);
1883
279a6fed 1884 while (xfered_total < len)
1e3ff5ad 1885 {
279a6fed 1886 ULONGEST xfered_partial;
9b409511
YQ
1887 enum target_xfer_status status;
1888
1889 status = target_write_partial (ops, object, annex,
d309493c 1890 buf + xfered_total * unit_size,
279a6fed
SM
1891 offset + xfered_total, len - xfered_total,
1892 &xfered_partial);
cf7a04e8 1893
5c328c05 1894 if (status != TARGET_XFER_OK)
279a6fed 1895 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1896
1897 if (progress)
279a6fed 1898 (*progress) (xfered_partial, baton);
cf7a04e8 1899
279a6fed 1900 xfered_total += xfered_partial;
1e3ff5ad
AC
1901 QUIT;
1902 }
1903 return len;
1904}
1905
7f79c47e
DE
1906/* For docs on target_write see target.h. */
1907
cf7a04e8
DJ
1908LONGEST
1909target_write (struct target_ops *ops,
1910 enum target_object object,
1911 const char *annex, const gdb_byte *buf,
1912 ULONGEST offset, LONGEST len)
1913{
1914 return target_write_with_progress (ops, object, annex, buf, offset, len,
1915 NULL, NULL);
1916}
1917
159f81f3
DJ
1918/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1919 the size of the transferred data. PADDING additional bytes are
1920 available in *BUF_P. This is a helper function for
1921 target_read_alloc; see the declaration of that function for more
1922 information. */
13547ab6 1923
159f81f3
DJ
1924static LONGEST
1925target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1926 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1927{
1928 size_t buf_alloc, buf_pos;
1929 gdb_byte *buf;
13547ab6
DJ
1930
1931 /* This function does not have a length parameter; it reads the
1932 entire OBJECT). Also, it doesn't support objects fetched partly
1933 from one target and partly from another (in a different stratum,
1934 e.g. a core file and an executable). Both reasons make it
1935 unsuitable for reading memory. */
1936 gdb_assert (object != TARGET_OBJECT_MEMORY);
1937
1938 /* Start by reading up to 4K at a time. The target will throttle
1939 this number down if necessary. */
1940 buf_alloc = 4096;
224c3ddb 1941 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1942 buf_pos = 0;
1943 while (1)
1944 {
9b409511
YQ
1945 ULONGEST xfered_len;
1946 enum target_xfer_status status;
1947
1948 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1949 buf_pos, buf_alloc - buf_pos - padding,
1950 &xfered_len);
1951
1952 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1953 {
1954 /* Read all there was. */
1955 if (buf_pos == 0)
1956 xfree (buf);
1957 else
1958 *buf_p = buf;
1959 return buf_pos;
1960 }
9b409511
YQ
1961 else if (status != TARGET_XFER_OK)
1962 {
1963 /* An error occurred. */
1964 xfree (buf);
1965 return TARGET_XFER_E_IO;
1966 }
13547ab6 1967
9b409511 1968 buf_pos += xfered_len;
13547ab6
DJ
1969
1970 /* If the buffer is filling up, expand it. */
1971 if (buf_alloc < buf_pos * 2)
1972 {
1973 buf_alloc *= 2;
224c3ddb 1974 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
1975 }
1976
1977 QUIT;
1978 }
1979}
1980
159f81f3
DJ
1981/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1982 the size of the transferred data. See the declaration in "target.h"
1983 function for more information about the return value. */
1984
1985LONGEST
1986target_read_alloc (struct target_ops *ops, enum target_object object,
1987 const char *annex, gdb_byte **buf_p)
1988{
1989 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1990}
1991
1992/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1993 returned as a string, allocated using xmalloc. If an error occurs
1994 or the transfer is unsupported, NULL is returned. Empty objects
1995 are returned as allocated but empty strings. A warning is issued
1996 if the result contains any embedded NUL bytes. */
1997
1998char *
1999target_read_stralloc (struct target_ops *ops, enum target_object object,
2000 const char *annex)
2001{
39086a0e
PA
2002 gdb_byte *buffer;
2003 char *bufstr;
7313baad 2004 LONGEST i, transferred;
159f81f3 2005
39086a0e
PA
2006 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2007 bufstr = (char *) buffer;
159f81f3
DJ
2008
2009 if (transferred < 0)
2010 return NULL;
2011
2012 if (transferred == 0)
2013 return xstrdup ("");
2014
39086a0e 2015 bufstr[transferred] = 0;
7313baad
UW
2016
2017 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2018 for (i = strlen (bufstr); i < transferred; i++)
2019 if (bufstr[i] != 0)
7313baad
UW
2020 {
2021 warning (_("target object %d, annex %s, "
2022 "contained unexpected null characters"),
2023 (int) object, annex ? annex : "(none)");
2024 break;
2025 }
159f81f3 2026
39086a0e 2027 return bufstr;
159f81f3
DJ
2028}
2029
b6591e8b
AC
2030/* Memory transfer methods. */
2031
2032void
1b0ba102 2033get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2034 LONGEST len)
2035{
07b82ea5
PA
2036 /* This method is used to read from an alternate, non-current
2037 target. This read must bypass the overlay support (as symbols
2038 don't match this target), and GDB's internal cache (wrong cache
2039 for this target). */
2040 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2041 != len)
578d3588 2042 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2043}
2044
2045ULONGEST
5d502164
MS
2046get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2047 int len, enum bfd_endian byte_order)
b6591e8b 2048{
f6519ebc 2049 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2050
2051 gdb_assert (len <= sizeof (buf));
2052 get_target_memory (ops, addr, buf, len);
e17a4113 2053 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2054}
2055
3db08215
MM
2056/* See target.h. */
2057
d914c394
SS
2058int
2059target_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061{
2062 if (!may_insert_breakpoints)
2063 {
2064 warning (_("May not insert breakpoints"));
2065 return 1;
2066 }
2067
6b84065d
TT
2068 return current_target.to_insert_breakpoint (&current_target,
2069 gdbarch, bp_tgt);
d914c394
SS
2070}
2071
3db08215
MM
2072/* See target.h. */
2073
d914c394 2074int
6b84065d
TT
2075target_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt)
d914c394
SS
2077{
2078 /* This is kind of a weird case to handle, but the permission might
2079 have been changed after breakpoints were inserted - in which case
2080 we should just take the user literally and assume that any
2081 breakpoints should be left in place. */
2082 if (!may_insert_breakpoints)
2083 {
2084 warning (_("May not remove breakpoints"));
2085 return 1;
2086 }
2087
6b84065d
TT
2088 return current_target.to_remove_breakpoint (&current_target,
2089 gdbarch, bp_tgt);
d914c394
SS
2090}
2091
c906108c 2092static void
fba45db2 2093target_info (char *args, int from_tty)
c906108c
SS
2094{
2095 struct target_ops *t;
c906108c 2096 int has_all_mem = 0;
c5aa993b 2097
c906108c 2098 if (symfile_objfile != NULL)
4262abfb
JK
2099 printf_unfiltered (_("Symbols from \"%s\".\n"),
2100 objfile_name (symfile_objfile));
c906108c 2101
258b763a 2102 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2103 {
c35b1492 2104 if (!(*t->to_has_memory) (t))
c906108c
SS
2105 continue;
2106
c5aa993b 2107 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2108 continue;
2109 if (has_all_mem)
3e43a32a
MS
2110 printf_unfiltered (_("\tWhile running this, "
2111 "GDB does not access memory from...\n"));
c5aa993b
JM
2112 printf_unfiltered ("%s:\n", t->to_longname);
2113 (t->to_files_info) (t);
c35b1492 2114 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2115 }
2116}
2117
fd79ecee
DJ
2118/* This function is called before any new inferior is created, e.g.
2119 by running a program, attaching, or connecting to a target.
2120 It cleans up any state from previous invocations which might
2121 change between runs. This is a subset of what target_preopen
2122 resets (things which might change between targets). */
2123
2124void
2125target_pre_inferior (int from_tty)
2126{
c378eb4e 2127 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2128 inferior might have survived and is entirely wrong for the new
c378eb4e 2129 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2130 to reproduce:
2131
2132 bash$ ./foo&
2133 [1] 4711
2134 bash$ ./foo&
2135 [1] 4712
2136 bash$ gdb ./foo
2137 [...]
2138 (gdb) attach 4711
2139 (gdb) detach
2140 (gdb) attach 4712
2141 Cannot access memory at address 0xdeadbeef
2142 */
b9db4ced 2143
50c71eaf
PA
2144 /* In some OSs, the shared library list is the same/global/shared
2145 across inferiors. If code is shared between processes, so are
2146 memory regions and features. */
f5656ead 2147 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2148 {
2149 no_shared_libraries (NULL, from_tty);
2150
2151 invalidate_target_mem_regions ();
424163ea 2152
50c71eaf
PA
2153 target_clear_description ();
2154 }
8ffcbaaf 2155
e9756d52
PP
2156 /* attach_flag may be set if the previous process associated with
2157 the inferior was attached to. */
2158 current_inferior ()->attach_flag = 0;
2159
8ffcbaaf 2160 agent_capability_invalidate ();
fd79ecee
DJ
2161}
2162
b8fa0bfa
PA
2163/* Callback for iterate_over_inferiors. Gets rid of the given
2164 inferior. */
2165
2166static int
2167dispose_inferior (struct inferior *inf, void *args)
2168{
2169 struct thread_info *thread;
2170
2171 thread = any_thread_of_process (inf->pid);
2172 if (thread)
2173 {
2174 switch_to_thread (thread->ptid);
2175
2176 /* Core inferiors actually should be detached, not killed. */
2177 if (target_has_execution)
2178 target_kill ();
2179 else
2180 target_detach (NULL, 0);
2181 }
2182
2183 return 0;
2184}
2185
c906108c
SS
2186/* This is to be called by the open routine before it does
2187 anything. */
2188
2189void
fba45db2 2190target_preopen (int from_tty)
c906108c 2191{
c5aa993b 2192 dont_repeat ();
c906108c 2193
b8fa0bfa 2194 if (have_inferiors ())
c5aa993b 2195 {
adf40b2e 2196 if (!from_tty
b8fa0bfa
PA
2197 || !have_live_inferiors ()
2198 || query (_("A program is being debugged already. Kill it? ")))
2199 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2200 else
8a3fe4f8 2201 error (_("Program not killed."));
c906108c
SS
2202 }
2203
2204 /* Calling target_kill may remove the target from the stack. But if
2205 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2206 /* Leave the exec target, though. The user may be switching from a
2207 live process to a core of the same program. */
460014f5 2208 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2209
2210 target_pre_inferior (from_tty);
c906108c
SS
2211}
2212
2213/* Detach a target after doing deferred register stores. */
2214
2215void
52554a0e 2216target_detach (const char *args, int from_tty)
c906108c 2217{
136d6dae
VP
2218 struct target_ops* t;
2219
f5656ead 2220 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2221 /* Don't remove global breakpoints here. They're removed on
2222 disconnection from the target. */
2223 ;
2224 else
2225 /* If we're in breakpoints-always-inserted mode, have to remove
2226 them before detaching. */
dfd4cc63 2227 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2228
24291992
PA
2229 prepare_for_detach ();
2230
09da0d0a 2231 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2232}
2233
6ad8ae5c 2234void
fee354ee 2235target_disconnect (const char *args, int from_tty)
6ad8ae5c 2236{
50c71eaf
PA
2237 /* If we're in breakpoints-always-inserted mode or if breakpoints
2238 are global across processes, we have to remove them before
2239 disconnecting. */
74960c60
VP
2240 remove_breakpoints ();
2241
86a0854a 2242 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2243}
2244
117de6a9 2245ptid_t
47608cb1 2246target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2247{
a7068b60 2248 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2249}
2250
0b333c5e
PA
2251/* See target.h. */
2252
2253ptid_t
2254default_target_wait (struct target_ops *ops,
2255 ptid_t ptid, struct target_waitstatus *status,
2256 int options)
2257{
2258 status->kind = TARGET_WAITKIND_IGNORE;
2259 return minus_one_ptid;
2260}
2261
117de6a9
PA
2262char *
2263target_pid_to_str (ptid_t ptid)
2264{
770234d3 2265 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2266}
2267
73ede765 2268const char *
4694da01
TT
2269target_thread_name (struct thread_info *info)
2270{
825828fc 2271 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2272}
2273
e1ac3328 2274void
2ea28649 2275target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2276{
28439f5e
PA
2277 struct target_ops *t;
2278
4e5d721f 2279 target_dcache_invalidate ();
28439f5e 2280
6b84065d 2281 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2282
6b84065d 2283 registers_changed_ptid (ptid);
251bde03
PA
2284 /* We only set the internal executing state here. The user/frontend
2285 running state is set at a higher level. */
6b84065d 2286 set_executing (ptid, 1);
6b84065d 2287 clear_inline_frame_state (ptid);
e1ac3328 2288}
2455069d
UW
2289
2290void
2291target_pass_signals (int numsigs, unsigned char *pass_signals)
2292{
035cad7f 2293 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2294}
2295
9b224c5e
PA
2296void
2297target_program_signals (int numsigs, unsigned char *program_signals)
2298{
7d4f8efa
TT
2299 (*current_target.to_program_signals) (&current_target,
2300 numsigs, program_signals);
9b224c5e
PA
2301}
2302
098dba18
TT
2303static int
2304default_follow_fork (struct target_ops *self, int follow_child,
2305 int detach_fork)
2306{
2307 /* Some target returned a fork event, but did not know how to follow it. */
2308 internal_error (__FILE__, __LINE__,
2309 _("could not find a target to follow fork"));
2310}
2311
ee057212
DJ
2312/* Look through the list of possible targets for a target that can
2313 follow forks. */
2314
2315int
07107ca6 2316target_follow_fork (int follow_child, int detach_fork)
ee057212 2317{
a7068b60
TT
2318 return current_target.to_follow_fork (&current_target,
2319 follow_child, detach_fork);
ee057212
DJ
2320}
2321
94585166
DB
2322/* Target wrapper for follow exec hook. */
2323
2324void
2325target_follow_exec (struct inferior *inf, char *execd_pathname)
2326{
2327 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2328}
2329
8d657035
TT
2330static void
2331default_mourn_inferior (struct target_ops *self)
2332{
2333 internal_error (__FILE__, __LINE__,
2334 _("could not find a target to follow mourn inferior"));
2335}
2336
136d6dae
VP
2337void
2338target_mourn_inferior (void)
2339{
8d657035 2340 current_target.to_mourn_inferior (&current_target);
136d6dae 2341
8d657035
TT
2342 /* We no longer need to keep handles on any of the object files.
2343 Make sure to release them to avoid unnecessarily locking any
2344 of them while we're not actually debugging. */
2345 bfd_cache_close_all ();
136d6dae
VP
2346}
2347
424163ea
DJ
2348/* Look for a target which can describe architectural features, starting
2349 from TARGET. If we find one, return its description. */
2350
2351const struct target_desc *
2352target_read_description (struct target_ops *target)
2353{
2117c711 2354 return target->to_read_description (target);
424163ea
DJ
2355}
2356
58a5184e 2357/* This implements a basic search of memory, reading target memory and
08388c79
DE
2358 performing the search here (as opposed to performing the search in on the
2359 target side with, for example, gdbserver). */
2360
2361int
2362simple_search_memory (struct target_ops *ops,
2363 CORE_ADDR start_addr, ULONGEST search_space_len,
2364 const gdb_byte *pattern, ULONGEST pattern_len,
2365 CORE_ADDR *found_addrp)
2366{
2367 /* NOTE: also defined in find.c testcase. */
2368#define SEARCH_CHUNK_SIZE 16000
2369 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2370 /* Buffer to hold memory contents for searching. */
2371 gdb_byte *search_buf;
2372 unsigned search_buf_size;
2373 struct cleanup *old_cleanups;
2374
2375 search_buf_size = chunk_size + pattern_len - 1;
2376
2377 /* No point in trying to allocate a buffer larger than the search space. */
2378 if (search_space_len < search_buf_size)
2379 search_buf_size = search_space_len;
2380
224c3ddb 2381 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2382 if (search_buf == NULL)
5e1471f5 2383 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2384 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2385
2386 /* Prime the search buffer. */
2387
2388 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2389 search_buf, start_addr, search_buf_size) != search_buf_size)
2390 {
b3dc46ff
AB
2391 warning (_("Unable to access %s bytes of target "
2392 "memory at %s, halting search."),
2393 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2394 do_cleanups (old_cleanups);
2395 return -1;
2396 }
2397
2398 /* Perform the search.
2399
2400 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2401 When we've scanned N bytes we copy the trailing bytes to the start and
2402 read in another N bytes. */
2403
2404 while (search_space_len >= pattern_len)
2405 {
2406 gdb_byte *found_ptr;
2407 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2408
d7f3ff3e
SM
2409 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2410 pattern, pattern_len);
08388c79
DE
2411
2412 if (found_ptr != NULL)
2413 {
2414 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2415
08388c79
DE
2416 *found_addrp = found_addr;
2417 do_cleanups (old_cleanups);
2418 return 1;
2419 }
2420
2421 /* Not found in this chunk, skip to next chunk. */
2422
2423 /* Don't let search_space_len wrap here, it's unsigned. */
2424 if (search_space_len >= chunk_size)
2425 search_space_len -= chunk_size;
2426 else
2427 search_space_len = 0;
2428
2429 if (search_space_len >= pattern_len)
2430 {
2431 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2432 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2433 int nr_to_read;
2434
2435 /* Copy the trailing part of the previous iteration to the front
2436 of the buffer for the next iteration. */
2437 gdb_assert (keep_len == pattern_len - 1);
2438 memcpy (search_buf, search_buf + chunk_size, keep_len);
2439
2440 nr_to_read = min (search_space_len - keep_len, chunk_size);
2441
2442 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2443 search_buf + keep_len, read_addr,
2444 nr_to_read) != nr_to_read)
2445 {
b3dc46ff 2446 warning (_("Unable to access %s bytes of target "
9b20d036 2447 "memory at %s, halting search."),
b3dc46ff 2448 plongest (nr_to_read),
08388c79
DE
2449 hex_string (read_addr));
2450 do_cleanups (old_cleanups);
2451 return -1;
2452 }
2453
2454 start_addr += chunk_size;
2455 }
2456 }
2457
2458 /* Not found. */
2459
2460 do_cleanups (old_cleanups);
2461 return 0;
2462}
2463
58a5184e
TT
2464/* Default implementation of memory-searching. */
2465
2466static int
2467default_search_memory (struct target_ops *self,
2468 CORE_ADDR start_addr, ULONGEST search_space_len,
2469 const gdb_byte *pattern, ULONGEST pattern_len,
2470 CORE_ADDR *found_addrp)
2471{
2472 /* Start over from the top of the target stack. */
2473 return simple_search_memory (current_target.beneath,
2474 start_addr, search_space_len,
2475 pattern, pattern_len, found_addrp);
2476}
2477
08388c79
DE
2478/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2479 sequence of bytes in PATTERN with length PATTERN_LEN.
2480
2481 The result is 1 if found, 0 if not found, and -1 if there was an error
2482 requiring halting of the search (e.g. memory read error).
2483 If the pattern is found the address is recorded in FOUND_ADDRP. */
2484
2485int
2486target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2487 const gdb_byte *pattern, ULONGEST pattern_len,
2488 CORE_ADDR *found_addrp)
2489{
a7068b60
TT
2490 return current_target.to_search_memory (&current_target, start_addr,
2491 search_space_len,
2492 pattern, pattern_len, found_addrp);
08388c79
DE
2493}
2494
8edfe269
DJ
2495/* Look through the currently pushed targets. If none of them will
2496 be able to restart the currently running process, issue an error
2497 message. */
2498
2499void
2500target_require_runnable (void)
2501{
2502 struct target_ops *t;
2503
2504 for (t = target_stack; t != NULL; t = t->beneath)
2505 {
2506 /* If this target knows how to create a new program, then
2507 assume we will still be able to after killing the current
2508 one. Either killing and mourning will not pop T, or else
2509 find_default_run_target will find it again. */
2510 if (t->to_create_inferior != NULL)
2511 return;
2512
548740d6 2513 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2514 create inferiors. Assume they will be pushed again if
2515 necessary, and continue to the process_stratum. */
85e747d2 2516 if (t->to_stratum == thread_stratum
548740d6 2517 || t->to_stratum == record_stratum
85e747d2 2518 || t->to_stratum == arch_stratum)
8edfe269
DJ
2519 continue;
2520
3e43a32a
MS
2521 error (_("The \"%s\" target does not support \"run\". "
2522 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2523 t->to_shortname);
2524 }
2525
2526 /* This function is only called if the target is running. In that
2527 case there should have been a process_stratum target and it
c378eb4e 2528 should either know how to create inferiors, or not... */
9b20d036 2529 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2530}
2531
6a3cb8e8
PA
2532/* Whether GDB is allowed to fall back to the default run target for
2533 "run", "attach", etc. when no target is connected yet. */
2534static int auto_connect_native_target = 1;
2535
2536static void
2537show_auto_connect_native_target (struct ui_file *file, int from_tty,
2538 struct cmd_list_element *c, const char *value)
2539{
2540 fprintf_filtered (file,
2541 _("Whether GDB may automatically connect to the "
2542 "native target is %s.\n"),
2543 value);
2544}
2545
c906108c
SS
2546/* Look through the list of possible targets for a target that can
2547 execute a run or attach command without any other data. This is
2548 used to locate the default process stratum.
2549
5f667f2d
PA
2550 If DO_MESG is not NULL, the result is always valid (error() is
2551 called for errors); else, return NULL on error. */
c906108c
SS
2552
2553static struct target_ops *
fba45db2 2554find_default_run_target (char *do_mesg)
c906108c 2555{
c906108c 2556 struct target_ops *runable = NULL;
c906108c 2557
6a3cb8e8 2558 if (auto_connect_native_target)
c906108c 2559 {
89a1c21a 2560 struct target_ops *t;
6a3cb8e8 2561 int count = 0;
89a1c21a 2562 int i;
6a3cb8e8 2563
89a1c21a 2564 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2565 {
89a1c21a 2566 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2567 {
89a1c21a 2568 runable = t;
6a3cb8e8
PA
2569 ++count;
2570 }
c906108c 2571 }
6a3cb8e8
PA
2572
2573 if (count != 1)
2574 runable = NULL;
c906108c
SS
2575 }
2576
6a3cb8e8 2577 if (runable == NULL)
5f667f2d
PA
2578 {
2579 if (do_mesg)
2580 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2581 else
2582 return NULL;
2583 }
c906108c
SS
2584
2585 return runable;
2586}
2587
b3ccfe11 2588/* See target.h. */
c906108c 2589
b3ccfe11
TT
2590struct target_ops *
2591find_attach_target (void)
c906108c
SS
2592{
2593 struct target_ops *t;
2594
b3ccfe11
TT
2595 /* If a target on the current stack can attach, use it. */
2596 for (t = current_target.beneath; t != NULL; t = t->beneath)
2597 {
2598 if (t->to_attach != NULL)
2599 break;
2600 }
c906108c 2601
b3ccfe11
TT
2602 /* Otherwise, use the default run target for attaching. */
2603 if (t == NULL)
2604 t = find_default_run_target ("attach");
b84876c2 2605
b3ccfe11 2606 return t;
b84876c2
PA
2607}
2608
b3ccfe11 2609/* See target.h. */
b84876c2 2610
b3ccfe11
TT
2611struct target_ops *
2612find_run_target (void)
9908b566
VP
2613{
2614 struct target_ops *t;
2615
b3ccfe11
TT
2616 /* If a target on the current stack can attach, use it. */
2617 for (t = current_target.beneath; t != NULL; t = t->beneath)
2618 {
2619 if (t->to_create_inferior != NULL)
2620 break;
2621 }
5d502164 2622
b3ccfe11
TT
2623 /* Otherwise, use the default run target. */
2624 if (t == NULL)
2625 t = find_default_run_target ("run");
9908b566 2626
b3ccfe11 2627 return t;
9908b566
VP
2628}
2629
145b16a9
UW
2630/* Implement the "info proc" command. */
2631
451b7c33 2632int
7bc112c1 2633target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2634{
2635 struct target_ops *t;
2636
2637 /* If we're already connected to something that can get us OS
2638 related data, use it. Otherwise, try using the native
2639 target. */
2640 if (current_target.to_stratum >= process_stratum)
2641 t = current_target.beneath;
2642 else
2643 t = find_default_run_target (NULL);
2644
2645 for (; t != NULL; t = t->beneath)
2646 {
2647 if (t->to_info_proc != NULL)
2648 {
2649 t->to_info_proc (t, args, what);
2650
2651 if (targetdebug)
2652 fprintf_unfiltered (gdb_stdlog,
2653 "target_info_proc (\"%s\", %d)\n", args, what);
2654
451b7c33 2655 return 1;
145b16a9
UW
2656 }
2657 }
2658
451b7c33 2659 return 0;
145b16a9
UW
2660}
2661
03583c20 2662static int
2bfc0540 2663find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2664{
2665 struct target_ops *t;
2666
2667 t = find_default_run_target (NULL);
2668 if (t && t->to_supports_disable_randomization)
2bfc0540 2669 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2670 return 0;
2671}
2672
2673int
2674target_supports_disable_randomization (void)
2675{
2676 struct target_ops *t;
2677
2678 for (t = &current_target; t != NULL; t = t->beneath)
2679 if (t->to_supports_disable_randomization)
2bfc0540 2680 return t->to_supports_disable_randomization (t);
03583c20
UW
2681
2682 return 0;
2683}
9908b566 2684
07e059b5
VP
2685char *
2686target_get_osdata (const char *type)
2687{
07e059b5
VP
2688 struct target_ops *t;
2689
739ef7fb
PA
2690 /* If we're already connected to something that can get us OS
2691 related data, use it. Otherwise, try using the native
2692 target. */
2693 if (current_target.to_stratum >= process_stratum)
6d097e65 2694 t = current_target.beneath;
739ef7fb
PA
2695 else
2696 t = find_default_run_target ("get OS data");
07e059b5
VP
2697
2698 if (!t)
2699 return NULL;
2700
6d097e65 2701 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2702}
2703
8eaff7cd
TT
2704static struct address_space *
2705default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2706{
2707 struct inferior *inf;
6c95b8df
PA
2708
2709 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2710 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2711
2712 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2713 internal_error (__FILE__, __LINE__,
9b20d036
MS
2714 _("Can't determine the current "
2715 "address space of thread %s\n"),
6c95b8df
PA
2716 target_pid_to_str (ptid));
2717
2718 return inf->aspace;
2719}
2720
8eaff7cd
TT
2721/* Determine the current address space of thread PTID. */
2722
2723struct address_space *
2724target_thread_address_space (ptid_t ptid)
2725{
2726 struct address_space *aspace;
2727
2728 aspace = current_target.to_thread_address_space (&current_target, ptid);
2729 gdb_assert (aspace != NULL);
2730
8eaff7cd
TT
2731 return aspace;
2732}
2733
7313baad
UW
2734
2735/* Target file operations. */
2736
2737static struct target_ops *
2738default_fileio_target (void)
2739{
2740 /* If we're already connected to something that can perform
2741 file I/O, use it. Otherwise, try using the native target. */
2742 if (current_target.to_stratum >= process_stratum)
2743 return current_target.beneath;
2744 else
2745 return find_default_run_target ("file I/O");
2746}
2747
1c4b552b
GB
2748/* File handle for target file operations. */
2749
2750typedef struct
2751{
2752 /* The target on which this file is open. */
2753 struct target_ops *t;
2754
2755 /* The file descriptor on the target. */
2756 int fd;
2757} fileio_fh_t;
2758
2759DEF_VEC_O (fileio_fh_t);
2760
2761/* Vector of currently open file handles. The value returned by
2762 target_fileio_open and passed as the FD argument to other
2763 target_fileio_* functions is an index into this vector. This
2764 vector's entries are never freed; instead, files are marked as
2765 closed, and the handle becomes available for reuse. */
2766static VEC (fileio_fh_t) *fileio_fhandles;
2767
2768/* Macro to check whether a fileio_fh_t represents a closed file. */
2769#define is_closed_fileio_fh(fd) ((fd) < 0)
2770
2771/* Index into fileio_fhandles of the lowest handle that might be
2772 closed. This permits handle reuse without searching the whole
2773 list each time a new file is opened. */
2774static int lowest_closed_fd;
2775
2776/* Acquire a target fileio file descriptor. */
2777
2778static int
2779acquire_fileio_fd (struct target_ops *t, int fd)
2780{
2781 fileio_fh_t *fh, buf;
2782
2783 gdb_assert (!is_closed_fileio_fh (fd));
2784
2785 /* Search for closed handles to reuse. */
2786 for (;
2787 VEC_iterate (fileio_fh_t, fileio_fhandles,
2788 lowest_closed_fd, fh);
2789 lowest_closed_fd++)
2790 if (is_closed_fileio_fh (fh->fd))
2791 break;
2792
2793 /* Push a new handle if no closed handles were found. */
2794 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2795 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2796
2797 /* Fill in the handle. */
2798 fh->t = t;
2799 fh->fd = fd;
2800
2801 /* Return its index, and start the next lookup at
2802 the next index. */
2803 return lowest_closed_fd++;
2804}
2805
2806/* Release a target fileio file descriptor. */
2807
2808static void
2809release_fileio_fd (int fd, fileio_fh_t *fh)
2810{
2811 fh->fd = -1;
2812 lowest_closed_fd = min (lowest_closed_fd, fd);
2813}
2814
2815/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2816
2817#define fileio_fd_to_fh(fd) \
2818 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2819
4313b8c0
GB
2820/* Helper for target_fileio_open and
2821 target_fileio_open_warn_if_slow. */
12e2a5fd 2822
4313b8c0
GB
2823static int
2824target_fileio_open_1 (struct inferior *inf, const char *filename,
2825 int flags, int mode, int warn_if_slow,
2826 int *target_errno)
7313baad
UW
2827{
2828 struct target_ops *t;
2829
2830 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2831 {
2832 if (t->to_fileio_open != NULL)
2833 {
07c138c8 2834 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2835 warn_if_slow, target_errno);
7313baad 2836
1c4b552b
GB
2837 if (fd < 0)
2838 fd = -1;
2839 else
2840 fd = acquire_fileio_fd (t, fd);
2841
7313baad
UW
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2844 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2845 " = %d (%d)\n",
2846 inf == NULL ? 0 : inf->num,
7313baad 2847 filename, flags, mode,
4313b8c0
GB
2848 warn_if_slow, fd,
2849 fd != -1 ? 0 : *target_errno);
7313baad
UW
2850 return fd;
2851 }
2852 }
2853
2854 *target_errno = FILEIO_ENOSYS;
2855 return -1;
2856}
2857
12e2a5fd
GB
2858/* See target.h. */
2859
4313b8c0
GB
2860int
2861target_fileio_open (struct inferior *inf, const char *filename,
2862 int flags, int mode, int *target_errno)
2863{
2864 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2865 target_errno);
2866}
2867
2868/* See target.h. */
2869
2870int
2871target_fileio_open_warn_if_slow (struct inferior *inf,
2872 const char *filename,
2873 int flags, int mode, int *target_errno)
2874{
2875 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2876 target_errno);
2877}
2878
2879/* See target.h. */
2880
7313baad
UW
2881int
2882target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2883 ULONGEST offset, int *target_errno)
2884{
1c4b552b
GB
2885 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2886 int ret = -1;
7313baad 2887
1c4b552b
GB
2888 if (is_closed_fileio_fh (fh->fd))
2889 *target_errno = EBADF;
2890 else
2891 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2892 len, offset, target_errno);
7313baad 2893
1c4b552b
GB
2894 if (targetdebug)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "target_fileio_pwrite (%d,...,%d,%s) "
2897 "= %d (%d)\n",
2898 fd, len, pulongest (offset),
2899 ret, ret != -1 ? 0 : *target_errno);
2900 return ret;
7313baad
UW
2901}
2902
12e2a5fd
GB
2903/* See target.h. */
2904
7313baad
UW
2905int
2906target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2907 ULONGEST offset, int *target_errno)
2908{
1c4b552b
GB
2909 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2910 int ret = -1;
7313baad 2911
1c4b552b
GB
2912 if (is_closed_fileio_fh (fh->fd))
2913 *target_errno = EBADF;
2914 else
2915 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2916 len, offset, target_errno);
7313baad 2917
1c4b552b
GB
2918 if (targetdebug)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "target_fileio_pread (%d,...,%d,%s) "
2921 "= %d (%d)\n",
2922 fd, len, pulongest (offset),
2923 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2924 return ret;
2925}
2926
2927/* See target.h. */
12e2a5fd 2928
9b15c1f0
GB
2929int
2930target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2931{
2932 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2933 int ret = -1;
2934
2935 if (is_closed_fileio_fh (fh->fd))
2936 *target_errno = EBADF;
2937 else
2938 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2939
2940 if (targetdebug)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "target_fileio_fstat (%d) = %d (%d)\n",
2943 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2944 return ret;
7313baad
UW
2945}
2946
12e2a5fd
GB
2947/* See target.h. */
2948
7313baad
UW
2949int
2950target_fileio_close (int fd, int *target_errno)
2951{
1c4b552b
GB
2952 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 int ret = -1;
7313baad 2954
1c4b552b
GB
2955 if (is_closed_fileio_fh (fh->fd))
2956 *target_errno = EBADF;
2957 else
7313baad 2958 {
1c4b552b
GB
2959 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2960 release_fileio_fd (fd, fh);
7313baad
UW
2961 }
2962
1c4b552b
GB
2963 if (targetdebug)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "target_fileio_close (%d) = %d (%d)\n",
2966 fd, ret, ret != -1 ? 0 : *target_errno);
2967 return ret;
7313baad
UW
2968}
2969
12e2a5fd
GB
2970/* See target.h. */
2971
7313baad 2972int
07c138c8
GB
2973target_fileio_unlink (struct inferior *inf, const char *filename,
2974 int *target_errno)
7313baad
UW
2975{
2976 struct target_ops *t;
2977
2978 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2979 {
2980 if (t->to_fileio_unlink != NULL)
2981 {
07c138c8
GB
2982 int ret = t->to_fileio_unlink (t, inf, filename,
2983 target_errno);
7313baad
UW
2984
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
2987 "target_fileio_unlink (%d,%s)"
2988 " = %d (%d)\n",
2989 inf == NULL ? 0 : inf->num, filename,
2990 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
2991 return ret;
2992 }
2993 }
2994
2995 *target_errno = FILEIO_ENOSYS;
2996 return -1;
2997}
2998
12e2a5fd
GB
2999/* See target.h. */
3000
b9e7b9c3 3001char *
07c138c8
GB
3002target_fileio_readlink (struct inferior *inf, const char *filename,
3003 int *target_errno)
b9e7b9c3
UW
3004{
3005 struct target_ops *t;
3006
3007 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3008 {
3009 if (t->to_fileio_readlink != NULL)
3010 {
07c138c8
GB
3011 char *ret = t->to_fileio_readlink (t, inf, filename,
3012 target_errno);
b9e7b9c3
UW
3013
3014 if (targetdebug)
3015 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3016 "target_fileio_readlink (%d,%s)"
3017 " = %s (%d)\n",
3018 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3019 filename, ret? ret : "(nil)",
3020 ret? 0 : *target_errno);
3021 return ret;
3022 }
3023 }
3024
3025 *target_errno = FILEIO_ENOSYS;
3026 return NULL;
3027}
3028
7313baad
UW
3029static void
3030target_fileio_close_cleanup (void *opaque)
3031{
3032 int fd = *(int *) opaque;
3033 int target_errno;
3034
3035 target_fileio_close (fd, &target_errno);
3036}
3037
07c138c8
GB
3038/* Read target file FILENAME, in the filesystem as seen by INF. If
3039 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3040 remote targets, the remote stub). Store the result in *BUF_P and
3041 return the size of the transferred data. PADDING additional bytes
3042 are available in *BUF_P. This is a helper function for
3043 target_fileio_read_alloc; see the declaration of that function for
3044 more information. */
7313baad 3045
f7af1fcd
JK
3046static LONGEST
3047target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3048 gdb_byte **buf_p, int padding)
3049{
3050 struct cleanup *close_cleanup;
db1ff28b
JK
3051 size_t buf_alloc, buf_pos;
3052 gdb_byte *buf;
3053 LONGEST n;
3054 int fd;
3055 int target_errno;
f7af1fcd 3056
db1ff28b
JK
3057 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3058 &target_errno);
f7af1fcd
JK
3059 if (fd == -1)
3060 return -1;
3061
3062 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3063
3064 /* Start by reading up to 4K at a time. The target will throttle
3065 this number down if necessary. */
3066 buf_alloc = 4096;
224c3ddb 3067 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3068 buf_pos = 0;
3069 while (1)
3070 {
3071 n = target_fileio_pread (fd, &buf[buf_pos],
3072 buf_alloc - buf_pos - padding, buf_pos,
3073 &target_errno);
3074 if (n < 0)
3075 {
3076 /* An error occurred. */
3077 do_cleanups (close_cleanup);
3078 xfree (buf);
3079 return -1;
3080 }
3081 else if (n == 0)
3082 {
3083 /* Read all there was. */
3084 do_cleanups (close_cleanup);
3085 if (buf_pos == 0)
3086 xfree (buf);
3087 else
3088 *buf_p = buf;
3089 return buf_pos;
3090 }
3091
3092 buf_pos += n;
3093
3094 /* If the buffer is filling up, expand it. */
3095 if (buf_alloc < buf_pos * 2)
3096 {
3097 buf_alloc *= 2;
224c3ddb 3098 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3099 }
3100
3101 QUIT;
3102 }
f7af1fcd
JK
3103}
3104
12e2a5fd 3105/* See target.h. */
7313baad
UW
3106
3107LONGEST
07c138c8
GB
3108target_fileio_read_alloc (struct inferior *inf, const char *filename,
3109 gdb_byte **buf_p)
7313baad 3110{
07c138c8 3111 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3112}
3113
db1ff28b 3114/* See target.h. */
f7af1fcd
JK
3115
3116char *
3117target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3118{
db1ff28b
JK
3119 gdb_byte *buffer;
3120 char *bufstr;
3121 LONGEST i, transferred;
3122
3123 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3124 bufstr = (char *) buffer;
3125
3126 if (transferred < 0)
3127 return NULL;
3128
3129 if (transferred == 0)
3130 return xstrdup ("");
3131
3132 bufstr[transferred] = 0;
3133
3134 /* Check for embedded NUL bytes; but allow trailing NULs. */
3135 for (i = strlen (bufstr); i < transferred; i++)
3136 if (bufstr[i] != 0)
3137 {
3138 warning (_("target file %s "
3139 "contained unexpected null characters"),
3140 filename);
3141 break;
3142 }
3143
3144 return bufstr;
f7af1fcd 3145}
7313baad 3146
db1ff28b 3147
e0d24f8d 3148static int
31568a15
TT
3149default_region_ok_for_hw_watchpoint (struct target_ops *self,
3150 CORE_ADDR addr, int len)
e0d24f8d 3151{
f5656ead 3152 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3153}
3154
5009afc5
AS
3155static int
3156default_watchpoint_addr_within_range (struct target_ops *target,
3157 CORE_ADDR addr,
3158 CORE_ADDR start, int length)
3159{
3160 return addr >= start && addr < start + length;
3161}
3162
c2250ad1
UW
3163static struct gdbarch *
3164default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3165{
f5656ead 3166 return target_gdbarch ();
c2250ad1
UW
3167}
3168
c906108c 3169static int
555bbdeb
TT
3170return_zero (struct target_ops *ignore)
3171{
3172 return 0;
3173}
3174
3175static int
3176return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3177{
3178 return 0;
3179}
3180
ed9a39eb
JM
3181/*
3182 * Find the next target down the stack from the specified target.
3183 */
3184
3185struct target_ops *
fba45db2 3186find_target_beneath (struct target_ops *t)
ed9a39eb 3187{
258b763a 3188 return t->beneath;
ed9a39eb
JM
3189}
3190
8b06beed
TT
3191/* See target.h. */
3192
3193struct target_ops *
3194find_target_at (enum strata stratum)
3195{
3196 struct target_ops *t;
3197
3198 for (t = current_target.beneath; t != NULL; t = t->beneath)
3199 if (t->to_stratum == stratum)
3200 return t;
3201
3202 return NULL;
3203}
3204
c906108c
SS
3205\f
3206/* The inferior process has died. Long live the inferior! */
3207
3208void
fba45db2 3209generic_mourn_inferior (void)
c906108c 3210{
7f9f62ba 3211 ptid_t ptid;
c906108c 3212
7f9f62ba 3213 ptid = inferior_ptid;
39f77062 3214 inferior_ptid = null_ptid;
7f9f62ba 3215
f59f708a
PA
3216 /* Mark breakpoints uninserted in case something tries to delete a
3217 breakpoint while we delete the inferior's threads (which would
3218 fail, since the inferior is long gone). */
3219 mark_breakpoints_out ();
3220
7f9f62ba
PA
3221 if (!ptid_equal (ptid, null_ptid))
3222 {
3223 int pid = ptid_get_pid (ptid);
6c95b8df 3224 exit_inferior (pid);
7f9f62ba
PA
3225 }
3226
f59f708a
PA
3227 /* Note this wipes step-resume breakpoints, so needs to be done
3228 after exit_inferior, which ends up referencing the step-resume
3229 breakpoints through clear_thread_inferior_resources. */
c906108c 3230 breakpoint_init_inferior (inf_exited);
f59f708a 3231
c906108c
SS
3232 registers_changed ();
3233
c906108c
SS
3234 reopen_exec_file ();
3235 reinit_frame_cache ();
3236
9a4105ab
AC
3237 if (deprecated_detach_hook)
3238 deprecated_detach_hook ();
c906108c
SS
3239}
3240\f
fd0a2a6f
MK
3241/* Convert a normal process ID to a string. Returns the string in a
3242 static buffer. */
c906108c
SS
3243
3244char *
39f77062 3245normal_pid_to_str (ptid_t ptid)
c906108c 3246{
fd0a2a6f 3247 static char buf[32];
c906108c 3248
5fff8fc0 3249 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3250 return buf;
3251}
3252
2c0b251b 3253static char *
770234d3 3254default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3255{
3256 return normal_pid_to_str (ptid);
3257}
3258
9b4eba8e
HZ
3259/* Error-catcher for target_find_memory_regions. */
3260static int
2e73927c
TT
3261dummy_find_memory_regions (struct target_ops *self,
3262 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3263{
9b4eba8e 3264 error (_("Command not implemented for this target."));
be4d1333
MS
3265 return 0;
3266}
3267
9b4eba8e
HZ
3268/* Error-catcher for target_make_corefile_notes. */
3269static char *
fc6691b2
TT
3270dummy_make_corefile_notes (struct target_ops *self,
3271 bfd *ignore1, int *ignore2)
be4d1333 3272{
9b4eba8e 3273 error (_("Command not implemented for this target."));
be4d1333
MS
3274 return NULL;
3275}
3276
c906108c
SS
3277/* Set up the handful of non-empty slots needed by the dummy target
3278 vector. */
3279
3280static void
fba45db2 3281init_dummy_target (void)
c906108c
SS
3282{
3283 dummy_target.to_shortname = "None";
3284 dummy_target.to_longname = "None";
3285 dummy_target.to_doc = "";
03583c20
UW
3286 dummy_target.to_supports_disable_randomization
3287 = find_default_supports_disable_randomization;
c906108c 3288 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3289 dummy_target.to_has_all_memory = return_zero;
3290 dummy_target.to_has_memory = return_zero;
3291 dummy_target.to_has_stack = return_zero;
3292 dummy_target.to_has_registers = return_zero;
3293 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3294 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3295
3296 install_dummy_methods (&dummy_target);
c906108c 3297}
c906108c 3298\f
c906108c 3299
f1c07ab0 3300void
460014f5 3301target_close (struct target_ops *targ)
f1c07ab0 3302{
7fdc1521
TT
3303 gdb_assert (!target_is_pushed (targ));
3304
f1c07ab0 3305 if (targ->to_xclose != NULL)
460014f5 3306 targ->to_xclose (targ);
f1c07ab0 3307 else if (targ->to_close != NULL)
de90e03d 3308 targ->to_close (targ);
947b8855
PA
3309
3310 if (targetdebug)
460014f5 3311 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3312}
3313
28439f5e
PA
3314int
3315target_thread_alive (ptid_t ptid)
c906108c 3316{
a7068b60 3317 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3318}
3319
3320void
e8032dde 3321target_update_thread_list (void)
28439f5e 3322{
e8032dde 3323 current_target.to_update_thread_list (&current_target);
c906108c
SS
3324}
3325
d914c394
SS
3326void
3327target_stop (ptid_t ptid)
3328{
3329 if (!may_stop)
3330 {
3331 warning (_("May not interrupt or stop the target, ignoring attempt"));
3332 return;
3333 }
3334
1eab8a48 3335 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3336}
3337
bfedc46a
PA
3338void
3339target_interrupt (ptid_t ptid)
3340{
3341 if (!may_stop)
3342 {
3343 warning (_("May not interrupt or stop the target, ignoring attempt"));
3344 return;
3345 }
3346
3347 (*current_target.to_interrupt) (&current_target, ptid);
3348}
3349
abc56d60
PA
3350/* See target.h. */
3351
3352void
3353target_check_pending_interrupt (void)
3354{
3355 (*current_target.to_check_pending_interrupt) (&current_target);
3356}
3357
f8c1d06b
GB
3358/* See target/target.h. */
3359
3360void
03f4463b 3361target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3362{
3363 struct target_waitstatus status;
3364 int was_non_stop = non_stop;
3365
3366 non_stop = 1;
3367 target_stop (ptid);
3368
3369 memset (&status, 0, sizeof (status));
3370 target_wait (ptid, &status, 0);
3371
3372 non_stop = was_non_stop;
3373}
3374
3375/* See target/target.h. */
3376
3377void
03f4463b 3378target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3379{
3380 target_resume (ptid, 0, GDB_SIGNAL_0);
3381}
3382
09826ec5
PA
3383/* Concatenate ELEM to LIST, a comma separate list, and return the
3384 result. The LIST incoming argument is released. */
3385
3386static char *
3387str_comma_list_concat_elem (char *list, const char *elem)
3388{
3389 if (list == NULL)
3390 return xstrdup (elem);
3391 else
3392 return reconcat (list, list, ", ", elem, (char *) NULL);
3393}
3394
3395/* Helper for target_options_to_string. If OPT is present in
3396 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3397 Returns the new resulting string. OPT is removed from
3398 TARGET_OPTIONS. */
3399
3400static char *
3401do_option (int *target_options, char *ret,
3402 int opt, char *opt_str)
3403{
3404 if ((*target_options & opt) != 0)
3405 {
3406 ret = str_comma_list_concat_elem (ret, opt_str);
3407 *target_options &= ~opt;
3408 }
3409
3410 return ret;
3411}
3412
3413char *
3414target_options_to_string (int target_options)
3415{
3416 char *ret = NULL;
3417
3418#define DO_TARG_OPTION(OPT) \
3419 ret = do_option (&target_options, ret, OPT, #OPT)
3420
3421 DO_TARG_OPTION (TARGET_WNOHANG);
3422
3423 if (target_options != 0)
3424 ret = str_comma_list_concat_elem (ret, "unknown???");
3425
3426 if (ret == NULL)
3427 ret = xstrdup ("");
3428 return ret;
3429}
3430
bf0c5130 3431static void
56be3814
UW
3432debug_print_register (const char * func,
3433 struct regcache *regcache, int regno)
bf0c5130 3434{
f8d29908 3435 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3436
bf0c5130 3437 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3438 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3439 && gdbarch_register_name (gdbarch, regno) != NULL
3440 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3441 fprintf_unfiltered (gdb_stdlog, "(%s)",
3442 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3443 else
3444 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3445 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3446 {
e17a4113 3447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3448 int i, size = register_size (gdbarch, regno);
e362b510 3449 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3450
0ff58721 3451 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3452 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3453 for (i = 0; i < size; i++)
bf0c5130
AC
3454 {
3455 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3456 }
81c4a259 3457 if (size <= sizeof (LONGEST))
bf0c5130 3458 {
e17a4113 3459 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3460
0b1553bc
UW
3461 fprintf_unfiltered (gdb_stdlog, " %s %s",
3462 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3463 }
3464 }
3465 fprintf_unfiltered (gdb_stdlog, "\n");
3466}
3467
28439f5e
PA
3468void
3469target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3470{
ad5989bd
TT
3471 current_target.to_fetch_registers (&current_target, regcache, regno);
3472 if (targetdebug)
3473 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3474}
3475
28439f5e
PA
3476void
3477target_store_registers (struct regcache *regcache, int regno)
c906108c 3478{
28439f5e 3479 struct target_ops *t;
5d502164 3480
d914c394
SS
3481 if (!may_write_registers)
3482 error (_("Writing to registers is not allowed (regno %d)"), regno);
3483
6b84065d
TT
3484 current_target.to_store_registers (&current_target, regcache, regno);
3485 if (targetdebug)
28439f5e 3486 {
6b84065d 3487 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3488 }
c906108c
SS
3489}
3490
dc146f7c
VP
3491int
3492target_core_of_thread (ptid_t ptid)
3493{
a7068b60 3494 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3495}
3496
936d2992
PA
3497int
3498simple_verify_memory (struct target_ops *ops,
3499 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3500{
3501 LONGEST total_xfered = 0;
3502
3503 while (total_xfered < size)
3504 {
3505 ULONGEST xfered_len;
3506 enum target_xfer_status status;
3507 gdb_byte buf[1024];
3508 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3509
3510 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3511 buf, NULL, lma + total_xfered, howmuch,
3512 &xfered_len);
3513 if (status == TARGET_XFER_OK
3514 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3515 {
3516 total_xfered += xfered_len;
3517 QUIT;
3518 }
3519 else
3520 return 0;
3521 }
3522 return 1;
3523}
3524
3525/* Default implementation of memory verification. */
3526
3527static int
3528default_verify_memory (struct target_ops *self,
3529 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3530{
3531 /* Start over from the top of the target stack. */
3532 return simple_verify_memory (current_target.beneath,
3533 data, memaddr, size);
3534}
3535
4a5e7a5b
PA
3536int
3537target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3538{
a7068b60
TT
3539 return current_target.to_verify_memory (&current_target,
3540 data, memaddr, size);
4a5e7a5b
PA
3541}
3542
9c06b0b4
TJB
3543/* The documentation for this function is in its prototype declaration in
3544 target.h. */
3545
3546int
f4b0a671
SM
3547target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3548 enum target_hw_bp_type rw)
9c06b0b4 3549{
a7068b60
TT
3550 return current_target.to_insert_mask_watchpoint (&current_target,
3551 addr, mask, rw);
9c06b0b4
TJB
3552}
3553
3554/* The documentation for this function is in its prototype declaration in
3555 target.h. */
3556
3557int
f4b0a671
SM
3558target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3559 enum target_hw_bp_type rw)
9c06b0b4 3560{
a7068b60
TT
3561 return current_target.to_remove_mask_watchpoint (&current_target,
3562 addr, mask, rw);
9c06b0b4
TJB
3563}
3564
3565/* The documentation for this function is in its prototype declaration
3566 in target.h. */
3567
3568int
3569target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3570{
6c7e5e5c
TT
3571 return current_target.to_masked_watch_num_registers (&current_target,
3572 addr, mask);
9c06b0b4
TJB
3573}
3574
f1310107
TJB
3575/* The documentation for this function is in its prototype declaration
3576 in target.h. */
3577
3578int
3579target_ranged_break_num_registers (void)
3580{
a134316b 3581 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3582}
3583
02d27625
MM
3584/* See target.h. */
3585
043c3577
MM
3586int
3587target_supports_btrace (enum btrace_format format)
3588{
3589 return current_target.to_supports_btrace (&current_target, format);
3590}
3591
3592/* See target.h. */
3593
02d27625 3594struct btrace_target_info *
f4abbc16 3595target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3596{
f4abbc16 3597 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3598}
3599
3600/* See target.h. */
3601
3602void
3603target_disable_btrace (struct btrace_target_info *btinfo)
3604{
8dc292d3 3605 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3606}
3607
3608/* See target.h. */
3609
3610void
3611target_teardown_btrace (struct btrace_target_info *btinfo)
3612{
9ace480d 3613 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3614}
3615
3616/* See target.h. */
3617
969c39fb 3618enum btrace_error
734b0e4b 3619target_read_btrace (struct btrace_data *btrace,
969c39fb 3620 struct btrace_target_info *btinfo,
02d27625
MM
3621 enum btrace_read_type type)
3622{
eb5b20d4 3623 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3624}
3625
d02ed0bb
MM
3626/* See target.h. */
3627
f4abbc16
MM
3628const struct btrace_config *
3629target_btrace_conf (const struct btrace_target_info *btinfo)
3630{
3631 return current_target.to_btrace_conf (&current_target, btinfo);
3632}
3633
3634/* See target.h. */
3635
7c1687a9
MM
3636void
3637target_stop_recording (void)
3638{
ee97f592 3639 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3640}
3641
3642/* See target.h. */
3643
d02ed0bb 3644void
85e1311a 3645target_save_record (const char *filename)
d02ed0bb 3646{
f09e2107 3647 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3648}
3649
3650/* See target.h. */
3651
3652int
3653target_supports_delete_record (void)
3654{
3655 struct target_ops *t;
3656
3657 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3658 if (t->to_delete_record != delegate_delete_record
3659 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3660 return 1;
3661
3662 return 0;
3663}
3664
3665/* See target.h. */
3666
3667void
3668target_delete_record (void)
3669{
07366925 3670 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3671}
3672
3673/* See target.h. */
3674
3675int
a52eab48 3676target_record_is_replaying (ptid_t ptid)
d02ed0bb 3677{
a52eab48 3678 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3679}
3680
3681/* See target.h. */
3682
7ff27e9b
MM
3683int
3684target_record_will_replay (ptid_t ptid, int dir)
3685{
3686 return current_target.to_record_will_replay (&current_target, ptid, dir);
3687}
3688
3689/* See target.h. */
3690
797094dd
MM
3691void
3692target_record_stop_replaying (void)
3693{
3694 current_target.to_record_stop_replaying (&current_target);
3695}
3696
3697/* See target.h. */
3698
d02ed0bb
MM
3699void
3700target_goto_record_begin (void)
3701{
671e76cc 3702 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3703}
3704
3705/* See target.h. */
3706
3707void
3708target_goto_record_end (void)
3709{
e9179bb3 3710 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3711}
3712
3713/* See target.h. */
3714
3715void
3716target_goto_record (ULONGEST insn)
3717{
05969c84 3718 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3719}
3720
67c86d06
MM
3721/* See target.h. */
3722
3723void
3724target_insn_history (int size, int flags)
3725{
3679abfa 3726 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3727}
3728
3729/* See target.h. */
3730
3731void
3732target_insn_history_from (ULONGEST from, int size, int flags)
3733{
8444ab58 3734 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3735}
3736
3737/* See target.h. */
3738
3739void
3740target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3741{
c29302cc 3742 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3743}
3744
15984c13
MM
3745/* See target.h. */
3746
3747void
3748target_call_history (int size, int flags)
3749{
170049d4 3750 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3751}
3752
3753/* See target.h. */
3754
3755void
3756target_call_history_from (ULONGEST begin, int size, int flags)
3757{
16fc27d6 3758 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3759}
3760
3761/* See target.h. */
3762
3763void
3764target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3765{
115d9817 3766 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3767}
3768
ea001bdc
MM
3769/* See target.h. */
3770
3771const struct frame_unwind *
3772target_get_unwinder (void)
3773{
ac01945b 3774 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3775}
3776
3777/* See target.h. */
3778
3779const struct frame_unwind *
3780target_get_tailcall_unwinder (void)
3781{
ac01945b 3782 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3783}
3784
5fff78c4
MM
3785/* See target.h. */
3786
3787void
3788target_prepare_to_generate_core (void)
3789{
3790 current_target.to_prepare_to_generate_core (&current_target);
3791}
3792
3793/* See target.h. */
3794
3795void
3796target_done_generating_core (void)
3797{
3798 current_target.to_done_generating_core (&current_target);
3799}
3800
c906108c 3801static void
fba45db2 3802setup_target_debug (void)
c906108c
SS
3803{
3804 memcpy (&debug_target, &current_target, sizeof debug_target);
3805
a7068b60 3806 init_debug_target (&current_target);
c906108c 3807}
c906108c 3808\f
c5aa993b
JM
3809
3810static char targ_desc[] =
3e43a32a
MS
3811"Names of targets and files being debugged.\nShows the entire \
3812stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3813core-file, and process, if any), as well as the symbol file name.";
3814
a53f3625 3815static void
a30bf1f1
TT
3816default_rcmd (struct target_ops *self, const char *command,
3817 struct ui_file *output)
a53f3625
TT
3818{
3819 error (_("\"monitor\" command not supported by this target."));
3820}
3821
96baa820
JM
3822static void
3823do_monitor_command (char *cmd,
3824 int from_tty)
3825{
96baa820
JM
3826 target_rcmd (cmd, gdb_stdtarg);
3827}
3828
87680a14
JB
3829/* Print the name of each layers of our target stack. */
3830
3831static void
3832maintenance_print_target_stack (char *cmd, int from_tty)
3833{
3834 struct target_ops *t;
3835
3836 printf_filtered (_("The current target stack is:\n"));
3837
3838 for (t = target_stack; t != NULL; t = t->beneath)
3839 {
3840 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3841 }
3842}
3843
372316f1
PA
3844/* See target.h. */
3845
3846void
3847target_async (int enable)
3848{
3849 infrun_async (enable);
3850 current_target.to_async (&current_target, enable);
3851}
3852
329ea579
PA
3853/* Controls if targets can report that they can/are async. This is
3854 just for maintainers to use when debugging gdb. */
3855int target_async_permitted = 1;
c6ebd6cf
VP
3856
3857/* The set command writes to this variable. If the inferior is
b5419e49 3858 executing, target_async_permitted is *not* updated. */
329ea579 3859static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3860
3861static void
329ea579
PA
3862maint_set_target_async_command (char *args, int from_tty,
3863 struct cmd_list_element *c)
c6ebd6cf 3864{
c35b1492 3865 if (have_live_inferiors ())
c6ebd6cf
VP
3866 {
3867 target_async_permitted_1 = target_async_permitted;
3868 error (_("Cannot change this setting while the inferior is running."));
3869 }
3870
3871 target_async_permitted = target_async_permitted_1;
3872}
3873
3874static void
329ea579
PA
3875maint_show_target_async_command (struct ui_file *file, int from_tty,
3876 struct cmd_list_element *c,
3877 const char *value)
c6ebd6cf 3878{
3e43a32a
MS
3879 fprintf_filtered (file,
3880 _("Controlling the inferior in "
3881 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3882}
3883
fbea99ea
PA
3884/* Return true if the target operates in non-stop mode even with "set
3885 non-stop off". */
3886
3887static int
3888target_always_non_stop_p (void)
3889{
3890 return current_target.to_always_non_stop_p (&current_target);
3891}
3892
3893/* See target.h. */
3894
3895int
3896target_is_non_stop_p (void)
3897{
3898 return (non_stop
3899 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3900 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3901 && target_always_non_stop_p ()));
3902}
3903
3904/* Controls if targets can report that they always run in non-stop
3905 mode. This is just for maintainers to use when debugging gdb. */
3906enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3907
3908/* The set command writes to this variable. If the inferior is
3909 executing, target_non_stop_enabled is *not* updated. */
3910static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3911
3912/* Implementation of "maint set target-non-stop". */
3913
3914static void
3915maint_set_target_non_stop_command (char *args, int from_tty,
3916 struct cmd_list_element *c)
3917{
3918 if (have_live_inferiors ())
3919 {
3920 target_non_stop_enabled_1 = target_non_stop_enabled;
3921 error (_("Cannot change this setting while the inferior is running."));
3922 }
3923
3924 target_non_stop_enabled = target_non_stop_enabled_1;
3925}
3926
3927/* Implementation of "maint show target-non-stop". */
3928
3929static void
3930maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3931 struct cmd_list_element *c,
3932 const char *value)
3933{
3934 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3935 fprintf_filtered (file,
3936 _("Whether the target is always in non-stop mode "
3937 "is %s (currently %s).\n"), value,
3938 target_always_non_stop_p () ? "on" : "off");
3939 else
3940 fprintf_filtered (file,
3941 _("Whether the target is always in non-stop mode "
3942 "is %s.\n"), value);
3943}
3944
d914c394
SS
3945/* Temporary copies of permission settings. */
3946
3947static int may_write_registers_1 = 1;
3948static int may_write_memory_1 = 1;
3949static int may_insert_breakpoints_1 = 1;
3950static int may_insert_tracepoints_1 = 1;
3951static int may_insert_fast_tracepoints_1 = 1;
3952static int may_stop_1 = 1;
3953
3954/* Make the user-set values match the real values again. */
3955
3956void
3957update_target_permissions (void)
3958{
3959 may_write_registers_1 = may_write_registers;
3960 may_write_memory_1 = may_write_memory;
3961 may_insert_breakpoints_1 = may_insert_breakpoints;
3962 may_insert_tracepoints_1 = may_insert_tracepoints;
3963 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3964 may_stop_1 = may_stop;
3965}
3966
3967/* The one function handles (most of) the permission flags in the same
3968 way. */
3969
3970static void
3971set_target_permissions (char *args, int from_tty,
3972 struct cmd_list_element *c)
3973{
3974 if (target_has_execution)
3975 {
3976 update_target_permissions ();
3977 error (_("Cannot change this setting while the inferior is running."));
3978 }
3979
3980 /* Make the real values match the user-changed values. */
3981 may_write_registers = may_write_registers_1;
3982 may_insert_breakpoints = may_insert_breakpoints_1;
3983 may_insert_tracepoints = may_insert_tracepoints_1;
3984 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3985 may_stop = may_stop_1;
3986 update_observer_mode ();
3987}
3988
3989/* Set memory write permission independently of observer mode. */
3990
3991static void
3992set_write_memory_permission (char *args, int from_tty,
3993 struct cmd_list_element *c)
3994{
3995 /* Make the real values match the user-changed values. */
3996 may_write_memory = may_write_memory_1;
3997 update_observer_mode ();
3998}
3999
4000
c906108c 4001void
fba45db2 4002initialize_targets (void)
c906108c
SS
4003{
4004 init_dummy_target ();
4005 push_target (&dummy_target);
4006
4007 add_info ("target", target_info, targ_desc);
4008 add_info ("files", target_info, targ_desc);
4009
ccce17b0 4010 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4011Set target debugging."), _("\
4012Show target debugging."), _("\
333dabeb 4013When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4014verbose."),
4015 set_targetdebug,
ccce17b0
YQ
4016 show_targetdebug,
4017 &setdebuglist, &showdebuglist);
3a11626d 4018
2bc416ba 4019 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4020 &trust_readonly, _("\
4021Set mode for reading from readonly sections."), _("\
4022Show mode for reading from readonly sections."), _("\
3a11626d
MS
4023When this mode is on, memory reads from readonly sections (such as .text)\n\
4024will be read from the object file instead of from the target. This will\n\
7915a72c 4025result in significant performance improvement for remote targets."),
2c5b56ce 4026 NULL,
920d2a44 4027 show_trust_readonly,
e707bbc2 4028 &setlist, &showlist);
96baa820
JM
4029
4030 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4031 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4032
87680a14
JB
4033 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4034 _("Print the name of each layer of the internal target stack."),
4035 &maintenanceprintlist);
4036
c6ebd6cf
VP
4037 add_setshow_boolean_cmd ("target-async", no_class,
4038 &target_async_permitted_1, _("\
4039Set whether gdb controls the inferior in asynchronous mode."), _("\
4040Show whether gdb controls the inferior in asynchronous mode."), _("\
4041Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4042 maint_set_target_async_command,
4043 maint_show_target_async_command,
4044 &maintenance_set_cmdlist,
4045 &maintenance_show_cmdlist);
c6ebd6cf 4046
fbea99ea
PA
4047 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4048 &target_non_stop_enabled_1, _("\
4049Set whether gdb always controls the inferior in non-stop mode."), _("\
4050Show whether gdb always controls the inferior in non-stop mode."), _("\
4051Tells gdb whether to control the inferior in non-stop mode."),
4052 maint_set_target_non_stop_command,
4053 maint_show_target_non_stop_command,
4054 &maintenance_set_cmdlist,
4055 &maintenance_show_cmdlist);
4056
d914c394
SS
4057 add_setshow_boolean_cmd ("may-write-registers", class_support,
4058 &may_write_registers_1, _("\
4059Set permission to write into registers."), _("\
4060Show permission to write into registers."), _("\
4061When this permission is on, GDB may write into the target's registers.\n\
4062Otherwise, any sort of write attempt will result in an error."),
4063 set_target_permissions, NULL,
4064 &setlist, &showlist);
4065
4066 add_setshow_boolean_cmd ("may-write-memory", class_support,
4067 &may_write_memory_1, _("\
4068Set permission to write into target memory."), _("\
4069Show permission to write into target memory."), _("\
4070When this permission is on, GDB may write into the target's memory.\n\
4071Otherwise, any sort of write attempt will result in an error."),
4072 set_write_memory_permission, NULL,
4073 &setlist, &showlist);
4074
4075 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4076 &may_insert_breakpoints_1, _("\
4077Set permission to insert breakpoints in the target."), _("\
4078Show permission to insert breakpoints in the target."), _("\
4079When this permission is on, GDB may insert breakpoints in the program.\n\
4080Otherwise, any sort of insertion attempt will result in an error."),
4081 set_target_permissions, NULL,
4082 &setlist, &showlist);
4083
4084 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4085 &may_insert_tracepoints_1, _("\
4086Set permission to insert tracepoints in the target."), _("\
4087Show permission to insert tracepoints in the target."), _("\
4088When this permission is on, GDB may insert tracepoints in the program.\n\
4089Otherwise, any sort of insertion attempt will result in an error."),
4090 set_target_permissions, NULL,
4091 &setlist, &showlist);
4092
4093 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4094 &may_insert_fast_tracepoints_1, _("\
4095Set permission to insert fast tracepoints in the target."), _("\
4096Show permission to insert fast tracepoints in the target."), _("\
4097When this permission is on, GDB may insert fast tracepoints.\n\
4098Otherwise, any sort of insertion attempt will result in an error."),
4099 set_target_permissions, NULL,
4100 &setlist, &showlist);
4101
4102 add_setshow_boolean_cmd ("may-interrupt", class_support,
4103 &may_stop_1, _("\
4104Set permission to interrupt or signal the target."), _("\
4105Show permission to interrupt or signal the target."), _("\
4106When this permission is on, GDB may interrupt/stop the target's execution.\n\
4107Otherwise, any attempt to interrupt or stop will be ignored."),
4108 set_target_permissions, NULL,
4109 &setlist, &showlist);
6a3cb8e8
PA
4110
4111 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4112 &auto_connect_native_target, _("\
4113Set whether GDB may automatically connect to the native target."), _("\
4114Show whether GDB may automatically connect to the native target."), _("\
4115When on, and GDB is not connected to a target yet, GDB\n\
4116attempts \"run\" and other commands with the native target."),
4117 NULL, show_auto_connect_native_target,
4118 &setlist, &showlist);
c906108c 4119}
This page took 2.083082 seconds and 4 git commands to generate.