MIPS/GAS/testsuite: Tighten negative-match NaN tests
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
19ba03f4 350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
7afa63c6 447static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
d9d2d8b6
PA
469void
470target_terminal_inferior (void)
471{
472 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 473 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
477 return;
478
5842f62a
PA
479 if (terminal_state == terminal_is_inferior)
480 return;
481
d9d2d8b6
PA
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
d2f640d4 484 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
485 terminal_state = terminal_is_inferior;
486}
487
488/* See target.h. */
489
490void
491target_terminal_ours (void)
492{
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498}
499
500/* See target.h. */
501
502void
503target_terminal_ours_for_output (void)
504{
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 509}
136d6dae 510
b0ed115f
TT
511/* See target.h. */
512
513int
514target_supports_terminal_ours (void)
515{
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526}
527
1abf3a14
SM
528/* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531static void
532cleanup_restore_target_terminal (void *arg)
533{
19ba03f4 534 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548}
549
550/* See target.h. */
551
552struct cleanup *
553make_cleanup_restore_target_terminal (void)
554{
8d749320 555 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560}
561
c906108c 562static void
fba45db2 563tcomplain (void)
c906108c 564{
8a3fe4f8 565 error (_("You can't do that when your target is `%s'"),
c906108c
SS
566 current_target.to_shortname);
567}
568
569void
fba45db2 570noprocess (void)
c906108c 571{
8a3fe4f8 572 error (_("You can't do that without a process to debug."));
c906108c
SS
573}
574
c906108c 575static void
0a4f40a2 576default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 577{
a3f17187 578 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
579}
580
0ef643c8
JB
581/* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
2c0b251b 587static ptid_t
1e6b91a4 588default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
589{
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591}
592
32231432 593static enum exec_direction_kind
4c612759 594default_execution_direction (struct target_ops *self)
32231432
PA
595{
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602to_execution_direction must be implemented for reverse async");
603}
604
7998dfc3
AC
605/* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
c906108c
SS
616
617static void
7998dfc3 618update_current_target (void)
c906108c 619{
7998dfc3
AC
620 struct target_ops *t;
621
08d8bcd7 622 /* First, reset current's contents. */
7998dfc3
AC
623 memset (&current_target, 0, sizeof (current_target));
624
1101cb7b
TT
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
be4ddd36
TT
628 current_target.to_stratum = target_stack->to_stratum;
629
7998dfc3
AC
630#define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
be4ddd36
TT
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
7998dfc3
AC
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
dc177b7a 640 INHERIT (to_attach_no_wait, t);
74174d2e 641 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 642 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 643 INHERIT (to_has_thread_control, t);
7998dfc3
AC
644 }
645#undef INHERIT
646
7998dfc3
AC
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
b4b61fdb
DJ
651
652 if (targetdebug)
653 setup_target_debug ();
c906108c
SS
654}
655
656/* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
c906108c
SS
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
b26a4dcb 663void
fba45db2 664push_target (struct target_ops *t)
c906108c 665{
258b763a 666 struct target_ops **cur;
c906108c
SS
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
c5aa993b
JM
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
3e43a32a
MS
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
c906108c
SS
677 }
678
258b763a
AC
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 681 {
258b763a 682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
683 break;
684 }
685
258b763a 686 /* If there's already targets at this stratum, remove them. */
88c231eb 687 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
5d502164 694
258b763a
AC
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
460014f5 697 target_close (tmp);
258b763a 698 }
c906108c
SS
699
700 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
701 t->beneath = (*cur);
702 (*cur) = t;
c906108c
SS
703
704 update_current_target ();
c906108c
SS
705}
706
2bc416ba 707/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
708 Return how many times it was removed (0 or 1). */
709
710int
fba45db2 711unpush_target (struct target_ops *t)
c906108c 712{
258b763a
AC
713 struct target_ops **cur;
714 struct target_ops *tmp;
c906108c 715
c8d104ad
PA
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
9b20d036 718 _("Attempt to unpush the dummy target"));
c8d104ad 719
c906108c 720 /* Look for the specified target. Note that we assume that a target
c378eb4e 721 can only occur once in the target stack. */
c906108c 722
258b763a
AC
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
c906108c 728
305436e0
PA
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
258b763a 731 if ((*cur) == NULL)
305436e0 732 return 0;
5269965e 733
c378eb4e 734 /* Unchain the target. */
258b763a
AC
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
c906108c
SS
738
739 update_current_target ();
c906108c 740
305436e0
PA
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
460014f5 744 target_close (t);
305436e0 745
c906108c
SS
746 return 1;
747}
748
915ef8b1
PA
749/* Unpush TARGET and assert that it worked. */
750
751static void
752unpush_target_and_assert (struct target_ops *target)
753{
754 if (!unpush_target (target))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 }
762}
763
aa76d38d 764void
460014f5 765pop_all_targets_above (enum strata above_stratum)
aa76d38d 766{
87ab71f0 767 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
768 unpush_target_and_assert (target_stack);
769}
770
771/* See target.h. */
772
773void
774pop_all_targets_at_and_above (enum strata stratum)
775{
776 while ((int) (current_target.to_stratum) >= (int) stratum)
777 unpush_target_and_assert (target_stack);
aa76d38d
PA
778}
779
87ab71f0 780void
460014f5 781pop_all_targets (void)
87ab71f0 782{
460014f5 783 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
784}
785
c0edd9ed
JK
786/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
787
788int
789target_is_pushed (struct target_ops *t)
790{
84202f9c 791 struct target_ops *cur;
c0edd9ed
JK
792
793 /* Check magic number. If wrong, it probably means someone changed
794 the struct definition, but not all the places that initialize one. */
795 if (t->to_magic != OPS_MAGIC)
796 {
797 fprintf_unfiltered (gdb_stderr,
798 "Magic number of %s target struct wrong\n",
799 t->to_shortname);
3e43a32a
MS
800 internal_error (__FILE__, __LINE__,
801 _("failed internal consistency check"));
c0edd9ed
JK
802 }
803
84202f9c
TT
804 for (cur = target_stack; cur != NULL; cur = cur->beneath)
805 if (cur == t)
c0edd9ed
JK
806 return 1;
807
808 return 0;
809}
810
f0f9ff95
TT
811/* Default implementation of to_get_thread_local_address. */
812
813static void
814generic_tls_error (void)
815{
816 throw_error (TLS_GENERIC_ERROR,
817 _("Cannot find thread-local variables on this target"));
818}
819
72f5cf0e 820/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
821 current thread's thread-local storage with offset OFFSET. */
822CORE_ADDR
823target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
824{
825 volatile CORE_ADDR addr = 0;
f0f9ff95 826 struct target_ops *target = &current_target;
9e35dae4 827
f0f9ff95 828 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
829 {
830 ptid_t ptid = inferior_ptid;
9e35dae4 831
492d29ea 832 TRY
9e35dae4
DJ
833 {
834 CORE_ADDR lm_addr;
835
836 /* Fetch the load module address for this objfile. */
f5656ead 837 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 838 objfile);
9e35dae4 839
3e43a32a
MS
840 addr = target->to_get_thread_local_address (target, ptid,
841 lm_addr, offset);
9e35dae4
DJ
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
492d29ea 845 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
852 error (_("Cannot find thread-local variables "
853 "in this thread library."));
9e35dae4
DJ
854 break;
855 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 858 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
859 else
860 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 861 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
862 break;
863 case TLS_NOT_ALLOCATED_YET_ERROR:
864 if (objfile_is_library)
865 error (_("The inferior has not yet allocated storage for"
866 " thread-local variables in\n"
867 "the shared library `%s'\n"
868 "for %s"),
4262abfb 869 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
870 else
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the executable `%s'\n"
874 "for %s"),
4262abfb 875 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
876 break;
877 case TLS_GENERIC_ERROR:
878 if (objfile_is_library)
879 error (_("Cannot find thread-local storage for %s, "
880 "shared library %s:\n%s"),
881 target_pid_to_str (ptid),
4262abfb 882 objfile_name (objfile), ex.message);
9e35dae4
DJ
883 else
884 error (_("Cannot find thread-local storage for %s, "
885 "executable file %s:\n%s"),
886 target_pid_to_str (ptid),
4262abfb 887 objfile_name (objfile), ex.message);
9e35dae4
DJ
888 break;
889 default:
890 throw_exception (ex);
891 break;
892 }
893 }
492d29ea 894 END_CATCH
9e35dae4
DJ
895 }
896 /* It wouldn't be wrong here to try a gdbarch method, too; finding
897 TLS is an ABI-specific thing. But we don't do that yet. */
898 else
899 error (_("Cannot find thread-local variables on this target"));
900
901 return addr;
902}
903
6be7b56e 904const char *
01cb8804 905target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
906{
907#define CASE(X) case X: return #X
01cb8804 908 switch (status)
6be7b56e
PA
909 {
910 CASE(TARGET_XFER_E_IO);
bc113b4e 911 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
912 default:
913 return "<unknown>";
914 }
915#undef CASE
916};
917
918
c906108c
SS
919#undef MIN
920#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
921
922/* target_read_string -- read a null terminated string, up to LEN bytes,
923 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
924 Set *STRING to a pointer to malloc'd memory containing the data; the caller
925 is responsible for freeing it. Return the number of bytes successfully
926 read. */
927
928int
fba45db2 929target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 930{
c2e8b827 931 int tlen, offset, i;
1b0ba102 932 gdb_byte buf[4];
c906108c
SS
933 int errcode = 0;
934 char *buffer;
935 int buffer_allocated;
936 char *bufptr;
937 unsigned int nbytes_read = 0;
938
6217bf3e
MS
939 gdb_assert (string);
940
c906108c
SS
941 /* Small for testing. */
942 buffer_allocated = 4;
224c3ddb 943 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
944 bufptr = buffer;
945
c906108c
SS
946 while (len > 0)
947 {
948 tlen = MIN (len, 4 - (memaddr & 3));
949 offset = memaddr & 3;
950
1b0ba102 951 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
952 if (errcode != 0)
953 {
954 /* The transfer request might have crossed the boundary to an
c378eb4e 955 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
956 a single byte. */
957 tlen = 1;
958 offset = 0;
b8eb5af0 959 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
960 if (errcode != 0)
961 goto done;
962 }
963
964 if (bufptr - buffer + tlen > buffer_allocated)
965 {
966 unsigned int bytes;
5d502164 967
c906108c
SS
968 bytes = bufptr - buffer;
969 buffer_allocated *= 2;
224c3ddb 970 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
971 bufptr = buffer + bytes;
972 }
973
974 for (i = 0; i < tlen; i++)
975 {
976 *bufptr++ = buf[i + offset];
977 if (buf[i + offset] == '\000')
978 {
979 nbytes_read += i + 1;
980 goto done;
981 }
982 }
983
984 memaddr += tlen;
985 len -= tlen;
986 nbytes_read += tlen;
987 }
c5aa993b 988done:
6217bf3e 989 *string = buffer;
c906108c
SS
990 if (errnop != NULL)
991 *errnop = errcode;
c906108c
SS
992 return nbytes_read;
993}
994
07b82ea5
PA
995struct target_section_table *
996target_get_section_table (struct target_ops *target)
997{
7e35c012 998 return (*target->to_get_section_table) (target);
07b82ea5
PA
999}
1000
8db32d44 1001/* Find a section containing ADDR. */
07b82ea5 1002
0542c86d 1003struct target_section *
8db32d44
AC
1004target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1005{
07b82ea5 1006 struct target_section_table *table = target_get_section_table (target);
0542c86d 1007 struct target_section *secp;
07b82ea5
PA
1008
1009 if (table == NULL)
1010 return NULL;
1011
1012 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1013 {
1014 if (addr >= secp->addr && addr < secp->endaddr)
1015 return secp;
1016 }
1017 return NULL;
1018}
1019
0fec99e8
PA
1020
1021/* Helper for the memory xfer routines. Checks the attributes of the
1022 memory region of MEMADDR against the read or write being attempted.
1023 If the access is permitted returns true, otherwise returns false.
1024 REGION_P is an optional output parameter. If not-NULL, it is
1025 filled with a pointer to the memory region of MEMADDR. REG_LEN
1026 returns LEN trimmed to the end of the region. This is how much the
1027 caller can continue requesting, if the access is permitted. A
1028 single xfer request must not straddle memory region boundaries. */
1029
1030static int
1031memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1032 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1033 struct mem_region **region_p)
1034{
1035 struct mem_region *region;
1036
1037 region = lookup_mem_region (memaddr);
1038
1039 if (region_p != NULL)
1040 *region_p = region;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return 0;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return 0;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return 0;
1062 }
1063
1064 /* region->hi == 0 means there's no upper bound. */
1065 if (memaddr + len < region->hi || region->hi == 0)
1066 *reg_len = len;
1067 else
1068 *reg_len = region->hi - memaddr;
1069
1070 return 1;
1071}
1072
9f713294
YQ
1073/* Read memory from more than one valid target. A core file, for
1074 instance, could have some of memory but delegate other bits to
1075 the target below it. So, we must manually try all targets. */
1076
cc9f16aa 1077enum target_xfer_status
17fde6d0 1078raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1079 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1080 ULONGEST *xfered_len)
9f713294 1081{
9b409511 1082 enum target_xfer_status res;
9f713294
YQ
1083
1084 do
1085 {
1086 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1087 readbuf, writebuf, memaddr, len,
1088 xfered_len);
1089 if (res == TARGET_XFER_OK)
9f713294
YQ
1090 break;
1091
633785ff 1092 /* Stop if the target reports that the memory is not available. */
bc113b4e 1093 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1094 break;
1095
9f713294
YQ
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory (ops))
1099 break;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
0f26cec1
PA
1105 /* The cache works at the raw memory level. Make sure the cache
1106 gets updated with raw contents no matter what kind of memory
1107 object was originally being written. Note we do write-through
1108 first, so that if it fails, we don't write to the cache contents
1109 that never made it to the target. */
1110 if (writebuf != NULL
1111 && !ptid_equal (inferior_ptid, null_ptid)
1112 && target_dcache_init_p ()
1113 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1114 {
1115 DCACHE *dcache = target_dcache_get ();
1116
1117 /* Note that writing to an area of memory which wasn't present
1118 in the cache doesn't cause it to be loaded in. */
1119 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1120 }
1121
9f713294
YQ
1122 return res;
1123}
1124
7f79c47e
DE
1125/* Perform a partial memory transfer.
1126 For docs see target.h, to_xfer_partial. */
cf7a04e8 1127
9b409511 1128static enum target_xfer_status
f0ba3972 1129memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1130 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1131 ULONGEST len, ULONGEST *xfered_len)
0779438d 1132{
9b409511 1133 enum target_xfer_status res;
0fec99e8 1134 ULONGEST reg_len;
cf7a04e8 1135 struct mem_region *region;
4e5d721f 1136 struct inferior *inf;
cf7a04e8 1137
07b82ea5
PA
1138 /* For accesses to unmapped overlay sections, read directly from
1139 files. Must do this first, as MEMADDR may need adjustment. */
1140 if (readbuf != NULL && overlay_debugging)
1141 {
1142 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1143
07b82ea5
PA
1144 if (pc_in_unmapped_range (memaddr, section))
1145 {
1146 struct target_section_table *table
1147 = target_get_section_table (ops);
1148 const char *section_name = section->the_bfd_section->name;
5d502164 1149
07b82ea5
PA
1150 memaddr = overlay_mapped_address (memaddr, section);
1151 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1152 memaddr, len, xfered_len,
07b82ea5
PA
1153 table->sections,
1154 table->sections_end,
1155 section_name);
1156 }
1157 }
1158
1159 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1160 if (readbuf != NULL && trust_readonly)
1161 {
0542c86d 1162 struct target_section *secp;
07b82ea5 1163 struct target_section_table *table;
cf7a04e8
DJ
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
2b2848e2
DE
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
cf7a04e8 1169 & SEC_READONLY))
07b82ea5
PA
1170 {
1171 table = target_get_section_table (ops);
1172 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1173 memaddr, len, xfered_len,
07b82ea5
PA
1174 table->sections,
1175 table->sections_end,
1176 NULL);
1177 }
98646950
UW
1178 }
1179
cf7a04e8 1180 /* Try GDB's internal data cache. */
cf7a04e8 1181
0fec99e8
PA
1182 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1183 &region))
1184 return TARGET_XFER_E_IO;
cf7a04e8 1185
6c95b8df 1186 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1187 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1188 else
1189 inf = NULL;
4e5d721f
DE
1190
1191 if (inf != NULL
0f26cec1 1192 && readbuf != NULL
2f4d8875
PA
1193 /* The dcache reads whole cache lines; that doesn't play well
1194 with reading from a trace buffer, because reading outside of
1195 the collected memory range fails. */
1196 && get_traceframe_number () == -1
4e5d721f 1197 && (region->attrib.cache
29453a14
YQ
1198 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1199 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1200 {
2a2f9fe4
YQ
1201 DCACHE *dcache = target_dcache_get_or_init ();
1202
0f26cec1
PA
1203 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1204 reg_len, xfered_len);
cf7a04e8
DJ
1205 }
1206
1207 /* If none of those methods found the memory we wanted, fall back
1208 to a target partial transfer. Normally a single call to
1209 to_xfer_partial is enough; if it doesn't recognize an object
1210 it will call the to_xfer_partial of the next target down.
1211 But for memory this won't do. Memory is the only target
9b409511
YQ
1212 object which can be read from more than one valid target.
1213 A core file, for instance, could have some of memory but
1214 delegate other bits to the target below it. So, we must
1215 manually try all targets. */
1216
1217 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1218 xfered_len);
cf7a04e8
DJ
1219
1220 /* If we still haven't got anything, return the last error. We
1221 give up. */
1222 return res;
0779438d
AC
1223}
1224
f0ba3972
PA
1225/* Perform a partial memory transfer. For docs see target.h,
1226 to_xfer_partial. */
1227
9b409511 1228static enum target_xfer_status
f0ba3972 1229memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1230 gdb_byte *readbuf, const gdb_byte *writebuf,
1231 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1232{
9b409511 1233 enum target_xfer_status res;
f0ba3972
PA
1234
1235 /* Zero length requests are ok and require no work. */
1236 if (len == 0)
9b409511 1237 return TARGET_XFER_EOF;
f0ba3972
PA
1238
1239 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1240 breakpoint insns, thus hiding out from higher layers whether
1241 there are software breakpoints inserted in the code stream. */
1242 if (readbuf != NULL)
1243 {
9b409511
YQ
1244 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1245 xfered_len);
f0ba3972 1246
9b409511 1247 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1248 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1249 }
1250 else
1251 {
d7f3ff3e 1252 gdb_byte *buf;
f0ba3972
PA
1253 struct cleanup *old_chain;
1254
67c059c2
AB
1255 /* A large write request is likely to be partially satisfied
1256 by memory_xfer_partial_1. We will continually malloc
1257 and free a copy of the entire write request for breakpoint
1258 shadow handling even though we only end up writing a small
1259 subset of it. Cap writes to 4KB to mitigate this. */
1260 len = min (4096, len);
1261
d7f3ff3e 1262 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1263 old_chain = make_cleanup (xfree, buf);
1264 memcpy (buf, writebuf, len);
1265
1266 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1267 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1268 xfered_len);
f0ba3972
PA
1269
1270 do_cleanups (old_chain);
1271 }
1272
1273 return res;
1274}
1275
8defab1a
DJ
1276static void
1277restore_show_memory_breakpoints (void *arg)
1278{
1279 show_memory_breakpoints = (uintptr_t) arg;
1280}
1281
1282struct cleanup *
1283make_show_memory_breakpoints_cleanup (int show)
1284{
1285 int current = show_memory_breakpoints;
8defab1a 1286
5d502164 1287 show_memory_breakpoints = show;
8defab1a
DJ
1288 return make_cleanup (restore_show_memory_breakpoints,
1289 (void *) (uintptr_t) current);
1290}
1291
7f79c47e
DE
1292/* For docs see target.h, to_xfer_partial. */
1293
9b409511 1294enum target_xfer_status
27394598
AC
1295target_xfer_partial (struct target_ops *ops,
1296 enum target_object object, const char *annex,
4ac248ca 1297 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1298 ULONGEST offset, ULONGEST len,
1299 ULONGEST *xfered_len)
27394598 1300{
9b409511 1301 enum target_xfer_status retval;
27394598
AC
1302
1303 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1304
ce6d0892
YQ
1305 /* Transfer is done when LEN is zero. */
1306 if (len == 0)
9b409511 1307 return TARGET_XFER_EOF;
ce6d0892 1308
d914c394
SS
1309 if (writebuf && !may_write_memory)
1310 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1311 core_addr_to_string_nz (offset), plongest (len));
1312
9b409511
YQ
1313 *xfered_len = 0;
1314
cf7a04e8
DJ
1315 /* If this is a memory transfer, let the memory-specific code
1316 have a look at it instead. Memory transfers are more
1317 complicated. */
29453a14
YQ
1318 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1319 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1320 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1321 writebuf, offset, len, xfered_len);
9f713294 1322 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1323 {
0fec99e8
PA
1324 /* Skip/avoid accessing the target if the memory region
1325 attributes block the access. Check this here instead of in
1326 raw_memory_xfer_partial as otherwise we'd end up checking
1327 this twice in the case of the memory_xfer_partial path is
1328 taken; once before checking the dcache, and another in the
1329 tail call to raw_memory_xfer_partial. */
1330 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1331 NULL))
1332 return TARGET_XFER_E_IO;
1333
9f713294 1334 /* Request the normal memory object from other layers. */
9b409511
YQ
1335 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1336 xfered_len);
cf7a04e8 1337 }
9f713294
YQ
1338 else
1339 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1340 writebuf, offset, len, xfered_len);
cf7a04e8 1341
27394598
AC
1342 if (targetdebug)
1343 {
1344 const unsigned char *myaddr = NULL;
1345
1346 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1347 "%s:target_xfer_partial "
9b409511 1348 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1349 ops->to_shortname,
1350 (int) object,
1351 (annex ? annex : "(null)"),
53b71562
JB
1352 host_address_to_string (readbuf),
1353 host_address_to_string (writebuf),
0b1553bc 1354 core_addr_to_string_nz (offset),
9b409511
YQ
1355 pulongest (len), retval,
1356 pulongest (*xfered_len));
27394598
AC
1357
1358 if (readbuf)
1359 myaddr = readbuf;
1360 if (writebuf)
1361 myaddr = writebuf;
9b409511 1362 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1363 {
1364 int i;
2bc416ba 1365
27394598 1366 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1367 for (i = 0; i < *xfered_len; i++)
27394598 1368 {
53b71562 1369 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1370 {
1371 if (targetdebug < 2 && i > 0)
1372 {
1373 fprintf_unfiltered (gdb_stdlog, " ...");
1374 break;
1375 }
1376 fprintf_unfiltered (gdb_stdlog, "\n");
1377 }
2bc416ba 1378
27394598
AC
1379 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1380 }
1381 }
2bc416ba 1382
27394598
AC
1383 fputc_unfiltered ('\n', gdb_stdlog);
1384 }
9b409511
YQ
1385
1386 /* Check implementations of to_xfer_partial update *XFERED_LEN
1387 properly. Do assertion after printing debug messages, so that we
1388 can find more clues on assertion failure from debugging messages. */
bc113b4e 1389 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1390 gdb_assert (*xfered_len > 0);
1391
27394598
AC
1392 return retval;
1393}
1394
578d3588
PA
1395/* Read LEN bytes of target memory at address MEMADDR, placing the
1396 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1397 -1 if any error occurs.
c906108c
SS
1398
1399 If an error occurs, no guarantee is made about the contents of the data at
1400 MYADDR. In particular, the caller should not depend upon partial reads
1401 filling the buffer with good data. There is no way for the caller to know
1402 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1403 deal with partial reads should call target_read (which will retry until
c378eb4e 1404 it makes no progress, and then return how much was transferred). */
c906108c
SS
1405
1406int
1b162304 1407target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1408{
c35b1492
PA
1409 /* Dispatch to the topmost target, not the flattened current_target.
1410 Memory accesses check target->to_has_(all_)memory, and the
1411 flattened target doesn't inherit those. */
1412 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1413 myaddr, memaddr, len) == len)
1414 return 0;
0779438d 1415 else
d09f2c3f 1416 return -1;
c906108c
SS
1417}
1418
721ec300
GB
1419/* See target/target.h. */
1420
1421int
1422target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1423{
1424 gdb_byte buf[4];
1425 int r;
1426
1427 r = target_read_memory (memaddr, buf, sizeof buf);
1428 if (r != 0)
1429 return r;
1430 *result = extract_unsigned_integer (buf, sizeof buf,
1431 gdbarch_byte_order (target_gdbarch ()));
1432 return 0;
1433}
1434
aee4bf85
PA
1435/* Like target_read_memory, but specify explicitly that this is a read
1436 from the target's raw memory. That is, this read bypasses the
1437 dcache, breakpoint shadowing, etc. */
1438
1439int
1440target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1441{
1442 /* See comment in target_read_memory about why the request starts at
1443 current_target.beneath. */
1444 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1445 myaddr, memaddr, len) == len)
1446 return 0;
1447 else
d09f2c3f 1448 return -1;
aee4bf85
PA
1449}
1450
4e5d721f
DE
1451/* Like target_read_memory, but specify explicitly that this is a read from
1452 the target's stack. This may trigger different cache behavior. */
1453
1454int
45aa4659 1455target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1456{
aee4bf85
PA
1457 /* See comment in target_read_memory about why the request starts at
1458 current_target.beneath. */
4e5d721f
DE
1459 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1460 myaddr, memaddr, len) == len)
1461 return 0;
1462 else
d09f2c3f 1463 return -1;
4e5d721f
DE
1464}
1465
29453a14
YQ
1466/* Like target_read_memory, but specify explicitly that this is a read from
1467 the target's code. This may trigger different cache behavior. */
1468
1469int
1470target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1471{
aee4bf85
PA
1472 /* See comment in target_read_memory about why the request starts at
1473 current_target.beneath. */
29453a14
YQ
1474 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1475 myaddr, memaddr, len) == len)
1476 return 0;
1477 else
d09f2c3f 1478 return -1;
29453a14
YQ
1479}
1480
7f79c47e 1481/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1482 Returns either 0 for success or -1 if any error occurs. If an
1483 error occurs, no guarantee is made about how much data got written.
1484 Callers that can deal with partial writes should call
1485 target_write. */
7f79c47e 1486
c906108c 1487int
45aa4659 1488target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1489{
aee4bf85
PA
1490 /* See comment in target_read_memory about why the request starts at
1491 current_target.beneath. */
c35b1492 1492 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1493 myaddr, memaddr, len) == len)
1494 return 0;
0779438d 1495 else
d09f2c3f 1496 return -1;
c906108c 1497}
c5aa993b 1498
f0ba3972 1499/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1500 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1501 If an error occurs, no guarantee is made about how much data got
1502 written. Callers that can deal with partial writes should call
1503 target_write. */
f0ba3972
PA
1504
1505int
45aa4659 1506target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1507{
aee4bf85
PA
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
f0ba3972
PA
1510 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
d09f2c3f 1514 return -1;
f0ba3972
PA
1515}
1516
fd79ecee
DJ
1517/* Fetch the target's memory map. */
1518
1519VEC(mem_region_s) *
1520target_memory_map (void)
1521{
1522 VEC(mem_region_s) *result;
1523 struct mem_region *last_one, *this_one;
1524 int ix;
1525 struct target_ops *t;
1526
6b2c5a57 1527 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1528 if (result == NULL)
1529 return NULL;
1530
1531 qsort (VEC_address (mem_region_s, result),
1532 VEC_length (mem_region_s, result),
1533 sizeof (struct mem_region), mem_region_cmp);
1534
1535 /* Check that regions do not overlap. Simultaneously assign
1536 a numbering for the "mem" commands to use to refer to
1537 each region. */
1538 last_one = NULL;
1539 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1540 {
1541 this_one->number = ix;
1542
1543 if (last_one && last_one->hi > this_one->lo)
1544 {
1545 warning (_("Overlapping regions in memory map: ignoring"));
1546 VEC_free (mem_region_s, result);
1547 return NULL;
1548 }
1549 last_one = this_one;
1550 }
1551
1552 return result;
1553}
1554
a76d924d
DJ
1555void
1556target_flash_erase (ULONGEST address, LONGEST length)
1557{
e8a6c6ac 1558 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1559}
1560
1561void
1562target_flash_done (void)
1563{
f6fb2925 1564 current_target.to_flash_done (&current_target);
a76d924d
DJ
1565}
1566
920d2a44
AC
1567static void
1568show_trust_readonly (struct ui_file *file, int from_tty,
1569 struct cmd_list_element *c, const char *value)
1570{
3e43a32a
MS
1571 fprintf_filtered (file,
1572 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1573 value);
1574}
3a11626d 1575
7f79c47e 1576/* Target vector read/write partial wrapper functions. */
0088c768 1577
9b409511 1578static enum target_xfer_status
1e3ff5ad
AC
1579target_read_partial (struct target_ops *ops,
1580 enum target_object object,
1b0ba102 1581 const char *annex, gdb_byte *buf,
9b409511
YQ
1582 ULONGEST offset, ULONGEST len,
1583 ULONGEST *xfered_len)
1e3ff5ad 1584{
9b409511
YQ
1585 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1586 xfered_len);
1e3ff5ad
AC
1587}
1588
8a55ffb0 1589static enum target_xfer_status
1e3ff5ad
AC
1590target_write_partial (struct target_ops *ops,
1591 enum target_object object,
1b0ba102 1592 const char *annex, const gdb_byte *buf,
9b409511 1593 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1594{
9b409511
YQ
1595 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1596 xfered_len);
1e3ff5ad
AC
1597}
1598
1599/* Wrappers to perform the full transfer. */
7f79c47e
DE
1600
1601/* For docs on target_read see target.h. */
1602
1e3ff5ad
AC
1603LONGEST
1604target_read (struct target_ops *ops,
1605 enum target_object object,
1b0ba102 1606 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1607 ULONGEST offset, LONGEST len)
1608{
279a6fed 1609 LONGEST xfered_total = 0;
d309493c
SM
1610 int unit_size = 1;
1611
1612 /* If we are reading from a memory object, find the length of an addressable
1613 unit for that architecture. */
1614 if (object == TARGET_OBJECT_MEMORY
1615 || object == TARGET_OBJECT_STACK_MEMORY
1616 || object == TARGET_OBJECT_CODE_MEMORY
1617 || object == TARGET_OBJECT_RAW_MEMORY)
1618 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1619
279a6fed 1620 while (xfered_total < len)
1e3ff5ad 1621 {
279a6fed 1622 ULONGEST xfered_partial;
9b409511
YQ
1623 enum target_xfer_status status;
1624
1625 status = target_read_partial (ops, object, annex,
d309493c 1626 buf + xfered_total * unit_size,
279a6fed
SM
1627 offset + xfered_total, len - xfered_total,
1628 &xfered_partial);
5d502164 1629
1e3ff5ad 1630 /* Call an observer, notifying them of the xfer progress? */
9b409511 1631 if (status == TARGET_XFER_EOF)
279a6fed 1632 return xfered_total;
9b409511
YQ
1633 else if (status == TARGET_XFER_OK)
1634 {
279a6fed 1635 xfered_total += xfered_partial;
9b409511
YQ
1636 QUIT;
1637 }
1638 else
279a6fed 1639 return TARGET_XFER_E_IO;
9b409511 1640
1e3ff5ad
AC
1641 }
1642 return len;
1643}
1644
f1a507a1
JB
1645/* Assuming that the entire [begin, end) range of memory cannot be
1646 read, try to read whatever subrange is possible to read.
1647
1648 The function returns, in RESULT, either zero or one memory block.
1649 If there's a readable subrange at the beginning, it is completely
1650 read and returned. Any further readable subrange will not be read.
1651 Otherwise, if there's a readable subrange at the end, it will be
1652 completely read and returned. Any readable subranges before it
1653 (obviously, not starting at the beginning), will be ignored. In
1654 other cases -- either no readable subrange, or readable subrange(s)
1655 that is neither at the beginning, or end, nothing is returned.
1656
1657 The purpose of this function is to handle a read across a boundary
1658 of accessible memory in a case when memory map is not available.
1659 The above restrictions are fine for this case, but will give
1660 incorrect results if the memory is 'patchy'. However, supporting
1661 'patchy' memory would require trying to read every single byte,
1662 and it seems unacceptable solution. Explicit memory map is
1663 recommended for this case -- and target_read_memory_robust will
1664 take care of reading multiple ranges then. */
8dedea02
VP
1665
1666static void
3e43a32a 1667read_whatever_is_readable (struct target_ops *ops,
279a6fed 1668 const ULONGEST begin, const ULONGEST end,
d309493c 1669 int unit_size,
8dedea02 1670 VEC(memory_read_result_s) **result)
d5086790 1671{
224c3ddb 1672 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1673 ULONGEST current_begin = begin;
1674 ULONGEST current_end = end;
1675 int forward;
1676 memory_read_result_s r;
9b409511 1677 ULONGEST xfered_len;
8dedea02
VP
1678
1679 /* If we previously failed to read 1 byte, nothing can be done here. */
1680 if (end - begin <= 1)
13b3fd9b
MS
1681 {
1682 xfree (buf);
1683 return;
1684 }
8dedea02
VP
1685
1686 /* Check that either first or the last byte is readable, and give up
c378eb4e 1687 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1688 at the boundary of accessible region. */
1689 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1690 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1691 {
1692 forward = 1;
1693 ++current_begin;
1694 }
1695 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1696 buf + (end - begin) - 1, end - 1, 1,
9b409511 1697 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1698 {
1699 forward = 0;
1700 --current_end;
1701 }
1702 else
1703 {
13b3fd9b 1704 xfree (buf);
8dedea02
VP
1705 return;
1706 }
1707
1708 /* Loop invariant is that the [current_begin, current_end) was previously
1709 found to be not readable as a whole.
1710
1711 Note loop condition -- if the range has 1 byte, we can't divide the range
1712 so there's no point trying further. */
1713 while (current_end - current_begin > 1)
1714 {
1715 ULONGEST first_half_begin, first_half_end;
1716 ULONGEST second_half_begin, second_half_end;
1717 LONGEST xfer;
279a6fed 1718 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1719
8dedea02
VP
1720 if (forward)
1721 {
1722 first_half_begin = current_begin;
1723 first_half_end = middle;
1724 second_half_begin = middle;
1725 second_half_end = current_end;
1726 }
1727 else
1728 {
1729 first_half_begin = middle;
1730 first_half_end = current_end;
1731 second_half_begin = current_begin;
1732 second_half_end = middle;
1733 }
1734
1735 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1736 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1737 first_half_begin,
1738 first_half_end - first_half_begin);
1739
1740 if (xfer == first_half_end - first_half_begin)
1741 {
c378eb4e 1742 /* This half reads up fine. So, the error must be in the
3e43a32a 1743 other half. */
8dedea02
VP
1744 current_begin = second_half_begin;
1745 current_end = second_half_end;
1746 }
1747 else
1748 {
c378eb4e 1749 /* This half is not readable. Because we've tried one byte, we
279a6fed 1750 know some part of this half if actually readable. Go to the next
8dedea02
VP
1751 iteration to divide again and try to read.
1752
1753 We don't handle the other half, because this function only tries
1754 to read a single readable subrange. */
1755 current_begin = first_half_begin;
1756 current_end = first_half_end;
1757 }
1758 }
1759
1760 if (forward)
1761 {
1762 /* The [begin, current_begin) range has been read. */
1763 r.begin = begin;
1764 r.end = current_begin;
1765 r.data = buf;
1766 }
1767 else
1768 {
1769 /* The [current_end, end) range has been read. */
279a6fed 1770 LONGEST region_len = end - current_end;
f1a507a1 1771
224c3ddb 1772 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1773 memcpy (r.data, buf + (current_end - begin) * unit_size,
1774 region_len * unit_size);
8dedea02
VP
1775 r.begin = current_end;
1776 r.end = end;
1777 xfree (buf);
1778 }
1779 VEC_safe_push(memory_read_result_s, (*result), &r);
1780}
1781
1782void
1783free_memory_read_result_vector (void *x)
1784{
19ba03f4 1785 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
8dedea02
VP
1786 memory_read_result_s *current;
1787 int ix;
1788
1789 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1790 {
1791 xfree (current->data);
1792 }
1793 VEC_free (memory_read_result_s, v);
1794}
1795
1796VEC(memory_read_result_s) *
279a6fed
SM
1797read_memory_robust (struct target_ops *ops,
1798 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1799{
1800 VEC(memory_read_result_s) *result = 0;
d309493c 1801 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
8dedea02 1802
279a6fed
SM
1803 LONGEST xfered_total = 0;
1804 while (xfered_total < len)
d5086790 1805 {
279a6fed
SM
1806 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1807 LONGEST region_len;
5d502164 1808
8dedea02
VP
1809 /* If there is no explicit region, a fake one should be created. */
1810 gdb_assert (region);
1811
1812 if (region->hi == 0)
279a6fed 1813 region_len = len - xfered_total;
8dedea02 1814 else
279a6fed 1815 region_len = region->hi - offset;
8dedea02
VP
1816
1817 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1818 {
c378eb4e 1819 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1820 if the region is explicitly marked inaccessible, or
1821 'inaccessible-by-default' is in effect. */
279a6fed 1822 xfered_total += region_len;
8dedea02
VP
1823 }
1824 else
1825 {
279a6fed 1826 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1827 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
8dedea02 1828
279a6fed
SM
1829 LONGEST xfered_partial =
1830 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1831 (gdb_byte *) buffer,
1832 offset + xfered_total, to_read);
8dedea02 1833 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1834 if (xfered_partial <= 0)
d5086790 1835 {
c378eb4e 1836 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1837 some subrange. */
1838 xfree (buffer);
d309493c 1839 read_whatever_is_readable (ops, offset + xfered_total, unit_size,
279a6fed
SM
1840 offset + xfered_total + to_read, &result);
1841 xfered_total += to_read;
d5086790 1842 }
8dedea02
VP
1843 else
1844 {
1845 struct memory_read_result r;
1846 r.data = buffer;
279a6fed
SM
1847 r.begin = offset + xfered_total;
1848 r.end = r.begin + xfered_partial;
8dedea02 1849 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1850 xfered_total += xfered_partial;
8dedea02
VP
1851 }
1852 QUIT;
d5086790 1853 }
d5086790 1854 }
8dedea02 1855 return result;
d5086790
VP
1856}
1857
8dedea02 1858
cf7a04e8
DJ
1859/* An alternative to target_write with progress callbacks. */
1860
1e3ff5ad 1861LONGEST
cf7a04e8
DJ
1862target_write_with_progress (struct target_ops *ops,
1863 enum target_object object,
1864 const char *annex, const gdb_byte *buf,
1865 ULONGEST offset, LONGEST len,
1866 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1867{
279a6fed 1868 LONGEST xfered_total = 0;
d309493c
SM
1869 int unit_size = 1;
1870
1871 /* If we are writing to a memory object, find the length of an addressable
1872 unit for that architecture. */
1873 if (object == TARGET_OBJECT_MEMORY
1874 || object == TARGET_OBJECT_STACK_MEMORY
1875 || object == TARGET_OBJECT_CODE_MEMORY
1876 || object == TARGET_OBJECT_RAW_MEMORY)
1877 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1878
1879 /* Give the progress callback a chance to set up. */
1880 if (progress)
1881 (*progress) (0, baton);
1882
279a6fed 1883 while (xfered_total < len)
1e3ff5ad 1884 {
279a6fed 1885 ULONGEST xfered_partial;
9b409511
YQ
1886 enum target_xfer_status status;
1887
1888 status = target_write_partial (ops, object, annex,
d309493c 1889 buf + xfered_total * unit_size,
279a6fed
SM
1890 offset + xfered_total, len - xfered_total,
1891 &xfered_partial);
cf7a04e8 1892
5c328c05 1893 if (status != TARGET_XFER_OK)
279a6fed 1894 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1895
1896 if (progress)
279a6fed 1897 (*progress) (xfered_partial, baton);
cf7a04e8 1898
279a6fed 1899 xfered_total += xfered_partial;
1e3ff5ad
AC
1900 QUIT;
1901 }
1902 return len;
1903}
1904
7f79c47e
DE
1905/* For docs on target_write see target.h. */
1906
cf7a04e8
DJ
1907LONGEST
1908target_write (struct target_ops *ops,
1909 enum target_object object,
1910 const char *annex, const gdb_byte *buf,
1911 ULONGEST offset, LONGEST len)
1912{
1913 return target_write_with_progress (ops, object, annex, buf, offset, len,
1914 NULL, NULL);
1915}
1916
159f81f3
DJ
1917/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1918 the size of the transferred data. PADDING additional bytes are
1919 available in *BUF_P. This is a helper function for
1920 target_read_alloc; see the declaration of that function for more
1921 information. */
13547ab6 1922
159f81f3
DJ
1923static LONGEST
1924target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1925 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1926{
1927 size_t buf_alloc, buf_pos;
1928 gdb_byte *buf;
13547ab6
DJ
1929
1930 /* This function does not have a length parameter; it reads the
1931 entire OBJECT). Also, it doesn't support objects fetched partly
1932 from one target and partly from another (in a different stratum,
1933 e.g. a core file and an executable). Both reasons make it
1934 unsuitable for reading memory. */
1935 gdb_assert (object != TARGET_OBJECT_MEMORY);
1936
1937 /* Start by reading up to 4K at a time. The target will throttle
1938 this number down if necessary. */
1939 buf_alloc = 4096;
224c3ddb 1940 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1941 buf_pos = 0;
1942 while (1)
1943 {
9b409511
YQ
1944 ULONGEST xfered_len;
1945 enum target_xfer_status status;
1946
1947 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1948 buf_pos, buf_alloc - buf_pos - padding,
1949 &xfered_len);
1950
1951 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1952 {
1953 /* Read all there was. */
1954 if (buf_pos == 0)
1955 xfree (buf);
1956 else
1957 *buf_p = buf;
1958 return buf_pos;
1959 }
9b409511
YQ
1960 else if (status != TARGET_XFER_OK)
1961 {
1962 /* An error occurred. */
1963 xfree (buf);
1964 return TARGET_XFER_E_IO;
1965 }
13547ab6 1966
9b409511 1967 buf_pos += xfered_len;
13547ab6
DJ
1968
1969 /* If the buffer is filling up, expand it. */
1970 if (buf_alloc < buf_pos * 2)
1971 {
1972 buf_alloc *= 2;
224c3ddb 1973 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
1974 }
1975
1976 QUIT;
1977 }
1978}
1979
159f81f3
DJ
1980/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1981 the size of the transferred data. See the declaration in "target.h"
1982 function for more information about the return value. */
1983
1984LONGEST
1985target_read_alloc (struct target_ops *ops, enum target_object object,
1986 const char *annex, gdb_byte **buf_p)
1987{
1988 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1989}
1990
1991/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1992 returned as a string, allocated using xmalloc. If an error occurs
1993 or the transfer is unsupported, NULL is returned. Empty objects
1994 are returned as allocated but empty strings. A warning is issued
1995 if the result contains any embedded NUL bytes. */
1996
1997char *
1998target_read_stralloc (struct target_ops *ops, enum target_object object,
1999 const char *annex)
2000{
39086a0e
PA
2001 gdb_byte *buffer;
2002 char *bufstr;
7313baad 2003 LONGEST i, transferred;
159f81f3 2004
39086a0e
PA
2005 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2006 bufstr = (char *) buffer;
159f81f3
DJ
2007
2008 if (transferred < 0)
2009 return NULL;
2010
2011 if (transferred == 0)
2012 return xstrdup ("");
2013
39086a0e 2014 bufstr[transferred] = 0;
7313baad
UW
2015
2016 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2017 for (i = strlen (bufstr); i < transferred; i++)
2018 if (bufstr[i] != 0)
7313baad
UW
2019 {
2020 warning (_("target object %d, annex %s, "
2021 "contained unexpected null characters"),
2022 (int) object, annex ? annex : "(none)");
2023 break;
2024 }
159f81f3 2025
39086a0e 2026 return bufstr;
159f81f3
DJ
2027}
2028
b6591e8b
AC
2029/* Memory transfer methods. */
2030
2031void
1b0ba102 2032get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2033 LONGEST len)
2034{
07b82ea5
PA
2035 /* This method is used to read from an alternate, non-current
2036 target. This read must bypass the overlay support (as symbols
2037 don't match this target), and GDB's internal cache (wrong cache
2038 for this target). */
2039 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2040 != len)
578d3588 2041 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2042}
2043
2044ULONGEST
5d502164
MS
2045get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2046 int len, enum bfd_endian byte_order)
b6591e8b 2047{
f6519ebc 2048 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2049
2050 gdb_assert (len <= sizeof (buf));
2051 get_target_memory (ops, addr, buf, len);
e17a4113 2052 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2053}
2054
3db08215
MM
2055/* See target.h. */
2056
d914c394
SS
2057int
2058target_insert_breakpoint (struct gdbarch *gdbarch,
2059 struct bp_target_info *bp_tgt)
2060{
2061 if (!may_insert_breakpoints)
2062 {
2063 warning (_("May not insert breakpoints"));
2064 return 1;
2065 }
2066
6b84065d
TT
2067 return current_target.to_insert_breakpoint (&current_target,
2068 gdbarch, bp_tgt);
d914c394
SS
2069}
2070
3db08215
MM
2071/* See target.h. */
2072
d914c394 2073int
6b84065d
TT
2074target_remove_breakpoint (struct gdbarch *gdbarch,
2075 struct bp_target_info *bp_tgt)
d914c394
SS
2076{
2077 /* This is kind of a weird case to handle, but the permission might
2078 have been changed after breakpoints were inserted - in which case
2079 we should just take the user literally and assume that any
2080 breakpoints should be left in place. */
2081 if (!may_insert_breakpoints)
2082 {
2083 warning (_("May not remove breakpoints"));
2084 return 1;
2085 }
2086
6b84065d
TT
2087 return current_target.to_remove_breakpoint (&current_target,
2088 gdbarch, bp_tgt);
d914c394
SS
2089}
2090
c906108c 2091static void
fba45db2 2092target_info (char *args, int from_tty)
c906108c
SS
2093{
2094 struct target_ops *t;
c906108c 2095 int has_all_mem = 0;
c5aa993b 2096
c906108c 2097 if (symfile_objfile != NULL)
4262abfb
JK
2098 printf_unfiltered (_("Symbols from \"%s\".\n"),
2099 objfile_name (symfile_objfile));
c906108c 2100
258b763a 2101 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2102 {
c35b1492 2103 if (!(*t->to_has_memory) (t))
c906108c
SS
2104 continue;
2105
c5aa993b 2106 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2107 continue;
2108 if (has_all_mem)
3e43a32a
MS
2109 printf_unfiltered (_("\tWhile running this, "
2110 "GDB does not access memory from...\n"));
c5aa993b
JM
2111 printf_unfiltered ("%s:\n", t->to_longname);
2112 (t->to_files_info) (t);
c35b1492 2113 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2114 }
2115}
2116
fd79ecee
DJ
2117/* This function is called before any new inferior is created, e.g.
2118 by running a program, attaching, or connecting to a target.
2119 It cleans up any state from previous invocations which might
2120 change between runs. This is a subset of what target_preopen
2121 resets (things which might change between targets). */
2122
2123void
2124target_pre_inferior (int from_tty)
2125{
c378eb4e 2126 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2127 inferior might have survived and is entirely wrong for the new
c378eb4e 2128 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2129 to reproduce:
2130
2131 bash$ ./foo&
2132 [1] 4711
2133 bash$ ./foo&
2134 [1] 4712
2135 bash$ gdb ./foo
2136 [...]
2137 (gdb) attach 4711
2138 (gdb) detach
2139 (gdb) attach 4712
2140 Cannot access memory at address 0xdeadbeef
2141 */
b9db4ced 2142
50c71eaf
PA
2143 /* In some OSs, the shared library list is the same/global/shared
2144 across inferiors. If code is shared between processes, so are
2145 memory regions and features. */
f5656ead 2146 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2147 {
2148 no_shared_libraries (NULL, from_tty);
2149
2150 invalidate_target_mem_regions ();
424163ea 2151
50c71eaf
PA
2152 target_clear_description ();
2153 }
8ffcbaaf 2154
e9756d52
PP
2155 /* attach_flag may be set if the previous process associated with
2156 the inferior was attached to. */
2157 current_inferior ()->attach_flag = 0;
2158
8ffcbaaf 2159 agent_capability_invalidate ();
fd79ecee
DJ
2160}
2161
b8fa0bfa
PA
2162/* Callback for iterate_over_inferiors. Gets rid of the given
2163 inferior. */
2164
2165static int
2166dispose_inferior (struct inferior *inf, void *args)
2167{
2168 struct thread_info *thread;
2169
2170 thread = any_thread_of_process (inf->pid);
2171 if (thread)
2172 {
2173 switch_to_thread (thread->ptid);
2174
2175 /* Core inferiors actually should be detached, not killed. */
2176 if (target_has_execution)
2177 target_kill ();
2178 else
2179 target_detach (NULL, 0);
2180 }
2181
2182 return 0;
2183}
2184
c906108c
SS
2185/* This is to be called by the open routine before it does
2186 anything. */
2187
2188void
fba45db2 2189target_preopen (int from_tty)
c906108c 2190{
c5aa993b 2191 dont_repeat ();
c906108c 2192
b8fa0bfa 2193 if (have_inferiors ())
c5aa993b 2194 {
adf40b2e 2195 if (!from_tty
b8fa0bfa
PA
2196 || !have_live_inferiors ()
2197 || query (_("A program is being debugged already. Kill it? ")))
2198 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2199 else
8a3fe4f8 2200 error (_("Program not killed."));
c906108c
SS
2201 }
2202
2203 /* Calling target_kill may remove the target from the stack. But if
2204 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2205 /* Leave the exec target, though. The user may be switching from a
2206 live process to a core of the same program. */
460014f5 2207 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2208
2209 target_pre_inferior (from_tty);
c906108c
SS
2210}
2211
2212/* Detach a target after doing deferred register stores. */
2213
2214void
52554a0e 2215target_detach (const char *args, int from_tty)
c906108c 2216{
136d6dae
VP
2217 struct target_ops* t;
2218
f5656ead 2219 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2220 /* Don't remove global breakpoints here. They're removed on
2221 disconnection from the target. */
2222 ;
2223 else
2224 /* If we're in breakpoints-always-inserted mode, have to remove
2225 them before detaching. */
dfd4cc63 2226 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2227
24291992
PA
2228 prepare_for_detach ();
2229
09da0d0a 2230 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2231}
2232
6ad8ae5c 2233void
fee354ee 2234target_disconnect (const char *args, int from_tty)
6ad8ae5c 2235{
50c71eaf
PA
2236 /* If we're in breakpoints-always-inserted mode or if breakpoints
2237 are global across processes, we have to remove them before
2238 disconnecting. */
74960c60
VP
2239 remove_breakpoints ();
2240
86a0854a 2241 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2242}
2243
117de6a9 2244ptid_t
47608cb1 2245target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2246{
a7068b60 2247 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2248}
2249
0b333c5e
PA
2250/* See target.h. */
2251
2252ptid_t
2253default_target_wait (struct target_ops *ops,
2254 ptid_t ptid, struct target_waitstatus *status,
2255 int options)
2256{
2257 status->kind = TARGET_WAITKIND_IGNORE;
2258 return minus_one_ptid;
2259}
2260
117de6a9
PA
2261char *
2262target_pid_to_str (ptid_t ptid)
2263{
770234d3 2264 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2265}
2266
4694da01
TT
2267char *
2268target_thread_name (struct thread_info *info)
2269{
825828fc 2270 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2271}
2272
e1ac3328 2273void
2ea28649 2274target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2275{
28439f5e
PA
2276 struct target_ops *t;
2277
4e5d721f 2278 target_dcache_invalidate ();
28439f5e 2279
6b84065d 2280 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2281
6b84065d 2282 registers_changed_ptid (ptid);
251bde03
PA
2283 /* We only set the internal executing state here. The user/frontend
2284 running state is set at a higher level. */
6b84065d 2285 set_executing (ptid, 1);
6b84065d 2286 clear_inline_frame_state (ptid);
e1ac3328 2287}
2455069d
UW
2288
2289void
2290target_pass_signals (int numsigs, unsigned char *pass_signals)
2291{
035cad7f 2292 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2293}
2294
9b224c5e
PA
2295void
2296target_program_signals (int numsigs, unsigned char *program_signals)
2297{
7d4f8efa
TT
2298 (*current_target.to_program_signals) (&current_target,
2299 numsigs, program_signals);
9b224c5e
PA
2300}
2301
098dba18
TT
2302static int
2303default_follow_fork (struct target_ops *self, int follow_child,
2304 int detach_fork)
2305{
2306 /* Some target returned a fork event, but did not know how to follow it. */
2307 internal_error (__FILE__, __LINE__,
2308 _("could not find a target to follow fork"));
2309}
2310
ee057212
DJ
2311/* Look through the list of possible targets for a target that can
2312 follow forks. */
2313
2314int
07107ca6 2315target_follow_fork (int follow_child, int detach_fork)
ee057212 2316{
a7068b60
TT
2317 return current_target.to_follow_fork (&current_target,
2318 follow_child, detach_fork);
ee057212
DJ
2319}
2320
94585166
DB
2321/* Target wrapper for follow exec hook. */
2322
2323void
2324target_follow_exec (struct inferior *inf, char *execd_pathname)
2325{
2326 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2327}
2328
8d657035
TT
2329static void
2330default_mourn_inferior (struct target_ops *self)
2331{
2332 internal_error (__FILE__, __LINE__,
2333 _("could not find a target to follow mourn inferior"));
2334}
2335
136d6dae
VP
2336void
2337target_mourn_inferior (void)
2338{
8d657035 2339 current_target.to_mourn_inferior (&current_target);
136d6dae 2340
8d657035
TT
2341 /* We no longer need to keep handles on any of the object files.
2342 Make sure to release them to avoid unnecessarily locking any
2343 of them while we're not actually debugging. */
2344 bfd_cache_close_all ();
136d6dae
VP
2345}
2346
424163ea
DJ
2347/* Look for a target which can describe architectural features, starting
2348 from TARGET. If we find one, return its description. */
2349
2350const struct target_desc *
2351target_read_description (struct target_ops *target)
2352{
2117c711 2353 return target->to_read_description (target);
424163ea
DJ
2354}
2355
58a5184e 2356/* This implements a basic search of memory, reading target memory and
08388c79
DE
2357 performing the search here (as opposed to performing the search in on the
2358 target side with, for example, gdbserver). */
2359
2360int
2361simple_search_memory (struct target_ops *ops,
2362 CORE_ADDR start_addr, ULONGEST search_space_len,
2363 const gdb_byte *pattern, ULONGEST pattern_len,
2364 CORE_ADDR *found_addrp)
2365{
2366 /* NOTE: also defined in find.c testcase. */
2367#define SEARCH_CHUNK_SIZE 16000
2368 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2369 /* Buffer to hold memory contents for searching. */
2370 gdb_byte *search_buf;
2371 unsigned search_buf_size;
2372 struct cleanup *old_cleanups;
2373
2374 search_buf_size = chunk_size + pattern_len - 1;
2375
2376 /* No point in trying to allocate a buffer larger than the search space. */
2377 if (search_space_len < search_buf_size)
2378 search_buf_size = search_space_len;
2379
224c3ddb 2380 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2381 if (search_buf == NULL)
5e1471f5 2382 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2383 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2384
2385 /* Prime the search buffer. */
2386
2387 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2388 search_buf, start_addr, search_buf_size) != search_buf_size)
2389 {
b3dc46ff
AB
2390 warning (_("Unable to access %s bytes of target "
2391 "memory at %s, halting search."),
2392 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2393 do_cleanups (old_cleanups);
2394 return -1;
2395 }
2396
2397 /* Perform the search.
2398
2399 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2400 When we've scanned N bytes we copy the trailing bytes to the start and
2401 read in another N bytes. */
2402
2403 while (search_space_len >= pattern_len)
2404 {
2405 gdb_byte *found_ptr;
2406 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2407
d7f3ff3e
SM
2408 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2409 pattern, pattern_len);
08388c79
DE
2410
2411 if (found_ptr != NULL)
2412 {
2413 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2414
08388c79
DE
2415 *found_addrp = found_addr;
2416 do_cleanups (old_cleanups);
2417 return 1;
2418 }
2419
2420 /* Not found in this chunk, skip to next chunk. */
2421
2422 /* Don't let search_space_len wrap here, it's unsigned. */
2423 if (search_space_len >= chunk_size)
2424 search_space_len -= chunk_size;
2425 else
2426 search_space_len = 0;
2427
2428 if (search_space_len >= pattern_len)
2429 {
2430 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2431 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2432 int nr_to_read;
2433
2434 /* Copy the trailing part of the previous iteration to the front
2435 of the buffer for the next iteration. */
2436 gdb_assert (keep_len == pattern_len - 1);
2437 memcpy (search_buf, search_buf + chunk_size, keep_len);
2438
2439 nr_to_read = min (search_space_len - keep_len, chunk_size);
2440
2441 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2442 search_buf + keep_len, read_addr,
2443 nr_to_read) != nr_to_read)
2444 {
b3dc46ff 2445 warning (_("Unable to access %s bytes of target "
9b20d036 2446 "memory at %s, halting search."),
b3dc46ff 2447 plongest (nr_to_read),
08388c79
DE
2448 hex_string (read_addr));
2449 do_cleanups (old_cleanups);
2450 return -1;
2451 }
2452
2453 start_addr += chunk_size;
2454 }
2455 }
2456
2457 /* Not found. */
2458
2459 do_cleanups (old_cleanups);
2460 return 0;
2461}
2462
58a5184e
TT
2463/* Default implementation of memory-searching. */
2464
2465static int
2466default_search_memory (struct target_ops *self,
2467 CORE_ADDR start_addr, ULONGEST search_space_len,
2468 const gdb_byte *pattern, ULONGEST pattern_len,
2469 CORE_ADDR *found_addrp)
2470{
2471 /* Start over from the top of the target stack. */
2472 return simple_search_memory (current_target.beneath,
2473 start_addr, search_space_len,
2474 pattern, pattern_len, found_addrp);
2475}
2476
08388c79
DE
2477/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2478 sequence of bytes in PATTERN with length PATTERN_LEN.
2479
2480 The result is 1 if found, 0 if not found, and -1 if there was an error
2481 requiring halting of the search (e.g. memory read error).
2482 If the pattern is found the address is recorded in FOUND_ADDRP. */
2483
2484int
2485target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2486 const gdb_byte *pattern, ULONGEST pattern_len,
2487 CORE_ADDR *found_addrp)
2488{
a7068b60
TT
2489 return current_target.to_search_memory (&current_target, start_addr,
2490 search_space_len,
2491 pattern, pattern_len, found_addrp);
08388c79
DE
2492}
2493
8edfe269
DJ
2494/* Look through the currently pushed targets. If none of them will
2495 be able to restart the currently running process, issue an error
2496 message. */
2497
2498void
2499target_require_runnable (void)
2500{
2501 struct target_ops *t;
2502
2503 for (t = target_stack; t != NULL; t = t->beneath)
2504 {
2505 /* If this target knows how to create a new program, then
2506 assume we will still be able to after killing the current
2507 one. Either killing and mourning will not pop T, or else
2508 find_default_run_target will find it again. */
2509 if (t->to_create_inferior != NULL)
2510 return;
2511
548740d6 2512 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2513 create inferiors. Assume they will be pushed again if
2514 necessary, and continue to the process_stratum. */
85e747d2 2515 if (t->to_stratum == thread_stratum
548740d6 2516 || t->to_stratum == record_stratum
85e747d2 2517 || t->to_stratum == arch_stratum)
8edfe269
DJ
2518 continue;
2519
3e43a32a
MS
2520 error (_("The \"%s\" target does not support \"run\". "
2521 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2522 t->to_shortname);
2523 }
2524
2525 /* This function is only called if the target is running. In that
2526 case there should have been a process_stratum target and it
c378eb4e 2527 should either know how to create inferiors, or not... */
9b20d036 2528 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2529}
2530
6a3cb8e8
PA
2531/* Whether GDB is allowed to fall back to the default run target for
2532 "run", "attach", etc. when no target is connected yet. */
2533static int auto_connect_native_target = 1;
2534
2535static void
2536show_auto_connect_native_target (struct ui_file *file, int from_tty,
2537 struct cmd_list_element *c, const char *value)
2538{
2539 fprintf_filtered (file,
2540 _("Whether GDB may automatically connect to the "
2541 "native target is %s.\n"),
2542 value);
2543}
2544
c906108c
SS
2545/* Look through the list of possible targets for a target that can
2546 execute a run or attach command without any other data. This is
2547 used to locate the default process stratum.
2548
5f667f2d
PA
2549 If DO_MESG is not NULL, the result is always valid (error() is
2550 called for errors); else, return NULL on error. */
c906108c
SS
2551
2552static struct target_ops *
fba45db2 2553find_default_run_target (char *do_mesg)
c906108c 2554{
c906108c 2555 struct target_ops *runable = NULL;
c906108c 2556
6a3cb8e8 2557 if (auto_connect_native_target)
c906108c 2558 {
89a1c21a 2559 struct target_ops *t;
6a3cb8e8 2560 int count = 0;
89a1c21a 2561 int i;
6a3cb8e8 2562
89a1c21a 2563 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2564 {
89a1c21a 2565 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2566 {
89a1c21a 2567 runable = t;
6a3cb8e8
PA
2568 ++count;
2569 }
c906108c 2570 }
6a3cb8e8
PA
2571
2572 if (count != 1)
2573 runable = NULL;
c906108c
SS
2574 }
2575
6a3cb8e8 2576 if (runable == NULL)
5f667f2d
PA
2577 {
2578 if (do_mesg)
2579 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2580 else
2581 return NULL;
2582 }
c906108c
SS
2583
2584 return runable;
2585}
2586
b3ccfe11 2587/* See target.h. */
c906108c 2588
b3ccfe11
TT
2589struct target_ops *
2590find_attach_target (void)
c906108c
SS
2591{
2592 struct target_ops *t;
2593
b3ccfe11
TT
2594 /* If a target on the current stack can attach, use it. */
2595 for (t = current_target.beneath; t != NULL; t = t->beneath)
2596 {
2597 if (t->to_attach != NULL)
2598 break;
2599 }
c906108c 2600
b3ccfe11
TT
2601 /* Otherwise, use the default run target for attaching. */
2602 if (t == NULL)
2603 t = find_default_run_target ("attach");
b84876c2 2604
b3ccfe11 2605 return t;
b84876c2
PA
2606}
2607
b3ccfe11 2608/* See target.h. */
b84876c2 2609
b3ccfe11
TT
2610struct target_ops *
2611find_run_target (void)
9908b566
VP
2612{
2613 struct target_ops *t;
2614
b3ccfe11
TT
2615 /* If a target on the current stack can attach, use it. */
2616 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 {
2618 if (t->to_create_inferior != NULL)
2619 break;
2620 }
5d502164 2621
b3ccfe11
TT
2622 /* Otherwise, use the default run target. */
2623 if (t == NULL)
2624 t = find_default_run_target ("run");
9908b566 2625
b3ccfe11 2626 return t;
9908b566
VP
2627}
2628
145b16a9
UW
2629/* Implement the "info proc" command. */
2630
451b7c33 2631int
7bc112c1 2632target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2633{
2634 struct target_ops *t;
2635
2636 /* If we're already connected to something that can get us OS
2637 related data, use it. Otherwise, try using the native
2638 target. */
2639 if (current_target.to_stratum >= process_stratum)
2640 t = current_target.beneath;
2641 else
2642 t = find_default_run_target (NULL);
2643
2644 for (; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_info_proc != NULL)
2647 {
2648 t->to_info_proc (t, args, what);
2649
2650 if (targetdebug)
2651 fprintf_unfiltered (gdb_stdlog,
2652 "target_info_proc (\"%s\", %d)\n", args, what);
2653
451b7c33 2654 return 1;
145b16a9
UW
2655 }
2656 }
2657
451b7c33 2658 return 0;
145b16a9
UW
2659}
2660
03583c20 2661static int
2bfc0540 2662find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2663{
2664 struct target_ops *t;
2665
2666 t = find_default_run_target (NULL);
2667 if (t && t->to_supports_disable_randomization)
2bfc0540 2668 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2669 return 0;
2670}
2671
2672int
2673target_supports_disable_randomization (void)
2674{
2675 struct target_ops *t;
2676
2677 for (t = &current_target; t != NULL; t = t->beneath)
2678 if (t->to_supports_disable_randomization)
2bfc0540 2679 return t->to_supports_disable_randomization (t);
03583c20
UW
2680
2681 return 0;
2682}
9908b566 2683
07e059b5
VP
2684char *
2685target_get_osdata (const char *type)
2686{
07e059b5
VP
2687 struct target_ops *t;
2688
739ef7fb
PA
2689 /* If we're already connected to something that can get us OS
2690 related data, use it. Otherwise, try using the native
2691 target. */
2692 if (current_target.to_stratum >= process_stratum)
6d097e65 2693 t = current_target.beneath;
739ef7fb
PA
2694 else
2695 t = find_default_run_target ("get OS data");
07e059b5
VP
2696
2697 if (!t)
2698 return NULL;
2699
6d097e65 2700 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2701}
2702
8eaff7cd
TT
2703static struct address_space *
2704default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2705{
2706 struct inferior *inf;
6c95b8df
PA
2707
2708 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2709 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2710
2711 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2712 internal_error (__FILE__, __LINE__,
9b20d036
MS
2713 _("Can't determine the current "
2714 "address space of thread %s\n"),
6c95b8df
PA
2715 target_pid_to_str (ptid));
2716
2717 return inf->aspace;
2718}
2719
8eaff7cd
TT
2720/* Determine the current address space of thread PTID. */
2721
2722struct address_space *
2723target_thread_address_space (ptid_t ptid)
2724{
2725 struct address_space *aspace;
2726
2727 aspace = current_target.to_thread_address_space (&current_target, ptid);
2728 gdb_assert (aspace != NULL);
2729
8eaff7cd
TT
2730 return aspace;
2731}
2732
7313baad
UW
2733
2734/* Target file operations. */
2735
2736static struct target_ops *
2737default_fileio_target (void)
2738{
2739 /* If we're already connected to something that can perform
2740 file I/O, use it. Otherwise, try using the native target. */
2741 if (current_target.to_stratum >= process_stratum)
2742 return current_target.beneath;
2743 else
2744 return find_default_run_target ("file I/O");
2745}
2746
1c4b552b
GB
2747/* File handle for target file operations. */
2748
2749typedef struct
2750{
2751 /* The target on which this file is open. */
2752 struct target_ops *t;
2753
2754 /* The file descriptor on the target. */
2755 int fd;
2756} fileio_fh_t;
2757
2758DEF_VEC_O (fileio_fh_t);
2759
2760/* Vector of currently open file handles. The value returned by
2761 target_fileio_open and passed as the FD argument to other
2762 target_fileio_* functions is an index into this vector. This
2763 vector's entries are never freed; instead, files are marked as
2764 closed, and the handle becomes available for reuse. */
2765static VEC (fileio_fh_t) *fileio_fhandles;
2766
2767/* Macro to check whether a fileio_fh_t represents a closed file. */
2768#define is_closed_fileio_fh(fd) ((fd) < 0)
2769
2770/* Index into fileio_fhandles of the lowest handle that might be
2771 closed. This permits handle reuse without searching the whole
2772 list each time a new file is opened. */
2773static int lowest_closed_fd;
2774
2775/* Acquire a target fileio file descriptor. */
2776
2777static int
2778acquire_fileio_fd (struct target_ops *t, int fd)
2779{
2780 fileio_fh_t *fh, buf;
2781
2782 gdb_assert (!is_closed_fileio_fh (fd));
2783
2784 /* Search for closed handles to reuse. */
2785 for (;
2786 VEC_iterate (fileio_fh_t, fileio_fhandles,
2787 lowest_closed_fd, fh);
2788 lowest_closed_fd++)
2789 if (is_closed_fileio_fh (fh->fd))
2790 break;
2791
2792 /* Push a new handle if no closed handles were found. */
2793 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2794 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2795
2796 /* Fill in the handle. */
2797 fh->t = t;
2798 fh->fd = fd;
2799
2800 /* Return its index, and start the next lookup at
2801 the next index. */
2802 return lowest_closed_fd++;
2803}
2804
2805/* Release a target fileio file descriptor. */
2806
2807static void
2808release_fileio_fd (int fd, fileio_fh_t *fh)
2809{
2810 fh->fd = -1;
2811 lowest_closed_fd = min (lowest_closed_fd, fd);
2812}
2813
2814/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2815
2816#define fileio_fd_to_fh(fd) \
2817 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2818
4313b8c0
GB
2819/* Helper for target_fileio_open and
2820 target_fileio_open_warn_if_slow. */
12e2a5fd 2821
4313b8c0
GB
2822static int
2823target_fileio_open_1 (struct inferior *inf, const char *filename,
2824 int flags, int mode, int warn_if_slow,
2825 int *target_errno)
7313baad
UW
2826{
2827 struct target_ops *t;
2828
2829 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2830 {
2831 if (t->to_fileio_open != NULL)
2832 {
07c138c8 2833 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2834 warn_if_slow, target_errno);
7313baad 2835
1c4b552b
GB
2836 if (fd < 0)
2837 fd = -1;
2838 else
2839 fd = acquire_fileio_fd (t, fd);
2840
7313baad
UW
2841 if (targetdebug)
2842 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2843 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2844 " = %d (%d)\n",
2845 inf == NULL ? 0 : inf->num,
7313baad 2846 filename, flags, mode,
4313b8c0
GB
2847 warn_if_slow, fd,
2848 fd != -1 ? 0 : *target_errno);
7313baad
UW
2849 return fd;
2850 }
2851 }
2852
2853 *target_errno = FILEIO_ENOSYS;
2854 return -1;
2855}
2856
12e2a5fd
GB
2857/* See target.h. */
2858
4313b8c0
GB
2859int
2860target_fileio_open (struct inferior *inf, const char *filename,
2861 int flags, int mode, int *target_errno)
2862{
2863 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2864 target_errno);
2865}
2866
2867/* See target.h. */
2868
2869int
2870target_fileio_open_warn_if_slow (struct inferior *inf,
2871 const char *filename,
2872 int flags, int mode, int *target_errno)
2873{
2874 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2875 target_errno);
2876}
2877
2878/* See target.h. */
2879
7313baad
UW
2880int
2881target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2882 ULONGEST offset, int *target_errno)
2883{
1c4b552b
GB
2884 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2885 int ret = -1;
7313baad 2886
1c4b552b
GB
2887 if (is_closed_fileio_fh (fh->fd))
2888 *target_errno = EBADF;
2889 else
2890 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2891 len, offset, target_errno);
7313baad 2892
1c4b552b
GB
2893 if (targetdebug)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "target_fileio_pwrite (%d,...,%d,%s) "
2896 "= %d (%d)\n",
2897 fd, len, pulongest (offset),
2898 ret, ret != -1 ? 0 : *target_errno);
2899 return ret;
7313baad
UW
2900}
2901
12e2a5fd
GB
2902/* See target.h. */
2903
7313baad
UW
2904int
2905target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2906 ULONGEST offset, int *target_errno)
2907{
1c4b552b
GB
2908 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2909 int ret = -1;
7313baad 2910
1c4b552b
GB
2911 if (is_closed_fileio_fh (fh->fd))
2912 *target_errno = EBADF;
2913 else
2914 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2915 len, offset, target_errno);
7313baad 2916
1c4b552b
GB
2917 if (targetdebug)
2918 fprintf_unfiltered (gdb_stdlog,
2919 "target_fileio_pread (%d,...,%d,%s) "
2920 "= %d (%d)\n",
2921 fd, len, pulongest (offset),
2922 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2923 return ret;
2924}
2925
2926/* See target.h. */
12e2a5fd 2927
9b15c1f0
GB
2928int
2929target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2930{
2931 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2932 int ret = -1;
2933
2934 if (is_closed_fileio_fh (fh->fd))
2935 *target_errno = EBADF;
2936 else
2937 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2938
2939 if (targetdebug)
2940 fprintf_unfiltered (gdb_stdlog,
2941 "target_fileio_fstat (%d) = %d (%d)\n",
2942 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2943 return ret;
7313baad
UW
2944}
2945
12e2a5fd
GB
2946/* See target.h. */
2947
7313baad
UW
2948int
2949target_fileio_close (int fd, int *target_errno)
2950{
1c4b552b
GB
2951 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2952 int ret = -1;
7313baad 2953
1c4b552b
GB
2954 if (is_closed_fileio_fh (fh->fd))
2955 *target_errno = EBADF;
2956 else
7313baad 2957 {
1c4b552b
GB
2958 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2959 release_fileio_fd (fd, fh);
7313baad
UW
2960 }
2961
1c4b552b
GB
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "target_fileio_close (%d) = %d (%d)\n",
2965 fd, ret, ret != -1 ? 0 : *target_errno);
2966 return ret;
7313baad
UW
2967}
2968
12e2a5fd
GB
2969/* See target.h. */
2970
7313baad 2971int
07c138c8
GB
2972target_fileio_unlink (struct inferior *inf, const char *filename,
2973 int *target_errno)
7313baad
UW
2974{
2975 struct target_ops *t;
2976
2977 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2978 {
2979 if (t->to_fileio_unlink != NULL)
2980 {
07c138c8
GB
2981 int ret = t->to_fileio_unlink (t, inf, filename,
2982 target_errno);
7313baad
UW
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
2986 "target_fileio_unlink (%d,%s)"
2987 " = %d (%d)\n",
2988 inf == NULL ? 0 : inf->num, filename,
2989 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
2990 return ret;
2991 }
2992 }
2993
2994 *target_errno = FILEIO_ENOSYS;
2995 return -1;
2996}
2997
12e2a5fd
GB
2998/* See target.h. */
2999
b9e7b9c3 3000char *
07c138c8
GB
3001target_fileio_readlink (struct inferior *inf, const char *filename,
3002 int *target_errno)
b9e7b9c3
UW
3003{
3004 struct target_ops *t;
3005
3006 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3007 {
3008 if (t->to_fileio_readlink != NULL)
3009 {
07c138c8
GB
3010 char *ret = t->to_fileio_readlink (t, inf, filename,
3011 target_errno);
b9e7b9c3
UW
3012
3013 if (targetdebug)
3014 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3015 "target_fileio_readlink (%d,%s)"
3016 " = %s (%d)\n",
3017 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3018 filename, ret? ret : "(nil)",
3019 ret? 0 : *target_errno);
3020 return ret;
3021 }
3022 }
3023
3024 *target_errno = FILEIO_ENOSYS;
3025 return NULL;
3026}
3027
7313baad
UW
3028static void
3029target_fileio_close_cleanup (void *opaque)
3030{
3031 int fd = *(int *) opaque;
3032 int target_errno;
3033
3034 target_fileio_close (fd, &target_errno);
3035}
3036
07c138c8
GB
3037/* Read target file FILENAME, in the filesystem as seen by INF. If
3038 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3039 remote targets, the remote stub). Store the result in *BUF_P and
3040 return the size of the transferred data. PADDING additional bytes
3041 are available in *BUF_P. This is a helper function for
3042 target_fileio_read_alloc; see the declaration of that function for
3043 more information. */
7313baad 3044
f7af1fcd
JK
3045static LONGEST
3046target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3047 gdb_byte **buf_p, int padding)
3048{
3049 struct cleanup *close_cleanup;
db1ff28b
JK
3050 size_t buf_alloc, buf_pos;
3051 gdb_byte *buf;
3052 LONGEST n;
3053 int fd;
3054 int target_errno;
f7af1fcd 3055
db1ff28b
JK
3056 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3057 &target_errno);
f7af1fcd
JK
3058 if (fd == -1)
3059 return -1;
3060
3061 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3062
3063 /* Start by reading up to 4K at a time. The target will throttle
3064 this number down if necessary. */
3065 buf_alloc = 4096;
224c3ddb 3066 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3067 buf_pos = 0;
3068 while (1)
3069 {
3070 n = target_fileio_pread (fd, &buf[buf_pos],
3071 buf_alloc - buf_pos - padding, buf_pos,
3072 &target_errno);
3073 if (n < 0)
3074 {
3075 /* An error occurred. */
3076 do_cleanups (close_cleanup);
3077 xfree (buf);
3078 return -1;
3079 }
3080 else if (n == 0)
3081 {
3082 /* Read all there was. */
3083 do_cleanups (close_cleanup);
3084 if (buf_pos == 0)
3085 xfree (buf);
3086 else
3087 *buf_p = buf;
3088 return buf_pos;
3089 }
3090
3091 buf_pos += n;
3092
3093 /* If the buffer is filling up, expand it. */
3094 if (buf_alloc < buf_pos * 2)
3095 {
3096 buf_alloc *= 2;
224c3ddb 3097 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3098 }
3099
3100 QUIT;
3101 }
f7af1fcd
JK
3102}
3103
12e2a5fd 3104/* See target.h. */
7313baad
UW
3105
3106LONGEST
07c138c8
GB
3107target_fileio_read_alloc (struct inferior *inf, const char *filename,
3108 gdb_byte **buf_p)
7313baad 3109{
07c138c8 3110 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3111}
3112
db1ff28b 3113/* See target.h. */
f7af1fcd
JK
3114
3115char *
3116target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3117{
db1ff28b
JK
3118 gdb_byte *buffer;
3119 char *bufstr;
3120 LONGEST i, transferred;
3121
3122 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3123 bufstr = (char *) buffer;
3124
3125 if (transferred < 0)
3126 return NULL;
3127
3128 if (transferred == 0)
3129 return xstrdup ("");
3130
3131 bufstr[transferred] = 0;
3132
3133 /* Check for embedded NUL bytes; but allow trailing NULs. */
3134 for (i = strlen (bufstr); i < transferred; i++)
3135 if (bufstr[i] != 0)
3136 {
3137 warning (_("target file %s "
3138 "contained unexpected null characters"),
3139 filename);
3140 break;
3141 }
3142
3143 return bufstr;
f7af1fcd 3144}
7313baad 3145
db1ff28b 3146
e0d24f8d 3147static int
31568a15
TT
3148default_region_ok_for_hw_watchpoint (struct target_ops *self,
3149 CORE_ADDR addr, int len)
e0d24f8d 3150{
f5656ead 3151 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3152}
3153
5009afc5
AS
3154static int
3155default_watchpoint_addr_within_range (struct target_ops *target,
3156 CORE_ADDR addr,
3157 CORE_ADDR start, int length)
3158{
3159 return addr >= start && addr < start + length;
3160}
3161
c2250ad1
UW
3162static struct gdbarch *
3163default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3164{
f5656ead 3165 return target_gdbarch ();
c2250ad1
UW
3166}
3167
c906108c 3168static int
555bbdeb
TT
3169return_zero (struct target_ops *ignore)
3170{
3171 return 0;
3172}
3173
3174static int
3175return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3176{
3177 return 0;
3178}
3179
ed9a39eb
JM
3180/*
3181 * Find the next target down the stack from the specified target.
3182 */
3183
3184struct target_ops *
fba45db2 3185find_target_beneath (struct target_ops *t)
ed9a39eb 3186{
258b763a 3187 return t->beneath;
ed9a39eb
JM
3188}
3189
8b06beed
TT
3190/* See target.h. */
3191
3192struct target_ops *
3193find_target_at (enum strata stratum)
3194{
3195 struct target_ops *t;
3196
3197 for (t = current_target.beneath; t != NULL; t = t->beneath)
3198 if (t->to_stratum == stratum)
3199 return t;
3200
3201 return NULL;
3202}
3203
c906108c
SS
3204\f
3205/* The inferior process has died. Long live the inferior! */
3206
3207void
fba45db2 3208generic_mourn_inferior (void)
c906108c 3209{
7f9f62ba 3210 ptid_t ptid;
c906108c 3211
7f9f62ba 3212 ptid = inferior_ptid;
39f77062 3213 inferior_ptid = null_ptid;
7f9f62ba 3214
f59f708a
PA
3215 /* Mark breakpoints uninserted in case something tries to delete a
3216 breakpoint while we delete the inferior's threads (which would
3217 fail, since the inferior is long gone). */
3218 mark_breakpoints_out ();
3219
7f9f62ba
PA
3220 if (!ptid_equal (ptid, null_ptid))
3221 {
3222 int pid = ptid_get_pid (ptid);
6c95b8df 3223 exit_inferior (pid);
7f9f62ba
PA
3224 }
3225
f59f708a
PA
3226 /* Note this wipes step-resume breakpoints, so needs to be done
3227 after exit_inferior, which ends up referencing the step-resume
3228 breakpoints through clear_thread_inferior_resources. */
c906108c 3229 breakpoint_init_inferior (inf_exited);
f59f708a 3230
c906108c
SS
3231 registers_changed ();
3232
c906108c
SS
3233 reopen_exec_file ();
3234 reinit_frame_cache ();
3235
9a4105ab
AC
3236 if (deprecated_detach_hook)
3237 deprecated_detach_hook ();
c906108c
SS
3238}
3239\f
fd0a2a6f
MK
3240/* Convert a normal process ID to a string. Returns the string in a
3241 static buffer. */
c906108c
SS
3242
3243char *
39f77062 3244normal_pid_to_str (ptid_t ptid)
c906108c 3245{
fd0a2a6f 3246 static char buf[32];
c906108c 3247
5fff8fc0 3248 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3249 return buf;
3250}
3251
2c0b251b 3252static char *
770234d3 3253default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3254{
3255 return normal_pid_to_str (ptid);
3256}
3257
9b4eba8e
HZ
3258/* Error-catcher for target_find_memory_regions. */
3259static int
2e73927c
TT
3260dummy_find_memory_regions (struct target_ops *self,
3261 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3262{
9b4eba8e 3263 error (_("Command not implemented for this target."));
be4d1333
MS
3264 return 0;
3265}
3266
9b4eba8e
HZ
3267/* Error-catcher for target_make_corefile_notes. */
3268static char *
fc6691b2
TT
3269dummy_make_corefile_notes (struct target_ops *self,
3270 bfd *ignore1, int *ignore2)
be4d1333 3271{
9b4eba8e 3272 error (_("Command not implemented for this target."));
be4d1333
MS
3273 return NULL;
3274}
3275
c906108c
SS
3276/* Set up the handful of non-empty slots needed by the dummy target
3277 vector. */
3278
3279static void
fba45db2 3280init_dummy_target (void)
c906108c
SS
3281{
3282 dummy_target.to_shortname = "None";
3283 dummy_target.to_longname = "None";
3284 dummy_target.to_doc = "";
03583c20
UW
3285 dummy_target.to_supports_disable_randomization
3286 = find_default_supports_disable_randomization;
c906108c 3287 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3288 dummy_target.to_has_all_memory = return_zero;
3289 dummy_target.to_has_memory = return_zero;
3290 dummy_target.to_has_stack = return_zero;
3291 dummy_target.to_has_registers = return_zero;
3292 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3293 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3294
3295 install_dummy_methods (&dummy_target);
c906108c 3296}
c906108c 3297\f
c906108c 3298
f1c07ab0 3299void
460014f5 3300target_close (struct target_ops *targ)
f1c07ab0 3301{
7fdc1521
TT
3302 gdb_assert (!target_is_pushed (targ));
3303
f1c07ab0 3304 if (targ->to_xclose != NULL)
460014f5 3305 targ->to_xclose (targ);
f1c07ab0 3306 else if (targ->to_close != NULL)
de90e03d 3307 targ->to_close (targ);
947b8855
PA
3308
3309 if (targetdebug)
460014f5 3310 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3311}
3312
28439f5e
PA
3313int
3314target_thread_alive (ptid_t ptid)
c906108c 3315{
a7068b60 3316 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3317}
3318
3319void
e8032dde 3320target_update_thread_list (void)
28439f5e 3321{
e8032dde 3322 current_target.to_update_thread_list (&current_target);
c906108c
SS
3323}
3324
d914c394
SS
3325void
3326target_stop (ptid_t ptid)
3327{
3328 if (!may_stop)
3329 {
3330 warning (_("May not interrupt or stop the target, ignoring attempt"));
3331 return;
3332 }
3333
1eab8a48 3334 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3335}
3336
bfedc46a
PA
3337void
3338target_interrupt (ptid_t ptid)
3339{
3340 if (!may_stop)
3341 {
3342 warning (_("May not interrupt or stop the target, ignoring attempt"));
3343 return;
3344 }
3345
3346 (*current_target.to_interrupt) (&current_target, ptid);
3347}
3348
abc56d60
PA
3349/* See target.h. */
3350
3351void
3352target_check_pending_interrupt (void)
3353{
3354 (*current_target.to_check_pending_interrupt) (&current_target);
3355}
3356
f8c1d06b
GB
3357/* See target/target.h. */
3358
3359void
03f4463b 3360target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3361{
3362 struct target_waitstatus status;
3363 int was_non_stop = non_stop;
3364
3365 non_stop = 1;
3366 target_stop (ptid);
3367
3368 memset (&status, 0, sizeof (status));
3369 target_wait (ptid, &status, 0);
3370
3371 non_stop = was_non_stop;
3372}
3373
3374/* See target/target.h. */
3375
3376void
03f4463b 3377target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3378{
3379 target_resume (ptid, 0, GDB_SIGNAL_0);
3380}
3381
09826ec5
PA
3382/* Concatenate ELEM to LIST, a comma separate list, and return the
3383 result. The LIST incoming argument is released. */
3384
3385static char *
3386str_comma_list_concat_elem (char *list, const char *elem)
3387{
3388 if (list == NULL)
3389 return xstrdup (elem);
3390 else
3391 return reconcat (list, list, ", ", elem, (char *) NULL);
3392}
3393
3394/* Helper for target_options_to_string. If OPT is present in
3395 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3396 Returns the new resulting string. OPT is removed from
3397 TARGET_OPTIONS. */
3398
3399static char *
3400do_option (int *target_options, char *ret,
3401 int opt, char *opt_str)
3402{
3403 if ((*target_options & opt) != 0)
3404 {
3405 ret = str_comma_list_concat_elem (ret, opt_str);
3406 *target_options &= ~opt;
3407 }
3408
3409 return ret;
3410}
3411
3412char *
3413target_options_to_string (int target_options)
3414{
3415 char *ret = NULL;
3416
3417#define DO_TARG_OPTION(OPT) \
3418 ret = do_option (&target_options, ret, OPT, #OPT)
3419
3420 DO_TARG_OPTION (TARGET_WNOHANG);
3421
3422 if (target_options != 0)
3423 ret = str_comma_list_concat_elem (ret, "unknown???");
3424
3425 if (ret == NULL)
3426 ret = xstrdup ("");
3427 return ret;
3428}
3429
bf0c5130 3430static void
56be3814
UW
3431debug_print_register (const char * func,
3432 struct regcache *regcache, int regno)
bf0c5130 3433{
f8d29908 3434 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3435
bf0c5130 3436 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3437 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3438 && gdbarch_register_name (gdbarch, regno) != NULL
3439 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3440 fprintf_unfiltered (gdb_stdlog, "(%s)",
3441 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3442 else
3443 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3444 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3445 {
e17a4113 3446 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3447 int i, size = register_size (gdbarch, regno);
e362b510 3448 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3449
0ff58721 3450 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3451 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3452 for (i = 0; i < size; i++)
bf0c5130
AC
3453 {
3454 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3455 }
81c4a259 3456 if (size <= sizeof (LONGEST))
bf0c5130 3457 {
e17a4113 3458 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3459
0b1553bc
UW
3460 fprintf_unfiltered (gdb_stdlog, " %s %s",
3461 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3462 }
3463 }
3464 fprintf_unfiltered (gdb_stdlog, "\n");
3465}
3466
28439f5e
PA
3467void
3468target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3469{
ad5989bd
TT
3470 current_target.to_fetch_registers (&current_target, regcache, regno);
3471 if (targetdebug)
3472 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3473}
3474
28439f5e
PA
3475void
3476target_store_registers (struct regcache *regcache, int regno)
c906108c 3477{
28439f5e 3478 struct target_ops *t;
5d502164 3479
d914c394
SS
3480 if (!may_write_registers)
3481 error (_("Writing to registers is not allowed (regno %d)"), regno);
3482
6b84065d
TT
3483 current_target.to_store_registers (&current_target, regcache, regno);
3484 if (targetdebug)
28439f5e 3485 {
6b84065d 3486 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3487 }
c906108c
SS
3488}
3489
dc146f7c
VP
3490int
3491target_core_of_thread (ptid_t ptid)
3492{
a7068b60 3493 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3494}
3495
936d2992
PA
3496int
3497simple_verify_memory (struct target_ops *ops,
3498 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3499{
3500 LONGEST total_xfered = 0;
3501
3502 while (total_xfered < size)
3503 {
3504 ULONGEST xfered_len;
3505 enum target_xfer_status status;
3506 gdb_byte buf[1024];
3507 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3508
3509 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3510 buf, NULL, lma + total_xfered, howmuch,
3511 &xfered_len);
3512 if (status == TARGET_XFER_OK
3513 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3514 {
3515 total_xfered += xfered_len;
3516 QUIT;
3517 }
3518 else
3519 return 0;
3520 }
3521 return 1;
3522}
3523
3524/* Default implementation of memory verification. */
3525
3526static int
3527default_verify_memory (struct target_ops *self,
3528 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3529{
3530 /* Start over from the top of the target stack. */
3531 return simple_verify_memory (current_target.beneath,
3532 data, memaddr, size);
3533}
3534
4a5e7a5b
PA
3535int
3536target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3537{
a7068b60
TT
3538 return current_target.to_verify_memory (&current_target,
3539 data, memaddr, size);
4a5e7a5b
PA
3540}
3541
9c06b0b4
TJB
3542/* The documentation for this function is in its prototype declaration in
3543 target.h. */
3544
3545int
f4b0a671
SM
3546target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3547 enum target_hw_bp_type rw)
9c06b0b4 3548{
a7068b60
TT
3549 return current_target.to_insert_mask_watchpoint (&current_target,
3550 addr, mask, rw);
9c06b0b4
TJB
3551}
3552
3553/* The documentation for this function is in its prototype declaration in
3554 target.h. */
3555
3556int
f4b0a671
SM
3557target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3558 enum target_hw_bp_type rw)
9c06b0b4 3559{
a7068b60
TT
3560 return current_target.to_remove_mask_watchpoint (&current_target,
3561 addr, mask, rw);
9c06b0b4
TJB
3562}
3563
3564/* The documentation for this function is in its prototype declaration
3565 in target.h. */
3566
3567int
3568target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3569{
6c7e5e5c
TT
3570 return current_target.to_masked_watch_num_registers (&current_target,
3571 addr, mask);
9c06b0b4
TJB
3572}
3573
f1310107
TJB
3574/* The documentation for this function is in its prototype declaration
3575 in target.h. */
3576
3577int
3578target_ranged_break_num_registers (void)
3579{
a134316b 3580 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3581}
3582
02d27625
MM
3583/* See target.h. */
3584
043c3577
MM
3585int
3586target_supports_btrace (enum btrace_format format)
3587{
3588 return current_target.to_supports_btrace (&current_target, format);
3589}
3590
3591/* See target.h. */
3592
02d27625 3593struct btrace_target_info *
f4abbc16 3594target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3595{
f4abbc16 3596 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3597}
3598
3599/* See target.h. */
3600
3601void
3602target_disable_btrace (struct btrace_target_info *btinfo)
3603{
8dc292d3 3604 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3605}
3606
3607/* See target.h. */
3608
3609void
3610target_teardown_btrace (struct btrace_target_info *btinfo)
3611{
9ace480d 3612 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3613}
3614
3615/* See target.h. */
3616
969c39fb 3617enum btrace_error
734b0e4b 3618target_read_btrace (struct btrace_data *btrace,
969c39fb 3619 struct btrace_target_info *btinfo,
02d27625
MM
3620 enum btrace_read_type type)
3621{
eb5b20d4 3622 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3623}
3624
d02ed0bb
MM
3625/* See target.h. */
3626
f4abbc16
MM
3627const struct btrace_config *
3628target_btrace_conf (const struct btrace_target_info *btinfo)
3629{
3630 return current_target.to_btrace_conf (&current_target, btinfo);
3631}
3632
3633/* See target.h. */
3634
7c1687a9
MM
3635void
3636target_stop_recording (void)
3637{
ee97f592 3638 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3639}
3640
3641/* See target.h. */
3642
d02ed0bb 3643void
85e1311a 3644target_save_record (const char *filename)
d02ed0bb 3645{
f09e2107 3646 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3647}
3648
3649/* See target.h. */
3650
3651int
3652target_supports_delete_record (void)
3653{
3654 struct target_ops *t;
3655
3656 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3657 if (t->to_delete_record != delegate_delete_record
3658 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3659 return 1;
3660
3661 return 0;
3662}
3663
3664/* See target.h. */
3665
3666void
3667target_delete_record (void)
3668{
07366925 3669 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3670}
3671
3672/* See target.h. */
3673
3674int
a52eab48 3675target_record_is_replaying (ptid_t ptid)
d02ed0bb 3676{
a52eab48 3677 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3678}
3679
3680/* See target.h. */
3681
7ff27e9b
MM
3682int
3683target_record_will_replay (ptid_t ptid, int dir)
3684{
3685 return current_target.to_record_will_replay (&current_target, ptid, dir);
3686}
3687
3688/* See target.h. */
3689
797094dd
MM
3690void
3691target_record_stop_replaying (void)
3692{
3693 current_target.to_record_stop_replaying (&current_target);
3694}
3695
3696/* See target.h. */
3697
d02ed0bb
MM
3698void
3699target_goto_record_begin (void)
3700{
671e76cc 3701 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3702}
3703
3704/* See target.h. */
3705
3706void
3707target_goto_record_end (void)
3708{
e9179bb3 3709 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3710}
3711
3712/* See target.h. */
3713
3714void
3715target_goto_record (ULONGEST insn)
3716{
05969c84 3717 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3718}
3719
67c86d06
MM
3720/* See target.h. */
3721
3722void
3723target_insn_history (int size, int flags)
3724{
3679abfa 3725 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3726}
3727
3728/* See target.h. */
3729
3730void
3731target_insn_history_from (ULONGEST from, int size, int flags)
3732{
8444ab58 3733 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3734}
3735
3736/* See target.h. */
3737
3738void
3739target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3740{
c29302cc 3741 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3742}
3743
15984c13
MM
3744/* See target.h. */
3745
3746void
3747target_call_history (int size, int flags)
3748{
170049d4 3749 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3750}
3751
3752/* See target.h. */
3753
3754void
3755target_call_history_from (ULONGEST begin, int size, int flags)
3756{
16fc27d6 3757 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3758}
3759
3760/* See target.h. */
3761
3762void
3763target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3764{
115d9817 3765 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3766}
3767
ea001bdc
MM
3768/* See target.h. */
3769
3770const struct frame_unwind *
3771target_get_unwinder (void)
3772{
ac01945b 3773 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3774}
3775
3776/* See target.h. */
3777
3778const struct frame_unwind *
3779target_get_tailcall_unwinder (void)
3780{
ac01945b 3781 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3782}
3783
5fff78c4
MM
3784/* See target.h. */
3785
3786void
3787target_prepare_to_generate_core (void)
3788{
3789 current_target.to_prepare_to_generate_core (&current_target);
3790}
3791
3792/* See target.h. */
3793
3794void
3795target_done_generating_core (void)
3796{
3797 current_target.to_done_generating_core (&current_target);
3798}
3799
c906108c 3800static void
fba45db2 3801setup_target_debug (void)
c906108c
SS
3802{
3803 memcpy (&debug_target, &current_target, sizeof debug_target);
3804
a7068b60 3805 init_debug_target (&current_target);
c906108c 3806}
c906108c 3807\f
c5aa993b
JM
3808
3809static char targ_desc[] =
3e43a32a
MS
3810"Names of targets and files being debugged.\nShows the entire \
3811stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3812core-file, and process, if any), as well as the symbol file name.";
3813
a53f3625 3814static void
a30bf1f1
TT
3815default_rcmd (struct target_ops *self, const char *command,
3816 struct ui_file *output)
a53f3625
TT
3817{
3818 error (_("\"monitor\" command not supported by this target."));
3819}
3820
96baa820
JM
3821static void
3822do_monitor_command (char *cmd,
3823 int from_tty)
3824{
96baa820
JM
3825 target_rcmd (cmd, gdb_stdtarg);
3826}
3827
87680a14
JB
3828/* Print the name of each layers of our target stack. */
3829
3830static void
3831maintenance_print_target_stack (char *cmd, int from_tty)
3832{
3833 struct target_ops *t;
3834
3835 printf_filtered (_("The current target stack is:\n"));
3836
3837 for (t = target_stack; t != NULL; t = t->beneath)
3838 {
3839 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3840 }
3841}
3842
372316f1
PA
3843/* See target.h. */
3844
3845void
3846target_async (int enable)
3847{
3848 infrun_async (enable);
3849 current_target.to_async (&current_target, enable);
3850}
3851
329ea579
PA
3852/* Controls if targets can report that they can/are async. This is
3853 just for maintainers to use when debugging gdb. */
3854int target_async_permitted = 1;
c6ebd6cf
VP
3855
3856/* The set command writes to this variable. If the inferior is
b5419e49 3857 executing, target_async_permitted is *not* updated. */
329ea579 3858static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3859
3860static void
329ea579
PA
3861maint_set_target_async_command (char *args, int from_tty,
3862 struct cmd_list_element *c)
c6ebd6cf 3863{
c35b1492 3864 if (have_live_inferiors ())
c6ebd6cf
VP
3865 {
3866 target_async_permitted_1 = target_async_permitted;
3867 error (_("Cannot change this setting while the inferior is running."));
3868 }
3869
3870 target_async_permitted = target_async_permitted_1;
3871}
3872
3873static void
329ea579
PA
3874maint_show_target_async_command (struct ui_file *file, int from_tty,
3875 struct cmd_list_element *c,
3876 const char *value)
c6ebd6cf 3877{
3e43a32a
MS
3878 fprintf_filtered (file,
3879 _("Controlling the inferior in "
3880 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3881}
3882
fbea99ea
PA
3883/* Return true if the target operates in non-stop mode even with "set
3884 non-stop off". */
3885
3886static int
3887target_always_non_stop_p (void)
3888{
3889 return current_target.to_always_non_stop_p (&current_target);
3890}
3891
3892/* See target.h. */
3893
3894int
3895target_is_non_stop_p (void)
3896{
3897 return (non_stop
3898 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3899 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3900 && target_always_non_stop_p ()));
3901}
3902
3903/* Controls if targets can report that they always run in non-stop
3904 mode. This is just for maintainers to use when debugging gdb. */
3905enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3906
3907/* The set command writes to this variable. If the inferior is
3908 executing, target_non_stop_enabled is *not* updated. */
3909static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3910
3911/* Implementation of "maint set target-non-stop". */
3912
3913static void
3914maint_set_target_non_stop_command (char *args, int from_tty,
3915 struct cmd_list_element *c)
3916{
3917 if (have_live_inferiors ())
3918 {
3919 target_non_stop_enabled_1 = target_non_stop_enabled;
3920 error (_("Cannot change this setting while the inferior is running."));
3921 }
3922
3923 target_non_stop_enabled = target_non_stop_enabled_1;
3924}
3925
3926/* Implementation of "maint show target-non-stop". */
3927
3928static void
3929maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3930 struct cmd_list_element *c,
3931 const char *value)
3932{
3933 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3934 fprintf_filtered (file,
3935 _("Whether the target is always in non-stop mode "
3936 "is %s (currently %s).\n"), value,
3937 target_always_non_stop_p () ? "on" : "off");
3938 else
3939 fprintf_filtered (file,
3940 _("Whether the target is always in non-stop mode "
3941 "is %s.\n"), value);
3942}
3943
d914c394
SS
3944/* Temporary copies of permission settings. */
3945
3946static int may_write_registers_1 = 1;
3947static int may_write_memory_1 = 1;
3948static int may_insert_breakpoints_1 = 1;
3949static int may_insert_tracepoints_1 = 1;
3950static int may_insert_fast_tracepoints_1 = 1;
3951static int may_stop_1 = 1;
3952
3953/* Make the user-set values match the real values again. */
3954
3955void
3956update_target_permissions (void)
3957{
3958 may_write_registers_1 = may_write_registers;
3959 may_write_memory_1 = may_write_memory;
3960 may_insert_breakpoints_1 = may_insert_breakpoints;
3961 may_insert_tracepoints_1 = may_insert_tracepoints;
3962 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3963 may_stop_1 = may_stop;
3964}
3965
3966/* The one function handles (most of) the permission flags in the same
3967 way. */
3968
3969static void
3970set_target_permissions (char *args, int from_tty,
3971 struct cmd_list_element *c)
3972{
3973 if (target_has_execution)
3974 {
3975 update_target_permissions ();
3976 error (_("Cannot change this setting while the inferior is running."));
3977 }
3978
3979 /* Make the real values match the user-changed values. */
3980 may_write_registers = may_write_registers_1;
3981 may_insert_breakpoints = may_insert_breakpoints_1;
3982 may_insert_tracepoints = may_insert_tracepoints_1;
3983 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3984 may_stop = may_stop_1;
3985 update_observer_mode ();
3986}
3987
3988/* Set memory write permission independently of observer mode. */
3989
3990static void
3991set_write_memory_permission (char *args, int from_tty,
3992 struct cmd_list_element *c)
3993{
3994 /* Make the real values match the user-changed values. */
3995 may_write_memory = may_write_memory_1;
3996 update_observer_mode ();
3997}
3998
3999
c906108c 4000void
fba45db2 4001initialize_targets (void)
c906108c
SS
4002{
4003 init_dummy_target ();
4004 push_target (&dummy_target);
4005
4006 add_info ("target", target_info, targ_desc);
4007 add_info ("files", target_info, targ_desc);
4008
ccce17b0 4009 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4010Set target debugging."), _("\
4011Show target debugging."), _("\
333dabeb 4012When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4013verbose."),
4014 set_targetdebug,
ccce17b0
YQ
4015 show_targetdebug,
4016 &setdebuglist, &showdebuglist);
3a11626d 4017
2bc416ba 4018 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4019 &trust_readonly, _("\
4020Set mode for reading from readonly sections."), _("\
4021Show mode for reading from readonly sections."), _("\
3a11626d
MS
4022When this mode is on, memory reads from readonly sections (such as .text)\n\
4023will be read from the object file instead of from the target. This will\n\
7915a72c 4024result in significant performance improvement for remote targets."),
2c5b56ce 4025 NULL,
920d2a44 4026 show_trust_readonly,
e707bbc2 4027 &setlist, &showlist);
96baa820
JM
4028
4029 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4030 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4031
87680a14
JB
4032 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4033 _("Print the name of each layer of the internal target stack."),
4034 &maintenanceprintlist);
4035
c6ebd6cf
VP
4036 add_setshow_boolean_cmd ("target-async", no_class,
4037 &target_async_permitted_1, _("\
4038Set whether gdb controls the inferior in asynchronous mode."), _("\
4039Show whether gdb controls the inferior in asynchronous mode."), _("\
4040Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4041 maint_set_target_async_command,
4042 maint_show_target_async_command,
4043 &maintenance_set_cmdlist,
4044 &maintenance_show_cmdlist);
c6ebd6cf 4045
fbea99ea
PA
4046 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4047 &target_non_stop_enabled_1, _("\
4048Set whether gdb always controls the inferior in non-stop mode."), _("\
4049Show whether gdb always controls the inferior in non-stop mode."), _("\
4050Tells gdb whether to control the inferior in non-stop mode."),
4051 maint_set_target_non_stop_command,
4052 maint_show_target_non_stop_command,
4053 &maintenance_set_cmdlist,
4054 &maintenance_show_cmdlist);
4055
d914c394
SS
4056 add_setshow_boolean_cmd ("may-write-registers", class_support,
4057 &may_write_registers_1, _("\
4058Set permission to write into registers."), _("\
4059Show permission to write into registers."), _("\
4060When this permission is on, GDB may write into the target's registers.\n\
4061Otherwise, any sort of write attempt will result in an error."),
4062 set_target_permissions, NULL,
4063 &setlist, &showlist);
4064
4065 add_setshow_boolean_cmd ("may-write-memory", class_support,
4066 &may_write_memory_1, _("\
4067Set permission to write into target memory."), _("\
4068Show permission to write into target memory."), _("\
4069When this permission is on, GDB may write into the target's memory.\n\
4070Otherwise, any sort of write attempt will result in an error."),
4071 set_write_memory_permission, NULL,
4072 &setlist, &showlist);
4073
4074 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4075 &may_insert_breakpoints_1, _("\
4076Set permission to insert breakpoints in the target."), _("\
4077Show permission to insert breakpoints in the target."), _("\
4078When this permission is on, GDB may insert breakpoints in the program.\n\
4079Otherwise, any sort of insertion attempt will result in an error."),
4080 set_target_permissions, NULL,
4081 &setlist, &showlist);
4082
4083 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4084 &may_insert_tracepoints_1, _("\
4085Set permission to insert tracepoints in the target."), _("\
4086Show permission to insert tracepoints in the target."), _("\
4087When this permission is on, GDB may insert tracepoints in the program.\n\
4088Otherwise, any sort of insertion attempt will result in an error."),
4089 set_target_permissions, NULL,
4090 &setlist, &showlist);
4091
4092 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4093 &may_insert_fast_tracepoints_1, _("\
4094Set permission to insert fast tracepoints in the target."), _("\
4095Show permission to insert fast tracepoints in the target."), _("\
4096When this permission is on, GDB may insert fast tracepoints.\n\
4097Otherwise, any sort of insertion attempt will result in an error."),
4098 set_target_permissions, NULL,
4099 &setlist, &showlist);
4100
4101 add_setshow_boolean_cmd ("may-interrupt", class_support,
4102 &may_stop_1, _("\
4103Set permission to interrupt or signal the target."), _("\
4104Show permission to interrupt or signal the target."), _("\
4105When this permission is on, GDB may interrupt/stop the target's execution.\n\
4106Otherwise, any attempt to interrupt or stop will be ignored."),
4107 set_target_permissions, NULL,
4108 &setlist, &showlist);
6a3cb8e8
PA
4109
4110 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4111 &auto_connect_native_target, _("\
4112Set whether GDB may automatically connect to the native target."), _("\
4113Show whether GDB may automatically connect to the native target."), _("\
4114When on, and GDB is not connected to a target yet, GDB\n\
4115attempts \"run\" and other commands with the native target."),
4116 NULL, show_auto_connect_native_target,
4117 &setlist, &showlist);
c906108c 4118}
This page took 2.531455 seconds and 4 git commands to generate.