The value of a bignum expression is held in a single global array. This means
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include <errno.h>
0e9f083f 24#include <string.h>
c906108c 25#include "target.h"
68c765e2 26#include "target-dcache.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "symtab.h"
29#include "inferior.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
4930751a 33#include "dcache.h"
c906108c 34#include <signal.h>
4e052eda 35#include "regcache.h"
0088c768 36#include "gdb_assert.h"
b6591e8b 37#include "gdbcore.h"
9e35dae4 38#include "exceptions.h"
424163ea 39#include "target-descriptions.h"
e1ac3328 40#include "gdbthread.h"
b9db4ced 41#include "solib.h"
07b82ea5 42#include "exec.h"
edb3359d 43#include "inline-frame.h"
2f4d8875 44#include "tracepoint.h"
7313baad 45#include "gdb/fileio.h"
8ffcbaaf 46#include "agent.h"
8de71aab 47#include "auxv.h"
c906108c 48
a14ed312 49static void target_info (char *, int);
c906108c 50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a53f3625
TT
59static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
c25c4a8b 76static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 77
555bbdeb
TT
78static int return_zero (struct target_ops *);
79
80static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 81
a14ed312 82static void target_command (char *, int);
c906108c 83
a14ed312 84static struct target_ops *find_default_run_target (char *);
c906108c 85
c2250ad1
UW
86static struct gdbarch *default_thread_architecture (struct target_ops *ops,
87 ptid_t ptid);
88
0b5a2719
TT
89static int dummy_find_memory_regions (struct target_ops *self,
90 find_memory_region_ftype ignore1,
91 void *ignore2);
92
16f796b1
TT
93static char *dummy_make_corefile_notes (struct target_ops *self,
94 bfd *ignore1, int *ignore2);
95
770234d3
TT
96static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
97
6b84065d
TT
98static int find_default_can_async_p (struct target_ops *ignore);
99
100static int find_default_is_async_p (struct target_ops *ignore);
101
fe31bf5b
TT
102static enum exec_direction_kind default_execution_direction
103 (struct target_ops *self);
104
c0eca49f
TT
105static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
106 struct gdbarch *gdbarch);
107
1101cb7b
TT
108#include "target-delegates.c"
109
a14ed312 110static void init_dummy_target (void);
c906108c 111
aa869812
AC
112static struct target_ops debug_target;
113
a14ed312 114static void debug_to_open (char *, int);
c906108c 115
f32dbf8c
MM
116static void debug_to_prepare_to_store (struct target_ops *self,
117 struct regcache *);
c906108c 118
a14ed312 119static void debug_to_files_info (struct target_ops *);
c906108c 120
3db08215 121static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
a6d9a66e 122 struct bp_target_info *);
c906108c 123
3db08215 124static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
a6d9a66e 125 struct bp_target_info *);
c906108c 126
5461485a
TT
127static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
128 int, int, int);
ccaa32c7 129
23a26771
TT
130static int debug_to_insert_hw_breakpoint (struct target_ops *self,
131 struct gdbarch *,
a6d9a66e 132 struct bp_target_info *);
ccaa32c7 133
a64dc96c
TT
134static int debug_to_remove_hw_breakpoint (struct target_ops *self,
135 struct gdbarch *,
a6d9a66e 136 struct bp_target_info *);
ccaa32c7 137
7bb99c53
TT
138static int debug_to_insert_watchpoint (struct target_ops *self,
139 CORE_ADDR, int, int,
0cf6dd15 140 struct expression *);
ccaa32c7 141
11b5219a
TT
142static int debug_to_remove_watchpoint (struct target_ops *self,
143 CORE_ADDR, int, int,
0cf6dd15 144 struct expression *);
ccaa32c7 145
4aa7a7f5 146static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
ccaa32c7 147
5009afc5
AS
148static int debug_to_watchpoint_addr_within_range (struct target_ops *,
149 CORE_ADDR, CORE_ADDR, int);
150
31568a15
TT
151static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
152 CORE_ADDR, int);
e0d24f8d 153
c3a5ff89
TT
154static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
155 CORE_ADDR, int, int,
0cf6dd15
TJB
156 struct expression *);
157
c42bf286 158static void debug_to_terminal_init (struct target_ops *self);
c906108c 159
d2f640d4 160static void debug_to_terminal_inferior (struct target_ops *self);
c906108c 161
2e1e1a19 162static void debug_to_terminal_ours_for_output (struct target_ops *self);
c906108c 163
ae3bd431 164static void debug_to_terminal_save_ours (struct target_ops *self);
a790ad35 165
e3594fd1 166static void debug_to_terminal_ours (struct target_ops *self);
c906108c 167
71a9f134 168static void debug_to_load (struct target_ops *self, char *, int);
c906108c 169
da82bd6b 170static int debug_to_can_run (struct target_ops *self);
c906108c 171
1eab8a48 172static void debug_to_stop (struct target_ops *self, ptid_t);
c906108c 173
c906108c 174/* Pointer to array of target architecture structures; the size of the
2bc416ba 175 array; the current index into the array; the allocated size of the
c906108c
SS
176 array. */
177struct target_ops **target_structs;
178unsigned target_struct_size;
c906108c
SS
179unsigned target_struct_allocsize;
180#define DEFAULT_ALLOCSIZE 10
181
182/* The initial current target, so that there is always a semi-valid
183 current target. */
184
185static struct target_ops dummy_target;
186
187/* Top of target stack. */
188
258b763a 189static struct target_ops *target_stack;
c906108c
SS
190
191/* The target structure we are currently using to talk to a process
192 or file or whatever "inferior" we have. */
193
194struct target_ops current_target;
195
196/* Command list for target. */
197
198static struct cmd_list_element *targetlist = NULL;
199
cf7a04e8
DJ
200/* Nonzero if we should trust readonly sections from the
201 executable when reading memory. */
202
203static int trust_readonly = 0;
204
8defab1a
DJ
205/* Nonzero if we should show true memory content including
206 memory breakpoint inserted by gdb. */
207
208static int show_memory_breakpoints = 0;
209
d914c394
SS
210/* These globals control whether GDB attempts to perform these
211 operations; they are useful for targets that need to prevent
212 inadvertant disruption, such as in non-stop mode. */
213
214int may_write_registers = 1;
215
216int may_write_memory = 1;
217
218int may_insert_breakpoints = 1;
219
220int may_insert_tracepoints = 1;
221
222int may_insert_fast_tracepoints = 1;
223
224int may_stop = 1;
225
c906108c
SS
226/* Non-zero if we want to see trace of target level stuff. */
227
ccce17b0 228static unsigned int targetdebug = 0;
920d2a44
AC
229static void
230show_targetdebug (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
234}
c906108c 235
a14ed312 236static void setup_target_debug (void);
c906108c 237
c906108c
SS
238/* The user just typed 'target' without the name of a target. */
239
c906108c 240static void
fba45db2 241target_command (char *arg, int from_tty)
c906108c
SS
242{
243 fputs_filtered ("Argument required (target name). Try `help target'\n",
244 gdb_stdout);
245}
246
c35b1492
PA
247/* Default target_has_* methods for process_stratum targets. */
248
249int
250default_child_has_all_memory (struct target_ops *ops)
251{
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257}
258
259int
260default_child_has_memory (struct target_ops *ops)
261{
262 /* If no inferior selected, then we can't read memory here. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267}
268
269int
270default_child_has_stack (struct target_ops *ops)
271{
272 /* If no inferior selected, there's no stack. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277}
278
279int
280default_child_has_registers (struct target_ops *ops)
281{
282 /* Can't read registers from no inferior. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287}
288
289int
aeaec162 290default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
291{
292 /* If there's no thread selected, then we can't make it run through
293 hoops. */
aeaec162 294 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
295 return 0;
296
297 return 1;
298}
299
300
301int
302target_has_all_memory_1 (void)
303{
304 struct target_ops *t;
305
306 for (t = current_target.beneath; t != NULL; t = t->beneath)
307 if (t->to_has_all_memory (t))
308 return 1;
309
310 return 0;
311}
312
313int
314target_has_memory_1 (void)
315{
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_memory (t))
320 return 1;
321
322 return 0;
323}
324
325int
326target_has_stack_1 (void)
327{
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_stack (t))
332 return 1;
333
334 return 0;
335}
336
337int
338target_has_registers_1 (void)
339{
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_registers (t))
344 return 1;
345
346 return 0;
347}
348
349int
aeaec162 350target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
351{
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 355 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
356 return 1;
357
358 return 0;
359}
360
aeaec162
TT
361int
362target_has_execution_current (void)
363{
364 return target_has_execution_1 (inferior_ptid);
365}
366
c22a2b88
TT
367/* Complete initialization of T. This ensures that various fields in
368 T are set, if needed by the target implementation. */
c906108c
SS
369
370void
c22a2b88 371complete_target_initialization (struct target_ops *t)
c906108c 372{
0088c768 373 /* Provide default values for all "must have" methods. */
0088c768 374
c35b1492 375 if (t->to_has_all_memory == NULL)
555bbdeb 376 t->to_has_all_memory = return_zero;
c35b1492
PA
377
378 if (t->to_has_memory == NULL)
555bbdeb 379 t->to_has_memory = return_zero;
c35b1492
PA
380
381 if (t->to_has_stack == NULL)
555bbdeb 382 t->to_has_stack = return_zero;
c35b1492
PA
383
384 if (t->to_has_registers == NULL)
555bbdeb 385 t->to_has_registers = return_zero;
c35b1492
PA
386
387 if (t->to_has_execution == NULL)
555bbdeb 388 t->to_has_execution = return_zero_has_execution;
1101cb7b
TT
389
390 install_delegators (t);
c22a2b88
TT
391}
392
393/* Add possible target architecture T to the list and add a new
394 command 'target T->to_shortname'. Set COMPLETER as the command's
395 completer if not NULL. */
396
397void
398add_target_with_completer (struct target_ops *t,
399 completer_ftype *completer)
400{
401 struct cmd_list_element *c;
402
403 complete_target_initialization (t);
c35b1492 404
c906108c
SS
405 if (!target_structs)
406 {
407 target_struct_allocsize = DEFAULT_ALLOCSIZE;
408 target_structs = (struct target_ops **) xmalloc
409 (target_struct_allocsize * sizeof (*target_structs));
410 }
411 if (target_struct_size >= target_struct_allocsize)
412 {
413 target_struct_allocsize *= 2;
414 target_structs = (struct target_ops **)
c5aa993b
JM
415 xrealloc ((char *) target_structs,
416 target_struct_allocsize * sizeof (*target_structs));
c906108c
SS
417 }
418 target_structs[target_struct_size++] = t;
c906108c
SS
419
420 if (targetlist == NULL)
1bedd215
AC
421 add_prefix_cmd ("target", class_run, target_command, _("\
422Connect to a target machine or process.\n\
c906108c
SS
423The first argument is the type or protocol of the target machine.\n\
424Remaining arguments are interpreted by the target protocol. For more\n\
425information on the arguments for a particular protocol, type\n\
1bedd215 426`help target ' followed by the protocol name."),
c906108c 427 &targetlist, "target ", 0, &cmdlist);
9852c492
YQ
428 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
429 &targetlist);
430 if (completer != NULL)
431 set_cmd_completer (c, completer);
432}
433
434/* Add a possible target architecture to the list. */
435
436void
437add_target (struct target_ops *t)
438{
439 add_target_with_completer (t, NULL);
c906108c
SS
440}
441
b48d48eb
MM
442/* See target.h. */
443
444void
445add_deprecated_target_alias (struct target_ops *t, char *alias)
446{
447 struct cmd_list_element *c;
448 char *alt;
449
450 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
451 see PR cli/15104. */
452 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
453 alt = xstrprintf ("target %s", t->to_shortname);
454 deprecate_cmd (c, alt);
455}
456
c906108c
SS
457/* Stub functions */
458
7d85a9c0
JB
459void
460target_kill (void)
461{
423a4807
TT
462 if (targetdebug)
463 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
7d85a9c0 464
423a4807 465 current_target.to_kill (&current_target);
7d85a9c0
JB
466}
467
11cf8741
JM
468void
469target_load (char *arg, int from_tty)
470{
4e5d721f 471 target_dcache_invalidate ();
71a9f134 472 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
473}
474
947b8855
PA
475void
476target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
136d6dae
VP
478{
479 struct target_ops *t;
5d502164 480
136d6dae
VP
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
482 {
483 if (t->to_create_inferior != NULL)
484 {
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
947b8855
PA
486 if (targetdebug)
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
136d6dae
VP
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
9b20d036 495 _("could not find a target to create inferior"));
136d6dae
VP
496}
497
d9d2d8b6
PA
498void
499target_terminal_inferior (void)
500{
501 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 502 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
506 return;
507
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
d2f640d4 510 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 511}
136d6dae 512
c906108c 513static void
fba45db2 514tcomplain (void)
c906108c 515{
8a3fe4f8 516 error (_("You can't do that when your target is `%s'"),
c906108c
SS
517 current_target.to_shortname);
518}
519
520void
fba45db2 521noprocess (void)
c906108c 522{
8a3fe4f8 523 error (_("You can't do that without a process to debug."));
c906108c
SS
524}
525
c906108c 526static void
0a4f40a2 527default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 528{
a3f17187 529 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
530}
531
0ef643c8
JB
532/* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
2c0b251b 538static ptid_t
1e6b91a4 539default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
540{
541 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
542}
543
32231432 544static enum exec_direction_kind
4c612759 545default_execution_direction (struct target_ops *self)
32231432
PA
546{
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553to_execution_direction must be implemented for reverse async");
554}
555
7998dfc3
AC
556/* Go through the target stack from top to bottom, copying over zero
557 entries in current_target, then filling in still empty entries. In
558 effect, we are doing class inheritance through the pushed target
559 vectors.
560
561 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
562 is currently implemented, is that it discards any knowledge of
563 which target an inherited method originally belonged to.
564 Consequently, new new target methods should instead explicitly and
565 locally search the target stack for the target that can handle the
566 request. */
c906108c
SS
567
568static void
7998dfc3 569update_current_target (void)
c906108c 570{
7998dfc3
AC
571 struct target_ops *t;
572
08d8bcd7 573 /* First, reset current's contents. */
7998dfc3
AC
574 memset (&current_target, 0, sizeof (current_target));
575
1101cb7b
TT
576 /* Install the delegators. */
577 install_delegators (&current_target);
578
be4ddd36
TT
579 current_target.to_stratum = target_stack->to_stratum;
580
7998dfc3
AC
581#define INHERIT(FIELD, TARGET) \
582 if (!current_target.FIELD) \
583 current_target.FIELD = (TARGET)->FIELD
584
be4ddd36
TT
585 /* Do not add any new INHERITs here. Instead, use the delegation
586 mechanism provided by make-target-delegates. */
7998dfc3
AC
587 for (t = target_stack; t; t = t->beneath)
588 {
589 INHERIT (to_shortname, t);
590 INHERIT (to_longname, t);
dc177b7a 591 INHERIT (to_attach_no_wait, t);
74174d2e 592 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 593 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 594 INHERIT (to_has_thread_control, t);
7998dfc3
AC
595 }
596#undef INHERIT
597
7998dfc3
AC
598 /* Finally, position the target-stack beneath the squashed
599 "current_target". That way code looking for a non-inherited
600 target method can quickly and simply find it. */
601 current_target.beneath = target_stack;
b4b61fdb
DJ
602
603 if (targetdebug)
604 setup_target_debug ();
c906108c
SS
605}
606
607/* Push a new target type into the stack of the existing target accessors,
608 possibly superseding some of the existing accessors.
609
c906108c
SS
610 Rather than allow an empty stack, we always have the dummy target at
611 the bottom stratum, so we can call the function vectors without
612 checking them. */
613
b26a4dcb 614void
fba45db2 615push_target (struct target_ops *t)
c906108c 616{
258b763a 617 struct target_ops **cur;
c906108c
SS
618
619 /* Check magic number. If wrong, it probably means someone changed
620 the struct definition, but not all the places that initialize one. */
621 if (t->to_magic != OPS_MAGIC)
622 {
c5aa993b
JM
623 fprintf_unfiltered (gdb_stderr,
624 "Magic number of %s target struct wrong\n",
625 t->to_shortname);
3e43a32a
MS
626 internal_error (__FILE__, __LINE__,
627 _("failed internal consistency check"));
c906108c
SS
628 }
629
258b763a
AC
630 /* Find the proper stratum to install this target in. */
631 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 632 {
258b763a 633 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
634 break;
635 }
636
258b763a 637 /* If there's already targets at this stratum, remove them. */
88c231eb 638 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
639 targets to CUR, and not just those at this stratum level. */
640 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
641 {
642 /* There's already something at this stratum level. Close it,
643 and un-hook it from the stack. */
644 struct target_ops *tmp = (*cur);
5d502164 645
258b763a
AC
646 (*cur) = (*cur)->beneath;
647 tmp->beneath = NULL;
460014f5 648 target_close (tmp);
258b763a 649 }
c906108c
SS
650
651 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
652 t->beneath = (*cur);
653 (*cur) = t;
c906108c
SS
654
655 update_current_target ();
c906108c
SS
656}
657
2bc416ba 658/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
659 Return how many times it was removed (0 or 1). */
660
661int
fba45db2 662unpush_target (struct target_ops *t)
c906108c 663{
258b763a
AC
664 struct target_ops **cur;
665 struct target_ops *tmp;
c906108c 666
c8d104ad
PA
667 if (t->to_stratum == dummy_stratum)
668 internal_error (__FILE__, __LINE__,
9b20d036 669 _("Attempt to unpush the dummy target"));
c8d104ad 670
c906108c 671 /* Look for the specified target. Note that we assume that a target
c378eb4e 672 can only occur once in the target stack. */
c906108c 673
258b763a
AC
674 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
675 {
676 if ((*cur) == t)
677 break;
678 }
c906108c 679
305436e0
PA
680 /* If we don't find target_ops, quit. Only open targets should be
681 closed. */
258b763a 682 if ((*cur) == NULL)
305436e0 683 return 0;
5269965e 684
c378eb4e 685 /* Unchain the target. */
258b763a
AC
686 tmp = (*cur);
687 (*cur) = (*cur)->beneath;
688 tmp->beneath = NULL;
c906108c
SS
689
690 update_current_target ();
c906108c 691
305436e0
PA
692 /* Finally close the target. Note we do this after unchaining, so
693 any target method calls from within the target_close
694 implementation don't end up in T anymore. */
460014f5 695 target_close (t);
305436e0 696
c906108c
SS
697 return 1;
698}
699
aa76d38d 700void
460014f5 701pop_all_targets_above (enum strata above_stratum)
aa76d38d 702{
87ab71f0 703 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 704 {
aa76d38d
PA
705 if (!unpush_target (target_stack))
706 {
707 fprintf_unfiltered (gdb_stderr,
708 "pop_all_targets couldn't find target %s\n",
b52323fa 709 target_stack->to_shortname);
aa76d38d
PA
710 internal_error (__FILE__, __LINE__,
711 _("failed internal consistency check"));
712 break;
713 }
714 }
715}
716
87ab71f0 717void
460014f5 718pop_all_targets (void)
87ab71f0 719{
460014f5 720 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
721}
722
c0edd9ed
JK
723/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
724
725int
726target_is_pushed (struct target_ops *t)
727{
728 struct target_ops **cur;
729
730 /* Check magic number. If wrong, it probably means someone changed
731 the struct definition, but not all the places that initialize one. */
732 if (t->to_magic != OPS_MAGIC)
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "Magic number of %s target struct wrong\n",
736 t->to_shortname);
3e43a32a
MS
737 internal_error (__FILE__, __LINE__,
738 _("failed internal consistency check"));
c0edd9ed
JK
739 }
740
741 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
742 if (*cur == t)
743 return 1;
744
745 return 0;
746}
747
72f5cf0e 748/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
749 current thread's thread-local storage with offset OFFSET. */
750CORE_ADDR
751target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
752{
753 volatile CORE_ADDR addr = 0;
117de6a9
PA
754 struct target_ops *target;
755
756 for (target = current_target.beneath;
757 target != NULL;
758 target = target->beneath)
759 {
760 if (target->to_get_thread_local_address != NULL)
761 break;
762 }
9e35dae4 763
117de6a9 764 if (target != NULL
f5656ead 765 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
766 {
767 ptid_t ptid = inferior_ptid;
768 volatile struct gdb_exception ex;
769
770 TRY_CATCH (ex, RETURN_MASK_ALL)
771 {
772 CORE_ADDR lm_addr;
773
774 /* Fetch the load module address for this objfile. */
f5656ead 775 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4
DJ
776 objfile);
777 /* If it's 0, throw the appropriate exception. */
778 if (lm_addr == 0)
779 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
780 _("TLS load module not found"));
781
3e43a32a
MS
782 addr = target->to_get_thread_local_address (target, ptid,
783 lm_addr, offset);
9e35dae4
DJ
784 }
785 /* If an error occurred, print TLS related messages here. Otherwise,
786 throw the error to some higher catcher. */
787 if (ex.reason < 0)
788 {
789 int objfile_is_library = (objfile->flags & OBJF_SHARED);
790
791 switch (ex.error)
792 {
793 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
794 error (_("Cannot find thread-local variables "
795 "in this thread library."));
9e35dae4
DJ
796 break;
797 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
798 if (objfile_is_library)
799 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 800 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
801 else
802 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 803 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
804 break;
805 case TLS_NOT_ALLOCATED_YET_ERROR:
806 if (objfile_is_library)
807 error (_("The inferior has not yet allocated storage for"
808 " thread-local variables in\n"
809 "the shared library `%s'\n"
810 "for %s"),
4262abfb 811 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
812 else
813 error (_("The inferior has not yet allocated storage for"
814 " thread-local variables in\n"
815 "the executable `%s'\n"
816 "for %s"),
4262abfb 817 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
818 break;
819 case TLS_GENERIC_ERROR:
820 if (objfile_is_library)
821 error (_("Cannot find thread-local storage for %s, "
822 "shared library %s:\n%s"),
823 target_pid_to_str (ptid),
4262abfb 824 objfile_name (objfile), ex.message);
9e35dae4
DJ
825 else
826 error (_("Cannot find thread-local storage for %s, "
827 "executable file %s:\n%s"),
828 target_pid_to_str (ptid),
4262abfb 829 objfile_name (objfile), ex.message);
9e35dae4
DJ
830 break;
831 default:
832 throw_exception (ex);
833 break;
834 }
835 }
836 }
837 /* It wouldn't be wrong here to try a gdbarch method, too; finding
838 TLS is an ABI-specific thing. But we don't do that yet. */
839 else
840 error (_("Cannot find thread-local variables on this target"));
841
842 return addr;
843}
844
6be7b56e 845const char *
01cb8804 846target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
847{
848#define CASE(X) case X: return #X
01cb8804 849 switch (status)
6be7b56e
PA
850 {
851 CASE(TARGET_XFER_E_IO);
bc113b4e 852 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
853 default:
854 return "<unknown>";
855 }
856#undef CASE
857};
858
859
c906108c
SS
860#undef MIN
861#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
862
863/* target_read_string -- read a null terminated string, up to LEN bytes,
864 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
865 Set *STRING to a pointer to malloc'd memory containing the data; the caller
866 is responsible for freeing it. Return the number of bytes successfully
867 read. */
868
869int
fba45db2 870target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 871{
c2e8b827 872 int tlen, offset, i;
1b0ba102 873 gdb_byte buf[4];
c906108c
SS
874 int errcode = 0;
875 char *buffer;
876 int buffer_allocated;
877 char *bufptr;
878 unsigned int nbytes_read = 0;
879
6217bf3e
MS
880 gdb_assert (string);
881
c906108c
SS
882 /* Small for testing. */
883 buffer_allocated = 4;
884 buffer = xmalloc (buffer_allocated);
885 bufptr = buffer;
886
c906108c
SS
887 while (len > 0)
888 {
889 tlen = MIN (len, 4 - (memaddr & 3));
890 offset = memaddr & 3;
891
1b0ba102 892 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
893 if (errcode != 0)
894 {
895 /* The transfer request might have crossed the boundary to an
c378eb4e 896 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
897 a single byte. */
898 tlen = 1;
899 offset = 0;
b8eb5af0 900 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
901 if (errcode != 0)
902 goto done;
903 }
904
905 if (bufptr - buffer + tlen > buffer_allocated)
906 {
907 unsigned int bytes;
5d502164 908
c906108c
SS
909 bytes = bufptr - buffer;
910 buffer_allocated *= 2;
911 buffer = xrealloc (buffer, buffer_allocated);
912 bufptr = buffer + bytes;
913 }
914
915 for (i = 0; i < tlen; i++)
916 {
917 *bufptr++ = buf[i + offset];
918 if (buf[i + offset] == '\000')
919 {
920 nbytes_read += i + 1;
921 goto done;
922 }
923 }
924
925 memaddr += tlen;
926 len -= tlen;
927 nbytes_read += tlen;
928 }
c5aa993b 929done:
6217bf3e 930 *string = buffer;
c906108c
SS
931 if (errnop != NULL)
932 *errnop = errcode;
c906108c
SS
933 return nbytes_read;
934}
935
07b82ea5
PA
936struct target_section_table *
937target_get_section_table (struct target_ops *target)
938{
07b82ea5
PA
939 if (targetdebug)
940 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
941
7e35c012 942 return (*target->to_get_section_table) (target);
07b82ea5
PA
943}
944
8db32d44 945/* Find a section containing ADDR. */
07b82ea5 946
0542c86d 947struct target_section *
8db32d44
AC
948target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
949{
07b82ea5 950 struct target_section_table *table = target_get_section_table (target);
0542c86d 951 struct target_section *secp;
07b82ea5
PA
952
953 if (table == NULL)
954 return NULL;
955
956 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
957 {
958 if (addr >= secp->addr && addr < secp->endaddr)
959 return secp;
960 }
961 return NULL;
962}
963
e6e4e701
PA
964/* Read memory from the live target, even if currently inspecting a
965 traceframe. The return is the same as that of target_read. */
966
9b409511 967static enum target_xfer_status
e6e4e701 968target_read_live_memory (enum target_object object,
9b409511
YQ
969 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
970 ULONGEST *xfered_len)
e6e4e701 971{
9b409511 972 enum target_xfer_status ret;
e6e4e701
PA
973 struct cleanup *cleanup;
974
975 /* Switch momentarily out of tfind mode so to access live memory.
976 Note that this must not clear global state, such as the frame
977 cache, which must still remain valid for the previous traceframe.
978 We may be _building_ the frame cache at this point. */
979 cleanup = make_cleanup_restore_traceframe_number ();
980 set_traceframe_number (-1);
981
9b409511
YQ
982 ret = target_xfer_partial (current_target.beneath, object, NULL,
983 myaddr, NULL, memaddr, len, xfered_len);
e6e4e701
PA
984
985 do_cleanups (cleanup);
986 return ret;
987}
988
989/* Using the set of read-only target sections of OPS, read live
990 read-only memory. Note that the actual reads start from the
5657161f
PA
991 top-most target again.
992
993 For interface/parameters/return description see target.h,
994 to_xfer_partial. */
e6e4e701 995
9b409511 996static enum target_xfer_status
e6e4e701
PA
997memory_xfer_live_readonly_partial (struct target_ops *ops,
998 enum target_object object,
999 gdb_byte *readbuf, ULONGEST memaddr,
9b409511 1000 ULONGEST len, ULONGEST *xfered_len)
e6e4e701
PA
1001{
1002 struct target_section *secp;
1003 struct target_section_table *table;
1004
1005 secp = target_section_by_addr (ops, memaddr);
1006 if (secp != NULL
2b2848e2
DE
1007 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1008 secp->the_bfd_section)
e6e4e701
PA
1009 & SEC_READONLY))
1010 {
1011 struct target_section *p;
1012 ULONGEST memend = memaddr + len;
1013
1014 table = target_get_section_table (ops);
1015
1016 for (p = table->sections; p < table->sections_end; p++)
1017 {
1018 if (memaddr >= p->addr)
1019 {
1020 if (memend <= p->endaddr)
1021 {
1022 /* Entire transfer is within this section. */
1023 return target_read_live_memory (object, memaddr,
9b409511 1024 readbuf, len, xfered_len);
e6e4e701
PA
1025 }
1026 else if (memaddr >= p->endaddr)
1027 {
1028 /* This section ends before the transfer starts. */
1029 continue;
1030 }
1031 else
1032 {
1033 /* This section overlaps the transfer. Just do half. */
1034 len = p->endaddr - memaddr;
1035 return target_read_live_memory (object, memaddr,
9b409511 1036 readbuf, len, xfered_len);
e6e4e701
PA
1037 }
1038 }
1039 }
1040 }
1041
9b409511 1042 return TARGET_XFER_EOF;
e6e4e701
PA
1043}
1044
9f713294
YQ
1045/* Read memory from more than one valid target. A core file, for
1046 instance, could have some of memory but delegate other bits to
1047 the target below it. So, we must manually try all targets. */
1048
9b409511 1049static enum target_xfer_status
17fde6d0 1050raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1051 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1052 ULONGEST *xfered_len)
9f713294 1053{
9b409511 1054 enum target_xfer_status res;
9f713294
YQ
1055
1056 do
1057 {
1058 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1059 readbuf, writebuf, memaddr, len,
1060 xfered_len);
1061 if (res == TARGET_XFER_OK)
9f713294
YQ
1062 break;
1063
633785ff 1064 /* Stop if the target reports that the memory is not available. */
bc113b4e 1065 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1066 break;
1067
9f713294
YQ
1068 /* We want to continue past core files to executables, but not
1069 past a running target's memory. */
1070 if (ops->to_has_all_memory (ops))
1071 break;
1072
1073 ops = ops->beneath;
1074 }
1075 while (ops != NULL);
1076
0f26cec1
PA
1077 /* The cache works at the raw memory level. Make sure the cache
1078 gets updated with raw contents no matter what kind of memory
1079 object was originally being written. Note we do write-through
1080 first, so that if it fails, we don't write to the cache contents
1081 that never made it to the target. */
1082 if (writebuf != NULL
1083 && !ptid_equal (inferior_ptid, null_ptid)
1084 && target_dcache_init_p ()
1085 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1086 {
1087 DCACHE *dcache = target_dcache_get ();
1088
1089 /* Note that writing to an area of memory which wasn't present
1090 in the cache doesn't cause it to be loaded in. */
1091 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1092 }
1093
9f713294
YQ
1094 return res;
1095}
1096
7f79c47e
DE
1097/* Perform a partial memory transfer.
1098 For docs see target.h, to_xfer_partial. */
cf7a04e8 1099
9b409511 1100static enum target_xfer_status
f0ba3972 1101memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1102 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1103 ULONGEST len, ULONGEST *xfered_len)
0779438d 1104{
9b409511 1105 enum target_xfer_status res;
cf7a04e8
DJ
1106 int reg_len;
1107 struct mem_region *region;
4e5d721f 1108 struct inferior *inf;
cf7a04e8 1109
07b82ea5
PA
1110 /* For accesses to unmapped overlay sections, read directly from
1111 files. Must do this first, as MEMADDR may need adjustment. */
1112 if (readbuf != NULL && overlay_debugging)
1113 {
1114 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1115
07b82ea5
PA
1116 if (pc_in_unmapped_range (memaddr, section))
1117 {
1118 struct target_section_table *table
1119 = target_get_section_table (ops);
1120 const char *section_name = section->the_bfd_section->name;
5d502164 1121
07b82ea5
PA
1122 memaddr = overlay_mapped_address (memaddr, section);
1123 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1124 memaddr, len, xfered_len,
07b82ea5
PA
1125 table->sections,
1126 table->sections_end,
1127 section_name);
1128 }
1129 }
1130
1131 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1132 if (readbuf != NULL && trust_readonly)
1133 {
0542c86d 1134 struct target_section *secp;
07b82ea5 1135 struct target_section_table *table;
cf7a04e8
DJ
1136
1137 secp = target_section_by_addr (ops, memaddr);
1138 if (secp != NULL
2b2848e2
DE
1139 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1140 secp->the_bfd_section)
cf7a04e8 1141 & SEC_READONLY))
07b82ea5
PA
1142 {
1143 table = target_get_section_table (ops);
1144 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1145 memaddr, len, xfered_len,
07b82ea5
PA
1146 table->sections,
1147 table->sections_end,
1148 NULL);
1149 }
98646950
UW
1150 }
1151
e6e4e701
PA
1152 /* If reading unavailable memory in the context of traceframes, and
1153 this address falls within a read-only section, fallback to
1154 reading from live memory. */
1155 if (readbuf != NULL && get_traceframe_number () != -1)
1156 {
1157 VEC(mem_range_s) *available;
1158
1159 /* If we fail to get the set of available memory, then the
1160 target does not support querying traceframe info, and so we
1161 attempt reading from the traceframe anyway (assuming the
1162 target implements the old QTro packet then). */
1163 if (traceframe_available_memory (&available, memaddr, len))
1164 {
1165 struct cleanup *old_chain;
1166
1167 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1168
1169 if (VEC_empty (mem_range_s, available)
1170 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1171 {
1172 /* Don't read into the traceframe's available
1173 memory. */
1174 if (!VEC_empty (mem_range_s, available))
1175 {
1176 LONGEST oldlen = len;
1177
1178 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1179 gdb_assert (len <= oldlen);
1180 }
1181
1182 do_cleanups (old_chain);
1183
1184 /* This goes through the topmost target again. */
1185 res = memory_xfer_live_readonly_partial (ops, object,
9b409511
YQ
1186 readbuf, memaddr,
1187 len, xfered_len);
1188 if (res == TARGET_XFER_OK)
1189 return TARGET_XFER_OK;
1190 else
1191 {
1192 /* No use trying further, we know some memory starting
1193 at MEMADDR isn't available. */
1194 *xfered_len = len;
bc113b4e 1195 return TARGET_XFER_UNAVAILABLE;
9b409511 1196 }
e6e4e701
PA
1197 }
1198
1199 /* Don't try to read more than how much is available, in
1200 case the target implements the deprecated QTro packet to
1201 cater for older GDBs (the target's knowledge of read-only
1202 sections may be outdated by now). */
1203 len = VEC_index (mem_range_s, available, 0)->length;
1204
1205 do_cleanups (old_chain);
1206 }
1207 }
1208
cf7a04e8
DJ
1209 /* Try GDB's internal data cache. */
1210 region = lookup_mem_region (memaddr);
4b5752d0
VP
1211 /* region->hi == 0 means there's no upper bound. */
1212 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1213 reg_len = len;
1214 else
1215 reg_len = region->hi - memaddr;
1216
1217 switch (region->attrib.mode)
1218 {
1219 case MEM_RO:
1220 if (writebuf != NULL)
2ed4b548 1221 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1222 break;
1223
1224 case MEM_WO:
1225 if (readbuf != NULL)
2ed4b548 1226 return TARGET_XFER_E_IO;
cf7a04e8 1227 break;
a76d924d
DJ
1228
1229 case MEM_FLASH:
1230 /* We only support writing to flash during "load" for now. */
1231 if (writebuf != NULL)
1232 error (_("Writing to flash memory forbidden in this context"));
1233 break;
4b5752d0
VP
1234
1235 case MEM_NONE:
2ed4b548 1236 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1237 }
1238
6c95b8df
PA
1239 if (!ptid_equal (inferior_ptid, null_ptid))
1240 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1241 else
1242 inf = NULL;
4e5d721f
DE
1243
1244 if (inf != NULL
0f26cec1 1245 && readbuf != NULL
2f4d8875
PA
1246 /* The dcache reads whole cache lines; that doesn't play well
1247 with reading from a trace buffer, because reading outside of
1248 the collected memory range fails. */
1249 && get_traceframe_number () == -1
4e5d721f 1250 && (region->attrib.cache
29453a14
YQ
1251 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1252 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1253 {
2a2f9fe4
YQ
1254 DCACHE *dcache = target_dcache_get_or_init ();
1255
0f26cec1
PA
1256 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1257 reg_len, xfered_len);
cf7a04e8
DJ
1258 }
1259
1260 /* If none of those methods found the memory we wanted, fall back
1261 to a target partial transfer. Normally a single call to
1262 to_xfer_partial is enough; if it doesn't recognize an object
1263 it will call the to_xfer_partial of the next target down.
1264 But for memory this won't do. Memory is the only target
9b409511
YQ
1265 object which can be read from more than one valid target.
1266 A core file, for instance, could have some of memory but
1267 delegate other bits to the target below it. So, we must
1268 manually try all targets. */
1269
1270 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1271 xfered_len);
cf7a04e8
DJ
1272
1273 /* If we still haven't got anything, return the last error. We
1274 give up. */
1275 return res;
0779438d
AC
1276}
1277
f0ba3972
PA
1278/* Perform a partial memory transfer. For docs see target.h,
1279 to_xfer_partial. */
1280
9b409511 1281static enum target_xfer_status
f0ba3972 1282memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1285{
9b409511 1286 enum target_xfer_status res;
f0ba3972
PA
1287
1288 /* Zero length requests are ok and require no work. */
1289 if (len == 0)
9b409511 1290 return TARGET_XFER_EOF;
f0ba3972
PA
1291
1292 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1293 breakpoint insns, thus hiding out from higher layers whether
1294 there are software breakpoints inserted in the code stream. */
1295 if (readbuf != NULL)
1296 {
9b409511
YQ
1297 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1298 xfered_len);
f0ba3972 1299
9b409511 1300 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1301 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1302 }
1303 else
1304 {
1305 void *buf;
1306 struct cleanup *old_chain;
1307
67c059c2
AB
1308 /* A large write request is likely to be partially satisfied
1309 by memory_xfer_partial_1. We will continually malloc
1310 and free a copy of the entire write request for breakpoint
1311 shadow handling even though we only end up writing a small
1312 subset of it. Cap writes to 4KB to mitigate this. */
1313 len = min (4096, len);
1314
f0ba3972
PA
1315 buf = xmalloc (len);
1316 old_chain = make_cleanup (xfree, buf);
1317 memcpy (buf, writebuf, len);
1318
1319 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1320 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1321 xfered_len);
f0ba3972
PA
1322
1323 do_cleanups (old_chain);
1324 }
1325
1326 return res;
1327}
1328
8defab1a
DJ
1329static void
1330restore_show_memory_breakpoints (void *arg)
1331{
1332 show_memory_breakpoints = (uintptr_t) arg;
1333}
1334
1335struct cleanup *
1336make_show_memory_breakpoints_cleanup (int show)
1337{
1338 int current = show_memory_breakpoints;
8defab1a 1339
5d502164 1340 show_memory_breakpoints = show;
8defab1a
DJ
1341 return make_cleanup (restore_show_memory_breakpoints,
1342 (void *) (uintptr_t) current);
1343}
1344
7f79c47e
DE
1345/* For docs see target.h, to_xfer_partial. */
1346
9b409511 1347enum target_xfer_status
27394598
AC
1348target_xfer_partial (struct target_ops *ops,
1349 enum target_object object, const char *annex,
4ac248ca 1350 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1351 ULONGEST offset, ULONGEST len,
1352 ULONGEST *xfered_len)
27394598 1353{
9b409511 1354 enum target_xfer_status retval;
27394598
AC
1355
1356 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1357
ce6d0892
YQ
1358 /* Transfer is done when LEN is zero. */
1359 if (len == 0)
9b409511 1360 return TARGET_XFER_EOF;
ce6d0892 1361
d914c394
SS
1362 if (writebuf && !may_write_memory)
1363 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1364 core_addr_to_string_nz (offset), plongest (len));
1365
9b409511
YQ
1366 *xfered_len = 0;
1367
cf7a04e8
DJ
1368 /* If this is a memory transfer, let the memory-specific code
1369 have a look at it instead. Memory transfers are more
1370 complicated. */
29453a14
YQ
1371 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1372 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1373 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1374 writebuf, offset, len, xfered_len);
9f713294 1375 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1376 {
9f713294 1377 /* Request the normal memory object from other layers. */
9b409511
YQ
1378 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1379 xfered_len);
cf7a04e8 1380 }
9f713294
YQ
1381 else
1382 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1383 writebuf, offset, len, xfered_len);
cf7a04e8 1384
27394598
AC
1385 if (targetdebug)
1386 {
1387 const unsigned char *myaddr = NULL;
1388
1389 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1390 "%s:target_xfer_partial "
9b409511 1391 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1392 ops->to_shortname,
1393 (int) object,
1394 (annex ? annex : "(null)"),
53b71562
JB
1395 host_address_to_string (readbuf),
1396 host_address_to_string (writebuf),
0b1553bc 1397 core_addr_to_string_nz (offset),
9b409511
YQ
1398 pulongest (len), retval,
1399 pulongest (*xfered_len));
27394598
AC
1400
1401 if (readbuf)
1402 myaddr = readbuf;
1403 if (writebuf)
1404 myaddr = writebuf;
9b409511 1405 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1406 {
1407 int i;
2bc416ba 1408
27394598 1409 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1410 for (i = 0; i < *xfered_len; i++)
27394598 1411 {
53b71562 1412 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1413 {
1414 if (targetdebug < 2 && i > 0)
1415 {
1416 fprintf_unfiltered (gdb_stdlog, " ...");
1417 break;
1418 }
1419 fprintf_unfiltered (gdb_stdlog, "\n");
1420 }
2bc416ba 1421
27394598
AC
1422 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1423 }
1424 }
2bc416ba 1425
27394598
AC
1426 fputc_unfiltered ('\n', gdb_stdlog);
1427 }
9b409511
YQ
1428
1429 /* Check implementations of to_xfer_partial update *XFERED_LEN
1430 properly. Do assertion after printing debug messages, so that we
1431 can find more clues on assertion failure from debugging messages. */
bc113b4e 1432 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1433 gdb_assert (*xfered_len > 0);
1434
27394598
AC
1435 return retval;
1436}
1437
578d3588
PA
1438/* Read LEN bytes of target memory at address MEMADDR, placing the
1439 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1440 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1441
1442 If an error occurs, no guarantee is made about the contents of the data at
1443 MYADDR. In particular, the caller should not depend upon partial reads
1444 filling the buffer with good data. There is no way for the caller to know
1445 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1446 deal with partial reads should call target_read (which will retry until
c378eb4e 1447 it makes no progress, and then return how much was transferred). */
c906108c
SS
1448
1449int
1b162304 1450target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1451{
c35b1492
PA
1452 /* Dispatch to the topmost target, not the flattened current_target.
1453 Memory accesses check target->to_has_(all_)memory, and the
1454 flattened target doesn't inherit those. */
1455 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1456 myaddr, memaddr, len) == len)
1457 return 0;
0779438d 1458 else
578d3588 1459 return TARGET_XFER_E_IO;
c906108c
SS
1460}
1461
aee4bf85
PA
1462/* Like target_read_memory, but specify explicitly that this is a read
1463 from the target's raw memory. That is, this read bypasses the
1464 dcache, breakpoint shadowing, etc. */
1465
1466int
1467target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1468{
1469 /* See comment in target_read_memory about why the request starts at
1470 current_target.beneath. */
1471 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1472 myaddr, memaddr, len) == len)
1473 return 0;
1474 else
1475 return TARGET_XFER_E_IO;
1476}
1477
4e5d721f
DE
1478/* Like target_read_memory, but specify explicitly that this is a read from
1479 the target's stack. This may trigger different cache behavior. */
1480
1481int
45aa4659 1482target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1483{
aee4bf85
PA
1484 /* See comment in target_read_memory about why the request starts at
1485 current_target.beneath. */
4e5d721f
DE
1486 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1487 myaddr, memaddr, len) == len)
1488 return 0;
1489 else
578d3588 1490 return TARGET_XFER_E_IO;
4e5d721f
DE
1491}
1492
29453a14
YQ
1493/* Like target_read_memory, but specify explicitly that this is a read from
1494 the target's code. This may trigger different cache behavior. */
1495
1496int
1497target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1498{
aee4bf85
PA
1499 /* See comment in target_read_memory about why the request starts at
1500 current_target.beneath. */
29453a14
YQ
1501 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1502 myaddr, memaddr, len) == len)
1503 return 0;
1504 else
1505 return TARGET_XFER_E_IO;
1506}
1507
7f79c47e 1508/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1509 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1510 error occurs. If an error occurs, no guarantee is made about how
1511 much data got written. Callers that can deal with partial writes
1512 should call target_write. */
7f79c47e 1513
c906108c 1514int
45aa4659 1515target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1516{
aee4bf85
PA
1517 /* See comment in target_read_memory about why the request starts at
1518 current_target.beneath. */
c35b1492 1519 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1520 myaddr, memaddr, len) == len)
1521 return 0;
0779438d 1522 else
578d3588 1523 return TARGET_XFER_E_IO;
c906108c 1524}
c5aa993b 1525
f0ba3972 1526/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1527 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1528 if any error occurs. If an error occurs, no guarantee is made
1529 about how much data got written. Callers that can deal with
1530 partial writes should call target_write. */
f0ba3972
PA
1531
1532int
45aa4659 1533target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1534{
aee4bf85
PA
1535 /* See comment in target_read_memory about why the request starts at
1536 current_target.beneath. */
f0ba3972
PA
1537 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1538 myaddr, memaddr, len) == len)
1539 return 0;
1540 else
578d3588 1541 return TARGET_XFER_E_IO;
f0ba3972
PA
1542}
1543
fd79ecee
DJ
1544/* Fetch the target's memory map. */
1545
1546VEC(mem_region_s) *
1547target_memory_map (void)
1548{
1549 VEC(mem_region_s) *result;
1550 struct mem_region *last_one, *this_one;
1551 int ix;
1552 struct target_ops *t;
1553
1554 if (targetdebug)
1555 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1556
6b2c5a57 1557 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1558 if (result == NULL)
1559 return NULL;
1560
1561 qsort (VEC_address (mem_region_s, result),
1562 VEC_length (mem_region_s, result),
1563 sizeof (struct mem_region), mem_region_cmp);
1564
1565 /* Check that regions do not overlap. Simultaneously assign
1566 a numbering for the "mem" commands to use to refer to
1567 each region. */
1568 last_one = NULL;
1569 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1570 {
1571 this_one->number = ix;
1572
1573 if (last_one && last_one->hi > this_one->lo)
1574 {
1575 warning (_("Overlapping regions in memory map: ignoring"));
1576 VEC_free (mem_region_s, result);
1577 return NULL;
1578 }
1579 last_one = this_one;
1580 }
1581
1582 return result;
1583}
1584
a76d924d
DJ
1585void
1586target_flash_erase (ULONGEST address, LONGEST length)
1587{
e8a6c6ac
TT
1588 if (targetdebug)
1589 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1590 hex_string (address), phex (length, 0));
1591 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1592}
1593
1594void
1595target_flash_done (void)
1596{
f6fb2925
TT
1597 if (targetdebug)
1598 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1599 current_target.to_flash_done (&current_target);
a76d924d
DJ
1600}
1601
920d2a44
AC
1602static void
1603show_trust_readonly (struct ui_file *file, int from_tty,
1604 struct cmd_list_element *c, const char *value)
1605{
3e43a32a
MS
1606 fprintf_filtered (file,
1607 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1608 value);
1609}
3a11626d 1610
7f79c47e 1611/* Target vector read/write partial wrapper functions. */
0088c768 1612
9b409511 1613static enum target_xfer_status
1e3ff5ad
AC
1614target_read_partial (struct target_ops *ops,
1615 enum target_object object,
1b0ba102 1616 const char *annex, gdb_byte *buf,
9b409511
YQ
1617 ULONGEST offset, ULONGEST len,
1618 ULONGEST *xfered_len)
1e3ff5ad 1619{
9b409511
YQ
1620 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1621 xfered_len);
1e3ff5ad
AC
1622}
1623
8a55ffb0 1624static enum target_xfer_status
1e3ff5ad
AC
1625target_write_partial (struct target_ops *ops,
1626 enum target_object object,
1b0ba102 1627 const char *annex, const gdb_byte *buf,
9b409511 1628 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1629{
9b409511
YQ
1630 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1631 xfered_len);
1e3ff5ad
AC
1632}
1633
1634/* Wrappers to perform the full transfer. */
7f79c47e
DE
1635
1636/* For docs on target_read see target.h. */
1637
1e3ff5ad
AC
1638LONGEST
1639target_read (struct target_ops *ops,
1640 enum target_object object,
1b0ba102 1641 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1642 ULONGEST offset, LONGEST len)
1643{
1644 LONGEST xfered = 0;
5d502164 1645
1e3ff5ad
AC
1646 while (xfered < len)
1647 {
9b409511
YQ
1648 ULONGEST xfered_len;
1649 enum target_xfer_status status;
1650
1651 status = target_read_partial (ops, object, annex,
1652 (gdb_byte *) buf + xfered,
1653 offset + xfered, len - xfered,
1654 &xfered_len);
5d502164 1655
1e3ff5ad 1656 /* Call an observer, notifying them of the xfer progress? */
9b409511 1657 if (status == TARGET_XFER_EOF)
13547ab6 1658 return xfered;
9b409511
YQ
1659 else if (status == TARGET_XFER_OK)
1660 {
1661 xfered += xfered_len;
1662 QUIT;
1663 }
1664 else
0088c768 1665 return -1;
9b409511 1666
1e3ff5ad
AC
1667 }
1668 return len;
1669}
1670
f1a507a1
JB
1671/* Assuming that the entire [begin, end) range of memory cannot be
1672 read, try to read whatever subrange is possible to read.
1673
1674 The function returns, in RESULT, either zero or one memory block.
1675 If there's a readable subrange at the beginning, it is completely
1676 read and returned. Any further readable subrange will not be read.
1677 Otherwise, if there's a readable subrange at the end, it will be
1678 completely read and returned. Any readable subranges before it
1679 (obviously, not starting at the beginning), will be ignored. In
1680 other cases -- either no readable subrange, or readable subrange(s)
1681 that is neither at the beginning, or end, nothing is returned.
1682
1683 The purpose of this function is to handle a read across a boundary
1684 of accessible memory in a case when memory map is not available.
1685 The above restrictions are fine for this case, but will give
1686 incorrect results if the memory is 'patchy'. However, supporting
1687 'patchy' memory would require trying to read every single byte,
1688 and it seems unacceptable solution. Explicit memory map is
1689 recommended for this case -- and target_read_memory_robust will
1690 take care of reading multiple ranges then. */
8dedea02
VP
1691
1692static void
3e43a32a
MS
1693read_whatever_is_readable (struct target_ops *ops,
1694 ULONGEST begin, ULONGEST end,
8dedea02 1695 VEC(memory_read_result_s) **result)
d5086790 1696{
f1a507a1 1697 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1698 ULONGEST current_begin = begin;
1699 ULONGEST current_end = end;
1700 int forward;
1701 memory_read_result_s r;
9b409511 1702 ULONGEST xfered_len;
8dedea02
VP
1703
1704 /* If we previously failed to read 1 byte, nothing can be done here. */
1705 if (end - begin <= 1)
13b3fd9b
MS
1706 {
1707 xfree (buf);
1708 return;
1709 }
8dedea02
VP
1710
1711 /* Check that either first or the last byte is readable, and give up
c378eb4e 1712 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1713 at the boundary of accessible region. */
1714 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1715 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1716 {
1717 forward = 1;
1718 ++current_begin;
1719 }
1720 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1721 buf + (end-begin) - 1, end - 1, 1,
1722 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1723 {
1724 forward = 0;
1725 --current_end;
1726 }
1727 else
1728 {
13b3fd9b 1729 xfree (buf);
8dedea02
VP
1730 return;
1731 }
1732
1733 /* Loop invariant is that the [current_begin, current_end) was previously
1734 found to be not readable as a whole.
1735
1736 Note loop condition -- if the range has 1 byte, we can't divide the range
1737 so there's no point trying further. */
1738 while (current_end - current_begin > 1)
1739 {
1740 ULONGEST first_half_begin, first_half_end;
1741 ULONGEST second_half_begin, second_half_end;
1742 LONGEST xfer;
8dedea02 1743 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1744
8dedea02
VP
1745 if (forward)
1746 {
1747 first_half_begin = current_begin;
1748 first_half_end = middle;
1749 second_half_begin = middle;
1750 second_half_end = current_end;
1751 }
1752 else
1753 {
1754 first_half_begin = middle;
1755 first_half_end = current_end;
1756 second_half_begin = current_begin;
1757 second_half_end = middle;
1758 }
1759
1760 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1761 buf + (first_half_begin - begin),
1762 first_half_begin,
1763 first_half_end - first_half_begin);
1764
1765 if (xfer == first_half_end - first_half_begin)
1766 {
c378eb4e 1767 /* This half reads up fine. So, the error must be in the
3e43a32a 1768 other half. */
8dedea02
VP
1769 current_begin = second_half_begin;
1770 current_end = second_half_end;
1771 }
1772 else
1773 {
c378eb4e
MS
1774 /* This half is not readable. Because we've tried one byte, we
1775 know some part of this half if actually redable. Go to the next
8dedea02
VP
1776 iteration to divide again and try to read.
1777
1778 We don't handle the other half, because this function only tries
1779 to read a single readable subrange. */
1780 current_begin = first_half_begin;
1781 current_end = first_half_end;
1782 }
1783 }
1784
1785 if (forward)
1786 {
1787 /* The [begin, current_begin) range has been read. */
1788 r.begin = begin;
1789 r.end = current_begin;
1790 r.data = buf;
1791 }
1792 else
1793 {
1794 /* The [current_end, end) range has been read. */
1795 LONGEST rlen = end - current_end;
f1a507a1 1796
8dedea02
VP
1797 r.data = xmalloc (rlen);
1798 memcpy (r.data, buf + current_end - begin, rlen);
1799 r.begin = current_end;
1800 r.end = end;
1801 xfree (buf);
1802 }
1803 VEC_safe_push(memory_read_result_s, (*result), &r);
1804}
1805
1806void
1807free_memory_read_result_vector (void *x)
1808{
1809 VEC(memory_read_result_s) *v = x;
1810 memory_read_result_s *current;
1811 int ix;
1812
1813 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1814 {
1815 xfree (current->data);
1816 }
1817 VEC_free (memory_read_result_s, v);
1818}
1819
1820VEC(memory_read_result_s) *
1821read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1822{
1823 VEC(memory_read_result_s) *result = 0;
1824
1825 LONGEST xfered = 0;
d5086790
VP
1826 while (xfered < len)
1827 {
8dedea02
VP
1828 struct mem_region *region = lookup_mem_region (offset + xfered);
1829 LONGEST rlen;
5d502164 1830
8dedea02
VP
1831 /* If there is no explicit region, a fake one should be created. */
1832 gdb_assert (region);
1833
1834 if (region->hi == 0)
1835 rlen = len - xfered;
1836 else
1837 rlen = region->hi - offset;
1838
1839 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1840 {
c378eb4e 1841 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1842 if the region is explicitly marked inaccessible, or
1843 'inaccessible-by-default' is in effect. */
1844 xfered += rlen;
1845 }
1846 else
1847 {
1848 LONGEST to_read = min (len - xfered, rlen);
1849 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1850
1851 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1852 (gdb_byte *) buffer,
1853 offset + xfered, to_read);
1854 /* Call an observer, notifying them of the xfer progress? */
d5086790 1855 if (xfer <= 0)
d5086790 1856 {
c378eb4e 1857 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1858 some subrange. */
1859 xfree (buffer);
3e43a32a
MS
1860 read_whatever_is_readable (ops, offset + xfered,
1861 offset + xfered + to_read, &result);
8dedea02 1862 xfered += to_read;
d5086790 1863 }
8dedea02
VP
1864 else
1865 {
1866 struct memory_read_result r;
1867 r.data = buffer;
1868 r.begin = offset + xfered;
1869 r.end = r.begin + xfer;
1870 VEC_safe_push (memory_read_result_s, result, &r);
1871 xfered += xfer;
1872 }
1873 QUIT;
d5086790 1874 }
d5086790 1875 }
8dedea02 1876 return result;
d5086790
VP
1877}
1878
8dedea02 1879
cf7a04e8
DJ
1880/* An alternative to target_write with progress callbacks. */
1881
1e3ff5ad 1882LONGEST
cf7a04e8
DJ
1883target_write_with_progress (struct target_ops *ops,
1884 enum target_object object,
1885 const char *annex, const gdb_byte *buf,
1886 ULONGEST offset, LONGEST len,
1887 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1888{
1889 LONGEST xfered = 0;
a76d924d
DJ
1890
1891 /* Give the progress callback a chance to set up. */
1892 if (progress)
1893 (*progress) (0, baton);
1894
1e3ff5ad
AC
1895 while (xfered < len)
1896 {
9b409511
YQ
1897 ULONGEST xfered_len;
1898 enum target_xfer_status status;
1899
1900 status = target_write_partial (ops, object, annex,
1901 (gdb_byte *) buf + xfered,
1902 offset + xfered, len - xfered,
1903 &xfered_len);
cf7a04e8 1904
5c328c05
YQ
1905 if (status != TARGET_XFER_OK)
1906 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1907
1908 if (progress)
9b409511 1909 (*progress) (xfered_len, baton);
cf7a04e8 1910
9b409511 1911 xfered += xfered_len;
1e3ff5ad
AC
1912 QUIT;
1913 }
1914 return len;
1915}
1916
7f79c47e
DE
1917/* For docs on target_write see target.h. */
1918
cf7a04e8
DJ
1919LONGEST
1920target_write (struct target_ops *ops,
1921 enum target_object object,
1922 const char *annex, const gdb_byte *buf,
1923 ULONGEST offset, LONGEST len)
1924{
1925 return target_write_with_progress (ops, object, annex, buf, offset, len,
1926 NULL, NULL);
1927}
1928
159f81f3
DJ
1929/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1930 the size of the transferred data. PADDING additional bytes are
1931 available in *BUF_P. This is a helper function for
1932 target_read_alloc; see the declaration of that function for more
1933 information. */
13547ab6 1934
159f81f3
DJ
1935static LONGEST
1936target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1937 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1938{
1939 size_t buf_alloc, buf_pos;
1940 gdb_byte *buf;
13547ab6
DJ
1941
1942 /* This function does not have a length parameter; it reads the
1943 entire OBJECT). Also, it doesn't support objects fetched partly
1944 from one target and partly from another (in a different stratum,
1945 e.g. a core file and an executable). Both reasons make it
1946 unsuitable for reading memory. */
1947 gdb_assert (object != TARGET_OBJECT_MEMORY);
1948
1949 /* Start by reading up to 4K at a time. The target will throttle
1950 this number down if necessary. */
1951 buf_alloc = 4096;
1952 buf = xmalloc (buf_alloc);
1953 buf_pos = 0;
1954 while (1)
1955 {
9b409511
YQ
1956 ULONGEST xfered_len;
1957 enum target_xfer_status status;
1958
1959 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1960 buf_pos, buf_alloc - buf_pos - padding,
1961 &xfered_len);
1962
1963 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1964 {
1965 /* Read all there was. */
1966 if (buf_pos == 0)
1967 xfree (buf);
1968 else
1969 *buf_p = buf;
1970 return buf_pos;
1971 }
9b409511
YQ
1972 else if (status != TARGET_XFER_OK)
1973 {
1974 /* An error occurred. */
1975 xfree (buf);
1976 return TARGET_XFER_E_IO;
1977 }
13547ab6 1978
9b409511 1979 buf_pos += xfered_len;
13547ab6
DJ
1980
1981 /* If the buffer is filling up, expand it. */
1982 if (buf_alloc < buf_pos * 2)
1983 {
1984 buf_alloc *= 2;
1985 buf = xrealloc (buf, buf_alloc);
1986 }
1987
1988 QUIT;
1989 }
1990}
1991
159f81f3
DJ
1992/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1993 the size of the transferred data. See the declaration in "target.h"
1994 function for more information about the return value. */
1995
1996LONGEST
1997target_read_alloc (struct target_ops *ops, enum target_object object,
1998 const char *annex, gdb_byte **buf_p)
1999{
2000 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2001}
2002
2003/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2004 returned as a string, allocated using xmalloc. If an error occurs
2005 or the transfer is unsupported, NULL is returned. Empty objects
2006 are returned as allocated but empty strings. A warning is issued
2007 if the result contains any embedded NUL bytes. */
2008
2009char *
2010target_read_stralloc (struct target_ops *ops, enum target_object object,
2011 const char *annex)
2012{
39086a0e
PA
2013 gdb_byte *buffer;
2014 char *bufstr;
7313baad 2015 LONGEST i, transferred;
159f81f3 2016
39086a0e
PA
2017 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2018 bufstr = (char *) buffer;
159f81f3
DJ
2019
2020 if (transferred < 0)
2021 return NULL;
2022
2023 if (transferred == 0)
2024 return xstrdup ("");
2025
39086a0e 2026 bufstr[transferred] = 0;
7313baad
UW
2027
2028 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2029 for (i = strlen (bufstr); i < transferred; i++)
2030 if (bufstr[i] != 0)
7313baad
UW
2031 {
2032 warning (_("target object %d, annex %s, "
2033 "contained unexpected null characters"),
2034 (int) object, annex ? annex : "(none)");
2035 break;
2036 }
159f81f3 2037
39086a0e 2038 return bufstr;
159f81f3
DJ
2039}
2040
b6591e8b
AC
2041/* Memory transfer methods. */
2042
2043void
1b0ba102 2044get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2045 LONGEST len)
2046{
07b82ea5
PA
2047 /* This method is used to read from an alternate, non-current
2048 target. This read must bypass the overlay support (as symbols
2049 don't match this target), and GDB's internal cache (wrong cache
2050 for this target). */
2051 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2052 != len)
578d3588 2053 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2054}
2055
2056ULONGEST
5d502164
MS
2057get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2058 int len, enum bfd_endian byte_order)
b6591e8b 2059{
f6519ebc 2060 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2061
2062 gdb_assert (len <= sizeof (buf));
2063 get_target_memory (ops, addr, buf, len);
e17a4113 2064 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2065}
2066
3db08215
MM
2067/* See target.h. */
2068
d914c394
SS
2069int
2070target_insert_breakpoint (struct gdbarch *gdbarch,
2071 struct bp_target_info *bp_tgt)
2072{
2073 if (!may_insert_breakpoints)
2074 {
2075 warning (_("May not insert breakpoints"));
2076 return 1;
2077 }
2078
6b84065d
TT
2079 return current_target.to_insert_breakpoint (&current_target,
2080 gdbarch, bp_tgt);
d914c394
SS
2081}
2082
3db08215
MM
2083/* See target.h. */
2084
d914c394 2085int
6b84065d
TT
2086target_remove_breakpoint (struct gdbarch *gdbarch,
2087 struct bp_target_info *bp_tgt)
d914c394
SS
2088{
2089 /* This is kind of a weird case to handle, but the permission might
2090 have been changed after breakpoints were inserted - in which case
2091 we should just take the user literally and assume that any
2092 breakpoints should be left in place. */
2093 if (!may_insert_breakpoints)
2094 {
2095 warning (_("May not remove breakpoints"));
2096 return 1;
2097 }
2098
6b84065d
TT
2099 return current_target.to_remove_breakpoint (&current_target,
2100 gdbarch, bp_tgt);
d914c394
SS
2101}
2102
c906108c 2103static void
fba45db2 2104target_info (char *args, int from_tty)
c906108c
SS
2105{
2106 struct target_ops *t;
c906108c 2107 int has_all_mem = 0;
c5aa993b 2108
c906108c 2109 if (symfile_objfile != NULL)
4262abfb
JK
2110 printf_unfiltered (_("Symbols from \"%s\".\n"),
2111 objfile_name (symfile_objfile));
c906108c 2112
258b763a 2113 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2114 {
c35b1492 2115 if (!(*t->to_has_memory) (t))
c906108c
SS
2116 continue;
2117
c5aa993b 2118 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2119 continue;
2120 if (has_all_mem)
3e43a32a
MS
2121 printf_unfiltered (_("\tWhile running this, "
2122 "GDB does not access memory from...\n"));
c5aa993b
JM
2123 printf_unfiltered ("%s:\n", t->to_longname);
2124 (t->to_files_info) (t);
c35b1492 2125 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2126 }
2127}
2128
fd79ecee
DJ
2129/* This function is called before any new inferior is created, e.g.
2130 by running a program, attaching, or connecting to a target.
2131 It cleans up any state from previous invocations which might
2132 change between runs. This is a subset of what target_preopen
2133 resets (things which might change between targets). */
2134
2135void
2136target_pre_inferior (int from_tty)
2137{
c378eb4e 2138 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2139 inferior might have survived and is entirely wrong for the new
c378eb4e 2140 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2141 to reproduce:
2142
2143 bash$ ./foo&
2144 [1] 4711
2145 bash$ ./foo&
2146 [1] 4712
2147 bash$ gdb ./foo
2148 [...]
2149 (gdb) attach 4711
2150 (gdb) detach
2151 (gdb) attach 4712
2152 Cannot access memory at address 0xdeadbeef
2153 */
b9db4ced 2154
50c71eaf
PA
2155 /* In some OSs, the shared library list is the same/global/shared
2156 across inferiors. If code is shared between processes, so are
2157 memory regions and features. */
f5656ead 2158 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2159 {
2160 no_shared_libraries (NULL, from_tty);
2161
2162 invalidate_target_mem_regions ();
424163ea 2163
50c71eaf
PA
2164 target_clear_description ();
2165 }
8ffcbaaf
YQ
2166
2167 agent_capability_invalidate ();
fd79ecee
DJ
2168}
2169
b8fa0bfa
PA
2170/* Callback for iterate_over_inferiors. Gets rid of the given
2171 inferior. */
2172
2173static int
2174dispose_inferior (struct inferior *inf, void *args)
2175{
2176 struct thread_info *thread;
2177
2178 thread = any_thread_of_process (inf->pid);
2179 if (thread)
2180 {
2181 switch_to_thread (thread->ptid);
2182
2183 /* Core inferiors actually should be detached, not killed. */
2184 if (target_has_execution)
2185 target_kill ();
2186 else
2187 target_detach (NULL, 0);
2188 }
2189
2190 return 0;
2191}
2192
c906108c
SS
2193/* This is to be called by the open routine before it does
2194 anything. */
2195
2196void
fba45db2 2197target_preopen (int from_tty)
c906108c 2198{
c5aa993b 2199 dont_repeat ();
c906108c 2200
b8fa0bfa 2201 if (have_inferiors ())
c5aa993b 2202 {
adf40b2e 2203 if (!from_tty
b8fa0bfa
PA
2204 || !have_live_inferiors ()
2205 || query (_("A program is being debugged already. Kill it? ")))
2206 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2207 else
8a3fe4f8 2208 error (_("Program not killed."));
c906108c
SS
2209 }
2210
2211 /* Calling target_kill may remove the target from the stack. But if
2212 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2213 /* Leave the exec target, though. The user may be switching from a
2214 live process to a core of the same program. */
460014f5 2215 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2216
2217 target_pre_inferior (from_tty);
c906108c
SS
2218}
2219
2220/* Detach a target after doing deferred register stores. */
2221
2222void
52554a0e 2223target_detach (const char *args, int from_tty)
c906108c 2224{
136d6dae
VP
2225 struct target_ops* t;
2226
f5656ead 2227 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2228 /* Don't remove global breakpoints here. They're removed on
2229 disconnection from the target. */
2230 ;
2231 else
2232 /* If we're in breakpoints-always-inserted mode, have to remove
2233 them before detaching. */
dfd4cc63 2234 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2235
24291992
PA
2236 prepare_for_detach ();
2237
09da0d0a
TT
2238 current_target.to_detach (&current_target, args, from_tty);
2239 if (targetdebug)
2240 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2241 args, from_tty);
c906108c
SS
2242}
2243
6ad8ae5c
DJ
2244void
2245target_disconnect (char *args, int from_tty)
2246{
50c71eaf
PA
2247 /* If we're in breakpoints-always-inserted mode or if breakpoints
2248 are global across processes, we have to remove them before
2249 disconnecting. */
74960c60
VP
2250 remove_breakpoints ();
2251
86a0854a
TT
2252 if (targetdebug)
2253 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2254 args, from_tty);
2255 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2256}
2257
117de6a9 2258ptid_t
47608cb1 2259target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9
PA
2260{
2261 struct target_ops *t;
6b84065d
TT
2262 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2263 status, options);
117de6a9 2264
6b84065d 2265 if (targetdebug)
117de6a9 2266 {
6b84065d
TT
2267 char *status_string;
2268 char *options_string;
117de6a9 2269
6b84065d
TT
2270 status_string = target_waitstatus_to_string (status);
2271 options_string = target_options_to_string (options);
2272 fprintf_unfiltered (gdb_stdlog,
2273 "target_wait (%d, status, options={%s})"
2274 " = %d, %s\n",
2275 ptid_get_pid (ptid), options_string,
2276 ptid_get_pid (retval), status_string);
2277 xfree (status_string);
2278 xfree (options_string);
117de6a9
PA
2279 }
2280
6b84065d 2281 return retval;
117de6a9
PA
2282}
2283
2284char *
2285target_pid_to_str (ptid_t ptid)
2286{
770234d3 2287 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2288}
2289
4694da01
TT
2290char *
2291target_thread_name (struct thread_info *info)
2292{
825828fc 2293 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2294}
2295
e1ac3328 2296void
2ea28649 2297target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2298{
28439f5e
PA
2299 struct target_ops *t;
2300
4e5d721f 2301 target_dcache_invalidate ();
28439f5e 2302
6b84065d
TT
2303 current_target.to_resume (&current_target, ptid, step, signal);
2304 if (targetdebug)
2305 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2306 ptid_get_pid (ptid),
2307 step ? "step" : "continue",
2308 gdb_signal_to_name (signal));
28439f5e 2309
6b84065d
TT
2310 registers_changed_ptid (ptid);
2311 set_executing (ptid, 1);
2312 set_running (ptid, 1);
2313 clear_inline_frame_state (ptid);
e1ac3328 2314}
2455069d
UW
2315
2316void
2317target_pass_signals (int numsigs, unsigned char *pass_signals)
2318{
035cad7f 2319 if (targetdebug)
2455069d 2320 {
035cad7f 2321 int i;
2455069d 2322
035cad7f
TT
2323 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2324 numsigs);
2455069d 2325
035cad7f
TT
2326 for (i = 0; i < numsigs; i++)
2327 if (pass_signals[i])
2328 fprintf_unfiltered (gdb_stdlog, " %s",
2329 gdb_signal_to_name (i));
2455069d 2330
035cad7f 2331 fprintf_unfiltered (gdb_stdlog, " })\n");
2455069d 2332 }
035cad7f
TT
2333
2334 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2335}
2336
9b224c5e
PA
2337void
2338target_program_signals (int numsigs, unsigned char *program_signals)
2339{
7d4f8efa 2340 if (targetdebug)
9b224c5e 2341 {
7d4f8efa 2342 int i;
9b224c5e 2343
7d4f8efa
TT
2344 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2345 numsigs);
9b224c5e 2346
7d4f8efa
TT
2347 for (i = 0; i < numsigs; i++)
2348 if (program_signals[i])
2349 fprintf_unfiltered (gdb_stdlog, " %s",
2350 gdb_signal_to_name (i));
9b224c5e 2351
7d4f8efa 2352 fprintf_unfiltered (gdb_stdlog, " })\n");
9b224c5e 2353 }
7d4f8efa
TT
2354
2355 (*current_target.to_program_signals) (&current_target,
2356 numsigs, program_signals);
9b224c5e
PA
2357}
2358
098dba18
TT
2359static int
2360default_follow_fork (struct target_ops *self, int follow_child,
2361 int detach_fork)
2362{
2363 /* Some target returned a fork event, but did not know how to follow it. */
2364 internal_error (__FILE__, __LINE__,
2365 _("could not find a target to follow fork"));
2366}
2367
ee057212
DJ
2368/* Look through the list of possible targets for a target that can
2369 follow forks. */
2370
2371int
07107ca6 2372target_follow_fork (int follow_child, int detach_fork)
ee057212 2373{
098dba18
TT
2374 int retval = current_target.to_follow_fork (&current_target,
2375 follow_child, detach_fork);
ee057212 2376
098dba18
TT
2377 if (targetdebug)
2378 fprintf_unfiltered (gdb_stdlog,
2379 "target_follow_fork (%d, %d) = %d\n",
2380 follow_child, detach_fork, retval);
2381 return retval;
ee057212
DJ
2382}
2383
8d657035
TT
2384static void
2385default_mourn_inferior (struct target_ops *self)
2386{
2387 internal_error (__FILE__, __LINE__,
2388 _("could not find a target to follow mourn inferior"));
2389}
2390
136d6dae
VP
2391void
2392target_mourn_inferior (void)
2393{
8d657035
TT
2394 current_target.to_mourn_inferior (&current_target);
2395 if (targetdebug)
2396 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
136d6dae 2397
8d657035
TT
2398 /* We no longer need to keep handles on any of the object files.
2399 Make sure to release them to avoid unnecessarily locking any
2400 of them while we're not actually debugging. */
2401 bfd_cache_close_all ();
136d6dae
VP
2402}
2403
424163ea
DJ
2404/* Look for a target which can describe architectural features, starting
2405 from TARGET. If we find one, return its description. */
2406
2407const struct target_desc *
2408target_read_description (struct target_ops *target)
2409{
2117c711 2410 return target->to_read_description (target);
424163ea
DJ
2411}
2412
58a5184e 2413/* This implements a basic search of memory, reading target memory and
08388c79
DE
2414 performing the search here (as opposed to performing the search in on the
2415 target side with, for example, gdbserver). */
2416
2417int
2418simple_search_memory (struct target_ops *ops,
2419 CORE_ADDR start_addr, ULONGEST search_space_len,
2420 const gdb_byte *pattern, ULONGEST pattern_len,
2421 CORE_ADDR *found_addrp)
2422{
2423 /* NOTE: also defined in find.c testcase. */
2424#define SEARCH_CHUNK_SIZE 16000
2425 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2426 /* Buffer to hold memory contents for searching. */
2427 gdb_byte *search_buf;
2428 unsigned search_buf_size;
2429 struct cleanup *old_cleanups;
2430
2431 search_buf_size = chunk_size + pattern_len - 1;
2432
2433 /* No point in trying to allocate a buffer larger than the search space. */
2434 if (search_space_len < search_buf_size)
2435 search_buf_size = search_space_len;
2436
2437 search_buf = malloc (search_buf_size);
2438 if (search_buf == NULL)
5e1471f5 2439 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2440 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2441
2442 /* Prime the search buffer. */
2443
2444 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2445 search_buf, start_addr, search_buf_size) != search_buf_size)
2446 {
b3dc46ff
AB
2447 warning (_("Unable to access %s bytes of target "
2448 "memory at %s, halting search."),
2449 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2450 do_cleanups (old_cleanups);
2451 return -1;
2452 }
2453
2454 /* Perform the search.
2455
2456 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2457 When we've scanned N bytes we copy the trailing bytes to the start and
2458 read in another N bytes. */
2459
2460 while (search_space_len >= pattern_len)
2461 {
2462 gdb_byte *found_ptr;
2463 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2464
2465 found_ptr = memmem (search_buf, nr_search_bytes,
2466 pattern, pattern_len);
2467
2468 if (found_ptr != NULL)
2469 {
2470 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2471
08388c79
DE
2472 *found_addrp = found_addr;
2473 do_cleanups (old_cleanups);
2474 return 1;
2475 }
2476
2477 /* Not found in this chunk, skip to next chunk. */
2478
2479 /* Don't let search_space_len wrap here, it's unsigned. */
2480 if (search_space_len >= chunk_size)
2481 search_space_len -= chunk_size;
2482 else
2483 search_space_len = 0;
2484
2485 if (search_space_len >= pattern_len)
2486 {
2487 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2488 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2489 int nr_to_read;
2490
2491 /* Copy the trailing part of the previous iteration to the front
2492 of the buffer for the next iteration. */
2493 gdb_assert (keep_len == pattern_len - 1);
2494 memcpy (search_buf, search_buf + chunk_size, keep_len);
2495
2496 nr_to_read = min (search_space_len - keep_len, chunk_size);
2497
2498 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2499 search_buf + keep_len, read_addr,
2500 nr_to_read) != nr_to_read)
2501 {
b3dc46ff 2502 warning (_("Unable to access %s bytes of target "
9b20d036 2503 "memory at %s, halting search."),
b3dc46ff 2504 plongest (nr_to_read),
08388c79
DE
2505 hex_string (read_addr));
2506 do_cleanups (old_cleanups);
2507 return -1;
2508 }
2509
2510 start_addr += chunk_size;
2511 }
2512 }
2513
2514 /* Not found. */
2515
2516 do_cleanups (old_cleanups);
2517 return 0;
2518}
2519
58a5184e
TT
2520/* Default implementation of memory-searching. */
2521
2522static int
2523default_search_memory (struct target_ops *self,
2524 CORE_ADDR start_addr, ULONGEST search_space_len,
2525 const gdb_byte *pattern, ULONGEST pattern_len,
2526 CORE_ADDR *found_addrp)
2527{
2528 /* Start over from the top of the target stack. */
2529 return simple_search_memory (current_target.beneath,
2530 start_addr, search_space_len,
2531 pattern, pattern_len, found_addrp);
2532}
2533
08388c79
DE
2534/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2535 sequence of bytes in PATTERN with length PATTERN_LEN.
2536
2537 The result is 1 if found, 0 if not found, and -1 if there was an error
2538 requiring halting of the search (e.g. memory read error).
2539 If the pattern is found the address is recorded in FOUND_ADDRP. */
2540
2541int
2542target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2543 const gdb_byte *pattern, ULONGEST pattern_len,
2544 CORE_ADDR *found_addrp)
2545{
08388c79
DE
2546 int found;
2547
08388c79
DE
2548 if (targetdebug)
2549 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2550 hex_string (start_addr));
2551
58a5184e
TT
2552 found = current_target.to_search_memory (&current_target, start_addr,
2553 search_space_len,
2554 pattern, pattern_len, found_addrp);
08388c79
DE
2555
2556 if (targetdebug)
2557 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2558
2559 return found;
2560}
2561
8edfe269
DJ
2562/* Look through the currently pushed targets. If none of them will
2563 be able to restart the currently running process, issue an error
2564 message. */
2565
2566void
2567target_require_runnable (void)
2568{
2569 struct target_ops *t;
2570
2571 for (t = target_stack; t != NULL; t = t->beneath)
2572 {
2573 /* If this target knows how to create a new program, then
2574 assume we will still be able to after killing the current
2575 one. Either killing and mourning will not pop T, or else
2576 find_default_run_target will find it again. */
2577 if (t->to_create_inferior != NULL)
2578 return;
2579
2580 /* Do not worry about thread_stratum targets that can not
2581 create inferiors. Assume they will be pushed again if
2582 necessary, and continue to the process_stratum. */
85e747d2
UW
2583 if (t->to_stratum == thread_stratum
2584 || t->to_stratum == arch_stratum)
8edfe269
DJ
2585 continue;
2586
3e43a32a
MS
2587 error (_("The \"%s\" target does not support \"run\". "
2588 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2589 t->to_shortname);
2590 }
2591
2592 /* This function is only called if the target is running. In that
2593 case there should have been a process_stratum target and it
c378eb4e 2594 should either know how to create inferiors, or not... */
9b20d036 2595 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2596}
2597
c906108c
SS
2598/* Look through the list of possible targets for a target that can
2599 execute a run or attach command without any other data. This is
2600 used to locate the default process stratum.
2601
5f667f2d
PA
2602 If DO_MESG is not NULL, the result is always valid (error() is
2603 called for errors); else, return NULL on error. */
c906108c
SS
2604
2605static struct target_ops *
fba45db2 2606find_default_run_target (char *do_mesg)
c906108c
SS
2607{
2608 struct target_ops **t;
2609 struct target_ops *runable = NULL;
2610 int count;
2611
2612 count = 0;
2613
2614 for (t = target_structs; t < target_structs + target_struct_size;
2615 ++t)
2616 {
e88ef65c 2617 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
c906108c
SS
2618 {
2619 runable = *t;
2620 ++count;
2621 }
2622 }
2623
2624 if (count != 1)
5f667f2d
PA
2625 {
2626 if (do_mesg)
2627 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2628 else
2629 return NULL;
2630 }
c906108c
SS
2631
2632 return runable;
2633}
2634
2635void
136d6dae 2636find_default_attach (struct target_ops *ops, char *args, int from_tty)
c906108c
SS
2637{
2638 struct target_ops *t;
2639
c5aa993b 2640 t = find_default_run_target ("attach");
136d6dae 2641 (t->to_attach) (t, args, from_tty);
c906108c
SS
2642 return;
2643}
2644
c906108c 2645void
136d6dae
VP
2646find_default_create_inferior (struct target_ops *ops,
2647 char *exec_file, char *allargs, char **env,
c27cda74 2648 int from_tty)
c906108c
SS
2649{
2650 struct target_ops *t;
2651
c5aa993b 2652 t = find_default_run_target ("run");
136d6dae 2653 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
c906108c
SS
2654 return;
2655}
2656
2c0b251b 2657static int
6a109b6b 2658find_default_can_async_p (struct target_ops *ignore)
b84876c2
PA
2659{
2660 struct target_ops *t;
2661
5f667f2d
PA
2662 /* This may be called before the target is pushed on the stack;
2663 look for the default process stratum. If there's none, gdb isn't
2664 configured with a native debugger, and target remote isn't
2665 connected yet. */
2666 t = find_default_run_target (NULL);
6b84065d 2667 if (t && t->to_can_async_p != delegate_can_async_p)
6a109b6b 2668 return (t->to_can_async_p) (t);
b84876c2
PA
2669 return 0;
2670}
2671
2c0b251b 2672static int
6a109b6b 2673find_default_is_async_p (struct target_ops *ignore)
b84876c2
PA
2674{
2675 struct target_ops *t;
2676
5f667f2d
PA
2677 /* This may be called before the target is pushed on the stack;
2678 look for the default process stratum. If there's none, gdb isn't
2679 configured with a native debugger, and target remote isn't
2680 connected yet. */
2681 t = find_default_run_target (NULL);
6b84065d 2682 if (t && t->to_is_async_p != delegate_is_async_p)
6a109b6b 2683 return (t->to_is_async_p) (t);
b84876c2
PA
2684 return 0;
2685}
2686
2c0b251b 2687static int
2a9a2795 2688find_default_supports_non_stop (struct target_ops *self)
9908b566
VP
2689{
2690 struct target_ops *t;
2691
2692 t = find_default_run_target (NULL);
2693 if (t && t->to_supports_non_stop)
2a9a2795 2694 return (t->to_supports_non_stop) (t);
9908b566
VP
2695 return 0;
2696}
2697
2698int
2c0b251b 2699target_supports_non_stop (void)
9908b566
VP
2700{
2701 struct target_ops *t;
5d502164 2702
9908b566
VP
2703 for (t = &current_target; t != NULL; t = t->beneath)
2704 if (t->to_supports_non_stop)
2a9a2795 2705 return t->to_supports_non_stop (t);
9908b566
VP
2706
2707 return 0;
2708}
2709
145b16a9
UW
2710/* Implement the "info proc" command. */
2711
451b7c33 2712int
145b16a9
UW
2713target_info_proc (char *args, enum info_proc_what what)
2714{
2715 struct target_ops *t;
2716
2717 /* If we're already connected to something that can get us OS
2718 related data, use it. Otherwise, try using the native
2719 target. */
2720 if (current_target.to_stratum >= process_stratum)
2721 t = current_target.beneath;
2722 else
2723 t = find_default_run_target (NULL);
2724
2725 for (; t != NULL; t = t->beneath)
2726 {
2727 if (t->to_info_proc != NULL)
2728 {
2729 t->to_info_proc (t, args, what);
2730
2731 if (targetdebug)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "target_info_proc (\"%s\", %d)\n", args, what);
2734
451b7c33 2735 return 1;
145b16a9
UW
2736 }
2737 }
2738
451b7c33 2739 return 0;
145b16a9
UW
2740}
2741
03583c20 2742static int
2bfc0540 2743find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2744{
2745 struct target_ops *t;
2746
2747 t = find_default_run_target (NULL);
2748 if (t && t->to_supports_disable_randomization)
2bfc0540 2749 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2750 return 0;
2751}
2752
2753int
2754target_supports_disable_randomization (void)
2755{
2756 struct target_ops *t;
2757
2758 for (t = &current_target; t != NULL; t = t->beneath)
2759 if (t->to_supports_disable_randomization)
2bfc0540 2760 return t->to_supports_disable_randomization (t);
03583c20
UW
2761
2762 return 0;
2763}
9908b566 2764
07e059b5
VP
2765char *
2766target_get_osdata (const char *type)
2767{
07e059b5
VP
2768 struct target_ops *t;
2769
739ef7fb
PA
2770 /* If we're already connected to something that can get us OS
2771 related data, use it. Otherwise, try using the native
2772 target. */
2773 if (current_target.to_stratum >= process_stratum)
6d097e65 2774 t = current_target.beneath;
739ef7fb
PA
2775 else
2776 t = find_default_run_target ("get OS data");
07e059b5
VP
2777
2778 if (!t)
2779 return NULL;
2780
6d097e65 2781 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2782}
2783
6c95b8df
PA
2784/* Determine the current address space of thread PTID. */
2785
2786struct address_space *
2787target_thread_address_space (ptid_t ptid)
2788{
c0694254 2789 struct address_space *aspace;
6c95b8df 2790 struct inferior *inf;
c0694254
PA
2791 struct target_ops *t;
2792
2793 for (t = current_target.beneath; t != NULL; t = t->beneath)
2794 {
2795 if (t->to_thread_address_space != NULL)
2796 {
2797 aspace = t->to_thread_address_space (t, ptid);
2798 gdb_assert (aspace);
6c95b8df 2799
c0694254
PA
2800 if (targetdebug)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "target_thread_address_space (%s) = %d\n",
2803 target_pid_to_str (ptid),
2804 address_space_num (aspace));
2805 return aspace;
2806 }
2807 }
6c95b8df
PA
2808
2809 /* Fall-back to the "main" address space of the inferior. */
2810 inf = find_inferior_pid (ptid_get_pid (ptid));
2811
2812 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2813 internal_error (__FILE__, __LINE__,
9b20d036
MS
2814 _("Can't determine the current "
2815 "address space of thread %s\n"),
6c95b8df
PA
2816 target_pid_to_str (ptid));
2817
2818 return inf->aspace;
2819}
2820
7313baad
UW
2821
2822/* Target file operations. */
2823
2824static struct target_ops *
2825default_fileio_target (void)
2826{
2827 /* If we're already connected to something that can perform
2828 file I/O, use it. Otherwise, try using the native target. */
2829 if (current_target.to_stratum >= process_stratum)
2830 return current_target.beneath;
2831 else
2832 return find_default_run_target ("file I/O");
2833}
2834
2835/* Open FILENAME on the target, using FLAGS and MODE. Return a
2836 target file descriptor, or -1 if an error occurs (and set
2837 *TARGET_ERRNO). */
2838int
2839target_fileio_open (const char *filename, int flags, int mode,
2840 int *target_errno)
2841{
2842 struct target_ops *t;
2843
2844 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2845 {
2846 if (t->to_fileio_open != NULL)
2847 {
cd897586 2848 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2849
2850 if (targetdebug)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2853 filename, flags, mode,
2854 fd, fd != -1 ? 0 : *target_errno);
2855 return fd;
2856 }
2857 }
2858
2859 *target_errno = FILEIO_ENOSYS;
2860 return -1;
2861}
2862
2863/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2864 Return the number of bytes written, or -1 if an error occurs
2865 (and set *TARGET_ERRNO). */
2866int
2867target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2868 ULONGEST offset, int *target_errno)
2869{
2870 struct target_ops *t;
2871
2872 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2873 {
2874 if (t->to_fileio_pwrite != NULL)
2875 {
0d866f62 2876 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2877 target_errno);
2878
2879 if (targetdebug)
2880 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2881 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2882 "= %d (%d)\n",
a71b5a38 2883 fd, len, pulongest (offset),
7313baad
UW
2884 ret, ret != -1 ? 0 : *target_errno);
2885 return ret;
2886 }
2887 }
2888
2889 *target_errno = FILEIO_ENOSYS;
2890 return -1;
2891}
2892
2893/* Read up to LEN bytes FD on the target into READ_BUF.
2894 Return the number of bytes read, or -1 if an error occurs
2895 (and set *TARGET_ERRNO). */
2896int
2897target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2898 ULONGEST offset, int *target_errno)
2899{
2900 struct target_ops *t;
2901
2902 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2903 {
2904 if (t->to_fileio_pread != NULL)
2905 {
a3be983c 2906 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2907 target_errno);
2908
2909 if (targetdebug)
2910 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2911 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2912 "= %d (%d)\n",
a71b5a38 2913 fd, len, pulongest (offset),
7313baad
UW
2914 ret, ret != -1 ? 0 : *target_errno);
2915 return ret;
2916 }
2917 }
2918
2919 *target_errno = FILEIO_ENOSYS;
2920 return -1;
2921}
2922
2923/* Close FD on the target. Return 0, or -1 if an error occurs
2924 (and set *TARGET_ERRNO). */
2925int
2926target_fileio_close (int fd, int *target_errno)
2927{
2928 struct target_ops *t;
2929
2930 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2931 {
2932 if (t->to_fileio_close != NULL)
2933 {
df39ea25 2934 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2935
2936 if (targetdebug)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "target_fileio_close (%d) = %d (%d)\n",
2939 fd, ret, ret != -1 ? 0 : *target_errno);
2940 return ret;
2941 }
2942 }
2943
2944 *target_errno = FILEIO_ENOSYS;
2945 return -1;
2946}
2947
2948/* Unlink FILENAME on the target. Return 0, or -1 if an error
2949 occurs (and set *TARGET_ERRNO). */
2950int
2951target_fileio_unlink (const char *filename, int *target_errno)
2952{
2953 struct target_ops *t;
2954
2955 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2956 {
2957 if (t->to_fileio_unlink != NULL)
2958 {
dbbca37d 2959 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2960
2961 if (targetdebug)
2962 fprintf_unfiltered (gdb_stdlog,
2963 "target_fileio_unlink (%s) = %d (%d)\n",
2964 filename, ret, ret != -1 ? 0 : *target_errno);
2965 return ret;
2966 }
2967 }
2968
2969 *target_errno = FILEIO_ENOSYS;
2970 return -1;
2971}
2972
b9e7b9c3
UW
2973/* Read value of symbolic link FILENAME on the target. Return a
2974 null-terminated string allocated via xmalloc, or NULL if an error
2975 occurs (and set *TARGET_ERRNO). */
2976char *
2977target_fileio_readlink (const char *filename, int *target_errno)
2978{
2979 struct target_ops *t;
2980
2981 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2982 {
2983 if (t->to_fileio_readlink != NULL)
2984 {
fab5aa7c 2985 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2986
2987 if (targetdebug)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "target_fileio_readlink (%s) = %s (%d)\n",
2990 filename, ret? ret : "(nil)",
2991 ret? 0 : *target_errno);
2992 return ret;
2993 }
2994 }
2995
2996 *target_errno = FILEIO_ENOSYS;
2997 return NULL;
2998}
2999
7313baad
UW
3000static void
3001target_fileio_close_cleanup (void *opaque)
3002{
3003 int fd = *(int *) opaque;
3004 int target_errno;
3005
3006 target_fileio_close (fd, &target_errno);
3007}
3008
3009/* Read target file FILENAME. Store the result in *BUF_P and
3010 return the size of the transferred data. PADDING additional bytes are
3011 available in *BUF_P. This is a helper function for
3012 target_fileio_read_alloc; see the declaration of that function for more
3013 information. */
3014
3015static LONGEST
3016target_fileio_read_alloc_1 (const char *filename,
3017 gdb_byte **buf_p, int padding)
3018{
3019 struct cleanup *close_cleanup;
3020 size_t buf_alloc, buf_pos;
3021 gdb_byte *buf;
3022 LONGEST n;
3023 int fd;
3024 int target_errno;
3025
3026 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3027 if (fd == -1)
3028 return -1;
3029
3030 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3031
3032 /* Start by reading up to 4K at a time. The target will throttle
3033 this number down if necessary. */
3034 buf_alloc = 4096;
3035 buf = xmalloc (buf_alloc);
3036 buf_pos = 0;
3037 while (1)
3038 {
3039 n = target_fileio_pread (fd, &buf[buf_pos],
3040 buf_alloc - buf_pos - padding, buf_pos,
3041 &target_errno);
3042 if (n < 0)
3043 {
3044 /* An error occurred. */
3045 do_cleanups (close_cleanup);
3046 xfree (buf);
3047 return -1;
3048 }
3049 else if (n == 0)
3050 {
3051 /* Read all there was. */
3052 do_cleanups (close_cleanup);
3053 if (buf_pos == 0)
3054 xfree (buf);
3055 else
3056 *buf_p = buf;
3057 return buf_pos;
3058 }
3059
3060 buf_pos += n;
3061
3062 /* If the buffer is filling up, expand it. */
3063 if (buf_alloc < buf_pos * 2)
3064 {
3065 buf_alloc *= 2;
3066 buf = xrealloc (buf, buf_alloc);
3067 }
3068
3069 QUIT;
3070 }
3071}
3072
3073/* Read target file FILENAME. Store the result in *BUF_P and return
3074 the size of the transferred data. See the declaration in "target.h"
3075 function for more information about the return value. */
3076
3077LONGEST
3078target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3079{
3080 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3081}
3082
3083/* Read target file FILENAME. The result is NUL-terminated and
3084 returned as a string, allocated using xmalloc. If an error occurs
3085 or the transfer is unsupported, NULL is returned. Empty objects
3086 are returned as allocated but empty strings. A warning is issued
3087 if the result contains any embedded NUL bytes. */
3088
3089char *
3090target_fileio_read_stralloc (const char *filename)
3091{
39086a0e
PA
3092 gdb_byte *buffer;
3093 char *bufstr;
7313baad
UW
3094 LONGEST i, transferred;
3095
39086a0e
PA
3096 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3097 bufstr = (char *) buffer;
7313baad
UW
3098
3099 if (transferred < 0)
3100 return NULL;
3101
3102 if (transferred == 0)
3103 return xstrdup ("");
3104
39086a0e 3105 bufstr[transferred] = 0;
7313baad
UW
3106
3107 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
3108 for (i = strlen (bufstr); i < transferred; i++)
3109 if (bufstr[i] != 0)
7313baad
UW
3110 {
3111 warning (_("target file %s "
3112 "contained unexpected null characters"),
3113 filename);
3114 break;
3115 }
3116
39086a0e 3117 return bufstr;
7313baad
UW
3118}
3119
3120
e0d24f8d 3121static int
31568a15
TT
3122default_region_ok_for_hw_watchpoint (struct target_ops *self,
3123 CORE_ADDR addr, int len)
e0d24f8d 3124{
f5656ead 3125 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3126}
3127
5009afc5
AS
3128static int
3129default_watchpoint_addr_within_range (struct target_ops *target,
3130 CORE_ADDR addr,
3131 CORE_ADDR start, int length)
3132{
3133 return addr >= start && addr < start + length;
3134}
3135
c2250ad1
UW
3136static struct gdbarch *
3137default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3138{
f5656ead 3139 return target_gdbarch ();
c2250ad1
UW
3140}
3141
c906108c 3142static int
555bbdeb
TT
3143return_zero (struct target_ops *ignore)
3144{
3145 return 0;
3146}
3147
3148static int
3149return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3150{
3151 return 0;
3152}
3153
ed9a39eb
JM
3154/*
3155 * Find the next target down the stack from the specified target.
3156 */
3157
3158struct target_ops *
fba45db2 3159find_target_beneath (struct target_ops *t)
ed9a39eb 3160{
258b763a 3161 return t->beneath;
ed9a39eb
JM
3162}
3163
8b06beed
TT
3164/* See target.h. */
3165
3166struct target_ops *
3167find_target_at (enum strata stratum)
3168{
3169 struct target_ops *t;
3170
3171 for (t = current_target.beneath; t != NULL; t = t->beneath)
3172 if (t->to_stratum == stratum)
3173 return t;
3174
3175 return NULL;
3176}
3177
c906108c
SS
3178\f
3179/* The inferior process has died. Long live the inferior! */
3180
3181void
fba45db2 3182generic_mourn_inferior (void)
c906108c 3183{
7f9f62ba 3184 ptid_t ptid;
c906108c 3185
7f9f62ba 3186 ptid = inferior_ptid;
39f77062 3187 inferior_ptid = null_ptid;
7f9f62ba 3188
f59f708a
PA
3189 /* Mark breakpoints uninserted in case something tries to delete a
3190 breakpoint while we delete the inferior's threads (which would
3191 fail, since the inferior is long gone). */
3192 mark_breakpoints_out ();
3193
7f9f62ba
PA
3194 if (!ptid_equal (ptid, null_ptid))
3195 {
3196 int pid = ptid_get_pid (ptid);
6c95b8df 3197 exit_inferior (pid);
7f9f62ba
PA
3198 }
3199
f59f708a
PA
3200 /* Note this wipes step-resume breakpoints, so needs to be done
3201 after exit_inferior, which ends up referencing the step-resume
3202 breakpoints through clear_thread_inferior_resources. */
c906108c 3203 breakpoint_init_inferior (inf_exited);
f59f708a 3204
c906108c
SS
3205 registers_changed ();
3206
c906108c
SS
3207 reopen_exec_file ();
3208 reinit_frame_cache ();
3209
9a4105ab
AC
3210 if (deprecated_detach_hook)
3211 deprecated_detach_hook ();
c906108c
SS
3212}
3213\f
fd0a2a6f
MK
3214/* Convert a normal process ID to a string. Returns the string in a
3215 static buffer. */
c906108c
SS
3216
3217char *
39f77062 3218normal_pid_to_str (ptid_t ptid)
c906108c 3219{
fd0a2a6f 3220 static char buf[32];
c906108c 3221
5fff8fc0 3222 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3223 return buf;
3224}
3225
2c0b251b 3226static char *
770234d3 3227default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3228{
3229 return normal_pid_to_str (ptid);
3230}
3231
9b4eba8e
HZ
3232/* Error-catcher for target_find_memory_regions. */
3233static int
2e73927c
TT
3234dummy_find_memory_regions (struct target_ops *self,
3235 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3236{
9b4eba8e 3237 error (_("Command not implemented for this target."));
be4d1333
MS
3238 return 0;
3239}
3240
9b4eba8e
HZ
3241/* Error-catcher for target_make_corefile_notes. */
3242static char *
fc6691b2
TT
3243dummy_make_corefile_notes (struct target_ops *self,
3244 bfd *ignore1, int *ignore2)
be4d1333 3245{
9b4eba8e 3246 error (_("Command not implemented for this target."));
be4d1333
MS
3247 return NULL;
3248}
3249
c906108c
SS
3250/* Set up the handful of non-empty slots needed by the dummy target
3251 vector. */
3252
3253static void
fba45db2 3254init_dummy_target (void)
c906108c
SS
3255{
3256 dummy_target.to_shortname = "None";
3257 dummy_target.to_longname = "None";
3258 dummy_target.to_doc = "";
c906108c 3259 dummy_target.to_create_inferior = find_default_create_inferior;
9908b566 3260 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
03583c20
UW
3261 dummy_target.to_supports_disable_randomization
3262 = find_default_supports_disable_randomization;
c906108c 3263 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3264 dummy_target.to_has_all_memory = return_zero;
3265 dummy_target.to_has_memory = return_zero;
3266 dummy_target.to_has_stack = return_zero;
3267 dummy_target.to_has_registers = return_zero;
3268 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3269 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3270
3271 install_dummy_methods (&dummy_target);
c906108c 3272}
c906108c 3273\f
c906108c 3274static void
fba45db2 3275debug_to_open (char *args, int from_tty)
c906108c
SS
3276{
3277 debug_target.to_open (args, from_tty);
3278
96baa820 3279 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
c906108c
SS
3280}
3281
f1c07ab0 3282void
460014f5 3283target_close (struct target_ops *targ)
f1c07ab0 3284{
7fdc1521
TT
3285 gdb_assert (!target_is_pushed (targ));
3286
f1c07ab0 3287 if (targ->to_xclose != NULL)
460014f5 3288 targ->to_xclose (targ);
f1c07ab0 3289 else if (targ->to_close != NULL)
de90e03d 3290 targ->to_close (targ);
947b8855
PA
3291
3292 if (targetdebug)
460014f5 3293 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3294}
3295
136d6dae
VP
3296void
3297target_attach (char *args, int from_tty)
3298{
e9a29200
TT
3299 current_target.to_attach (&current_target, args, from_tty);
3300 if (targetdebug)
3301 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3302 args, from_tty);
136d6dae
VP
3303}
3304
28439f5e
PA
3305int
3306target_thread_alive (ptid_t ptid)
c906108c 3307{
cbffc065 3308 int retval;
28439f5e 3309
cbffc065
TT
3310 retval = current_target.to_thread_alive (&current_target, ptid);
3311 if (targetdebug)
3312 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3313 ptid_get_pid (ptid), retval);
28439f5e 3314
cbffc065 3315 return retval;
28439f5e
PA
3316}
3317
3318void
3319target_find_new_threads (void)
3320{
09b0dc2b
TT
3321 current_target.to_find_new_threads (&current_target);
3322 if (targetdebug)
3323 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
c906108c
SS
3324}
3325
d914c394
SS
3326void
3327target_stop (ptid_t ptid)
3328{
3329 if (!may_stop)
3330 {
3331 warning (_("May not interrupt or stop the target, ignoring attempt"));
3332 return;
3333 }
3334
1eab8a48 3335 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3336}
3337
c906108c 3338static void
f045800c 3339debug_to_post_attach (struct target_ops *self, int pid)
c906108c 3340{
f045800c 3341 debug_target.to_post_attach (&debug_target, pid);
c906108c 3342
28439f5e 3343 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
c906108c
SS
3344}
3345
09826ec5
PA
3346/* Concatenate ELEM to LIST, a comma separate list, and return the
3347 result. The LIST incoming argument is released. */
3348
3349static char *
3350str_comma_list_concat_elem (char *list, const char *elem)
3351{
3352 if (list == NULL)
3353 return xstrdup (elem);
3354 else
3355 return reconcat (list, list, ", ", elem, (char *) NULL);
3356}
3357
3358/* Helper for target_options_to_string. If OPT is present in
3359 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3360 Returns the new resulting string. OPT is removed from
3361 TARGET_OPTIONS. */
3362
3363static char *
3364do_option (int *target_options, char *ret,
3365 int opt, char *opt_str)
3366{
3367 if ((*target_options & opt) != 0)
3368 {
3369 ret = str_comma_list_concat_elem (ret, opt_str);
3370 *target_options &= ~opt;
3371 }
3372
3373 return ret;
3374}
3375
3376char *
3377target_options_to_string (int target_options)
3378{
3379 char *ret = NULL;
3380
3381#define DO_TARG_OPTION(OPT) \
3382 ret = do_option (&target_options, ret, OPT, #OPT)
3383
3384 DO_TARG_OPTION (TARGET_WNOHANG);
3385
3386 if (target_options != 0)
3387 ret = str_comma_list_concat_elem (ret, "unknown???");
3388
3389 if (ret == NULL)
3390 ret = xstrdup ("");
3391 return ret;
3392}
3393
bf0c5130 3394static void
56be3814
UW
3395debug_print_register (const char * func,
3396 struct regcache *regcache, int regno)
bf0c5130 3397{
f8d29908 3398 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3399
bf0c5130 3400 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3401 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3402 && gdbarch_register_name (gdbarch, regno) != NULL
3403 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3404 fprintf_unfiltered (gdb_stdlog, "(%s)",
3405 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3406 else
3407 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3408 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3409 {
e17a4113 3410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3411 int i, size = register_size (gdbarch, regno);
e362b510 3412 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3413
0ff58721 3414 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3415 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3416 for (i = 0; i < size; i++)
bf0c5130
AC
3417 {
3418 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3419 }
81c4a259 3420 if (size <= sizeof (LONGEST))
bf0c5130 3421 {
e17a4113 3422 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3423
0b1553bc
UW
3424 fprintf_unfiltered (gdb_stdlog, " %s %s",
3425 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3426 }
3427 }
3428 fprintf_unfiltered (gdb_stdlog, "\n");
3429}
3430
28439f5e
PA
3431void
3432target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3433{
ad5989bd
TT
3434 current_target.to_fetch_registers (&current_target, regcache, regno);
3435 if (targetdebug)
3436 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3437}
3438
28439f5e
PA
3439void
3440target_store_registers (struct regcache *regcache, int regno)
c906108c 3441{
28439f5e 3442 struct target_ops *t;
5d502164 3443
d914c394
SS
3444 if (!may_write_registers)
3445 error (_("Writing to registers is not allowed (regno %d)"), regno);
3446
6b84065d
TT
3447 current_target.to_store_registers (&current_target, regcache, regno);
3448 if (targetdebug)
28439f5e 3449 {
6b84065d 3450 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3451 }
c906108c
SS
3452}
3453
dc146f7c
VP
3454int
3455target_core_of_thread (ptid_t ptid)
3456{
9e538d0d 3457 int retval = current_target.to_core_of_thread (&current_target, ptid);
dc146f7c 3458
9e538d0d
TT
3459 if (targetdebug)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "target_core_of_thread (%d) = %d\n",
3462 ptid_get_pid (ptid), retval);
3463 return retval;
dc146f7c
VP
3464}
3465
4a5e7a5b
PA
3466int
3467target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3468{
eb276a6b
TT
3469 int retval = current_target.to_verify_memory (&current_target,
3470 data, memaddr, size);
5d502164 3471
eb276a6b
TT
3472 if (targetdebug)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "target_verify_memory (%s, %s) = %d\n",
3475 paddress (target_gdbarch (), memaddr),
3476 pulongest (size),
3477 retval);
3478 return retval;
4a5e7a5b
PA
3479}
3480
9c06b0b4
TJB
3481/* The documentation for this function is in its prototype declaration in
3482 target.h. */
3483
3484int
3485target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3486{
cd4ae029 3487 int ret;
9c06b0b4 3488
cd4ae029
TT
3489 ret = current_target.to_insert_mask_watchpoint (&current_target,
3490 addr, mask, rw);
9c06b0b4 3491
cd4ae029
TT
3492 if (targetdebug)
3493 fprintf_unfiltered (gdb_stdlog, "\
9c06b0b4 3494target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
cd4ae029
TT
3495 core_addr_to_string (addr),
3496 core_addr_to_string (mask), rw, ret);
3497
3498 return ret;
9c06b0b4
TJB
3499}
3500
3501/* The documentation for this function is in its prototype declaration in
3502 target.h. */
3503
3504int
3505target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3506{
8b1c364c 3507 int ret;
9c06b0b4 3508
8b1c364c
TT
3509 ret = current_target.to_remove_mask_watchpoint (&current_target,
3510 addr, mask, rw);
9c06b0b4 3511
8b1c364c
TT
3512 if (targetdebug)
3513 fprintf_unfiltered (gdb_stdlog, "\
9c06b0b4 3514target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
8b1c364c
TT
3515 core_addr_to_string (addr),
3516 core_addr_to_string (mask), rw, ret);
9c06b0b4 3517
8b1c364c 3518 return ret;
9c06b0b4
TJB
3519}
3520
3521/* The documentation for this function is in its prototype declaration
3522 in target.h. */
3523
3524int
3525target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3526{
6c7e5e5c
TT
3527 return current_target.to_masked_watch_num_registers (&current_target,
3528 addr, mask);
9c06b0b4
TJB
3529}
3530
f1310107
TJB
3531/* The documentation for this function is in its prototype declaration
3532 in target.h. */
3533
3534int
3535target_ranged_break_num_registers (void)
3536{
a134316b 3537 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3538}
3539
02d27625
MM
3540/* See target.h. */
3541
02d27625
MM
3542struct btrace_target_info *
3543target_enable_btrace (ptid_t ptid)
3544{
6dc7fcf4 3545 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3546}
3547
3548/* See target.h. */
3549
3550void
3551target_disable_btrace (struct btrace_target_info *btinfo)
3552{
8dc292d3 3553 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3554}
3555
3556/* See target.h. */
3557
3558void
3559target_teardown_btrace (struct btrace_target_info *btinfo)
3560{
9ace480d 3561 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3562}
3563
3564/* See target.h. */
3565
969c39fb
MM
3566enum btrace_error
3567target_read_btrace (VEC (btrace_block_s) **btrace,
3568 struct btrace_target_info *btinfo,
02d27625
MM
3569 enum btrace_read_type type)
3570{
eb5b20d4 3571 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3572}
3573
d02ed0bb
MM
3574/* See target.h. */
3575
7c1687a9
MM
3576void
3577target_stop_recording (void)
3578{
ee97f592 3579 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3580}
3581
3582/* See target.h. */
3583
d02ed0bb
MM
3584void
3585target_info_record (void)
3586{
3587 struct target_ops *t;
3588
3589 for (t = current_target.beneath; t != NULL; t = t->beneath)
3590 if (t->to_info_record != NULL)
3591 {
630d6a4a 3592 t->to_info_record (t);
d02ed0bb
MM
3593 return;
3594 }
3595
3596 tcomplain ();
3597}
3598
3599/* See target.h. */
3600
3601void
85e1311a 3602target_save_record (const char *filename)
d02ed0bb 3603{
f09e2107 3604 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3605}
3606
3607/* See target.h. */
3608
3609int
3610target_supports_delete_record (void)
3611{
3612 struct target_ops *t;
3613
3614 for (t = current_target.beneath; t != NULL; t = t->beneath)
3615 if (t->to_delete_record != NULL)
3616 return 1;
3617
3618 return 0;
3619}
3620
3621/* See target.h. */
3622
3623void
3624target_delete_record (void)
3625{
07366925 3626 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3627}
3628
3629/* See target.h. */
3630
3631int
3632target_record_is_replaying (void)
3633{
dd2e9d25 3634 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3635}
3636
3637/* See target.h. */
3638
3639void
3640target_goto_record_begin (void)
3641{
671e76cc 3642 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3643}
3644
3645/* See target.h. */
3646
3647void
3648target_goto_record_end (void)
3649{
e9179bb3 3650 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3651}
3652
3653/* See target.h. */
3654
3655void
3656target_goto_record (ULONGEST insn)
3657{
05969c84 3658 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3659}
3660
67c86d06
MM
3661/* See target.h. */
3662
3663void
3664target_insn_history (int size, int flags)
3665{
3679abfa 3666 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3667}
3668
3669/* See target.h. */
3670
3671void
3672target_insn_history_from (ULONGEST from, int size, int flags)
3673{
8444ab58 3674 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3675}
3676
3677/* See target.h. */
3678
3679void
3680target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3681{
c29302cc 3682 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3683}
3684
15984c13
MM
3685/* See target.h. */
3686
3687void
3688target_call_history (int size, int flags)
3689{
170049d4 3690 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3691}
3692
3693/* See target.h. */
3694
3695void
3696target_call_history_from (ULONGEST begin, int size, int flags)
3697{
16fc27d6 3698 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3699}
3700
3701/* See target.h. */
3702
3703void
3704target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3705{
115d9817 3706 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3707}
3708
c906108c 3709static void
f32dbf8c 3710debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
c906108c 3711{
f32dbf8c 3712 debug_target.to_prepare_to_store (&debug_target, regcache);
c906108c 3713
96baa820 3714 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
c906108c
SS
3715}
3716
ea001bdc
MM
3717/* See target.h. */
3718
3719const struct frame_unwind *
3720target_get_unwinder (void)
3721{
ac01945b 3722 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3723}
3724
3725/* See target.h. */
3726
3727const struct frame_unwind *
3728target_get_tailcall_unwinder (void)
3729{
ac01945b 3730 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3731}
3732
c0eca49f 3733/* Default implementation of to_decr_pc_after_break. */
118e6252 3734
c0eca49f
TT
3735static CORE_ADDR
3736default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3737 struct gdbarch *gdbarch)
3738{
118e6252
MM
3739 return gdbarch_decr_pc_after_break (gdbarch);
3740}
3741
3742/* See target.h. */
3743
3744CORE_ADDR
3745target_decr_pc_after_break (struct gdbarch *gdbarch)
3746{
c0eca49f 3747 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3748}
3749
c906108c 3750static void
fba45db2 3751debug_to_files_info (struct target_ops *target)
c906108c
SS
3752{
3753 debug_target.to_files_info (target);
3754
96baa820 3755 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
c906108c
SS
3756}
3757
3758static int
3db08215 3759debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
a6d9a66e 3760 struct bp_target_info *bp_tgt)
c906108c
SS
3761{
3762 int retval;
3763
6b84065d 3764 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
c906108c 3765
96baa820 3766 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3767 "target_insert_breakpoint (%s, xxx) = %ld\n",
3768 core_addr_to_string (bp_tgt->placed_address),
104c1213 3769 (unsigned long) retval);
c906108c
SS
3770 return retval;
3771}
3772
3773static int
3db08215 3774debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
a6d9a66e 3775 struct bp_target_info *bp_tgt)
c906108c
SS
3776{
3777 int retval;
3778
6b84065d 3779 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
c906108c 3780
96baa820 3781 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3782 "target_remove_breakpoint (%s, xxx) = %ld\n",
3783 core_addr_to_string (bp_tgt->placed_address),
104c1213 3784 (unsigned long) retval);
c906108c
SS
3785 return retval;
3786}
3787
ccaa32c7 3788static int
5461485a
TT
3789debug_to_can_use_hw_breakpoint (struct target_ops *self,
3790 int type, int cnt, int from_tty)
ccaa32c7
GS
3791{
3792 int retval;
3793
5461485a
TT
3794 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3795 type, cnt, from_tty);
ccaa32c7
GS
3796
3797 fprintf_unfiltered (gdb_stdlog,
3798 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3799 (unsigned long) type,
3800 (unsigned long) cnt,
3801 (unsigned long) from_tty,
3802 (unsigned long) retval);
3803 return retval;
3804}
3805
e0d24f8d 3806static int
31568a15
TT
3807debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3808 CORE_ADDR addr, int len)
e0d24f8d
WZ
3809{
3810 CORE_ADDR retval;
3811
31568a15
TT
3812 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3813 addr, len);
e0d24f8d
WZ
3814
3815 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3816 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3817 core_addr_to_string (addr), (unsigned long) len,
3818 core_addr_to_string (retval));
e0d24f8d
WZ
3819 return retval;
3820}
3821
0cf6dd15 3822static int
c3a5ff89
TT
3823debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3824 CORE_ADDR addr, int len, int rw,
0cf6dd15
TJB
3825 struct expression *cond)
3826{
3827 int retval;
3828
c3a5ff89
TT
3829 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3830 addr, len,
3e43a32a 3831 rw, cond);
0cf6dd15
TJB
3832
3833 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
3834 "target_can_accel_watchpoint_condition "
3835 "(%s, %d, %d, %s) = %ld\n",
bd91e7ae
OS
3836 core_addr_to_string (addr), len, rw,
3837 host_address_to_string (cond), (unsigned long) retval);
0cf6dd15
TJB
3838 return retval;
3839}
3840
ccaa32c7 3841static int
6a109b6b 3842debug_to_stopped_by_watchpoint (struct target_ops *ops)
ccaa32c7
GS
3843{
3844 int retval;
3845
6a109b6b 3846 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
ccaa32c7
GS
3847
3848 fprintf_unfiltered (gdb_stdlog,
d92524f1 3849 "target_stopped_by_watchpoint () = %ld\n",
ccaa32c7
GS
3850 (unsigned long) retval);
3851 return retval;
3852}
3853
4aa7a7f5
JJ
3854static int
3855debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
ccaa32c7 3856{
4aa7a7f5 3857 int retval;
ccaa32c7 3858
4aa7a7f5 3859 retval = debug_target.to_stopped_data_address (target, addr);
ccaa32c7
GS
3860
3861 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3862 "target_stopped_data_address ([%s]) = %ld\n",
3863 core_addr_to_string (*addr),
4aa7a7f5 3864 (unsigned long)retval);
ccaa32c7
GS
3865 return retval;
3866}
3867
5009afc5
AS
3868static int
3869debug_to_watchpoint_addr_within_range (struct target_ops *target,
3870 CORE_ADDR addr,
3871 CORE_ADDR start, int length)
3872{
3873 int retval;
3874
3875 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3876 start, length);
3877
3878 fprintf_filtered (gdb_stdlog,
bd91e7ae
OS
3879 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3880 core_addr_to_string (addr), core_addr_to_string (start),
3881 length, retval);
5009afc5
AS
3882 return retval;
3883}
3884
ccaa32c7 3885static int
23a26771
TT
3886debug_to_insert_hw_breakpoint (struct target_ops *self,
3887 struct gdbarch *gdbarch,
a6d9a66e 3888 struct bp_target_info *bp_tgt)
ccaa32c7
GS
3889{
3890 int retval;
3891
23a26771
TT
3892 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3893 gdbarch, bp_tgt);
ccaa32c7
GS
3894
3895 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3896 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3897 core_addr_to_string (bp_tgt->placed_address),
ccaa32c7
GS
3898 (unsigned long) retval);
3899 return retval;
3900}
3901
3902static int
a64dc96c
TT
3903debug_to_remove_hw_breakpoint (struct target_ops *self,
3904 struct gdbarch *gdbarch,
a6d9a66e 3905 struct bp_target_info *bp_tgt)
ccaa32c7
GS
3906{
3907 int retval;
3908
a64dc96c
TT
3909 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3910 gdbarch, bp_tgt);
ccaa32c7
GS
3911
3912 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3913 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3914 core_addr_to_string (bp_tgt->placed_address),
ccaa32c7
GS
3915 (unsigned long) retval);
3916 return retval;
3917}
3918
3919static int
7bb99c53
TT
3920debug_to_insert_watchpoint (struct target_ops *self,
3921 CORE_ADDR addr, int len, int type,
0cf6dd15 3922 struct expression *cond)
ccaa32c7
GS
3923{
3924 int retval;
3925
7bb99c53
TT
3926 retval = debug_target.to_insert_watchpoint (&debug_target,
3927 addr, len, type, cond);
ccaa32c7
GS
3928
3929 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3930 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3931 core_addr_to_string (addr), len, type,
3932 host_address_to_string (cond), (unsigned long) retval);
ccaa32c7
GS
3933 return retval;
3934}
3935
3936static int
11b5219a
TT
3937debug_to_remove_watchpoint (struct target_ops *self,
3938 CORE_ADDR addr, int len, int type,
0cf6dd15 3939 struct expression *cond)
ccaa32c7
GS
3940{
3941 int retval;
3942
11b5219a
TT
3943 retval = debug_target.to_remove_watchpoint (&debug_target,
3944 addr, len, type, cond);
ccaa32c7
GS
3945
3946 fprintf_unfiltered (gdb_stdlog,
bd91e7ae
OS
3947 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3948 core_addr_to_string (addr), len, type,
3949 host_address_to_string (cond), (unsigned long) retval);
ccaa32c7
GS
3950 return retval;
3951}
3952
c906108c 3953static void
c42bf286 3954debug_to_terminal_init (struct target_ops *self)
c906108c 3955{
c42bf286 3956 debug_target.to_terminal_init (&debug_target);
c906108c 3957
96baa820 3958 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
c906108c
SS
3959}
3960
3961static void
d2f640d4 3962debug_to_terminal_inferior (struct target_ops *self)
c906108c 3963{
d2f640d4 3964 debug_target.to_terminal_inferior (&debug_target);
c906108c 3965
96baa820 3966 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
c906108c
SS
3967}
3968
3969static void
2e1e1a19 3970debug_to_terminal_ours_for_output (struct target_ops *self)
c906108c 3971{
2e1e1a19 3972 debug_target.to_terminal_ours_for_output (&debug_target);
c906108c 3973
96baa820 3974 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
c906108c
SS
3975}
3976
3977static void
e3594fd1 3978debug_to_terminal_ours (struct target_ops *self)
c906108c 3979{
e3594fd1 3980 debug_target.to_terminal_ours (&debug_target);
c906108c 3981
96baa820 3982 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
c906108c
SS
3983}
3984
a790ad35 3985static void
ae3bd431 3986debug_to_terminal_save_ours (struct target_ops *self)
a790ad35 3987{
ae3bd431 3988 debug_target.to_terminal_save_ours (&debug_target);
a790ad35
SC
3989
3990 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3991}
3992
c906108c 3993static void
0a4f40a2
TT
3994debug_to_terminal_info (struct target_ops *self,
3995 const char *arg, int from_tty)
c906108c 3996{
0a4f40a2 3997 debug_target.to_terminal_info (&debug_target, arg, from_tty);
c906108c 3998
96baa820 3999 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
c906108c
SS
4000 from_tty);
4001}
4002
c906108c 4003static void
71a9f134 4004debug_to_load (struct target_ops *self, char *args, int from_tty)
c906108c 4005{
71a9f134 4006 debug_target.to_load (&debug_target, args, from_tty);
c906108c 4007
96baa820 4008 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
c906108c
SS
4009}
4010
c906108c 4011static void
2e97a79e 4012debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
c906108c 4013{
2e97a79e 4014 debug_target.to_post_startup_inferior (&debug_target, ptid);
c906108c 4015
96baa820 4016 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
dfd4cc63 4017 ptid_get_pid (ptid));
c906108c
SS
4018}
4019
77b06cd7 4020static int
a863b201 4021debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
c906108c 4022{
77b06cd7
TJB
4023 int retval;
4024
a863b201 4025 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
77b06cd7
TJB
4026
4027 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4028 pid, retval);
c906108c 4029
77b06cd7 4030 return retval;
c906108c
SS
4031}
4032
4033static int
973fc227 4034debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
c906108c 4035{
c5aa993b 4036 int retval;
c906108c 4037
973fc227 4038 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
c906108c 4039
96baa820 4040 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
c5aa993b 4041 pid, retval);
c906108c
SS
4042
4043 return retval;
4044}
4045
77b06cd7 4046static int
3ecc7da0 4047debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
c906108c 4048{
77b06cd7
TJB
4049 int retval;
4050
3ecc7da0 4051 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
c906108c 4052
77b06cd7
TJB
4053 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4054 pid, retval);
4055
4056 return retval;
c906108c
SS
4057}
4058
4059static int
e98cf0cd 4060debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
c906108c 4061{
c5aa993b 4062 int retval;
c906108c 4063
e98cf0cd 4064 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
c906108c 4065
96baa820 4066 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
c5aa993b 4067 pid, retval);
c906108c
SS
4068
4069 return retval;
4070}
4071
77b06cd7 4072static int
ba025e51 4073debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
c906108c 4074{
77b06cd7
TJB
4075 int retval;
4076
ba025e51 4077 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
c906108c 4078
77b06cd7
TJB
4079 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4080 pid, retval);
4081
4082 return retval;
c906108c
SS
4083}
4084
4085static int
758e29d2 4086debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
c906108c 4087{
c5aa993b 4088 int retval;
c906108c 4089
758e29d2 4090 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
c906108c 4091
96baa820 4092 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
c5aa993b 4093 pid, retval);
c906108c
SS
4094
4095 return retval;
4096}
4097
c906108c 4098static int
d796e1d6
TT
4099debug_to_has_exited (struct target_ops *self,
4100 int pid, int wait_status, int *exit_status)
c906108c 4101{
c5aa993b 4102 int has_exited;
c906108c 4103
d796e1d6
TT
4104 has_exited = debug_target.to_has_exited (&debug_target,
4105 pid, wait_status, exit_status);
c906108c 4106
96baa820 4107 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
c5aa993b 4108 pid, wait_status, *exit_status, has_exited);
c906108c
SS
4109
4110 return has_exited;
4111}
4112
c906108c 4113static int
da82bd6b 4114debug_to_can_run (struct target_ops *self)
c906108c
SS
4115{
4116 int retval;
4117
da82bd6b 4118 retval = debug_target.to_can_run (&debug_target);
c906108c 4119
96baa820 4120 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
c906108c
SS
4121
4122 return retval;
4123}
4124
c2250ad1
UW
4125static struct gdbarch *
4126debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4127{
4128 struct gdbarch *retval;
4129
4130 retval = debug_target.to_thread_architecture (ops, ptid);
4131
3e43a32a
MS
4132 fprintf_unfiltered (gdb_stdlog,
4133 "target_thread_architecture (%s) = %s [%s]\n",
4134 target_pid_to_str (ptid),
4135 host_address_to_string (retval),
c2250ad1
UW
4136 gdbarch_bfd_arch_info (retval)->printable_name);
4137 return retval;
4138}
4139
c906108c 4140static void
1eab8a48 4141debug_to_stop (struct target_ops *self, ptid_t ptid)
c906108c 4142{
1eab8a48 4143 debug_target.to_stop (&debug_target, ptid);
c906108c 4144
94cc34af
PA
4145 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4146 target_pid_to_str (ptid));
c906108c
SS
4147}
4148
96baa820 4149static void
1aac633b 4150debug_to_rcmd (struct target_ops *self, char *command,
d9fcf2fb 4151 struct ui_file *outbuf)
96baa820 4152{
1aac633b 4153 debug_target.to_rcmd (&debug_target, command, outbuf);
96baa820
JM
4154 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4155}
4156
c906108c 4157static char *
8dd27370 4158debug_to_pid_to_exec_file (struct target_ops *self, int pid)
c906108c 4159{
c5aa993b 4160 char *exec_file;
c906108c 4161
8dd27370 4162 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
c906108c 4163
96baa820 4164 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
c5aa993b 4165 pid, exec_file);
c906108c
SS
4166
4167 return exec_file;
4168}
4169
c906108c 4170static void
fba45db2 4171setup_target_debug (void)
c906108c
SS
4172{
4173 memcpy (&debug_target, &current_target, sizeof debug_target);
4174
4175 current_target.to_open = debug_to_open;
c906108c 4176 current_target.to_post_attach = debug_to_post_attach;
c906108c 4177 current_target.to_prepare_to_store = debug_to_prepare_to_store;
c906108c
SS
4178 current_target.to_files_info = debug_to_files_info;
4179 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4180 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
ccaa32c7
GS
4181 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4182 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4183 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4184 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4185 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4186 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4187 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3e43a32a
MS
4188 current_target.to_watchpoint_addr_within_range
4189 = debug_to_watchpoint_addr_within_range;
4190 current_target.to_region_ok_for_hw_watchpoint
4191 = debug_to_region_ok_for_hw_watchpoint;
4192 current_target.to_can_accel_watchpoint_condition
4193 = debug_to_can_accel_watchpoint_condition;
c906108c
SS
4194 current_target.to_terminal_init = debug_to_terminal_init;
4195 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3e43a32a
MS
4196 current_target.to_terminal_ours_for_output
4197 = debug_to_terminal_ours_for_output;
c906108c 4198 current_target.to_terminal_ours = debug_to_terminal_ours;
a790ad35 4199 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
c906108c 4200 current_target.to_terminal_info = debug_to_terminal_info;
c906108c 4201 current_target.to_load = debug_to_load;
c906108c 4202 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
c906108c
SS
4203 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4204 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4205 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4206 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
c906108c
SS
4207 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4208 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
c906108c 4209 current_target.to_has_exited = debug_to_has_exited;
c906108c 4210 current_target.to_can_run = debug_to_can_run;
c906108c 4211 current_target.to_stop = debug_to_stop;
96baa820 4212 current_target.to_rcmd = debug_to_rcmd;
c906108c 4213 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
c2250ad1 4214 current_target.to_thread_architecture = debug_to_thread_architecture;
c906108c 4215}
c906108c 4216\f
c5aa993b
JM
4217
4218static char targ_desc[] =
3e43a32a
MS
4219"Names of targets and files being debugged.\nShows the entire \
4220stack of targets currently in use (including the exec-file,\n\
c906108c
SS
4221core-file, and process, if any), as well as the symbol file name.";
4222
a53f3625
TT
4223static void
4224default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4225{
4226 error (_("\"monitor\" command not supported by this target."));
4227}
4228
96baa820
JM
4229static void
4230do_monitor_command (char *cmd,
4231 int from_tty)
4232{
96baa820
JM
4233 target_rcmd (cmd, gdb_stdtarg);
4234}
4235
87680a14
JB
4236/* Print the name of each layers of our target stack. */
4237
4238static void
4239maintenance_print_target_stack (char *cmd, int from_tty)
4240{
4241 struct target_ops *t;
4242
4243 printf_filtered (_("The current target stack is:\n"));
4244
4245 for (t = target_stack; t != NULL; t = t->beneath)
4246 {
4247 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4248 }
4249}
4250
c6ebd6cf
VP
4251/* Controls if async mode is permitted. */
4252int target_async_permitted = 0;
4253
4254/* The set command writes to this variable. If the inferior is
b5419e49 4255 executing, target_async_permitted is *not* updated. */
c6ebd6cf
VP
4256static int target_async_permitted_1 = 0;
4257
4258static void
9401a810
PA
4259set_target_async_command (char *args, int from_tty,
4260 struct cmd_list_element *c)
c6ebd6cf 4261{
c35b1492 4262 if (have_live_inferiors ())
c6ebd6cf
VP
4263 {
4264 target_async_permitted_1 = target_async_permitted;
4265 error (_("Cannot change this setting while the inferior is running."));
4266 }
4267
4268 target_async_permitted = target_async_permitted_1;
4269}
4270
4271static void
9401a810
PA
4272show_target_async_command (struct ui_file *file, int from_tty,
4273 struct cmd_list_element *c,
4274 const char *value)
c6ebd6cf 4275{
3e43a32a
MS
4276 fprintf_filtered (file,
4277 _("Controlling the inferior in "
4278 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
4279}
4280
d914c394
SS
4281/* Temporary copies of permission settings. */
4282
4283static int may_write_registers_1 = 1;
4284static int may_write_memory_1 = 1;
4285static int may_insert_breakpoints_1 = 1;
4286static int may_insert_tracepoints_1 = 1;
4287static int may_insert_fast_tracepoints_1 = 1;
4288static int may_stop_1 = 1;
4289
4290/* Make the user-set values match the real values again. */
4291
4292void
4293update_target_permissions (void)
4294{
4295 may_write_registers_1 = may_write_registers;
4296 may_write_memory_1 = may_write_memory;
4297 may_insert_breakpoints_1 = may_insert_breakpoints;
4298 may_insert_tracepoints_1 = may_insert_tracepoints;
4299 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4300 may_stop_1 = may_stop;
4301}
4302
4303/* The one function handles (most of) the permission flags in the same
4304 way. */
4305
4306static void
4307set_target_permissions (char *args, int from_tty,
4308 struct cmd_list_element *c)
4309{
4310 if (target_has_execution)
4311 {
4312 update_target_permissions ();
4313 error (_("Cannot change this setting while the inferior is running."));
4314 }
4315
4316 /* Make the real values match the user-changed values. */
4317 may_write_registers = may_write_registers_1;
4318 may_insert_breakpoints = may_insert_breakpoints_1;
4319 may_insert_tracepoints = may_insert_tracepoints_1;
4320 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4321 may_stop = may_stop_1;
4322 update_observer_mode ();
4323}
4324
4325/* Set memory write permission independently of observer mode. */
4326
4327static void
4328set_write_memory_permission (char *args, int from_tty,
4329 struct cmd_list_element *c)
4330{
4331 /* Make the real values match the user-changed values. */
4332 may_write_memory = may_write_memory_1;
4333 update_observer_mode ();
4334}
4335
4336
c906108c 4337void
fba45db2 4338initialize_targets (void)
c906108c
SS
4339{
4340 init_dummy_target ();
4341 push_target (&dummy_target);
4342
4343 add_info ("target", target_info, targ_desc);
4344 add_info ("files", target_info, targ_desc);
4345
ccce17b0 4346 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4347Set target debugging."), _("\
4348Show target debugging."), _("\
333dabeb
DJ
4349When non-zero, target debugging is enabled. Higher numbers are more\n\
4350verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
85c07804 4351command."),
ccce17b0
YQ
4352 NULL,
4353 show_targetdebug,
4354 &setdebuglist, &showdebuglist);
3a11626d 4355
2bc416ba 4356 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4357 &trust_readonly, _("\
4358Set mode for reading from readonly sections."), _("\
4359Show mode for reading from readonly sections."), _("\
3a11626d
MS
4360When this mode is on, memory reads from readonly sections (such as .text)\n\
4361will be read from the object file instead of from the target. This will\n\
7915a72c 4362result in significant performance improvement for remote targets."),
2c5b56ce 4363 NULL,
920d2a44 4364 show_trust_readonly,
e707bbc2 4365 &setlist, &showlist);
96baa820
JM
4366
4367 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4368 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4369
87680a14
JB
4370 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4371 _("Print the name of each layer of the internal target stack."),
4372 &maintenanceprintlist);
4373
c6ebd6cf
VP
4374 add_setshow_boolean_cmd ("target-async", no_class,
4375 &target_async_permitted_1, _("\
4376Set whether gdb controls the inferior in asynchronous mode."), _("\
4377Show whether gdb controls the inferior in asynchronous mode."), _("\
4378Tells gdb whether to control the inferior in asynchronous mode."),
9401a810
PA
4379 set_target_async_command,
4380 show_target_async_command,
c6ebd6cf
VP
4381 &setlist,
4382 &showlist);
4383
d914c394
SS
4384 add_setshow_boolean_cmd ("may-write-registers", class_support,
4385 &may_write_registers_1, _("\
4386Set permission to write into registers."), _("\
4387Show permission to write into registers."), _("\
4388When this permission is on, GDB may write into the target's registers.\n\
4389Otherwise, any sort of write attempt will result in an error."),
4390 set_target_permissions, NULL,
4391 &setlist, &showlist);
4392
4393 add_setshow_boolean_cmd ("may-write-memory", class_support,
4394 &may_write_memory_1, _("\
4395Set permission to write into target memory."), _("\
4396Show permission to write into target memory."), _("\
4397When this permission is on, GDB may write into the target's memory.\n\
4398Otherwise, any sort of write attempt will result in an error."),
4399 set_write_memory_permission, NULL,
4400 &setlist, &showlist);
4401
4402 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4403 &may_insert_breakpoints_1, _("\
4404Set permission to insert breakpoints in the target."), _("\
4405Show permission to insert breakpoints in the target."), _("\
4406When this permission is on, GDB may insert breakpoints in the program.\n\
4407Otherwise, any sort of insertion attempt will result in an error."),
4408 set_target_permissions, NULL,
4409 &setlist, &showlist);
4410
4411 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4412 &may_insert_tracepoints_1, _("\
4413Set permission to insert tracepoints in the target."), _("\
4414Show permission to insert tracepoints in the target."), _("\
4415When this permission is on, GDB may insert tracepoints in the program.\n\
4416Otherwise, any sort of insertion attempt will result in an error."),
4417 set_target_permissions, NULL,
4418 &setlist, &showlist);
4419
4420 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4421 &may_insert_fast_tracepoints_1, _("\
4422Set permission to insert fast tracepoints in the target."), _("\
4423Show permission to insert fast tracepoints in the target."), _("\
4424When this permission is on, GDB may insert fast tracepoints.\n\
4425Otherwise, any sort of insertion attempt will result in an error."),
4426 set_target_permissions, NULL,
4427 &setlist, &showlist);
4428
4429 add_setshow_boolean_cmd ("may-interrupt", class_support,
4430 &may_stop_1, _("\
4431Set permission to interrupt or signal the target."), _("\
4432Show permission to interrupt or signal the target."), _("\
4433When this permission is on, GDB may interrupt/stop the target's execution.\n\
4434Otherwise, any attempt to interrupt or stop will be ignored."),
4435 set_target_permissions, NULL,
4436 &setlist, &showlist);
c906108c 4437}
This page took 1.805454 seconds and 4 git commands to generate.