Merge remote thread listing methods
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
c0eca49f
TT
108static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
a7068b60
TT
111static struct target_ops debug_target;
112
1101cb7b
TT
113#include "target-delegates.c"
114
a14ed312 115static void init_dummy_target (void);
c906108c 116
3cecbbbe
TT
117static void update_current_target (void);
118
89a1c21a
SM
119/* Vector of existing target structures. */
120typedef struct target_ops *target_ops_p;
121DEF_VEC_P (target_ops_p);
122static VEC (target_ops_p) *target_structs;
c906108c
SS
123
124/* The initial current target, so that there is always a semi-valid
125 current target. */
126
127static struct target_ops dummy_target;
128
129/* Top of target stack. */
130
258b763a 131static struct target_ops *target_stack;
c906108c
SS
132
133/* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136struct target_ops current_target;
137
138/* Command list for target. */
139
140static struct cmd_list_element *targetlist = NULL;
141
cf7a04e8
DJ
142/* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145static int trust_readonly = 0;
146
8defab1a
DJ
147/* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150static int show_memory_breakpoints = 0;
151
d914c394
SS
152/* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156int may_write_registers = 1;
157
158int may_write_memory = 1;
159
160int may_insert_breakpoints = 1;
161
162int may_insert_tracepoints = 1;
163
164int may_insert_fast_tracepoints = 1;
165
166int may_stop = 1;
167
c906108c
SS
168/* Non-zero if we want to see trace of target level stuff. */
169
ccce17b0 170static unsigned int targetdebug = 0;
3cecbbbe
TT
171
172static void
173set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174{
175 update_current_target ();
176}
177
920d2a44
AC
178static void
179show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183}
c906108c 184
a14ed312 185static void setup_target_debug (void);
c906108c 186
c906108c
SS
187/* The user just typed 'target' without the name of a target. */
188
c906108c 189static void
fba45db2 190target_command (char *arg, int from_tty)
c906108c
SS
191{
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194}
195
c35b1492
PA
196/* Default target_has_* methods for process_stratum targets. */
197
198int
199default_child_has_all_memory (struct target_ops *ops)
200{
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206}
207
208int
209default_child_has_memory (struct target_ops *ops)
210{
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216}
217
218int
219default_child_has_stack (struct target_ops *ops)
220{
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_registers (struct target_ops *ops)
230{
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236}
237
238int
aeaec162 239default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
240{
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
aeaec162 243 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
244 return 0;
245
246 return 1;
247}
248
249
250int
251target_has_all_memory_1 (void)
252{
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260}
261
262int
263target_has_memory_1 (void)
264{
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272}
273
274int
275target_has_stack_1 (void)
276{
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284}
285
286int
287target_has_registers_1 (void)
288{
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296}
297
298int
aeaec162 299target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
300{
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 304 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
305 return 1;
306
307 return 0;
308}
309
aeaec162
TT
310int
311target_has_execution_current (void)
312{
313 return target_has_execution_1 (inferior_ptid);
314}
315
c22a2b88
TT
316/* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
c906108c
SS
318
319void
c22a2b88 320complete_target_initialization (struct target_ops *t)
c906108c 321{
0088c768 322 /* Provide default values for all "must have" methods. */
0088c768 323
c35b1492 324 if (t->to_has_all_memory == NULL)
555bbdeb 325 t->to_has_all_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_memory == NULL)
555bbdeb 328 t->to_has_memory = return_zero;
c35b1492
PA
329
330 if (t->to_has_stack == NULL)
555bbdeb 331 t->to_has_stack = return_zero;
c35b1492
PA
332
333 if (t->to_has_registers == NULL)
555bbdeb 334 t->to_has_registers = return_zero;
c35b1492
PA
335
336 if (t->to_has_execution == NULL)
555bbdeb 337 t->to_has_execution = return_zero_has_execution;
1101cb7b 338
b3ccfe11
TT
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
1101cb7b 345 install_delegators (t);
c22a2b88
TT
346}
347
8981c758
TT
348/* This is used to implement the various target commands. */
349
350static void
351open_target (char *args, int from_tty, struct cmd_list_element *command)
352{
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364}
365
c22a2b88
TT
366/* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370void
371add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373{
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
c35b1492 377
89a1c21a 378 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
379
380 if (targetlist == NULL)
1bedd215
AC
381 add_prefix_cmd ("target", class_run, target_command, _("\
382Connect to a target machine or process.\n\
c906108c
SS
383The first argument is the type or protocol of the target machine.\n\
384Remaining arguments are interpreted by the target protocol. For more\n\
385information on the arguments for a particular protocol, type\n\
1bedd215 386`help target ' followed by the protocol name."),
c906108c 387 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
9852c492
YQ
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393}
394
395/* Add a possible target architecture to the list. */
396
397void
398add_target (struct target_ops *t)
399{
400 add_target_with_completer (t, NULL);
c906108c
SS
401}
402
b48d48eb
MM
403/* See target.h. */
404
405void
406add_deprecated_target_alias (struct target_ops *t, char *alias)
407{
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
8981c758
TT
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
b48d48eb
MM
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418}
419
c906108c
SS
420/* Stub functions */
421
7d85a9c0
JB
422void
423target_kill (void)
424{
423a4807 425 current_target.to_kill (&current_target);
7d85a9c0
JB
426}
427
11cf8741 428void
9cbe5fff 429target_load (const char *arg, int from_tty)
11cf8741 430{
4e5d721f 431 target_dcache_invalidate ();
71a9f134 432 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
433}
434
d9d2d8b6
PA
435void
436target_terminal_inferior (void)
437{
438 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 439 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
440 this point the target is not async yet. However, if sync_execution
441 is not set, we know it will become async prior to resume. */
442 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
443 return;
444
445 /* If GDB is resuming the inferior in the foreground, install
446 inferior's terminal modes. */
d2f640d4 447 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 448}
136d6dae 449
b0ed115f
TT
450/* See target.h. */
451
452int
453target_supports_terminal_ours (void)
454{
455 struct target_ops *t;
456
457 for (t = current_target.beneath; t != NULL; t = t->beneath)
458 {
459 if (t->to_terminal_ours != delegate_terminal_ours
460 && t->to_terminal_ours != tdefault_terminal_ours)
461 return 1;
462 }
463
464 return 0;
465}
466
c906108c 467static void
fba45db2 468tcomplain (void)
c906108c 469{
8a3fe4f8 470 error (_("You can't do that when your target is `%s'"),
c906108c
SS
471 current_target.to_shortname);
472}
473
474void
fba45db2 475noprocess (void)
c906108c 476{
8a3fe4f8 477 error (_("You can't do that without a process to debug."));
c906108c
SS
478}
479
c906108c 480static void
0a4f40a2 481default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 482{
a3f17187 483 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
484}
485
0ef643c8
JB
486/* A default implementation for the to_get_ada_task_ptid target method.
487
488 This function builds the PTID by using both LWP and TID as part of
489 the PTID lwp and tid elements. The pid used is the pid of the
490 inferior_ptid. */
491
2c0b251b 492static ptid_t
1e6b91a4 493default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
494{
495 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
496}
497
32231432 498static enum exec_direction_kind
4c612759 499default_execution_direction (struct target_ops *self)
32231432
PA
500{
501 if (!target_can_execute_reverse)
502 return EXEC_FORWARD;
503 else if (!target_can_async_p ())
504 return EXEC_FORWARD;
505 else
506 gdb_assert_not_reached ("\
507to_execution_direction must be implemented for reverse async");
508}
509
7998dfc3
AC
510/* Go through the target stack from top to bottom, copying over zero
511 entries in current_target, then filling in still empty entries. In
512 effect, we are doing class inheritance through the pushed target
513 vectors.
514
515 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
516 is currently implemented, is that it discards any knowledge of
517 which target an inherited method originally belonged to.
518 Consequently, new new target methods should instead explicitly and
519 locally search the target stack for the target that can handle the
520 request. */
c906108c
SS
521
522static void
7998dfc3 523update_current_target (void)
c906108c 524{
7998dfc3
AC
525 struct target_ops *t;
526
08d8bcd7 527 /* First, reset current's contents. */
7998dfc3
AC
528 memset (&current_target, 0, sizeof (current_target));
529
1101cb7b
TT
530 /* Install the delegators. */
531 install_delegators (&current_target);
532
be4ddd36
TT
533 current_target.to_stratum = target_stack->to_stratum;
534
7998dfc3
AC
535#define INHERIT(FIELD, TARGET) \
536 if (!current_target.FIELD) \
537 current_target.FIELD = (TARGET)->FIELD
538
be4ddd36
TT
539 /* Do not add any new INHERITs here. Instead, use the delegation
540 mechanism provided by make-target-delegates. */
7998dfc3
AC
541 for (t = target_stack; t; t = t->beneath)
542 {
543 INHERIT (to_shortname, t);
544 INHERIT (to_longname, t);
dc177b7a 545 INHERIT (to_attach_no_wait, t);
74174d2e 546 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 547 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 548 INHERIT (to_has_thread_control, t);
7998dfc3
AC
549 }
550#undef INHERIT
551
7998dfc3
AC
552 /* Finally, position the target-stack beneath the squashed
553 "current_target". That way code looking for a non-inherited
554 target method can quickly and simply find it. */
555 current_target.beneath = target_stack;
b4b61fdb
DJ
556
557 if (targetdebug)
558 setup_target_debug ();
c906108c
SS
559}
560
561/* Push a new target type into the stack of the existing target accessors,
562 possibly superseding some of the existing accessors.
563
c906108c
SS
564 Rather than allow an empty stack, we always have the dummy target at
565 the bottom stratum, so we can call the function vectors without
566 checking them. */
567
b26a4dcb 568void
fba45db2 569push_target (struct target_ops *t)
c906108c 570{
258b763a 571 struct target_ops **cur;
c906108c
SS
572
573 /* Check magic number. If wrong, it probably means someone changed
574 the struct definition, but not all the places that initialize one. */
575 if (t->to_magic != OPS_MAGIC)
576 {
c5aa993b
JM
577 fprintf_unfiltered (gdb_stderr,
578 "Magic number of %s target struct wrong\n",
579 t->to_shortname);
3e43a32a
MS
580 internal_error (__FILE__, __LINE__,
581 _("failed internal consistency check"));
c906108c
SS
582 }
583
258b763a
AC
584 /* Find the proper stratum to install this target in. */
585 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 586 {
258b763a 587 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
588 break;
589 }
590
258b763a 591 /* If there's already targets at this stratum, remove them. */
88c231eb 592 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
593 targets to CUR, and not just those at this stratum level. */
594 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
595 {
596 /* There's already something at this stratum level. Close it,
597 and un-hook it from the stack. */
598 struct target_ops *tmp = (*cur);
5d502164 599
258b763a
AC
600 (*cur) = (*cur)->beneath;
601 tmp->beneath = NULL;
460014f5 602 target_close (tmp);
258b763a 603 }
c906108c
SS
604
605 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
606 t->beneath = (*cur);
607 (*cur) = t;
c906108c
SS
608
609 update_current_target ();
c906108c
SS
610}
611
2bc416ba 612/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
613 Return how many times it was removed (0 or 1). */
614
615int
fba45db2 616unpush_target (struct target_ops *t)
c906108c 617{
258b763a
AC
618 struct target_ops **cur;
619 struct target_ops *tmp;
c906108c 620
c8d104ad
PA
621 if (t->to_stratum == dummy_stratum)
622 internal_error (__FILE__, __LINE__,
9b20d036 623 _("Attempt to unpush the dummy target"));
c8d104ad 624
c906108c 625 /* Look for the specified target. Note that we assume that a target
c378eb4e 626 can only occur once in the target stack. */
c906108c 627
258b763a
AC
628 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
629 {
630 if ((*cur) == t)
631 break;
632 }
c906108c 633
305436e0
PA
634 /* If we don't find target_ops, quit. Only open targets should be
635 closed. */
258b763a 636 if ((*cur) == NULL)
305436e0 637 return 0;
5269965e 638
c378eb4e 639 /* Unchain the target. */
258b763a
AC
640 tmp = (*cur);
641 (*cur) = (*cur)->beneath;
642 tmp->beneath = NULL;
c906108c
SS
643
644 update_current_target ();
c906108c 645
305436e0
PA
646 /* Finally close the target. Note we do this after unchaining, so
647 any target method calls from within the target_close
648 implementation don't end up in T anymore. */
460014f5 649 target_close (t);
305436e0 650
c906108c
SS
651 return 1;
652}
653
aa76d38d 654void
460014f5 655pop_all_targets_above (enum strata above_stratum)
aa76d38d 656{
87ab71f0 657 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 658 {
aa76d38d
PA
659 if (!unpush_target (target_stack))
660 {
661 fprintf_unfiltered (gdb_stderr,
662 "pop_all_targets couldn't find target %s\n",
b52323fa 663 target_stack->to_shortname);
aa76d38d
PA
664 internal_error (__FILE__, __LINE__,
665 _("failed internal consistency check"));
666 break;
667 }
668 }
669}
670
87ab71f0 671void
460014f5 672pop_all_targets (void)
87ab71f0 673{
460014f5 674 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
675}
676
c0edd9ed
JK
677/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679int
680target_is_pushed (struct target_ops *t)
681{
84202f9c 682 struct target_ops *cur;
c0edd9ed
JK
683
684 /* Check magic number. If wrong, it probably means someone changed
685 the struct definition, but not all the places that initialize one. */
686 if (t->to_magic != OPS_MAGIC)
687 {
688 fprintf_unfiltered (gdb_stderr,
689 "Magic number of %s target struct wrong\n",
690 t->to_shortname);
3e43a32a
MS
691 internal_error (__FILE__, __LINE__,
692 _("failed internal consistency check"));
c0edd9ed
JK
693 }
694
84202f9c
TT
695 for (cur = target_stack; cur != NULL; cur = cur->beneath)
696 if (cur == t)
c0edd9ed
JK
697 return 1;
698
699 return 0;
700}
701
f0f9ff95
TT
702/* Default implementation of to_get_thread_local_address. */
703
704static void
705generic_tls_error (void)
706{
707 throw_error (TLS_GENERIC_ERROR,
708 _("Cannot find thread-local variables on this target"));
709}
710
72f5cf0e 711/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
712 current thread's thread-local storage with offset OFFSET. */
713CORE_ADDR
714target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
715{
716 volatile CORE_ADDR addr = 0;
f0f9ff95 717 struct target_ops *target = &current_target;
9e35dae4 718
f0f9ff95 719 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
720 {
721 ptid_t ptid = inferior_ptid;
722 volatile struct gdb_exception ex;
723
724 TRY_CATCH (ex, RETURN_MASK_ALL)
725 {
726 CORE_ADDR lm_addr;
727
728 /* Fetch the load module address for this objfile. */
f5656ead 729 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 730 objfile);
9e35dae4 731
3e43a32a
MS
732 addr = target->to_get_thread_local_address (target, ptid,
733 lm_addr, offset);
9e35dae4
DJ
734 }
735 /* If an error occurred, print TLS related messages here. Otherwise,
736 throw the error to some higher catcher. */
737 if (ex.reason < 0)
738 {
739 int objfile_is_library = (objfile->flags & OBJF_SHARED);
740
741 switch (ex.error)
742 {
743 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
744 error (_("Cannot find thread-local variables "
745 "in this thread library."));
9e35dae4
DJ
746 break;
747 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
748 if (objfile_is_library)
749 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 750 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
751 else
752 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 753 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
754 break;
755 case TLS_NOT_ALLOCATED_YET_ERROR:
756 if (objfile_is_library)
757 error (_("The inferior has not yet allocated storage for"
758 " thread-local variables in\n"
759 "the shared library `%s'\n"
760 "for %s"),
4262abfb 761 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
762 else
763 error (_("The inferior has not yet allocated storage for"
764 " thread-local variables in\n"
765 "the executable `%s'\n"
766 "for %s"),
4262abfb 767 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
768 break;
769 case TLS_GENERIC_ERROR:
770 if (objfile_is_library)
771 error (_("Cannot find thread-local storage for %s, "
772 "shared library %s:\n%s"),
773 target_pid_to_str (ptid),
4262abfb 774 objfile_name (objfile), ex.message);
9e35dae4
DJ
775 else
776 error (_("Cannot find thread-local storage for %s, "
777 "executable file %s:\n%s"),
778 target_pid_to_str (ptid),
4262abfb 779 objfile_name (objfile), ex.message);
9e35dae4
DJ
780 break;
781 default:
782 throw_exception (ex);
783 break;
784 }
785 }
786 }
787 /* It wouldn't be wrong here to try a gdbarch method, too; finding
788 TLS is an ABI-specific thing. But we don't do that yet. */
789 else
790 error (_("Cannot find thread-local variables on this target"));
791
792 return addr;
793}
794
6be7b56e 795const char *
01cb8804 796target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
797{
798#define CASE(X) case X: return #X
01cb8804 799 switch (status)
6be7b56e
PA
800 {
801 CASE(TARGET_XFER_E_IO);
bc113b4e 802 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
803 default:
804 return "<unknown>";
805 }
806#undef CASE
807};
808
809
c906108c
SS
810#undef MIN
811#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
812
813/* target_read_string -- read a null terminated string, up to LEN bytes,
814 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
815 Set *STRING to a pointer to malloc'd memory containing the data; the caller
816 is responsible for freeing it. Return the number of bytes successfully
817 read. */
818
819int
fba45db2 820target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 821{
c2e8b827 822 int tlen, offset, i;
1b0ba102 823 gdb_byte buf[4];
c906108c
SS
824 int errcode = 0;
825 char *buffer;
826 int buffer_allocated;
827 char *bufptr;
828 unsigned int nbytes_read = 0;
829
6217bf3e
MS
830 gdb_assert (string);
831
c906108c
SS
832 /* Small for testing. */
833 buffer_allocated = 4;
834 buffer = xmalloc (buffer_allocated);
835 bufptr = buffer;
836
c906108c
SS
837 while (len > 0)
838 {
839 tlen = MIN (len, 4 - (memaddr & 3));
840 offset = memaddr & 3;
841
1b0ba102 842 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
843 if (errcode != 0)
844 {
845 /* The transfer request might have crossed the boundary to an
c378eb4e 846 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
847 a single byte. */
848 tlen = 1;
849 offset = 0;
b8eb5af0 850 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
851 if (errcode != 0)
852 goto done;
853 }
854
855 if (bufptr - buffer + tlen > buffer_allocated)
856 {
857 unsigned int bytes;
5d502164 858
c906108c
SS
859 bytes = bufptr - buffer;
860 buffer_allocated *= 2;
861 buffer = xrealloc (buffer, buffer_allocated);
862 bufptr = buffer + bytes;
863 }
864
865 for (i = 0; i < tlen; i++)
866 {
867 *bufptr++ = buf[i + offset];
868 if (buf[i + offset] == '\000')
869 {
870 nbytes_read += i + 1;
871 goto done;
872 }
873 }
874
875 memaddr += tlen;
876 len -= tlen;
877 nbytes_read += tlen;
878 }
c5aa993b 879done:
6217bf3e 880 *string = buffer;
c906108c
SS
881 if (errnop != NULL)
882 *errnop = errcode;
c906108c
SS
883 return nbytes_read;
884}
885
07b82ea5
PA
886struct target_section_table *
887target_get_section_table (struct target_ops *target)
888{
7e35c012 889 return (*target->to_get_section_table) (target);
07b82ea5
PA
890}
891
8db32d44 892/* Find a section containing ADDR. */
07b82ea5 893
0542c86d 894struct target_section *
8db32d44
AC
895target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
896{
07b82ea5 897 struct target_section_table *table = target_get_section_table (target);
0542c86d 898 struct target_section *secp;
07b82ea5
PA
899
900 if (table == NULL)
901 return NULL;
902
903 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
904 {
905 if (addr >= secp->addr && addr < secp->endaddr)
906 return secp;
907 }
908 return NULL;
909}
910
0fec99e8
PA
911
912/* Helper for the memory xfer routines. Checks the attributes of the
913 memory region of MEMADDR against the read or write being attempted.
914 If the access is permitted returns true, otherwise returns false.
915 REGION_P is an optional output parameter. If not-NULL, it is
916 filled with a pointer to the memory region of MEMADDR. REG_LEN
917 returns LEN trimmed to the end of the region. This is how much the
918 caller can continue requesting, if the access is permitted. A
919 single xfer request must not straddle memory region boundaries. */
920
921static int
922memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
923 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
924 struct mem_region **region_p)
925{
926 struct mem_region *region;
927
928 region = lookup_mem_region (memaddr);
929
930 if (region_p != NULL)
931 *region_p = region;
932
933 switch (region->attrib.mode)
934 {
935 case MEM_RO:
936 if (writebuf != NULL)
937 return 0;
938 break;
939
940 case MEM_WO:
941 if (readbuf != NULL)
942 return 0;
943 break;
944
945 case MEM_FLASH:
946 /* We only support writing to flash during "load" for now. */
947 if (writebuf != NULL)
948 error (_("Writing to flash memory forbidden in this context"));
949 break;
950
951 case MEM_NONE:
952 return 0;
953 }
954
955 /* region->hi == 0 means there's no upper bound. */
956 if (memaddr + len < region->hi || region->hi == 0)
957 *reg_len = len;
958 else
959 *reg_len = region->hi - memaddr;
960
961 return 1;
962}
963
9f713294
YQ
964/* Read memory from more than one valid target. A core file, for
965 instance, could have some of memory but delegate other bits to
966 the target below it. So, we must manually try all targets. */
967
9b409511 968static enum target_xfer_status
17fde6d0 969raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
970 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
971 ULONGEST *xfered_len)
9f713294 972{
9b409511 973 enum target_xfer_status res;
9f713294
YQ
974
975 do
976 {
977 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
978 readbuf, writebuf, memaddr, len,
979 xfered_len);
980 if (res == TARGET_XFER_OK)
9f713294
YQ
981 break;
982
633785ff 983 /* Stop if the target reports that the memory is not available. */
bc113b4e 984 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
985 break;
986
9f713294
YQ
987 /* We want to continue past core files to executables, but not
988 past a running target's memory. */
989 if (ops->to_has_all_memory (ops))
990 break;
991
992 ops = ops->beneath;
993 }
994 while (ops != NULL);
995
0f26cec1
PA
996 /* The cache works at the raw memory level. Make sure the cache
997 gets updated with raw contents no matter what kind of memory
998 object was originally being written. Note we do write-through
999 first, so that if it fails, we don't write to the cache contents
1000 that never made it to the target. */
1001 if (writebuf != NULL
1002 && !ptid_equal (inferior_ptid, null_ptid)
1003 && target_dcache_init_p ()
1004 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1005 {
1006 DCACHE *dcache = target_dcache_get ();
1007
1008 /* Note that writing to an area of memory which wasn't present
1009 in the cache doesn't cause it to be loaded in. */
1010 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1011 }
1012
9f713294
YQ
1013 return res;
1014}
1015
7f79c47e
DE
1016/* Perform a partial memory transfer.
1017 For docs see target.h, to_xfer_partial. */
cf7a04e8 1018
9b409511 1019static enum target_xfer_status
f0ba3972 1020memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1021 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1022 ULONGEST len, ULONGEST *xfered_len)
0779438d 1023{
9b409511 1024 enum target_xfer_status res;
0fec99e8 1025 ULONGEST reg_len;
cf7a04e8 1026 struct mem_region *region;
4e5d721f 1027 struct inferior *inf;
cf7a04e8 1028
07b82ea5
PA
1029 /* For accesses to unmapped overlay sections, read directly from
1030 files. Must do this first, as MEMADDR may need adjustment. */
1031 if (readbuf != NULL && overlay_debugging)
1032 {
1033 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1034
07b82ea5
PA
1035 if (pc_in_unmapped_range (memaddr, section))
1036 {
1037 struct target_section_table *table
1038 = target_get_section_table (ops);
1039 const char *section_name = section->the_bfd_section->name;
5d502164 1040
07b82ea5
PA
1041 memaddr = overlay_mapped_address (memaddr, section);
1042 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1043 memaddr, len, xfered_len,
07b82ea5
PA
1044 table->sections,
1045 table->sections_end,
1046 section_name);
1047 }
1048 }
1049
1050 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1051 if (readbuf != NULL && trust_readonly)
1052 {
0542c86d 1053 struct target_section *secp;
07b82ea5 1054 struct target_section_table *table;
cf7a04e8
DJ
1055
1056 secp = target_section_by_addr (ops, memaddr);
1057 if (secp != NULL
2b2848e2
DE
1058 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1059 secp->the_bfd_section)
cf7a04e8 1060 & SEC_READONLY))
07b82ea5
PA
1061 {
1062 table = target_get_section_table (ops);
1063 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1064 memaddr, len, xfered_len,
07b82ea5
PA
1065 table->sections,
1066 table->sections_end,
1067 NULL);
1068 }
98646950
UW
1069 }
1070
cf7a04e8 1071 /* Try GDB's internal data cache. */
cf7a04e8 1072
0fec99e8
PA
1073 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1074 &region))
1075 return TARGET_XFER_E_IO;
cf7a04e8 1076
6c95b8df
PA
1077 if (!ptid_equal (inferior_ptid, null_ptid))
1078 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1079 else
1080 inf = NULL;
4e5d721f
DE
1081
1082 if (inf != NULL
0f26cec1 1083 && readbuf != NULL
2f4d8875
PA
1084 /* The dcache reads whole cache lines; that doesn't play well
1085 with reading from a trace buffer, because reading outside of
1086 the collected memory range fails. */
1087 && get_traceframe_number () == -1
4e5d721f 1088 && (region->attrib.cache
29453a14
YQ
1089 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1090 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1091 {
2a2f9fe4
YQ
1092 DCACHE *dcache = target_dcache_get_or_init ();
1093
0f26cec1
PA
1094 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1095 reg_len, xfered_len);
cf7a04e8
DJ
1096 }
1097
1098 /* If none of those methods found the memory we wanted, fall back
1099 to a target partial transfer. Normally a single call to
1100 to_xfer_partial is enough; if it doesn't recognize an object
1101 it will call the to_xfer_partial of the next target down.
1102 But for memory this won't do. Memory is the only target
9b409511
YQ
1103 object which can be read from more than one valid target.
1104 A core file, for instance, could have some of memory but
1105 delegate other bits to the target below it. So, we must
1106 manually try all targets. */
1107
1108 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1109 xfered_len);
cf7a04e8
DJ
1110
1111 /* If we still haven't got anything, return the last error. We
1112 give up. */
1113 return res;
0779438d
AC
1114}
1115
f0ba3972
PA
1116/* Perform a partial memory transfer. For docs see target.h,
1117 to_xfer_partial. */
1118
9b409511 1119static enum target_xfer_status
f0ba3972 1120memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1121 gdb_byte *readbuf, const gdb_byte *writebuf,
1122 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1123{
9b409511 1124 enum target_xfer_status res;
f0ba3972
PA
1125
1126 /* Zero length requests are ok and require no work. */
1127 if (len == 0)
9b409511 1128 return TARGET_XFER_EOF;
f0ba3972
PA
1129
1130 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1131 breakpoint insns, thus hiding out from higher layers whether
1132 there are software breakpoints inserted in the code stream. */
1133 if (readbuf != NULL)
1134 {
9b409511
YQ
1135 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1136 xfered_len);
f0ba3972 1137
9b409511 1138 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1139 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1140 }
1141 else
1142 {
1143 void *buf;
1144 struct cleanup *old_chain;
1145
67c059c2
AB
1146 /* A large write request is likely to be partially satisfied
1147 by memory_xfer_partial_1. We will continually malloc
1148 and free a copy of the entire write request for breakpoint
1149 shadow handling even though we only end up writing a small
1150 subset of it. Cap writes to 4KB to mitigate this. */
1151 len = min (4096, len);
1152
f0ba3972
PA
1153 buf = xmalloc (len);
1154 old_chain = make_cleanup (xfree, buf);
1155 memcpy (buf, writebuf, len);
1156
1157 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1158 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1159 xfered_len);
f0ba3972
PA
1160
1161 do_cleanups (old_chain);
1162 }
1163
1164 return res;
1165}
1166
8defab1a
DJ
1167static void
1168restore_show_memory_breakpoints (void *arg)
1169{
1170 show_memory_breakpoints = (uintptr_t) arg;
1171}
1172
1173struct cleanup *
1174make_show_memory_breakpoints_cleanup (int show)
1175{
1176 int current = show_memory_breakpoints;
8defab1a 1177
5d502164 1178 show_memory_breakpoints = show;
8defab1a
DJ
1179 return make_cleanup (restore_show_memory_breakpoints,
1180 (void *) (uintptr_t) current);
1181}
1182
7f79c47e
DE
1183/* For docs see target.h, to_xfer_partial. */
1184
9b409511 1185enum target_xfer_status
27394598
AC
1186target_xfer_partial (struct target_ops *ops,
1187 enum target_object object, const char *annex,
4ac248ca 1188 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1189 ULONGEST offset, ULONGEST len,
1190 ULONGEST *xfered_len)
27394598 1191{
9b409511 1192 enum target_xfer_status retval;
27394598
AC
1193
1194 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1195
ce6d0892
YQ
1196 /* Transfer is done when LEN is zero. */
1197 if (len == 0)
9b409511 1198 return TARGET_XFER_EOF;
ce6d0892 1199
d914c394
SS
1200 if (writebuf && !may_write_memory)
1201 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1202 core_addr_to_string_nz (offset), plongest (len));
1203
9b409511
YQ
1204 *xfered_len = 0;
1205
cf7a04e8
DJ
1206 /* If this is a memory transfer, let the memory-specific code
1207 have a look at it instead. Memory transfers are more
1208 complicated. */
29453a14
YQ
1209 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1210 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1211 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1212 writebuf, offset, len, xfered_len);
9f713294 1213 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1214 {
0fec99e8
PA
1215 /* Skip/avoid accessing the target if the memory region
1216 attributes block the access. Check this here instead of in
1217 raw_memory_xfer_partial as otherwise we'd end up checking
1218 this twice in the case of the memory_xfer_partial path is
1219 taken; once before checking the dcache, and another in the
1220 tail call to raw_memory_xfer_partial. */
1221 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1222 NULL))
1223 return TARGET_XFER_E_IO;
1224
9f713294 1225 /* Request the normal memory object from other layers. */
9b409511
YQ
1226 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1227 xfered_len);
cf7a04e8 1228 }
9f713294
YQ
1229 else
1230 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1231 writebuf, offset, len, xfered_len);
cf7a04e8 1232
27394598
AC
1233 if (targetdebug)
1234 {
1235 const unsigned char *myaddr = NULL;
1236
1237 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1238 "%s:target_xfer_partial "
9b409511 1239 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1240 ops->to_shortname,
1241 (int) object,
1242 (annex ? annex : "(null)"),
53b71562
JB
1243 host_address_to_string (readbuf),
1244 host_address_to_string (writebuf),
0b1553bc 1245 core_addr_to_string_nz (offset),
9b409511
YQ
1246 pulongest (len), retval,
1247 pulongest (*xfered_len));
27394598
AC
1248
1249 if (readbuf)
1250 myaddr = readbuf;
1251 if (writebuf)
1252 myaddr = writebuf;
9b409511 1253 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1254 {
1255 int i;
2bc416ba 1256
27394598 1257 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1258 for (i = 0; i < *xfered_len; i++)
27394598 1259 {
53b71562 1260 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1261 {
1262 if (targetdebug < 2 && i > 0)
1263 {
1264 fprintf_unfiltered (gdb_stdlog, " ...");
1265 break;
1266 }
1267 fprintf_unfiltered (gdb_stdlog, "\n");
1268 }
2bc416ba 1269
27394598
AC
1270 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1271 }
1272 }
2bc416ba 1273
27394598
AC
1274 fputc_unfiltered ('\n', gdb_stdlog);
1275 }
9b409511
YQ
1276
1277 /* Check implementations of to_xfer_partial update *XFERED_LEN
1278 properly. Do assertion after printing debug messages, so that we
1279 can find more clues on assertion failure from debugging messages. */
bc113b4e 1280 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1281 gdb_assert (*xfered_len > 0);
1282
27394598
AC
1283 return retval;
1284}
1285
578d3588
PA
1286/* Read LEN bytes of target memory at address MEMADDR, placing the
1287 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1288 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1289
1290 If an error occurs, no guarantee is made about the contents of the data at
1291 MYADDR. In particular, the caller should not depend upon partial reads
1292 filling the buffer with good data. There is no way for the caller to know
1293 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1294 deal with partial reads should call target_read (which will retry until
c378eb4e 1295 it makes no progress, and then return how much was transferred). */
c906108c
SS
1296
1297int
1b162304 1298target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1299{
c35b1492
PA
1300 /* Dispatch to the topmost target, not the flattened current_target.
1301 Memory accesses check target->to_has_(all_)memory, and the
1302 flattened target doesn't inherit those. */
1303 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1304 myaddr, memaddr, len) == len)
1305 return 0;
0779438d 1306 else
578d3588 1307 return TARGET_XFER_E_IO;
c906108c
SS
1308}
1309
721ec300
GB
1310/* See target/target.h. */
1311
1312int
1313target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1314{
1315 gdb_byte buf[4];
1316 int r;
1317
1318 r = target_read_memory (memaddr, buf, sizeof buf);
1319 if (r != 0)
1320 return r;
1321 *result = extract_unsigned_integer (buf, sizeof buf,
1322 gdbarch_byte_order (target_gdbarch ()));
1323 return 0;
1324}
1325
aee4bf85
PA
1326/* Like target_read_memory, but specify explicitly that this is a read
1327 from the target's raw memory. That is, this read bypasses the
1328 dcache, breakpoint shadowing, etc. */
1329
1330int
1331target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1332{
1333 /* See comment in target_read_memory about why the request starts at
1334 current_target.beneath. */
1335 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1336 myaddr, memaddr, len) == len)
1337 return 0;
1338 else
1339 return TARGET_XFER_E_IO;
1340}
1341
4e5d721f
DE
1342/* Like target_read_memory, but specify explicitly that this is a read from
1343 the target's stack. This may trigger different cache behavior. */
1344
1345int
45aa4659 1346target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1347{
aee4bf85
PA
1348 /* See comment in target_read_memory about why the request starts at
1349 current_target.beneath. */
4e5d721f
DE
1350 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1351 myaddr, memaddr, len) == len)
1352 return 0;
1353 else
578d3588 1354 return TARGET_XFER_E_IO;
4e5d721f
DE
1355}
1356
29453a14
YQ
1357/* Like target_read_memory, but specify explicitly that this is a read from
1358 the target's code. This may trigger different cache behavior. */
1359
1360int
1361target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1362{
aee4bf85
PA
1363 /* See comment in target_read_memory about why the request starts at
1364 current_target.beneath. */
29453a14
YQ
1365 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1366 myaddr, memaddr, len) == len)
1367 return 0;
1368 else
1369 return TARGET_XFER_E_IO;
1370}
1371
7f79c47e 1372/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1373 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1374 error occurs. If an error occurs, no guarantee is made about how
1375 much data got written. Callers that can deal with partial writes
1376 should call target_write. */
7f79c47e 1377
c906108c 1378int
45aa4659 1379target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1380{
aee4bf85
PA
1381 /* See comment in target_read_memory about why the request starts at
1382 current_target.beneath. */
c35b1492 1383 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1384 myaddr, memaddr, len) == len)
1385 return 0;
0779438d 1386 else
578d3588 1387 return TARGET_XFER_E_IO;
c906108c 1388}
c5aa993b 1389
f0ba3972 1390/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1391 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1392 if any error occurs. If an error occurs, no guarantee is made
1393 about how much data got written. Callers that can deal with
1394 partial writes should call target_write. */
f0ba3972
PA
1395
1396int
45aa4659 1397target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1398{
aee4bf85
PA
1399 /* See comment in target_read_memory about why the request starts at
1400 current_target.beneath. */
f0ba3972
PA
1401 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1402 myaddr, memaddr, len) == len)
1403 return 0;
1404 else
578d3588 1405 return TARGET_XFER_E_IO;
f0ba3972
PA
1406}
1407
fd79ecee
DJ
1408/* Fetch the target's memory map. */
1409
1410VEC(mem_region_s) *
1411target_memory_map (void)
1412{
1413 VEC(mem_region_s) *result;
1414 struct mem_region *last_one, *this_one;
1415 int ix;
1416 struct target_ops *t;
1417
6b2c5a57 1418 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1419 if (result == NULL)
1420 return NULL;
1421
1422 qsort (VEC_address (mem_region_s, result),
1423 VEC_length (mem_region_s, result),
1424 sizeof (struct mem_region), mem_region_cmp);
1425
1426 /* Check that regions do not overlap. Simultaneously assign
1427 a numbering for the "mem" commands to use to refer to
1428 each region. */
1429 last_one = NULL;
1430 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1431 {
1432 this_one->number = ix;
1433
1434 if (last_one && last_one->hi > this_one->lo)
1435 {
1436 warning (_("Overlapping regions in memory map: ignoring"));
1437 VEC_free (mem_region_s, result);
1438 return NULL;
1439 }
1440 last_one = this_one;
1441 }
1442
1443 return result;
1444}
1445
a76d924d
DJ
1446void
1447target_flash_erase (ULONGEST address, LONGEST length)
1448{
e8a6c6ac 1449 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1450}
1451
1452void
1453target_flash_done (void)
1454{
f6fb2925 1455 current_target.to_flash_done (&current_target);
a76d924d
DJ
1456}
1457
920d2a44
AC
1458static void
1459show_trust_readonly (struct ui_file *file, int from_tty,
1460 struct cmd_list_element *c, const char *value)
1461{
3e43a32a
MS
1462 fprintf_filtered (file,
1463 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1464 value);
1465}
3a11626d 1466
7f79c47e 1467/* Target vector read/write partial wrapper functions. */
0088c768 1468
9b409511 1469static enum target_xfer_status
1e3ff5ad
AC
1470target_read_partial (struct target_ops *ops,
1471 enum target_object object,
1b0ba102 1472 const char *annex, gdb_byte *buf,
9b409511
YQ
1473 ULONGEST offset, ULONGEST len,
1474 ULONGEST *xfered_len)
1e3ff5ad 1475{
9b409511
YQ
1476 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1477 xfered_len);
1e3ff5ad
AC
1478}
1479
8a55ffb0 1480static enum target_xfer_status
1e3ff5ad
AC
1481target_write_partial (struct target_ops *ops,
1482 enum target_object object,
1b0ba102 1483 const char *annex, const gdb_byte *buf,
9b409511 1484 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1485{
9b409511
YQ
1486 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1487 xfered_len);
1e3ff5ad
AC
1488}
1489
1490/* Wrappers to perform the full transfer. */
7f79c47e
DE
1491
1492/* For docs on target_read see target.h. */
1493
1e3ff5ad
AC
1494LONGEST
1495target_read (struct target_ops *ops,
1496 enum target_object object,
1b0ba102 1497 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1498 ULONGEST offset, LONGEST len)
1499{
1500 LONGEST xfered = 0;
5d502164 1501
1e3ff5ad
AC
1502 while (xfered < len)
1503 {
9b409511
YQ
1504 ULONGEST xfered_len;
1505 enum target_xfer_status status;
1506
1507 status = target_read_partial (ops, object, annex,
1508 (gdb_byte *) buf + xfered,
1509 offset + xfered, len - xfered,
1510 &xfered_len);
5d502164 1511
1e3ff5ad 1512 /* Call an observer, notifying them of the xfer progress? */
9b409511 1513 if (status == TARGET_XFER_EOF)
13547ab6 1514 return xfered;
9b409511
YQ
1515 else if (status == TARGET_XFER_OK)
1516 {
1517 xfered += xfered_len;
1518 QUIT;
1519 }
1520 else
0088c768 1521 return -1;
9b409511 1522
1e3ff5ad
AC
1523 }
1524 return len;
1525}
1526
f1a507a1
JB
1527/* Assuming that the entire [begin, end) range of memory cannot be
1528 read, try to read whatever subrange is possible to read.
1529
1530 The function returns, in RESULT, either zero or one memory block.
1531 If there's a readable subrange at the beginning, it is completely
1532 read and returned. Any further readable subrange will not be read.
1533 Otherwise, if there's a readable subrange at the end, it will be
1534 completely read and returned. Any readable subranges before it
1535 (obviously, not starting at the beginning), will be ignored. In
1536 other cases -- either no readable subrange, or readable subrange(s)
1537 that is neither at the beginning, or end, nothing is returned.
1538
1539 The purpose of this function is to handle a read across a boundary
1540 of accessible memory in a case when memory map is not available.
1541 The above restrictions are fine for this case, but will give
1542 incorrect results if the memory is 'patchy'. However, supporting
1543 'patchy' memory would require trying to read every single byte,
1544 and it seems unacceptable solution. Explicit memory map is
1545 recommended for this case -- and target_read_memory_robust will
1546 take care of reading multiple ranges then. */
8dedea02
VP
1547
1548static void
3e43a32a
MS
1549read_whatever_is_readable (struct target_ops *ops,
1550 ULONGEST begin, ULONGEST end,
8dedea02 1551 VEC(memory_read_result_s) **result)
d5086790 1552{
f1a507a1 1553 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1554 ULONGEST current_begin = begin;
1555 ULONGEST current_end = end;
1556 int forward;
1557 memory_read_result_s r;
9b409511 1558 ULONGEST xfered_len;
8dedea02
VP
1559
1560 /* If we previously failed to read 1 byte, nothing can be done here. */
1561 if (end - begin <= 1)
13b3fd9b
MS
1562 {
1563 xfree (buf);
1564 return;
1565 }
8dedea02
VP
1566
1567 /* Check that either first or the last byte is readable, and give up
c378eb4e 1568 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1569 at the boundary of accessible region. */
1570 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1571 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1572 {
1573 forward = 1;
1574 ++current_begin;
1575 }
1576 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1577 buf + (end-begin) - 1, end - 1, 1,
1578 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1579 {
1580 forward = 0;
1581 --current_end;
1582 }
1583 else
1584 {
13b3fd9b 1585 xfree (buf);
8dedea02
VP
1586 return;
1587 }
1588
1589 /* Loop invariant is that the [current_begin, current_end) was previously
1590 found to be not readable as a whole.
1591
1592 Note loop condition -- if the range has 1 byte, we can't divide the range
1593 so there's no point trying further. */
1594 while (current_end - current_begin > 1)
1595 {
1596 ULONGEST first_half_begin, first_half_end;
1597 ULONGEST second_half_begin, second_half_end;
1598 LONGEST xfer;
8dedea02 1599 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1600
8dedea02
VP
1601 if (forward)
1602 {
1603 first_half_begin = current_begin;
1604 first_half_end = middle;
1605 second_half_begin = middle;
1606 second_half_end = current_end;
1607 }
1608 else
1609 {
1610 first_half_begin = middle;
1611 first_half_end = current_end;
1612 second_half_begin = current_begin;
1613 second_half_end = middle;
1614 }
1615
1616 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1617 buf + (first_half_begin - begin),
1618 first_half_begin,
1619 first_half_end - first_half_begin);
1620
1621 if (xfer == first_half_end - first_half_begin)
1622 {
c378eb4e 1623 /* This half reads up fine. So, the error must be in the
3e43a32a 1624 other half. */
8dedea02
VP
1625 current_begin = second_half_begin;
1626 current_end = second_half_end;
1627 }
1628 else
1629 {
c378eb4e
MS
1630 /* This half is not readable. Because we've tried one byte, we
1631 know some part of this half if actually redable. Go to the next
8dedea02
VP
1632 iteration to divide again and try to read.
1633
1634 We don't handle the other half, because this function only tries
1635 to read a single readable subrange. */
1636 current_begin = first_half_begin;
1637 current_end = first_half_end;
1638 }
1639 }
1640
1641 if (forward)
1642 {
1643 /* The [begin, current_begin) range has been read. */
1644 r.begin = begin;
1645 r.end = current_begin;
1646 r.data = buf;
1647 }
1648 else
1649 {
1650 /* The [current_end, end) range has been read. */
1651 LONGEST rlen = end - current_end;
f1a507a1 1652
8dedea02
VP
1653 r.data = xmalloc (rlen);
1654 memcpy (r.data, buf + current_end - begin, rlen);
1655 r.begin = current_end;
1656 r.end = end;
1657 xfree (buf);
1658 }
1659 VEC_safe_push(memory_read_result_s, (*result), &r);
1660}
1661
1662void
1663free_memory_read_result_vector (void *x)
1664{
1665 VEC(memory_read_result_s) *v = x;
1666 memory_read_result_s *current;
1667 int ix;
1668
1669 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1670 {
1671 xfree (current->data);
1672 }
1673 VEC_free (memory_read_result_s, v);
1674}
1675
1676VEC(memory_read_result_s) *
1677read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1678{
1679 VEC(memory_read_result_s) *result = 0;
1680
1681 LONGEST xfered = 0;
d5086790
VP
1682 while (xfered < len)
1683 {
8dedea02
VP
1684 struct mem_region *region = lookup_mem_region (offset + xfered);
1685 LONGEST rlen;
5d502164 1686
8dedea02
VP
1687 /* If there is no explicit region, a fake one should be created. */
1688 gdb_assert (region);
1689
1690 if (region->hi == 0)
1691 rlen = len - xfered;
1692 else
1693 rlen = region->hi - offset;
1694
1695 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1696 {
c378eb4e 1697 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1698 if the region is explicitly marked inaccessible, or
1699 'inaccessible-by-default' is in effect. */
1700 xfered += rlen;
1701 }
1702 else
1703 {
1704 LONGEST to_read = min (len - xfered, rlen);
1705 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1706
1707 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1708 (gdb_byte *) buffer,
1709 offset + xfered, to_read);
1710 /* Call an observer, notifying them of the xfer progress? */
d5086790 1711 if (xfer <= 0)
d5086790 1712 {
c378eb4e 1713 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1714 some subrange. */
1715 xfree (buffer);
3e43a32a
MS
1716 read_whatever_is_readable (ops, offset + xfered,
1717 offset + xfered + to_read, &result);
8dedea02 1718 xfered += to_read;
d5086790 1719 }
8dedea02
VP
1720 else
1721 {
1722 struct memory_read_result r;
1723 r.data = buffer;
1724 r.begin = offset + xfered;
1725 r.end = r.begin + xfer;
1726 VEC_safe_push (memory_read_result_s, result, &r);
1727 xfered += xfer;
1728 }
1729 QUIT;
d5086790 1730 }
d5086790 1731 }
8dedea02 1732 return result;
d5086790
VP
1733}
1734
8dedea02 1735
cf7a04e8
DJ
1736/* An alternative to target_write with progress callbacks. */
1737
1e3ff5ad 1738LONGEST
cf7a04e8
DJ
1739target_write_with_progress (struct target_ops *ops,
1740 enum target_object object,
1741 const char *annex, const gdb_byte *buf,
1742 ULONGEST offset, LONGEST len,
1743 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1744{
1745 LONGEST xfered = 0;
a76d924d
DJ
1746
1747 /* Give the progress callback a chance to set up. */
1748 if (progress)
1749 (*progress) (0, baton);
1750
1e3ff5ad
AC
1751 while (xfered < len)
1752 {
9b409511
YQ
1753 ULONGEST xfered_len;
1754 enum target_xfer_status status;
1755
1756 status = target_write_partial (ops, object, annex,
1757 (gdb_byte *) buf + xfered,
1758 offset + xfered, len - xfered,
1759 &xfered_len);
cf7a04e8 1760
5c328c05
YQ
1761 if (status != TARGET_XFER_OK)
1762 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1763
1764 if (progress)
9b409511 1765 (*progress) (xfered_len, baton);
cf7a04e8 1766
9b409511 1767 xfered += xfered_len;
1e3ff5ad
AC
1768 QUIT;
1769 }
1770 return len;
1771}
1772
7f79c47e
DE
1773/* For docs on target_write see target.h. */
1774
cf7a04e8
DJ
1775LONGEST
1776target_write (struct target_ops *ops,
1777 enum target_object object,
1778 const char *annex, const gdb_byte *buf,
1779 ULONGEST offset, LONGEST len)
1780{
1781 return target_write_with_progress (ops, object, annex, buf, offset, len,
1782 NULL, NULL);
1783}
1784
159f81f3
DJ
1785/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1786 the size of the transferred data. PADDING additional bytes are
1787 available in *BUF_P. This is a helper function for
1788 target_read_alloc; see the declaration of that function for more
1789 information. */
13547ab6 1790
159f81f3
DJ
1791static LONGEST
1792target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1793 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1794{
1795 size_t buf_alloc, buf_pos;
1796 gdb_byte *buf;
13547ab6
DJ
1797
1798 /* This function does not have a length parameter; it reads the
1799 entire OBJECT). Also, it doesn't support objects fetched partly
1800 from one target and partly from another (in a different stratum,
1801 e.g. a core file and an executable). Both reasons make it
1802 unsuitable for reading memory. */
1803 gdb_assert (object != TARGET_OBJECT_MEMORY);
1804
1805 /* Start by reading up to 4K at a time. The target will throttle
1806 this number down if necessary. */
1807 buf_alloc = 4096;
1808 buf = xmalloc (buf_alloc);
1809 buf_pos = 0;
1810 while (1)
1811 {
9b409511
YQ
1812 ULONGEST xfered_len;
1813 enum target_xfer_status status;
1814
1815 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1816 buf_pos, buf_alloc - buf_pos - padding,
1817 &xfered_len);
1818
1819 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1820 {
1821 /* Read all there was. */
1822 if (buf_pos == 0)
1823 xfree (buf);
1824 else
1825 *buf_p = buf;
1826 return buf_pos;
1827 }
9b409511
YQ
1828 else if (status != TARGET_XFER_OK)
1829 {
1830 /* An error occurred. */
1831 xfree (buf);
1832 return TARGET_XFER_E_IO;
1833 }
13547ab6 1834
9b409511 1835 buf_pos += xfered_len;
13547ab6
DJ
1836
1837 /* If the buffer is filling up, expand it. */
1838 if (buf_alloc < buf_pos * 2)
1839 {
1840 buf_alloc *= 2;
1841 buf = xrealloc (buf, buf_alloc);
1842 }
1843
1844 QUIT;
1845 }
1846}
1847
159f81f3
DJ
1848/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1849 the size of the transferred data. See the declaration in "target.h"
1850 function for more information about the return value. */
1851
1852LONGEST
1853target_read_alloc (struct target_ops *ops, enum target_object object,
1854 const char *annex, gdb_byte **buf_p)
1855{
1856 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1857}
1858
1859/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1860 returned as a string, allocated using xmalloc. If an error occurs
1861 or the transfer is unsupported, NULL is returned. Empty objects
1862 are returned as allocated but empty strings. A warning is issued
1863 if the result contains any embedded NUL bytes. */
1864
1865char *
1866target_read_stralloc (struct target_ops *ops, enum target_object object,
1867 const char *annex)
1868{
39086a0e
PA
1869 gdb_byte *buffer;
1870 char *bufstr;
7313baad 1871 LONGEST i, transferred;
159f81f3 1872
39086a0e
PA
1873 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1874 bufstr = (char *) buffer;
159f81f3
DJ
1875
1876 if (transferred < 0)
1877 return NULL;
1878
1879 if (transferred == 0)
1880 return xstrdup ("");
1881
39086a0e 1882 bufstr[transferred] = 0;
7313baad
UW
1883
1884 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1885 for (i = strlen (bufstr); i < transferred; i++)
1886 if (bufstr[i] != 0)
7313baad
UW
1887 {
1888 warning (_("target object %d, annex %s, "
1889 "contained unexpected null characters"),
1890 (int) object, annex ? annex : "(none)");
1891 break;
1892 }
159f81f3 1893
39086a0e 1894 return bufstr;
159f81f3
DJ
1895}
1896
b6591e8b
AC
1897/* Memory transfer methods. */
1898
1899void
1b0ba102 1900get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1901 LONGEST len)
1902{
07b82ea5
PA
1903 /* This method is used to read from an alternate, non-current
1904 target. This read must bypass the overlay support (as symbols
1905 don't match this target), and GDB's internal cache (wrong cache
1906 for this target). */
1907 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1908 != len)
578d3588 1909 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1910}
1911
1912ULONGEST
5d502164
MS
1913get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1914 int len, enum bfd_endian byte_order)
b6591e8b 1915{
f6519ebc 1916 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1917
1918 gdb_assert (len <= sizeof (buf));
1919 get_target_memory (ops, addr, buf, len);
e17a4113 1920 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1921}
1922
3db08215
MM
1923/* See target.h. */
1924
d914c394
SS
1925int
1926target_insert_breakpoint (struct gdbarch *gdbarch,
1927 struct bp_target_info *bp_tgt)
1928{
1929 if (!may_insert_breakpoints)
1930 {
1931 warning (_("May not insert breakpoints"));
1932 return 1;
1933 }
1934
6b84065d
TT
1935 return current_target.to_insert_breakpoint (&current_target,
1936 gdbarch, bp_tgt);
d914c394
SS
1937}
1938
3db08215
MM
1939/* See target.h. */
1940
d914c394 1941int
6b84065d
TT
1942target_remove_breakpoint (struct gdbarch *gdbarch,
1943 struct bp_target_info *bp_tgt)
d914c394
SS
1944{
1945 /* This is kind of a weird case to handle, but the permission might
1946 have been changed after breakpoints were inserted - in which case
1947 we should just take the user literally and assume that any
1948 breakpoints should be left in place. */
1949 if (!may_insert_breakpoints)
1950 {
1951 warning (_("May not remove breakpoints"));
1952 return 1;
1953 }
1954
6b84065d
TT
1955 return current_target.to_remove_breakpoint (&current_target,
1956 gdbarch, bp_tgt);
d914c394
SS
1957}
1958
c906108c 1959static void
fba45db2 1960target_info (char *args, int from_tty)
c906108c
SS
1961{
1962 struct target_ops *t;
c906108c 1963 int has_all_mem = 0;
c5aa993b 1964
c906108c 1965 if (symfile_objfile != NULL)
4262abfb
JK
1966 printf_unfiltered (_("Symbols from \"%s\".\n"),
1967 objfile_name (symfile_objfile));
c906108c 1968
258b763a 1969 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1970 {
c35b1492 1971 if (!(*t->to_has_memory) (t))
c906108c
SS
1972 continue;
1973
c5aa993b 1974 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1975 continue;
1976 if (has_all_mem)
3e43a32a
MS
1977 printf_unfiltered (_("\tWhile running this, "
1978 "GDB does not access memory from...\n"));
c5aa993b
JM
1979 printf_unfiltered ("%s:\n", t->to_longname);
1980 (t->to_files_info) (t);
c35b1492 1981 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1982 }
1983}
1984
fd79ecee
DJ
1985/* This function is called before any new inferior is created, e.g.
1986 by running a program, attaching, or connecting to a target.
1987 It cleans up any state from previous invocations which might
1988 change between runs. This is a subset of what target_preopen
1989 resets (things which might change between targets). */
1990
1991void
1992target_pre_inferior (int from_tty)
1993{
c378eb4e 1994 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1995 inferior might have survived and is entirely wrong for the new
c378eb4e 1996 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1997 to reproduce:
1998
1999 bash$ ./foo&
2000 [1] 4711
2001 bash$ ./foo&
2002 [1] 4712
2003 bash$ gdb ./foo
2004 [...]
2005 (gdb) attach 4711
2006 (gdb) detach
2007 (gdb) attach 4712
2008 Cannot access memory at address 0xdeadbeef
2009 */
b9db4ced 2010
50c71eaf
PA
2011 /* In some OSs, the shared library list is the same/global/shared
2012 across inferiors. If code is shared between processes, so are
2013 memory regions and features. */
f5656ead 2014 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2015 {
2016 no_shared_libraries (NULL, from_tty);
2017
2018 invalidate_target_mem_regions ();
424163ea 2019
50c71eaf
PA
2020 target_clear_description ();
2021 }
8ffcbaaf
YQ
2022
2023 agent_capability_invalidate ();
fd79ecee
DJ
2024}
2025
b8fa0bfa
PA
2026/* Callback for iterate_over_inferiors. Gets rid of the given
2027 inferior. */
2028
2029static int
2030dispose_inferior (struct inferior *inf, void *args)
2031{
2032 struct thread_info *thread;
2033
2034 thread = any_thread_of_process (inf->pid);
2035 if (thread)
2036 {
2037 switch_to_thread (thread->ptid);
2038
2039 /* Core inferiors actually should be detached, not killed. */
2040 if (target_has_execution)
2041 target_kill ();
2042 else
2043 target_detach (NULL, 0);
2044 }
2045
2046 return 0;
2047}
2048
c906108c
SS
2049/* This is to be called by the open routine before it does
2050 anything. */
2051
2052void
fba45db2 2053target_preopen (int from_tty)
c906108c 2054{
c5aa993b 2055 dont_repeat ();
c906108c 2056
b8fa0bfa 2057 if (have_inferiors ())
c5aa993b 2058 {
adf40b2e 2059 if (!from_tty
b8fa0bfa
PA
2060 || !have_live_inferiors ()
2061 || query (_("A program is being debugged already. Kill it? ")))
2062 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2063 else
8a3fe4f8 2064 error (_("Program not killed."));
c906108c
SS
2065 }
2066
2067 /* Calling target_kill may remove the target from the stack. But if
2068 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2069 /* Leave the exec target, though. The user may be switching from a
2070 live process to a core of the same program. */
460014f5 2071 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2072
2073 target_pre_inferior (from_tty);
c906108c
SS
2074}
2075
2076/* Detach a target after doing deferred register stores. */
2077
2078void
52554a0e 2079target_detach (const char *args, int from_tty)
c906108c 2080{
136d6dae
VP
2081 struct target_ops* t;
2082
f5656ead 2083 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2084 /* Don't remove global breakpoints here. They're removed on
2085 disconnection from the target. */
2086 ;
2087 else
2088 /* If we're in breakpoints-always-inserted mode, have to remove
2089 them before detaching. */
dfd4cc63 2090 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2091
24291992
PA
2092 prepare_for_detach ();
2093
09da0d0a 2094 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2095}
2096
6ad8ae5c 2097void
fee354ee 2098target_disconnect (const char *args, int from_tty)
6ad8ae5c 2099{
50c71eaf
PA
2100 /* If we're in breakpoints-always-inserted mode or if breakpoints
2101 are global across processes, we have to remove them before
2102 disconnecting. */
74960c60
VP
2103 remove_breakpoints ();
2104
86a0854a 2105 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2106}
2107
117de6a9 2108ptid_t
47608cb1 2109target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2110{
a7068b60 2111 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2112}
2113
2114char *
2115target_pid_to_str (ptid_t ptid)
2116{
770234d3 2117 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2118}
2119
4694da01
TT
2120char *
2121target_thread_name (struct thread_info *info)
2122{
825828fc 2123 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2124}
2125
e1ac3328 2126void
2ea28649 2127target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2128{
28439f5e
PA
2129 struct target_ops *t;
2130
4e5d721f 2131 target_dcache_invalidate ();
28439f5e 2132
6b84065d 2133 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2134
6b84065d 2135 registers_changed_ptid (ptid);
251bde03
PA
2136 /* We only set the internal executing state here. The user/frontend
2137 running state is set at a higher level. */
6b84065d 2138 set_executing (ptid, 1);
6b84065d 2139 clear_inline_frame_state (ptid);
e1ac3328 2140}
2455069d
UW
2141
2142void
2143target_pass_signals (int numsigs, unsigned char *pass_signals)
2144{
035cad7f 2145 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2146}
2147
9b224c5e
PA
2148void
2149target_program_signals (int numsigs, unsigned char *program_signals)
2150{
7d4f8efa
TT
2151 (*current_target.to_program_signals) (&current_target,
2152 numsigs, program_signals);
9b224c5e
PA
2153}
2154
098dba18
TT
2155static int
2156default_follow_fork (struct target_ops *self, int follow_child,
2157 int detach_fork)
2158{
2159 /* Some target returned a fork event, but did not know how to follow it. */
2160 internal_error (__FILE__, __LINE__,
2161 _("could not find a target to follow fork"));
2162}
2163
ee057212
DJ
2164/* Look through the list of possible targets for a target that can
2165 follow forks. */
2166
2167int
07107ca6 2168target_follow_fork (int follow_child, int detach_fork)
ee057212 2169{
a7068b60
TT
2170 return current_target.to_follow_fork (&current_target,
2171 follow_child, detach_fork);
ee057212
DJ
2172}
2173
8d657035
TT
2174static void
2175default_mourn_inferior (struct target_ops *self)
2176{
2177 internal_error (__FILE__, __LINE__,
2178 _("could not find a target to follow mourn inferior"));
2179}
2180
136d6dae
VP
2181void
2182target_mourn_inferior (void)
2183{
8d657035 2184 current_target.to_mourn_inferior (&current_target);
136d6dae 2185
8d657035
TT
2186 /* We no longer need to keep handles on any of the object files.
2187 Make sure to release them to avoid unnecessarily locking any
2188 of them while we're not actually debugging. */
2189 bfd_cache_close_all ();
136d6dae
VP
2190}
2191
424163ea
DJ
2192/* Look for a target which can describe architectural features, starting
2193 from TARGET. If we find one, return its description. */
2194
2195const struct target_desc *
2196target_read_description (struct target_ops *target)
2197{
2117c711 2198 return target->to_read_description (target);
424163ea
DJ
2199}
2200
58a5184e 2201/* This implements a basic search of memory, reading target memory and
08388c79
DE
2202 performing the search here (as opposed to performing the search in on the
2203 target side with, for example, gdbserver). */
2204
2205int
2206simple_search_memory (struct target_ops *ops,
2207 CORE_ADDR start_addr, ULONGEST search_space_len,
2208 const gdb_byte *pattern, ULONGEST pattern_len,
2209 CORE_ADDR *found_addrp)
2210{
2211 /* NOTE: also defined in find.c testcase. */
2212#define SEARCH_CHUNK_SIZE 16000
2213 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2214 /* Buffer to hold memory contents for searching. */
2215 gdb_byte *search_buf;
2216 unsigned search_buf_size;
2217 struct cleanup *old_cleanups;
2218
2219 search_buf_size = chunk_size + pattern_len - 1;
2220
2221 /* No point in trying to allocate a buffer larger than the search space. */
2222 if (search_space_len < search_buf_size)
2223 search_buf_size = search_space_len;
2224
2225 search_buf = malloc (search_buf_size);
2226 if (search_buf == NULL)
5e1471f5 2227 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2228 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2229
2230 /* Prime the search buffer. */
2231
2232 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2233 search_buf, start_addr, search_buf_size) != search_buf_size)
2234 {
b3dc46ff
AB
2235 warning (_("Unable to access %s bytes of target "
2236 "memory at %s, halting search."),
2237 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2238 do_cleanups (old_cleanups);
2239 return -1;
2240 }
2241
2242 /* Perform the search.
2243
2244 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2245 When we've scanned N bytes we copy the trailing bytes to the start and
2246 read in another N bytes. */
2247
2248 while (search_space_len >= pattern_len)
2249 {
2250 gdb_byte *found_ptr;
2251 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2252
2253 found_ptr = memmem (search_buf, nr_search_bytes,
2254 pattern, pattern_len);
2255
2256 if (found_ptr != NULL)
2257 {
2258 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2259
08388c79
DE
2260 *found_addrp = found_addr;
2261 do_cleanups (old_cleanups);
2262 return 1;
2263 }
2264
2265 /* Not found in this chunk, skip to next chunk. */
2266
2267 /* Don't let search_space_len wrap here, it's unsigned. */
2268 if (search_space_len >= chunk_size)
2269 search_space_len -= chunk_size;
2270 else
2271 search_space_len = 0;
2272
2273 if (search_space_len >= pattern_len)
2274 {
2275 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2276 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2277 int nr_to_read;
2278
2279 /* Copy the trailing part of the previous iteration to the front
2280 of the buffer for the next iteration. */
2281 gdb_assert (keep_len == pattern_len - 1);
2282 memcpy (search_buf, search_buf + chunk_size, keep_len);
2283
2284 nr_to_read = min (search_space_len - keep_len, chunk_size);
2285
2286 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2287 search_buf + keep_len, read_addr,
2288 nr_to_read) != nr_to_read)
2289 {
b3dc46ff 2290 warning (_("Unable to access %s bytes of target "
9b20d036 2291 "memory at %s, halting search."),
b3dc46ff 2292 plongest (nr_to_read),
08388c79
DE
2293 hex_string (read_addr));
2294 do_cleanups (old_cleanups);
2295 return -1;
2296 }
2297
2298 start_addr += chunk_size;
2299 }
2300 }
2301
2302 /* Not found. */
2303
2304 do_cleanups (old_cleanups);
2305 return 0;
2306}
2307
58a5184e
TT
2308/* Default implementation of memory-searching. */
2309
2310static int
2311default_search_memory (struct target_ops *self,
2312 CORE_ADDR start_addr, ULONGEST search_space_len,
2313 const gdb_byte *pattern, ULONGEST pattern_len,
2314 CORE_ADDR *found_addrp)
2315{
2316 /* Start over from the top of the target stack. */
2317 return simple_search_memory (current_target.beneath,
2318 start_addr, search_space_len,
2319 pattern, pattern_len, found_addrp);
2320}
2321
08388c79
DE
2322/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2323 sequence of bytes in PATTERN with length PATTERN_LEN.
2324
2325 The result is 1 if found, 0 if not found, and -1 if there was an error
2326 requiring halting of the search (e.g. memory read error).
2327 If the pattern is found the address is recorded in FOUND_ADDRP. */
2328
2329int
2330target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2331 const gdb_byte *pattern, ULONGEST pattern_len,
2332 CORE_ADDR *found_addrp)
2333{
a7068b60
TT
2334 return current_target.to_search_memory (&current_target, start_addr,
2335 search_space_len,
2336 pattern, pattern_len, found_addrp);
08388c79
DE
2337}
2338
8edfe269
DJ
2339/* Look through the currently pushed targets. If none of them will
2340 be able to restart the currently running process, issue an error
2341 message. */
2342
2343void
2344target_require_runnable (void)
2345{
2346 struct target_ops *t;
2347
2348 for (t = target_stack; t != NULL; t = t->beneath)
2349 {
2350 /* If this target knows how to create a new program, then
2351 assume we will still be able to after killing the current
2352 one. Either killing and mourning will not pop T, or else
2353 find_default_run_target will find it again. */
2354 if (t->to_create_inferior != NULL)
2355 return;
2356
548740d6 2357 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2358 create inferiors. Assume they will be pushed again if
2359 necessary, and continue to the process_stratum. */
85e747d2 2360 if (t->to_stratum == thread_stratum
548740d6 2361 || t->to_stratum == record_stratum
85e747d2 2362 || t->to_stratum == arch_stratum)
8edfe269
DJ
2363 continue;
2364
3e43a32a
MS
2365 error (_("The \"%s\" target does not support \"run\". "
2366 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2367 t->to_shortname);
2368 }
2369
2370 /* This function is only called if the target is running. In that
2371 case there should have been a process_stratum target and it
c378eb4e 2372 should either know how to create inferiors, or not... */
9b20d036 2373 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2374}
2375
6a3cb8e8
PA
2376/* Whether GDB is allowed to fall back to the default run target for
2377 "run", "attach", etc. when no target is connected yet. */
2378static int auto_connect_native_target = 1;
2379
2380static void
2381show_auto_connect_native_target (struct ui_file *file, int from_tty,
2382 struct cmd_list_element *c, const char *value)
2383{
2384 fprintf_filtered (file,
2385 _("Whether GDB may automatically connect to the "
2386 "native target is %s.\n"),
2387 value);
2388}
2389
c906108c
SS
2390/* Look through the list of possible targets for a target that can
2391 execute a run or attach command without any other data. This is
2392 used to locate the default process stratum.
2393
5f667f2d
PA
2394 If DO_MESG is not NULL, the result is always valid (error() is
2395 called for errors); else, return NULL on error. */
c906108c
SS
2396
2397static struct target_ops *
fba45db2 2398find_default_run_target (char *do_mesg)
c906108c 2399{
c906108c 2400 struct target_ops *runable = NULL;
c906108c 2401
6a3cb8e8 2402 if (auto_connect_native_target)
c906108c 2403 {
89a1c21a 2404 struct target_ops *t;
6a3cb8e8 2405 int count = 0;
89a1c21a 2406 int i;
6a3cb8e8 2407
89a1c21a 2408 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2409 {
89a1c21a 2410 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2411 {
89a1c21a 2412 runable = t;
6a3cb8e8
PA
2413 ++count;
2414 }
c906108c 2415 }
6a3cb8e8
PA
2416
2417 if (count != 1)
2418 runable = NULL;
c906108c
SS
2419 }
2420
6a3cb8e8 2421 if (runable == NULL)
5f667f2d
PA
2422 {
2423 if (do_mesg)
2424 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2425 else
2426 return NULL;
2427 }
c906108c
SS
2428
2429 return runable;
2430}
2431
b3ccfe11 2432/* See target.h. */
c906108c 2433
b3ccfe11
TT
2434struct target_ops *
2435find_attach_target (void)
c906108c
SS
2436{
2437 struct target_ops *t;
2438
b3ccfe11
TT
2439 /* If a target on the current stack can attach, use it. */
2440 for (t = current_target.beneath; t != NULL; t = t->beneath)
2441 {
2442 if (t->to_attach != NULL)
2443 break;
2444 }
c906108c 2445
b3ccfe11
TT
2446 /* Otherwise, use the default run target for attaching. */
2447 if (t == NULL)
2448 t = find_default_run_target ("attach");
b84876c2 2449
b3ccfe11 2450 return t;
b84876c2
PA
2451}
2452
b3ccfe11 2453/* See target.h. */
b84876c2 2454
b3ccfe11
TT
2455struct target_ops *
2456find_run_target (void)
9908b566
VP
2457{
2458 struct target_ops *t;
2459
b3ccfe11
TT
2460 /* If a target on the current stack can attach, use it. */
2461 for (t = current_target.beneath; t != NULL; t = t->beneath)
2462 {
2463 if (t->to_create_inferior != NULL)
2464 break;
2465 }
5d502164 2466
b3ccfe11
TT
2467 /* Otherwise, use the default run target. */
2468 if (t == NULL)
2469 t = find_default_run_target ("run");
9908b566 2470
b3ccfe11 2471 return t;
9908b566
VP
2472}
2473
145b16a9
UW
2474/* Implement the "info proc" command. */
2475
451b7c33 2476int
7bc112c1 2477target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2478{
2479 struct target_ops *t;
2480
2481 /* If we're already connected to something that can get us OS
2482 related data, use it. Otherwise, try using the native
2483 target. */
2484 if (current_target.to_stratum >= process_stratum)
2485 t = current_target.beneath;
2486 else
2487 t = find_default_run_target (NULL);
2488
2489 for (; t != NULL; t = t->beneath)
2490 {
2491 if (t->to_info_proc != NULL)
2492 {
2493 t->to_info_proc (t, args, what);
2494
2495 if (targetdebug)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "target_info_proc (\"%s\", %d)\n", args, what);
2498
451b7c33 2499 return 1;
145b16a9
UW
2500 }
2501 }
2502
451b7c33 2503 return 0;
145b16a9
UW
2504}
2505
03583c20 2506static int
2bfc0540 2507find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2508{
2509 struct target_ops *t;
2510
2511 t = find_default_run_target (NULL);
2512 if (t && t->to_supports_disable_randomization)
2bfc0540 2513 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2514 return 0;
2515}
2516
2517int
2518target_supports_disable_randomization (void)
2519{
2520 struct target_ops *t;
2521
2522 for (t = &current_target; t != NULL; t = t->beneath)
2523 if (t->to_supports_disable_randomization)
2bfc0540 2524 return t->to_supports_disable_randomization (t);
03583c20
UW
2525
2526 return 0;
2527}
9908b566 2528
07e059b5
VP
2529char *
2530target_get_osdata (const char *type)
2531{
07e059b5
VP
2532 struct target_ops *t;
2533
739ef7fb
PA
2534 /* If we're already connected to something that can get us OS
2535 related data, use it. Otherwise, try using the native
2536 target. */
2537 if (current_target.to_stratum >= process_stratum)
6d097e65 2538 t = current_target.beneath;
739ef7fb
PA
2539 else
2540 t = find_default_run_target ("get OS data");
07e059b5
VP
2541
2542 if (!t)
2543 return NULL;
2544
6d097e65 2545 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2546}
2547
8eaff7cd
TT
2548static struct address_space *
2549default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2550{
2551 struct inferior *inf;
6c95b8df
PA
2552
2553 /* Fall-back to the "main" address space of the inferior. */
2554 inf = find_inferior_pid (ptid_get_pid (ptid));
2555
2556 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2557 internal_error (__FILE__, __LINE__,
9b20d036
MS
2558 _("Can't determine the current "
2559 "address space of thread %s\n"),
6c95b8df
PA
2560 target_pid_to_str (ptid));
2561
2562 return inf->aspace;
2563}
2564
8eaff7cd
TT
2565/* Determine the current address space of thread PTID. */
2566
2567struct address_space *
2568target_thread_address_space (ptid_t ptid)
2569{
2570 struct address_space *aspace;
2571
2572 aspace = current_target.to_thread_address_space (&current_target, ptid);
2573 gdb_assert (aspace != NULL);
2574
8eaff7cd
TT
2575 return aspace;
2576}
2577
7313baad
UW
2578
2579/* Target file operations. */
2580
2581static struct target_ops *
2582default_fileio_target (void)
2583{
2584 /* If we're already connected to something that can perform
2585 file I/O, use it. Otherwise, try using the native target. */
2586 if (current_target.to_stratum >= process_stratum)
2587 return current_target.beneath;
2588 else
2589 return find_default_run_target ("file I/O");
2590}
2591
2592/* Open FILENAME on the target, using FLAGS and MODE. Return a
2593 target file descriptor, or -1 if an error occurs (and set
2594 *TARGET_ERRNO). */
2595int
2596target_fileio_open (const char *filename, int flags, int mode,
2597 int *target_errno)
2598{
2599 struct target_ops *t;
2600
2601 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2602 {
2603 if (t->to_fileio_open != NULL)
2604 {
cd897586 2605 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2606
2607 if (targetdebug)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2610 filename, flags, mode,
2611 fd, fd != -1 ? 0 : *target_errno);
2612 return fd;
2613 }
2614 }
2615
2616 *target_errno = FILEIO_ENOSYS;
2617 return -1;
2618}
2619
2620/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2621 Return the number of bytes written, or -1 if an error occurs
2622 (and set *TARGET_ERRNO). */
2623int
2624target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2625 ULONGEST offset, int *target_errno)
2626{
2627 struct target_ops *t;
2628
2629 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2630 {
2631 if (t->to_fileio_pwrite != NULL)
2632 {
0d866f62 2633 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2634 target_errno);
2635
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2638 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2639 "= %d (%d)\n",
a71b5a38 2640 fd, len, pulongest (offset),
7313baad
UW
2641 ret, ret != -1 ? 0 : *target_errno);
2642 return ret;
2643 }
2644 }
2645
2646 *target_errno = FILEIO_ENOSYS;
2647 return -1;
2648}
2649
2650/* Read up to LEN bytes FD on the target into READ_BUF.
2651 Return the number of bytes read, or -1 if an error occurs
2652 (and set *TARGET_ERRNO). */
2653int
2654target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2655 ULONGEST offset, int *target_errno)
2656{
2657 struct target_ops *t;
2658
2659 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2660 {
2661 if (t->to_fileio_pread != NULL)
2662 {
a3be983c 2663 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2664 target_errno);
2665
2666 if (targetdebug)
2667 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2668 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2669 "= %d (%d)\n",
a71b5a38 2670 fd, len, pulongest (offset),
7313baad
UW
2671 ret, ret != -1 ? 0 : *target_errno);
2672 return ret;
2673 }
2674 }
2675
2676 *target_errno = FILEIO_ENOSYS;
2677 return -1;
2678}
2679
2680/* Close FD on the target. Return 0, or -1 if an error occurs
2681 (and set *TARGET_ERRNO). */
2682int
2683target_fileio_close (int fd, int *target_errno)
2684{
2685 struct target_ops *t;
2686
2687 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2688 {
2689 if (t->to_fileio_close != NULL)
2690 {
df39ea25 2691 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2692
2693 if (targetdebug)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "target_fileio_close (%d) = %d (%d)\n",
2696 fd, ret, ret != -1 ? 0 : *target_errno);
2697 return ret;
2698 }
2699 }
2700
2701 *target_errno = FILEIO_ENOSYS;
2702 return -1;
2703}
2704
2705/* Unlink FILENAME on the target. Return 0, or -1 if an error
2706 occurs (and set *TARGET_ERRNO). */
2707int
2708target_fileio_unlink (const char *filename, int *target_errno)
2709{
2710 struct target_ops *t;
2711
2712 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2713 {
2714 if (t->to_fileio_unlink != NULL)
2715 {
dbbca37d 2716 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2717
2718 if (targetdebug)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "target_fileio_unlink (%s) = %d (%d)\n",
2721 filename, ret, ret != -1 ? 0 : *target_errno);
2722 return ret;
2723 }
2724 }
2725
2726 *target_errno = FILEIO_ENOSYS;
2727 return -1;
2728}
2729
b9e7b9c3
UW
2730/* Read value of symbolic link FILENAME on the target. Return a
2731 null-terminated string allocated via xmalloc, or NULL if an error
2732 occurs (and set *TARGET_ERRNO). */
2733char *
2734target_fileio_readlink (const char *filename, int *target_errno)
2735{
2736 struct target_ops *t;
2737
2738 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2739 {
2740 if (t->to_fileio_readlink != NULL)
2741 {
fab5aa7c 2742 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2743
2744 if (targetdebug)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "target_fileio_readlink (%s) = %s (%d)\n",
2747 filename, ret? ret : "(nil)",
2748 ret? 0 : *target_errno);
2749 return ret;
2750 }
2751 }
2752
2753 *target_errno = FILEIO_ENOSYS;
2754 return NULL;
2755}
2756
7313baad
UW
2757static void
2758target_fileio_close_cleanup (void *opaque)
2759{
2760 int fd = *(int *) opaque;
2761 int target_errno;
2762
2763 target_fileio_close (fd, &target_errno);
2764}
2765
2766/* Read target file FILENAME. Store the result in *BUF_P and
2767 return the size of the transferred data. PADDING additional bytes are
2768 available in *BUF_P. This is a helper function for
2769 target_fileio_read_alloc; see the declaration of that function for more
2770 information. */
2771
2772static LONGEST
2773target_fileio_read_alloc_1 (const char *filename,
2774 gdb_byte **buf_p, int padding)
2775{
2776 struct cleanup *close_cleanup;
2777 size_t buf_alloc, buf_pos;
2778 gdb_byte *buf;
2779 LONGEST n;
2780 int fd;
2781 int target_errno;
2782
2783 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2784 if (fd == -1)
2785 return -1;
2786
2787 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2788
2789 /* Start by reading up to 4K at a time. The target will throttle
2790 this number down if necessary. */
2791 buf_alloc = 4096;
2792 buf = xmalloc (buf_alloc);
2793 buf_pos = 0;
2794 while (1)
2795 {
2796 n = target_fileio_pread (fd, &buf[buf_pos],
2797 buf_alloc - buf_pos - padding, buf_pos,
2798 &target_errno);
2799 if (n < 0)
2800 {
2801 /* An error occurred. */
2802 do_cleanups (close_cleanup);
2803 xfree (buf);
2804 return -1;
2805 }
2806 else if (n == 0)
2807 {
2808 /* Read all there was. */
2809 do_cleanups (close_cleanup);
2810 if (buf_pos == 0)
2811 xfree (buf);
2812 else
2813 *buf_p = buf;
2814 return buf_pos;
2815 }
2816
2817 buf_pos += n;
2818
2819 /* If the buffer is filling up, expand it. */
2820 if (buf_alloc < buf_pos * 2)
2821 {
2822 buf_alloc *= 2;
2823 buf = xrealloc (buf, buf_alloc);
2824 }
2825
2826 QUIT;
2827 }
2828}
2829
2830/* Read target file FILENAME. Store the result in *BUF_P and return
2831 the size of the transferred data. See the declaration in "target.h"
2832 function for more information about the return value. */
2833
2834LONGEST
2835target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2836{
2837 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2838}
2839
2840/* Read target file FILENAME. The result is NUL-terminated and
2841 returned as a string, allocated using xmalloc. If an error occurs
2842 or the transfer is unsupported, NULL is returned. Empty objects
2843 are returned as allocated but empty strings. A warning is issued
2844 if the result contains any embedded NUL bytes. */
2845
2846char *
2847target_fileio_read_stralloc (const char *filename)
2848{
39086a0e
PA
2849 gdb_byte *buffer;
2850 char *bufstr;
7313baad
UW
2851 LONGEST i, transferred;
2852
39086a0e
PA
2853 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2854 bufstr = (char *) buffer;
7313baad
UW
2855
2856 if (transferred < 0)
2857 return NULL;
2858
2859 if (transferred == 0)
2860 return xstrdup ("");
2861
39086a0e 2862 bufstr[transferred] = 0;
7313baad
UW
2863
2864 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2865 for (i = strlen (bufstr); i < transferred; i++)
2866 if (bufstr[i] != 0)
7313baad
UW
2867 {
2868 warning (_("target file %s "
2869 "contained unexpected null characters"),
2870 filename);
2871 break;
2872 }
2873
39086a0e 2874 return bufstr;
7313baad
UW
2875}
2876
2877
e0d24f8d 2878static int
31568a15
TT
2879default_region_ok_for_hw_watchpoint (struct target_ops *self,
2880 CORE_ADDR addr, int len)
e0d24f8d 2881{
f5656ead 2882 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2883}
2884
5009afc5
AS
2885static int
2886default_watchpoint_addr_within_range (struct target_ops *target,
2887 CORE_ADDR addr,
2888 CORE_ADDR start, int length)
2889{
2890 return addr >= start && addr < start + length;
2891}
2892
c2250ad1
UW
2893static struct gdbarch *
2894default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2895{
f5656ead 2896 return target_gdbarch ();
c2250ad1
UW
2897}
2898
c906108c 2899static int
555bbdeb
TT
2900return_zero (struct target_ops *ignore)
2901{
2902 return 0;
2903}
2904
2905static int
2906return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2907{
2908 return 0;
2909}
2910
ed9a39eb
JM
2911/*
2912 * Find the next target down the stack from the specified target.
2913 */
2914
2915struct target_ops *
fba45db2 2916find_target_beneath (struct target_ops *t)
ed9a39eb 2917{
258b763a 2918 return t->beneath;
ed9a39eb
JM
2919}
2920
8b06beed
TT
2921/* See target.h. */
2922
2923struct target_ops *
2924find_target_at (enum strata stratum)
2925{
2926 struct target_ops *t;
2927
2928 for (t = current_target.beneath; t != NULL; t = t->beneath)
2929 if (t->to_stratum == stratum)
2930 return t;
2931
2932 return NULL;
2933}
2934
c906108c
SS
2935\f
2936/* The inferior process has died. Long live the inferior! */
2937
2938void
fba45db2 2939generic_mourn_inferior (void)
c906108c 2940{
7f9f62ba 2941 ptid_t ptid;
c906108c 2942
7f9f62ba 2943 ptid = inferior_ptid;
39f77062 2944 inferior_ptid = null_ptid;
7f9f62ba 2945
f59f708a
PA
2946 /* Mark breakpoints uninserted in case something tries to delete a
2947 breakpoint while we delete the inferior's threads (which would
2948 fail, since the inferior is long gone). */
2949 mark_breakpoints_out ();
2950
7f9f62ba
PA
2951 if (!ptid_equal (ptid, null_ptid))
2952 {
2953 int pid = ptid_get_pid (ptid);
6c95b8df 2954 exit_inferior (pid);
7f9f62ba
PA
2955 }
2956
f59f708a
PA
2957 /* Note this wipes step-resume breakpoints, so needs to be done
2958 after exit_inferior, which ends up referencing the step-resume
2959 breakpoints through clear_thread_inferior_resources. */
c906108c 2960 breakpoint_init_inferior (inf_exited);
f59f708a 2961
c906108c
SS
2962 registers_changed ();
2963
c906108c
SS
2964 reopen_exec_file ();
2965 reinit_frame_cache ();
2966
9a4105ab
AC
2967 if (deprecated_detach_hook)
2968 deprecated_detach_hook ();
c906108c
SS
2969}
2970\f
fd0a2a6f
MK
2971/* Convert a normal process ID to a string. Returns the string in a
2972 static buffer. */
c906108c
SS
2973
2974char *
39f77062 2975normal_pid_to_str (ptid_t ptid)
c906108c 2976{
fd0a2a6f 2977 static char buf[32];
c906108c 2978
5fff8fc0 2979 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2980 return buf;
2981}
2982
2c0b251b 2983static char *
770234d3 2984default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2985{
2986 return normal_pid_to_str (ptid);
2987}
2988
9b4eba8e
HZ
2989/* Error-catcher for target_find_memory_regions. */
2990static int
2e73927c
TT
2991dummy_find_memory_regions (struct target_ops *self,
2992 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2993{
9b4eba8e 2994 error (_("Command not implemented for this target."));
be4d1333
MS
2995 return 0;
2996}
2997
9b4eba8e
HZ
2998/* Error-catcher for target_make_corefile_notes. */
2999static char *
fc6691b2
TT
3000dummy_make_corefile_notes (struct target_ops *self,
3001 bfd *ignore1, int *ignore2)
be4d1333 3002{
9b4eba8e 3003 error (_("Command not implemented for this target."));
be4d1333
MS
3004 return NULL;
3005}
3006
c906108c
SS
3007/* Set up the handful of non-empty slots needed by the dummy target
3008 vector. */
3009
3010static void
fba45db2 3011init_dummy_target (void)
c906108c
SS
3012{
3013 dummy_target.to_shortname = "None";
3014 dummy_target.to_longname = "None";
3015 dummy_target.to_doc = "";
03583c20
UW
3016 dummy_target.to_supports_disable_randomization
3017 = find_default_supports_disable_randomization;
c906108c 3018 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3019 dummy_target.to_has_all_memory = return_zero;
3020 dummy_target.to_has_memory = return_zero;
3021 dummy_target.to_has_stack = return_zero;
3022 dummy_target.to_has_registers = return_zero;
3023 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3024 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3025
3026 install_dummy_methods (&dummy_target);
c906108c 3027}
c906108c 3028\f
c906108c 3029
f1c07ab0 3030void
460014f5 3031target_close (struct target_ops *targ)
f1c07ab0 3032{
7fdc1521
TT
3033 gdb_assert (!target_is_pushed (targ));
3034
f1c07ab0 3035 if (targ->to_xclose != NULL)
460014f5 3036 targ->to_xclose (targ);
f1c07ab0 3037 else if (targ->to_close != NULL)
de90e03d 3038 targ->to_close (targ);
947b8855
PA
3039
3040 if (targetdebug)
460014f5 3041 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3042}
3043
28439f5e
PA
3044int
3045target_thread_alive (ptid_t ptid)
c906108c 3046{
a7068b60 3047 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3048}
3049
3050void
3051target_find_new_threads (void)
3052{
09b0dc2b 3053 current_target.to_find_new_threads (&current_target);
c906108c
SS
3054}
3055
d914c394
SS
3056void
3057target_stop (ptid_t ptid)
3058{
3059 if (!may_stop)
3060 {
3061 warning (_("May not interrupt or stop the target, ignoring attempt"));
3062 return;
3063 }
3064
1eab8a48 3065 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3066}
3067
f8c1d06b
GB
3068/* See target/target.h. */
3069
3070void
03f4463b 3071target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3072{
3073 struct target_waitstatus status;
3074 int was_non_stop = non_stop;
3075
3076 non_stop = 1;
3077 target_stop (ptid);
3078
3079 memset (&status, 0, sizeof (status));
3080 target_wait (ptid, &status, 0);
3081
3082 non_stop = was_non_stop;
3083}
3084
3085/* See target/target.h. */
3086
3087void
03f4463b 3088target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3089{
3090 target_resume (ptid, 0, GDB_SIGNAL_0);
3091}
3092
09826ec5
PA
3093/* Concatenate ELEM to LIST, a comma separate list, and return the
3094 result. The LIST incoming argument is released. */
3095
3096static char *
3097str_comma_list_concat_elem (char *list, const char *elem)
3098{
3099 if (list == NULL)
3100 return xstrdup (elem);
3101 else
3102 return reconcat (list, list, ", ", elem, (char *) NULL);
3103}
3104
3105/* Helper for target_options_to_string. If OPT is present in
3106 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3107 Returns the new resulting string. OPT is removed from
3108 TARGET_OPTIONS. */
3109
3110static char *
3111do_option (int *target_options, char *ret,
3112 int opt, char *opt_str)
3113{
3114 if ((*target_options & opt) != 0)
3115 {
3116 ret = str_comma_list_concat_elem (ret, opt_str);
3117 *target_options &= ~opt;
3118 }
3119
3120 return ret;
3121}
3122
3123char *
3124target_options_to_string (int target_options)
3125{
3126 char *ret = NULL;
3127
3128#define DO_TARG_OPTION(OPT) \
3129 ret = do_option (&target_options, ret, OPT, #OPT)
3130
3131 DO_TARG_OPTION (TARGET_WNOHANG);
3132
3133 if (target_options != 0)
3134 ret = str_comma_list_concat_elem (ret, "unknown???");
3135
3136 if (ret == NULL)
3137 ret = xstrdup ("");
3138 return ret;
3139}
3140
bf0c5130 3141static void
56be3814
UW
3142debug_print_register (const char * func,
3143 struct regcache *regcache, int regno)
bf0c5130 3144{
f8d29908 3145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3146
bf0c5130 3147 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3148 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3149 && gdbarch_register_name (gdbarch, regno) != NULL
3150 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3151 fprintf_unfiltered (gdb_stdlog, "(%s)",
3152 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3153 else
3154 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3155 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3156 {
e17a4113 3157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3158 int i, size = register_size (gdbarch, regno);
e362b510 3159 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3160
0ff58721 3161 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3162 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3163 for (i = 0; i < size; i++)
bf0c5130
AC
3164 {
3165 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3166 }
81c4a259 3167 if (size <= sizeof (LONGEST))
bf0c5130 3168 {
e17a4113 3169 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3170
0b1553bc
UW
3171 fprintf_unfiltered (gdb_stdlog, " %s %s",
3172 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3173 }
3174 }
3175 fprintf_unfiltered (gdb_stdlog, "\n");
3176}
3177
28439f5e
PA
3178void
3179target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3180{
ad5989bd
TT
3181 current_target.to_fetch_registers (&current_target, regcache, regno);
3182 if (targetdebug)
3183 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3184}
3185
28439f5e
PA
3186void
3187target_store_registers (struct regcache *regcache, int regno)
c906108c 3188{
28439f5e 3189 struct target_ops *t;
5d502164 3190
d914c394
SS
3191 if (!may_write_registers)
3192 error (_("Writing to registers is not allowed (regno %d)"), regno);
3193
6b84065d
TT
3194 current_target.to_store_registers (&current_target, regcache, regno);
3195 if (targetdebug)
28439f5e 3196 {
6b84065d 3197 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3198 }
c906108c
SS
3199}
3200
dc146f7c
VP
3201int
3202target_core_of_thread (ptid_t ptid)
3203{
a7068b60 3204 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3205}
3206
936d2992
PA
3207int
3208simple_verify_memory (struct target_ops *ops,
3209 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3210{
3211 LONGEST total_xfered = 0;
3212
3213 while (total_xfered < size)
3214 {
3215 ULONGEST xfered_len;
3216 enum target_xfer_status status;
3217 gdb_byte buf[1024];
3218 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3219
3220 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3221 buf, NULL, lma + total_xfered, howmuch,
3222 &xfered_len);
3223 if (status == TARGET_XFER_OK
3224 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3225 {
3226 total_xfered += xfered_len;
3227 QUIT;
3228 }
3229 else
3230 return 0;
3231 }
3232 return 1;
3233}
3234
3235/* Default implementation of memory verification. */
3236
3237static int
3238default_verify_memory (struct target_ops *self,
3239 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3240{
3241 /* Start over from the top of the target stack. */
3242 return simple_verify_memory (current_target.beneath,
3243 data, memaddr, size);
3244}
3245
4a5e7a5b
PA
3246int
3247target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3248{
a7068b60
TT
3249 return current_target.to_verify_memory (&current_target,
3250 data, memaddr, size);
4a5e7a5b
PA
3251}
3252
9c06b0b4
TJB
3253/* The documentation for this function is in its prototype declaration in
3254 target.h. */
3255
3256int
3257target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3258{
a7068b60
TT
3259 return current_target.to_insert_mask_watchpoint (&current_target,
3260 addr, mask, rw);
9c06b0b4
TJB
3261}
3262
3263/* The documentation for this function is in its prototype declaration in
3264 target.h. */
3265
3266int
3267target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3268{
a7068b60
TT
3269 return current_target.to_remove_mask_watchpoint (&current_target,
3270 addr, mask, rw);
9c06b0b4
TJB
3271}
3272
3273/* The documentation for this function is in its prototype declaration
3274 in target.h. */
3275
3276int
3277target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3278{
6c7e5e5c
TT
3279 return current_target.to_masked_watch_num_registers (&current_target,
3280 addr, mask);
9c06b0b4
TJB
3281}
3282
f1310107
TJB
3283/* The documentation for this function is in its prototype declaration
3284 in target.h. */
3285
3286int
3287target_ranged_break_num_registers (void)
3288{
a134316b 3289 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3290}
3291
02d27625
MM
3292/* See target.h. */
3293
02d27625
MM
3294struct btrace_target_info *
3295target_enable_btrace (ptid_t ptid)
3296{
6dc7fcf4 3297 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3298}
3299
3300/* See target.h. */
3301
3302void
3303target_disable_btrace (struct btrace_target_info *btinfo)
3304{
8dc292d3 3305 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3306}
3307
3308/* See target.h. */
3309
3310void
3311target_teardown_btrace (struct btrace_target_info *btinfo)
3312{
9ace480d 3313 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3314}
3315
3316/* See target.h. */
3317
969c39fb
MM
3318enum btrace_error
3319target_read_btrace (VEC (btrace_block_s) **btrace,
3320 struct btrace_target_info *btinfo,
02d27625
MM
3321 enum btrace_read_type type)
3322{
eb5b20d4 3323 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3324}
3325
d02ed0bb
MM
3326/* See target.h. */
3327
7c1687a9
MM
3328void
3329target_stop_recording (void)
3330{
ee97f592 3331 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3332}
3333
3334/* See target.h. */
3335
d02ed0bb 3336void
85e1311a 3337target_save_record (const char *filename)
d02ed0bb 3338{
f09e2107 3339 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3340}
3341
3342/* See target.h. */
3343
3344int
3345target_supports_delete_record (void)
3346{
3347 struct target_ops *t;
3348
3349 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3350 if (t->to_delete_record != delegate_delete_record
3351 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3352 return 1;
3353
3354 return 0;
3355}
3356
3357/* See target.h. */
3358
3359void
3360target_delete_record (void)
3361{
07366925 3362 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3363}
3364
3365/* See target.h. */
3366
3367int
3368target_record_is_replaying (void)
3369{
dd2e9d25 3370 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3371}
3372
3373/* See target.h. */
3374
3375void
3376target_goto_record_begin (void)
3377{
671e76cc 3378 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3379}
3380
3381/* See target.h. */
3382
3383void
3384target_goto_record_end (void)
3385{
e9179bb3 3386 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3387}
3388
3389/* See target.h. */
3390
3391void
3392target_goto_record (ULONGEST insn)
3393{
05969c84 3394 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3395}
3396
67c86d06
MM
3397/* See target.h. */
3398
3399void
3400target_insn_history (int size, int flags)
3401{
3679abfa 3402 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3403}
3404
3405/* See target.h. */
3406
3407void
3408target_insn_history_from (ULONGEST from, int size, int flags)
3409{
8444ab58 3410 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3411}
3412
3413/* See target.h. */
3414
3415void
3416target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3417{
c29302cc 3418 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3419}
3420
15984c13
MM
3421/* See target.h. */
3422
3423void
3424target_call_history (int size, int flags)
3425{
170049d4 3426 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3427}
3428
3429/* See target.h. */
3430
3431void
3432target_call_history_from (ULONGEST begin, int size, int flags)
3433{
16fc27d6 3434 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3435}
3436
3437/* See target.h. */
3438
3439void
3440target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3441{
115d9817 3442 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3443}
3444
ea001bdc
MM
3445/* See target.h. */
3446
3447const struct frame_unwind *
3448target_get_unwinder (void)
3449{
ac01945b 3450 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3451}
3452
3453/* See target.h. */
3454
3455const struct frame_unwind *
3456target_get_tailcall_unwinder (void)
3457{
ac01945b 3458 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3459}
3460
c0eca49f 3461/* Default implementation of to_decr_pc_after_break. */
118e6252 3462
c0eca49f
TT
3463static CORE_ADDR
3464default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3465 struct gdbarch *gdbarch)
3466{
118e6252
MM
3467 return gdbarch_decr_pc_after_break (gdbarch);
3468}
3469
3470/* See target.h. */
3471
3472CORE_ADDR
3473target_decr_pc_after_break (struct gdbarch *gdbarch)
3474{
c0eca49f 3475 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3476}
3477
5fff78c4
MM
3478/* See target.h. */
3479
3480void
3481target_prepare_to_generate_core (void)
3482{
3483 current_target.to_prepare_to_generate_core (&current_target);
3484}
3485
3486/* See target.h. */
3487
3488void
3489target_done_generating_core (void)
3490{
3491 current_target.to_done_generating_core (&current_target);
3492}
3493
c906108c 3494static void
fba45db2 3495setup_target_debug (void)
c906108c
SS
3496{
3497 memcpy (&debug_target, &current_target, sizeof debug_target);
3498
a7068b60 3499 init_debug_target (&current_target);
c906108c 3500}
c906108c 3501\f
c5aa993b
JM
3502
3503static char targ_desc[] =
3e43a32a
MS
3504"Names of targets and files being debugged.\nShows the entire \
3505stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3506core-file, and process, if any), as well as the symbol file name.";
3507
a53f3625 3508static void
a30bf1f1
TT
3509default_rcmd (struct target_ops *self, const char *command,
3510 struct ui_file *output)
a53f3625
TT
3511{
3512 error (_("\"monitor\" command not supported by this target."));
3513}
3514
96baa820
JM
3515static void
3516do_monitor_command (char *cmd,
3517 int from_tty)
3518{
96baa820
JM
3519 target_rcmd (cmd, gdb_stdtarg);
3520}
3521
87680a14
JB
3522/* Print the name of each layers of our target stack. */
3523
3524static void
3525maintenance_print_target_stack (char *cmd, int from_tty)
3526{
3527 struct target_ops *t;
3528
3529 printf_filtered (_("The current target stack is:\n"));
3530
3531 for (t = target_stack; t != NULL; t = t->beneath)
3532 {
3533 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3534 }
3535}
3536
329ea579
PA
3537/* Controls if targets can report that they can/are async. This is
3538 just for maintainers to use when debugging gdb. */
3539int target_async_permitted = 1;
c6ebd6cf
VP
3540
3541/* The set command writes to this variable. If the inferior is
b5419e49 3542 executing, target_async_permitted is *not* updated. */
329ea579 3543static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3544
3545static void
329ea579
PA
3546maint_set_target_async_command (char *args, int from_tty,
3547 struct cmd_list_element *c)
c6ebd6cf 3548{
c35b1492 3549 if (have_live_inferiors ())
c6ebd6cf
VP
3550 {
3551 target_async_permitted_1 = target_async_permitted;
3552 error (_("Cannot change this setting while the inferior is running."));
3553 }
3554
3555 target_async_permitted = target_async_permitted_1;
3556}
3557
3558static void
329ea579
PA
3559maint_show_target_async_command (struct ui_file *file, int from_tty,
3560 struct cmd_list_element *c,
3561 const char *value)
c6ebd6cf 3562{
3e43a32a
MS
3563 fprintf_filtered (file,
3564 _("Controlling the inferior in "
3565 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3566}
3567
d914c394
SS
3568/* Temporary copies of permission settings. */
3569
3570static int may_write_registers_1 = 1;
3571static int may_write_memory_1 = 1;
3572static int may_insert_breakpoints_1 = 1;
3573static int may_insert_tracepoints_1 = 1;
3574static int may_insert_fast_tracepoints_1 = 1;
3575static int may_stop_1 = 1;
3576
3577/* Make the user-set values match the real values again. */
3578
3579void
3580update_target_permissions (void)
3581{
3582 may_write_registers_1 = may_write_registers;
3583 may_write_memory_1 = may_write_memory;
3584 may_insert_breakpoints_1 = may_insert_breakpoints;
3585 may_insert_tracepoints_1 = may_insert_tracepoints;
3586 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3587 may_stop_1 = may_stop;
3588}
3589
3590/* The one function handles (most of) the permission flags in the same
3591 way. */
3592
3593static void
3594set_target_permissions (char *args, int from_tty,
3595 struct cmd_list_element *c)
3596{
3597 if (target_has_execution)
3598 {
3599 update_target_permissions ();
3600 error (_("Cannot change this setting while the inferior is running."));
3601 }
3602
3603 /* Make the real values match the user-changed values. */
3604 may_write_registers = may_write_registers_1;
3605 may_insert_breakpoints = may_insert_breakpoints_1;
3606 may_insert_tracepoints = may_insert_tracepoints_1;
3607 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3608 may_stop = may_stop_1;
3609 update_observer_mode ();
3610}
3611
3612/* Set memory write permission independently of observer mode. */
3613
3614static void
3615set_write_memory_permission (char *args, int from_tty,
3616 struct cmd_list_element *c)
3617{
3618 /* Make the real values match the user-changed values. */
3619 may_write_memory = may_write_memory_1;
3620 update_observer_mode ();
3621}
3622
3623
c906108c 3624void
fba45db2 3625initialize_targets (void)
c906108c
SS
3626{
3627 init_dummy_target ();
3628 push_target (&dummy_target);
3629
3630 add_info ("target", target_info, targ_desc);
3631 add_info ("files", target_info, targ_desc);
3632
ccce17b0 3633 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3634Set target debugging."), _("\
3635Show target debugging."), _("\
333dabeb 3636When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3637verbose."),
3638 set_targetdebug,
ccce17b0
YQ
3639 show_targetdebug,
3640 &setdebuglist, &showdebuglist);
3a11626d 3641
2bc416ba 3642 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3643 &trust_readonly, _("\
3644Set mode for reading from readonly sections."), _("\
3645Show mode for reading from readonly sections."), _("\
3a11626d
MS
3646When this mode is on, memory reads from readonly sections (such as .text)\n\
3647will be read from the object file instead of from the target. This will\n\
7915a72c 3648result in significant performance improvement for remote targets."),
2c5b56ce 3649 NULL,
920d2a44 3650 show_trust_readonly,
e707bbc2 3651 &setlist, &showlist);
96baa820
JM
3652
3653 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3654 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3655
87680a14
JB
3656 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3657 _("Print the name of each layer of the internal target stack."),
3658 &maintenanceprintlist);
3659
c6ebd6cf
VP
3660 add_setshow_boolean_cmd ("target-async", no_class,
3661 &target_async_permitted_1, _("\
3662Set whether gdb controls the inferior in asynchronous mode."), _("\
3663Show whether gdb controls the inferior in asynchronous mode."), _("\
3664Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3665 maint_set_target_async_command,
3666 maint_show_target_async_command,
3667 &maintenance_set_cmdlist,
3668 &maintenance_show_cmdlist);
c6ebd6cf 3669
d914c394
SS
3670 add_setshow_boolean_cmd ("may-write-registers", class_support,
3671 &may_write_registers_1, _("\
3672Set permission to write into registers."), _("\
3673Show permission to write into registers."), _("\
3674When this permission is on, GDB may write into the target's registers.\n\
3675Otherwise, any sort of write attempt will result in an error."),
3676 set_target_permissions, NULL,
3677 &setlist, &showlist);
3678
3679 add_setshow_boolean_cmd ("may-write-memory", class_support,
3680 &may_write_memory_1, _("\
3681Set permission to write into target memory."), _("\
3682Show permission to write into target memory."), _("\
3683When this permission is on, GDB may write into the target's memory.\n\
3684Otherwise, any sort of write attempt will result in an error."),
3685 set_write_memory_permission, NULL,
3686 &setlist, &showlist);
3687
3688 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3689 &may_insert_breakpoints_1, _("\
3690Set permission to insert breakpoints in the target."), _("\
3691Show permission to insert breakpoints in the target."), _("\
3692When this permission is on, GDB may insert breakpoints in the program.\n\
3693Otherwise, any sort of insertion attempt will result in an error."),
3694 set_target_permissions, NULL,
3695 &setlist, &showlist);
3696
3697 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3698 &may_insert_tracepoints_1, _("\
3699Set permission to insert tracepoints in the target."), _("\
3700Show permission to insert tracepoints in the target."), _("\
3701When this permission is on, GDB may insert tracepoints in the program.\n\
3702Otherwise, any sort of insertion attempt will result in an error."),
3703 set_target_permissions, NULL,
3704 &setlist, &showlist);
3705
3706 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3707 &may_insert_fast_tracepoints_1, _("\
3708Set permission to insert fast tracepoints in the target."), _("\
3709Show permission to insert fast tracepoints in the target."), _("\
3710When this permission is on, GDB may insert fast tracepoints.\n\
3711Otherwise, any sort of insertion attempt will result in an error."),
3712 set_target_permissions, NULL,
3713 &setlist, &showlist);
3714
3715 add_setshow_boolean_cmd ("may-interrupt", class_support,
3716 &may_stop_1, _("\
3717Set permission to interrupt or signal the target."), _("\
3718Show permission to interrupt or signal the target."), _("\
3719When this permission is on, GDB may interrupt/stop the target's execution.\n\
3720Otherwise, any attempt to interrupt or stop will be ignored."),
3721 set_target_permissions, NULL,
3722 &setlist, &showlist);
6a3cb8e8
PA
3723
3724 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3725 &auto_connect_native_target, _("\
3726Set whether GDB may automatically connect to the native target."), _("\
3727Show whether GDB may automatically connect to the native target."), _("\
3728When on, and GDB is not connected to a target yet, GDB\n\
3729attempts \"run\" and other commands with the native target."),
3730 NULL, show_auto_connect_native_target,
3731 &setlist, &showlist);
c906108c 3732}
This page took 3.269625 seconds and 4 git commands to generate.