Don't segfault or assert on NULL tls_sec
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
c0eca49f
TT
108static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
a7068b60
TT
111static struct target_ops debug_target;
112
1101cb7b
TT
113#include "target-delegates.c"
114
a14ed312 115static void init_dummy_target (void);
c906108c 116
3cecbbbe
TT
117static void update_current_target (void);
118
89a1c21a
SM
119/* Vector of existing target structures. */
120typedef struct target_ops *target_ops_p;
121DEF_VEC_P (target_ops_p);
122static VEC (target_ops_p) *target_structs;
c906108c
SS
123
124/* The initial current target, so that there is always a semi-valid
125 current target. */
126
127static struct target_ops dummy_target;
128
129/* Top of target stack. */
130
258b763a 131static struct target_ops *target_stack;
c906108c
SS
132
133/* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136struct target_ops current_target;
137
138/* Command list for target. */
139
140static struct cmd_list_element *targetlist = NULL;
141
cf7a04e8
DJ
142/* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145static int trust_readonly = 0;
146
8defab1a
DJ
147/* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150static int show_memory_breakpoints = 0;
151
d914c394
SS
152/* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156int may_write_registers = 1;
157
158int may_write_memory = 1;
159
160int may_insert_breakpoints = 1;
161
162int may_insert_tracepoints = 1;
163
164int may_insert_fast_tracepoints = 1;
165
166int may_stop = 1;
167
c906108c
SS
168/* Non-zero if we want to see trace of target level stuff. */
169
ccce17b0 170static unsigned int targetdebug = 0;
3cecbbbe
TT
171
172static void
173set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174{
175 update_current_target ();
176}
177
920d2a44
AC
178static void
179show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183}
c906108c 184
a14ed312 185static void setup_target_debug (void);
c906108c 186
c906108c
SS
187/* The user just typed 'target' without the name of a target. */
188
c906108c 189static void
fba45db2 190target_command (char *arg, int from_tty)
c906108c
SS
191{
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194}
195
c35b1492
PA
196/* Default target_has_* methods for process_stratum targets. */
197
198int
199default_child_has_all_memory (struct target_ops *ops)
200{
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206}
207
208int
209default_child_has_memory (struct target_ops *ops)
210{
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216}
217
218int
219default_child_has_stack (struct target_ops *ops)
220{
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_registers (struct target_ops *ops)
230{
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236}
237
238int
aeaec162 239default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
240{
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
aeaec162 243 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
244 return 0;
245
246 return 1;
247}
248
249
250int
251target_has_all_memory_1 (void)
252{
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260}
261
262int
263target_has_memory_1 (void)
264{
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272}
273
274int
275target_has_stack_1 (void)
276{
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284}
285
286int
287target_has_registers_1 (void)
288{
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296}
297
298int
aeaec162 299target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
300{
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 304 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
305 return 1;
306
307 return 0;
308}
309
aeaec162
TT
310int
311target_has_execution_current (void)
312{
313 return target_has_execution_1 (inferior_ptid);
314}
315
c22a2b88
TT
316/* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
c906108c
SS
318
319void
c22a2b88 320complete_target_initialization (struct target_ops *t)
c906108c 321{
0088c768 322 /* Provide default values for all "must have" methods. */
0088c768 323
c35b1492 324 if (t->to_has_all_memory == NULL)
555bbdeb 325 t->to_has_all_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_memory == NULL)
555bbdeb 328 t->to_has_memory = return_zero;
c35b1492
PA
329
330 if (t->to_has_stack == NULL)
555bbdeb 331 t->to_has_stack = return_zero;
c35b1492
PA
332
333 if (t->to_has_registers == NULL)
555bbdeb 334 t->to_has_registers = return_zero;
c35b1492
PA
335
336 if (t->to_has_execution == NULL)
555bbdeb 337 t->to_has_execution = return_zero_has_execution;
1101cb7b 338
b3ccfe11
TT
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
1101cb7b 345 install_delegators (t);
c22a2b88
TT
346}
347
8981c758
TT
348/* This is used to implement the various target commands. */
349
350static void
351open_target (char *args, int from_tty, struct cmd_list_element *command)
352{
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364}
365
c22a2b88
TT
366/* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370void
371add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373{
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
c35b1492 377
89a1c21a 378 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
379
380 if (targetlist == NULL)
1bedd215
AC
381 add_prefix_cmd ("target", class_run, target_command, _("\
382Connect to a target machine or process.\n\
c906108c
SS
383The first argument is the type or protocol of the target machine.\n\
384Remaining arguments are interpreted by the target protocol. For more\n\
385information on the arguments for a particular protocol, type\n\
1bedd215 386`help target ' followed by the protocol name."),
c906108c 387 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
9852c492
YQ
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393}
394
395/* Add a possible target architecture to the list. */
396
397void
398add_target (struct target_ops *t)
399{
400 add_target_with_completer (t, NULL);
c906108c
SS
401}
402
b48d48eb
MM
403/* See target.h. */
404
405void
406add_deprecated_target_alias (struct target_ops *t, char *alias)
407{
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
8981c758
TT
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
b48d48eb
MM
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418}
419
c906108c
SS
420/* Stub functions */
421
7d85a9c0
JB
422void
423target_kill (void)
424{
423a4807 425 current_target.to_kill (&current_target);
7d85a9c0
JB
426}
427
11cf8741 428void
9cbe5fff 429target_load (const char *arg, int from_tty)
11cf8741 430{
4e5d721f 431 target_dcache_invalidate ();
71a9f134 432 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
433}
434
5842f62a
PA
435/* Possible terminal states. */
436
437enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450static enum terminal_state terminal_state;
451
452/* See target.h. */
453
454void
455target_terminal_init (void)
456{
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460}
461
462/* See target.h. */
463
6fdebc3d
PA
464int
465target_terminal_is_inferior (void)
466{
467 return (terminal_state == terminal_is_inferior);
468}
469
470/* See target.h. */
471
d9d2d8b6
PA
472void
473target_terminal_inferior (void)
474{
475 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 476 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
477 this point the target is not async yet. However, if sync_execution
478 is not set, we know it will become async prior to resume. */
479 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
480 return;
481
5842f62a
PA
482 if (terminal_state == terminal_is_inferior)
483 return;
484
d9d2d8b6
PA
485 /* If GDB is resuming the inferior in the foreground, install
486 inferior's terminal modes. */
d2f640d4 487 (*current_target.to_terminal_inferior) (&current_target);
5842f62a
PA
488 terminal_state = terminal_is_inferior;
489}
490
491/* See target.h. */
492
493void
494target_terminal_ours (void)
495{
496 if (terminal_state == terminal_is_ours)
497 return;
498
499 (*current_target.to_terminal_ours) (&current_target);
500 terminal_state = terminal_is_ours;
501}
502
503/* See target.h. */
504
505void
506target_terminal_ours_for_output (void)
507{
508 if (terminal_state != terminal_is_inferior)
509 return;
510 (*current_target.to_terminal_ours_for_output) (&current_target);
511 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 512}
136d6dae 513
b0ed115f
TT
514/* See target.h. */
515
516int
517target_supports_terminal_ours (void)
518{
519 struct target_ops *t;
520
521 for (t = current_target.beneath; t != NULL; t = t->beneath)
522 {
523 if (t->to_terminal_ours != delegate_terminal_ours
524 && t->to_terminal_ours != tdefault_terminal_ours)
525 return 1;
526 }
527
528 return 0;
529}
530
1abf3a14
SM
531/* Restore the terminal to its previous state (helper for
532 make_cleanup_restore_target_terminal). */
533
534static void
535cleanup_restore_target_terminal (void *arg)
536{
537 enum terminal_state *previous_state = arg;
538
539 switch (*previous_state)
540 {
541 case terminal_is_ours:
542 target_terminal_ours ();
543 break;
544 case terminal_is_ours_for_output:
545 target_terminal_ours_for_output ();
546 break;
547 case terminal_is_inferior:
548 target_terminal_inferior ();
549 break;
550 }
551}
552
553/* See target.h. */
554
555struct cleanup *
556make_cleanup_restore_target_terminal (void)
557{
558 enum terminal_state *ts = xmalloc (sizeof (*ts));
559
560 *ts = terminal_state;
561
562 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
563}
564
c906108c 565static void
fba45db2 566tcomplain (void)
c906108c 567{
8a3fe4f8 568 error (_("You can't do that when your target is `%s'"),
c906108c
SS
569 current_target.to_shortname);
570}
571
572void
fba45db2 573noprocess (void)
c906108c 574{
8a3fe4f8 575 error (_("You can't do that without a process to debug."));
c906108c
SS
576}
577
c906108c 578static void
0a4f40a2 579default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 580{
a3f17187 581 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
582}
583
0ef643c8
JB
584/* A default implementation for the to_get_ada_task_ptid target method.
585
586 This function builds the PTID by using both LWP and TID as part of
587 the PTID lwp and tid elements. The pid used is the pid of the
588 inferior_ptid. */
589
2c0b251b 590static ptid_t
1e6b91a4 591default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
592{
593 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
594}
595
32231432 596static enum exec_direction_kind
4c612759 597default_execution_direction (struct target_ops *self)
32231432
PA
598{
599 if (!target_can_execute_reverse)
600 return EXEC_FORWARD;
601 else if (!target_can_async_p ())
602 return EXEC_FORWARD;
603 else
604 gdb_assert_not_reached ("\
605to_execution_direction must be implemented for reverse async");
606}
607
7998dfc3
AC
608/* Go through the target stack from top to bottom, copying over zero
609 entries in current_target, then filling in still empty entries. In
610 effect, we are doing class inheritance through the pushed target
611 vectors.
612
613 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
614 is currently implemented, is that it discards any knowledge of
615 which target an inherited method originally belonged to.
616 Consequently, new new target methods should instead explicitly and
617 locally search the target stack for the target that can handle the
618 request. */
c906108c
SS
619
620static void
7998dfc3 621update_current_target (void)
c906108c 622{
7998dfc3
AC
623 struct target_ops *t;
624
08d8bcd7 625 /* First, reset current's contents. */
7998dfc3
AC
626 memset (&current_target, 0, sizeof (current_target));
627
1101cb7b
TT
628 /* Install the delegators. */
629 install_delegators (&current_target);
630
be4ddd36
TT
631 current_target.to_stratum = target_stack->to_stratum;
632
7998dfc3
AC
633#define INHERIT(FIELD, TARGET) \
634 if (!current_target.FIELD) \
635 current_target.FIELD = (TARGET)->FIELD
636
be4ddd36
TT
637 /* Do not add any new INHERITs here. Instead, use the delegation
638 mechanism provided by make-target-delegates. */
7998dfc3
AC
639 for (t = target_stack; t; t = t->beneath)
640 {
641 INHERIT (to_shortname, t);
642 INHERIT (to_longname, t);
dc177b7a 643 INHERIT (to_attach_no_wait, t);
74174d2e 644 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 645 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 646 INHERIT (to_has_thread_control, t);
7998dfc3
AC
647 }
648#undef INHERIT
649
7998dfc3
AC
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
b4b61fdb
DJ
654
655 if (targetdebug)
656 setup_target_debug ();
c906108c
SS
657}
658
659/* Push a new target type into the stack of the existing target accessors,
660 possibly superseding some of the existing accessors.
661
c906108c
SS
662 Rather than allow an empty stack, we always have the dummy target at
663 the bottom stratum, so we can call the function vectors without
664 checking them. */
665
b26a4dcb 666void
fba45db2 667push_target (struct target_ops *t)
c906108c 668{
258b763a 669 struct target_ops **cur;
c906108c
SS
670
671 /* Check magic number. If wrong, it probably means someone changed
672 the struct definition, but not all the places that initialize one. */
673 if (t->to_magic != OPS_MAGIC)
674 {
c5aa993b
JM
675 fprintf_unfiltered (gdb_stderr,
676 "Magic number of %s target struct wrong\n",
677 t->to_shortname);
3e43a32a
MS
678 internal_error (__FILE__, __LINE__,
679 _("failed internal consistency check"));
c906108c
SS
680 }
681
258b763a
AC
682 /* Find the proper stratum to install this target in. */
683 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 684 {
258b763a 685 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
686 break;
687 }
688
258b763a 689 /* If there's already targets at this stratum, remove them. */
88c231eb 690 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
691 targets to CUR, and not just those at this stratum level. */
692 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
693 {
694 /* There's already something at this stratum level. Close it,
695 and un-hook it from the stack. */
696 struct target_ops *tmp = (*cur);
5d502164 697
258b763a
AC
698 (*cur) = (*cur)->beneath;
699 tmp->beneath = NULL;
460014f5 700 target_close (tmp);
258b763a 701 }
c906108c
SS
702
703 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
704 t->beneath = (*cur);
705 (*cur) = t;
c906108c
SS
706
707 update_current_target ();
c906108c
SS
708}
709
2bc416ba 710/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
711 Return how many times it was removed (0 or 1). */
712
713int
fba45db2 714unpush_target (struct target_ops *t)
c906108c 715{
258b763a
AC
716 struct target_ops **cur;
717 struct target_ops *tmp;
c906108c 718
c8d104ad
PA
719 if (t->to_stratum == dummy_stratum)
720 internal_error (__FILE__, __LINE__,
9b20d036 721 _("Attempt to unpush the dummy target"));
c8d104ad 722
c906108c 723 /* Look for the specified target. Note that we assume that a target
c378eb4e 724 can only occur once in the target stack. */
c906108c 725
258b763a
AC
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 {
728 if ((*cur) == t)
729 break;
730 }
c906108c 731
305436e0
PA
732 /* If we don't find target_ops, quit. Only open targets should be
733 closed. */
258b763a 734 if ((*cur) == NULL)
305436e0 735 return 0;
5269965e 736
c378eb4e 737 /* Unchain the target. */
258b763a
AC
738 tmp = (*cur);
739 (*cur) = (*cur)->beneath;
740 tmp->beneath = NULL;
c906108c
SS
741
742 update_current_target ();
c906108c 743
305436e0
PA
744 /* Finally close the target. Note we do this after unchaining, so
745 any target method calls from within the target_close
746 implementation don't end up in T anymore. */
460014f5 747 target_close (t);
305436e0 748
c906108c
SS
749 return 1;
750}
751
aa76d38d 752void
460014f5 753pop_all_targets_above (enum strata above_stratum)
aa76d38d 754{
87ab71f0 755 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 756 {
aa76d38d
PA
757 if (!unpush_target (target_stack))
758 {
759 fprintf_unfiltered (gdb_stderr,
760 "pop_all_targets couldn't find target %s\n",
b52323fa 761 target_stack->to_shortname);
aa76d38d
PA
762 internal_error (__FILE__, __LINE__,
763 _("failed internal consistency check"));
764 break;
765 }
766 }
767}
768
87ab71f0 769void
460014f5 770pop_all_targets (void)
87ab71f0 771{
460014f5 772 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
773}
774
c0edd9ed
JK
775/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
776
777int
778target_is_pushed (struct target_ops *t)
779{
84202f9c 780 struct target_ops *cur;
c0edd9ed
JK
781
782 /* Check magic number. If wrong, it probably means someone changed
783 the struct definition, but not all the places that initialize one. */
784 if (t->to_magic != OPS_MAGIC)
785 {
786 fprintf_unfiltered (gdb_stderr,
787 "Magic number of %s target struct wrong\n",
788 t->to_shortname);
3e43a32a
MS
789 internal_error (__FILE__, __LINE__,
790 _("failed internal consistency check"));
c0edd9ed
JK
791 }
792
84202f9c
TT
793 for (cur = target_stack; cur != NULL; cur = cur->beneath)
794 if (cur == t)
c0edd9ed
JK
795 return 1;
796
797 return 0;
798}
799
f0f9ff95
TT
800/* Default implementation of to_get_thread_local_address. */
801
802static void
803generic_tls_error (void)
804{
805 throw_error (TLS_GENERIC_ERROR,
806 _("Cannot find thread-local variables on this target"));
807}
808
72f5cf0e 809/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
810 current thread's thread-local storage with offset OFFSET. */
811CORE_ADDR
812target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
813{
814 volatile CORE_ADDR addr = 0;
f0f9ff95 815 struct target_ops *target = &current_target;
9e35dae4 816
f0f9ff95 817 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
818 {
819 ptid_t ptid = inferior_ptid;
820 volatile struct gdb_exception ex;
821
822 TRY_CATCH (ex, RETURN_MASK_ALL)
823 {
824 CORE_ADDR lm_addr;
825
826 /* Fetch the load module address for this objfile. */
f5656ead 827 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 828 objfile);
9e35dae4 829
3e43a32a
MS
830 addr = target->to_get_thread_local_address (target, ptid,
831 lm_addr, offset);
9e35dae4
DJ
832 }
833 /* If an error occurred, print TLS related messages here. Otherwise,
834 throw the error to some higher catcher. */
835 if (ex.reason < 0)
836 {
837 int objfile_is_library = (objfile->flags & OBJF_SHARED);
838
839 switch (ex.error)
840 {
841 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
842 error (_("Cannot find thread-local variables "
843 "in this thread library."));
9e35dae4
DJ
844 break;
845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 if (objfile_is_library)
847 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 848 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
849 else
850 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 851 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
852 break;
853 case TLS_NOT_ALLOCATED_YET_ERROR:
854 if (objfile_is_library)
855 error (_("The inferior has not yet allocated storage for"
856 " thread-local variables in\n"
857 "the shared library `%s'\n"
858 "for %s"),
4262abfb 859 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
860 else
861 error (_("The inferior has not yet allocated storage for"
862 " thread-local variables in\n"
863 "the executable `%s'\n"
864 "for %s"),
4262abfb 865 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
866 break;
867 case TLS_GENERIC_ERROR:
868 if (objfile_is_library)
869 error (_("Cannot find thread-local storage for %s, "
870 "shared library %s:\n%s"),
871 target_pid_to_str (ptid),
4262abfb 872 objfile_name (objfile), ex.message);
9e35dae4
DJ
873 else
874 error (_("Cannot find thread-local storage for %s, "
875 "executable file %s:\n%s"),
876 target_pid_to_str (ptid),
4262abfb 877 objfile_name (objfile), ex.message);
9e35dae4
DJ
878 break;
879 default:
880 throw_exception (ex);
881 break;
882 }
883 }
884 }
885 /* It wouldn't be wrong here to try a gdbarch method, too; finding
886 TLS is an ABI-specific thing. But we don't do that yet. */
887 else
888 error (_("Cannot find thread-local variables on this target"));
889
890 return addr;
891}
892
6be7b56e 893const char *
01cb8804 894target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
895{
896#define CASE(X) case X: return #X
01cb8804 897 switch (status)
6be7b56e
PA
898 {
899 CASE(TARGET_XFER_E_IO);
bc113b4e 900 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
901 default:
902 return "<unknown>";
903 }
904#undef CASE
905};
906
907
c906108c
SS
908#undef MIN
909#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
910
911/* target_read_string -- read a null terminated string, up to LEN bytes,
912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
913 Set *STRING to a pointer to malloc'd memory containing the data; the caller
914 is responsible for freeing it. Return the number of bytes successfully
915 read. */
916
917int
fba45db2 918target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 919{
c2e8b827 920 int tlen, offset, i;
1b0ba102 921 gdb_byte buf[4];
c906108c
SS
922 int errcode = 0;
923 char *buffer;
924 int buffer_allocated;
925 char *bufptr;
926 unsigned int nbytes_read = 0;
927
6217bf3e
MS
928 gdb_assert (string);
929
c906108c
SS
930 /* Small for testing. */
931 buffer_allocated = 4;
932 buffer = xmalloc (buffer_allocated);
933 bufptr = buffer;
934
c906108c
SS
935 while (len > 0)
936 {
937 tlen = MIN (len, 4 - (memaddr & 3));
938 offset = memaddr & 3;
939
1b0ba102 940 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
941 if (errcode != 0)
942 {
943 /* The transfer request might have crossed the boundary to an
c378eb4e 944 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
945 a single byte. */
946 tlen = 1;
947 offset = 0;
b8eb5af0 948 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
949 if (errcode != 0)
950 goto done;
951 }
952
953 if (bufptr - buffer + tlen > buffer_allocated)
954 {
955 unsigned int bytes;
5d502164 956
c906108c
SS
957 bytes = bufptr - buffer;
958 buffer_allocated *= 2;
959 buffer = xrealloc (buffer, buffer_allocated);
960 bufptr = buffer + bytes;
961 }
962
963 for (i = 0; i < tlen; i++)
964 {
965 *bufptr++ = buf[i + offset];
966 if (buf[i + offset] == '\000')
967 {
968 nbytes_read += i + 1;
969 goto done;
970 }
971 }
972
973 memaddr += tlen;
974 len -= tlen;
975 nbytes_read += tlen;
976 }
c5aa993b 977done:
6217bf3e 978 *string = buffer;
c906108c
SS
979 if (errnop != NULL)
980 *errnop = errcode;
c906108c
SS
981 return nbytes_read;
982}
983
07b82ea5
PA
984struct target_section_table *
985target_get_section_table (struct target_ops *target)
986{
7e35c012 987 return (*target->to_get_section_table) (target);
07b82ea5
PA
988}
989
8db32d44 990/* Find a section containing ADDR. */
07b82ea5 991
0542c86d 992struct target_section *
8db32d44
AC
993target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
994{
07b82ea5 995 struct target_section_table *table = target_get_section_table (target);
0542c86d 996 struct target_section *secp;
07b82ea5
PA
997
998 if (table == NULL)
999 return NULL;
1000
1001 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1002 {
1003 if (addr >= secp->addr && addr < secp->endaddr)
1004 return secp;
1005 }
1006 return NULL;
1007}
1008
0fec99e8
PA
1009
1010/* Helper for the memory xfer routines. Checks the attributes of the
1011 memory region of MEMADDR against the read or write being attempted.
1012 If the access is permitted returns true, otherwise returns false.
1013 REGION_P is an optional output parameter. If not-NULL, it is
1014 filled with a pointer to the memory region of MEMADDR. REG_LEN
1015 returns LEN trimmed to the end of the region. This is how much the
1016 caller can continue requesting, if the access is permitted. A
1017 single xfer request must not straddle memory region boundaries. */
1018
1019static int
1020memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1021 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1022 struct mem_region **region_p)
1023{
1024 struct mem_region *region;
1025
1026 region = lookup_mem_region (memaddr);
1027
1028 if (region_p != NULL)
1029 *region_p = region;
1030
1031 switch (region->attrib.mode)
1032 {
1033 case MEM_RO:
1034 if (writebuf != NULL)
1035 return 0;
1036 break;
1037
1038 case MEM_WO:
1039 if (readbuf != NULL)
1040 return 0;
1041 break;
1042
1043 case MEM_FLASH:
1044 /* We only support writing to flash during "load" for now. */
1045 if (writebuf != NULL)
1046 error (_("Writing to flash memory forbidden in this context"));
1047 break;
1048
1049 case MEM_NONE:
1050 return 0;
1051 }
1052
1053 /* region->hi == 0 means there's no upper bound. */
1054 if (memaddr + len < region->hi || region->hi == 0)
1055 *reg_len = len;
1056 else
1057 *reg_len = region->hi - memaddr;
1058
1059 return 1;
1060}
1061
9f713294
YQ
1062/* Read memory from more than one valid target. A core file, for
1063 instance, could have some of memory but delegate other bits to
1064 the target below it. So, we must manually try all targets. */
1065
9b409511 1066static enum target_xfer_status
17fde6d0 1067raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1068 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1069 ULONGEST *xfered_len)
9f713294 1070{
9b409511 1071 enum target_xfer_status res;
9f713294
YQ
1072
1073 do
1074 {
1075 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1076 readbuf, writebuf, memaddr, len,
1077 xfered_len);
1078 if (res == TARGET_XFER_OK)
9f713294
YQ
1079 break;
1080
633785ff 1081 /* Stop if the target reports that the memory is not available. */
bc113b4e 1082 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1083 break;
1084
9f713294
YQ
1085 /* We want to continue past core files to executables, but not
1086 past a running target's memory. */
1087 if (ops->to_has_all_memory (ops))
1088 break;
1089
1090 ops = ops->beneath;
1091 }
1092 while (ops != NULL);
1093
0f26cec1
PA
1094 /* The cache works at the raw memory level. Make sure the cache
1095 gets updated with raw contents no matter what kind of memory
1096 object was originally being written. Note we do write-through
1097 first, so that if it fails, we don't write to the cache contents
1098 that never made it to the target. */
1099 if (writebuf != NULL
1100 && !ptid_equal (inferior_ptid, null_ptid)
1101 && target_dcache_init_p ()
1102 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1103 {
1104 DCACHE *dcache = target_dcache_get ();
1105
1106 /* Note that writing to an area of memory which wasn't present
1107 in the cache doesn't cause it to be loaded in. */
1108 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1109 }
1110
9f713294
YQ
1111 return res;
1112}
1113
7f79c47e
DE
1114/* Perform a partial memory transfer.
1115 For docs see target.h, to_xfer_partial. */
cf7a04e8 1116
9b409511 1117static enum target_xfer_status
f0ba3972 1118memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1119 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1120 ULONGEST len, ULONGEST *xfered_len)
0779438d 1121{
9b409511 1122 enum target_xfer_status res;
0fec99e8 1123 ULONGEST reg_len;
cf7a04e8 1124 struct mem_region *region;
4e5d721f 1125 struct inferior *inf;
cf7a04e8 1126
07b82ea5
PA
1127 /* For accesses to unmapped overlay sections, read directly from
1128 files. Must do this first, as MEMADDR may need adjustment. */
1129 if (readbuf != NULL && overlay_debugging)
1130 {
1131 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1132
07b82ea5
PA
1133 if (pc_in_unmapped_range (memaddr, section))
1134 {
1135 struct target_section_table *table
1136 = target_get_section_table (ops);
1137 const char *section_name = section->the_bfd_section->name;
5d502164 1138
07b82ea5
PA
1139 memaddr = overlay_mapped_address (memaddr, section);
1140 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1141 memaddr, len, xfered_len,
07b82ea5
PA
1142 table->sections,
1143 table->sections_end,
1144 section_name);
1145 }
1146 }
1147
1148 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1149 if (readbuf != NULL && trust_readonly)
1150 {
0542c86d 1151 struct target_section *secp;
07b82ea5 1152 struct target_section_table *table;
cf7a04e8
DJ
1153
1154 secp = target_section_by_addr (ops, memaddr);
1155 if (secp != NULL
2b2848e2
DE
1156 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1157 secp->the_bfd_section)
cf7a04e8 1158 & SEC_READONLY))
07b82ea5
PA
1159 {
1160 table = target_get_section_table (ops);
1161 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1162 memaddr, len, xfered_len,
07b82ea5
PA
1163 table->sections,
1164 table->sections_end,
1165 NULL);
1166 }
98646950
UW
1167 }
1168
cf7a04e8 1169 /* Try GDB's internal data cache. */
cf7a04e8 1170
0fec99e8
PA
1171 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1172 &region))
1173 return TARGET_XFER_E_IO;
cf7a04e8 1174
6c95b8df 1175 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1176 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1177 else
1178 inf = NULL;
4e5d721f
DE
1179
1180 if (inf != NULL
0f26cec1 1181 && readbuf != NULL
2f4d8875
PA
1182 /* The dcache reads whole cache lines; that doesn't play well
1183 with reading from a trace buffer, because reading outside of
1184 the collected memory range fails. */
1185 && get_traceframe_number () == -1
4e5d721f 1186 && (region->attrib.cache
29453a14
YQ
1187 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1188 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1189 {
2a2f9fe4
YQ
1190 DCACHE *dcache = target_dcache_get_or_init ();
1191
0f26cec1
PA
1192 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1193 reg_len, xfered_len);
cf7a04e8
DJ
1194 }
1195
1196 /* If none of those methods found the memory we wanted, fall back
1197 to a target partial transfer. Normally a single call to
1198 to_xfer_partial is enough; if it doesn't recognize an object
1199 it will call the to_xfer_partial of the next target down.
1200 But for memory this won't do. Memory is the only target
9b409511
YQ
1201 object which can be read from more than one valid target.
1202 A core file, for instance, could have some of memory but
1203 delegate other bits to the target below it. So, we must
1204 manually try all targets. */
1205
1206 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1207 xfered_len);
cf7a04e8
DJ
1208
1209 /* If we still haven't got anything, return the last error. We
1210 give up. */
1211 return res;
0779438d
AC
1212}
1213
f0ba3972
PA
1214/* Perform a partial memory transfer. For docs see target.h,
1215 to_xfer_partial. */
1216
9b409511 1217static enum target_xfer_status
f0ba3972 1218memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1219 gdb_byte *readbuf, const gdb_byte *writebuf,
1220 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1221{
9b409511 1222 enum target_xfer_status res;
f0ba3972
PA
1223
1224 /* Zero length requests are ok and require no work. */
1225 if (len == 0)
9b409511 1226 return TARGET_XFER_EOF;
f0ba3972
PA
1227
1228 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1229 breakpoint insns, thus hiding out from higher layers whether
1230 there are software breakpoints inserted in the code stream. */
1231 if (readbuf != NULL)
1232 {
9b409511
YQ
1233 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1234 xfered_len);
f0ba3972 1235
9b409511 1236 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1237 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1238 }
1239 else
1240 {
1241 void *buf;
1242 struct cleanup *old_chain;
1243
67c059c2
AB
1244 /* A large write request is likely to be partially satisfied
1245 by memory_xfer_partial_1. We will continually malloc
1246 and free a copy of the entire write request for breakpoint
1247 shadow handling even though we only end up writing a small
1248 subset of it. Cap writes to 4KB to mitigate this. */
1249 len = min (4096, len);
1250
f0ba3972
PA
1251 buf = xmalloc (len);
1252 old_chain = make_cleanup (xfree, buf);
1253 memcpy (buf, writebuf, len);
1254
1255 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1256 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1257 xfered_len);
f0ba3972
PA
1258
1259 do_cleanups (old_chain);
1260 }
1261
1262 return res;
1263}
1264
8defab1a
DJ
1265static void
1266restore_show_memory_breakpoints (void *arg)
1267{
1268 show_memory_breakpoints = (uintptr_t) arg;
1269}
1270
1271struct cleanup *
1272make_show_memory_breakpoints_cleanup (int show)
1273{
1274 int current = show_memory_breakpoints;
8defab1a 1275
5d502164 1276 show_memory_breakpoints = show;
8defab1a
DJ
1277 return make_cleanup (restore_show_memory_breakpoints,
1278 (void *) (uintptr_t) current);
1279}
1280
7f79c47e
DE
1281/* For docs see target.h, to_xfer_partial. */
1282
9b409511 1283enum target_xfer_status
27394598
AC
1284target_xfer_partial (struct target_ops *ops,
1285 enum target_object object, const char *annex,
4ac248ca 1286 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1287 ULONGEST offset, ULONGEST len,
1288 ULONGEST *xfered_len)
27394598 1289{
9b409511 1290 enum target_xfer_status retval;
27394598
AC
1291
1292 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1293
ce6d0892
YQ
1294 /* Transfer is done when LEN is zero. */
1295 if (len == 0)
9b409511 1296 return TARGET_XFER_EOF;
ce6d0892 1297
d914c394
SS
1298 if (writebuf && !may_write_memory)
1299 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1300 core_addr_to_string_nz (offset), plongest (len));
1301
9b409511
YQ
1302 *xfered_len = 0;
1303
cf7a04e8
DJ
1304 /* If this is a memory transfer, let the memory-specific code
1305 have a look at it instead. Memory transfers are more
1306 complicated. */
29453a14
YQ
1307 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1308 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1309 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1310 writebuf, offset, len, xfered_len);
9f713294 1311 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1312 {
0fec99e8
PA
1313 /* Skip/avoid accessing the target if the memory region
1314 attributes block the access. Check this here instead of in
1315 raw_memory_xfer_partial as otherwise we'd end up checking
1316 this twice in the case of the memory_xfer_partial path is
1317 taken; once before checking the dcache, and another in the
1318 tail call to raw_memory_xfer_partial. */
1319 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1320 NULL))
1321 return TARGET_XFER_E_IO;
1322
9f713294 1323 /* Request the normal memory object from other layers. */
9b409511
YQ
1324 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1325 xfered_len);
cf7a04e8 1326 }
9f713294
YQ
1327 else
1328 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1329 writebuf, offset, len, xfered_len);
cf7a04e8 1330
27394598
AC
1331 if (targetdebug)
1332 {
1333 const unsigned char *myaddr = NULL;
1334
1335 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1336 "%s:target_xfer_partial "
9b409511 1337 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1338 ops->to_shortname,
1339 (int) object,
1340 (annex ? annex : "(null)"),
53b71562
JB
1341 host_address_to_string (readbuf),
1342 host_address_to_string (writebuf),
0b1553bc 1343 core_addr_to_string_nz (offset),
9b409511
YQ
1344 pulongest (len), retval,
1345 pulongest (*xfered_len));
27394598
AC
1346
1347 if (readbuf)
1348 myaddr = readbuf;
1349 if (writebuf)
1350 myaddr = writebuf;
9b409511 1351 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1352 {
1353 int i;
2bc416ba 1354
27394598 1355 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1356 for (i = 0; i < *xfered_len; i++)
27394598 1357 {
53b71562 1358 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1359 {
1360 if (targetdebug < 2 && i > 0)
1361 {
1362 fprintf_unfiltered (gdb_stdlog, " ...");
1363 break;
1364 }
1365 fprintf_unfiltered (gdb_stdlog, "\n");
1366 }
2bc416ba 1367
27394598
AC
1368 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1369 }
1370 }
2bc416ba 1371
27394598
AC
1372 fputc_unfiltered ('\n', gdb_stdlog);
1373 }
9b409511
YQ
1374
1375 /* Check implementations of to_xfer_partial update *XFERED_LEN
1376 properly. Do assertion after printing debug messages, so that we
1377 can find more clues on assertion failure from debugging messages. */
bc113b4e 1378 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1379 gdb_assert (*xfered_len > 0);
1380
27394598
AC
1381 return retval;
1382}
1383
578d3588
PA
1384/* Read LEN bytes of target memory at address MEMADDR, placing the
1385 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1386 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1387
1388 If an error occurs, no guarantee is made about the contents of the data at
1389 MYADDR. In particular, the caller should not depend upon partial reads
1390 filling the buffer with good data. There is no way for the caller to know
1391 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1392 deal with partial reads should call target_read (which will retry until
c378eb4e 1393 it makes no progress, and then return how much was transferred). */
c906108c
SS
1394
1395int
1b162304 1396target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1397{
c35b1492
PA
1398 /* Dispatch to the topmost target, not the flattened current_target.
1399 Memory accesses check target->to_has_(all_)memory, and the
1400 flattened target doesn't inherit those. */
1401 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1402 myaddr, memaddr, len) == len)
1403 return 0;
0779438d 1404 else
578d3588 1405 return TARGET_XFER_E_IO;
c906108c
SS
1406}
1407
721ec300
GB
1408/* See target/target.h. */
1409
1410int
1411target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1412{
1413 gdb_byte buf[4];
1414 int r;
1415
1416 r = target_read_memory (memaddr, buf, sizeof buf);
1417 if (r != 0)
1418 return r;
1419 *result = extract_unsigned_integer (buf, sizeof buf,
1420 gdbarch_byte_order (target_gdbarch ()));
1421 return 0;
1422}
1423
aee4bf85
PA
1424/* Like target_read_memory, but specify explicitly that this is a read
1425 from the target's raw memory. That is, this read bypasses the
1426 dcache, breakpoint shadowing, etc. */
1427
1428int
1429target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1430{
1431 /* See comment in target_read_memory about why the request starts at
1432 current_target.beneath. */
1433 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1434 myaddr, memaddr, len) == len)
1435 return 0;
1436 else
1437 return TARGET_XFER_E_IO;
1438}
1439
4e5d721f
DE
1440/* Like target_read_memory, but specify explicitly that this is a read from
1441 the target's stack. This may trigger different cache behavior. */
1442
1443int
45aa4659 1444target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1445{
aee4bf85
PA
1446 /* See comment in target_read_memory about why the request starts at
1447 current_target.beneath. */
4e5d721f
DE
1448 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1449 myaddr, memaddr, len) == len)
1450 return 0;
1451 else
578d3588 1452 return TARGET_XFER_E_IO;
4e5d721f
DE
1453}
1454
29453a14
YQ
1455/* Like target_read_memory, but specify explicitly that this is a read from
1456 the target's code. This may trigger different cache behavior. */
1457
1458int
1459target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1460{
aee4bf85
PA
1461 /* See comment in target_read_memory about why the request starts at
1462 current_target.beneath. */
29453a14
YQ
1463 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1464 myaddr, memaddr, len) == len)
1465 return 0;
1466 else
1467 return TARGET_XFER_E_IO;
1468}
1469
7f79c47e 1470/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1471 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1472 error occurs. If an error occurs, no guarantee is made about how
1473 much data got written. Callers that can deal with partial writes
1474 should call target_write. */
7f79c47e 1475
c906108c 1476int
45aa4659 1477target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1478{
aee4bf85
PA
1479 /* See comment in target_read_memory about why the request starts at
1480 current_target.beneath. */
c35b1492 1481 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1482 myaddr, memaddr, len) == len)
1483 return 0;
0779438d 1484 else
578d3588 1485 return TARGET_XFER_E_IO;
c906108c 1486}
c5aa993b 1487
f0ba3972 1488/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1489 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1490 if any error occurs. If an error occurs, no guarantee is made
1491 about how much data got written. Callers that can deal with
1492 partial writes should call target_write. */
f0ba3972
PA
1493
1494int
45aa4659 1495target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1496{
aee4bf85
PA
1497 /* See comment in target_read_memory about why the request starts at
1498 current_target.beneath. */
f0ba3972
PA
1499 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1500 myaddr, memaddr, len) == len)
1501 return 0;
1502 else
578d3588 1503 return TARGET_XFER_E_IO;
f0ba3972
PA
1504}
1505
fd79ecee
DJ
1506/* Fetch the target's memory map. */
1507
1508VEC(mem_region_s) *
1509target_memory_map (void)
1510{
1511 VEC(mem_region_s) *result;
1512 struct mem_region *last_one, *this_one;
1513 int ix;
1514 struct target_ops *t;
1515
6b2c5a57 1516 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1517 if (result == NULL)
1518 return NULL;
1519
1520 qsort (VEC_address (mem_region_s, result),
1521 VEC_length (mem_region_s, result),
1522 sizeof (struct mem_region), mem_region_cmp);
1523
1524 /* Check that regions do not overlap. Simultaneously assign
1525 a numbering for the "mem" commands to use to refer to
1526 each region. */
1527 last_one = NULL;
1528 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1529 {
1530 this_one->number = ix;
1531
1532 if (last_one && last_one->hi > this_one->lo)
1533 {
1534 warning (_("Overlapping regions in memory map: ignoring"));
1535 VEC_free (mem_region_s, result);
1536 return NULL;
1537 }
1538 last_one = this_one;
1539 }
1540
1541 return result;
1542}
1543
a76d924d
DJ
1544void
1545target_flash_erase (ULONGEST address, LONGEST length)
1546{
e8a6c6ac 1547 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1548}
1549
1550void
1551target_flash_done (void)
1552{
f6fb2925 1553 current_target.to_flash_done (&current_target);
a76d924d
DJ
1554}
1555
920d2a44
AC
1556static void
1557show_trust_readonly (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c, const char *value)
1559{
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1562 value);
1563}
3a11626d 1564
7f79c47e 1565/* Target vector read/write partial wrapper functions. */
0088c768 1566
9b409511 1567static enum target_xfer_status
1e3ff5ad
AC
1568target_read_partial (struct target_ops *ops,
1569 enum target_object object,
1b0ba102 1570 const char *annex, gdb_byte *buf,
9b409511
YQ
1571 ULONGEST offset, ULONGEST len,
1572 ULONGEST *xfered_len)
1e3ff5ad 1573{
9b409511
YQ
1574 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1575 xfered_len);
1e3ff5ad
AC
1576}
1577
8a55ffb0 1578static enum target_xfer_status
1e3ff5ad
AC
1579target_write_partial (struct target_ops *ops,
1580 enum target_object object,
1b0ba102 1581 const char *annex, const gdb_byte *buf,
9b409511 1582 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1583{
9b409511
YQ
1584 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1585 xfered_len);
1e3ff5ad
AC
1586}
1587
1588/* Wrappers to perform the full transfer. */
7f79c47e
DE
1589
1590/* For docs on target_read see target.h. */
1591
1e3ff5ad
AC
1592LONGEST
1593target_read (struct target_ops *ops,
1594 enum target_object object,
1b0ba102 1595 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1596 ULONGEST offset, LONGEST len)
1597{
1598 LONGEST xfered = 0;
5d502164 1599
1e3ff5ad
AC
1600 while (xfered < len)
1601 {
9b409511
YQ
1602 ULONGEST xfered_len;
1603 enum target_xfer_status status;
1604
1605 status = target_read_partial (ops, object, annex,
1606 (gdb_byte *) buf + xfered,
1607 offset + xfered, len - xfered,
1608 &xfered_len);
5d502164 1609
1e3ff5ad 1610 /* Call an observer, notifying them of the xfer progress? */
9b409511 1611 if (status == TARGET_XFER_EOF)
13547ab6 1612 return xfered;
9b409511
YQ
1613 else if (status == TARGET_XFER_OK)
1614 {
1615 xfered += xfered_len;
1616 QUIT;
1617 }
1618 else
0088c768 1619 return -1;
9b409511 1620
1e3ff5ad
AC
1621 }
1622 return len;
1623}
1624
f1a507a1
JB
1625/* Assuming that the entire [begin, end) range of memory cannot be
1626 read, try to read whatever subrange is possible to read.
1627
1628 The function returns, in RESULT, either zero or one memory block.
1629 If there's a readable subrange at the beginning, it is completely
1630 read and returned. Any further readable subrange will not be read.
1631 Otherwise, if there's a readable subrange at the end, it will be
1632 completely read and returned. Any readable subranges before it
1633 (obviously, not starting at the beginning), will be ignored. In
1634 other cases -- either no readable subrange, or readable subrange(s)
1635 that is neither at the beginning, or end, nothing is returned.
1636
1637 The purpose of this function is to handle a read across a boundary
1638 of accessible memory in a case when memory map is not available.
1639 The above restrictions are fine for this case, but will give
1640 incorrect results if the memory is 'patchy'. However, supporting
1641 'patchy' memory would require trying to read every single byte,
1642 and it seems unacceptable solution. Explicit memory map is
1643 recommended for this case -- and target_read_memory_robust will
1644 take care of reading multiple ranges then. */
8dedea02
VP
1645
1646static void
3e43a32a
MS
1647read_whatever_is_readable (struct target_ops *ops,
1648 ULONGEST begin, ULONGEST end,
8dedea02 1649 VEC(memory_read_result_s) **result)
d5086790 1650{
f1a507a1 1651 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1652 ULONGEST current_begin = begin;
1653 ULONGEST current_end = end;
1654 int forward;
1655 memory_read_result_s r;
9b409511 1656 ULONGEST xfered_len;
8dedea02
VP
1657
1658 /* If we previously failed to read 1 byte, nothing can be done here. */
1659 if (end - begin <= 1)
13b3fd9b
MS
1660 {
1661 xfree (buf);
1662 return;
1663 }
8dedea02
VP
1664
1665 /* Check that either first or the last byte is readable, and give up
c378eb4e 1666 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1667 at the boundary of accessible region. */
1668 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1669 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1670 {
1671 forward = 1;
1672 ++current_begin;
1673 }
1674 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1675 buf + (end-begin) - 1, end - 1, 1,
1676 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1677 {
1678 forward = 0;
1679 --current_end;
1680 }
1681 else
1682 {
13b3fd9b 1683 xfree (buf);
8dedea02
VP
1684 return;
1685 }
1686
1687 /* Loop invariant is that the [current_begin, current_end) was previously
1688 found to be not readable as a whole.
1689
1690 Note loop condition -- if the range has 1 byte, we can't divide the range
1691 so there's no point trying further. */
1692 while (current_end - current_begin > 1)
1693 {
1694 ULONGEST first_half_begin, first_half_end;
1695 ULONGEST second_half_begin, second_half_end;
1696 LONGEST xfer;
8dedea02 1697 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1698
8dedea02
VP
1699 if (forward)
1700 {
1701 first_half_begin = current_begin;
1702 first_half_end = middle;
1703 second_half_begin = middle;
1704 second_half_end = current_end;
1705 }
1706 else
1707 {
1708 first_half_begin = middle;
1709 first_half_end = current_end;
1710 second_half_begin = current_begin;
1711 second_half_end = middle;
1712 }
1713
1714 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1715 buf + (first_half_begin - begin),
1716 first_half_begin,
1717 first_half_end - first_half_begin);
1718
1719 if (xfer == first_half_end - first_half_begin)
1720 {
c378eb4e 1721 /* This half reads up fine. So, the error must be in the
3e43a32a 1722 other half. */
8dedea02
VP
1723 current_begin = second_half_begin;
1724 current_end = second_half_end;
1725 }
1726 else
1727 {
c378eb4e
MS
1728 /* This half is not readable. Because we've tried one byte, we
1729 know some part of this half if actually redable. Go to the next
8dedea02
VP
1730 iteration to divide again and try to read.
1731
1732 We don't handle the other half, because this function only tries
1733 to read a single readable subrange. */
1734 current_begin = first_half_begin;
1735 current_end = first_half_end;
1736 }
1737 }
1738
1739 if (forward)
1740 {
1741 /* The [begin, current_begin) range has been read. */
1742 r.begin = begin;
1743 r.end = current_begin;
1744 r.data = buf;
1745 }
1746 else
1747 {
1748 /* The [current_end, end) range has been read. */
1749 LONGEST rlen = end - current_end;
f1a507a1 1750
8dedea02
VP
1751 r.data = xmalloc (rlen);
1752 memcpy (r.data, buf + current_end - begin, rlen);
1753 r.begin = current_end;
1754 r.end = end;
1755 xfree (buf);
1756 }
1757 VEC_safe_push(memory_read_result_s, (*result), &r);
1758}
1759
1760void
1761free_memory_read_result_vector (void *x)
1762{
1763 VEC(memory_read_result_s) *v = x;
1764 memory_read_result_s *current;
1765 int ix;
1766
1767 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1768 {
1769 xfree (current->data);
1770 }
1771 VEC_free (memory_read_result_s, v);
1772}
1773
1774VEC(memory_read_result_s) *
1775read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1776{
1777 VEC(memory_read_result_s) *result = 0;
1778
1779 LONGEST xfered = 0;
d5086790
VP
1780 while (xfered < len)
1781 {
8dedea02
VP
1782 struct mem_region *region = lookup_mem_region (offset + xfered);
1783 LONGEST rlen;
5d502164 1784
8dedea02
VP
1785 /* If there is no explicit region, a fake one should be created. */
1786 gdb_assert (region);
1787
1788 if (region->hi == 0)
1789 rlen = len - xfered;
1790 else
1791 rlen = region->hi - offset;
1792
1793 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1794 {
c378eb4e 1795 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1796 if the region is explicitly marked inaccessible, or
1797 'inaccessible-by-default' is in effect. */
1798 xfered += rlen;
1799 }
1800 else
1801 {
1802 LONGEST to_read = min (len - xfered, rlen);
1803 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1804
1805 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1806 (gdb_byte *) buffer,
1807 offset + xfered, to_read);
1808 /* Call an observer, notifying them of the xfer progress? */
d5086790 1809 if (xfer <= 0)
d5086790 1810 {
c378eb4e 1811 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1812 some subrange. */
1813 xfree (buffer);
3e43a32a
MS
1814 read_whatever_is_readable (ops, offset + xfered,
1815 offset + xfered + to_read, &result);
8dedea02 1816 xfered += to_read;
d5086790 1817 }
8dedea02
VP
1818 else
1819 {
1820 struct memory_read_result r;
1821 r.data = buffer;
1822 r.begin = offset + xfered;
1823 r.end = r.begin + xfer;
1824 VEC_safe_push (memory_read_result_s, result, &r);
1825 xfered += xfer;
1826 }
1827 QUIT;
d5086790 1828 }
d5086790 1829 }
8dedea02 1830 return result;
d5086790
VP
1831}
1832
8dedea02 1833
cf7a04e8
DJ
1834/* An alternative to target_write with progress callbacks. */
1835
1e3ff5ad 1836LONGEST
cf7a04e8
DJ
1837target_write_with_progress (struct target_ops *ops,
1838 enum target_object object,
1839 const char *annex, const gdb_byte *buf,
1840 ULONGEST offset, LONGEST len,
1841 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1842{
1843 LONGEST xfered = 0;
a76d924d
DJ
1844
1845 /* Give the progress callback a chance to set up. */
1846 if (progress)
1847 (*progress) (0, baton);
1848
1e3ff5ad
AC
1849 while (xfered < len)
1850 {
9b409511
YQ
1851 ULONGEST xfered_len;
1852 enum target_xfer_status status;
1853
1854 status = target_write_partial (ops, object, annex,
1855 (gdb_byte *) buf + xfered,
1856 offset + xfered, len - xfered,
1857 &xfered_len);
cf7a04e8 1858
5c328c05
YQ
1859 if (status != TARGET_XFER_OK)
1860 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1861
1862 if (progress)
9b409511 1863 (*progress) (xfered_len, baton);
cf7a04e8 1864
9b409511 1865 xfered += xfered_len;
1e3ff5ad
AC
1866 QUIT;
1867 }
1868 return len;
1869}
1870
7f79c47e
DE
1871/* For docs on target_write see target.h. */
1872
cf7a04e8
DJ
1873LONGEST
1874target_write (struct target_ops *ops,
1875 enum target_object object,
1876 const char *annex, const gdb_byte *buf,
1877 ULONGEST offset, LONGEST len)
1878{
1879 return target_write_with_progress (ops, object, annex, buf, offset, len,
1880 NULL, NULL);
1881}
1882
159f81f3
DJ
1883/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1884 the size of the transferred data. PADDING additional bytes are
1885 available in *BUF_P. This is a helper function for
1886 target_read_alloc; see the declaration of that function for more
1887 information. */
13547ab6 1888
159f81f3
DJ
1889static LONGEST
1890target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1891 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1892{
1893 size_t buf_alloc, buf_pos;
1894 gdb_byte *buf;
13547ab6
DJ
1895
1896 /* This function does not have a length parameter; it reads the
1897 entire OBJECT). Also, it doesn't support objects fetched partly
1898 from one target and partly from another (in a different stratum,
1899 e.g. a core file and an executable). Both reasons make it
1900 unsuitable for reading memory. */
1901 gdb_assert (object != TARGET_OBJECT_MEMORY);
1902
1903 /* Start by reading up to 4K at a time. The target will throttle
1904 this number down if necessary. */
1905 buf_alloc = 4096;
1906 buf = xmalloc (buf_alloc);
1907 buf_pos = 0;
1908 while (1)
1909 {
9b409511
YQ
1910 ULONGEST xfered_len;
1911 enum target_xfer_status status;
1912
1913 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1914 buf_pos, buf_alloc - buf_pos - padding,
1915 &xfered_len);
1916
1917 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1918 {
1919 /* Read all there was. */
1920 if (buf_pos == 0)
1921 xfree (buf);
1922 else
1923 *buf_p = buf;
1924 return buf_pos;
1925 }
9b409511
YQ
1926 else if (status != TARGET_XFER_OK)
1927 {
1928 /* An error occurred. */
1929 xfree (buf);
1930 return TARGET_XFER_E_IO;
1931 }
13547ab6 1932
9b409511 1933 buf_pos += xfered_len;
13547ab6
DJ
1934
1935 /* If the buffer is filling up, expand it. */
1936 if (buf_alloc < buf_pos * 2)
1937 {
1938 buf_alloc *= 2;
1939 buf = xrealloc (buf, buf_alloc);
1940 }
1941
1942 QUIT;
1943 }
1944}
1945
159f81f3
DJ
1946/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1947 the size of the transferred data. See the declaration in "target.h"
1948 function for more information about the return value. */
1949
1950LONGEST
1951target_read_alloc (struct target_ops *ops, enum target_object object,
1952 const char *annex, gdb_byte **buf_p)
1953{
1954 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1955}
1956
1957/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1958 returned as a string, allocated using xmalloc. If an error occurs
1959 or the transfer is unsupported, NULL is returned. Empty objects
1960 are returned as allocated but empty strings. A warning is issued
1961 if the result contains any embedded NUL bytes. */
1962
1963char *
1964target_read_stralloc (struct target_ops *ops, enum target_object object,
1965 const char *annex)
1966{
39086a0e
PA
1967 gdb_byte *buffer;
1968 char *bufstr;
7313baad 1969 LONGEST i, transferred;
159f81f3 1970
39086a0e
PA
1971 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1972 bufstr = (char *) buffer;
159f81f3
DJ
1973
1974 if (transferred < 0)
1975 return NULL;
1976
1977 if (transferred == 0)
1978 return xstrdup ("");
1979
39086a0e 1980 bufstr[transferred] = 0;
7313baad
UW
1981
1982 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1983 for (i = strlen (bufstr); i < transferred; i++)
1984 if (bufstr[i] != 0)
7313baad
UW
1985 {
1986 warning (_("target object %d, annex %s, "
1987 "contained unexpected null characters"),
1988 (int) object, annex ? annex : "(none)");
1989 break;
1990 }
159f81f3 1991
39086a0e 1992 return bufstr;
159f81f3
DJ
1993}
1994
b6591e8b
AC
1995/* Memory transfer methods. */
1996
1997void
1b0ba102 1998get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1999 LONGEST len)
2000{
07b82ea5
PA
2001 /* This method is used to read from an alternate, non-current
2002 target. This read must bypass the overlay support (as symbols
2003 don't match this target), and GDB's internal cache (wrong cache
2004 for this target). */
2005 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2006 != len)
578d3588 2007 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2008}
2009
2010ULONGEST
5d502164
MS
2011get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2012 int len, enum bfd_endian byte_order)
b6591e8b 2013{
f6519ebc 2014 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2015
2016 gdb_assert (len <= sizeof (buf));
2017 get_target_memory (ops, addr, buf, len);
e17a4113 2018 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2019}
2020
3db08215
MM
2021/* See target.h. */
2022
d914c394
SS
2023int
2024target_insert_breakpoint (struct gdbarch *gdbarch,
2025 struct bp_target_info *bp_tgt)
2026{
2027 if (!may_insert_breakpoints)
2028 {
2029 warning (_("May not insert breakpoints"));
2030 return 1;
2031 }
2032
6b84065d
TT
2033 return current_target.to_insert_breakpoint (&current_target,
2034 gdbarch, bp_tgt);
d914c394
SS
2035}
2036
3db08215
MM
2037/* See target.h. */
2038
d914c394 2039int
6b84065d
TT
2040target_remove_breakpoint (struct gdbarch *gdbarch,
2041 struct bp_target_info *bp_tgt)
d914c394
SS
2042{
2043 /* This is kind of a weird case to handle, but the permission might
2044 have been changed after breakpoints were inserted - in which case
2045 we should just take the user literally and assume that any
2046 breakpoints should be left in place. */
2047 if (!may_insert_breakpoints)
2048 {
2049 warning (_("May not remove breakpoints"));
2050 return 1;
2051 }
2052
6b84065d
TT
2053 return current_target.to_remove_breakpoint (&current_target,
2054 gdbarch, bp_tgt);
d914c394
SS
2055}
2056
c906108c 2057static void
fba45db2 2058target_info (char *args, int from_tty)
c906108c
SS
2059{
2060 struct target_ops *t;
c906108c 2061 int has_all_mem = 0;
c5aa993b 2062
c906108c 2063 if (symfile_objfile != NULL)
4262abfb
JK
2064 printf_unfiltered (_("Symbols from \"%s\".\n"),
2065 objfile_name (symfile_objfile));
c906108c 2066
258b763a 2067 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2068 {
c35b1492 2069 if (!(*t->to_has_memory) (t))
c906108c
SS
2070 continue;
2071
c5aa993b 2072 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2073 continue;
2074 if (has_all_mem)
3e43a32a
MS
2075 printf_unfiltered (_("\tWhile running this, "
2076 "GDB does not access memory from...\n"));
c5aa993b
JM
2077 printf_unfiltered ("%s:\n", t->to_longname);
2078 (t->to_files_info) (t);
c35b1492 2079 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2080 }
2081}
2082
fd79ecee
DJ
2083/* This function is called before any new inferior is created, e.g.
2084 by running a program, attaching, or connecting to a target.
2085 It cleans up any state from previous invocations which might
2086 change between runs. This is a subset of what target_preopen
2087 resets (things which might change between targets). */
2088
2089void
2090target_pre_inferior (int from_tty)
2091{
c378eb4e 2092 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2093 inferior might have survived and is entirely wrong for the new
c378eb4e 2094 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2095 to reproduce:
2096
2097 bash$ ./foo&
2098 [1] 4711
2099 bash$ ./foo&
2100 [1] 4712
2101 bash$ gdb ./foo
2102 [...]
2103 (gdb) attach 4711
2104 (gdb) detach
2105 (gdb) attach 4712
2106 Cannot access memory at address 0xdeadbeef
2107 */
b9db4ced 2108
50c71eaf
PA
2109 /* In some OSs, the shared library list is the same/global/shared
2110 across inferiors. If code is shared between processes, so are
2111 memory regions and features. */
f5656ead 2112 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2113 {
2114 no_shared_libraries (NULL, from_tty);
2115
2116 invalidate_target_mem_regions ();
424163ea 2117
50c71eaf
PA
2118 target_clear_description ();
2119 }
8ffcbaaf
YQ
2120
2121 agent_capability_invalidate ();
fd79ecee
DJ
2122}
2123
b8fa0bfa
PA
2124/* Callback for iterate_over_inferiors. Gets rid of the given
2125 inferior. */
2126
2127static int
2128dispose_inferior (struct inferior *inf, void *args)
2129{
2130 struct thread_info *thread;
2131
2132 thread = any_thread_of_process (inf->pid);
2133 if (thread)
2134 {
2135 switch_to_thread (thread->ptid);
2136
2137 /* Core inferiors actually should be detached, not killed. */
2138 if (target_has_execution)
2139 target_kill ();
2140 else
2141 target_detach (NULL, 0);
2142 }
2143
2144 return 0;
2145}
2146
c906108c
SS
2147/* This is to be called by the open routine before it does
2148 anything. */
2149
2150void
fba45db2 2151target_preopen (int from_tty)
c906108c 2152{
c5aa993b 2153 dont_repeat ();
c906108c 2154
b8fa0bfa 2155 if (have_inferiors ())
c5aa993b 2156 {
adf40b2e 2157 if (!from_tty
b8fa0bfa
PA
2158 || !have_live_inferiors ()
2159 || query (_("A program is being debugged already. Kill it? ")))
2160 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2161 else
8a3fe4f8 2162 error (_("Program not killed."));
c906108c
SS
2163 }
2164
2165 /* Calling target_kill may remove the target from the stack. But if
2166 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2167 /* Leave the exec target, though. The user may be switching from a
2168 live process to a core of the same program. */
460014f5 2169 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2170
2171 target_pre_inferior (from_tty);
c906108c
SS
2172}
2173
2174/* Detach a target after doing deferred register stores. */
2175
2176void
52554a0e 2177target_detach (const char *args, int from_tty)
c906108c 2178{
136d6dae
VP
2179 struct target_ops* t;
2180
f5656ead 2181 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2182 /* Don't remove global breakpoints here. They're removed on
2183 disconnection from the target. */
2184 ;
2185 else
2186 /* If we're in breakpoints-always-inserted mode, have to remove
2187 them before detaching. */
dfd4cc63 2188 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2189
24291992
PA
2190 prepare_for_detach ();
2191
09da0d0a 2192 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2193}
2194
6ad8ae5c 2195void
fee354ee 2196target_disconnect (const char *args, int from_tty)
6ad8ae5c 2197{
50c71eaf
PA
2198 /* If we're in breakpoints-always-inserted mode or if breakpoints
2199 are global across processes, we have to remove them before
2200 disconnecting. */
74960c60
VP
2201 remove_breakpoints ();
2202
86a0854a 2203 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2204}
2205
117de6a9 2206ptid_t
47608cb1 2207target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2208{
a7068b60 2209 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2210}
2211
2212char *
2213target_pid_to_str (ptid_t ptid)
2214{
770234d3 2215 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2216}
2217
4694da01
TT
2218char *
2219target_thread_name (struct thread_info *info)
2220{
825828fc 2221 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2222}
2223
e1ac3328 2224void
2ea28649 2225target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2226{
28439f5e
PA
2227 struct target_ops *t;
2228
4e5d721f 2229 target_dcache_invalidate ();
28439f5e 2230
6b84065d 2231 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2232
6b84065d 2233 registers_changed_ptid (ptid);
251bde03
PA
2234 /* We only set the internal executing state here. The user/frontend
2235 running state is set at a higher level. */
6b84065d 2236 set_executing (ptid, 1);
6b84065d 2237 clear_inline_frame_state (ptid);
e1ac3328 2238}
2455069d
UW
2239
2240void
2241target_pass_signals (int numsigs, unsigned char *pass_signals)
2242{
035cad7f 2243 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2244}
2245
9b224c5e
PA
2246void
2247target_program_signals (int numsigs, unsigned char *program_signals)
2248{
7d4f8efa
TT
2249 (*current_target.to_program_signals) (&current_target,
2250 numsigs, program_signals);
9b224c5e
PA
2251}
2252
098dba18
TT
2253static int
2254default_follow_fork (struct target_ops *self, int follow_child,
2255 int detach_fork)
2256{
2257 /* Some target returned a fork event, but did not know how to follow it. */
2258 internal_error (__FILE__, __LINE__,
2259 _("could not find a target to follow fork"));
2260}
2261
ee057212
DJ
2262/* Look through the list of possible targets for a target that can
2263 follow forks. */
2264
2265int
07107ca6 2266target_follow_fork (int follow_child, int detach_fork)
ee057212 2267{
a7068b60
TT
2268 return current_target.to_follow_fork (&current_target,
2269 follow_child, detach_fork);
ee057212
DJ
2270}
2271
8d657035
TT
2272static void
2273default_mourn_inferior (struct target_ops *self)
2274{
2275 internal_error (__FILE__, __LINE__,
2276 _("could not find a target to follow mourn inferior"));
2277}
2278
136d6dae
VP
2279void
2280target_mourn_inferior (void)
2281{
8d657035 2282 current_target.to_mourn_inferior (&current_target);
136d6dae 2283
8d657035
TT
2284 /* We no longer need to keep handles on any of the object files.
2285 Make sure to release them to avoid unnecessarily locking any
2286 of them while we're not actually debugging. */
2287 bfd_cache_close_all ();
136d6dae
VP
2288}
2289
424163ea
DJ
2290/* Look for a target which can describe architectural features, starting
2291 from TARGET. If we find one, return its description. */
2292
2293const struct target_desc *
2294target_read_description (struct target_ops *target)
2295{
2117c711 2296 return target->to_read_description (target);
424163ea
DJ
2297}
2298
58a5184e 2299/* This implements a basic search of memory, reading target memory and
08388c79
DE
2300 performing the search here (as opposed to performing the search in on the
2301 target side with, for example, gdbserver). */
2302
2303int
2304simple_search_memory (struct target_ops *ops,
2305 CORE_ADDR start_addr, ULONGEST search_space_len,
2306 const gdb_byte *pattern, ULONGEST pattern_len,
2307 CORE_ADDR *found_addrp)
2308{
2309 /* NOTE: also defined in find.c testcase. */
2310#define SEARCH_CHUNK_SIZE 16000
2311 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2312 /* Buffer to hold memory contents for searching. */
2313 gdb_byte *search_buf;
2314 unsigned search_buf_size;
2315 struct cleanup *old_cleanups;
2316
2317 search_buf_size = chunk_size + pattern_len - 1;
2318
2319 /* No point in trying to allocate a buffer larger than the search space. */
2320 if (search_space_len < search_buf_size)
2321 search_buf_size = search_space_len;
2322
2323 search_buf = malloc (search_buf_size);
2324 if (search_buf == NULL)
5e1471f5 2325 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2326 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2327
2328 /* Prime the search buffer. */
2329
2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 search_buf, start_addr, search_buf_size) != search_buf_size)
2332 {
b3dc46ff
AB
2333 warning (_("Unable to access %s bytes of target "
2334 "memory at %s, halting search."),
2335 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2336 do_cleanups (old_cleanups);
2337 return -1;
2338 }
2339
2340 /* Perform the search.
2341
2342 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2343 When we've scanned N bytes we copy the trailing bytes to the start and
2344 read in another N bytes. */
2345
2346 while (search_space_len >= pattern_len)
2347 {
2348 gdb_byte *found_ptr;
2349 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2350
2351 found_ptr = memmem (search_buf, nr_search_bytes,
2352 pattern, pattern_len);
2353
2354 if (found_ptr != NULL)
2355 {
2356 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2357
08388c79
DE
2358 *found_addrp = found_addr;
2359 do_cleanups (old_cleanups);
2360 return 1;
2361 }
2362
2363 /* Not found in this chunk, skip to next chunk. */
2364
2365 /* Don't let search_space_len wrap here, it's unsigned. */
2366 if (search_space_len >= chunk_size)
2367 search_space_len -= chunk_size;
2368 else
2369 search_space_len = 0;
2370
2371 if (search_space_len >= pattern_len)
2372 {
2373 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2374 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2375 int nr_to_read;
2376
2377 /* Copy the trailing part of the previous iteration to the front
2378 of the buffer for the next iteration. */
2379 gdb_assert (keep_len == pattern_len - 1);
2380 memcpy (search_buf, search_buf + chunk_size, keep_len);
2381
2382 nr_to_read = min (search_space_len - keep_len, chunk_size);
2383
2384 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2385 search_buf + keep_len, read_addr,
2386 nr_to_read) != nr_to_read)
2387 {
b3dc46ff 2388 warning (_("Unable to access %s bytes of target "
9b20d036 2389 "memory at %s, halting search."),
b3dc46ff 2390 plongest (nr_to_read),
08388c79
DE
2391 hex_string (read_addr));
2392 do_cleanups (old_cleanups);
2393 return -1;
2394 }
2395
2396 start_addr += chunk_size;
2397 }
2398 }
2399
2400 /* Not found. */
2401
2402 do_cleanups (old_cleanups);
2403 return 0;
2404}
2405
58a5184e
TT
2406/* Default implementation of memory-searching. */
2407
2408static int
2409default_search_memory (struct target_ops *self,
2410 CORE_ADDR start_addr, ULONGEST search_space_len,
2411 const gdb_byte *pattern, ULONGEST pattern_len,
2412 CORE_ADDR *found_addrp)
2413{
2414 /* Start over from the top of the target stack. */
2415 return simple_search_memory (current_target.beneath,
2416 start_addr, search_space_len,
2417 pattern, pattern_len, found_addrp);
2418}
2419
08388c79
DE
2420/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2421 sequence of bytes in PATTERN with length PATTERN_LEN.
2422
2423 The result is 1 if found, 0 if not found, and -1 if there was an error
2424 requiring halting of the search (e.g. memory read error).
2425 If the pattern is found the address is recorded in FOUND_ADDRP. */
2426
2427int
2428target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2429 const gdb_byte *pattern, ULONGEST pattern_len,
2430 CORE_ADDR *found_addrp)
2431{
a7068b60
TT
2432 return current_target.to_search_memory (&current_target, start_addr,
2433 search_space_len,
2434 pattern, pattern_len, found_addrp);
08388c79
DE
2435}
2436
8edfe269
DJ
2437/* Look through the currently pushed targets. If none of them will
2438 be able to restart the currently running process, issue an error
2439 message. */
2440
2441void
2442target_require_runnable (void)
2443{
2444 struct target_ops *t;
2445
2446 for (t = target_stack; t != NULL; t = t->beneath)
2447 {
2448 /* If this target knows how to create a new program, then
2449 assume we will still be able to after killing the current
2450 one. Either killing and mourning will not pop T, or else
2451 find_default_run_target will find it again. */
2452 if (t->to_create_inferior != NULL)
2453 return;
2454
548740d6 2455 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2456 create inferiors. Assume they will be pushed again if
2457 necessary, and continue to the process_stratum. */
85e747d2 2458 if (t->to_stratum == thread_stratum
548740d6 2459 || t->to_stratum == record_stratum
85e747d2 2460 || t->to_stratum == arch_stratum)
8edfe269
DJ
2461 continue;
2462
3e43a32a
MS
2463 error (_("The \"%s\" target does not support \"run\". "
2464 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2465 t->to_shortname);
2466 }
2467
2468 /* This function is only called if the target is running. In that
2469 case there should have been a process_stratum target and it
c378eb4e 2470 should either know how to create inferiors, or not... */
9b20d036 2471 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2472}
2473
6a3cb8e8
PA
2474/* Whether GDB is allowed to fall back to the default run target for
2475 "run", "attach", etc. when no target is connected yet. */
2476static int auto_connect_native_target = 1;
2477
2478static void
2479show_auto_connect_native_target (struct ui_file *file, int from_tty,
2480 struct cmd_list_element *c, const char *value)
2481{
2482 fprintf_filtered (file,
2483 _("Whether GDB may automatically connect to the "
2484 "native target is %s.\n"),
2485 value);
2486}
2487
c906108c
SS
2488/* Look through the list of possible targets for a target that can
2489 execute a run or attach command without any other data. This is
2490 used to locate the default process stratum.
2491
5f667f2d
PA
2492 If DO_MESG is not NULL, the result is always valid (error() is
2493 called for errors); else, return NULL on error. */
c906108c
SS
2494
2495static struct target_ops *
fba45db2 2496find_default_run_target (char *do_mesg)
c906108c 2497{
c906108c 2498 struct target_ops *runable = NULL;
c906108c 2499
6a3cb8e8 2500 if (auto_connect_native_target)
c906108c 2501 {
89a1c21a 2502 struct target_ops *t;
6a3cb8e8 2503 int count = 0;
89a1c21a 2504 int i;
6a3cb8e8 2505
89a1c21a 2506 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2507 {
89a1c21a 2508 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2509 {
89a1c21a 2510 runable = t;
6a3cb8e8
PA
2511 ++count;
2512 }
c906108c 2513 }
6a3cb8e8
PA
2514
2515 if (count != 1)
2516 runable = NULL;
c906108c
SS
2517 }
2518
6a3cb8e8 2519 if (runable == NULL)
5f667f2d
PA
2520 {
2521 if (do_mesg)
2522 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2523 else
2524 return NULL;
2525 }
c906108c
SS
2526
2527 return runable;
2528}
2529
b3ccfe11 2530/* See target.h. */
c906108c 2531
b3ccfe11
TT
2532struct target_ops *
2533find_attach_target (void)
c906108c
SS
2534{
2535 struct target_ops *t;
2536
b3ccfe11
TT
2537 /* If a target on the current stack can attach, use it. */
2538 for (t = current_target.beneath; t != NULL; t = t->beneath)
2539 {
2540 if (t->to_attach != NULL)
2541 break;
2542 }
c906108c 2543
b3ccfe11
TT
2544 /* Otherwise, use the default run target for attaching. */
2545 if (t == NULL)
2546 t = find_default_run_target ("attach");
b84876c2 2547
b3ccfe11 2548 return t;
b84876c2
PA
2549}
2550
b3ccfe11 2551/* See target.h. */
b84876c2 2552
b3ccfe11
TT
2553struct target_ops *
2554find_run_target (void)
9908b566
VP
2555{
2556 struct target_ops *t;
2557
b3ccfe11
TT
2558 /* If a target on the current stack can attach, use it. */
2559 for (t = current_target.beneath; t != NULL; t = t->beneath)
2560 {
2561 if (t->to_create_inferior != NULL)
2562 break;
2563 }
5d502164 2564
b3ccfe11
TT
2565 /* Otherwise, use the default run target. */
2566 if (t == NULL)
2567 t = find_default_run_target ("run");
9908b566 2568
b3ccfe11 2569 return t;
9908b566
VP
2570}
2571
145b16a9
UW
2572/* Implement the "info proc" command. */
2573
451b7c33 2574int
7bc112c1 2575target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2576{
2577 struct target_ops *t;
2578
2579 /* If we're already connected to something that can get us OS
2580 related data, use it. Otherwise, try using the native
2581 target. */
2582 if (current_target.to_stratum >= process_stratum)
2583 t = current_target.beneath;
2584 else
2585 t = find_default_run_target (NULL);
2586
2587 for (; t != NULL; t = t->beneath)
2588 {
2589 if (t->to_info_proc != NULL)
2590 {
2591 t->to_info_proc (t, args, what);
2592
2593 if (targetdebug)
2594 fprintf_unfiltered (gdb_stdlog,
2595 "target_info_proc (\"%s\", %d)\n", args, what);
2596
451b7c33 2597 return 1;
145b16a9
UW
2598 }
2599 }
2600
451b7c33 2601 return 0;
145b16a9
UW
2602}
2603
03583c20 2604static int
2bfc0540 2605find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2606{
2607 struct target_ops *t;
2608
2609 t = find_default_run_target (NULL);
2610 if (t && t->to_supports_disable_randomization)
2bfc0540 2611 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2612 return 0;
2613}
2614
2615int
2616target_supports_disable_randomization (void)
2617{
2618 struct target_ops *t;
2619
2620 for (t = &current_target; t != NULL; t = t->beneath)
2621 if (t->to_supports_disable_randomization)
2bfc0540 2622 return t->to_supports_disable_randomization (t);
03583c20
UW
2623
2624 return 0;
2625}
9908b566 2626
07e059b5
VP
2627char *
2628target_get_osdata (const char *type)
2629{
07e059b5
VP
2630 struct target_ops *t;
2631
739ef7fb
PA
2632 /* If we're already connected to something that can get us OS
2633 related data, use it. Otherwise, try using the native
2634 target. */
2635 if (current_target.to_stratum >= process_stratum)
6d097e65 2636 t = current_target.beneath;
739ef7fb
PA
2637 else
2638 t = find_default_run_target ("get OS data");
07e059b5
VP
2639
2640 if (!t)
2641 return NULL;
2642
6d097e65 2643 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2644}
2645
8eaff7cd
TT
2646static struct address_space *
2647default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2648{
2649 struct inferior *inf;
6c95b8df
PA
2650
2651 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2652 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2653
2654 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2655 internal_error (__FILE__, __LINE__,
9b20d036
MS
2656 _("Can't determine the current "
2657 "address space of thread %s\n"),
6c95b8df
PA
2658 target_pid_to_str (ptid));
2659
2660 return inf->aspace;
2661}
2662
8eaff7cd
TT
2663/* Determine the current address space of thread PTID. */
2664
2665struct address_space *
2666target_thread_address_space (ptid_t ptid)
2667{
2668 struct address_space *aspace;
2669
2670 aspace = current_target.to_thread_address_space (&current_target, ptid);
2671 gdb_assert (aspace != NULL);
2672
8eaff7cd
TT
2673 return aspace;
2674}
2675
7313baad
UW
2676
2677/* Target file operations. */
2678
2679static struct target_ops *
2680default_fileio_target (void)
2681{
2682 /* If we're already connected to something that can perform
2683 file I/O, use it. Otherwise, try using the native target. */
2684 if (current_target.to_stratum >= process_stratum)
2685 return current_target.beneath;
2686 else
2687 return find_default_run_target ("file I/O");
2688}
2689
2690/* Open FILENAME on the target, using FLAGS and MODE. Return a
2691 target file descriptor, or -1 if an error occurs (and set
2692 *TARGET_ERRNO). */
2693int
2694target_fileio_open (const char *filename, int flags, int mode,
2695 int *target_errno)
2696{
2697 struct target_ops *t;
2698
2699 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2700 {
2701 if (t->to_fileio_open != NULL)
2702 {
cd897586 2703 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2704
2705 if (targetdebug)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2708 filename, flags, mode,
2709 fd, fd != -1 ? 0 : *target_errno);
2710 return fd;
2711 }
2712 }
2713
2714 *target_errno = FILEIO_ENOSYS;
2715 return -1;
2716}
2717
2718/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2719 Return the number of bytes written, or -1 if an error occurs
2720 (and set *TARGET_ERRNO). */
2721int
2722target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2723 ULONGEST offset, int *target_errno)
2724{
2725 struct target_ops *t;
2726
2727 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2728 {
2729 if (t->to_fileio_pwrite != NULL)
2730 {
0d866f62 2731 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2732 target_errno);
2733
2734 if (targetdebug)
2735 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2736 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2737 "= %d (%d)\n",
a71b5a38 2738 fd, len, pulongest (offset),
7313baad
UW
2739 ret, ret != -1 ? 0 : *target_errno);
2740 return ret;
2741 }
2742 }
2743
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746}
2747
2748/* Read up to LEN bytes FD on the target into READ_BUF.
2749 Return the number of bytes read, or -1 if an error occurs
2750 (and set *TARGET_ERRNO). */
2751int
2752target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2753 ULONGEST offset, int *target_errno)
2754{
2755 struct target_ops *t;
2756
2757 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2758 {
2759 if (t->to_fileio_pread != NULL)
2760 {
a3be983c 2761 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2762 target_errno);
2763
2764 if (targetdebug)
2765 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2766 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2767 "= %d (%d)\n",
a71b5a38 2768 fd, len, pulongest (offset),
7313baad
UW
2769 ret, ret != -1 ? 0 : *target_errno);
2770 return ret;
2771 }
2772 }
2773
2774 *target_errno = FILEIO_ENOSYS;
2775 return -1;
2776}
2777
2778/* Close FD on the target. Return 0, or -1 if an error occurs
2779 (and set *TARGET_ERRNO). */
2780int
2781target_fileio_close (int fd, int *target_errno)
2782{
2783 struct target_ops *t;
2784
2785 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2786 {
2787 if (t->to_fileio_close != NULL)
2788 {
df39ea25 2789 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2790
2791 if (targetdebug)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "target_fileio_close (%d) = %d (%d)\n",
2794 fd, ret, ret != -1 ? 0 : *target_errno);
2795 return ret;
2796 }
2797 }
2798
2799 *target_errno = FILEIO_ENOSYS;
2800 return -1;
2801}
2802
2803/* Unlink FILENAME on the target. Return 0, or -1 if an error
2804 occurs (and set *TARGET_ERRNO). */
2805int
2806target_fileio_unlink (const char *filename, int *target_errno)
2807{
2808 struct target_ops *t;
2809
2810 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2811 {
2812 if (t->to_fileio_unlink != NULL)
2813 {
dbbca37d 2814 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2815
2816 if (targetdebug)
2817 fprintf_unfiltered (gdb_stdlog,
2818 "target_fileio_unlink (%s) = %d (%d)\n",
2819 filename, ret, ret != -1 ? 0 : *target_errno);
2820 return ret;
2821 }
2822 }
2823
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826}
2827
b9e7b9c3
UW
2828/* Read value of symbolic link FILENAME on the target. Return a
2829 null-terminated string allocated via xmalloc, or NULL if an error
2830 occurs (and set *TARGET_ERRNO). */
2831char *
2832target_fileio_readlink (const char *filename, int *target_errno)
2833{
2834 struct target_ops *t;
2835
2836 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2837 {
2838 if (t->to_fileio_readlink != NULL)
2839 {
fab5aa7c 2840 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_readlink (%s) = %s (%d)\n",
2845 filename, ret? ret : "(nil)",
2846 ret? 0 : *target_errno);
2847 return ret;
2848 }
2849 }
2850
2851 *target_errno = FILEIO_ENOSYS;
2852 return NULL;
2853}
2854
7313baad
UW
2855static void
2856target_fileio_close_cleanup (void *opaque)
2857{
2858 int fd = *(int *) opaque;
2859 int target_errno;
2860
2861 target_fileio_close (fd, &target_errno);
2862}
2863
2864/* Read target file FILENAME. Store the result in *BUF_P and
2865 return the size of the transferred data. PADDING additional bytes are
2866 available in *BUF_P. This is a helper function for
2867 target_fileio_read_alloc; see the declaration of that function for more
2868 information. */
2869
2870static LONGEST
2871target_fileio_read_alloc_1 (const char *filename,
2872 gdb_byte **buf_p, int padding)
2873{
2874 struct cleanup *close_cleanup;
2875 size_t buf_alloc, buf_pos;
2876 gdb_byte *buf;
2877 LONGEST n;
2878 int fd;
2879 int target_errno;
2880
2881 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2882 if (fd == -1)
2883 return -1;
2884
2885 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2886
2887 /* Start by reading up to 4K at a time. The target will throttle
2888 this number down if necessary. */
2889 buf_alloc = 4096;
2890 buf = xmalloc (buf_alloc);
2891 buf_pos = 0;
2892 while (1)
2893 {
2894 n = target_fileio_pread (fd, &buf[buf_pos],
2895 buf_alloc - buf_pos - padding, buf_pos,
2896 &target_errno);
2897 if (n < 0)
2898 {
2899 /* An error occurred. */
2900 do_cleanups (close_cleanup);
2901 xfree (buf);
2902 return -1;
2903 }
2904 else if (n == 0)
2905 {
2906 /* Read all there was. */
2907 do_cleanups (close_cleanup);
2908 if (buf_pos == 0)
2909 xfree (buf);
2910 else
2911 *buf_p = buf;
2912 return buf_pos;
2913 }
2914
2915 buf_pos += n;
2916
2917 /* If the buffer is filling up, expand it. */
2918 if (buf_alloc < buf_pos * 2)
2919 {
2920 buf_alloc *= 2;
2921 buf = xrealloc (buf, buf_alloc);
2922 }
2923
2924 QUIT;
2925 }
2926}
2927
2928/* Read target file FILENAME. Store the result in *BUF_P and return
2929 the size of the transferred data. See the declaration in "target.h"
2930 function for more information about the return value. */
2931
2932LONGEST
2933target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2934{
2935 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2936}
2937
2938/* Read target file FILENAME. The result is NUL-terminated and
2939 returned as a string, allocated using xmalloc. If an error occurs
2940 or the transfer is unsupported, NULL is returned. Empty objects
2941 are returned as allocated but empty strings. A warning is issued
2942 if the result contains any embedded NUL bytes. */
2943
2944char *
2945target_fileio_read_stralloc (const char *filename)
2946{
39086a0e
PA
2947 gdb_byte *buffer;
2948 char *bufstr;
7313baad
UW
2949 LONGEST i, transferred;
2950
39086a0e
PA
2951 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2952 bufstr = (char *) buffer;
7313baad
UW
2953
2954 if (transferred < 0)
2955 return NULL;
2956
2957 if (transferred == 0)
2958 return xstrdup ("");
2959
39086a0e 2960 bufstr[transferred] = 0;
7313baad
UW
2961
2962 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2963 for (i = strlen (bufstr); i < transferred; i++)
2964 if (bufstr[i] != 0)
7313baad
UW
2965 {
2966 warning (_("target file %s "
2967 "contained unexpected null characters"),
2968 filename);
2969 break;
2970 }
2971
39086a0e 2972 return bufstr;
7313baad
UW
2973}
2974
2975
e0d24f8d 2976static int
31568a15
TT
2977default_region_ok_for_hw_watchpoint (struct target_ops *self,
2978 CORE_ADDR addr, int len)
e0d24f8d 2979{
f5656ead 2980 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2981}
2982
5009afc5
AS
2983static int
2984default_watchpoint_addr_within_range (struct target_ops *target,
2985 CORE_ADDR addr,
2986 CORE_ADDR start, int length)
2987{
2988 return addr >= start && addr < start + length;
2989}
2990
c2250ad1
UW
2991static struct gdbarch *
2992default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2993{
f5656ead 2994 return target_gdbarch ();
c2250ad1
UW
2995}
2996
c906108c 2997static int
555bbdeb
TT
2998return_zero (struct target_ops *ignore)
2999{
3000 return 0;
3001}
3002
3003static int
3004return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3005{
3006 return 0;
3007}
3008
ed9a39eb
JM
3009/*
3010 * Find the next target down the stack from the specified target.
3011 */
3012
3013struct target_ops *
fba45db2 3014find_target_beneath (struct target_ops *t)
ed9a39eb 3015{
258b763a 3016 return t->beneath;
ed9a39eb
JM
3017}
3018
8b06beed
TT
3019/* See target.h. */
3020
3021struct target_ops *
3022find_target_at (enum strata stratum)
3023{
3024 struct target_ops *t;
3025
3026 for (t = current_target.beneath; t != NULL; t = t->beneath)
3027 if (t->to_stratum == stratum)
3028 return t;
3029
3030 return NULL;
3031}
3032
c906108c
SS
3033\f
3034/* The inferior process has died. Long live the inferior! */
3035
3036void
fba45db2 3037generic_mourn_inferior (void)
c906108c 3038{
7f9f62ba 3039 ptid_t ptid;
c906108c 3040
7f9f62ba 3041 ptid = inferior_ptid;
39f77062 3042 inferior_ptid = null_ptid;
7f9f62ba 3043
f59f708a
PA
3044 /* Mark breakpoints uninserted in case something tries to delete a
3045 breakpoint while we delete the inferior's threads (which would
3046 fail, since the inferior is long gone). */
3047 mark_breakpoints_out ();
3048
7f9f62ba
PA
3049 if (!ptid_equal (ptid, null_ptid))
3050 {
3051 int pid = ptid_get_pid (ptid);
6c95b8df 3052 exit_inferior (pid);
7f9f62ba
PA
3053 }
3054
f59f708a
PA
3055 /* Note this wipes step-resume breakpoints, so needs to be done
3056 after exit_inferior, which ends up referencing the step-resume
3057 breakpoints through clear_thread_inferior_resources. */
c906108c 3058 breakpoint_init_inferior (inf_exited);
f59f708a 3059
c906108c
SS
3060 registers_changed ();
3061
c906108c
SS
3062 reopen_exec_file ();
3063 reinit_frame_cache ();
3064
9a4105ab
AC
3065 if (deprecated_detach_hook)
3066 deprecated_detach_hook ();
c906108c
SS
3067}
3068\f
fd0a2a6f
MK
3069/* Convert a normal process ID to a string. Returns the string in a
3070 static buffer. */
c906108c
SS
3071
3072char *
39f77062 3073normal_pid_to_str (ptid_t ptid)
c906108c 3074{
fd0a2a6f 3075 static char buf[32];
c906108c 3076
5fff8fc0 3077 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3078 return buf;
3079}
3080
2c0b251b 3081static char *
770234d3 3082default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3083{
3084 return normal_pid_to_str (ptid);
3085}
3086
9b4eba8e
HZ
3087/* Error-catcher for target_find_memory_regions. */
3088static int
2e73927c
TT
3089dummy_find_memory_regions (struct target_ops *self,
3090 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3091{
9b4eba8e 3092 error (_("Command not implemented for this target."));
be4d1333
MS
3093 return 0;
3094}
3095
9b4eba8e
HZ
3096/* Error-catcher for target_make_corefile_notes. */
3097static char *
fc6691b2
TT
3098dummy_make_corefile_notes (struct target_ops *self,
3099 bfd *ignore1, int *ignore2)
be4d1333 3100{
9b4eba8e 3101 error (_("Command not implemented for this target."));
be4d1333
MS
3102 return NULL;
3103}
3104
c906108c
SS
3105/* Set up the handful of non-empty slots needed by the dummy target
3106 vector. */
3107
3108static void
fba45db2 3109init_dummy_target (void)
c906108c
SS
3110{
3111 dummy_target.to_shortname = "None";
3112 dummy_target.to_longname = "None";
3113 dummy_target.to_doc = "";
03583c20
UW
3114 dummy_target.to_supports_disable_randomization
3115 = find_default_supports_disable_randomization;
c906108c 3116 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3117 dummy_target.to_has_all_memory = return_zero;
3118 dummy_target.to_has_memory = return_zero;
3119 dummy_target.to_has_stack = return_zero;
3120 dummy_target.to_has_registers = return_zero;
3121 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3122 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3123
3124 install_dummy_methods (&dummy_target);
c906108c 3125}
c906108c 3126\f
c906108c 3127
f1c07ab0 3128void
460014f5 3129target_close (struct target_ops *targ)
f1c07ab0 3130{
7fdc1521
TT
3131 gdb_assert (!target_is_pushed (targ));
3132
f1c07ab0 3133 if (targ->to_xclose != NULL)
460014f5 3134 targ->to_xclose (targ);
f1c07ab0 3135 else if (targ->to_close != NULL)
de90e03d 3136 targ->to_close (targ);
947b8855
PA
3137
3138 if (targetdebug)
460014f5 3139 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3140}
3141
28439f5e
PA
3142int
3143target_thread_alive (ptid_t ptid)
c906108c 3144{
a7068b60 3145 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3146}
3147
3148void
e8032dde 3149target_update_thread_list (void)
28439f5e 3150{
e8032dde 3151 current_target.to_update_thread_list (&current_target);
c906108c
SS
3152}
3153
d914c394
SS
3154void
3155target_stop (ptid_t ptid)
3156{
3157 if (!may_stop)
3158 {
3159 warning (_("May not interrupt or stop the target, ignoring attempt"));
3160 return;
3161 }
3162
1eab8a48 3163 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3164}
3165
f8c1d06b
GB
3166/* See target/target.h. */
3167
3168void
03f4463b 3169target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3170{
3171 struct target_waitstatus status;
3172 int was_non_stop = non_stop;
3173
3174 non_stop = 1;
3175 target_stop (ptid);
3176
3177 memset (&status, 0, sizeof (status));
3178 target_wait (ptid, &status, 0);
3179
3180 non_stop = was_non_stop;
3181}
3182
3183/* See target/target.h. */
3184
3185void
03f4463b 3186target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3187{
3188 target_resume (ptid, 0, GDB_SIGNAL_0);
3189}
3190
09826ec5
PA
3191/* Concatenate ELEM to LIST, a comma separate list, and return the
3192 result. The LIST incoming argument is released. */
3193
3194static char *
3195str_comma_list_concat_elem (char *list, const char *elem)
3196{
3197 if (list == NULL)
3198 return xstrdup (elem);
3199 else
3200 return reconcat (list, list, ", ", elem, (char *) NULL);
3201}
3202
3203/* Helper for target_options_to_string. If OPT is present in
3204 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3205 Returns the new resulting string. OPT is removed from
3206 TARGET_OPTIONS. */
3207
3208static char *
3209do_option (int *target_options, char *ret,
3210 int opt, char *opt_str)
3211{
3212 if ((*target_options & opt) != 0)
3213 {
3214 ret = str_comma_list_concat_elem (ret, opt_str);
3215 *target_options &= ~opt;
3216 }
3217
3218 return ret;
3219}
3220
3221char *
3222target_options_to_string (int target_options)
3223{
3224 char *ret = NULL;
3225
3226#define DO_TARG_OPTION(OPT) \
3227 ret = do_option (&target_options, ret, OPT, #OPT)
3228
3229 DO_TARG_OPTION (TARGET_WNOHANG);
3230
3231 if (target_options != 0)
3232 ret = str_comma_list_concat_elem (ret, "unknown???");
3233
3234 if (ret == NULL)
3235 ret = xstrdup ("");
3236 return ret;
3237}
3238
bf0c5130 3239static void
56be3814
UW
3240debug_print_register (const char * func,
3241 struct regcache *regcache, int regno)
bf0c5130 3242{
f8d29908 3243 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3244
bf0c5130 3245 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3246 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3247 && gdbarch_register_name (gdbarch, regno) != NULL
3248 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3249 fprintf_unfiltered (gdb_stdlog, "(%s)",
3250 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3251 else
3252 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3253 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3254 {
e17a4113 3255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3256 int i, size = register_size (gdbarch, regno);
e362b510 3257 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3258
0ff58721 3259 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3260 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3261 for (i = 0; i < size; i++)
bf0c5130
AC
3262 {
3263 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3264 }
81c4a259 3265 if (size <= sizeof (LONGEST))
bf0c5130 3266 {
e17a4113 3267 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3268
0b1553bc
UW
3269 fprintf_unfiltered (gdb_stdlog, " %s %s",
3270 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3271 }
3272 }
3273 fprintf_unfiltered (gdb_stdlog, "\n");
3274}
3275
28439f5e
PA
3276void
3277target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3278{
ad5989bd
TT
3279 current_target.to_fetch_registers (&current_target, regcache, regno);
3280 if (targetdebug)
3281 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3282}
3283
28439f5e
PA
3284void
3285target_store_registers (struct regcache *regcache, int regno)
c906108c 3286{
28439f5e 3287 struct target_ops *t;
5d502164 3288
d914c394
SS
3289 if (!may_write_registers)
3290 error (_("Writing to registers is not allowed (regno %d)"), regno);
3291
6b84065d
TT
3292 current_target.to_store_registers (&current_target, regcache, regno);
3293 if (targetdebug)
28439f5e 3294 {
6b84065d 3295 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3296 }
c906108c
SS
3297}
3298
dc146f7c
VP
3299int
3300target_core_of_thread (ptid_t ptid)
3301{
a7068b60 3302 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3303}
3304
936d2992
PA
3305int
3306simple_verify_memory (struct target_ops *ops,
3307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3308{
3309 LONGEST total_xfered = 0;
3310
3311 while (total_xfered < size)
3312 {
3313 ULONGEST xfered_len;
3314 enum target_xfer_status status;
3315 gdb_byte buf[1024];
3316 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3317
3318 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3319 buf, NULL, lma + total_xfered, howmuch,
3320 &xfered_len);
3321 if (status == TARGET_XFER_OK
3322 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3323 {
3324 total_xfered += xfered_len;
3325 QUIT;
3326 }
3327 else
3328 return 0;
3329 }
3330 return 1;
3331}
3332
3333/* Default implementation of memory verification. */
3334
3335static int
3336default_verify_memory (struct target_ops *self,
3337 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3338{
3339 /* Start over from the top of the target stack. */
3340 return simple_verify_memory (current_target.beneath,
3341 data, memaddr, size);
3342}
3343
4a5e7a5b
PA
3344int
3345target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3346{
a7068b60
TT
3347 return current_target.to_verify_memory (&current_target,
3348 data, memaddr, size);
4a5e7a5b
PA
3349}
3350
9c06b0b4
TJB
3351/* The documentation for this function is in its prototype declaration in
3352 target.h. */
3353
3354int
3355target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3356{
a7068b60
TT
3357 return current_target.to_insert_mask_watchpoint (&current_target,
3358 addr, mask, rw);
9c06b0b4
TJB
3359}
3360
3361/* The documentation for this function is in its prototype declaration in
3362 target.h. */
3363
3364int
3365target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3366{
a7068b60
TT
3367 return current_target.to_remove_mask_watchpoint (&current_target,
3368 addr, mask, rw);
9c06b0b4
TJB
3369}
3370
3371/* The documentation for this function is in its prototype declaration
3372 in target.h. */
3373
3374int
3375target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3376{
6c7e5e5c
TT
3377 return current_target.to_masked_watch_num_registers (&current_target,
3378 addr, mask);
9c06b0b4
TJB
3379}
3380
f1310107
TJB
3381/* The documentation for this function is in its prototype declaration
3382 in target.h. */
3383
3384int
3385target_ranged_break_num_registers (void)
3386{
a134316b 3387 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3388}
3389
02d27625
MM
3390/* See target.h. */
3391
02d27625
MM
3392struct btrace_target_info *
3393target_enable_btrace (ptid_t ptid)
3394{
6dc7fcf4 3395 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3396}
3397
3398/* See target.h. */
3399
3400void
3401target_disable_btrace (struct btrace_target_info *btinfo)
3402{
8dc292d3 3403 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3404}
3405
3406/* See target.h. */
3407
3408void
3409target_teardown_btrace (struct btrace_target_info *btinfo)
3410{
9ace480d 3411 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3412}
3413
3414/* See target.h. */
3415
969c39fb
MM
3416enum btrace_error
3417target_read_btrace (VEC (btrace_block_s) **btrace,
3418 struct btrace_target_info *btinfo,
02d27625
MM
3419 enum btrace_read_type type)
3420{
eb5b20d4 3421 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3422}
3423
d02ed0bb
MM
3424/* See target.h. */
3425
7c1687a9
MM
3426void
3427target_stop_recording (void)
3428{
ee97f592 3429 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3430}
3431
3432/* See target.h. */
3433
d02ed0bb 3434void
85e1311a 3435target_save_record (const char *filename)
d02ed0bb 3436{
f09e2107 3437 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3438}
3439
3440/* See target.h. */
3441
3442int
3443target_supports_delete_record (void)
3444{
3445 struct target_ops *t;
3446
3447 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3448 if (t->to_delete_record != delegate_delete_record
3449 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3450 return 1;
3451
3452 return 0;
3453}
3454
3455/* See target.h. */
3456
3457void
3458target_delete_record (void)
3459{
07366925 3460 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3461}
3462
3463/* See target.h. */
3464
3465int
3466target_record_is_replaying (void)
3467{
dd2e9d25 3468 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3469}
3470
3471/* See target.h. */
3472
3473void
3474target_goto_record_begin (void)
3475{
671e76cc 3476 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3477}
3478
3479/* See target.h. */
3480
3481void
3482target_goto_record_end (void)
3483{
e9179bb3 3484 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3485}
3486
3487/* See target.h. */
3488
3489void
3490target_goto_record (ULONGEST insn)
3491{
05969c84 3492 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3493}
3494
67c86d06
MM
3495/* See target.h. */
3496
3497void
3498target_insn_history (int size, int flags)
3499{
3679abfa 3500 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3501}
3502
3503/* See target.h. */
3504
3505void
3506target_insn_history_from (ULONGEST from, int size, int flags)
3507{
8444ab58 3508 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3509}
3510
3511/* See target.h. */
3512
3513void
3514target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3515{
c29302cc 3516 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3517}
3518
15984c13
MM
3519/* See target.h. */
3520
3521void
3522target_call_history (int size, int flags)
3523{
170049d4 3524 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3525}
3526
3527/* See target.h. */
3528
3529void
3530target_call_history_from (ULONGEST begin, int size, int flags)
3531{
16fc27d6 3532 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3533}
3534
3535/* See target.h. */
3536
3537void
3538target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3539{
115d9817 3540 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3541}
3542
ea001bdc
MM
3543/* See target.h. */
3544
3545const struct frame_unwind *
3546target_get_unwinder (void)
3547{
ac01945b 3548 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3549}
3550
3551/* See target.h. */
3552
3553const struct frame_unwind *
3554target_get_tailcall_unwinder (void)
3555{
ac01945b 3556 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3557}
3558
c0eca49f 3559/* Default implementation of to_decr_pc_after_break. */
118e6252 3560
c0eca49f
TT
3561static CORE_ADDR
3562default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3563 struct gdbarch *gdbarch)
3564{
118e6252
MM
3565 return gdbarch_decr_pc_after_break (gdbarch);
3566}
3567
3568/* See target.h. */
3569
3570CORE_ADDR
3571target_decr_pc_after_break (struct gdbarch *gdbarch)
3572{
c0eca49f 3573 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3574}
3575
5fff78c4
MM
3576/* See target.h. */
3577
3578void
3579target_prepare_to_generate_core (void)
3580{
3581 current_target.to_prepare_to_generate_core (&current_target);
3582}
3583
3584/* See target.h. */
3585
3586void
3587target_done_generating_core (void)
3588{
3589 current_target.to_done_generating_core (&current_target);
3590}
3591
c906108c 3592static void
fba45db2 3593setup_target_debug (void)
c906108c
SS
3594{
3595 memcpy (&debug_target, &current_target, sizeof debug_target);
3596
a7068b60 3597 init_debug_target (&current_target);
c906108c 3598}
c906108c 3599\f
c5aa993b
JM
3600
3601static char targ_desc[] =
3e43a32a
MS
3602"Names of targets and files being debugged.\nShows the entire \
3603stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3604core-file, and process, if any), as well as the symbol file name.";
3605
a53f3625 3606static void
a30bf1f1
TT
3607default_rcmd (struct target_ops *self, const char *command,
3608 struct ui_file *output)
a53f3625
TT
3609{
3610 error (_("\"monitor\" command not supported by this target."));
3611}
3612
96baa820
JM
3613static void
3614do_monitor_command (char *cmd,
3615 int from_tty)
3616{
96baa820
JM
3617 target_rcmd (cmd, gdb_stdtarg);
3618}
3619
87680a14
JB
3620/* Print the name of each layers of our target stack. */
3621
3622static void
3623maintenance_print_target_stack (char *cmd, int from_tty)
3624{
3625 struct target_ops *t;
3626
3627 printf_filtered (_("The current target stack is:\n"));
3628
3629 for (t = target_stack; t != NULL; t = t->beneath)
3630 {
3631 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3632 }
3633}
3634
329ea579
PA
3635/* Controls if targets can report that they can/are async. This is
3636 just for maintainers to use when debugging gdb. */
3637int target_async_permitted = 1;
c6ebd6cf
VP
3638
3639/* The set command writes to this variable. If the inferior is
b5419e49 3640 executing, target_async_permitted is *not* updated. */
329ea579 3641static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3642
3643static void
329ea579
PA
3644maint_set_target_async_command (char *args, int from_tty,
3645 struct cmd_list_element *c)
c6ebd6cf 3646{
c35b1492 3647 if (have_live_inferiors ())
c6ebd6cf
VP
3648 {
3649 target_async_permitted_1 = target_async_permitted;
3650 error (_("Cannot change this setting while the inferior is running."));
3651 }
3652
3653 target_async_permitted = target_async_permitted_1;
3654}
3655
3656static void
329ea579
PA
3657maint_show_target_async_command (struct ui_file *file, int from_tty,
3658 struct cmd_list_element *c,
3659 const char *value)
c6ebd6cf 3660{
3e43a32a
MS
3661 fprintf_filtered (file,
3662 _("Controlling the inferior in "
3663 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3664}
3665
d914c394
SS
3666/* Temporary copies of permission settings. */
3667
3668static int may_write_registers_1 = 1;
3669static int may_write_memory_1 = 1;
3670static int may_insert_breakpoints_1 = 1;
3671static int may_insert_tracepoints_1 = 1;
3672static int may_insert_fast_tracepoints_1 = 1;
3673static int may_stop_1 = 1;
3674
3675/* Make the user-set values match the real values again. */
3676
3677void
3678update_target_permissions (void)
3679{
3680 may_write_registers_1 = may_write_registers;
3681 may_write_memory_1 = may_write_memory;
3682 may_insert_breakpoints_1 = may_insert_breakpoints;
3683 may_insert_tracepoints_1 = may_insert_tracepoints;
3684 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3685 may_stop_1 = may_stop;
3686}
3687
3688/* The one function handles (most of) the permission flags in the same
3689 way. */
3690
3691static void
3692set_target_permissions (char *args, int from_tty,
3693 struct cmd_list_element *c)
3694{
3695 if (target_has_execution)
3696 {
3697 update_target_permissions ();
3698 error (_("Cannot change this setting while the inferior is running."));
3699 }
3700
3701 /* Make the real values match the user-changed values. */
3702 may_write_registers = may_write_registers_1;
3703 may_insert_breakpoints = may_insert_breakpoints_1;
3704 may_insert_tracepoints = may_insert_tracepoints_1;
3705 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3706 may_stop = may_stop_1;
3707 update_observer_mode ();
3708}
3709
3710/* Set memory write permission independently of observer mode. */
3711
3712static void
3713set_write_memory_permission (char *args, int from_tty,
3714 struct cmd_list_element *c)
3715{
3716 /* Make the real values match the user-changed values. */
3717 may_write_memory = may_write_memory_1;
3718 update_observer_mode ();
3719}
3720
3721
c906108c 3722void
fba45db2 3723initialize_targets (void)
c906108c
SS
3724{
3725 init_dummy_target ();
3726 push_target (&dummy_target);
3727
3728 add_info ("target", target_info, targ_desc);
3729 add_info ("files", target_info, targ_desc);
3730
ccce17b0 3731 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3732Set target debugging."), _("\
3733Show target debugging."), _("\
333dabeb 3734When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3735verbose."),
3736 set_targetdebug,
ccce17b0
YQ
3737 show_targetdebug,
3738 &setdebuglist, &showdebuglist);
3a11626d 3739
2bc416ba 3740 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3741 &trust_readonly, _("\
3742Set mode for reading from readonly sections."), _("\
3743Show mode for reading from readonly sections."), _("\
3a11626d
MS
3744When this mode is on, memory reads from readonly sections (such as .text)\n\
3745will be read from the object file instead of from the target. This will\n\
7915a72c 3746result in significant performance improvement for remote targets."),
2c5b56ce 3747 NULL,
920d2a44 3748 show_trust_readonly,
e707bbc2 3749 &setlist, &showlist);
96baa820
JM
3750
3751 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3752 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3753
87680a14
JB
3754 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3755 _("Print the name of each layer of the internal target stack."),
3756 &maintenanceprintlist);
3757
c6ebd6cf
VP
3758 add_setshow_boolean_cmd ("target-async", no_class,
3759 &target_async_permitted_1, _("\
3760Set whether gdb controls the inferior in asynchronous mode."), _("\
3761Show whether gdb controls the inferior in asynchronous mode."), _("\
3762Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3763 maint_set_target_async_command,
3764 maint_show_target_async_command,
3765 &maintenance_set_cmdlist,
3766 &maintenance_show_cmdlist);
c6ebd6cf 3767
d914c394
SS
3768 add_setshow_boolean_cmd ("may-write-registers", class_support,
3769 &may_write_registers_1, _("\
3770Set permission to write into registers."), _("\
3771Show permission to write into registers."), _("\
3772When this permission is on, GDB may write into the target's registers.\n\
3773Otherwise, any sort of write attempt will result in an error."),
3774 set_target_permissions, NULL,
3775 &setlist, &showlist);
3776
3777 add_setshow_boolean_cmd ("may-write-memory", class_support,
3778 &may_write_memory_1, _("\
3779Set permission to write into target memory."), _("\
3780Show permission to write into target memory."), _("\
3781When this permission is on, GDB may write into the target's memory.\n\
3782Otherwise, any sort of write attempt will result in an error."),
3783 set_write_memory_permission, NULL,
3784 &setlist, &showlist);
3785
3786 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3787 &may_insert_breakpoints_1, _("\
3788Set permission to insert breakpoints in the target."), _("\
3789Show permission to insert breakpoints in the target."), _("\
3790When this permission is on, GDB may insert breakpoints in the program.\n\
3791Otherwise, any sort of insertion attempt will result in an error."),
3792 set_target_permissions, NULL,
3793 &setlist, &showlist);
3794
3795 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3796 &may_insert_tracepoints_1, _("\
3797Set permission to insert tracepoints in the target."), _("\
3798Show permission to insert tracepoints in the target."), _("\
3799When this permission is on, GDB may insert tracepoints in the program.\n\
3800Otherwise, any sort of insertion attempt will result in an error."),
3801 set_target_permissions, NULL,
3802 &setlist, &showlist);
3803
3804 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3805 &may_insert_fast_tracepoints_1, _("\
3806Set permission to insert fast tracepoints in the target."), _("\
3807Show permission to insert fast tracepoints in the target."), _("\
3808When this permission is on, GDB may insert fast tracepoints.\n\
3809Otherwise, any sort of insertion attempt will result in an error."),
3810 set_target_permissions, NULL,
3811 &setlist, &showlist);
3812
3813 add_setshow_boolean_cmd ("may-interrupt", class_support,
3814 &may_stop_1, _("\
3815Set permission to interrupt or signal the target."), _("\
3816Show permission to interrupt or signal the target."), _("\
3817When this permission is on, GDB may interrupt/stop the target's execution.\n\
3818Otherwise, any attempt to interrupt or stop will be ignored."),
3819 set_target_permissions, NULL,
3820 &setlist, &showlist);
6a3cb8e8
PA
3821
3822 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3823 &auto_connect_native_target, _("\
3824Set whether GDB may automatically connect to the native target."), _("\
3825Show whether GDB may automatically connect to the native target."), _("\
3826When on, and GDB is not connected to a target yet, GDB\n\
3827attempts \"run\" and other commands with the native target."),
3828 NULL, show_auto_connect_native_target,
3829 &setlist, &showlist);
c906108c 3830}
This page took 2.275011 seconds and 4 git commands to generate.