Introduce show_debug_regs
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
9e35dae4 36#include "exceptions.h"
424163ea 37#include "target-descriptions.h"
e1ac3328 38#include "gdbthread.h"
b9db4ced 39#include "solib.h"
07b82ea5 40#include "exec.h"
edb3359d 41#include "inline-frame.h"
2f4d8875 42#include "tracepoint.h"
7313baad 43#include "gdb/fileio.h"
8ffcbaaf 44#include "agent.h"
8de71aab 45#include "auxv.h"
a7068b60 46#include "target-debug.h"
c906108c 47
a14ed312 48static void target_info (char *, int);
c906108c 49
f0f9ff95
TT
50static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
0a4f40a2 52static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 53
5009afc5
AS
54static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
31568a15
TT
57static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
e0d24f8d 59
a30bf1f1 60static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 61
4229b31d
TT
62static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
098dba18
TT
65static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
8d657035
TT
68static void default_mourn_inferior (struct target_ops *self);
69
58a5184e
TT
70static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
936d2992
PA
77static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
8eaff7cd
TT
81static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
c25c4a8b 84static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 85
555bbdeb
TT
86static int return_zero (struct target_ops *);
87
88static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 89
a14ed312 90static void target_command (char *, int);
c906108c 91
a14ed312 92static struct target_ops *find_default_run_target (char *);
c906108c 93
c2250ad1
UW
94static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
0b5a2719
TT
97static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
16f796b1
TT
101static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
770234d3
TT
104static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
fe31bf5b
TT
106static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
c0eca49f
TT
109static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
a7068b60
TT
112static struct target_ops debug_target;
113
1101cb7b
TT
114#include "target-delegates.c"
115
a14ed312 116static void init_dummy_target (void);
c906108c 117
3cecbbbe
TT
118static void update_current_target (void);
119
89a1c21a
SM
120/* Vector of existing target structures. */
121typedef struct target_ops *target_ops_p;
122DEF_VEC_P (target_ops_p);
123static VEC (target_ops_p) *target_structs;
c906108c
SS
124
125/* The initial current target, so that there is always a semi-valid
126 current target. */
127
128static struct target_ops dummy_target;
129
130/* Top of target stack. */
131
258b763a 132static struct target_ops *target_stack;
c906108c
SS
133
134/* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137struct target_ops current_target;
138
139/* Command list for target. */
140
141static struct cmd_list_element *targetlist = NULL;
142
cf7a04e8
DJ
143/* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146static int trust_readonly = 0;
147
8defab1a
DJ
148/* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151static int show_memory_breakpoints = 0;
152
d914c394
SS
153/* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157int may_write_registers = 1;
158
159int may_write_memory = 1;
160
161int may_insert_breakpoints = 1;
162
163int may_insert_tracepoints = 1;
164
165int may_insert_fast_tracepoints = 1;
166
167int may_stop = 1;
168
c906108c
SS
169/* Non-zero if we want to see trace of target level stuff. */
170
ccce17b0 171static unsigned int targetdebug = 0;
3cecbbbe
TT
172
173static void
174set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175{
176 update_current_target ();
177}
178
920d2a44
AC
179static void
180show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184}
c906108c 185
a14ed312 186static void setup_target_debug (void);
c906108c 187
c906108c
SS
188/* The user just typed 'target' without the name of a target. */
189
c906108c 190static void
fba45db2 191target_command (char *arg, int from_tty)
c906108c
SS
192{
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195}
196
c35b1492
PA
197/* Default target_has_* methods for process_stratum targets. */
198
199int
200default_child_has_all_memory (struct target_ops *ops)
201{
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207}
208
209int
210default_child_has_memory (struct target_ops *ops)
211{
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217}
218
219int
220default_child_has_stack (struct target_ops *ops)
221{
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227}
228
229int
230default_child_has_registers (struct target_ops *ops)
231{
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237}
238
239int
aeaec162 240default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
241{
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
aeaec162 244 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
245 return 0;
246
247 return 1;
248}
249
250
251int
252target_has_all_memory_1 (void)
253{
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261}
262
263int
264target_has_memory_1 (void)
265{
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273}
274
275int
276target_has_stack_1 (void)
277{
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285}
286
287int
288target_has_registers_1 (void)
289{
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297}
298
299int
aeaec162 300target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
301{
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 305 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
306 return 1;
307
308 return 0;
309}
310
aeaec162
TT
311int
312target_has_execution_current (void)
313{
314 return target_has_execution_1 (inferior_ptid);
315}
316
c22a2b88
TT
317/* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
c906108c
SS
319
320void
c22a2b88 321complete_target_initialization (struct target_ops *t)
c906108c 322{
0088c768 323 /* Provide default values for all "must have" methods. */
0088c768 324
c35b1492 325 if (t->to_has_all_memory == NULL)
555bbdeb 326 t->to_has_all_memory = return_zero;
c35b1492
PA
327
328 if (t->to_has_memory == NULL)
555bbdeb 329 t->to_has_memory = return_zero;
c35b1492
PA
330
331 if (t->to_has_stack == NULL)
555bbdeb 332 t->to_has_stack = return_zero;
c35b1492
PA
333
334 if (t->to_has_registers == NULL)
555bbdeb 335 t->to_has_registers = return_zero;
c35b1492
PA
336
337 if (t->to_has_execution == NULL)
555bbdeb 338 t->to_has_execution = return_zero_has_execution;
1101cb7b 339
b3ccfe11
TT
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
1101cb7b 346 install_delegators (t);
c22a2b88
TT
347}
348
8981c758
TT
349/* This is used to implement the various target commands. */
350
351static void
352open_target (char *args, int from_tty, struct cmd_list_element *command)
353{
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365}
366
c22a2b88
TT
367/* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371void
372add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374{
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
c35b1492 378
89a1c21a 379 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
380
381 if (targetlist == NULL)
1bedd215
AC
382 add_prefix_cmd ("target", class_run, target_command, _("\
383Connect to a target machine or process.\n\
c906108c
SS
384The first argument is the type or protocol of the target machine.\n\
385Remaining arguments are interpreted by the target protocol. For more\n\
386information on the arguments for a particular protocol, type\n\
1bedd215 387`help target ' followed by the protocol name."),
c906108c 388 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
9852c492
YQ
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394}
395
396/* Add a possible target architecture to the list. */
397
398void
399add_target (struct target_ops *t)
400{
401 add_target_with_completer (t, NULL);
c906108c
SS
402}
403
b48d48eb
MM
404/* See target.h. */
405
406void
407add_deprecated_target_alias (struct target_ops *t, char *alias)
408{
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
8981c758
TT
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
b48d48eb
MM
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419}
420
c906108c
SS
421/* Stub functions */
422
7d85a9c0
JB
423void
424target_kill (void)
425{
423a4807 426 current_target.to_kill (&current_target);
7d85a9c0
JB
427}
428
11cf8741 429void
9cbe5fff 430target_load (const char *arg, int from_tty)
11cf8741 431{
4e5d721f 432 target_dcache_invalidate ();
71a9f134 433 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
434}
435
d9d2d8b6
PA
436void
437target_terminal_inferior (void)
438{
439 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 440 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
d2f640d4 448 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 449}
136d6dae 450
b0ed115f
TT
451/* See target.h. */
452
453int
454target_supports_terminal_ours (void)
455{
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466}
467
c906108c 468static void
fba45db2 469tcomplain (void)
c906108c 470{
8a3fe4f8 471 error (_("You can't do that when your target is `%s'"),
c906108c
SS
472 current_target.to_shortname);
473}
474
475void
fba45db2 476noprocess (void)
c906108c 477{
8a3fe4f8 478 error (_("You can't do that without a process to debug."));
c906108c
SS
479}
480
c906108c 481static void
0a4f40a2 482default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 483{
a3f17187 484 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
485}
486
0ef643c8
JB
487/* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
2c0b251b 493static ptid_t
1e6b91a4 494default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
495{
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497}
498
32231432 499static enum exec_direction_kind
4c612759 500default_execution_direction (struct target_ops *self)
32231432
PA
501{
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508to_execution_direction must be implemented for reverse async");
509}
510
7998dfc3
AC
511/* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
c906108c
SS
522
523static void
7998dfc3 524update_current_target (void)
c906108c 525{
7998dfc3
AC
526 struct target_ops *t;
527
08d8bcd7 528 /* First, reset current's contents. */
7998dfc3
AC
529 memset (&current_target, 0, sizeof (current_target));
530
1101cb7b
TT
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
be4ddd36
TT
534 current_target.to_stratum = target_stack->to_stratum;
535
7998dfc3
AC
536#define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
be4ddd36
TT
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
7998dfc3
AC
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
dc177b7a 546 INHERIT (to_attach_no_wait, t);
74174d2e 547 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 548 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 549 INHERIT (to_has_thread_control, t);
7998dfc3
AC
550 }
551#undef INHERIT
552
7998dfc3
AC
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
b4b61fdb
DJ
557
558 if (targetdebug)
559 setup_target_debug ();
c906108c
SS
560}
561
562/* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
c906108c
SS
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
b26a4dcb 569void
fba45db2 570push_target (struct target_ops *t)
c906108c 571{
258b763a 572 struct target_ops **cur;
c906108c
SS
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
c5aa993b
JM
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
3e43a32a
MS
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
c906108c
SS
583 }
584
258b763a
AC
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 587 {
258b763a 588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
589 break;
590 }
591
258b763a 592 /* If there's already targets at this stratum, remove them. */
88c231eb 593 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
5d502164 600
258b763a
AC
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
460014f5 603 target_close (tmp);
258b763a 604 }
c906108c
SS
605
606 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
607 t->beneath = (*cur);
608 (*cur) = t;
c906108c
SS
609
610 update_current_target ();
c906108c
SS
611}
612
2bc416ba 613/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
614 Return how many times it was removed (0 or 1). */
615
616int
fba45db2 617unpush_target (struct target_ops *t)
c906108c 618{
258b763a
AC
619 struct target_ops **cur;
620 struct target_ops *tmp;
c906108c 621
c8d104ad
PA
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
9b20d036 624 _("Attempt to unpush the dummy target"));
c8d104ad 625
c906108c 626 /* Look for the specified target. Note that we assume that a target
c378eb4e 627 can only occur once in the target stack. */
c906108c 628
258b763a
AC
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
c906108c 634
305436e0
PA
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
258b763a 637 if ((*cur) == NULL)
305436e0 638 return 0;
5269965e 639
c378eb4e 640 /* Unchain the target. */
258b763a
AC
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
c906108c
SS
644
645 update_current_target ();
c906108c 646
305436e0
PA
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
460014f5 650 target_close (t);
305436e0 651
c906108c
SS
652 return 1;
653}
654
aa76d38d 655void
460014f5 656pop_all_targets_above (enum strata above_stratum)
aa76d38d 657{
87ab71f0 658 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 659 {
aa76d38d
PA
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
b52323fa 664 target_stack->to_shortname);
aa76d38d
PA
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670}
671
87ab71f0 672void
460014f5 673pop_all_targets (void)
87ab71f0 674{
460014f5 675 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
676}
677
c0edd9ed
JK
678/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680int
681target_is_pushed (struct target_ops *t)
682{
84202f9c 683 struct target_ops *cur;
c0edd9ed
JK
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
3e43a32a
MS
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
c0edd9ed
JK
694 }
695
84202f9c
TT
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
c0edd9ed
JK
698 return 1;
699
700 return 0;
701}
702
f0f9ff95
TT
703/* Default implementation of to_get_thread_local_address. */
704
705static void
706generic_tls_error (void)
707{
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710}
711
72f5cf0e 712/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
713 current thread's thread-local storage with offset OFFSET. */
714CORE_ADDR
715target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716{
717 volatile CORE_ADDR addr = 0;
f0f9ff95 718 struct target_ops *target = &current_target;
9e35dae4 719
f0f9ff95 720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
f5656ead 730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 731 objfile);
9e35dae4 732
3e43a32a
MS
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
9e35dae4
DJ
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
9e35dae4
DJ
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 751 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 754 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
4262abfb 762 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
4262abfb 768 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
4262abfb 775 objfile_name (objfile), ex.message);
9e35dae4
DJ
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
4262abfb 780 objfile_name (objfile), ex.message);
9e35dae4
DJ
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794}
795
6be7b56e 796const char *
01cb8804 797target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
798{
799#define CASE(X) case X: return #X
01cb8804 800 switch (status)
6be7b56e
PA
801 {
802 CASE(TARGET_XFER_E_IO);
bc113b4e 803 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
804 default:
805 return "<unknown>";
806 }
807#undef CASE
808};
809
810
c906108c
SS
811#undef MIN
812#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814/* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820int
fba45db2 821target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 822{
c2e8b827 823 int tlen, offset, i;
1b0ba102 824 gdb_byte buf[4];
c906108c
SS
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
6217bf3e
MS
831 gdb_assert (string);
832
c906108c
SS
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
c906108c
SS
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
1b0ba102 843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
c378eb4e 847 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
848 a single byte. */
849 tlen = 1;
850 offset = 0;
b8eb5af0 851 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
5d502164 859
c906108c
SS
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
c5aa993b 880done:
6217bf3e 881 *string = buffer;
c906108c
SS
882 if (errnop != NULL)
883 *errnop = errcode;
c906108c
SS
884 return nbytes_read;
885}
886
07b82ea5
PA
887struct target_section_table *
888target_get_section_table (struct target_ops *target)
889{
7e35c012 890 return (*target->to_get_section_table) (target);
07b82ea5
PA
891}
892
8db32d44 893/* Find a section containing ADDR. */
07b82ea5 894
0542c86d 895struct target_section *
8db32d44
AC
896target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897{
07b82ea5 898 struct target_section_table *table = target_get_section_table (target);
0542c86d 899 struct target_section *secp;
07b82ea5
PA
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910}
911
9f713294
YQ
912/* Read memory from more than one valid target. A core file, for
913 instance, could have some of memory but delegate other bits to
914 the target below it. So, we must manually try all targets. */
915
9b409511 916static enum target_xfer_status
17fde6d0 917raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
918 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
919 ULONGEST *xfered_len)
9f713294 920{
9b409511 921 enum target_xfer_status res;
9f713294
YQ
922
923 do
924 {
925 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
926 readbuf, writebuf, memaddr, len,
927 xfered_len);
928 if (res == TARGET_XFER_OK)
9f713294
YQ
929 break;
930
633785ff 931 /* Stop if the target reports that the memory is not available. */
bc113b4e 932 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
933 break;
934
9f713294
YQ
935 /* We want to continue past core files to executables, but not
936 past a running target's memory. */
937 if (ops->to_has_all_memory (ops))
938 break;
939
940 ops = ops->beneath;
941 }
942 while (ops != NULL);
943
0f26cec1
PA
944 /* The cache works at the raw memory level. Make sure the cache
945 gets updated with raw contents no matter what kind of memory
946 object was originally being written. Note we do write-through
947 first, so that if it fails, we don't write to the cache contents
948 that never made it to the target. */
949 if (writebuf != NULL
950 && !ptid_equal (inferior_ptid, null_ptid)
951 && target_dcache_init_p ()
952 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
953 {
954 DCACHE *dcache = target_dcache_get ();
955
956 /* Note that writing to an area of memory which wasn't present
957 in the cache doesn't cause it to be loaded in. */
958 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
959 }
960
9f713294
YQ
961 return res;
962}
963
7f79c47e
DE
964/* Perform a partial memory transfer.
965 For docs see target.h, to_xfer_partial. */
cf7a04e8 966
9b409511 967static enum target_xfer_status
f0ba3972 968memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 969 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 970 ULONGEST len, ULONGEST *xfered_len)
0779438d 971{
9b409511 972 enum target_xfer_status res;
cf7a04e8
DJ
973 int reg_len;
974 struct mem_region *region;
4e5d721f 975 struct inferior *inf;
cf7a04e8 976
07b82ea5
PA
977 /* For accesses to unmapped overlay sections, read directly from
978 files. Must do this first, as MEMADDR may need adjustment. */
979 if (readbuf != NULL && overlay_debugging)
980 {
981 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 982
07b82ea5
PA
983 if (pc_in_unmapped_range (memaddr, section))
984 {
985 struct target_section_table *table
986 = target_get_section_table (ops);
987 const char *section_name = section->the_bfd_section->name;
5d502164 988
07b82ea5
PA
989 memaddr = overlay_mapped_address (memaddr, section);
990 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 991 memaddr, len, xfered_len,
07b82ea5
PA
992 table->sections,
993 table->sections_end,
994 section_name);
995 }
996 }
997
998 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
999 if (readbuf != NULL && trust_readonly)
1000 {
0542c86d 1001 struct target_section *secp;
07b82ea5 1002 struct target_section_table *table;
cf7a04e8
DJ
1003
1004 secp = target_section_by_addr (ops, memaddr);
1005 if (secp != NULL
2b2848e2
DE
1006 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1007 secp->the_bfd_section)
cf7a04e8 1008 & SEC_READONLY))
07b82ea5
PA
1009 {
1010 table = target_get_section_table (ops);
1011 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1012 memaddr, len, xfered_len,
07b82ea5
PA
1013 table->sections,
1014 table->sections_end,
1015 NULL);
1016 }
98646950
UW
1017 }
1018
cf7a04e8
DJ
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
4b5752d0
VP
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
2ed4b548 1031 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
2ed4b548 1036 return TARGET_XFER_E_IO;
cf7a04e8 1037 break;
a76d924d
DJ
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
4b5752d0
VP
1044
1045 case MEM_NONE:
2ed4b548 1046 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1047 }
1048
6c95b8df
PA
1049 if (!ptid_equal (inferior_ptid, null_ptid))
1050 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1051 else
1052 inf = NULL;
4e5d721f
DE
1053
1054 if (inf != NULL
0f26cec1 1055 && readbuf != NULL
2f4d8875
PA
1056 /* The dcache reads whole cache lines; that doesn't play well
1057 with reading from a trace buffer, because reading outside of
1058 the collected memory range fails. */
1059 && get_traceframe_number () == -1
4e5d721f 1060 && (region->attrib.cache
29453a14
YQ
1061 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1062 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1063 {
2a2f9fe4
YQ
1064 DCACHE *dcache = target_dcache_get_or_init ();
1065
0f26cec1
PA
1066 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1067 reg_len, xfered_len);
cf7a04e8
DJ
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
9b409511
YQ
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1081 xfered_len);
cf7a04e8
DJ
1082
1083 /* If we still haven't got anything, return the last error. We
1084 give up. */
1085 return res;
0779438d
AC
1086}
1087
f0ba3972
PA
1088/* Perform a partial memory transfer. For docs see target.h,
1089 to_xfer_partial. */
1090
9b409511 1091static enum target_xfer_status
f0ba3972 1092memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1093 gdb_byte *readbuf, const gdb_byte *writebuf,
1094 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1095{
9b409511 1096 enum target_xfer_status res;
f0ba3972
PA
1097
1098 /* Zero length requests are ok and require no work. */
1099 if (len == 0)
9b409511 1100 return TARGET_XFER_EOF;
f0ba3972
PA
1101
1102 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1103 breakpoint insns, thus hiding out from higher layers whether
1104 there are software breakpoints inserted in the code stream. */
1105 if (readbuf != NULL)
1106 {
9b409511
YQ
1107 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1108 xfered_len);
f0ba3972 1109
9b409511 1110 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1111 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1112 }
1113 else
1114 {
1115 void *buf;
1116 struct cleanup *old_chain;
1117
67c059c2
AB
1118 /* A large write request is likely to be partially satisfied
1119 by memory_xfer_partial_1. We will continually malloc
1120 and free a copy of the entire write request for breakpoint
1121 shadow handling even though we only end up writing a small
1122 subset of it. Cap writes to 4KB to mitigate this. */
1123 len = min (4096, len);
1124
f0ba3972
PA
1125 buf = xmalloc (len);
1126 old_chain = make_cleanup (xfree, buf);
1127 memcpy (buf, writebuf, len);
1128
1129 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1130 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1131 xfered_len);
f0ba3972
PA
1132
1133 do_cleanups (old_chain);
1134 }
1135
1136 return res;
1137}
1138
8defab1a
DJ
1139static void
1140restore_show_memory_breakpoints (void *arg)
1141{
1142 show_memory_breakpoints = (uintptr_t) arg;
1143}
1144
1145struct cleanup *
1146make_show_memory_breakpoints_cleanup (int show)
1147{
1148 int current = show_memory_breakpoints;
8defab1a 1149
5d502164 1150 show_memory_breakpoints = show;
8defab1a
DJ
1151 return make_cleanup (restore_show_memory_breakpoints,
1152 (void *) (uintptr_t) current);
1153}
1154
7f79c47e
DE
1155/* For docs see target.h, to_xfer_partial. */
1156
9b409511 1157enum target_xfer_status
27394598
AC
1158target_xfer_partial (struct target_ops *ops,
1159 enum target_object object, const char *annex,
4ac248ca 1160 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1161 ULONGEST offset, ULONGEST len,
1162 ULONGEST *xfered_len)
27394598 1163{
9b409511 1164 enum target_xfer_status retval;
27394598
AC
1165
1166 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1167
ce6d0892
YQ
1168 /* Transfer is done when LEN is zero. */
1169 if (len == 0)
9b409511 1170 return TARGET_XFER_EOF;
ce6d0892 1171
d914c394
SS
1172 if (writebuf && !may_write_memory)
1173 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1174 core_addr_to_string_nz (offset), plongest (len));
1175
9b409511
YQ
1176 *xfered_len = 0;
1177
cf7a04e8
DJ
1178 /* If this is a memory transfer, let the memory-specific code
1179 have a look at it instead. Memory transfers are more
1180 complicated. */
29453a14
YQ
1181 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1182 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1183 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1184 writebuf, offset, len, xfered_len);
9f713294 1185 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1186 {
9f713294 1187 /* Request the normal memory object from other layers. */
9b409511
YQ
1188 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1189 xfered_len);
cf7a04e8 1190 }
9f713294
YQ
1191 else
1192 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1193 writebuf, offset, len, xfered_len);
cf7a04e8 1194
27394598
AC
1195 if (targetdebug)
1196 {
1197 const unsigned char *myaddr = NULL;
1198
1199 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1200 "%s:target_xfer_partial "
9b409511 1201 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1202 ops->to_shortname,
1203 (int) object,
1204 (annex ? annex : "(null)"),
53b71562
JB
1205 host_address_to_string (readbuf),
1206 host_address_to_string (writebuf),
0b1553bc 1207 core_addr_to_string_nz (offset),
9b409511
YQ
1208 pulongest (len), retval,
1209 pulongest (*xfered_len));
27394598
AC
1210
1211 if (readbuf)
1212 myaddr = readbuf;
1213 if (writebuf)
1214 myaddr = writebuf;
9b409511 1215 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1216 {
1217 int i;
2bc416ba 1218
27394598 1219 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1220 for (i = 0; i < *xfered_len; i++)
27394598 1221 {
53b71562 1222 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1223 {
1224 if (targetdebug < 2 && i > 0)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, " ...");
1227 break;
1228 }
1229 fprintf_unfiltered (gdb_stdlog, "\n");
1230 }
2bc416ba 1231
27394598
AC
1232 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1233 }
1234 }
2bc416ba 1235
27394598
AC
1236 fputc_unfiltered ('\n', gdb_stdlog);
1237 }
9b409511
YQ
1238
1239 /* Check implementations of to_xfer_partial update *XFERED_LEN
1240 properly. Do assertion after printing debug messages, so that we
1241 can find more clues on assertion failure from debugging messages. */
bc113b4e 1242 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1243 gdb_assert (*xfered_len > 0);
1244
27394598
AC
1245 return retval;
1246}
1247
578d3588
PA
1248/* Read LEN bytes of target memory at address MEMADDR, placing the
1249 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1250 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1251
1252 If an error occurs, no guarantee is made about the contents of the data at
1253 MYADDR. In particular, the caller should not depend upon partial reads
1254 filling the buffer with good data. There is no way for the caller to know
1255 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1256 deal with partial reads should call target_read (which will retry until
c378eb4e 1257 it makes no progress, and then return how much was transferred). */
c906108c
SS
1258
1259int
1b162304 1260target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1261{
c35b1492
PA
1262 /* Dispatch to the topmost target, not the flattened current_target.
1263 Memory accesses check target->to_has_(all_)memory, and the
1264 flattened target doesn't inherit those. */
1265 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1266 myaddr, memaddr, len) == len)
1267 return 0;
0779438d 1268 else
578d3588 1269 return TARGET_XFER_E_IO;
c906108c
SS
1270}
1271
aee4bf85
PA
1272/* Like target_read_memory, but specify explicitly that this is a read
1273 from the target's raw memory. That is, this read bypasses the
1274 dcache, breakpoint shadowing, etc. */
1275
1276int
1277target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1278{
1279 /* See comment in target_read_memory about why the request starts at
1280 current_target.beneath. */
1281 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1282 myaddr, memaddr, len) == len)
1283 return 0;
1284 else
1285 return TARGET_XFER_E_IO;
1286}
1287
4e5d721f
DE
1288/* Like target_read_memory, but specify explicitly that this is a read from
1289 the target's stack. This may trigger different cache behavior. */
1290
1291int
45aa4659 1292target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1293{
aee4bf85
PA
1294 /* See comment in target_read_memory about why the request starts at
1295 current_target.beneath. */
4e5d721f
DE
1296 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1297 myaddr, memaddr, len) == len)
1298 return 0;
1299 else
578d3588 1300 return TARGET_XFER_E_IO;
4e5d721f
DE
1301}
1302
29453a14
YQ
1303/* Like target_read_memory, but specify explicitly that this is a read from
1304 the target's code. This may trigger different cache behavior. */
1305
1306int
1307target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1308{
aee4bf85
PA
1309 /* See comment in target_read_memory about why the request starts at
1310 current_target.beneath. */
29453a14
YQ
1311 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1312 myaddr, memaddr, len) == len)
1313 return 0;
1314 else
1315 return TARGET_XFER_E_IO;
1316}
1317
7f79c47e 1318/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1319 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1320 error occurs. If an error occurs, no guarantee is made about how
1321 much data got written. Callers that can deal with partial writes
1322 should call target_write. */
7f79c47e 1323
c906108c 1324int
45aa4659 1325target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1326{
aee4bf85
PA
1327 /* See comment in target_read_memory about why the request starts at
1328 current_target.beneath. */
c35b1492 1329 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1330 myaddr, memaddr, len) == len)
1331 return 0;
0779438d 1332 else
578d3588 1333 return TARGET_XFER_E_IO;
c906108c 1334}
c5aa993b 1335
f0ba3972 1336/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1337 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1338 if any error occurs. If an error occurs, no guarantee is made
1339 about how much data got written. Callers that can deal with
1340 partial writes should call target_write. */
f0ba3972
PA
1341
1342int
45aa4659 1343target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1344{
aee4bf85
PA
1345 /* See comment in target_read_memory about why the request starts at
1346 current_target.beneath. */
f0ba3972
PA
1347 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1348 myaddr, memaddr, len) == len)
1349 return 0;
1350 else
578d3588 1351 return TARGET_XFER_E_IO;
f0ba3972
PA
1352}
1353
fd79ecee
DJ
1354/* Fetch the target's memory map. */
1355
1356VEC(mem_region_s) *
1357target_memory_map (void)
1358{
1359 VEC(mem_region_s) *result;
1360 struct mem_region *last_one, *this_one;
1361 int ix;
1362 struct target_ops *t;
1363
6b2c5a57 1364 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1365 if (result == NULL)
1366 return NULL;
1367
1368 qsort (VEC_address (mem_region_s, result),
1369 VEC_length (mem_region_s, result),
1370 sizeof (struct mem_region), mem_region_cmp);
1371
1372 /* Check that regions do not overlap. Simultaneously assign
1373 a numbering for the "mem" commands to use to refer to
1374 each region. */
1375 last_one = NULL;
1376 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1377 {
1378 this_one->number = ix;
1379
1380 if (last_one && last_one->hi > this_one->lo)
1381 {
1382 warning (_("Overlapping regions in memory map: ignoring"));
1383 VEC_free (mem_region_s, result);
1384 return NULL;
1385 }
1386 last_one = this_one;
1387 }
1388
1389 return result;
1390}
1391
a76d924d
DJ
1392void
1393target_flash_erase (ULONGEST address, LONGEST length)
1394{
e8a6c6ac 1395 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1396}
1397
1398void
1399target_flash_done (void)
1400{
f6fb2925 1401 current_target.to_flash_done (&current_target);
a76d924d
DJ
1402}
1403
920d2a44
AC
1404static void
1405show_trust_readonly (struct ui_file *file, int from_tty,
1406 struct cmd_list_element *c, const char *value)
1407{
3e43a32a
MS
1408 fprintf_filtered (file,
1409 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1410 value);
1411}
3a11626d 1412
7f79c47e 1413/* Target vector read/write partial wrapper functions. */
0088c768 1414
9b409511 1415static enum target_xfer_status
1e3ff5ad
AC
1416target_read_partial (struct target_ops *ops,
1417 enum target_object object,
1b0ba102 1418 const char *annex, gdb_byte *buf,
9b409511
YQ
1419 ULONGEST offset, ULONGEST len,
1420 ULONGEST *xfered_len)
1e3ff5ad 1421{
9b409511
YQ
1422 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1423 xfered_len);
1e3ff5ad
AC
1424}
1425
8a55ffb0 1426static enum target_xfer_status
1e3ff5ad
AC
1427target_write_partial (struct target_ops *ops,
1428 enum target_object object,
1b0ba102 1429 const char *annex, const gdb_byte *buf,
9b409511 1430 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1431{
9b409511
YQ
1432 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1433 xfered_len);
1e3ff5ad
AC
1434}
1435
1436/* Wrappers to perform the full transfer. */
7f79c47e
DE
1437
1438/* For docs on target_read see target.h. */
1439
1e3ff5ad
AC
1440LONGEST
1441target_read (struct target_ops *ops,
1442 enum target_object object,
1b0ba102 1443 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1444 ULONGEST offset, LONGEST len)
1445{
1446 LONGEST xfered = 0;
5d502164 1447
1e3ff5ad
AC
1448 while (xfered < len)
1449 {
9b409511
YQ
1450 ULONGEST xfered_len;
1451 enum target_xfer_status status;
1452
1453 status = target_read_partial (ops, object, annex,
1454 (gdb_byte *) buf + xfered,
1455 offset + xfered, len - xfered,
1456 &xfered_len);
5d502164 1457
1e3ff5ad 1458 /* Call an observer, notifying them of the xfer progress? */
9b409511 1459 if (status == TARGET_XFER_EOF)
13547ab6 1460 return xfered;
9b409511
YQ
1461 else if (status == TARGET_XFER_OK)
1462 {
1463 xfered += xfered_len;
1464 QUIT;
1465 }
1466 else
0088c768 1467 return -1;
9b409511 1468
1e3ff5ad
AC
1469 }
1470 return len;
1471}
1472
f1a507a1
JB
1473/* Assuming that the entire [begin, end) range of memory cannot be
1474 read, try to read whatever subrange is possible to read.
1475
1476 The function returns, in RESULT, either zero or one memory block.
1477 If there's a readable subrange at the beginning, it is completely
1478 read and returned. Any further readable subrange will not be read.
1479 Otherwise, if there's a readable subrange at the end, it will be
1480 completely read and returned. Any readable subranges before it
1481 (obviously, not starting at the beginning), will be ignored. In
1482 other cases -- either no readable subrange, or readable subrange(s)
1483 that is neither at the beginning, or end, nothing is returned.
1484
1485 The purpose of this function is to handle a read across a boundary
1486 of accessible memory in a case when memory map is not available.
1487 The above restrictions are fine for this case, but will give
1488 incorrect results if the memory is 'patchy'. However, supporting
1489 'patchy' memory would require trying to read every single byte,
1490 and it seems unacceptable solution. Explicit memory map is
1491 recommended for this case -- and target_read_memory_robust will
1492 take care of reading multiple ranges then. */
8dedea02
VP
1493
1494static void
3e43a32a
MS
1495read_whatever_is_readable (struct target_ops *ops,
1496 ULONGEST begin, ULONGEST end,
8dedea02 1497 VEC(memory_read_result_s) **result)
d5086790 1498{
f1a507a1 1499 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1500 ULONGEST current_begin = begin;
1501 ULONGEST current_end = end;
1502 int forward;
1503 memory_read_result_s r;
9b409511 1504 ULONGEST xfered_len;
8dedea02
VP
1505
1506 /* If we previously failed to read 1 byte, nothing can be done here. */
1507 if (end - begin <= 1)
13b3fd9b
MS
1508 {
1509 xfree (buf);
1510 return;
1511 }
8dedea02
VP
1512
1513 /* Check that either first or the last byte is readable, and give up
c378eb4e 1514 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1515 at the boundary of accessible region. */
1516 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1517 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1518 {
1519 forward = 1;
1520 ++current_begin;
1521 }
1522 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1523 buf + (end-begin) - 1, end - 1, 1,
1524 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1525 {
1526 forward = 0;
1527 --current_end;
1528 }
1529 else
1530 {
13b3fd9b 1531 xfree (buf);
8dedea02
VP
1532 return;
1533 }
1534
1535 /* Loop invariant is that the [current_begin, current_end) was previously
1536 found to be not readable as a whole.
1537
1538 Note loop condition -- if the range has 1 byte, we can't divide the range
1539 so there's no point trying further. */
1540 while (current_end - current_begin > 1)
1541 {
1542 ULONGEST first_half_begin, first_half_end;
1543 ULONGEST second_half_begin, second_half_end;
1544 LONGEST xfer;
8dedea02 1545 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1546
8dedea02
VP
1547 if (forward)
1548 {
1549 first_half_begin = current_begin;
1550 first_half_end = middle;
1551 second_half_begin = middle;
1552 second_half_end = current_end;
1553 }
1554 else
1555 {
1556 first_half_begin = middle;
1557 first_half_end = current_end;
1558 second_half_begin = current_begin;
1559 second_half_end = middle;
1560 }
1561
1562 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1563 buf + (first_half_begin - begin),
1564 first_half_begin,
1565 first_half_end - first_half_begin);
1566
1567 if (xfer == first_half_end - first_half_begin)
1568 {
c378eb4e 1569 /* This half reads up fine. So, the error must be in the
3e43a32a 1570 other half. */
8dedea02
VP
1571 current_begin = second_half_begin;
1572 current_end = second_half_end;
1573 }
1574 else
1575 {
c378eb4e
MS
1576 /* This half is not readable. Because we've tried one byte, we
1577 know some part of this half if actually redable. Go to the next
8dedea02
VP
1578 iteration to divide again and try to read.
1579
1580 We don't handle the other half, because this function only tries
1581 to read a single readable subrange. */
1582 current_begin = first_half_begin;
1583 current_end = first_half_end;
1584 }
1585 }
1586
1587 if (forward)
1588 {
1589 /* The [begin, current_begin) range has been read. */
1590 r.begin = begin;
1591 r.end = current_begin;
1592 r.data = buf;
1593 }
1594 else
1595 {
1596 /* The [current_end, end) range has been read. */
1597 LONGEST rlen = end - current_end;
f1a507a1 1598
8dedea02
VP
1599 r.data = xmalloc (rlen);
1600 memcpy (r.data, buf + current_end - begin, rlen);
1601 r.begin = current_end;
1602 r.end = end;
1603 xfree (buf);
1604 }
1605 VEC_safe_push(memory_read_result_s, (*result), &r);
1606}
1607
1608void
1609free_memory_read_result_vector (void *x)
1610{
1611 VEC(memory_read_result_s) *v = x;
1612 memory_read_result_s *current;
1613 int ix;
1614
1615 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1616 {
1617 xfree (current->data);
1618 }
1619 VEC_free (memory_read_result_s, v);
1620}
1621
1622VEC(memory_read_result_s) *
1623read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1624{
1625 VEC(memory_read_result_s) *result = 0;
1626
1627 LONGEST xfered = 0;
d5086790
VP
1628 while (xfered < len)
1629 {
8dedea02
VP
1630 struct mem_region *region = lookup_mem_region (offset + xfered);
1631 LONGEST rlen;
5d502164 1632
8dedea02
VP
1633 /* If there is no explicit region, a fake one should be created. */
1634 gdb_assert (region);
1635
1636 if (region->hi == 0)
1637 rlen = len - xfered;
1638 else
1639 rlen = region->hi - offset;
1640
1641 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1642 {
c378eb4e 1643 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1644 if the region is explicitly marked inaccessible, or
1645 'inaccessible-by-default' is in effect. */
1646 xfered += rlen;
1647 }
1648 else
1649 {
1650 LONGEST to_read = min (len - xfered, rlen);
1651 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1652
1653 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1654 (gdb_byte *) buffer,
1655 offset + xfered, to_read);
1656 /* Call an observer, notifying them of the xfer progress? */
d5086790 1657 if (xfer <= 0)
d5086790 1658 {
c378eb4e 1659 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1660 some subrange. */
1661 xfree (buffer);
3e43a32a
MS
1662 read_whatever_is_readable (ops, offset + xfered,
1663 offset + xfered + to_read, &result);
8dedea02 1664 xfered += to_read;
d5086790 1665 }
8dedea02
VP
1666 else
1667 {
1668 struct memory_read_result r;
1669 r.data = buffer;
1670 r.begin = offset + xfered;
1671 r.end = r.begin + xfer;
1672 VEC_safe_push (memory_read_result_s, result, &r);
1673 xfered += xfer;
1674 }
1675 QUIT;
d5086790 1676 }
d5086790 1677 }
8dedea02 1678 return result;
d5086790
VP
1679}
1680
8dedea02 1681
cf7a04e8
DJ
1682/* An alternative to target_write with progress callbacks. */
1683
1e3ff5ad 1684LONGEST
cf7a04e8
DJ
1685target_write_with_progress (struct target_ops *ops,
1686 enum target_object object,
1687 const char *annex, const gdb_byte *buf,
1688 ULONGEST offset, LONGEST len,
1689 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1690{
1691 LONGEST xfered = 0;
a76d924d
DJ
1692
1693 /* Give the progress callback a chance to set up. */
1694 if (progress)
1695 (*progress) (0, baton);
1696
1e3ff5ad
AC
1697 while (xfered < len)
1698 {
9b409511
YQ
1699 ULONGEST xfered_len;
1700 enum target_xfer_status status;
1701
1702 status = target_write_partial (ops, object, annex,
1703 (gdb_byte *) buf + xfered,
1704 offset + xfered, len - xfered,
1705 &xfered_len);
cf7a04e8 1706
5c328c05
YQ
1707 if (status != TARGET_XFER_OK)
1708 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1709
1710 if (progress)
9b409511 1711 (*progress) (xfered_len, baton);
cf7a04e8 1712
9b409511 1713 xfered += xfered_len;
1e3ff5ad
AC
1714 QUIT;
1715 }
1716 return len;
1717}
1718
7f79c47e
DE
1719/* For docs on target_write see target.h. */
1720
cf7a04e8
DJ
1721LONGEST
1722target_write (struct target_ops *ops,
1723 enum target_object object,
1724 const char *annex, const gdb_byte *buf,
1725 ULONGEST offset, LONGEST len)
1726{
1727 return target_write_with_progress (ops, object, annex, buf, offset, len,
1728 NULL, NULL);
1729}
1730
159f81f3
DJ
1731/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1732 the size of the transferred data. PADDING additional bytes are
1733 available in *BUF_P. This is a helper function for
1734 target_read_alloc; see the declaration of that function for more
1735 information. */
13547ab6 1736
159f81f3
DJ
1737static LONGEST
1738target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1739 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1740{
1741 size_t buf_alloc, buf_pos;
1742 gdb_byte *buf;
13547ab6
DJ
1743
1744 /* This function does not have a length parameter; it reads the
1745 entire OBJECT). Also, it doesn't support objects fetched partly
1746 from one target and partly from another (in a different stratum,
1747 e.g. a core file and an executable). Both reasons make it
1748 unsuitable for reading memory. */
1749 gdb_assert (object != TARGET_OBJECT_MEMORY);
1750
1751 /* Start by reading up to 4K at a time. The target will throttle
1752 this number down if necessary. */
1753 buf_alloc = 4096;
1754 buf = xmalloc (buf_alloc);
1755 buf_pos = 0;
1756 while (1)
1757 {
9b409511
YQ
1758 ULONGEST xfered_len;
1759 enum target_xfer_status status;
1760
1761 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1762 buf_pos, buf_alloc - buf_pos - padding,
1763 &xfered_len);
1764
1765 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1766 {
1767 /* Read all there was. */
1768 if (buf_pos == 0)
1769 xfree (buf);
1770 else
1771 *buf_p = buf;
1772 return buf_pos;
1773 }
9b409511
YQ
1774 else if (status != TARGET_XFER_OK)
1775 {
1776 /* An error occurred. */
1777 xfree (buf);
1778 return TARGET_XFER_E_IO;
1779 }
13547ab6 1780
9b409511 1781 buf_pos += xfered_len;
13547ab6
DJ
1782
1783 /* If the buffer is filling up, expand it. */
1784 if (buf_alloc < buf_pos * 2)
1785 {
1786 buf_alloc *= 2;
1787 buf = xrealloc (buf, buf_alloc);
1788 }
1789
1790 QUIT;
1791 }
1792}
1793
159f81f3
DJ
1794/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1795 the size of the transferred data. See the declaration in "target.h"
1796 function for more information about the return value. */
1797
1798LONGEST
1799target_read_alloc (struct target_ops *ops, enum target_object object,
1800 const char *annex, gdb_byte **buf_p)
1801{
1802 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1803}
1804
1805/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1806 returned as a string, allocated using xmalloc. If an error occurs
1807 or the transfer is unsupported, NULL is returned. Empty objects
1808 are returned as allocated but empty strings. A warning is issued
1809 if the result contains any embedded NUL bytes. */
1810
1811char *
1812target_read_stralloc (struct target_ops *ops, enum target_object object,
1813 const char *annex)
1814{
39086a0e
PA
1815 gdb_byte *buffer;
1816 char *bufstr;
7313baad 1817 LONGEST i, transferred;
159f81f3 1818
39086a0e
PA
1819 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1820 bufstr = (char *) buffer;
159f81f3
DJ
1821
1822 if (transferred < 0)
1823 return NULL;
1824
1825 if (transferred == 0)
1826 return xstrdup ("");
1827
39086a0e 1828 bufstr[transferred] = 0;
7313baad
UW
1829
1830 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1831 for (i = strlen (bufstr); i < transferred; i++)
1832 if (bufstr[i] != 0)
7313baad
UW
1833 {
1834 warning (_("target object %d, annex %s, "
1835 "contained unexpected null characters"),
1836 (int) object, annex ? annex : "(none)");
1837 break;
1838 }
159f81f3 1839
39086a0e 1840 return bufstr;
159f81f3
DJ
1841}
1842
b6591e8b
AC
1843/* Memory transfer methods. */
1844
1845void
1b0ba102 1846get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1847 LONGEST len)
1848{
07b82ea5
PA
1849 /* This method is used to read from an alternate, non-current
1850 target. This read must bypass the overlay support (as symbols
1851 don't match this target), and GDB's internal cache (wrong cache
1852 for this target). */
1853 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1854 != len)
578d3588 1855 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1856}
1857
1858ULONGEST
5d502164
MS
1859get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1860 int len, enum bfd_endian byte_order)
b6591e8b 1861{
f6519ebc 1862 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1863
1864 gdb_assert (len <= sizeof (buf));
1865 get_target_memory (ops, addr, buf, len);
e17a4113 1866 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1867}
1868
3db08215
MM
1869/* See target.h. */
1870
d914c394
SS
1871int
1872target_insert_breakpoint (struct gdbarch *gdbarch,
1873 struct bp_target_info *bp_tgt)
1874{
1875 if (!may_insert_breakpoints)
1876 {
1877 warning (_("May not insert breakpoints"));
1878 return 1;
1879 }
1880
6b84065d
TT
1881 return current_target.to_insert_breakpoint (&current_target,
1882 gdbarch, bp_tgt);
d914c394
SS
1883}
1884
3db08215
MM
1885/* See target.h. */
1886
d914c394 1887int
6b84065d
TT
1888target_remove_breakpoint (struct gdbarch *gdbarch,
1889 struct bp_target_info *bp_tgt)
d914c394
SS
1890{
1891 /* This is kind of a weird case to handle, but the permission might
1892 have been changed after breakpoints were inserted - in which case
1893 we should just take the user literally and assume that any
1894 breakpoints should be left in place. */
1895 if (!may_insert_breakpoints)
1896 {
1897 warning (_("May not remove breakpoints"));
1898 return 1;
1899 }
1900
6b84065d
TT
1901 return current_target.to_remove_breakpoint (&current_target,
1902 gdbarch, bp_tgt);
d914c394
SS
1903}
1904
c906108c 1905static void
fba45db2 1906target_info (char *args, int from_tty)
c906108c
SS
1907{
1908 struct target_ops *t;
c906108c 1909 int has_all_mem = 0;
c5aa993b 1910
c906108c 1911 if (symfile_objfile != NULL)
4262abfb
JK
1912 printf_unfiltered (_("Symbols from \"%s\".\n"),
1913 objfile_name (symfile_objfile));
c906108c 1914
258b763a 1915 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1916 {
c35b1492 1917 if (!(*t->to_has_memory) (t))
c906108c
SS
1918 continue;
1919
c5aa993b 1920 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1921 continue;
1922 if (has_all_mem)
3e43a32a
MS
1923 printf_unfiltered (_("\tWhile running this, "
1924 "GDB does not access memory from...\n"));
c5aa993b
JM
1925 printf_unfiltered ("%s:\n", t->to_longname);
1926 (t->to_files_info) (t);
c35b1492 1927 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1928 }
1929}
1930
fd79ecee
DJ
1931/* This function is called before any new inferior is created, e.g.
1932 by running a program, attaching, or connecting to a target.
1933 It cleans up any state from previous invocations which might
1934 change between runs. This is a subset of what target_preopen
1935 resets (things which might change between targets). */
1936
1937void
1938target_pre_inferior (int from_tty)
1939{
c378eb4e 1940 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1941 inferior might have survived and is entirely wrong for the new
c378eb4e 1942 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1943 to reproduce:
1944
1945 bash$ ./foo&
1946 [1] 4711
1947 bash$ ./foo&
1948 [1] 4712
1949 bash$ gdb ./foo
1950 [...]
1951 (gdb) attach 4711
1952 (gdb) detach
1953 (gdb) attach 4712
1954 Cannot access memory at address 0xdeadbeef
1955 */
b9db4ced 1956
50c71eaf
PA
1957 /* In some OSs, the shared library list is the same/global/shared
1958 across inferiors. If code is shared between processes, so are
1959 memory regions and features. */
f5656ead 1960 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
1961 {
1962 no_shared_libraries (NULL, from_tty);
1963
1964 invalidate_target_mem_regions ();
424163ea 1965
50c71eaf
PA
1966 target_clear_description ();
1967 }
8ffcbaaf
YQ
1968
1969 agent_capability_invalidate ();
fd79ecee
DJ
1970}
1971
b8fa0bfa
PA
1972/* Callback for iterate_over_inferiors. Gets rid of the given
1973 inferior. */
1974
1975static int
1976dispose_inferior (struct inferior *inf, void *args)
1977{
1978 struct thread_info *thread;
1979
1980 thread = any_thread_of_process (inf->pid);
1981 if (thread)
1982 {
1983 switch_to_thread (thread->ptid);
1984
1985 /* Core inferiors actually should be detached, not killed. */
1986 if (target_has_execution)
1987 target_kill ();
1988 else
1989 target_detach (NULL, 0);
1990 }
1991
1992 return 0;
1993}
1994
c906108c
SS
1995/* This is to be called by the open routine before it does
1996 anything. */
1997
1998void
fba45db2 1999target_preopen (int from_tty)
c906108c 2000{
c5aa993b 2001 dont_repeat ();
c906108c 2002
b8fa0bfa 2003 if (have_inferiors ())
c5aa993b 2004 {
adf40b2e 2005 if (!from_tty
b8fa0bfa
PA
2006 || !have_live_inferiors ()
2007 || query (_("A program is being debugged already. Kill it? ")))
2008 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2009 else
8a3fe4f8 2010 error (_("Program not killed."));
c906108c
SS
2011 }
2012
2013 /* Calling target_kill may remove the target from the stack. But if
2014 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2015 /* Leave the exec target, though. The user may be switching from a
2016 live process to a core of the same program. */
460014f5 2017 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2018
2019 target_pre_inferior (from_tty);
c906108c
SS
2020}
2021
2022/* Detach a target after doing deferred register stores. */
2023
2024void
52554a0e 2025target_detach (const char *args, int from_tty)
c906108c 2026{
136d6dae
VP
2027 struct target_ops* t;
2028
f5656ead 2029 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2030 /* Don't remove global breakpoints here. They're removed on
2031 disconnection from the target. */
2032 ;
2033 else
2034 /* If we're in breakpoints-always-inserted mode, have to remove
2035 them before detaching. */
dfd4cc63 2036 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2037
24291992
PA
2038 prepare_for_detach ();
2039
09da0d0a 2040 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2041}
2042
6ad8ae5c 2043void
fee354ee 2044target_disconnect (const char *args, int from_tty)
6ad8ae5c 2045{
50c71eaf
PA
2046 /* If we're in breakpoints-always-inserted mode or if breakpoints
2047 are global across processes, we have to remove them before
2048 disconnecting. */
74960c60
VP
2049 remove_breakpoints ();
2050
86a0854a 2051 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2052}
2053
117de6a9 2054ptid_t
47608cb1 2055target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2056{
a7068b60 2057 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2058}
2059
2060char *
2061target_pid_to_str (ptid_t ptid)
2062{
770234d3 2063 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2064}
2065
4694da01
TT
2066char *
2067target_thread_name (struct thread_info *info)
2068{
825828fc 2069 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2070}
2071
e1ac3328 2072void
2ea28649 2073target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2074{
28439f5e
PA
2075 struct target_ops *t;
2076
4e5d721f 2077 target_dcache_invalidate ();
28439f5e 2078
6b84065d 2079 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2080
6b84065d 2081 registers_changed_ptid (ptid);
251bde03
PA
2082 /* We only set the internal executing state here. The user/frontend
2083 running state is set at a higher level. */
6b84065d 2084 set_executing (ptid, 1);
6b84065d 2085 clear_inline_frame_state (ptid);
e1ac3328 2086}
2455069d
UW
2087
2088void
2089target_pass_signals (int numsigs, unsigned char *pass_signals)
2090{
035cad7f 2091 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2092}
2093
9b224c5e
PA
2094void
2095target_program_signals (int numsigs, unsigned char *program_signals)
2096{
7d4f8efa
TT
2097 (*current_target.to_program_signals) (&current_target,
2098 numsigs, program_signals);
9b224c5e
PA
2099}
2100
098dba18
TT
2101static int
2102default_follow_fork (struct target_ops *self, int follow_child,
2103 int detach_fork)
2104{
2105 /* Some target returned a fork event, but did not know how to follow it. */
2106 internal_error (__FILE__, __LINE__,
2107 _("could not find a target to follow fork"));
2108}
2109
ee057212
DJ
2110/* Look through the list of possible targets for a target that can
2111 follow forks. */
2112
2113int
07107ca6 2114target_follow_fork (int follow_child, int detach_fork)
ee057212 2115{
a7068b60
TT
2116 return current_target.to_follow_fork (&current_target,
2117 follow_child, detach_fork);
ee057212
DJ
2118}
2119
8d657035
TT
2120static void
2121default_mourn_inferior (struct target_ops *self)
2122{
2123 internal_error (__FILE__, __LINE__,
2124 _("could not find a target to follow mourn inferior"));
2125}
2126
136d6dae
VP
2127void
2128target_mourn_inferior (void)
2129{
8d657035 2130 current_target.to_mourn_inferior (&current_target);
136d6dae 2131
8d657035
TT
2132 /* We no longer need to keep handles on any of the object files.
2133 Make sure to release them to avoid unnecessarily locking any
2134 of them while we're not actually debugging. */
2135 bfd_cache_close_all ();
136d6dae
VP
2136}
2137
424163ea
DJ
2138/* Look for a target which can describe architectural features, starting
2139 from TARGET. If we find one, return its description. */
2140
2141const struct target_desc *
2142target_read_description (struct target_ops *target)
2143{
2117c711 2144 return target->to_read_description (target);
424163ea
DJ
2145}
2146
58a5184e 2147/* This implements a basic search of memory, reading target memory and
08388c79
DE
2148 performing the search here (as opposed to performing the search in on the
2149 target side with, for example, gdbserver). */
2150
2151int
2152simple_search_memory (struct target_ops *ops,
2153 CORE_ADDR start_addr, ULONGEST search_space_len,
2154 const gdb_byte *pattern, ULONGEST pattern_len,
2155 CORE_ADDR *found_addrp)
2156{
2157 /* NOTE: also defined in find.c testcase. */
2158#define SEARCH_CHUNK_SIZE 16000
2159 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2160 /* Buffer to hold memory contents for searching. */
2161 gdb_byte *search_buf;
2162 unsigned search_buf_size;
2163 struct cleanup *old_cleanups;
2164
2165 search_buf_size = chunk_size + pattern_len - 1;
2166
2167 /* No point in trying to allocate a buffer larger than the search space. */
2168 if (search_space_len < search_buf_size)
2169 search_buf_size = search_space_len;
2170
2171 search_buf = malloc (search_buf_size);
2172 if (search_buf == NULL)
5e1471f5 2173 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2174 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2175
2176 /* Prime the search buffer. */
2177
2178 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2179 search_buf, start_addr, search_buf_size) != search_buf_size)
2180 {
b3dc46ff
AB
2181 warning (_("Unable to access %s bytes of target "
2182 "memory at %s, halting search."),
2183 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2184 do_cleanups (old_cleanups);
2185 return -1;
2186 }
2187
2188 /* Perform the search.
2189
2190 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2191 When we've scanned N bytes we copy the trailing bytes to the start and
2192 read in another N bytes. */
2193
2194 while (search_space_len >= pattern_len)
2195 {
2196 gdb_byte *found_ptr;
2197 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2198
2199 found_ptr = memmem (search_buf, nr_search_bytes,
2200 pattern, pattern_len);
2201
2202 if (found_ptr != NULL)
2203 {
2204 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2205
08388c79
DE
2206 *found_addrp = found_addr;
2207 do_cleanups (old_cleanups);
2208 return 1;
2209 }
2210
2211 /* Not found in this chunk, skip to next chunk. */
2212
2213 /* Don't let search_space_len wrap here, it's unsigned. */
2214 if (search_space_len >= chunk_size)
2215 search_space_len -= chunk_size;
2216 else
2217 search_space_len = 0;
2218
2219 if (search_space_len >= pattern_len)
2220 {
2221 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2222 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2223 int nr_to_read;
2224
2225 /* Copy the trailing part of the previous iteration to the front
2226 of the buffer for the next iteration. */
2227 gdb_assert (keep_len == pattern_len - 1);
2228 memcpy (search_buf, search_buf + chunk_size, keep_len);
2229
2230 nr_to_read = min (search_space_len - keep_len, chunk_size);
2231
2232 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2233 search_buf + keep_len, read_addr,
2234 nr_to_read) != nr_to_read)
2235 {
b3dc46ff 2236 warning (_("Unable to access %s bytes of target "
9b20d036 2237 "memory at %s, halting search."),
b3dc46ff 2238 plongest (nr_to_read),
08388c79
DE
2239 hex_string (read_addr));
2240 do_cleanups (old_cleanups);
2241 return -1;
2242 }
2243
2244 start_addr += chunk_size;
2245 }
2246 }
2247
2248 /* Not found. */
2249
2250 do_cleanups (old_cleanups);
2251 return 0;
2252}
2253
58a5184e
TT
2254/* Default implementation of memory-searching. */
2255
2256static int
2257default_search_memory (struct target_ops *self,
2258 CORE_ADDR start_addr, ULONGEST search_space_len,
2259 const gdb_byte *pattern, ULONGEST pattern_len,
2260 CORE_ADDR *found_addrp)
2261{
2262 /* Start over from the top of the target stack. */
2263 return simple_search_memory (current_target.beneath,
2264 start_addr, search_space_len,
2265 pattern, pattern_len, found_addrp);
2266}
2267
08388c79
DE
2268/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2269 sequence of bytes in PATTERN with length PATTERN_LEN.
2270
2271 The result is 1 if found, 0 if not found, and -1 if there was an error
2272 requiring halting of the search (e.g. memory read error).
2273 If the pattern is found the address is recorded in FOUND_ADDRP. */
2274
2275int
2276target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2277 const gdb_byte *pattern, ULONGEST pattern_len,
2278 CORE_ADDR *found_addrp)
2279{
a7068b60
TT
2280 return current_target.to_search_memory (&current_target, start_addr,
2281 search_space_len,
2282 pattern, pattern_len, found_addrp);
08388c79
DE
2283}
2284
8edfe269
DJ
2285/* Look through the currently pushed targets. If none of them will
2286 be able to restart the currently running process, issue an error
2287 message. */
2288
2289void
2290target_require_runnable (void)
2291{
2292 struct target_ops *t;
2293
2294 for (t = target_stack; t != NULL; t = t->beneath)
2295 {
2296 /* If this target knows how to create a new program, then
2297 assume we will still be able to after killing the current
2298 one. Either killing and mourning will not pop T, or else
2299 find_default_run_target will find it again. */
2300 if (t->to_create_inferior != NULL)
2301 return;
2302
548740d6 2303 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2304 create inferiors. Assume they will be pushed again if
2305 necessary, and continue to the process_stratum. */
85e747d2 2306 if (t->to_stratum == thread_stratum
548740d6 2307 || t->to_stratum == record_stratum
85e747d2 2308 || t->to_stratum == arch_stratum)
8edfe269
DJ
2309 continue;
2310
3e43a32a
MS
2311 error (_("The \"%s\" target does not support \"run\". "
2312 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2313 t->to_shortname);
2314 }
2315
2316 /* This function is only called if the target is running. In that
2317 case there should have been a process_stratum target and it
c378eb4e 2318 should either know how to create inferiors, or not... */
9b20d036 2319 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2320}
2321
6a3cb8e8
PA
2322/* Whether GDB is allowed to fall back to the default run target for
2323 "run", "attach", etc. when no target is connected yet. */
2324static int auto_connect_native_target = 1;
2325
2326static void
2327show_auto_connect_native_target (struct ui_file *file, int from_tty,
2328 struct cmd_list_element *c, const char *value)
2329{
2330 fprintf_filtered (file,
2331 _("Whether GDB may automatically connect to the "
2332 "native target is %s.\n"),
2333 value);
2334}
2335
c906108c
SS
2336/* Look through the list of possible targets for a target that can
2337 execute a run or attach command without any other data. This is
2338 used to locate the default process stratum.
2339
5f667f2d
PA
2340 If DO_MESG is not NULL, the result is always valid (error() is
2341 called for errors); else, return NULL on error. */
c906108c
SS
2342
2343static struct target_ops *
fba45db2 2344find_default_run_target (char *do_mesg)
c906108c 2345{
c906108c 2346 struct target_ops *runable = NULL;
c906108c 2347
6a3cb8e8 2348 if (auto_connect_native_target)
c906108c 2349 {
89a1c21a 2350 struct target_ops *t;
6a3cb8e8 2351 int count = 0;
89a1c21a 2352 int i;
6a3cb8e8 2353
89a1c21a 2354 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2355 {
89a1c21a 2356 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2357 {
89a1c21a 2358 runable = t;
6a3cb8e8
PA
2359 ++count;
2360 }
c906108c 2361 }
6a3cb8e8
PA
2362
2363 if (count != 1)
2364 runable = NULL;
c906108c
SS
2365 }
2366
6a3cb8e8 2367 if (runable == NULL)
5f667f2d
PA
2368 {
2369 if (do_mesg)
2370 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2371 else
2372 return NULL;
2373 }
c906108c
SS
2374
2375 return runable;
2376}
2377
b3ccfe11 2378/* See target.h. */
c906108c 2379
b3ccfe11
TT
2380struct target_ops *
2381find_attach_target (void)
c906108c
SS
2382{
2383 struct target_ops *t;
2384
b3ccfe11
TT
2385 /* If a target on the current stack can attach, use it. */
2386 for (t = current_target.beneath; t != NULL; t = t->beneath)
2387 {
2388 if (t->to_attach != NULL)
2389 break;
2390 }
c906108c 2391
b3ccfe11
TT
2392 /* Otherwise, use the default run target for attaching. */
2393 if (t == NULL)
2394 t = find_default_run_target ("attach");
b84876c2 2395
b3ccfe11 2396 return t;
b84876c2
PA
2397}
2398
b3ccfe11 2399/* See target.h. */
b84876c2 2400
b3ccfe11
TT
2401struct target_ops *
2402find_run_target (void)
9908b566
VP
2403{
2404 struct target_ops *t;
2405
b3ccfe11
TT
2406 /* If a target on the current stack can attach, use it. */
2407 for (t = current_target.beneath; t != NULL; t = t->beneath)
2408 {
2409 if (t->to_create_inferior != NULL)
2410 break;
2411 }
5d502164 2412
b3ccfe11
TT
2413 /* Otherwise, use the default run target. */
2414 if (t == NULL)
2415 t = find_default_run_target ("run");
9908b566 2416
b3ccfe11 2417 return t;
9908b566
VP
2418}
2419
145b16a9
UW
2420/* Implement the "info proc" command. */
2421
451b7c33 2422int
7bc112c1 2423target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2424{
2425 struct target_ops *t;
2426
2427 /* If we're already connected to something that can get us OS
2428 related data, use it. Otherwise, try using the native
2429 target. */
2430 if (current_target.to_stratum >= process_stratum)
2431 t = current_target.beneath;
2432 else
2433 t = find_default_run_target (NULL);
2434
2435 for (; t != NULL; t = t->beneath)
2436 {
2437 if (t->to_info_proc != NULL)
2438 {
2439 t->to_info_proc (t, args, what);
2440
2441 if (targetdebug)
2442 fprintf_unfiltered (gdb_stdlog,
2443 "target_info_proc (\"%s\", %d)\n", args, what);
2444
451b7c33 2445 return 1;
145b16a9
UW
2446 }
2447 }
2448
451b7c33 2449 return 0;
145b16a9
UW
2450}
2451
03583c20 2452static int
2bfc0540 2453find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2454{
2455 struct target_ops *t;
2456
2457 t = find_default_run_target (NULL);
2458 if (t && t->to_supports_disable_randomization)
2bfc0540 2459 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2460 return 0;
2461}
2462
2463int
2464target_supports_disable_randomization (void)
2465{
2466 struct target_ops *t;
2467
2468 for (t = &current_target; t != NULL; t = t->beneath)
2469 if (t->to_supports_disable_randomization)
2bfc0540 2470 return t->to_supports_disable_randomization (t);
03583c20
UW
2471
2472 return 0;
2473}
9908b566 2474
07e059b5
VP
2475char *
2476target_get_osdata (const char *type)
2477{
07e059b5
VP
2478 struct target_ops *t;
2479
739ef7fb
PA
2480 /* If we're already connected to something that can get us OS
2481 related data, use it. Otherwise, try using the native
2482 target. */
2483 if (current_target.to_stratum >= process_stratum)
6d097e65 2484 t = current_target.beneath;
739ef7fb
PA
2485 else
2486 t = find_default_run_target ("get OS data");
07e059b5
VP
2487
2488 if (!t)
2489 return NULL;
2490
6d097e65 2491 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2492}
2493
8eaff7cd
TT
2494static struct address_space *
2495default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2496{
2497 struct inferior *inf;
6c95b8df
PA
2498
2499 /* Fall-back to the "main" address space of the inferior. */
2500 inf = find_inferior_pid (ptid_get_pid (ptid));
2501
2502 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2503 internal_error (__FILE__, __LINE__,
9b20d036
MS
2504 _("Can't determine the current "
2505 "address space of thread %s\n"),
6c95b8df
PA
2506 target_pid_to_str (ptid));
2507
2508 return inf->aspace;
2509}
2510
8eaff7cd
TT
2511/* Determine the current address space of thread PTID. */
2512
2513struct address_space *
2514target_thread_address_space (ptid_t ptid)
2515{
2516 struct address_space *aspace;
2517
2518 aspace = current_target.to_thread_address_space (&current_target, ptid);
2519 gdb_assert (aspace != NULL);
2520
8eaff7cd
TT
2521 return aspace;
2522}
2523
7313baad
UW
2524
2525/* Target file operations. */
2526
2527static struct target_ops *
2528default_fileio_target (void)
2529{
2530 /* If we're already connected to something that can perform
2531 file I/O, use it. Otherwise, try using the native target. */
2532 if (current_target.to_stratum >= process_stratum)
2533 return current_target.beneath;
2534 else
2535 return find_default_run_target ("file I/O");
2536}
2537
2538/* Open FILENAME on the target, using FLAGS and MODE. Return a
2539 target file descriptor, or -1 if an error occurs (and set
2540 *TARGET_ERRNO). */
2541int
2542target_fileio_open (const char *filename, int flags, int mode,
2543 int *target_errno)
2544{
2545 struct target_ops *t;
2546
2547 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2548 {
2549 if (t->to_fileio_open != NULL)
2550 {
cd897586 2551 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2552
2553 if (targetdebug)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2556 filename, flags, mode,
2557 fd, fd != -1 ? 0 : *target_errno);
2558 return fd;
2559 }
2560 }
2561
2562 *target_errno = FILEIO_ENOSYS;
2563 return -1;
2564}
2565
2566/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2567 Return the number of bytes written, or -1 if an error occurs
2568 (and set *TARGET_ERRNO). */
2569int
2570target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2571 ULONGEST offset, int *target_errno)
2572{
2573 struct target_ops *t;
2574
2575 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2576 {
2577 if (t->to_fileio_pwrite != NULL)
2578 {
0d866f62 2579 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2580 target_errno);
2581
2582 if (targetdebug)
2583 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2584 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2585 "= %d (%d)\n",
a71b5a38 2586 fd, len, pulongest (offset),
7313baad
UW
2587 ret, ret != -1 ? 0 : *target_errno);
2588 return ret;
2589 }
2590 }
2591
2592 *target_errno = FILEIO_ENOSYS;
2593 return -1;
2594}
2595
2596/* Read up to LEN bytes FD on the target into READ_BUF.
2597 Return the number of bytes read, or -1 if an error occurs
2598 (and set *TARGET_ERRNO). */
2599int
2600target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2601 ULONGEST offset, int *target_errno)
2602{
2603 struct target_ops *t;
2604
2605 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2606 {
2607 if (t->to_fileio_pread != NULL)
2608 {
a3be983c 2609 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2610 target_errno);
2611
2612 if (targetdebug)
2613 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2614 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2615 "= %d (%d)\n",
a71b5a38 2616 fd, len, pulongest (offset),
7313baad
UW
2617 ret, ret != -1 ? 0 : *target_errno);
2618 return ret;
2619 }
2620 }
2621
2622 *target_errno = FILEIO_ENOSYS;
2623 return -1;
2624}
2625
2626/* Close FD on the target. Return 0, or -1 if an error occurs
2627 (and set *TARGET_ERRNO). */
2628int
2629target_fileio_close (int fd, int *target_errno)
2630{
2631 struct target_ops *t;
2632
2633 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2634 {
2635 if (t->to_fileio_close != NULL)
2636 {
df39ea25 2637 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2638
2639 if (targetdebug)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "target_fileio_close (%d) = %d (%d)\n",
2642 fd, ret, ret != -1 ? 0 : *target_errno);
2643 return ret;
2644 }
2645 }
2646
2647 *target_errno = FILEIO_ENOSYS;
2648 return -1;
2649}
2650
2651/* Unlink FILENAME on the target. Return 0, or -1 if an error
2652 occurs (and set *TARGET_ERRNO). */
2653int
2654target_fileio_unlink (const char *filename, int *target_errno)
2655{
2656 struct target_ops *t;
2657
2658 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2659 {
2660 if (t->to_fileio_unlink != NULL)
2661 {
dbbca37d 2662 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2663
2664 if (targetdebug)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "target_fileio_unlink (%s) = %d (%d)\n",
2667 filename, ret, ret != -1 ? 0 : *target_errno);
2668 return ret;
2669 }
2670 }
2671
2672 *target_errno = FILEIO_ENOSYS;
2673 return -1;
2674}
2675
b9e7b9c3
UW
2676/* Read value of symbolic link FILENAME on the target. Return a
2677 null-terminated string allocated via xmalloc, or NULL if an error
2678 occurs (and set *TARGET_ERRNO). */
2679char *
2680target_fileio_readlink (const char *filename, int *target_errno)
2681{
2682 struct target_ops *t;
2683
2684 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2685 {
2686 if (t->to_fileio_readlink != NULL)
2687 {
fab5aa7c 2688 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2689
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "target_fileio_readlink (%s) = %s (%d)\n",
2693 filename, ret? ret : "(nil)",
2694 ret? 0 : *target_errno);
2695 return ret;
2696 }
2697 }
2698
2699 *target_errno = FILEIO_ENOSYS;
2700 return NULL;
2701}
2702
7313baad
UW
2703static void
2704target_fileio_close_cleanup (void *opaque)
2705{
2706 int fd = *(int *) opaque;
2707 int target_errno;
2708
2709 target_fileio_close (fd, &target_errno);
2710}
2711
2712/* Read target file FILENAME. Store the result in *BUF_P and
2713 return the size of the transferred data. PADDING additional bytes are
2714 available in *BUF_P. This is a helper function for
2715 target_fileio_read_alloc; see the declaration of that function for more
2716 information. */
2717
2718static LONGEST
2719target_fileio_read_alloc_1 (const char *filename,
2720 gdb_byte **buf_p, int padding)
2721{
2722 struct cleanup *close_cleanup;
2723 size_t buf_alloc, buf_pos;
2724 gdb_byte *buf;
2725 LONGEST n;
2726 int fd;
2727 int target_errno;
2728
2729 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2730 if (fd == -1)
2731 return -1;
2732
2733 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2734
2735 /* Start by reading up to 4K at a time. The target will throttle
2736 this number down if necessary. */
2737 buf_alloc = 4096;
2738 buf = xmalloc (buf_alloc);
2739 buf_pos = 0;
2740 while (1)
2741 {
2742 n = target_fileio_pread (fd, &buf[buf_pos],
2743 buf_alloc - buf_pos - padding, buf_pos,
2744 &target_errno);
2745 if (n < 0)
2746 {
2747 /* An error occurred. */
2748 do_cleanups (close_cleanup);
2749 xfree (buf);
2750 return -1;
2751 }
2752 else if (n == 0)
2753 {
2754 /* Read all there was. */
2755 do_cleanups (close_cleanup);
2756 if (buf_pos == 0)
2757 xfree (buf);
2758 else
2759 *buf_p = buf;
2760 return buf_pos;
2761 }
2762
2763 buf_pos += n;
2764
2765 /* If the buffer is filling up, expand it. */
2766 if (buf_alloc < buf_pos * 2)
2767 {
2768 buf_alloc *= 2;
2769 buf = xrealloc (buf, buf_alloc);
2770 }
2771
2772 QUIT;
2773 }
2774}
2775
2776/* Read target file FILENAME. Store the result in *BUF_P and return
2777 the size of the transferred data. See the declaration in "target.h"
2778 function for more information about the return value. */
2779
2780LONGEST
2781target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2782{
2783 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2784}
2785
2786/* Read target file FILENAME. The result is NUL-terminated and
2787 returned as a string, allocated using xmalloc. If an error occurs
2788 or the transfer is unsupported, NULL is returned. Empty objects
2789 are returned as allocated but empty strings. A warning is issued
2790 if the result contains any embedded NUL bytes. */
2791
2792char *
2793target_fileio_read_stralloc (const char *filename)
2794{
39086a0e
PA
2795 gdb_byte *buffer;
2796 char *bufstr;
7313baad
UW
2797 LONGEST i, transferred;
2798
39086a0e
PA
2799 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2800 bufstr = (char *) buffer;
7313baad
UW
2801
2802 if (transferred < 0)
2803 return NULL;
2804
2805 if (transferred == 0)
2806 return xstrdup ("");
2807
39086a0e 2808 bufstr[transferred] = 0;
7313baad
UW
2809
2810 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2811 for (i = strlen (bufstr); i < transferred; i++)
2812 if (bufstr[i] != 0)
7313baad
UW
2813 {
2814 warning (_("target file %s "
2815 "contained unexpected null characters"),
2816 filename);
2817 break;
2818 }
2819
39086a0e 2820 return bufstr;
7313baad
UW
2821}
2822
2823
e0d24f8d 2824static int
31568a15
TT
2825default_region_ok_for_hw_watchpoint (struct target_ops *self,
2826 CORE_ADDR addr, int len)
e0d24f8d 2827{
f5656ead 2828 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2829}
2830
5009afc5
AS
2831static int
2832default_watchpoint_addr_within_range (struct target_ops *target,
2833 CORE_ADDR addr,
2834 CORE_ADDR start, int length)
2835{
2836 return addr >= start && addr < start + length;
2837}
2838
c2250ad1
UW
2839static struct gdbarch *
2840default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2841{
f5656ead 2842 return target_gdbarch ();
c2250ad1
UW
2843}
2844
c906108c 2845static int
555bbdeb
TT
2846return_zero (struct target_ops *ignore)
2847{
2848 return 0;
2849}
2850
2851static int
2852return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2853{
2854 return 0;
2855}
2856
ed9a39eb
JM
2857/*
2858 * Find the next target down the stack from the specified target.
2859 */
2860
2861struct target_ops *
fba45db2 2862find_target_beneath (struct target_ops *t)
ed9a39eb 2863{
258b763a 2864 return t->beneath;
ed9a39eb
JM
2865}
2866
8b06beed
TT
2867/* See target.h. */
2868
2869struct target_ops *
2870find_target_at (enum strata stratum)
2871{
2872 struct target_ops *t;
2873
2874 for (t = current_target.beneath; t != NULL; t = t->beneath)
2875 if (t->to_stratum == stratum)
2876 return t;
2877
2878 return NULL;
2879}
2880
c906108c
SS
2881\f
2882/* The inferior process has died. Long live the inferior! */
2883
2884void
fba45db2 2885generic_mourn_inferior (void)
c906108c 2886{
7f9f62ba 2887 ptid_t ptid;
c906108c 2888
7f9f62ba 2889 ptid = inferior_ptid;
39f77062 2890 inferior_ptid = null_ptid;
7f9f62ba 2891
f59f708a
PA
2892 /* Mark breakpoints uninserted in case something tries to delete a
2893 breakpoint while we delete the inferior's threads (which would
2894 fail, since the inferior is long gone). */
2895 mark_breakpoints_out ();
2896
7f9f62ba
PA
2897 if (!ptid_equal (ptid, null_ptid))
2898 {
2899 int pid = ptid_get_pid (ptid);
6c95b8df 2900 exit_inferior (pid);
7f9f62ba
PA
2901 }
2902
f59f708a
PA
2903 /* Note this wipes step-resume breakpoints, so needs to be done
2904 after exit_inferior, which ends up referencing the step-resume
2905 breakpoints through clear_thread_inferior_resources. */
c906108c 2906 breakpoint_init_inferior (inf_exited);
f59f708a 2907
c906108c
SS
2908 registers_changed ();
2909
c906108c
SS
2910 reopen_exec_file ();
2911 reinit_frame_cache ();
2912
9a4105ab
AC
2913 if (deprecated_detach_hook)
2914 deprecated_detach_hook ();
c906108c
SS
2915}
2916\f
fd0a2a6f
MK
2917/* Convert a normal process ID to a string. Returns the string in a
2918 static buffer. */
c906108c
SS
2919
2920char *
39f77062 2921normal_pid_to_str (ptid_t ptid)
c906108c 2922{
fd0a2a6f 2923 static char buf[32];
c906108c 2924
5fff8fc0 2925 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2926 return buf;
2927}
2928
2c0b251b 2929static char *
770234d3 2930default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2931{
2932 return normal_pid_to_str (ptid);
2933}
2934
9b4eba8e
HZ
2935/* Error-catcher for target_find_memory_regions. */
2936static int
2e73927c
TT
2937dummy_find_memory_regions (struct target_ops *self,
2938 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2939{
9b4eba8e 2940 error (_("Command not implemented for this target."));
be4d1333
MS
2941 return 0;
2942}
2943
9b4eba8e
HZ
2944/* Error-catcher for target_make_corefile_notes. */
2945static char *
fc6691b2
TT
2946dummy_make_corefile_notes (struct target_ops *self,
2947 bfd *ignore1, int *ignore2)
be4d1333 2948{
9b4eba8e 2949 error (_("Command not implemented for this target."));
be4d1333
MS
2950 return NULL;
2951}
2952
c906108c
SS
2953/* Set up the handful of non-empty slots needed by the dummy target
2954 vector. */
2955
2956static void
fba45db2 2957init_dummy_target (void)
c906108c
SS
2958{
2959 dummy_target.to_shortname = "None";
2960 dummy_target.to_longname = "None";
2961 dummy_target.to_doc = "";
03583c20
UW
2962 dummy_target.to_supports_disable_randomization
2963 = find_default_supports_disable_randomization;
c906108c 2964 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
2965 dummy_target.to_has_all_memory = return_zero;
2966 dummy_target.to_has_memory = return_zero;
2967 dummy_target.to_has_stack = return_zero;
2968 dummy_target.to_has_registers = return_zero;
2969 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 2970 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
2971
2972 install_dummy_methods (&dummy_target);
c906108c 2973}
c906108c 2974\f
c906108c 2975
f1c07ab0 2976void
460014f5 2977target_close (struct target_ops *targ)
f1c07ab0 2978{
7fdc1521
TT
2979 gdb_assert (!target_is_pushed (targ));
2980
f1c07ab0 2981 if (targ->to_xclose != NULL)
460014f5 2982 targ->to_xclose (targ);
f1c07ab0 2983 else if (targ->to_close != NULL)
de90e03d 2984 targ->to_close (targ);
947b8855
PA
2985
2986 if (targetdebug)
460014f5 2987 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
2988}
2989
28439f5e
PA
2990int
2991target_thread_alive (ptid_t ptid)
c906108c 2992{
a7068b60 2993 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
2994}
2995
2996void
2997target_find_new_threads (void)
2998{
09b0dc2b 2999 current_target.to_find_new_threads (&current_target);
c906108c
SS
3000}
3001
d914c394
SS
3002void
3003target_stop (ptid_t ptid)
3004{
3005 if (!may_stop)
3006 {
3007 warning (_("May not interrupt or stop the target, ignoring attempt"));
3008 return;
3009 }
3010
1eab8a48 3011 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3012}
3013
09826ec5
PA
3014/* Concatenate ELEM to LIST, a comma separate list, and return the
3015 result. The LIST incoming argument is released. */
3016
3017static char *
3018str_comma_list_concat_elem (char *list, const char *elem)
3019{
3020 if (list == NULL)
3021 return xstrdup (elem);
3022 else
3023 return reconcat (list, list, ", ", elem, (char *) NULL);
3024}
3025
3026/* Helper for target_options_to_string. If OPT is present in
3027 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3028 Returns the new resulting string. OPT is removed from
3029 TARGET_OPTIONS. */
3030
3031static char *
3032do_option (int *target_options, char *ret,
3033 int opt, char *opt_str)
3034{
3035 if ((*target_options & opt) != 0)
3036 {
3037 ret = str_comma_list_concat_elem (ret, opt_str);
3038 *target_options &= ~opt;
3039 }
3040
3041 return ret;
3042}
3043
3044char *
3045target_options_to_string (int target_options)
3046{
3047 char *ret = NULL;
3048
3049#define DO_TARG_OPTION(OPT) \
3050 ret = do_option (&target_options, ret, OPT, #OPT)
3051
3052 DO_TARG_OPTION (TARGET_WNOHANG);
3053
3054 if (target_options != 0)
3055 ret = str_comma_list_concat_elem (ret, "unknown???");
3056
3057 if (ret == NULL)
3058 ret = xstrdup ("");
3059 return ret;
3060}
3061
bf0c5130 3062static void
56be3814
UW
3063debug_print_register (const char * func,
3064 struct regcache *regcache, int regno)
bf0c5130 3065{
f8d29908 3066 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3067
bf0c5130 3068 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3069 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3070 && gdbarch_register_name (gdbarch, regno) != NULL
3071 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3072 fprintf_unfiltered (gdb_stdlog, "(%s)",
3073 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3074 else
3075 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3076 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3077 {
e17a4113 3078 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3079 int i, size = register_size (gdbarch, regno);
e362b510 3080 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3081
0ff58721 3082 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3083 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3084 for (i = 0; i < size; i++)
bf0c5130
AC
3085 {
3086 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3087 }
81c4a259 3088 if (size <= sizeof (LONGEST))
bf0c5130 3089 {
e17a4113 3090 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3091
0b1553bc
UW
3092 fprintf_unfiltered (gdb_stdlog, " %s %s",
3093 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3094 }
3095 }
3096 fprintf_unfiltered (gdb_stdlog, "\n");
3097}
3098
28439f5e
PA
3099void
3100target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3101{
ad5989bd
TT
3102 current_target.to_fetch_registers (&current_target, regcache, regno);
3103 if (targetdebug)
3104 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3105}
3106
28439f5e
PA
3107void
3108target_store_registers (struct regcache *regcache, int regno)
c906108c 3109{
28439f5e 3110 struct target_ops *t;
5d502164 3111
d914c394
SS
3112 if (!may_write_registers)
3113 error (_("Writing to registers is not allowed (regno %d)"), regno);
3114
6b84065d
TT
3115 current_target.to_store_registers (&current_target, regcache, regno);
3116 if (targetdebug)
28439f5e 3117 {
6b84065d 3118 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3119 }
c906108c
SS
3120}
3121
dc146f7c
VP
3122int
3123target_core_of_thread (ptid_t ptid)
3124{
a7068b60 3125 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3126}
3127
936d2992
PA
3128int
3129simple_verify_memory (struct target_ops *ops,
3130 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3131{
3132 LONGEST total_xfered = 0;
3133
3134 while (total_xfered < size)
3135 {
3136 ULONGEST xfered_len;
3137 enum target_xfer_status status;
3138 gdb_byte buf[1024];
3139 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3140
3141 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3142 buf, NULL, lma + total_xfered, howmuch,
3143 &xfered_len);
3144 if (status == TARGET_XFER_OK
3145 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3146 {
3147 total_xfered += xfered_len;
3148 QUIT;
3149 }
3150 else
3151 return 0;
3152 }
3153 return 1;
3154}
3155
3156/* Default implementation of memory verification. */
3157
3158static int
3159default_verify_memory (struct target_ops *self,
3160 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3161{
3162 /* Start over from the top of the target stack. */
3163 return simple_verify_memory (current_target.beneath,
3164 data, memaddr, size);
3165}
3166
4a5e7a5b
PA
3167int
3168target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3169{
a7068b60
TT
3170 return current_target.to_verify_memory (&current_target,
3171 data, memaddr, size);
4a5e7a5b
PA
3172}
3173
9c06b0b4
TJB
3174/* The documentation for this function is in its prototype declaration in
3175 target.h. */
3176
3177int
3178target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3179{
a7068b60
TT
3180 return current_target.to_insert_mask_watchpoint (&current_target,
3181 addr, mask, rw);
9c06b0b4
TJB
3182}
3183
3184/* The documentation for this function is in its prototype declaration in
3185 target.h. */
3186
3187int
3188target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3189{
a7068b60
TT
3190 return current_target.to_remove_mask_watchpoint (&current_target,
3191 addr, mask, rw);
9c06b0b4
TJB
3192}
3193
3194/* The documentation for this function is in its prototype declaration
3195 in target.h. */
3196
3197int
3198target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3199{
6c7e5e5c
TT
3200 return current_target.to_masked_watch_num_registers (&current_target,
3201 addr, mask);
9c06b0b4
TJB
3202}
3203
f1310107
TJB
3204/* The documentation for this function is in its prototype declaration
3205 in target.h. */
3206
3207int
3208target_ranged_break_num_registers (void)
3209{
a134316b 3210 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3211}
3212
02d27625
MM
3213/* See target.h. */
3214
02d27625
MM
3215struct btrace_target_info *
3216target_enable_btrace (ptid_t ptid)
3217{
6dc7fcf4 3218 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3219}
3220
3221/* See target.h. */
3222
3223void
3224target_disable_btrace (struct btrace_target_info *btinfo)
3225{
8dc292d3 3226 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3227}
3228
3229/* See target.h. */
3230
3231void
3232target_teardown_btrace (struct btrace_target_info *btinfo)
3233{
9ace480d 3234 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3235}
3236
3237/* See target.h. */
3238
969c39fb
MM
3239enum btrace_error
3240target_read_btrace (VEC (btrace_block_s) **btrace,
3241 struct btrace_target_info *btinfo,
02d27625
MM
3242 enum btrace_read_type type)
3243{
eb5b20d4 3244 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3245}
3246
d02ed0bb
MM
3247/* See target.h. */
3248
7c1687a9
MM
3249void
3250target_stop_recording (void)
3251{
ee97f592 3252 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3253}
3254
3255/* See target.h. */
3256
d02ed0bb 3257void
85e1311a 3258target_save_record (const char *filename)
d02ed0bb 3259{
f09e2107 3260 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3261}
3262
3263/* See target.h. */
3264
3265int
3266target_supports_delete_record (void)
3267{
3268 struct target_ops *t;
3269
3270 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3271 if (t->to_delete_record != delegate_delete_record
3272 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3273 return 1;
3274
3275 return 0;
3276}
3277
3278/* See target.h. */
3279
3280void
3281target_delete_record (void)
3282{
07366925 3283 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3284}
3285
3286/* See target.h. */
3287
3288int
3289target_record_is_replaying (void)
3290{
dd2e9d25 3291 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3292}
3293
3294/* See target.h. */
3295
3296void
3297target_goto_record_begin (void)
3298{
671e76cc 3299 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3300}
3301
3302/* See target.h. */
3303
3304void
3305target_goto_record_end (void)
3306{
e9179bb3 3307 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3308}
3309
3310/* See target.h. */
3311
3312void
3313target_goto_record (ULONGEST insn)
3314{
05969c84 3315 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3316}
3317
67c86d06
MM
3318/* See target.h. */
3319
3320void
3321target_insn_history (int size, int flags)
3322{
3679abfa 3323 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3324}
3325
3326/* See target.h. */
3327
3328void
3329target_insn_history_from (ULONGEST from, int size, int flags)
3330{
8444ab58 3331 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3332}
3333
3334/* See target.h. */
3335
3336void
3337target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3338{
c29302cc 3339 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3340}
3341
15984c13
MM
3342/* See target.h. */
3343
3344void
3345target_call_history (int size, int flags)
3346{
170049d4 3347 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3348}
3349
3350/* See target.h. */
3351
3352void
3353target_call_history_from (ULONGEST begin, int size, int flags)
3354{
16fc27d6 3355 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3356}
3357
3358/* See target.h. */
3359
3360void
3361target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3362{
115d9817 3363 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3364}
3365
ea001bdc
MM
3366/* See target.h. */
3367
3368const struct frame_unwind *
3369target_get_unwinder (void)
3370{
ac01945b 3371 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3372}
3373
3374/* See target.h. */
3375
3376const struct frame_unwind *
3377target_get_tailcall_unwinder (void)
3378{
ac01945b 3379 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3380}
3381
c0eca49f 3382/* Default implementation of to_decr_pc_after_break. */
118e6252 3383
c0eca49f
TT
3384static CORE_ADDR
3385default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3386 struct gdbarch *gdbarch)
3387{
118e6252
MM
3388 return gdbarch_decr_pc_after_break (gdbarch);
3389}
3390
3391/* See target.h. */
3392
3393CORE_ADDR
3394target_decr_pc_after_break (struct gdbarch *gdbarch)
3395{
c0eca49f 3396 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3397}
3398
5fff78c4
MM
3399/* See target.h. */
3400
3401void
3402target_prepare_to_generate_core (void)
3403{
3404 current_target.to_prepare_to_generate_core (&current_target);
3405}
3406
3407/* See target.h. */
3408
3409void
3410target_done_generating_core (void)
3411{
3412 current_target.to_done_generating_core (&current_target);
3413}
3414
c906108c 3415static void
fba45db2 3416setup_target_debug (void)
c906108c
SS
3417{
3418 memcpy (&debug_target, &current_target, sizeof debug_target);
3419
a7068b60 3420 init_debug_target (&current_target);
c906108c 3421}
c906108c 3422\f
c5aa993b
JM
3423
3424static char targ_desc[] =
3e43a32a
MS
3425"Names of targets and files being debugged.\nShows the entire \
3426stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3427core-file, and process, if any), as well as the symbol file name.";
3428
a53f3625 3429static void
a30bf1f1
TT
3430default_rcmd (struct target_ops *self, const char *command,
3431 struct ui_file *output)
a53f3625
TT
3432{
3433 error (_("\"monitor\" command not supported by this target."));
3434}
3435
96baa820
JM
3436static void
3437do_monitor_command (char *cmd,
3438 int from_tty)
3439{
96baa820
JM
3440 target_rcmd (cmd, gdb_stdtarg);
3441}
3442
87680a14
JB
3443/* Print the name of each layers of our target stack. */
3444
3445static void
3446maintenance_print_target_stack (char *cmd, int from_tty)
3447{
3448 struct target_ops *t;
3449
3450 printf_filtered (_("The current target stack is:\n"));
3451
3452 for (t = target_stack; t != NULL; t = t->beneath)
3453 {
3454 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3455 }
3456}
3457
329ea579
PA
3458/* Controls if targets can report that they can/are async. This is
3459 just for maintainers to use when debugging gdb. */
3460int target_async_permitted = 1;
c6ebd6cf
VP
3461
3462/* The set command writes to this variable. If the inferior is
b5419e49 3463 executing, target_async_permitted is *not* updated. */
329ea579 3464static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3465
3466static void
329ea579
PA
3467maint_set_target_async_command (char *args, int from_tty,
3468 struct cmd_list_element *c)
c6ebd6cf 3469{
c35b1492 3470 if (have_live_inferiors ())
c6ebd6cf
VP
3471 {
3472 target_async_permitted_1 = target_async_permitted;
3473 error (_("Cannot change this setting while the inferior is running."));
3474 }
3475
3476 target_async_permitted = target_async_permitted_1;
3477}
3478
3479static void
329ea579
PA
3480maint_show_target_async_command (struct ui_file *file, int from_tty,
3481 struct cmd_list_element *c,
3482 const char *value)
c6ebd6cf 3483{
3e43a32a
MS
3484 fprintf_filtered (file,
3485 _("Controlling the inferior in "
3486 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3487}
3488
d914c394
SS
3489/* Temporary copies of permission settings. */
3490
3491static int may_write_registers_1 = 1;
3492static int may_write_memory_1 = 1;
3493static int may_insert_breakpoints_1 = 1;
3494static int may_insert_tracepoints_1 = 1;
3495static int may_insert_fast_tracepoints_1 = 1;
3496static int may_stop_1 = 1;
3497
3498/* Make the user-set values match the real values again. */
3499
3500void
3501update_target_permissions (void)
3502{
3503 may_write_registers_1 = may_write_registers;
3504 may_write_memory_1 = may_write_memory;
3505 may_insert_breakpoints_1 = may_insert_breakpoints;
3506 may_insert_tracepoints_1 = may_insert_tracepoints;
3507 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3508 may_stop_1 = may_stop;
3509}
3510
3511/* The one function handles (most of) the permission flags in the same
3512 way. */
3513
3514static void
3515set_target_permissions (char *args, int from_tty,
3516 struct cmd_list_element *c)
3517{
3518 if (target_has_execution)
3519 {
3520 update_target_permissions ();
3521 error (_("Cannot change this setting while the inferior is running."));
3522 }
3523
3524 /* Make the real values match the user-changed values. */
3525 may_write_registers = may_write_registers_1;
3526 may_insert_breakpoints = may_insert_breakpoints_1;
3527 may_insert_tracepoints = may_insert_tracepoints_1;
3528 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3529 may_stop = may_stop_1;
3530 update_observer_mode ();
3531}
3532
3533/* Set memory write permission independently of observer mode. */
3534
3535static void
3536set_write_memory_permission (char *args, int from_tty,
3537 struct cmd_list_element *c)
3538{
3539 /* Make the real values match the user-changed values. */
3540 may_write_memory = may_write_memory_1;
3541 update_observer_mode ();
3542}
3543
3544
c906108c 3545void
fba45db2 3546initialize_targets (void)
c906108c
SS
3547{
3548 init_dummy_target ();
3549 push_target (&dummy_target);
3550
3551 add_info ("target", target_info, targ_desc);
3552 add_info ("files", target_info, targ_desc);
3553
ccce17b0 3554 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3555Set target debugging."), _("\
3556Show target debugging."), _("\
333dabeb 3557When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
3558verbose."),
3559 set_targetdebug,
ccce17b0
YQ
3560 show_targetdebug,
3561 &setdebuglist, &showdebuglist);
3a11626d 3562
2bc416ba 3563 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3564 &trust_readonly, _("\
3565Set mode for reading from readonly sections."), _("\
3566Show mode for reading from readonly sections."), _("\
3a11626d
MS
3567When this mode is on, memory reads from readonly sections (such as .text)\n\
3568will be read from the object file instead of from the target. This will\n\
7915a72c 3569result in significant performance improvement for remote targets."),
2c5b56ce 3570 NULL,
920d2a44 3571 show_trust_readonly,
e707bbc2 3572 &setlist, &showlist);
96baa820
JM
3573
3574 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3575 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3576
87680a14
JB
3577 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3578 _("Print the name of each layer of the internal target stack."),
3579 &maintenanceprintlist);
3580
c6ebd6cf
VP
3581 add_setshow_boolean_cmd ("target-async", no_class,
3582 &target_async_permitted_1, _("\
3583Set whether gdb controls the inferior in asynchronous mode."), _("\
3584Show whether gdb controls the inferior in asynchronous mode."), _("\
3585Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3586 maint_set_target_async_command,
3587 maint_show_target_async_command,
3588 &maintenance_set_cmdlist,
3589 &maintenance_show_cmdlist);
c6ebd6cf 3590
d914c394
SS
3591 add_setshow_boolean_cmd ("may-write-registers", class_support,
3592 &may_write_registers_1, _("\
3593Set permission to write into registers."), _("\
3594Show permission to write into registers."), _("\
3595When this permission is on, GDB may write into the target's registers.\n\
3596Otherwise, any sort of write attempt will result in an error."),
3597 set_target_permissions, NULL,
3598 &setlist, &showlist);
3599
3600 add_setshow_boolean_cmd ("may-write-memory", class_support,
3601 &may_write_memory_1, _("\
3602Set permission to write into target memory."), _("\
3603Show permission to write into target memory."), _("\
3604When this permission is on, GDB may write into the target's memory.\n\
3605Otherwise, any sort of write attempt will result in an error."),
3606 set_write_memory_permission, NULL,
3607 &setlist, &showlist);
3608
3609 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3610 &may_insert_breakpoints_1, _("\
3611Set permission to insert breakpoints in the target."), _("\
3612Show permission to insert breakpoints in the target."), _("\
3613When this permission is on, GDB may insert breakpoints in the program.\n\
3614Otherwise, any sort of insertion attempt will result in an error."),
3615 set_target_permissions, NULL,
3616 &setlist, &showlist);
3617
3618 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3619 &may_insert_tracepoints_1, _("\
3620Set permission to insert tracepoints in the target."), _("\
3621Show permission to insert tracepoints in the target."), _("\
3622When this permission is on, GDB may insert tracepoints in the program.\n\
3623Otherwise, any sort of insertion attempt will result in an error."),
3624 set_target_permissions, NULL,
3625 &setlist, &showlist);
3626
3627 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3628 &may_insert_fast_tracepoints_1, _("\
3629Set permission to insert fast tracepoints in the target."), _("\
3630Show permission to insert fast tracepoints in the target."), _("\
3631When this permission is on, GDB may insert fast tracepoints.\n\
3632Otherwise, any sort of insertion attempt will result in an error."),
3633 set_target_permissions, NULL,
3634 &setlist, &showlist);
3635
3636 add_setshow_boolean_cmd ("may-interrupt", class_support,
3637 &may_stop_1, _("\
3638Set permission to interrupt or signal the target."), _("\
3639Show permission to interrupt or signal the target."), _("\
3640When this permission is on, GDB may interrupt/stop the target's execution.\n\
3641Otherwise, any attempt to interrupt or stop will be ignored."),
3642 set_target_permissions, NULL,
3643 &setlist, &showlist);
6a3cb8e8
PA
3644
3645 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3646 &auto_connect_native_target, _("\
3647Set whether GDB may automatically connect to the native target."), _("\
3648Show whether GDB may automatically connect to the native target."), _("\
3649When on, and GDB is not connected to a target yet, GDB\n\
3650attempts \"run\" and other commands with the native target."),
3651 NULL, show_auto_connect_native_target,
3652 &setlist, &showlist);
c906108c 3653}
This page took 2.994193 seconds and 4 git commands to generate.