Make instream be per UI
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
19ba03f4 350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
7afa63c6 447static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
2f99e8fc
YQ
469int
470target_terminal_is_ours (void)
471{
472 return (terminal_state == terminal_is_ours);
473}
474
475/* See target.h. */
476
d9d2d8b6
PA
477void
478target_terminal_inferior (void)
479{
480 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 481 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
485 return;
486
5842f62a
PA
487 if (terminal_state == terminal_is_inferior)
488 return;
489
d9d2d8b6
PA
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
d2f640d4 492 (*current_target.to_terminal_inferior) (&current_target);
5842f62a 493 terminal_state = terminal_is_inferior;
93692b58
PA
494
495 /* If the user hit C-c before, pretend that it was hit right
496 here. */
497 if (check_quit_flag ())
498 target_pass_ctrlc ();
5842f62a
PA
499}
500
501/* See target.h. */
502
503void
504target_terminal_ours (void)
505{
506 if (terminal_state == terminal_is_ours)
507 return;
508
509 (*current_target.to_terminal_ours) (&current_target);
510 terminal_state = terminal_is_ours;
511}
512
513/* See target.h. */
514
515void
516target_terminal_ours_for_output (void)
517{
518 if (terminal_state != terminal_is_inferior)
519 return;
520 (*current_target.to_terminal_ours_for_output) (&current_target);
521 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 522}
136d6dae 523
b0ed115f
TT
524/* See target.h. */
525
526int
527target_supports_terminal_ours (void)
528{
529 struct target_ops *t;
530
531 for (t = current_target.beneath; t != NULL; t = t->beneath)
532 {
533 if (t->to_terminal_ours != delegate_terminal_ours
534 && t->to_terminal_ours != tdefault_terminal_ours)
535 return 1;
536 }
537
538 return 0;
539}
540
1abf3a14
SM
541/* Restore the terminal to its previous state (helper for
542 make_cleanup_restore_target_terminal). */
543
544static void
545cleanup_restore_target_terminal (void *arg)
546{
19ba03f4 547 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
548
549 switch (*previous_state)
550 {
551 case terminal_is_ours:
552 target_terminal_ours ();
553 break;
554 case terminal_is_ours_for_output:
555 target_terminal_ours_for_output ();
556 break;
557 case terminal_is_inferior:
558 target_terminal_inferior ();
559 break;
560 }
561}
562
563/* See target.h. */
564
565struct cleanup *
566make_cleanup_restore_target_terminal (void)
567{
8d749320 568 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
569
570 *ts = terminal_state;
571
572 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
573}
574
c906108c 575static void
fba45db2 576tcomplain (void)
c906108c 577{
8a3fe4f8 578 error (_("You can't do that when your target is `%s'"),
c906108c
SS
579 current_target.to_shortname);
580}
581
582void
fba45db2 583noprocess (void)
c906108c 584{
8a3fe4f8 585 error (_("You can't do that without a process to debug."));
c906108c
SS
586}
587
c906108c 588static void
0a4f40a2 589default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 590{
a3f17187 591 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
592}
593
0ef643c8
JB
594/* A default implementation for the to_get_ada_task_ptid target method.
595
596 This function builds the PTID by using both LWP and TID as part of
597 the PTID lwp and tid elements. The pid used is the pid of the
598 inferior_ptid. */
599
2c0b251b 600static ptid_t
1e6b91a4 601default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
602{
603 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
604}
605
32231432 606static enum exec_direction_kind
4c612759 607default_execution_direction (struct target_ops *self)
32231432
PA
608{
609 if (!target_can_execute_reverse)
610 return EXEC_FORWARD;
611 else if (!target_can_async_p ())
612 return EXEC_FORWARD;
613 else
614 gdb_assert_not_reached ("\
615to_execution_direction must be implemented for reverse async");
616}
617
7998dfc3
AC
618/* Go through the target stack from top to bottom, copying over zero
619 entries in current_target, then filling in still empty entries. In
620 effect, we are doing class inheritance through the pushed target
621 vectors.
622
623 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
624 is currently implemented, is that it discards any knowledge of
625 which target an inherited method originally belonged to.
626 Consequently, new new target methods should instead explicitly and
627 locally search the target stack for the target that can handle the
628 request. */
c906108c
SS
629
630static void
7998dfc3 631update_current_target (void)
c906108c 632{
7998dfc3
AC
633 struct target_ops *t;
634
08d8bcd7 635 /* First, reset current's contents. */
7998dfc3
AC
636 memset (&current_target, 0, sizeof (current_target));
637
1101cb7b
TT
638 /* Install the delegators. */
639 install_delegators (&current_target);
640
be4ddd36
TT
641 current_target.to_stratum = target_stack->to_stratum;
642
7998dfc3
AC
643#define INHERIT(FIELD, TARGET) \
644 if (!current_target.FIELD) \
645 current_target.FIELD = (TARGET)->FIELD
646
be4ddd36
TT
647 /* Do not add any new INHERITs here. Instead, use the delegation
648 mechanism provided by make-target-delegates. */
7998dfc3
AC
649 for (t = target_stack; t; t = t->beneath)
650 {
651 INHERIT (to_shortname, t);
652 INHERIT (to_longname, t);
dc177b7a 653 INHERIT (to_attach_no_wait, t);
74174d2e 654 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 655 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 656 INHERIT (to_has_thread_control, t);
7998dfc3
AC
657 }
658#undef INHERIT
659
7998dfc3
AC
660 /* Finally, position the target-stack beneath the squashed
661 "current_target". That way code looking for a non-inherited
662 target method can quickly and simply find it. */
663 current_target.beneath = target_stack;
b4b61fdb
DJ
664
665 if (targetdebug)
666 setup_target_debug ();
c906108c
SS
667}
668
669/* Push a new target type into the stack of the existing target accessors,
670 possibly superseding some of the existing accessors.
671
c906108c
SS
672 Rather than allow an empty stack, we always have the dummy target at
673 the bottom stratum, so we can call the function vectors without
674 checking them. */
675
b26a4dcb 676void
fba45db2 677push_target (struct target_ops *t)
c906108c 678{
258b763a 679 struct target_ops **cur;
c906108c
SS
680
681 /* Check magic number. If wrong, it probably means someone changed
682 the struct definition, but not all the places that initialize one. */
683 if (t->to_magic != OPS_MAGIC)
684 {
c5aa993b
JM
685 fprintf_unfiltered (gdb_stderr,
686 "Magic number of %s target struct wrong\n",
687 t->to_shortname);
3e43a32a
MS
688 internal_error (__FILE__, __LINE__,
689 _("failed internal consistency check"));
c906108c
SS
690 }
691
258b763a
AC
692 /* Find the proper stratum to install this target in. */
693 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 694 {
258b763a 695 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
696 break;
697 }
698
258b763a 699 /* If there's already targets at this stratum, remove them. */
88c231eb 700 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
701 targets to CUR, and not just those at this stratum level. */
702 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
703 {
704 /* There's already something at this stratum level. Close it,
705 and un-hook it from the stack. */
706 struct target_ops *tmp = (*cur);
5d502164 707
258b763a
AC
708 (*cur) = (*cur)->beneath;
709 tmp->beneath = NULL;
460014f5 710 target_close (tmp);
258b763a 711 }
c906108c
SS
712
713 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
714 t->beneath = (*cur);
715 (*cur) = t;
c906108c
SS
716
717 update_current_target ();
c906108c
SS
718}
719
2bc416ba 720/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
721 Return how many times it was removed (0 or 1). */
722
723int
fba45db2 724unpush_target (struct target_ops *t)
c906108c 725{
258b763a
AC
726 struct target_ops **cur;
727 struct target_ops *tmp;
c906108c 728
c8d104ad
PA
729 if (t->to_stratum == dummy_stratum)
730 internal_error (__FILE__, __LINE__,
9b20d036 731 _("Attempt to unpush the dummy target"));
c8d104ad 732
c906108c 733 /* Look for the specified target. Note that we assume that a target
c378eb4e 734 can only occur once in the target stack. */
c906108c 735
258b763a
AC
736 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
737 {
738 if ((*cur) == t)
739 break;
740 }
c906108c 741
305436e0
PA
742 /* If we don't find target_ops, quit. Only open targets should be
743 closed. */
258b763a 744 if ((*cur) == NULL)
305436e0 745 return 0;
5269965e 746
c378eb4e 747 /* Unchain the target. */
258b763a
AC
748 tmp = (*cur);
749 (*cur) = (*cur)->beneath;
750 tmp->beneath = NULL;
c906108c
SS
751
752 update_current_target ();
c906108c 753
305436e0
PA
754 /* Finally close the target. Note we do this after unchaining, so
755 any target method calls from within the target_close
756 implementation don't end up in T anymore. */
460014f5 757 target_close (t);
305436e0 758
c906108c
SS
759 return 1;
760}
761
915ef8b1
PA
762/* Unpush TARGET and assert that it worked. */
763
764static void
765unpush_target_and_assert (struct target_ops *target)
766{
767 if (!unpush_target (target))
768 {
769 fprintf_unfiltered (gdb_stderr,
770 "pop_all_targets couldn't find target %s\n",
771 target->to_shortname);
772 internal_error (__FILE__, __LINE__,
773 _("failed internal consistency check"));
774 }
775}
776
aa76d38d 777void
460014f5 778pop_all_targets_above (enum strata above_stratum)
aa76d38d 779{
87ab71f0 780 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
781 unpush_target_and_assert (target_stack);
782}
783
784/* See target.h. */
785
786void
787pop_all_targets_at_and_above (enum strata stratum)
788{
789 while ((int) (current_target.to_stratum) >= (int) stratum)
790 unpush_target_and_assert (target_stack);
aa76d38d
PA
791}
792
87ab71f0 793void
460014f5 794pop_all_targets (void)
87ab71f0 795{
460014f5 796 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
797}
798
c0edd9ed
JK
799/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
800
801int
802target_is_pushed (struct target_ops *t)
803{
84202f9c 804 struct target_ops *cur;
c0edd9ed
JK
805
806 /* Check magic number. If wrong, it probably means someone changed
807 the struct definition, but not all the places that initialize one. */
808 if (t->to_magic != OPS_MAGIC)
809 {
810 fprintf_unfiltered (gdb_stderr,
811 "Magic number of %s target struct wrong\n",
812 t->to_shortname);
3e43a32a
MS
813 internal_error (__FILE__, __LINE__,
814 _("failed internal consistency check"));
c0edd9ed
JK
815 }
816
84202f9c
TT
817 for (cur = target_stack; cur != NULL; cur = cur->beneath)
818 if (cur == t)
c0edd9ed
JK
819 return 1;
820
821 return 0;
822}
823
f0f9ff95
TT
824/* Default implementation of to_get_thread_local_address. */
825
826static void
827generic_tls_error (void)
828{
829 throw_error (TLS_GENERIC_ERROR,
830 _("Cannot find thread-local variables on this target"));
831}
832
72f5cf0e 833/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
834 current thread's thread-local storage with offset OFFSET. */
835CORE_ADDR
836target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
837{
838 volatile CORE_ADDR addr = 0;
f0f9ff95 839 struct target_ops *target = &current_target;
9e35dae4 840
f0f9ff95 841 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
842 {
843 ptid_t ptid = inferior_ptid;
9e35dae4 844
492d29ea 845 TRY
9e35dae4
DJ
846 {
847 CORE_ADDR lm_addr;
848
849 /* Fetch the load module address for this objfile. */
f5656ead 850 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 851 objfile);
9e35dae4 852
3e43a32a
MS
853 addr = target->to_get_thread_local_address (target, ptid,
854 lm_addr, offset);
9e35dae4
DJ
855 }
856 /* If an error occurred, print TLS related messages here. Otherwise,
857 throw the error to some higher catcher. */
492d29ea 858 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
859 {
860 int objfile_is_library = (objfile->flags & OBJF_SHARED);
861
862 switch (ex.error)
863 {
864 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
865 error (_("Cannot find thread-local variables "
866 "in this thread library."));
9e35dae4
DJ
867 break;
868 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
869 if (objfile_is_library)
870 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 871 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
872 else
873 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 874 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
875 break;
876 case TLS_NOT_ALLOCATED_YET_ERROR:
877 if (objfile_is_library)
878 error (_("The inferior has not yet allocated storage for"
879 " thread-local variables in\n"
880 "the shared library `%s'\n"
881 "for %s"),
4262abfb 882 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
883 else
884 error (_("The inferior has not yet allocated storage for"
885 " thread-local variables in\n"
886 "the executable `%s'\n"
887 "for %s"),
4262abfb 888 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
889 break;
890 case TLS_GENERIC_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find thread-local storage for %s, "
893 "shared library %s:\n%s"),
894 target_pid_to_str (ptid),
4262abfb 895 objfile_name (objfile), ex.message);
9e35dae4
DJ
896 else
897 error (_("Cannot find thread-local storage for %s, "
898 "executable file %s:\n%s"),
899 target_pid_to_str (ptid),
4262abfb 900 objfile_name (objfile), ex.message);
9e35dae4
DJ
901 break;
902 default:
903 throw_exception (ex);
904 break;
905 }
906 }
492d29ea 907 END_CATCH
9e35dae4
DJ
908 }
909 /* It wouldn't be wrong here to try a gdbarch method, too; finding
910 TLS is an ABI-specific thing. But we don't do that yet. */
911 else
912 error (_("Cannot find thread-local variables on this target"));
913
914 return addr;
915}
916
6be7b56e 917const char *
01cb8804 918target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
919{
920#define CASE(X) case X: return #X
01cb8804 921 switch (status)
6be7b56e
PA
922 {
923 CASE(TARGET_XFER_E_IO);
bc113b4e 924 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
925 default:
926 return "<unknown>";
927 }
928#undef CASE
929};
930
931
c906108c
SS
932#undef MIN
933#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
934
935/* target_read_string -- read a null terminated string, up to LEN bytes,
936 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
937 Set *STRING to a pointer to malloc'd memory containing the data; the caller
938 is responsible for freeing it. Return the number of bytes successfully
939 read. */
940
941int
fba45db2 942target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 943{
c2e8b827 944 int tlen, offset, i;
1b0ba102 945 gdb_byte buf[4];
c906108c
SS
946 int errcode = 0;
947 char *buffer;
948 int buffer_allocated;
949 char *bufptr;
950 unsigned int nbytes_read = 0;
951
6217bf3e
MS
952 gdb_assert (string);
953
c906108c
SS
954 /* Small for testing. */
955 buffer_allocated = 4;
224c3ddb 956 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
957 bufptr = buffer;
958
c906108c
SS
959 while (len > 0)
960 {
961 tlen = MIN (len, 4 - (memaddr & 3));
962 offset = memaddr & 3;
963
1b0ba102 964 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
965 if (errcode != 0)
966 {
967 /* The transfer request might have crossed the boundary to an
c378eb4e 968 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
969 a single byte. */
970 tlen = 1;
971 offset = 0;
b8eb5af0 972 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
973 if (errcode != 0)
974 goto done;
975 }
976
977 if (bufptr - buffer + tlen > buffer_allocated)
978 {
979 unsigned int bytes;
5d502164 980
c906108c
SS
981 bytes = bufptr - buffer;
982 buffer_allocated *= 2;
224c3ddb 983 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
984 bufptr = buffer + bytes;
985 }
986
987 for (i = 0; i < tlen; i++)
988 {
989 *bufptr++ = buf[i + offset];
990 if (buf[i + offset] == '\000')
991 {
992 nbytes_read += i + 1;
993 goto done;
994 }
995 }
996
997 memaddr += tlen;
998 len -= tlen;
999 nbytes_read += tlen;
1000 }
c5aa993b 1001done:
6217bf3e 1002 *string = buffer;
c906108c
SS
1003 if (errnop != NULL)
1004 *errnop = errcode;
c906108c
SS
1005 return nbytes_read;
1006}
1007
07b82ea5
PA
1008struct target_section_table *
1009target_get_section_table (struct target_ops *target)
1010{
7e35c012 1011 return (*target->to_get_section_table) (target);
07b82ea5
PA
1012}
1013
8db32d44 1014/* Find a section containing ADDR. */
07b82ea5 1015
0542c86d 1016struct target_section *
8db32d44
AC
1017target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1018{
07b82ea5 1019 struct target_section_table *table = target_get_section_table (target);
0542c86d 1020 struct target_section *secp;
07b82ea5
PA
1021
1022 if (table == NULL)
1023 return NULL;
1024
1025 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1026 {
1027 if (addr >= secp->addr && addr < secp->endaddr)
1028 return secp;
1029 }
1030 return NULL;
1031}
1032
0fec99e8
PA
1033
1034/* Helper for the memory xfer routines. Checks the attributes of the
1035 memory region of MEMADDR against the read or write being attempted.
1036 If the access is permitted returns true, otherwise returns false.
1037 REGION_P is an optional output parameter. If not-NULL, it is
1038 filled with a pointer to the memory region of MEMADDR. REG_LEN
1039 returns LEN trimmed to the end of the region. This is how much the
1040 caller can continue requesting, if the access is permitted. A
1041 single xfer request must not straddle memory region boundaries. */
1042
1043static int
1044memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1045 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1046 struct mem_region **region_p)
1047{
1048 struct mem_region *region;
1049
1050 region = lookup_mem_region (memaddr);
1051
1052 if (region_p != NULL)
1053 *region_p = region;
1054
1055 switch (region->attrib.mode)
1056 {
1057 case MEM_RO:
1058 if (writebuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_WO:
1063 if (readbuf != NULL)
1064 return 0;
1065 break;
1066
1067 case MEM_FLASH:
1068 /* We only support writing to flash during "load" for now. */
1069 if (writebuf != NULL)
1070 error (_("Writing to flash memory forbidden in this context"));
1071 break;
1072
1073 case MEM_NONE:
1074 return 0;
1075 }
1076
1077 /* region->hi == 0 means there's no upper bound. */
1078 if (memaddr + len < region->hi || region->hi == 0)
1079 *reg_len = len;
1080 else
1081 *reg_len = region->hi - memaddr;
1082
1083 return 1;
1084}
1085
9f713294
YQ
1086/* Read memory from more than one valid target. A core file, for
1087 instance, could have some of memory but delegate other bits to
1088 the target below it. So, we must manually try all targets. */
1089
cc9f16aa 1090enum target_xfer_status
17fde6d0 1091raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1092 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1093 ULONGEST *xfered_len)
9f713294 1094{
9b409511 1095 enum target_xfer_status res;
9f713294
YQ
1096
1097 do
1098 {
1099 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1100 readbuf, writebuf, memaddr, len,
1101 xfered_len);
1102 if (res == TARGET_XFER_OK)
9f713294
YQ
1103 break;
1104
633785ff 1105 /* Stop if the target reports that the memory is not available. */
bc113b4e 1106 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1107 break;
1108
9f713294
YQ
1109 /* We want to continue past core files to executables, but not
1110 past a running target's memory. */
1111 if (ops->to_has_all_memory (ops))
1112 break;
1113
1114 ops = ops->beneath;
1115 }
1116 while (ops != NULL);
1117
0f26cec1
PA
1118 /* The cache works at the raw memory level. Make sure the cache
1119 gets updated with raw contents no matter what kind of memory
1120 object was originally being written. Note we do write-through
1121 first, so that if it fails, we don't write to the cache contents
1122 that never made it to the target. */
1123 if (writebuf != NULL
1124 && !ptid_equal (inferior_ptid, null_ptid)
1125 && target_dcache_init_p ()
1126 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1127 {
1128 DCACHE *dcache = target_dcache_get ();
1129
1130 /* Note that writing to an area of memory which wasn't present
1131 in the cache doesn't cause it to be loaded in. */
1132 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1133 }
1134
9f713294
YQ
1135 return res;
1136}
1137
7f79c47e
DE
1138/* Perform a partial memory transfer.
1139 For docs see target.h, to_xfer_partial. */
cf7a04e8 1140
9b409511 1141static enum target_xfer_status
f0ba3972 1142memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1143 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1144 ULONGEST len, ULONGEST *xfered_len)
0779438d 1145{
9b409511 1146 enum target_xfer_status res;
0fec99e8 1147 ULONGEST reg_len;
cf7a04e8 1148 struct mem_region *region;
4e5d721f 1149 struct inferior *inf;
cf7a04e8 1150
07b82ea5
PA
1151 /* For accesses to unmapped overlay sections, read directly from
1152 files. Must do this first, as MEMADDR may need adjustment. */
1153 if (readbuf != NULL && overlay_debugging)
1154 {
1155 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1156
07b82ea5
PA
1157 if (pc_in_unmapped_range (memaddr, section))
1158 {
1159 struct target_section_table *table
1160 = target_get_section_table (ops);
1161 const char *section_name = section->the_bfd_section->name;
5d502164 1162
07b82ea5
PA
1163 memaddr = overlay_mapped_address (memaddr, section);
1164 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1165 memaddr, len, xfered_len,
07b82ea5
PA
1166 table->sections,
1167 table->sections_end,
1168 section_name);
1169 }
1170 }
1171
1172 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1173 if (readbuf != NULL && trust_readonly)
1174 {
0542c86d 1175 struct target_section *secp;
07b82ea5 1176 struct target_section_table *table;
cf7a04e8
DJ
1177
1178 secp = target_section_by_addr (ops, memaddr);
1179 if (secp != NULL
2b2848e2
DE
1180 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1181 secp->the_bfd_section)
cf7a04e8 1182 & SEC_READONLY))
07b82ea5
PA
1183 {
1184 table = target_get_section_table (ops);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1186 memaddr, len, xfered_len,
07b82ea5
PA
1187 table->sections,
1188 table->sections_end,
1189 NULL);
1190 }
98646950
UW
1191 }
1192
cf7a04e8 1193 /* Try GDB's internal data cache. */
cf7a04e8 1194
0fec99e8
PA
1195 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1196 &region))
1197 return TARGET_XFER_E_IO;
cf7a04e8 1198
6c95b8df 1199 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1200 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1201 else
1202 inf = NULL;
4e5d721f
DE
1203
1204 if (inf != NULL
0f26cec1 1205 && readbuf != NULL
2f4d8875
PA
1206 /* The dcache reads whole cache lines; that doesn't play well
1207 with reading from a trace buffer, because reading outside of
1208 the collected memory range fails. */
1209 && get_traceframe_number () == -1
4e5d721f 1210 && (region->attrib.cache
29453a14
YQ
1211 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1212 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1213 {
2a2f9fe4
YQ
1214 DCACHE *dcache = target_dcache_get_or_init ();
1215
0f26cec1
PA
1216 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1217 reg_len, xfered_len);
cf7a04e8
DJ
1218 }
1219
1220 /* If none of those methods found the memory we wanted, fall back
1221 to a target partial transfer. Normally a single call to
1222 to_xfer_partial is enough; if it doesn't recognize an object
1223 it will call the to_xfer_partial of the next target down.
1224 But for memory this won't do. Memory is the only target
9b409511
YQ
1225 object which can be read from more than one valid target.
1226 A core file, for instance, could have some of memory but
1227 delegate other bits to the target below it. So, we must
1228 manually try all targets. */
1229
1230 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1231 xfered_len);
cf7a04e8
DJ
1232
1233 /* If we still haven't got anything, return the last error. We
1234 give up. */
1235 return res;
0779438d
AC
1236}
1237
f0ba3972
PA
1238/* Perform a partial memory transfer. For docs see target.h,
1239 to_xfer_partial. */
1240
9b409511 1241static enum target_xfer_status
f0ba3972 1242memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1243 gdb_byte *readbuf, const gdb_byte *writebuf,
1244 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1245{
9b409511 1246 enum target_xfer_status res;
f0ba3972
PA
1247
1248 /* Zero length requests are ok and require no work. */
1249 if (len == 0)
9b409511 1250 return TARGET_XFER_EOF;
f0ba3972
PA
1251
1252 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1253 breakpoint insns, thus hiding out from higher layers whether
1254 there are software breakpoints inserted in the code stream. */
1255 if (readbuf != NULL)
1256 {
9b409511
YQ
1257 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1258 xfered_len);
f0ba3972 1259
9b409511 1260 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1261 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1262 }
1263 else
1264 {
d7f3ff3e 1265 gdb_byte *buf;
f0ba3972
PA
1266 struct cleanup *old_chain;
1267
67c059c2
AB
1268 /* A large write request is likely to be partially satisfied
1269 by memory_xfer_partial_1. We will continually malloc
1270 and free a copy of the entire write request for breakpoint
1271 shadow handling even though we only end up writing a small
1272 subset of it. Cap writes to 4KB to mitigate this. */
1273 len = min (4096, len);
1274
d7f3ff3e 1275 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1276 old_chain = make_cleanup (xfree, buf);
1277 memcpy (buf, writebuf, len);
1278
1279 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1280 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1281 xfered_len);
f0ba3972
PA
1282
1283 do_cleanups (old_chain);
1284 }
1285
1286 return res;
1287}
1288
8defab1a
DJ
1289static void
1290restore_show_memory_breakpoints (void *arg)
1291{
1292 show_memory_breakpoints = (uintptr_t) arg;
1293}
1294
1295struct cleanup *
1296make_show_memory_breakpoints_cleanup (int show)
1297{
1298 int current = show_memory_breakpoints;
8defab1a 1299
5d502164 1300 show_memory_breakpoints = show;
8defab1a
DJ
1301 return make_cleanup (restore_show_memory_breakpoints,
1302 (void *) (uintptr_t) current);
1303}
1304
7f79c47e
DE
1305/* For docs see target.h, to_xfer_partial. */
1306
9b409511 1307enum target_xfer_status
27394598
AC
1308target_xfer_partial (struct target_ops *ops,
1309 enum target_object object, const char *annex,
4ac248ca 1310 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1311 ULONGEST offset, ULONGEST len,
1312 ULONGEST *xfered_len)
27394598 1313{
9b409511 1314 enum target_xfer_status retval;
27394598
AC
1315
1316 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1317
ce6d0892
YQ
1318 /* Transfer is done when LEN is zero. */
1319 if (len == 0)
9b409511 1320 return TARGET_XFER_EOF;
ce6d0892 1321
d914c394
SS
1322 if (writebuf && !may_write_memory)
1323 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1324 core_addr_to_string_nz (offset), plongest (len));
1325
9b409511
YQ
1326 *xfered_len = 0;
1327
cf7a04e8
DJ
1328 /* If this is a memory transfer, let the memory-specific code
1329 have a look at it instead. Memory transfers are more
1330 complicated. */
29453a14
YQ
1331 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1332 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1333 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1334 writebuf, offset, len, xfered_len);
9f713294 1335 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1336 {
0fec99e8
PA
1337 /* Skip/avoid accessing the target if the memory region
1338 attributes block the access. Check this here instead of in
1339 raw_memory_xfer_partial as otherwise we'd end up checking
1340 this twice in the case of the memory_xfer_partial path is
1341 taken; once before checking the dcache, and another in the
1342 tail call to raw_memory_xfer_partial. */
1343 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1344 NULL))
1345 return TARGET_XFER_E_IO;
1346
9f713294 1347 /* Request the normal memory object from other layers. */
9b409511
YQ
1348 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1349 xfered_len);
cf7a04e8 1350 }
9f713294
YQ
1351 else
1352 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1353 writebuf, offset, len, xfered_len);
cf7a04e8 1354
27394598
AC
1355 if (targetdebug)
1356 {
1357 const unsigned char *myaddr = NULL;
1358
1359 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1360 "%s:target_xfer_partial "
9b409511 1361 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1362 ops->to_shortname,
1363 (int) object,
1364 (annex ? annex : "(null)"),
53b71562
JB
1365 host_address_to_string (readbuf),
1366 host_address_to_string (writebuf),
0b1553bc 1367 core_addr_to_string_nz (offset),
9b409511
YQ
1368 pulongest (len), retval,
1369 pulongest (*xfered_len));
27394598
AC
1370
1371 if (readbuf)
1372 myaddr = readbuf;
1373 if (writebuf)
1374 myaddr = writebuf;
9b409511 1375 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1376 {
1377 int i;
2bc416ba 1378
27394598 1379 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1380 for (i = 0; i < *xfered_len; i++)
27394598 1381 {
53b71562 1382 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1383 {
1384 if (targetdebug < 2 && i > 0)
1385 {
1386 fprintf_unfiltered (gdb_stdlog, " ...");
1387 break;
1388 }
1389 fprintf_unfiltered (gdb_stdlog, "\n");
1390 }
2bc416ba 1391
27394598
AC
1392 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1393 }
1394 }
2bc416ba 1395
27394598
AC
1396 fputc_unfiltered ('\n', gdb_stdlog);
1397 }
9b409511
YQ
1398
1399 /* Check implementations of to_xfer_partial update *XFERED_LEN
1400 properly. Do assertion after printing debug messages, so that we
1401 can find more clues on assertion failure from debugging messages. */
bc113b4e 1402 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1403 gdb_assert (*xfered_len > 0);
1404
27394598
AC
1405 return retval;
1406}
1407
578d3588
PA
1408/* Read LEN bytes of target memory at address MEMADDR, placing the
1409 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1410 -1 if any error occurs.
c906108c
SS
1411
1412 If an error occurs, no guarantee is made about the contents of the data at
1413 MYADDR. In particular, the caller should not depend upon partial reads
1414 filling the buffer with good data. There is no way for the caller to know
1415 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1416 deal with partial reads should call target_read (which will retry until
c378eb4e 1417 it makes no progress, and then return how much was transferred). */
c906108c
SS
1418
1419int
1b162304 1420target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1421{
c35b1492
PA
1422 /* Dispatch to the topmost target, not the flattened current_target.
1423 Memory accesses check target->to_has_(all_)memory, and the
1424 flattened target doesn't inherit those. */
1425 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1426 myaddr, memaddr, len) == len)
1427 return 0;
0779438d 1428 else
d09f2c3f 1429 return -1;
c906108c
SS
1430}
1431
721ec300
GB
1432/* See target/target.h. */
1433
1434int
1435target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1436{
1437 gdb_byte buf[4];
1438 int r;
1439
1440 r = target_read_memory (memaddr, buf, sizeof buf);
1441 if (r != 0)
1442 return r;
1443 *result = extract_unsigned_integer (buf, sizeof buf,
1444 gdbarch_byte_order (target_gdbarch ()));
1445 return 0;
1446}
1447
aee4bf85
PA
1448/* Like target_read_memory, but specify explicitly that this is a read
1449 from the target's raw memory. That is, this read bypasses the
1450 dcache, breakpoint shadowing, etc. */
1451
1452int
1453target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454{
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
d09f2c3f 1461 return -1;
aee4bf85
PA
1462}
1463
4e5d721f
DE
1464/* Like target_read_memory, but specify explicitly that this is a read from
1465 the target's stack. This may trigger different cache behavior. */
1466
1467int
45aa4659 1468target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1469{
aee4bf85
PA
1470 /* See comment in target_read_memory about why the request starts at
1471 current_target.beneath. */
4e5d721f
DE
1472 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1473 myaddr, memaddr, len) == len)
1474 return 0;
1475 else
d09f2c3f 1476 return -1;
4e5d721f
DE
1477}
1478
29453a14
YQ
1479/* Like target_read_memory, but specify explicitly that this is a read from
1480 the target's code. This may trigger different cache behavior. */
1481
1482int
1483target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1484{
aee4bf85
PA
1485 /* See comment in target_read_memory about why the request starts at
1486 current_target.beneath. */
29453a14
YQ
1487 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
d09f2c3f 1491 return -1;
29453a14
YQ
1492}
1493
7f79c47e 1494/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1495 Returns either 0 for success or -1 if any error occurs. If an
1496 error occurs, no guarantee is made about how much data got written.
1497 Callers that can deal with partial writes should call
1498 target_write. */
7f79c47e 1499
c906108c 1500int
45aa4659 1501target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1502{
aee4bf85
PA
1503 /* See comment in target_read_memory about why the request starts at
1504 current_target.beneath. */
c35b1492 1505 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1506 myaddr, memaddr, len) == len)
1507 return 0;
0779438d 1508 else
d09f2c3f 1509 return -1;
c906108c 1510}
c5aa993b 1511
f0ba3972 1512/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1513 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1514 If an error occurs, no guarantee is made about how much data got
1515 written. Callers that can deal with partial writes should call
1516 target_write. */
f0ba3972
PA
1517
1518int
45aa4659 1519target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1520{
aee4bf85
PA
1521 /* See comment in target_read_memory about why the request starts at
1522 current_target.beneath. */
f0ba3972
PA
1523 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1524 myaddr, memaddr, len) == len)
1525 return 0;
1526 else
d09f2c3f 1527 return -1;
f0ba3972
PA
1528}
1529
fd79ecee
DJ
1530/* Fetch the target's memory map. */
1531
1532VEC(mem_region_s) *
1533target_memory_map (void)
1534{
1535 VEC(mem_region_s) *result;
1536 struct mem_region *last_one, *this_one;
1537 int ix;
6b2c5a57 1538 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1539 if (result == NULL)
1540 return NULL;
1541
1542 qsort (VEC_address (mem_region_s, result),
1543 VEC_length (mem_region_s, result),
1544 sizeof (struct mem_region), mem_region_cmp);
1545
1546 /* Check that regions do not overlap. Simultaneously assign
1547 a numbering for the "mem" commands to use to refer to
1548 each region. */
1549 last_one = NULL;
1550 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1551 {
1552 this_one->number = ix;
1553
1554 if (last_one && last_one->hi > this_one->lo)
1555 {
1556 warning (_("Overlapping regions in memory map: ignoring"));
1557 VEC_free (mem_region_s, result);
1558 return NULL;
1559 }
1560 last_one = this_one;
1561 }
1562
1563 return result;
1564}
1565
a76d924d
DJ
1566void
1567target_flash_erase (ULONGEST address, LONGEST length)
1568{
e8a6c6ac 1569 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1570}
1571
1572void
1573target_flash_done (void)
1574{
f6fb2925 1575 current_target.to_flash_done (&current_target);
a76d924d
DJ
1576}
1577
920d2a44
AC
1578static void
1579show_trust_readonly (struct ui_file *file, int from_tty,
1580 struct cmd_list_element *c, const char *value)
1581{
3e43a32a
MS
1582 fprintf_filtered (file,
1583 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1584 value);
1585}
3a11626d 1586
7f79c47e 1587/* Target vector read/write partial wrapper functions. */
0088c768 1588
9b409511 1589static enum target_xfer_status
1e3ff5ad
AC
1590target_read_partial (struct target_ops *ops,
1591 enum target_object object,
1b0ba102 1592 const char *annex, gdb_byte *buf,
9b409511
YQ
1593 ULONGEST offset, ULONGEST len,
1594 ULONGEST *xfered_len)
1e3ff5ad 1595{
9b409511
YQ
1596 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1597 xfered_len);
1e3ff5ad
AC
1598}
1599
8a55ffb0 1600static enum target_xfer_status
1e3ff5ad
AC
1601target_write_partial (struct target_ops *ops,
1602 enum target_object object,
1b0ba102 1603 const char *annex, const gdb_byte *buf,
9b409511 1604 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1605{
9b409511
YQ
1606 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1607 xfered_len);
1e3ff5ad
AC
1608}
1609
1610/* Wrappers to perform the full transfer. */
7f79c47e
DE
1611
1612/* For docs on target_read see target.h. */
1613
1e3ff5ad
AC
1614LONGEST
1615target_read (struct target_ops *ops,
1616 enum target_object object,
1b0ba102 1617 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1618 ULONGEST offset, LONGEST len)
1619{
279a6fed 1620 LONGEST xfered_total = 0;
d309493c
SM
1621 int unit_size = 1;
1622
1623 /* If we are reading from a memory object, find the length of an addressable
1624 unit for that architecture. */
1625 if (object == TARGET_OBJECT_MEMORY
1626 || object == TARGET_OBJECT_STACK_MEMORY
1627 || object == TARGET_OBJECT_CODE_MEMORY
1628 || object == TARGET_OBJECT_RAW_MEMORY)
1629 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1630
279a6fed 1631 while (xfered_total < len)
1e3ff5ad 1632 {
279a6fed 1633 ULONGEST xfered_partial;
9b409511
YQ
1634 enum target_xfer_status status;
1635
1636 status = target_read_partial (ops, object, annex,
d309493c 1637 buf + xfered_total * unit_size,
279a6fed
SM
1638 offset + xfered_total, len - xfered_total,
1639 &xfered_partial);
5d502164 1640
1e3ff5ad 1641 /* Call an observer, notifying them of the xfer progress? */
9b409511 1642 if (status == TARGET_XFER_EOF)
279a6fed 1643 return xfered_total;
9b409511
YQ
1644 else if (status == TARGET_XFER_OK)
1645 {
279a6fed 1646 xfered_total += xfered_partial;
9b409511
YQ
1647 QUIT;
1648 }
1649 else
279a6fed 1650 return TARGET_XFER_E_IO;
9b409511 1651
1e3ff5ad
AC
1652 }
1653 return len;
1654}
1655
f1a507a1
JB
1656/* Assuming that the entire [begin, end) range of memory cannot be
1657 read, try to read whatever subrange is possible to read.
1658
1659 The function returns, in RESULT, either zero or one memory block.
1660 If there's a readable subrange at the beginning, it is completely
1661 read and returned. Any further readable subrange will not be read.
1662 Otherwise, if there's a readable subrange at the end, it will be
1663 completely read and returned. Any readable subranges before it
1664 (obviously, not starting at the beginning), will be ignored. In
1665 other cases -- either no readable subrange, or readable subrange(s)
1666 that is neither at the beginning, or end, nothing is returned.
1667
1668 The purpose of this function is to handle a read across a boundary
1669 of accessible memory in a case when memory map is not available.
1670 The above restrictions are fine for this case, but will give
1671 incorrect results if the memory is 'patchy'. However, supporting
1672 'patchy' memory would require trying to read every single byte,
1673 and it seems unacceptable solution. Explicit memory map is
1674 recommended for this case -- and target_read_memory_robust will
1675 take care of reading multiple ranges then. */
8dedea02
VP
1676
1677static void
3e43a32a 1678read_whatever_is_readable (struct target_ops *ops,
279a6fed 1679 const ULONGEST begin, const ULONGEST end,
d309493c 1680 int unit_size,
8dedea02 1681 VEC(memory_read_result_s) **result)
d5086790 1682{
224c3ddb 1683 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1684 ULONGEST current_begin = begin;
1685 ULONGEST current_end = end;
1686 int forward;
1687 memory_read_result_s r;
9b409511 1688 ULONGEST xfered_len;
8dedea02
VP
1689
1690 /* If we previously failed to read 1 byte, nothing can be done here. */
1691 if (end - begin <= 1)
13b3fd9b
MS
1692 {
1693 xfree (buf);
1694 return;
1695 }
8dedea02
VP
1696
1697 /* Check that either first or the last byte is readable, and give up
c378eb4e 1698 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1699 at the boundary of accessible region. */
1700 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1701 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1702 {
1703 forward = 1;
1704 ++current_begin;
1705 }
1706 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1707 buf + (end - begin) - 1, end - 1, 1,
9b409511 1708 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1709 {
1710 forward = 0;
1711 --current_end;
1712 }
1713 else
1714 {
13b3fd9b 1715 xfree (buf);
8dedea02
VP
1716 return;
1717 }
1718
1719 /* Loop invariant is that the [current_begin, current_end) was previously
1720 found to be not readable as a whole.
1721
1722 Note loop condition -- if the range has 1 byte, we can't divide the range
1723 so there's no point trying further. */
1724 while (current_end - current_begin > 1)
1725 {
1726 ULONGEST first_half_begin, first_half_end;
1727 ULONGEST second_half_begin, second_half_end;
1728 LONGEST xfer;
279a6fed 1729 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1730
8dedea02
VP
1731 if (forward)
1732 {
1733 first_half_begin = current_begin;
1734 first_half_end = middle;
1735 second_half_begin = middle;
1736 second_half_end = current_end;
1737 }
1738 else
1739 {
1740 first_half_begin = middle;
1741 first_half_end = current_end;
1742 second_half_begin = current_begin;
1743 second_half_end = middle;
1744 }
1745
1746 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1747 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1748 first_half_begin,
1749 first_half_end - first_half_begin);
1750
1751 if (xfer == first_half_end - first_half_begin)
1752 {
c378eb4e 1753 /* This half reads up fine. So, the error must be in the
3e43a32a 1754 other half. */
8dedea02
VP
1755 current_begin = second_half_begin;
1756 current_end = second_half_end;
1757 }
1758 else
1759 {
c378eb4e 1760 /* This half is not readable. Because we've tried one byte, we
279a6fed 1761 know some part of this half if actually readable. Go to the next
8dedea02
VP
1762 iteration to divide again and try to read.
1763
1764 We don't handle the other half, because this function only tries
1765 to read a single readable subrange. */
1766 current_begin = first_half_begin;
1767 current_end = first_half_end;
1768 }
1769 }
1770
1771 if (forward)
1772 {
1773 /* The [begin, current_begin) range has been read. */
1774 r.begin = begin;
1775 r.end = current_begin;
1776 r.data = buf;
1777 }
1778 else
1779 {
1780 /* The [current_end, end) range has been read. */
279a6fed 1781 LONGEST region_len = end - current_end;
f1a507a1 1782
224c3ddb 1783 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1784 memcpy (r.data, buf + (current_end - begin) * unit_size,
1785 region_len * unit_size);
8dedea02
VP
1786 r.begin = current_end;
1787 r.end = end;
1788 xfree (buf);
1789 }
1790 VEC_safe_push(memory_read_result_s, (*result), &r);
1791}
1792
1793void
1794free_memory_read_result_vector (void *x)
1795{
19ba03f4 1796 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
8dedea02
VP
1797 memory_read_result_s *current;
1798 int ix;
1799
1800 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1801 {
1802 xfree (current->data);
1803 }
1804 VEC_free (memory_read_result_s, v);
1805}
1806
1807VEC(memory_read_result_s) *
279a6fed
SM
1808read_memory_robust (struct target_ops *ops,
1809 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1810{
1811 VEC(memory_read_result_s) *result = 0;
d309493c 1812 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
8dedea02 1813
279a6fed
SM
1814 LONGEST xfered_total = 0;
1815 while (xfered_total < len)
d5086790 1816 {
279a6fed
SM
1817 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1818 LONGEST region_len;
5d502164 1819
8dedea02
VP
1820 /* If there is no explicit region, a fake one should be created. */
1821 gdb_assert (region);
1822
1823 if (region->hi == 0)
279a6fed 1824 region_len = len - xfered_total;
8dedea02 1825 else
279a6fed 1826 region_len = region->hi - offset;
8dedea02
VP
1827
1828 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1829 {
c378eb4e 1830 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1831 if the region is explicitly marked inaccessible, or
1832 'inaccessible-by-default' is in effect. */
279a6fed 1833 xfered_total += region_len;
8dedea02
VP
1834 }
1835 else
1836 {
279a6fed 1837 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1838 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
8dedea02 1839
279a6fed
SM
1840 LONGEST xfered_partial =
1841 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1842 (gdb_byte *) buffer,
1843 offset + xfered_total, to_read);
8dedea02 1844 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1845 if (xfered_partial <= 0)
d5086790 1846 {
c378eb4e 1847 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1848 some subrange. */
1849 xfree (buffer);
e084c964
DB
1850 read_whatever_is_readable (ops, offset + xfered_total,
1851 offset + xfered_total + to_read,
1852 unit_size, &result);
279a6fed 1853 xfered_total += to_read;
d5086790 1854 }
8dedea02
VP
1855 else
1856 {
1857 struct memory_read_result r;
1858 r.data = buffer;
279a6fed
SM
1859 r.begin = offset + xfered_total;
1860 r.end = r.begin + xfered_partial;
8dedea02 1861 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1862 xfered_total += xfered_partial;
8dedea02
VP
1863 }
1864 QUIT;
d5086790 1865 }
d5086790 1866 }
8dedea02 1867 return result;
d5086790
VP
1868}
1869
8dedea02 1870
cf7a04e8
DJ
1871/* An alternative to target_write with progress callbacks. */
1872
1e3ff5ad 1873LONGEST
cf7a04e8
DJ
1874target_write_with_progress (struct target_ops *ops,
1875 enum target_object object,
1876 const char *annex, const gdb_byte *buf,
1877 ULONGEST offset, LONGEST len,
1878 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1879{
279a6fed 1880 LONGEST xfered_total = 0;
d309493c
SM
1881 int unit_size = 1;
1882
1883 /* If we are writing to a memory object, find the length of an addressable
1884 unit for that architecture. */
1885 if (object == TARGET_OBJECT_MEMORY
1886 || object == TARGET_OBJECT_STACK_MEMORY
1887 || object == TARGET_OBJECT_CODE_MEMORY
1888 || object == TARGET_OBJECT_RAW_MEMORY)
1889 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1890
1891 /* Give the progress callback a chance to set up. */
1892 if (progress)
1893 (*progress) (0, baton);
1894
279a6fed 1895 while (xfered_total < len)
1e3ff5ad 1896 {
279a6fed 1897 ULONGEST xfered_partial;
9b409511
YQ
1898 enum target_xfer_status status;
1899
1900 status = target_write_partial (ops, object, annex,
d309493c 1901 buf + xfered_total * unit_size,
279a6fed
SM
1902 offset + xfered_total, len - xfered_total,
1903 &xfered_partial);
cf7a04e8 1904
5c328c05 1905 if (status != TARGET_XFER_OK)
279a6fed 1906 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1907
1908 if (progress)
279a6fed 1909 (*progress) (xfered_partial, baton);
cf7a04e8 1910
279a6fed 1911 xfered_total += xfered_partial;
1e3ff5ad
AC
1912 QUIT;
1913 }
1914 return len;
1915}
1916
7f79c47e
DE
1917/* For docs on target_write see target.h. */
1918
cf7a04e8
DJ
1919LONGEST
1920target_write (struct target_ops *ops,
1921 enum target_object object,
1922 const char *annex, const gdb_byte *buf,
1923 ULONGEST offset, LONGEST len)
1924{
1925 return target_write_with_progress (ops, object, annex, buf, offset, len,
1926 NULL, NULL);
1927}
1928
159f81f3
DJ
1929/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1930 the size of the transferred data. PADDING additional bytes are
1931 available in *BUF_P. This is a helper function for
1932 target_read_alloc; see the declaration of that function for more
1933 information. */
13547ab6 1934
159f81f3
DJ
1935static LONGEST
1936target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1937 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1938{
1939 size_t buf_alloc, buf_pos;
1940 gdb_byte *buf;
13547ab6
DJ
1941
1942 /* This function does not have a length parameter; it reads the
1943 entire OBJECT). Also, it doesn't support objects fetched partly
1944 from one target and partly from another (in a different stratum,
1945 e.g. a core file and an executable). Both reasons make it
1946 unsuitable for reading memory. */
1947 gdb_assert (object != TARGET_OBJECT_MEMORY);
1948
1949 /* Start by reading up to 4K at a time. The target will throttle
1950 this number down if necessary. */
1951 buf_alloc = 4096;
224c3ddb 1952 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1953 buf_pos = 0;
1954 while (1)
1955 {
9b409511
YQ
1956 ULONGEST xfered_len;
1957 enum target_xfer_status status;
1958
1959 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1960 buf_pos, buf_alloc - buf_pos - padding,
1961 &xfered_len);
1962
1963 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1964 {
1965 /* Read all there was. */
1966 if (buf_pos == 0)
1967 xfree (buf);
1968 else
1969 *buf_p = buf;
1970 return buf_pos;
1971 }
9b409511
YQ
1972 else if (status != TARGET_XFER_OK)
1973 {
1974 /* An error occurred. */
1975 xfree (buf);
1976 return TARGET_XFER_E_IO;
1977 }
13547ab6 1978
9b409511 1979 buf_pos += xfered_len;
13547ab6
DJ
1980
1981 /* If the buffer is filling up, expand it. */
1982 if (buf_alloc < buf_pos * 2)
1983 {
1984 buf_alloc *= 2;
224c3ddb 1985 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
1986 }
1987
1988 QUIT;
1989 }
1990}
1991
159f81f3
DJ
1992/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1993 the size of the transferred data. See the declaration in "target.h"
1994 function for more information about the return value. */
1995
1996LONGEST
1997target_read_alloc (struct target_ops *ops, enum target_object object,
1998 const char *annex, gdb_byte **buf_p)
1999{
2000 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2001}
2002
2003/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2004 returned as a string, allocated using xmalloc. If an error occurs
2005 or the transfer is unsupported, NULL is returned. Empty objects
2006 are returned as allocated but empty strings. A warning is issued
2007 if the result contains any embedded NUL bytes. */
2008
2009char *
2010target_read_stralloc (struct target_ops *ops, enum target_object object,
2011 const char *annex)
2012{
39086a0e
PA
2013 gdb_byte *buffer;
2014 char *bufstr;
7313baad 2015 LONGEST i, transferred;
159f81f3 2016
39086a0e
PA
2017 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2018 bufstr = (char *) buffer;
159f81f3
DJ
2019
2020 if (transferred < 0)
2021 return NULL;
2022
2023 if (transferred == 0)
2024 return xstrdup ("");
2025
39086a0e 2026 bufstr[transferred] = 0;
7313baad
UW
2027
2028 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2029 for (i = strlen (bufstr); i < transferred; i++)
2030 if (bufstr[i] != 0)
7313baad
UW
2031 {
2032 warning (_("target object %d, annex %s, "
2033 "contained unexpected null characters"),
2034 (int) object, annex ? annex : "(none)");
2035 break;
2036 }
159f81f3 2037
39086a0e 2038 return bufstr;
159f81f3
DJ
2039}
2040
b6591e8b
AC
2041/* Memory transfer methods. */
2042
2043void
1b0ba102 2044get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2045 LONGEST len)
2046{
07b82ea5
PA
2047 /* This method is used to read from an alternate, non-current
2048 target. This read must bypass the overlay support (as symbols
2049 don't match this target), and GDB's internal cache (wrong cache
2050 for this target). */
2051 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2052 != len)
578d3588 2053 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2054}
2055
2056ULONGEST
5d502164
MS
2057get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2058 int len, enum bfd_endian byte_order)
b6591e8b 2059{
f6519ebc 2060 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2061
2062 gdb_assert (len <= sizeof (buf));
2063 get_target_memory (ops, addr, buf, len);
e17a4113 2064 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2065}
2066
3db08215
MM
2067/* See target.h. */
2068
d914c394
SS
2069int
2070target_insert_breakpoint (struct gdbarch *gdbarch,
2071 struct bp_target_info *bp_tgt)
2072{
2073 if (!may_insert_breakpoints)
2074 {
2075 warning (_("May not insert breakpoints"));
2076 return 1;
2077 }
2078
6b84065d
TT
2079 return current_target.to_insert_breakpoint (&current_target,
2080 gdbarch, bp_tgt);
d914c394
SS
2081}
2082
3db08215
MM
2083/* See target.h. */
2084
d914c394 2085int
6b84065d
TT
2086target_remove_breakpoint (struct gdbarch *gdbarch,
2087 struct bp_target_info *bp_tgt)
d914c394
SS
2088{
2089 /* This is kind of a weird case to handle, but the permission might
2090 have been changed after breakpoints were inserted - in which case
2091 we should just take the user literally and assume that any
2092 breakpoints should be left in place. */
2093 if (!may_insert_breakpoints)
2094 {
2095 warning (_("May not remove breakpoints"));
2096 return 1;
2097 }
2098
6b84065d
TT
2099 return current_target.to_remove_breakpoint (&current_target,
2100 gdbarch, bp_tgt);
d914c394
SS
2101}
2102
c906108c 2103static void
fba45db2 2104target_info (char *args, int from_tty)
c906108c
SS
2105{
2106 struct target_ops *t;
c906108c 2107 int has_all_mem = 0;
c5aa993b 2108
c906108c 2109 if (symfile_objfile != NULL)
4262abfb
JK
2110 printf_unfiltered (_("Symbols from \"%s\".\n"),
2111 objfile_name (symfile_objfile));
c906108c 2112
258b763a 2113 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2114 {
c35b1492 2115 if (!(*t->to_has_memory) (t))
c906108c
SS
2116 continue;
2117
c5aa993b 2118 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2119 continue;
2120 if (has_all_mem)
3e43a32a
MS
2121 printf_unfiltered (_("\tWhile running this, "
2122 "GDB does not access memory from...\n"));
c5aa993b
JM
2123 printf_unfiltered ("%s:\n", t->to_longname);
2124 (t->to_files_info) (t);
c35b1492 2125 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2126 }
2127}
2128
fd79ecee
DJ
2129/* This function is called before any new inferior is created, e.g.
2130 by running a program, attaching, or connecting to a target.
2131 It cleans up any state from previous invocations which might
2132 change between runs. This is a subset of what target_preopen
2133 resets (things which might change between targets). */
2134
2135void
2136target_pre_inferior (int from_tty)
2137{
c378eb4e 2138 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2139 inferior might have survived and is entirely wrong for the new
c378eb4e 2140 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2141 to reproduce:
2142
2143 bash$ ./foo&
2144 [1] 4711
2145 bash$ ./foo&
2146 [1] 4712
2147 bash$ gdb ./foo
2148 [...]
2149 (gdb) attach 4711
2150 (gdb) detach
2151 (gdb) attach 4712
2152 Cannot access memory at address 0xdeadbeef
2153 */
b9db4ced 2154
50c71eaf
PA
2155 /* In some OSs, the shared library list is the same/global/shared
2156 across inferiors. If code is shared between processes, so are
2157 memory regions and features. */
f5656ead 2158 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2159 {
2160 no_shared_libraries (NULL, from_tty);
2161
2162 invalidate_target_mem_regions ();
424163ea 2163
50c71eaf
PA
2164 target_clear_description ();
2165 }
8ffcbaaf 2166
e9756d52
PP
2167 /* attach_flag may be set if the previous process associated with
2168 the inferior was attached to. */
2169 current_inferior ()->attach_flag = 0;
2170
5d5658a1
PA
2171 current_inferior ()->highest_thread_num = 0;
2172
8ffcbaaf 2173 agent_capability_invalidate ();
fd79ecee
DJ
2174}
2175
b8fa0bfa
PA
2176/* Callback for iterate_over_inferiors. Gets rid of the given
2177 inferior. */
2178
2179static int
2180dispose_inferior (struct inferior *inf, void *args)
2181{
2182 struct thread_info *thread;
2183
2184 thread = any_thread_of_process (inf->pid);
2185 if (thread)
2186 {
2187 switch_to_thread (thread->ptid);
2188
2189 /* Core inferiors actually should be detached, not killed. */
2190 if (target_has_execution)
2191 target_kill ();
2192 else
2193 target_detach (NULL, 0);
2194 }
2195
2196 return 0;
2197}
2198
c906108c
SS
2199/* This is to be called by the open routine before it does
2200 anything. */
2201
2202void
fba45db2 2203target_preopen (int from_tty)
c906108c 2204{
c5aa993b 2205 dont_repeat ();
c906108c 2206
b8fa0bfa 2207 if (have_inferiors ())
c5aa993b 2208 {
adf40b2e 2209 if (!from_tty
b8fa0bfa
PA
2210 || !have_live_inferiors ()
2211 || query (_("A program is being debugged already. Kill it? ")))
2212 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2213 else
8a3fe4f8 2214 error (_("Program not killed."));
c906108c
SS
2215 }
2216
2217 /* Calling target_kill may remove the target from the stack. But if
2218 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2219 /* Leave the exec target, though. The user may be switching from a
2220 live process to a core of the same program. */
460014f5 2221 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2222
2223 target_pre_inferior (from_tty);
c906108c
SS
2224}
2225
2226/* Detach a target after doing deferred register stores. */
2227
2228void
52554a0e 2229target_detach (const char *args, int from_tty)
c906108c 2230{
f5656ead 2231 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2232 /* Don't remove global breakpoints here. They're removed on
2233 disconnection from the target. */
2234 ;
2235 else
2236 /* If we're in breakpoints-always-inserted mode, have to remove
2237 them before detaching. */
dfd4cc63 2238 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2239
24291992
PA
2240 prepare_for_detach ();
2241
09da0d0a 2242 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2243}
2244
6ad8ae5c 2245void
fee354ee 2246target_disconnect (const char *args, int from_tty)
6ad8ae5c 2247{
50c71eaf
PA
2248 /* If we're in breakpoints-always-inserted mode or if breakpoints
2249 are global across processes, we have to remove them before
2250 disconnecting. */
74960c60
VP
2251 remove_breakpoints ();
2252
86a0854a 2253 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2254}
2255
117de6a9 2256ptid_t
47608cb1 2257target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2258{
a7068b60 2259 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2260}
2261
0b333c5e
PA
2262/* See target.h. */
2263
2264ptid_t
2265default_target_wait (struct target_ops *ops,
2266 ptid_t ptid, struct target_waitstatus *status,
2267 int options)
2268{
2269 status->kind = TARGET_WAITKIND_IGNORE;
2270 return minus_one_ptid;
2271}
2272
117de6a9
PA
2273char *
2274target_pid_to_str (ptid_t ptid)
2275{
770234d3 2276 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2277}
2278
73ede765 2279const char *
4694da01
TT
2280target_thread_name (struct thread_info *info)
2281{
825828fc 2282 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2283}
2284
e1ac3328 2285void
2ea28649 2286target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2287{
4e5d721f 2288 target_dcache_invalidate ();
28439f5e 2289
6b84065d 2290 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2291
6b84065d 2292 registers_changed_ptid (ptid);
251bde03
PA
2293 /* We only set the internal executing state here. The user/frontend
2294 running state is set at a higher level. */
6b84065d 2295 set_executing (ptid, 1);
6b84065d 2296 clear_inline_frame_state (ptid);
e1ac3328 2297}
2455069d
UW
2298
2299void
2300target_pass_signals (int numsigs, unsigned char *pass_signals)
2301{
035cad7f 2302 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2303}
2304
9b224c5e
PA
2305void
2306target_program_signals (int numsigs, unsigned char *program_signals)
2307{
7d4f8efa
TT
2308 (*current_target.to_program_signals) (&current_target,
2309 numsigs, program_signals);
9b224c5e
PA
2310}
2311
098dba18
TT
2312static int
2313default_follow_fork (struct target_ops *self, int follow_child,
2314 int detach_fork)
2315{
2316 /* Some target returned a fork event, but did not know how to follow it. */
2317 internal_error (__FILE__, __LINE__,
2318 _("could not find a target to follow fork"));
2319}
2320
ee057212
DJ
2321/* Look through the list of possible targets for a target that can
2322 follow forks. */
2323
2324int
07107ca6 2325target_follow_fork (int follow_child, int detach_fork)
ee057212 2326{
a7068b60
TT
2327 return current_target.to_follow_fork (&current_target,
2328 follow_child, detach_fork);
ee057212
DJ
2329}
2330
94585166
DB
2331/* Target wrapper for follow exec hook. */
2332
2333void
2334target_follow_exec (struct inferior *inf, char *execd_pathname)
2335{
2336 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2337}
2338
8d657035
TT
2339static void
2340default_mourn_inferior (struct target_ops *self)
2341{
2342 internal_error (__FILE__, __LINE__,
2343 _("could not find a target to follow mourn inferior"));
2344}
2345
136d6dae
VP
2346void
2347target_mourn_inferior (void)
2348{
8d657035 2349 current_target.to_mourn_inferior (&current_target);
136d6dae 2350
8d657035
TT
2351 /* We no longer need to keep handles on any of the object files.
2352 Make sure to release them to avoid unnecessarily locking any
2353 of them while we're not actually debugging. */
2354 bfd_cache_close_all ();
136d6dae
VP
2355}
2356
424163ea
DJ
2357/* Look for a target which can describe architectural features, starting
2358 from TARGET. If we find one, return its description. */
2359
2360const struct target_desc *
2361target_read_description (struct target_ops *target)
2362{
2117c711 2363 return target->to_read_description (target);
424163ea
DJ
2364}
2365
58a5184e 2366/* This implements a basic search of memory, reading target memory and
08388c79
DE
2367 performing the search here (as opposed to performing the search in on the
2368 target side with, for example, gdbserver). */
2369
2370int
2371simple_search_memory (struct target_ops *ops,
2372 CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375{
2376 /* NOTE: also defined in find.c testcase. */
2377#define SEARCH_CHUNK_SIZE 16000
2378 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2379 /* Buffer to hold memory contents for searching. */
2380 gdb_byte *search_buf;
2381 unsigned search_buf_size;
2382 struct cleanup *old_cleanups;
2383
2384 search_buf_size = chunk_size + pattern_len - 1;
2385
2386 /* No point in trying to allocate a buffer larger than the search space. */
2387 if (search_space_len < search_buf_size)
2388 search_buf_size = search_space_len;
2389
224c3ddb 2390 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2391 if (search_buf == NULL)
5e1471f5 2392 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2393 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2394
2395 /* Prime the search buffer. */
2396
2397 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2398 search_buf, start_addr, search_buf_size) != search_buf_size)
2399 {
b3dc46ff
AB
2400 warning (_("Unable to access %s bytes of target "
2401 "memory at %s, halting search."),
2402 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2403 do_cleanups (old_cleanups);
2404 return -1;
2405 }
2406
2407 /* Perform the search.
2408
2409 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2410 When we've scanned N bytes we copy the trailing bytes to the start and
2411 read in another N bytes. */
2412
2413 while (search_space_len >= pattern_len)
2414 {
2415 gdb_byte *found_ptr;
2416 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2417
d7f3ff3e
SM
2418 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2419 pattern, pattern_len);
08388c79
DE
2420
2421 if (found_ptr != NULL)
2422 {
2423 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2424
08388c79
DE
2425 *found_addrp = found_addr;
2426 do_cleanups (old_cleanups);
2427 return 1;
2428 }
2429
2430 /* Not found in this chunk, skip to next chunk. */
2431
2432 /* Don't let search_space_len wrap here, it's unsigned. */
2433 if (search_space_len >= chunk_size)
2434 search_space_len -= chunk_size;
2435 else
2436 search_space_len = 0;
2437
2438 if (search_space_len >= pattern_len)
2439 {
2440 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2441 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2442 int nr_to_read;
2443
2444 /* Copy the trailing part of the previous iteration to the front
2445 of the buffer for the next iteration. */
2446 gdb_assert (keep_len == pattern_len - 1);
2447 memcpy (search_buf, search_buf + chunk_size, keep_len);
2448
2449 nr_to_read = min (search_space_len - keep_len, chunk_size);
2450
2451 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2452 search_buf + keep_len, read_addr,
2453 nr_to_read) != nr_to_read)
2454 {
b3dc46ff 2455 warning (_("Unable to access %s bytes of target "
9b20d036 2456 "memory at %s, halting search."),
b3dc46ff 2457 plongest (nr_to_read),
08388c79
DE
2458 hex_string (read_addr));
2459 do_cleanups (old_cleanups);
2460 return -1;
2461 }
2462
2463 start_addr += chunk_size;
2464 }
2465 }
2466
2467 /* Not found. */
2468
2469 do_cleanups (old_cleanups);
2470 return 0;
2471}
2472
58a5184e
TT
2473/* Default implementation of memory-searching. */
2474
2475static int
2476default_search_memory (struct target_ops *self,
2477 CORE_ADDR start_addr, ULONGEST search_space_len,
2478 const gdb_byte *pattern, ULONGEST pattern_len,
2479 CORE_ADDR *found_addrp)
2480{
2481 /* Start over from the top of the target stack. */
2482 return simple_search_memory (current_target.beneath,
2483 start_addr, search_space_len,
2484 pattern, pattern_len, found_addrp);
2485}
2486
08388c79
DE
2487/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2488 sequence of bytes in PATTERN with length PATTERN_LEN.
2489
2490 The result is 1 if found, 0 if not found, and -1 if there was an error
2491 requiring halting of the search (e.g. memory read error).
2492 If the pattern is found the address is recorded in FOUND_ADDRP. */
2493
2494int
2495target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2496 const gdb_byte *pattern, ULONGEST pattern_len,
2497 CORE_ADDR *found_addrp)
2498{
a7068b60
TT
2499 return current_target.to_search_memory (&current_target, start_addr,
2500 search_space_len,
2501 pattern, pattern_len, found_addrp);
08388c79
DE
2502}
2503
8edfe269
DJ
2504/* Look through the currently pushed targets. If none of them will
2505 be able to restart the currently running process, issue an error
2506 message. */
2507
2508void
2509target_require_runnable (void)
2510{
2511 struct target_ops *t;
2512
2513 for (t = target_stack; t != NULL; t = t->beneath)
2514 {
2515 /* If this target knows how to create a new program, then
2516 assume we will still be able to after killing the current
2517 one. Either killing and mourning will not pop T, or else
2518 find_default_run_target will find it again. */
2519 if (t->to_create_inferior != NULL)
2520 return;
2521
548740d6 2522 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2523 create inferiors. Assume they will be pushed again if
2524 necessary, and continue to the process_stratum. */
85e747d2 2525 if (t->to_stratum == thread_stratum
548740d6 2526 || t->to_stratum == record_stratum
85e747d2 2527 || t->to_stratum == arch_stratum)
8edfe269
DJ
2528 continue;
2529
3e43a32a
MS
2530 error (_("The \"%s\" target does not support \"run\". "
2531 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2532 t->to_shortname);
2533 }
2534
2535 /* This function is only called if the target is running. In that
2536 case there should have been a process_stratum target and it
c378eb4e 2537 should either know how to create inferiors, or not... */
9b20d036 2538 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2539}
2540
6a3cb8e8
PA
2541/* Whether GDB is allowed to fall back to the default run target for
2542 "run", "attach", etc. when no target is connected yet. */
2543static int auto_connect_native_target = 1;
2544
2545static void
2546show_auto_connect_native_target (struct ui_file *file, int from_tty,
2547 struct cmd_list_element *c, const char *value)
2548{
2549 fprintf_filtered (file,
2550 _("Whether GDB may automatically connect to the "
2551 "native target is %s.\n"),
2552 value);
2553}
2554
c906108c
SS
2555/* Look through the list of possible targets for a target that can
2556 execute a run or attach command without any other data. This is
2557 used to locate the default process stratum.
2558
5f667f2d
PA
2559 If DO_MESG is not NULL, the result is always valid (error() is
2560 called for errors); else, return NULL on error. */
c906108c
SS
2561
2562static struct target_ops *
fba45db2 2563find_default_run_target (char *do_mesg)
c906108c 2564{
c906108c 2565 struct target_ops *runable = NULL;
c906108c 2566
6a3cb8e8 2567 if (auto_connect_native_target)
c906108c 2568 {
89a1c21a 2569 struct target_ops *t;
6a3cb8e8 2570 int count = 0;
89a1c21a 2571 int i;
6a3cb8e8 2572
89a1c21a 2573 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2574 {
89a1c21a 2575 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2576 {
89a1c21a 2577 runable = t;
6a3cb8e8
PA
2578 ++count;
2579 }
c906108c 2580 }
6a3cb8e8
PA
2581
2582 if (count != 1)
2583 runable = NULL;
c906108c
SS
2584 }
2585
6a3cb8e8 2586 if (runable == NULL)
5f667f2d
PA
2587 {
2588 if (do_mesg)
2589 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2590 else
2591 return NULL;
2592 }
c906108c
SS
2593
2594 return runable;
2595}
2596
b3ccfe11 2597/* See target.h. */
c906108c 2598
b3ccfe11
TT
2599struct target_ops *
2600find_attach_target (void)
c906108c
SS
2601{
2602 struct target_ops *t;
2603
b3ccfe11
TT
2604 /* If a target on the current stack can attach, use it. */
2605 for (t = current_target.beneath; t != NULL; t = t->beneath)
2606 {
2607 if (t->to_attach != NULL)
2608 break;
2609 }
c906108c 2610
b3ccfe11
TT
2611 /* Otherwise, use the default run target for attaching. */
2612 if (t == NULL)
2613 t = find_default_run_target ("attach");
b84876c2 2614
b3ccfe11 2615 return t;
b84876c2
PA
2616}
2617
b3ccfe11 2618/* See target.h. */
b84876c2 2619
b3ccfe11
TT
2620struct target_ops *
2621find_run_target (void)
9908b566
VP
2622{
2623 struct target_ops *t;
2624
b3ccfe11
TT
2625 /* If a target on the current stack can attach, use it. */
2626 for (t = current_target.beneath; t != NULL; t = t->beneath)
2627 {
2628 if (t->to_create_inferior != NULL)
2629 break;
2630 }
5d502164 2631
b3ccfe11
TT
2632 /* Otherwise, use the default run target. */
2633 if (t == NULL)
2634 t = find_default_run_target ("run");
9908b566 2635
b3ccfe11 2636 return t;
9908b566
VP
2637}
2638
145b16a9
UW
2639/* Implement the "info proc" command. */
2640
451b7c33 2641int
7bc112c1 2642target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2643{
2644 struct target_ops *t;
2645
2646 /* If we're already connected to something that can get us OS
2647 related data, use it. Otherwise, try using the native
2648 target. */
2649 if (current_target.to_stratum >= process_stratum)
2650 t = current_target.beneath;
2651 else
2652 t = find_default_run_target (NULL);
2653
2654 for (; t != NULL; t = t->beneath)
2655 {
2656 if (t->to_info_proc != NULL)
2657 {
2658 t->to_info_proc (t, args, what);
2659
2660 if (targetdebug)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "target_info_proc (\"%s\", %d)\n", args, what);
2663
451b7c33 2664 return 1;
145b16a9
UW
2665 }
2666 }
2667
451b7c33 2668 return 0;
145b16a9
UW
2669}
2670
03583c20 2671static int
2bfc0540 2672find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2673{
2674 struct target_ops *t;
2675
2676 t = find_default_run_target (NULL);
2677 if (t && t->to_supports_disable_randomization)
2bfc0540 2678 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2679 return 0;
2680}
2681
2682int
2683target_supports_disable_randomization (void)
2684{
2685 struct target_ops *t;
2686
2687 for (t = &current_target; t != NULL; t = t->beneath)
2688 if (t->to_supports_disable_randomization)
2bfc0540 2689 return t->to_supports_disable_randomization (t);
03583c20
UW
2690
2691 return 0;
2692}
9908b566 2693
07e059b5
VP
2694char *
2695target_get_osdata (const char *type)
2696{
07e059b5
VP
2697 struct target_ops *t;
2698
739ef7fb
PA
2699 /* If we're already connected to something that can get us OS
2700 related data, use it. Otherwise, try using the native
2701 target. */
2702 if (current_target.to_stratum >= process_stratum)
6d097e65 2703 t = current_target.beneath;
739ef7fb
PA
2704 else
2705 t = find_default_run_target ("get OS data");
07e059b5
VP
2706
2707 if (!t)
2708 return NULL;
2709
6d097e65 2710 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2711}
2712
8eaff7cd
TT
2713static struct address_space *
2714default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2715{
2716 struct inferior *inf;
6c95b8df
PA
2717
2718 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2719 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2720
2721 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2722 internal_error (__FILE__, __LINE__,
9b20d036
MS
2723 _("Can't determine the current "
2724 "address space of thread %s\n"),
6c95b8df
PA
2725 target_pid_to_str (ptid));
2726
2727 return inf->aspace;
2728}
2729
8eaff7cd
TT
2730/* Determine the current address space of thread PTID. */
2731
2732struct address_space *
2733target_thread_address_space (ptid_t ptid)
2734{
2735 struct address_space *aspace;
2736
2737 aspace = current_target.to_thread_address_space (&current_target, ptid);
2738 gdb_assert (aspace != NULL);
2739
8eaff7cd
TT
2740 return aspace;
2741}
2742
7313baad
UW
2743
2744/* Target file operations. */
2745
2746static struct target_ops *
2747default_fileio_target (void)
2748{
2749 /* If we're already connected to something that can perform
2750 file I/O, use it. Otherwise, try using the native target. */
2751 if (current_target.to_stratum >= process_stratum)
2752 return current_target.beneath;
2753 else
2754 return find_default_run_target ("file I/O");
2755}
2756
1c4b552b
GB
2757/* File handle for target file operations. */
2758
2759typedef struct
2760{
2761 /* The target on which this file is open. */
2762 struct target_ops *t;
2763
2764 /* The file descriptor on the target. */
2765 int fd;
2766} fileio_fh_t;
2767
2768DEF_VEC_O (fileio_fh_t);
2769
2770/* Vector of currently open file handles. The value returned by
2771 target_fileio_open and passed as the FD argument to other
2772 target_fileio_* functions is an index into this vector. This
2773 vector's entries are never freed; instead, files are marked as
2774 closed, and the handle becomes available for reuse. */
2775static VEC (fileio_fh_t) *fileio_fhandles;
2776
2777/* Macro to check whether a fileio_fh_t represents a closed file. */
2778#define is_closed_fileio_fh(fd) ((fd) < 0)
2779
2780/* Index into fileio_fhandles of the lowest handle that might be
2781 closed. This permits handle reuse without searching the whole
2782 list each time a new file is opened. */
2783static int lowest_closed_fd;
2784
2785/* Acquire a target fileio file descriptor. */
2786
2787static int
2788acquire_fileio_fd (struct target_ops *t, int fd)
2789{
870f88f7 2790 fileio_fh_t *fh;
1c4b552b
GB
2791
2792 gdb_assert (!is_closed_fileio_fh (fd));
2793
2794 /* Search for closed handles to reuse. */
2795 for (;
2796 VEC_iterate (fileio_fh_t, fileio_fhandles,
2797 lowest_closed_fd, fh);
2798 lowest_closed_fd++)
2799 if (is_closed_fileio_fh (fh->fd))
2800 break;
2801
2802 /* Push a new handle if no closed handles were found. */
2803 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2804 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2805
2806 /* Fill in the handle. */
2807 fh->t = t;
2808 fh->fd = fd;
2809
2810 /* Return its index, and start the next lookup at
2811 the next index. */
2812 return lowest_closed_fd++;
2813}
2814
2815/* Release a target fileio file descriptor. */
2816
2817static void
2818release_fileio_fd (int fd, fileio_fh_t *fh)
2819{
2820 fh->fd = -1;
2821 lowest_closed_fd = min (lowest_closed_fd, fd);
2822}
2823
2824/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2825
2826#define fileio_fd_to_fh(fd) \
2827 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2828
4313b8c0
GB
2829/* Helper for target_fileio_open and
2830 target_fileio_open_warn_if_slow. */
12e2a5fd 2831
4313b8c0
GB
2832static int
2833target_fileio_open_1 (struct inferior *inf, const char *filename,
2834 int flags, int mode, int warn_if_slow,
2835 int *target_errno)
7313baad
UW
2836{
2837 struct target_ops *t;
2838
2839 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2840 {
2841 if (t->to_fileio_open != NULL)
2842 {
07c138c8 2843 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2844 warn_if_slow, target_errno);
7313baad 2845
1c4b552b
GB
2846 if (fd < 0)
2847 fd = -1;
2848 else
2849 fd = acquire_fileio_fd (t, fd);
2850
7313baad
UW
2851 if (targetdebug)
2852 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2853 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2854 " = %d (%d)\n",
2855 inf == NULL ? 0 : inf->num,
7313baad 2856 filename, flags, mode,
4313b8c0
GB
2857 warn_if_slow, fd,
2858 fd != -1 ? 0 : *target_errno);
7313baad
UW
2859 return fd;
2860 }
2861 }
2862
2863 *target_errno = FILEIO_ENOSYS;
2864 return -1;
2865}
2866
12e2a5fd
GB
2867/* See target.h. */
2868
4313b8c0
GB
2869int
2870target_fileio_open (struct inferior *inf, const char *filename,
2871 int flags, int mode, int *target_errno)
2872{
2873 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2874 target_errno);
2875}
2876
2877/* See target.h. */
2878
2879int
2880target_fileio_open_warn_if_slow (struct inferior *inf,
2881 const char *filename,
2882 int flags, int mode, int *target_errno)
2883{
2884 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2885 target_errno);
2886}
2887
2888/* See target.h. */
2889
7313baad
UW
2890int
2891target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2892 ULONGEST offset, int *target_errno)
2893{
1c4b552b
GB
2894 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2895 int ret = -1;
7313baad 2896
1c4b552b
GB
2897 if (is_closed_fileio_fh (fh->fd))
2898 *target_errno = EBADF;
2899 else
2900 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2901 len, offset, target_errno);
7313baad 2902
1c4b552b
GB
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_pwrite (%d,...,%d,%s) "
2906 "= %d (%d)\n",
2907 fd, len, pulongest (offset),
2908 ret, ret != -1 ? 0 : *target_errno);
2909 return ret;
7313baad
UW
2910}
2911
12e2a5fd
GB
2912/* See target.h. */
2913
7313baad
UW
2914int
2915target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2916 ULONGEST offset, int *target_errno)
2917{
1c4b552b
GB
2918 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2919 int ret = -1;
7313baad 2920
1c4b552b
GB
2921 if (is_closed_fileio_fh (fh->fd))
2922 *target_errno = EBADF;
2923 else
2924 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2925 len, offset, target_errno);
7313baad 2926
1c4b552b
GB
2927 if (targetdebug)
2928 fprintf_unfiltered (gdb_stdlog,
2929 "target_fileio_pread (%d,...,%d,%s) "
2930 "= %d (%d)\n",
2931 fd, len, pulongest (offset),
2932 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2933 return ret;
2934}
2935
2936/* See target.h. */
12e2a5fd 2937
9b15c1f0
GB
2938int
2939target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2940{
2941 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2942 int ret = -1;
2943
2944 if (is_closed_fileio_fh (fh->fd))
2945 *target_errno = EBADF;
2946 else
2947 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2948
2949 if (targetdebug)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "target_fileio_fstat (%d) = %d (%d)\n",
2952 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2953 return ret;
7313baad
UW
2954}
2955
12e2a5fd
GB
2956/* See target.h. */
2957
7313baad
UW
2958int
2959target_fileio_close (int fd, int *target_errno)
2960{
1c4b552b
GB
2961 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2962 int ret = -1;
7313baad 2963
1c4b552b
GB
2964 if (is_closed_fileio_fh (fh->fd))
2965 *target_errno = EBADF;
2966 else
7313baad 2967 {
1c4b552b
GB
2968 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2969 release_fileio_fd (fd, fh);
7313baad
UW
2970 }
2971
1c4b552b
GB
2972 if (targetdebug)
2973 fprintf_unfiltered (gdb_stdlog,
2974 "target_fileio_close (%d) = %d (%d)\n",
2975 fd, ret, ret != -1 ? 0 : *target_errno);
2976 return ret;
7313baad
UW
2977}
2978
12e2a5fd
GB
2979/* See target.h. */
2980
7313baad 2981int
07c138c8
GB
2982target_fileio_unlink (struct inferior *inf, const char *filename,
2983 int *target_errno)
7313baad
UW
2984{
2985 struct target_ops *t;
2986
2987 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2988 {
2989 if (t->to_fileio_unlink != NULL)
2990 {
07c138c8
GB
2991 int ret = t->to_fileio_unlink (t, inf, filename,
2992 target_errno);
7313baad
UW
2993
2994 if (targetdebug)
2995 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
2996 "target_fileio_unlink (%d,%s)"
2997 " = %d (%d)\n",
2998 inf == NULL ? 0 : inf->num, filename,
2999 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
3000 return ret;
3001 }
3002 }
3003
3004 *target_errno = FILEIO_ENOSYS;
3005 return -1;
3006}
3007
12e2a5fd
GB
3008/* See target.h. */
3009
b9e7b9c3 3010char *
07c138c8
GB
3011target_fileio_readlink (struct inferior *inf, const char *filename,
3012 int *target_errno)
b9e7b9c3
UW
3013{
3014 struct target_ops *t;
3015
3016 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3017 {
3018 if (t->to_fileio_readlink != NULL)
3019 {
07c138c8
GB
3020 char *ret = t->to_fileio_readlink (t, inf, filename,
3021 target_errno);
b9e7b9c3
UW
3022
3023 if (targetdebug)
3024 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3025 "target_fileio_readlink (%d,%s)"
3026 " = %s (%d)\n",
3027 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3028 filename, ret? ret : "(nil)",
3029 ret? 0 : *target_errno);
3030 return ret;
3031 }
3032 }
3033
3034 *target_errno = FILEIO_ENOSYS;
3035 return NULL;
3036}
3037
7313baad
UW
3038static void
3039target_fileio_close_cleanup (void *opaque)
3040{
3041 int fd = *(int *) opaque;
3042 int target_errno;
3043
3044 target_fileio_close (fd, &target_errno);
3045}
3046
07c138c8
GB
3047/* Read target file FILENAME, in the filesystem as seen by INF. If
3048 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3049 remote targets, the remote stub). Store the result in *BUF_P and
3050 return the size of the transferred data. PADDING additional bytes
3051 are available in *BUF_P. This is a helper function for
3052 target_fileio_read_alloc; see the declaration of that function for
3053 more information. */
7313baad 3054
f7af1fcd
JK
3055static LONGEST
3056target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3057 gdb_byte **buf_p, int padding)
3058{
3059 struct cleanup *close_cleanup;
db1ff28b
JK
3060 size_t buf_alloc, buf_pos;
3061 gdb_byte *buf;
3062 LONGEST n;
3063 int fd;
3064 int target_errno;
f7af1fcd 3065
db1ff28b
JK
3066 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3067 &target_errno);
f7af1fcd
JK
3068 if (fd == -1)
3069 return -1;
3070
3071 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3072
3073 /* Start by reading up to 4K at a time. The target will throttle
3074 this number down if necessary. */
3075 buf_alloc = 4096;
224c3ddb 3076 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3077 buf_pos = 0;
3078 while (1)
3079 {
3080 n = target_fileio_pread (fd, &buf[buf_pos],
3081 buf_alloc - buf_pos - padding, buf_pos,
3082 &target_errno);
3083 if (n < 0)
3084 {
3085 /* An error occurred. */
3086 do_cleanups (close_cleanup);
3087 xfree (buf);
3088 return -1;
3089 }
3090 else if (n == 0)
3091 {
3092 /* Read all there was. */
3093 do_cleanups (close_cleanup);
3094 if (buf_pos == 0)
3095 xfree (buf);
3096 else
3097 *buf_p = buf;
3098 return buf_pos;
3099 }
3100
3101 buf_pos += n;
3102
3103 /* If the buffer is filling up, expand it. */
3104 if (buf_alloc < buf_pos * 2)
3105 {
3106 buf_alloc *= 2;
224c3ddb 3107 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3108 }
3109
3110 QUIT;
3111 }
f7af1fcd
JK
3112}
3113
12e2a5fd 3114/* See target.h. */
7313baad
UW
3115
3116LONGEST
07c138c8
GB
3117target_fileio_read_alloc (struct inferior *inf, const char *filename,
3118 gdb_byte **buf_p)
7313baad 3119{
07c138c8 3120 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3121}
3122
db1ff28b 3123/* See target.h. */
f7af1fcd
JK
3124
3125char *
3126target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3127{
db1ff28b
JK
3128 gdb_byte *buffer;
3129 char *bufstr;
3130 LONGEST i, transferred;
3131
3132 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3133 bufstr = (char *) buffer;
3134
3135 if (transferred < 0)
3136 return NULL;
3137
3138 if (transferred == 0)
3139 return xstrdup ("");
3140
3141 bufstr[transferred] = 0;
3142
3143 /* Check for embedded NUL bytes; but allow trailing NULs. */
3144 for (i = strlen (bufstr); i < transferred; i++)
3145 if (bufstr[i] != 0)
3146 {
3147 warning (_("target file %s "
3148 "contained unexpected null characters"),
3149 filename);
3150 break;
3151 }
3152
3153 return bufstr;
f7af1fcd 3154}
7313baad 3155
db1ff28b 3156
e0d24f8d 3157static int
31568a15
TT
3158default_region_ok_for_hw_watchpoint (struct target_ops *self,
3159 CORE_ADDR addr, int len)
e0d24f8d 3160{
f5656ead 3161 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3162}
3163
5009afc5
AS
3164static int
3165default_watchpoint_addr_within_range (struct target_ops *target,
3166 CORE_ADDR addr,
3167 CORE_ADDR start, int length)
3168{
3169 return addr >= start && addr < start + length;
3170}
3171
c2250ad1
UW
3172static struct gdbarch *
3173default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3174{
f5656ead 3175 return target_gdbarch ();
c2250ad1
UW
3176}
3177
c906108c 3178static int
555bbdeb
TT
3179return_zero (struct target_ops *ignore)
3180{
3181 return 0;
3182}
3183
3184static int
3185return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3186{
3187 return 0;
3188}
3189
ed9a39eb
JM
3190/*
3191 * Find the next target down the stack from the specified target.
3192 */
3193
3194struct target_ops *
fba45db2 3195find_target_beneath (struct target_ops *t)
ed9a39eb 3196{
258b763a 3197 return t->beneath;
ed9a39eb
JM
3198}
3199
8b06beed
TT
3200/* See target.h. */
3201
3202struct target_ops *
3203find_target_at (enum strata stratum)
3204{
3205 struct target_ops *t;
3206
3207 for (t = current_target.beneath; t != NULL; t = t->beneath)
3208 if (t->to_stratum == stratum)
3209 return t;
3210
3211 return NULL;
3212}
3213
c906108c
SS
3214\f
3215/* The inferior process has died. Long live the inferior! */
3216
3217void
fba45db2 3218generic_mourn_inferior (void)
c906108c 3219{
7f9f62ba 3220 ptid_t ptid;
c906108c 3221
7f9f62ba 3222 ptid = inferior_ptid;
39f77062 3223 inferior_ptid = null_ptid;
7f9f62ba 3224
f59f708a
PA
3225 /* Mark breakpoints uninserted in case something tries to delete a
3226 breakpoint while we delete the inferior's threads (which would
3227 fail, since the inferior is long gone). */
3228 mark_breakpoints_out ();
3229
7f9f62ba
PA
3230 if (!ptid_equal (ptid, null_ptid))
3231 {
3232 int pid = ptid_get_pid (ptid);
6c95b8df 3233 exit_inferior (pid);
7f9f62ba
PA
3234 }
3235
f59f708a
PA
3236 /* Note this wipes step-resume breakpoints, so needs to be done
3237 after exit_inferior, which ends up referencing the step-resume
3238 breakpoints through clear_thread_inferior_resources. */
c906108c 3239 breakpoint_init_inferior (inf_exited);
f59f708a 3240
c906108c
SS
3241 registers_changed ();
3242
c906108c
SS
3243 reopen_exec_file ();
3244 reinit_frame_cache ();
3245
9a4105ab
AC
3246 if (deprecated_detach_hook)
3247 deprecated_detach_hook ();
c906108c
SS
3248}
3249\f
fd0a2a6f
MK
3250/* Convert a normal process ID to a string. Returns the string in a
3251 static buffer. */
c906108c
SS
3252
3253char *
39f77062 3254normal_pid_to_str (ptid_t ptid)
c906108c 3255{
fd0a2a6f 3256 static char buf[32];
c906108c 3257
5fff8fc0 3258 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3259 return buf;
3260}
3261
2c0b251b 3262static char *
770234d3 3263default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3264{
3265 return normal_pid_to_str (ptid);
3266}
3267
9b4eba8e
HZ
3268/* Error-catcher for target_find_memory_regions. */
3269static int
2e73927c
TT
3270dummy_find_memory_regions (struct target_ops *self,
3271 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3272{
9b4eba8e 3273 error (_("Command not implemented for this target."));
be4d1333
MS
3274 return 0;
3275}
3276
9b4eba8e
HZ
3277/* Error-catcher for target_make_corefile_notes. */
3278static char *
fc6691b2
TT
3279dummy_make_corefile_notes (struct target_ops *self,
3280 bfd *ignore1, int *ignore2)
be4d1333 3281{
9b4eba8e 3282 error (_("Command not implemented for this target."));
be4d1333
MS
3283 return NULL;
3284}
3285
c906108c
SS
3286/* Set up the handful of non-empty slots needed by the dummy target
3287 vector. */
3288
3289static void
fba45db2 3290init_dummy_target (void)
c906108c
SS
3291{
3292 dummy_target.to_shortname = "None";
3293 dummy_target.to_longname = "None";
3294 dummy_target.to_doc = "";
03583c20
UW
3295 dummy_target.to_supports_disable_randomization
3296 = find_default_supports_disable_randomization;
c906108c 3297 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3298 dummy_target.to_has_all_memory = return_zero;
3299 dummy_target.to_has_memory = return_zero;
3300 dummy_target.to_has_stack = return_zero;
3301 dummy_target.to_has_registers = return_zero;
3302 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3303 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3304
3305 install_dummy_methods (&dummy_target);
c906108c 3306}
c906108c 3307\f
c906108c 3308
f1c07ab0 3309void
460014f5 3310target_close (struct target_ops *targ)
f1c07ab0 3311{
7fdc1521
TT
3312 gdb_assert (!target_is_pushed (targ));
3313
f1c07ab0 3314 if (targ->to_xclose != NULL)
460014f5 3315 targ->to_xclose (targ);
f1c07ab0 3316 else if (targ->to_close != NULL)
de90e03d 3317 targ->to_close (targ);
947b8855
PA
3318
3319 if (targetdebug)
460014f5 3320 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3321}
3322
28439f5e
PA
3323int
3324target_thread_alive (ptid_t ptid)
c906108c 3325{
a7068b60 3326 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3327}
3328
3329void
e8032dde 3330target_update_thread_list (void)
28439f5e 3331{
e8032dde 3332 current_target.to_update_thread_list (&current_target);
c906108c
SS
3333}
3334
d914c394
SS
3335void
3336target_stop (ptid_t ptid)
3337{
3338 if (!may_stop)
3339 {
3340 warning (_("May not interrupt or stop the target, ignoring attempt"));
3341 return;
3342 }
3343
1eab8a48 3344 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3345}
3346
bfedc46a
PA
3347void
3348target_interrupt (ptid_t ptid)
3349{
3350 if (!may_stop)
3351 {
3352 warning (_("May not interrupt or stop the target, ignoring attempt"));
3353 return;
3354 }
3355
3356 (*current_target.to_interrupt) (&current_target, ptid);
3357}
3358
abc56d60
PA
3359/* See target.h. */
3360
93692b58
PA
3361void
3362target_pass_ctrlc (void)
3363{
3364 (*current_target.to_pass_ctrlc) (&current_target);
3365}
3366
3367/* See target.h. */
3368
3369void
3370default_target_pass_ctrlc (struct target_ops *ops)
3371{
3372 target_interrupt (inferior_ptid);
3373}
3374
f8c1d06b
GB
3375/* See target/target.h. */
3376
3377void
03f4463b 3378target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3379{
3380 struct target_waitstatus status;
3381 int was_non_stop = non_stop;
3382
3383 non_stop = 1;
3384 target_stop (ptid);
3385
3386 memset (&status, 0, sizeof (status));
3387 target_wait (ptid, &status, 0);
3388
3389 non_stop = was_non_stop;
3390}
3391
3392/* See target/target.h. */
3393
3394void
03f4463b 3395target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3396{
3397 target_resume (ptid, 0, GDB_SIGNAL_0);
3398}
3399
09826ec5
PA
3400/* Concatenate ELEM to LIST, a comma separate list, and return the
3401 result. The LIST incoming argument is released. */
3402
3403static char *
3404str_comma_list_concat_elem (char *list, const char *elem)
3405{
3406 if (list == NULL)
3407 return xstrdup (elem);
3408 else
3409 return reconcat (list, list, ", ", elem, (char *) NULL);
3410}
3411
3412/* Helper for target_options_to_string. If OPT is present in
3413 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3414 Returns the new resulting string. OPT is removed from
3415 TARGET_OPTIONS. */
3416
3417static char *
3418do_option (int *target_options, char *ret,
3419 int opt, char *opt_str)
3420{
3421 if ((*target_options & opt) != 0)
3422 {
3423 ret = str_comma_list_concat_elem (ret, opt_str);
3424 *target_options &= ~opt;
3425 }
3426
3427 return ret;
3428}
3429
3430char *
3431target_options_to_string (int target_options)
3432{
3433 char *ret = NULL;
3434
3435#define DO_TARG_OPTION(OPT) \
3436 ret = do_option (&target_options, ret, OPT, #OPT)
3437
3438 DO_TARG_OPTION (TARGET_WNOHANG);
3439
3440 if (target_options != 0)
3441 ret = str_comma_list_concat_elem (ret, "unknown???");
3442
3443 if (ret == NULL)
3444 ret = xstrdup ("");
3445 return ret;
3446}
3447
bf0c5130 3448static void
56be3814
UW
3449debug_print_register (const char * func,
3450 struct regcache *regcache, int regno)
bf0c5130 3451{
f8d29908 3452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3453
bf0c5130 3454 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3455 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3456 && gdbarch_register_name (gdbarch, regno) != NULL
3457 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3458 fprintf_unfiltered (gdb_stdlog, "(%s)",
3459 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3460 else
3461 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3462 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3463 {
e17a4113 3464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3465 int i, size = register_size (gdbarch, regno);
e362b510 3466 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3467
0ff58721 3468 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3469 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3470 for (i = 0; i < size; i++)
bf0c5130
AC
3471 {
3472 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3473 }
81c4a259 3474 if (size <= sizeof (LONGEST))
bf0c5130 3475 {
e17a4113 3476 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3477
0b1553bc
UW
3478 fprintf_unfiltered (gdb_stdlog, " %s %s",
3479 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3480 }
3481 }
3482 fprintf_unfiltered (gdb_stdlog, "\n");
3483}
3484
28439f5e
PA
3485void
3486target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3487{
ad5989bd
TT
3488 current_target.to_fetch_registers (&current_target, regcache, regno);
3489 if (targetdebug)
3490 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3491}
3492
28439f5e
PA
3493void
3494target_store_registers (struct regcache *regcache, int regno)
c906108c 3495{
d914c394
SS
3496 if (!may_write_registers)
3497 error (_("Writing to registers is not allowed (regno %d)"), regno);
3498
6b84065d
TT
3499 current_target.to_store_registers (&current_target, regcache, regno);
3500 if (targetdebug)
28439f5e 3501 {
6b84065d 3502 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3503 }
c906108c
SS
3504}
3505
dc146f7c
VP
3506int
3507target_core_of_thread (ptid_t ptid)
3508{
a7068b60 3509 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3510}
3511
936d2992
PA
3512int
3513simple_verify_memory (struct target_ops *ops,
3514 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3515{
3516 LONGEST total_xfered = 0;
3517
3518 while (total_xfered < size)
3519 {
3520 ULONGEST xfered_len;
3521 enum target_xfer_status status;
3522 gdb_byte buf[1024];
3523 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3524
3525 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3526 buf, NULL, lma + total_xfered, howmuch,
3527 &xfered_len);
3528 if (status == TARGET_XFER_OK
3529 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3530 {
3531 total_xfered += xfered_len;
3532 QUIT;
3533 }
3534 else
3535 return 0;
3536 }
3537 return 1;
3538}
3539
3540/* Default implementation of memory verification. */
3541
3542static int
3543default_verify_memory (struct target_ops *self,
3544 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3545{
3546 /* Start over from the top of the target stack. */
3547 return simple_verify_memory (current_target.beneath,
3548 data, memaddr, size);
3549}
3550
4a5e7a5b
PA
3551int
3552target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3553{
a7068b60
TT
3554 return current_target.to_verify_memory (&current_target,
3555 data, memaddr, size);
4a5e7a5b
PA
3556}
3557
9c06b0b4
TJB
3558/* The documentation for this function is in its prototype declaration in
3559 target.h. */
3560
3561int
f4b0a671
SM
3562target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3563 enum target_hw_bp_type rw)
9c06b0b4 3564{
a7068b60
TT
3565 return current_target.to_insert_mask_watchpoint (&current_target,
3566 addr, mask, rw);
9c06b0b4
TJB
3567}
3568
3569/* The documentation for this function is in its prototype declaration in
3570 target.h. */
3571
3572int
f4b0a671
SM
3573target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3574 enum target_hw_bp_type rw)
9c06b0b4 3575{
a7068b60
TT
3576 return current_target.to_remove_mask_watchpoint (&current_target,
3577 addr, mask, rw);
9c06b0b4
TJB
3578}
3579
3580/* The documentation for this function is in its prototype declaration
3581 in target.h. */
3582
3583int
3584target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3585{
6c7e5e5c
TT
3586 return current_target.to_masked_watch_num_registers (&current_target,
3587 addr, mask);
9c06b0b4
TJB
3588}
3589
f1310107
TJB
3590/* The documentation for this function is in its prototype declaration
3591 in target.h. */
3592
3593int
3594target_ranged_break_num_registers (void)
3595{
a134316b 3596 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3597}
3598
02d27625
MM
3599/* See target.h. */
3600
043c3577
MM
3601int
3602target_supports_btrace (enum btrace_format format)
3603{
3604 return current_target.to_supports_btrace (&current_target, format);
3605}
3606
3607/* See target.h. */
3608
02d27625 3609struct btrace_target_info *
f4abbc16 3610target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3611{
f4abbc16 3612 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3613}
3614
3615/* See target.h. */
3616
3617void
3618target_disable_btrace (struct btrace_target_info *btinfo)
3619{
8dc292d3 3620 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3621}
3622
3623/* See target.h. */
3624
3625void
3626target_teardown_btrace (struct btrace_target_info *btinfo)
3627{
9ace480d 3628 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3629}
3630
3631/* See target.h. */
3632
969c39fb 3633enum btrace_error
734b0e4b 3634target_read_btrace (struct btrace_data *btrace,
969c39fb 3635 struct btrace_target_info *btinfo,
02d27625
MM
3636 enum btrace_read_type type)
3637{
eb5b20d4 3638 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3639}
3640
d02ed0bb
MM
3641/* See target.h. */
3642
f4abbc16
MM
3643const struct btrace_config *
3644target_btrace_conf (const struct btrace_target_info *btinfo)
3645{
3646 return current_target.to_btrace_conf (&current_target, btinfo);
3647}
3648
3649/* See target.h. */
3650
7c1687a9
MM
3651void
3652target_stop_recording (void)
3653{
ee97f592 3654 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3655}
3656
3657/* See target.h. */
3658
d02ed0bb 3659void
85e1311a 3660target_save_record (const char *filename)
d02ed0bb 3661{
f09e2107 3662 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3663}
3664
3665/* See target.h. */
3666
3667int
3668target_supports_delete_record (void)
3669{
3670 struct target_ops *t;
3671
3672 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3673 if (t->to_delete_record != delegate_delete_record
3674 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3675 return 1;
3676
3677 return 0;
3678}
3679
3680/* See target.h. */
3681
3682void
3683target_delete_record (void)
3684{
07366925 3685 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3686}
3687
3688/* See target.h. */
3689
3690int
a52eab48 3691target_record_is_replaying (ptid_t ptid)
d02ed0bb 3692{
a52eab48 3693 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3694}
3695
3696/* See target.h. */
3697
7ff27e9b
MM
3698int
3699target_record_will_replay (ptid_t ptid, int dir)
3700{
3701 return current_target.to_record_will_replay (&current_target, ptid, dir);
3702}
3703
3704/* See target.h. */
3705
797094dd
MM
3706void
3707target_record_stop_replaying (void)
3708{
3709 current_target.to_record_stop_replaying (&current_target);
3710}
3711
3712/* See target.h. */
3713
d02ed0bb
MM
3714void
3715target_goto_record_begin (void)
3716{
671e76cc 3717 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3718}
3719
3720/* See target.h. */
3721
3722void
3723target_goto_record_end (void)
3724{
e9179bb3 3725 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3726}
3727
3728/* See target.h. */
3729
3730void
3731target_goto_record (ULONGEST insn)
3732{
05969c84 3733 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3734}
3735
67c86d06
MM
3736/* See target.h. */
3737
3738void
3739target_insn_history (int size, int flags)
3740{
3679abfa 3741 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3742}
3743
3744/* See target.h. */
3745
3746void
3747target_insn_history_from (ULONGEST from, int size, int flags)
3748{
8444ab58 3749 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3750}
3751
3752/* See target.h. */
3753
3754void
3755target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3756{
c29302cc 3757 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3758}
3759
15984c13
MM
3760/* See target.h. */
3761
3762void
3763target_call_history (int size, int flags)
3764{
170049d4 3765 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3766}
3767
3768/* See target.h. */
3769
3770void
3771target_call_history_from (ULONGEST begin, int size, int flags)
3772{
16fc27d6 3773 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3774}
3775
3776/* See target.h. */
3777
3778void
3779target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3780{
115d9817 3781 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3782}
3783
ea001bdc
MM
3784/* See target.h. */
3785
3786const struct frame_unwind *
3787target_get_unwinder (void)
3788{
ac01945b 3789 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3790}
3791
3792/* See target.h. */
3793
3794const struct frame_unwind *
3795target_get_tailcall_unwinder (void)
3796{
ac01945b 3797 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3798}
3799
5fff78c4
MM
3800/* See target.h. */
3801
3802void
3803target_prepare_to_generate_core (void)
3804{
3805 current_target.to_prepare_to_generate_core (&current_target);
3806}
3807
3808/* See target.h. */
3809
3810void
3811target_done_generating_core (void)
3812{
3813 current_target.to_done_generating_core (&current_target);
3814}
3815
c906108c 3816static void
fba45db2 3817setup_target_debug (void)
c906108c
SS
3818{
3819 memcpy (&debug_target, &current_target, sizeof debug_target);
3820
a7068b60 3821 init_debug_target (&current_target);
c906108c 3822}
c906108c 3823\f
c5aa993b
JM
3824
3825static char targ_desc[] =
3e43a32a
MS
3826"Names of targets and files being debugged.\nShows the entire \
3827stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3828core-file, and process, if any), as well as the symbol file name.";
3829
a53f3625 3830static void
a30bf1f1
TT
3831default_rcmd (struct target_ops *self, const char *command,
3832 struct ui_file *output)
a53f3625
TT
3833{
3834 error (_("\"monitor\" command not supported by this target."));
3835}
3836
96baa820
JM
3837static void
3838do_monitor_command (char *cmd,
3839 int from_tty)
3840{
96baa820
JM
3841 target_rcmd (cmd, gdb_stdtarg);
3842}
3843
87680a14
JB
3844/* Print the name of each layers of our target stack. */
3845
3846static void
3847maintenance_print_target_stack (char *cmd, int from_tty)
3848{
3849 struct target_ops *t;
3850
3851 printf_filtered (_("The current target stack is:\n"));
3852
3853 for (t = target_stack; t != NULL; t = t->beneath)
3854 {
3855 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3856 }
3857}
3858
372316f1
PA
3859/* See target.h. */
3860
3861void
3862target_async (int enable)
3863{
3864 infrun_async (enable);
3865 current_target.to_async (&current_target, enable);
3866}
3867
65706a29
PA
3868/* See target.h. */
3869
3870void
3871target_thread_events (int enable)
3872{
3873 current_target.to_thread_events (&current_target, enable);
3874}
3875
329ea579
PA
3876/* Controls if targets can report that they can/are async. This is
3877 just for maintainers to use when debugging gdb. */
3878int target_async_permitted = 1;
c6ebd6cf
VP
3879
3880/* The set command writes to this variable. If the inferior is
b5419e49 3881 executing, target_async_permitted is *not* updated. */
329ea579 3882static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3883
3884static void
329ea579
PA
3885maint_set_target_async_command (char *args, int from_tty,
3886 struct cmd_list_element *c)
c6ebd6cf 3887{
c35b1492 3888 if (have_live_inferiors ())
c6ebd6cf
VP
3889 {
3890 target_async_permitted_1 = target_async_permitted;
3891 error (_("Cannot change this setting while the inferior is running."));
3892 }
3893
3894 target_async_permitted = target_async_permitted_1;
3895}
3896
3897static void
329ea579
PA
3898maint_show_target_async_command (struct ui_file *file, int from_tty,
3899 struct cmd_list_element *c,
3900 const char *value)
c6ebd6cf 3901{
3e43a32a
MS
3902 fprintf_filtered (file,
3903 _("Controlling the inferior in "
3904 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3905}
3906
fbea99ea
PA
3907/* Return true if the target operates in non-stop mode even with "set
3908 non-stop off". */
3909
3910static int
3911target_always_non_stop_p (void)
3912{
3913 return current_target.to_always_non_stop_p (&current_target);
3914}
3915
3916/* See target.h. */
3917
3918int
3919target_is_non_stop_p (void)
3920{
3921 return (non_stop
3922 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3923 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3924 && target_always_non_stop_p ()));
3925}
3926
3927/* Controls if targets can report that they always run in non-stop
3928 mode. This is just for maintainers to use when debugging gdb. */
3929enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3930
3931/* The set command writes to this variable. If the inferior is
3932 executing, target_non_stop_enabled is *not* updated. */
3933static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3934
3935/* Implementation of "maint set target-non-stop". */
3936
3937static void
3938maint_set_target_non_stop_command (char *args, int from_tty,
3939 struct cmd_list_element *c)
3940{
3941 if (have_live_inferiors ())
3942 {
3943 target_non_stop_enabled_1 = target_non_stop_enabled;
3944 error (_("Cannot change this setting while the inferior is running."));
3945 }
3946
3947 target_non_stop_enabled = target_non_stop_enabled_1;
3948}
3949
3950/* Implementation of "maint show target-non-stop". */
3951
3952static void
3953maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3954 struct cmd_list_element *c,
3955 const char *value)
3956{
3957 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3958 fprintf_filtered (file,
3959 _("Whether the target is always in non-stop mode "
3960 "is %s (currently %s).\n"), value,
3961 target_always_non_stop_p () ? "on" : "off");
3962 else
3963 fprintf_filtered (file,
3964 _("Whether the target is always in non-stop mode "
3965 "is %s.\n"), value);
3966}
3967
d914c394
SS
3968/* Temporary copies of permission settings. */
3969
3970static int may_write_registers_1 = 1;
3971static int may_write_memory_1 = 1;
3972static int may_insert_breakpoints_1 = 1;
3973static int may_insert_tracepoints_1 = 1;
3974static int may_insert_fast_tracepoints_1 = 1;
3975static int may_stop_1 = 1;
3976
3977/* Make the user-set values match the real values again. */
3978
3979void
3980update_target_permissions (void)
3981{
3982 may_write_registers_1 = may_write_registers;
3983 may_write_memory_1 = may_write_memory;
3984 may_insert_breakpoints_1 = may_insert_breakpoints;
3985 may_insert_tracepoints_1 = may_insert_tracepoints;
3986 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3987 may_stop_1 = may_stop;
3988}
3989
3990/* The one function handles (most of) the permission flags in the same
3991 way. */
3992
3993static void
3994set_target_permissions (char *args, int from_tty,
3995 struct cmd_list_element *c)
3996{
3997 if (target_has_execution)
3998 {
3999 update_target_permissions ();
4000 error (_("Cannot change this setting while the inferior is running."));
4001 }
4002
4003 /* Make the real values match the user-changed values. */
4004 may_write_registers = may_write_registers_1;
4005 may_insert_breakpoints = may_insert_breakpoints_1;
4006 may_insert_tracepoints = may_insert_tracepoints_1;
4007 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4008 may_stop = may_stop_1;
4009 update_observer_mode ();
4010}
4011
4012/* Set memory write permission independently of observer mode. */
4013
4014static void
4015set_write_memory_permission (char *args, int from_tty,
4016 struct cmd_list_element *c)
4017{
4018 /* Make the real values match the user-changed values. */
4019 may_write_memory = may_write_memory_1;
4020 update_observer_mode ();
4021}
4022
4023
c906108c 4024void
fba45db2 4025initialize_targets (void)
c906108c
SS
4026{
4027 init_dummy_target ();
4028 push_target (&dummy_target);
4029
4030 add_info ("target", target_info, targ_desc);
4031 add_info ("files", target_info, targ_desc);
4032
ccce17b0 4033 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4034Set target debugging."), _("\
4035Show target debugging."), _("\
333dabeb 4036When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4037verbose."),
4038 set_targetdebug,
ccce17b0
YQ
4039 show_targetdebug,
4040 &setdebuglist, &showdebuglist);
3a11626d 4041
2bc416ba 4042 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4043 &trust_readonly, _("\
4044Set mode for reading from readonly sections."), _("\
4045Show mode for reading from readonly sections."), _("\
3a11626d
MS
4046When this mode is on, memory reads from readonly sections (such as .text)\n\
4047will be read from the object file instead of from the target. This will\n\
7915a72c 4048result in significant performance improvement for remote targets."),
2c5b56ce 4049 NULL,
920d2a44 4050 show_trust_readonly,
e707bbc2 4051 &setlist, &showlist);
96baa820
JM
4052
4053 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4054 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4055
87680a14
JB
4056 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4057 _("Print the name of each layer of the internal target stack."),
4058 &maintenanceprintlist);
4059
c6ebd6cf
VP
4060 add_setshow_boolean_cmd ("target-async", no_class,
4061 &target_async_permitted_1, _("\
4062Set whether gdb controls the inferior in asynchronous mode."), _("\
4063Show whether gdb controls the inferior in asynchronous mode."), _("\
4064Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4065 maint_set_target_async_command,
4066 maint_show_target_async_command,
4067 &maintenance_set_cmdlist,
4068 &maintenance_show_cmdlist);
c6ebd6cf 4069
fbea99ea
PA
4070 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4071 &target_non_stop_enabled_1, _("\
4072Set whether gdb always controls the inferior in non-stop mode."), _("\
4073Show whether gdb always controls the inferior in non-stop mode."), _("\
4074Tells gdb whether to control the inferior in non-stop mode."),
4075 maint_set_target_non_stop_command,
4076 maint_show_target_non_stop_command,
4077 &maintenance_set_cmdlist,
4078 &maintenance_show_cmdlist);
4079
d914c394
SS
4080 add_setshow_boolean_cmd ("may-write-registers", class_support,
4081 &may_write_registers_1, _("\
4082Set permission to write into registers."), _("\
4083Show permission to write into registers."), _("\
4084When this permission is on, GDB may write into the target's registers.\n\
4085Otherwise, any sort of write attempt will result in an error."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("may-write-memory", class_support,
4090 &may_write_memory_1, _("\
4091Set permission to write into target memory."), _("\
4092Show permission to write into target memory."), _("\
4093When this permission is on, GDB may write into the target's memory.\n\
4094Otherwise, any sort of write attempt will result in an error."),
4095 set_write_memory_permission, NULL,
4096 &setlist, &showlist);
4097
4098 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4099 &may_insert_breakpoints_1, _("\
4100Set permission to insert breakpoints in the target."), _("\
4101Show permission to insert breakpoints in the target."), _("\
4102When this permission is on, GDB may insert breakpoints in the program.\n\
4103Otherwise, any sort of insertion attempt will result in an error."),
4104 set_target_permissions, NULL,
4105 &setlist, &showlist);
4106
4107 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4108 &may_insert_tracepoints_1, _("\
4109Set permission to insert tracepoints in the target."), _("\
4110Show permission to insert tracepoints in the target."), _("\
4111When this permission is on, GDB may insert tracepoints in the program.\n\
4112Otherwise, any sort of insertion attempt will result in an error."),
4113 set_target_permissions, NULL,
4114 &setlist, &showlist);
4115
4116 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4117 &may_insert_fast_tracepoints_1, _("\
4118Set permission to insert fast tracepoints in the target."), _("\
4119Show permission to insert fast tracepoints in the target."), _("\
4120When this permission is on, GDB may insert fast tracepoints.\n\
4121Otherwise, any sort of insertion attempt will result in an error."),
4122 set_target_permissions, NULL,
4123 &setlist, &showlist);
4124
4125 add_setshow_boolean_cmd ("may-interrupt", class_support,
4126 &may_stop_1, _("\
4127Set permission to interrupt or signal the target."), _("\
4128Show permission to interrupt or signal the target."), _("\
4129When this permission is on, GDB may interrupt/stop the target's execution.\n\
4130Otherwise, any attempt to interrupt or stop will be ignored."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
6a3cb8e8
PA
4133
4134 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4135 &auto_connect_native_target, _("\
4136Set whether GDB may automatically connect to the native target."), _("\
4137Show whether GDB may automatically connect to the native target."), _("\
4138When on, and GDB is not connected to a target yet, GDB\n\
4139attempts \"run\" and other commands with the native target."),
4140 NULL, show_auto_connect_native_target,
4141 &setlist, &showlist);
c906108c 4142}
This page took 2.724453 seconds and 4 git commands to generate.