* gdb.base/dfp-test.exp: Fix random FAIL risk on calling functions.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
72 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 73 };
c906108c
SS
74
75/* Stuff for target_wait. */
76
77/* Generally, what has the program done? */
c5aa993b
JM
78enum target_waitkind
79 {
80 /* The program has exited. The exit status is in value.integer. */
81 TARGET_WAITKIND_EXITED,
c906108c 82
0d06e24b
JM
83 /* The program has stopped with a signal. Which signal is in
84 value.sig. */
c5aa993b 85 TARGET_WAITKIND_STOPPED,
c906108c 86
c5aa993b
JM
87 /* The program has terminated with a signal. Which signal is in
88 value.sig. */
89 TARGET_WAITKIND_SIGNALLED,
c906108c 90
c5aa993b
JM
91 /* The program is letting us know that it dynamically loaded something
92 (e.g. it called load(2) on AIX). */
93 TARGET_WAITKIND_LOADED,
c906108c 94
0d06e24b
JM
95 /* The program has forked. A "related" process' ID is in
96 value.related_pid. I.e., if the child forks, value.related_pid
97 is the parent's ID. */
98
c5aa993b 99 TARGET_WAITKIND_FORKED,
c906108c 100
0d06e24b
JM
101 /* The program has vforked. A "related" process's ID is in
102 value.related_pid. */
103
c5aa993b 104 TARGET_WAITKIND_VFORKED,
c906108c 105
0d06e24b
JM
106 /* The program has exec'ed a new executable file. The new file's
107 pathname is pointed to by value.execd_pathname. */
108
c5aa993b 109 TARGET_WAITKIND_EXECD,
c906108c 110
0d06e24b
JM
111 /* The program has entered or returned from a system call. On
112 HP-UX, this is used in the hardware watchpoint implementation.
113 The syscall's unique integer ID number is in value.syscall_id */
114
c5aa993b
JM
115 TARGET_WAITKIND_SYSCALL_ENTRY,
116 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 117
c5aa993b
JM
118 /* Nothing happened, but we stopped anyway. This perhaps should be handled
119 within target_wait, but I'm not sure target_wait should be resuming the
120 inferior. */
c4093a6a
JM
121 TARGET_WAITKIND_SPURIOUS,
122
8e7d2c16
DJ
123 /* An event has occured, but we should wait again.
124 Remote_async_wait() returns this when there is an event
c4093a6a
JM
125 on the inferior, but the rest of the world is not interested in
126 it. The inferior has not stopped, but has just sent some output
127 to the console, for instance. In this case, we want to go back
128 to the event loop and wait there for another event from the
129 inferior, rather than being stuck in the remote_async_wait()
130 function. This way the event loop is responsive to other events,
0d06e24b 131 like for instance the user typing. */
c4093a6a 132 TARGET_WAITKIND_IGNORE
c906108c
SS
133 };
134
c5aa993b
JM
135struct target_waitstatus
136 {
137 enum target_waitkind kind;
138
139 /* Forked child pid, execd pathname, exit status or signal number. */
140 union
141 {
142 int integer;
143 enum target_signal sig;
144 int related_pid;
145 char *execd_pathname;
146 int syscall_id;
147 }
148 value;
149 };
c906108c 150
2acceee2 151/* Possible types of events that the inferior handler will have to
0d06e24b 152 deal with. */
2acceee2
JM
153enum inferior_event_type
154 {
0d06e24b 155 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
156 INF_QUIT_REQ,
157 /* Process a normal inferior event which will result in target_wait
0d06e24b 158 being called. */
2146d243 159 INF_REG_EVENT,
0d06e24b 160 /* Deal with an error on the inferior. */
2acceee2 161 INF_ERROR,
0d06e24b 162 /* We are called because a timer went off. */
2acceee2 163 INF_TIMER,
0d06e24b 164 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
165 INF_EXEC_COMPLETE,
166 /* We are called to do some stuff after the inferior stops, but we
167 are expected to reenter the proceed() and
168 handle_inferior_event() functions. This is used only in case of
0d06e24b 169 'step n' like commands. */
c2d11a7d 170 INF_EXEC_CONTINUE
2acceee2
JM
171 };
172
c906108c 173/* Return the string for a signal. */
a14ed312 174extern char *target_signal_to_string (enum target_signal);
c906108c
SS
175
176/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 177extern char *target_signal_to_name (enum target_signal);
c906108c
SS
178
179/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 180enum target_signal target_signal_from_name (char *);
c906108c 181\f
13547ab6
DJ
182/* Target objects which can be transfered using target_read,
183 target_write, et cetera. */
1e3ff5ad
AC
184
185enum target_object
186{
1e3ff5ad
AC
187 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
188 TARGET_OBJECT_AVR,
23d964e7
UW
189 /* SPU target specific transfer. See "spu-tdep.c". */
190 TARGET_OBJECT_SPU,
1e3ff5ad 191 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 192 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
193 /* Memory, avoiding GDB's data cache and trusting the executable.
194 Target implementations of to_xfer_partial never need to handle
195 this object, and most callers should not use it. */
196 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
197 /* Kernel Unwind Table. See "ia64-tdep.c". */
198 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
199 /* Transfer auxilliary vector. */
200 TARGET_OBJECT_AUXV,
baf92889 201 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
202 TARGET_OBJECT_WCOOKIE,
203 /* Target memory map in XML format. */
204 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
205 /* Flash memory. This object can be used to write contents to
206 a previously erased flash memory. Using it without erasing
207 flash can have unexpected results. Addresses are physical
208 address on target, and not relative to flash start. */
23181151
DJ
209 TARGET_OBJECT_FLASH,
210 /* Available target-specific features, e.g. registers and coprocessors.
211 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
212 TARGET_OBJECT_AVAILABLE_FEATURES,
213 /* Currently loaded libraries, in XML format. */
214 TARGET_OBJECT_LIBRARIES
2146d243 215 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
216};
217
13547ab6
DJ
218/* Request that OPS transfer up to LEN 8-bit bytes of the target's
219 OBJECT. The OFFSET, for a seekable object, specifies the
220 starting point. The ANNEX can be used to provide additional
221 data-specific information to the target.
1e3ff5ad 222
13547ab6
DJ
223 Return the number of bytes actually transfered, or -1 if the
224 transfer is not supported or otherwise fails. Return of a positive
225 value less than LEN indicates that no further transfer is possible.
226 Unlike the raw to_xfer_partial interface, callers of these
227 functions do not need to retry partial transfers. */
1e3ff5ad 228
1e3ff5ad
AC
229extern LONGEST target_read (struct target_ops *ops,
230 enum target_object object,
1b0ba102 231 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
232 ULONGEST offset, LONGEST len);
233
234extern LONGEST target_write (struct target_ops *ops,
235 enum target_object object,
1b0ba102 236 const char *annex, const gdb_byte *buf,
1e3ff5ad 237 ULONGEST offset, LONGEST len);
b6591e8b 238
a76d924d
DJ
239/* Similar to target_write, except that it also calls PROGRESS with
240 the number of bytes written and the opaque BATON after every
241 successful partial write (and before the first write). This is
242 useful for progress reporting and user interaction while writing
243 data. To abort the transfer, the progress callback can throw an
244 exception. */
245
cf7a04e8
DJ
246LONGEST target_write_with_progress (struct target_ops *ops,
247 enum target_object object,
248 const char *annex, const gdb_byte *buf,
249 ULONGEST offset, LONGEST len,
250 void (*progress) (ULONGEST, void *),
251 void *baton);
252
13547ab6
DJ
253/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
254 be read using OPS. The return value will be -1 if the transfer
255 fails or is not supported; 0 if the object is empty; or the length
256 of the object otherwise. If a positive value is returned, a
257 sufficiently large buffer will be allocated using xmalloc and
258 returned in *BUF_P containing the contents of the object.
259
260 This method should be used for objects sufficiently small to store
261 in a single xmalloc'd buffer, when no fixed bound on the object's
262 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
263 through this function. */
264
265extern LONGEST target_read_alloc (struct target_ops *ops,
266 enum target_object object,
267 const char *annex, gdb_byte **buf_p);
268
159f81f3
DJ
269/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
270 returned as a string, allocated using xmalloc. If an error occurs
271 or the transfer is unsupported, NULL is returned. Empty objects
272 are returned as allocated but empty strings. A warning is issued
273 if the result contains any embedded NUL bytes. */
274
275extern char *target_read_stralloc (struct target_ops *ops,
276 enum target_object object,
277 const char *annex);
278
b6591e8b
AC
279/* Wrappers to target read/write that perform memory transfers. They
280 throw an error if the memory transfer fails.
281
282 NOTE: cagney/2003-10-23: The naming schema is lifted from
283 "frame.h". The parameter order is lifted from get_frame_memory,
284 which in turn lifted it from read_memory. */
285
286extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 287 gdb_byte *buf, LONGEST len);
b6591e8b
AC
288extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
289 CORE_ADDR addr, int len);
1e3ff5ad 290\f
c5aa993b 291
c906108c
SS
292/* If certain kinds of activity happen, target_wait should perform
293 callbacks. */
294/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 295 on TARGET_ACTIVITY_FD. */
c906108c
SS
296extern int target_activity_fd;
297/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 298extern int (*target_activity_function) (void);
c906108c 299\f
0d06e24b
JM
300struct thread_info; /* fwd decl for parameter list below: */
301
c906108c 302struct target_ops
c5aa993b 303 {
258b763a 304 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
305 char *to_shortname; /* Name this target type */
306 char *to_longname; /* Name for printing */
307 char *to_doc; /* Documentation. Does not include trailing
c906108c 308 newline, and starts with a one-line descrip-
0d06e24b 309 tion (probably similar to to_longname). */
bba2d28d
AC
310 /* Per-target scratch pad. */
311 void *to_data;
f1c07ab0
AC
312 /* The open routine takes the rest of the parameters from the
313 command, and (if successful) pushes a new target onto the
314 stack. Targets should supply this routine, if only to provide
315 an error message. */
507f3c78 316 void (*to_open) (char *, int);
f1c07ab0
AC
317 /* Old targets with a static target vector provide "to_close".
318 New re-entrant targets provide "to_xclose" and that is expected
319 to xfree everything (including the "struct target_ops"). */
320 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
321 void (*to_close) (int);
322 void (*to_attach) (char *, int);
323 void (*to_post_attach) (int);
507f3c78 324 void (*to_detach) (char *, int);
597320e7 325 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
326 void (*to_resume) (ptid_t, int, enum target_signal);
327 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
328 void (*to_fetch_registers) (struct regcache *, int);
329 void (*to_store_registers) (struct regcache *, int);
316f2060 330 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
331
332 /* Transfer LEN bytes of memory between GDB address MYADDR and
333 target address MEMADDR. If WRITE, transfer them to the target, else
334 transfer them from the target. TARGET is the target from which we
335 get this function.
336
337 Return value, N, is one of the following:
338
339 0 means that we can't handle this. If errno has been set, it is the
340 error which prevented us from doing it (FIXME: What about bfd_error?).
341
342 positive (call it N) means that we have transferred N bytes
343 starting at MEMADDR. We might be able to handle more bytes
344 beyond this length, but no promises.
345
346 negative (call its absolute value N) means that we cannot
347 transfer right at MEMADDR, but we could transfer at least
c8e73a31 348 something at MEMADDR + N.
c5aa993b 349
c8e73a31
AC
350 NOTE: cagney/2004-10-01: This has been entirely superseeded by
351 to_xfer_partial and inferior inheritance. */
352
1b0ba102 353 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
354 int len, int write,
355 struct mem_attrib *attrib,
356 struct target_ops *target);
c906108c 357
507f3c78 358 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
359 int (*to_insert_breakpoint) (struct bp_target_info *);
360 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 361 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
362 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
363 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
364 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
365 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
366 int (*to_stopped_by_watchpoint) (void);
74174d2e 367 int to_have_steppable_watchpoint;
7df1a324 368 int to_have_continuable_watchpoint;
4aa7a7f5 369 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
370 int (*to_watchpoint_addr_within_range) (struct target_ops *,
371 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 372 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
373 void (*to_terminal_init) (void);
374 void (*to_terminal_inferior) (void);
375 void (*to_terminal_ours_for_output) (void);
376 void (*to_terminal_ours) (void);
a790ad35 377 void (*to_terminal_save_ours) (void);
507f3c78
KB
378 void (*to_terminal_info) (char *, int);
379 void (*to_kill) (void);
380 void (*to_load) (char *, int);
381 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 382 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 383 void (*to_post_startup_inferior) (ptid_t);
507f3c78 384 void (*to_acknowledge_created_inferior) (int);
fa113d1a 385 void (*to_insert_fork_catchpoint) (int);
507f3c78 386 int (*to_remove_fork_catchpoint) (int);
fa113d1a 387 void (*to_insert_vfork_catchpoint) (int);
507f3c78 388 int (*to_remove_vfork_catchpoint) (int);
ee057212 389 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 390 void (*to_insert_exec_catchpoint) (int);
507f3c78 391 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
392 int (*to_has_exited) (int, int, int *);
393 void (*to_mourn_inferior) (void);
394 int (*to_can_run) (void);
39f77062
KB
395 void (*to_notice_signals) (ptid_t ptid);
396 int (*to_thread_alive) (ptid_t ptid);
507f3c78 397 void (*to_find_new_threads) (void);
39f77062 398 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
399 char *(*to_extra_thread_info) (struct thread_info *);
400 void (*to_stop) (void);
d9fcf2fb 401 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 402 char *(*to_pid_to_exec_file) (int pid);
49d03eab 403 void (*to_log_command) (const char *);
c5aa993b 404 enum strata to_stratum;
c5aa993b
JM
405 int to_has_all_memory;
406 int to_has_memory;
407 int to_has_stack;
408 int to_has_registers;
409 int to_has_execution;
410 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
411 struct section_table
412 *to_sections;
413 struct section_table
414 *to_sections_end;
6426a772
JM
415 /* ASYNC target controls */
416 int (*to_can_async_p) (void);
417 int (*to_is_async_p) (void);
b84876c2
PA
418 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
419 int (*to_async_mask) (int);
2146d243
RM
420 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
421 unsigned long,
422 int, int, int,
423 void *),
be4d1333
MS
424 void *);
425 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
426
427 /* Return the thread-local address at OFFSET in the
428 thread-local storage for the thread PTID and the shared library
429 or executable file given by OBJFILE. If that block of
430 thread-local storage hasn't been allocated yet, this function
431 may return an error. */
432 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 433 CORE_ADDR load_module_addr,
3f47be5c
EZ
434 CORE_ADDR offset);
435
13547ab6
DJ
436 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
437 OBJECT. The OFFSET, for a seekable object, specifies the
438 starting point. The ANNEX can be used to provide additional
439 data-specific information to the target.
440
441 Return the number of bytes actually transfered, zero when no
442 further transfer is possible, and -1 when the transfer is not
443 supported. Return of a positive value smaller than LEN does
444 not indicate the end of the object, only the end of the
445 transfer; higher level code should continue transferring if
446 desired. This is handled in target.c.
447
448 The interface does not support a "retry" mechanism. Instead it
449 assumes that at least one byte will be transfered on each
450 successful call.
451
452 NOTE: cagney/2003-10-17: The current interface can lead to
453 fragmented transfers. Lower target levels should not implement
454 hacks, such as enlarging the transfer, in an attempt to
455 compensate for this. Instead, the target stack should be
456 extended so that it implements supply/collect methods and a
457 look-aside object cache. With that available, the lowest
458 target can safely and freely "push" data up the stack.
459
460 See target_read and target_write for more information. One,
461 and only one, of readbuf or writebuf must be non-NULL. */
462
4b8a223f 463 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 464 enum target_object object, const char *annex,
1b0ba102 465 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 466 ULONGEST offset, LONGEST len);
1e3ff5ad 467
fd79ecee
DJ
468 /* Returns the memory map for the target. A return value of NULL
469 means that no memory map is available. If a memory address
470 does not fall within any returned regions, it's assumed to be
471 RAM. The returned memory regions should not overlap.
472
473 The order of regions does not matter; target_memory_map will
474 sort regions by starting address. For that reason, this
475 function should not be called directly except via
476 target_memory_map.
477
478 This method should not cache data; if the memory map could
479 change unexpectedly, it should be invalidated, and higher
480 layers will re-fetch it. */
481 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
482
a76d924d
DJ
483 /* Erases the region of flash memory starting at ADDRESS, of
484 length LENGTH.
485
486 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
487 on flash block boundaries, as reported by 'to_memory_map'. */
488 void (*to_flash_erase) (struct target_ops *,
489 ULONGEST address, LONGEST length);
490
491 /* Finishes a flash memory write sequence. After this operation
492 all flash memory should be available for writing and the result
493 of reading from areas written by 'to_flash_write' should be
494 equal to what was written. */
495 void (*to_flash_done) (struct target_ops *);
496
424163ea
DJ
497 /* Describe the architecture-specific features of this target.
498 Returns the description found, or NULL if no description
499 was available. */
500 const struct target_desc *(*to_read_description) (struct target_ops *ops);
501
c5aa993b 502 int to_magic;
0d06e24b
JM
503 /* Need sub-structure for target machine related rather than comm related?
504 */
c5aa993b 505 };
c906108c
SS
506
507/* Magic number for checking ops size. If a struct doesn't end with this
508 number, somebody changed the declaration but didn't change all the
509 places that initialize one. */
510
511#define OPS_MAGIC 3840
512
513/* The ops structure for our "current" target process. This should
514 never be NULL. If there is no target, it points to the dummy_target. */
515
c5aa993b 516extern struct target_ops current_target;
c906108c 517
c906108c
SS
518/* Define easy words for doing these operations on our current target. */
519
520#define target_shortname (current_target.to_shortname)
521#define target_longname (current_target.to_longname)
522
f1c07ab0
AC
523/* Does whatever cleanup is required for a target that we are no
524 longer going to be calling. QUITTING indicates that GDB is exiting
525 and should not get hung on an error (otherwise it is important to
526 perform clean termination, even if it takes a while). This routine
527 is automatically always called when popping the target off the
528 target stack (to_beneath is undefined). Closing file descriptors
529 and freeing all memory allocated memory are typical things it
530 should do. */
531
532void target_close (struct target_ops *targ, int quitting);
c906108c
SS
533
534/* Attaches to a process on the target side. Arguments are as passed
535 to the `attach' command by the user. This routine can be called
536 when the target is not on the target-stack, if the target_can_run
2146d243 537 routine returns 1; in that case, it must push itself onto the stack.
c906108c 538 Upon exit, the target should be ready for normal operations, and
2146d243 539 should be ready to deliver the status of the process immediately
c906108c
SS
540 (without waiting) to an upcoming target_wait call. */
541
542#define target_attach(args, from_tty) \
0d06e24b 543 (*current_target.to_attach) (args, from_tty)
c906108c
SS
544
545/* The target_attach operation places a process under debugger control,
546 and stops the process.
547
548 This operation provides a target-specific hook that allows the
0d06e24b 549 necessary bookkeeping to be performed after an attach completes. */
c906108c 550#define target_post_attach(pid) \
0d06e24b 551 (*current_target.to_post_attach) (pid)
c906108c 552
c906108c
SS
553/* Takes a program previously attached to and detaches it.
554 The program may resume execution (some targets do, some don't) and will
555 no longer stop on signals, etc. We better not have left any breakpoints
556 in the program or it'll die when it hits one. ARGS is arguments
557 typed by the user (e.g. a signal to send the process). FROM_TTY
558 says whether to be verbose or not. */
559
a14ed312 560extern void target_detach (char *, int);
c906108c 561
6ad8ae5c
DJ
562/* Disconnect from the current target without resuming it (leaving it
563 waiting for a debugger). */
564
565extern void target_disconnect (char *, int);
566
39f77062 567/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
568 single-step or to run free; SIGGNAL is the signal to be given to
569 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
570 pass TARGET_SIGNAL_DEFAULT. */
571
39f77062 572#define target_resume(ptid, step, siggnal) \
4930751a
C
573 do { \
574 dcache_invalidate(target_dcache); \
39f77062 575 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 576 } while (0)
c906108c 577
b5a2688f
AC
578/* Wait for process pid to do something. PTID = -1 to wait for any
579 pid to do something. Return pid of child, or -1 in case of error;
c906108c 580 store status through argument pointer STATUS. Note that it is
b5a2688f 581 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
582 the debugging target from the stack; GDB isn't prepared to get back
583 to the prompt with a debugging target but without the frame cache,
584 stop_pc, etc., set up. */
585
39f77062
KB
586#define target_wait(ptid, status) \
587 (*current_target.to_wait) (ptid, status)
c906108c 588
17dee195 589/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 590
56be3814
UW
591#define target_fetch_registers(regcache, regno) \
592 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
593
594/* Store at least register REGNO, or all regs if REGNO == -1.
595 It can store as many registers as it wants to, so target_prepare_to_store
596 must have been previously called. Calls error() if there are problems. */
597
56be3814
UW
598#define target_store_registers(regcache, regs) \
599 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
600
601/* Get ready to modify the registers array. On machines which store
602 individual registers, this doesn't need to do anything. On machines
603 which store all the registers in one fell swoop, this makes sure
604 that REGISTERS contains all the registers from the program being
605 debugged. */
606
316f2060
UW
607#define target_prepare_to_store(regcache) \
608 (*current_target.to_prepare_to_store) (regcache)
c906108c 609
4930751a
C
610extern DCACHE *target_dcache;
611
a14ed312 612extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 613
fc1a4b47 614extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 615
fc1a4b47 616extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 617 int len);
c906108c 618
1b0ba102 619extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 620 struct mem_attrib *, struct target_ops *);
c906108c 621
fd79ecee
DJ
622/* Fetches the target's memory map. If one is found it is sorted
623 and returned, after some consistency checking. Otherwise, NULL
624 is returned. */
625VEC(mem_region_s) *target_memory_map (void);
626
a76d924d
DJ
627/* Erase the specified flash region. */
628void target_flash_erase (ULONGEST address, LONGEST length);
629
630/* Finish a sequence of flash operations. */
631void target_flash_done (void);
632
633/* Describes a request for a memory write operation. */
634struct memory_write_request
635 {
636 /* Begining address that must be written. */
637 ULONGEST begin;
638 /* Past-the-end address. */
639 ULONGEST end;
640 /* The data to write. */
641 gdb_byte *data;
642 /* A callback baton for progress reporting for this request. */
643 void *baton;
644 };
645typedef struct memory_write_request memory_write_request_s;
646DEF_VEC_O(memory_write_request_s);
647
648/* Enumeration specifying different flash preservation behaviour. */
649enum flash_preserve_mode
650 {
651 flash_preserve,
652 flash_discard
653 };
654
655/* Write several memory blocks at once. This version can be more
656 efficient than making several calls to target_write_memory, in
657 particular because it can optimize accesses to flash memory.
658
659 Moreover, this is currently the only memory access function in gdb
660 that supports writing to flash memory, and it should be used for
661 all cases where access to flash memory is desirable.
662
663 REQUESTS is the vector (see vec.h) of memory_write_request.
664 PRESERVE_FLASH_P indicates what to do with blocks which must be
665 erased, but not completely rewritten.
666 PROGRESS_CB is a function that will be periodically called to provide
667 feedback to user. It will be called with the baton corresponding
668 to the request currently being written. It may also be called
669 with a NULL baton, when preserved flash sectors are being rewritten.
670
671 The function returns 0 on success, and error otherwise. */
672int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
673 enum flash_preserve_mode preserve_flash_p,
674 void (*progress_cb) (ULONGEST, void *));
675
47932f85
DJ
676/* From infrun.c. */
677
678extern int inferior_has_forked (int pid, int *child_pid);
679
680extern int inferior_has_vforked (int pid, int *child_pid);
681
682extern int inferior_has_execd (int pid, char **execd_pathname);
683
c906108c
SS
684/* From exec.c */
685
a14ed312 686extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
687
688/* Print a line about the current target. */
689
690#define target_files_info() \
0d06e24b 691 (*current_target.to_files_info) (&current_target)
c906108c 692
8181d85f
DJ
693/* Insert a breakpoint at address BP_TGT->placed_address in the target
694 machine. Result is 0 for success, or an errno value. */
c906108c 695
8181d85f
DJ
696#define target_insert_breakpoint(bp_tgt) \
697 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 698
8181d85f
DJ
699/* Remove a breakpoint at address BP_TGT->placed_address in the target
700 machine. Result is 0 for success, or an errno value. */
c906108c 701
8181d85f
DJ
702#define target_remove_breakpoint(bp_tgt) \
703 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
704
705/* Initialize the terminal settings we record for the inferior,
706 before we actually run the inferior. */
707
708#define target_terminal_init() \
0d06e24b 709 (*current_target.to_terminal_init) ()
c906108c
SS
710
711/* Put the inferior's terminal settings into effect.
712 This is preparation for starting or resuming the inferior. */
713
714#define target_terminal_inferior() \
0d06e24b 715 (*current_target.to_terminal_inferior) ()
c906108c
SS
716
717/* Put some of our terminal settings into effect,
718 enough to get proper results from our output,
719 but do not change into or out of RAW mode
720 so that no input is discarded.
721
722 After doing this, either terminal_ours or terminal_inferior
723 should be called to get back to a normal state of affairs. */
724
725#define target_terminal_ours_for_output() \
0d06e24b 726 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
727
728/* Put our terminal settings into effect.
729 First record the inferior's terminal settings
730 so they can be restored properly later. */
731
732#define target_terminal_ours() \
0d06e24b 733 (*current_target.to_terminal_ours) ()
c906108c 734
a790ad35
SC
735/* Save our terminal settings.
736 This is called from TUI after entering or leaving the curses
737 mode. Since curses modifies our terminal this call is here
738 to take this change into account. */
739
740#define target_terminal_save_ours() \
741 (*current_target.to_terminal_save_ours) ()
742
c906108c
SS
743/* Print useful information about our terminal status, if such a thing
744 exists. */
745
746#define target_terminal_info(arg, from_tty) \
0d06e24b 747 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
748
749/* Kill the inferior process. Make it go away. */
750
751#define target_kill() \
0d06e24b 752 (*current_target.to_kill) ()
c906108c 753
0d06e24b
JM
754/* Load an executable file into the target process. This is expected
755 to not only bring new code into the target process, but also to
1986bccd
AS
756 update GDB's symbol tables to match.
757
758 ARG contains command-line arguments, to be broken down with
759 buildargv (). The first non-switch argument is the filename to
760 load, FILE; the second is a number (as parsed by strtoul (..., ...,
761 0)), which is an offset to apply to the load addresses of FILE's
762 sections. The target may define switches, or other non-switch
763 arguments, as it pleases. */
c906108c 764
11cf8741 765extern void target_load (char *arg, int from_tty);
c906108c
SS
766
767/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
768 name. ADDRP is a CORE_ADDR * pointing to where the value of the
769 symbol should be returned. The result is 0 if successful, nonzero
770 if the symbol does not exist in the target environment. This
771 function should not call error() if communication with the target
772 is interrupted, since it is called from symbol reading, but should
773 return nonzero, possibly doing a complain(). */
c906108c 774
0d06e24b
JM
775#define target_lookup_symbol(name, addrp) \
776 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 777
39f77062 778/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
779 EXEC_FILE is the file to run.
780 ALLARGS is a string containing the arguments to the program.
781 ENV is the environment vector to pass. Errors reported with error().
782 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 783
c27cda74
AC
784#define target_create_inferior(exec_file, args, env, FROM_TTY) \
785 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
786
787
788/* Some targets (such as ttrace-based HPUX) don't allow us to request
789 notification of inferior events such as fork and vork immediately
790 after the inferior is created. (This because of how gdb gets an
791 inferior created via invoking a shell to do it. In such a scenario,
792 if the shell init file has commands in it, the shell will fork and
793 exec for each of those commands, and we will see each such fork
794 event. Very bad.)
c5aa993b 795
0d06e24b
JM
796 Such targets will supply an appropriate definition for this function. */
797
39f77062
KB
798#define target_post_startup_inferior(ptid) \
799 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
800
801/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
802 some synchronization between gdb and the new inferior process, PID. */
803
c906108c 804#define target_acknowledge_created_inferior(pid) \
0d06e24b 805 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 806
0d06e24b
JM
807/* On some targets, we can catch an inferior fork or vfork event when
808 it occurs. These functions insert/remove an already-created
809 catchpoint for such events. */
c906108c 810
c906108c 811#define target_insert_fork_catchpoint(pid) \
0d06e24b 812 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
813
814#define target_remove_fork_catchpoint(pid) \
0d06e24b 815 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
816
817#define target_insert_vfork_catchpoint(pid) \
0d06e24b 818 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
819
820#define target_remove_vfork_catchpoint(pid) \
0d06e24b 821 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 822
6604731b
DJ
823/* If the inferior forks or vforks, this function will be called at
824 the next resume in order to perform any bookkeeping and fiddling
825 necessary to continue debugging either the parent or child, as
826 requested, and releasing the other. Information about the fork
827 or vfork event is available via get_last_target_status ().
828 This function returns 1 if the inferior should not be resumed
829 (i.e. there is another event pending). */
0d06e24b 830
ee057212 831int target_follow_fork (int follow_child);
c906108c
SS
832
833/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
834 occurs. These functions insert/remove an already-created
835 catchpoint for such events. */
836
c906108c 837#define target_insert_exec_catchpoint(pid) \
0d06e24b 838 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 839
c906108c 840#define target_remove_exec_catchpoint(pid) \
0d06e24b 841 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 842
c906108c 843/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
844 exit code of PID, if any. */
845
c906108c 846#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 847 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
848
849/* The debugger has completed a blocking wait() call. There is now
2146d243 850 some process event that must be processed. This function should
c906108c 851 be defined by those targets that require the debugger to perform
0d06e24b 852 cleanup or internal state changes in response to the process event. */
c906108c
SS
853
854/* The inferior process has died. Do what is right. */
855
856#define target_mourn_inferior() \
0d06e24b 857 (*current_target.to_mourn_inferior) ()
c906108c
SS
858
859/* Does target have enough data to do a run or attach command? */
860
861#define target_can_run(t) \
0d06e24b 862 ((t)->to_can_run) ()
c906108c
SS
863
864/* post process changes to signal handling in the inferior. */
865
39f77062
KB
866#define target_notice_signals(ptid) \
867 (*current_target.to_notice_signals) (ptid)
c906108c
SS
868
869/* Check to see if a thread is still alive. */
870
39f77062
KB
871#define target_thread_alive(ptid) \
872 (*current_target.to_thread_alive) (ptid)
c906108c 873
b83266a0
SS
874/* Query for new threads and add them to the thread list. */
875
876#define target_find_new_threads() \
4becf47c 877 (*current_target.to_find_new_threads) ()
b83266a0 878
0d06e24b
JM
879/* Make target stop in a continuable fashion. (For instance, under
880 Unix, this should act like SIGSTOP). This function is normally
881 used by GUIs to implement a stop button. */
c906108c
SS
882
883#define target_stop current_target.to_stop
884
96baa820
JM
885/* Send the specified COMMAND to the target's monitor
886 (shell,interpreter) for execution. The result of the query is
0d06e24b 887 placed in OUTBUF. */
96baa820
JM
888
889#define target_rcmd(command, outbuf) \
890 (*current_target.to_rcmd) (command, outbuf)
891
892
c906108c
SS
893/* Does the target include all of memory, or only part of it? This
894 determines whether we look up the target chain for other parts of
895 memory if this target can't satisfy a request. */
896
897#define target_has_all_memory \
0d06e24b 898 (current_target.to_has_all_memory)
c906108c
SS
899
900/* Does the target include memory? (Dummy targets don't.) */
901
902#define target_has_memory \
0d06e24b 903 (current_target.to_has_memory)
c906108c
SS
904
905/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
906 we start a process.) */
c5aa993b 907
c906108c 908#define target_has_stack \
0d06e24b 909 (current_target.to_has_stack)
c906108c
SS
910
911/* Does the target have registers? (Exec files don't.) */
912
913#define target_has_registers \
0d06e24b 914 (current_target.to_has_registers)
c906108c
SS
915
916/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
917 hoops), or pop its stack a few times? This means that the current
918 target is currently executing; for some targets, that's the same as
919 whether or not the target is capable of execution, but there are
920 also targets which can be current while not executing. In that
921 case this will become true after target_create_inferior or
922 target_attach. */
c906108c
SS
923
924#define target_has_execution \
0d06e24b 925 (current_target.to_has_execution)
c906108c
SS
926
927/* Can the target support the debugger control of thread execution?
928 a) Can it lock the thread scheduler?
929 b) Can it switch the currently running thread? */
930
931#define target_can_lock_scheduler \
0d06e24b 932 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
933
934#define target_can_switch_threads \
0d06e24b 935 (current_target.to_has_thread_control & tc_switch)
c906108c 936
6426a772
JM
937/* Can the target support asynchronous execution? */
938#define target_can_async_p() (current_target.to_can_async_p ())
939
940/* Is the target in asynchronous execution mode? */
b84876c2 941#define target_is_async_p() (current_target.to_is_async_p ())
6426a772
JM
942
943/* Put the target in async mode with the specified callback function. */
0d06e24b 944#define target_async(CALLBACK,CONTEXT) \
b84876c2 945 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 946
04714b91
AC
947/* This is to be used ONLY within call_function_by_hand(). It provides
948 a workaround, to have inferior function calls done in sychronous
949 mode, even though the target is asynchronous. After
ed9a39eb
JM
950 target_async_mask(0) is called, calls to target_can_async_p() will
951 return FALSE , so that target_resume() will not try to start the
952 target asynchronously. After the inferior stops, we IMMEDIATELY
953 restore the previous nature of the target, by calling
954 target_async_mask(1). After that, target_can_async_p() will return
04714b91 955 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
956
957 FIXME ezannoni 1999-12-13: we won't need this once we move
958 the turning async on and off to the single execution commands,
0d06e24b 959 from where it is done currently, in remote_resume(). */
ed9a39eb 960
b84876c2
PA
961#define target_async_mask(MASK) \
962 (current_target.to_async_mask (MASK))
ed9a39eb 963
c906108c
SS
964/* Converts a process id to a string. Usually, the string just contains
965 `process xyz', but on some systems it may contain
966 `process xyz thread abc'. */
967
ed9a39eb
JM
968#undef target_pid_to_str
969#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
970
971#ifndef target_tid_to_str
972#define target_tid_to_str(PID) \
0d06e24b 973 target_pid_to_str (PID)
39f77062 974extern char *normal_pid_to_str (ptid_t ptid);
c906108c 975#endif
c5aa993b 976
0d06e24b
JM
977/* Return a short string describing extra information about PID,
978 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
979 is okay. */
980
981#define target_extra_thread_info(TP) \
982 (current_target.to_extra_thread_info (TP))
ed9a39eb 983
c906108c
SS
984/* Attempts to find the pathname of the executable file
985 that was run to create a specified process.
986
987 The process PID must be stopped when this operation is used.
c5aa993b 988
c906108c
SS
989 If the executable file cannot be determined, NULL is returned.
990
991 Else, a pointer to a character string containing the pathname
992 is returned. This string should be copied into a buffer by
993 the client if the string will not be immediately used, or if
0d06e24b 994 it must persist. */
c906108c
SS
995
996#define target_pid_to_exec_file(pid) \
0d06e24b 997 (current_target.to_pid_to_exec_file) (pid)
c906108c 998
be4d1333
MS
999/*
1000 * Iterator function for target memory regions.
1001 * Calls a callback function once for each memory region 'mapped'
1002 * in the child process. Defined as a simple macro rather than
2146d243 1003 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1004 */
1005
1006#define target_find_memory_regions(FUNC, DATA) \
1007 (current_target.to_find_memory_regions) (FUNC, DATA)
1008
1009/*
1010 * Compose corefile .note section.
1011 */
1012
1013#define target_make_corefile_notes(BFD, SIZE_P) \
1014 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1015
3f47be5c
EZ
1016/* Thread-local values. */
1017#define target_get_thread_local_address \
1018 (current_target.to_get_thread_local_address)
1019#define target_get_thread_local_address_p() \
1020 (target_get_thread_local_address != NULL)
1021
c906108c
SS
1022
1023/* Hardware watchpoint interfaces. */
1024
1025/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1026 write). */
1027
1028#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1029#define STOPPED_BY_WATCHPOINT(w) \
1030 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1031#endif
7df1a324 1032
74174d2e
UW
1033/* Non-zero if we have steppable watchpoints */
1034
1035#ifndef HAVE_STEPPABLE_WATCHPOINT
1036#define HAVE_STEPPABLE_WATCHPOINT \
1037 (current_target.to_have_steppable_watchpoint)
1038#endif
1039
7df1a324
KW
1040/* Non-zero if we have continuable watchpoints */
1041
1042#ifndef HAVE_CONTINUABLE_WATCHPOINT
1043#define HAVE_CONTINUABLE_WATCHPOINT \
1044 (current_target.to_have_continuable_watchpoint)
1045#endif
c906108c 1046
ccaa32c7 1047/* Provide defaults for hardware watchpoint functions. */
c906108c 1048
2146d243 1049/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1050 elsewhere use the definitions in the target vector. */
c906108c
SS
1051
1052/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1053 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1054 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1055 (including this one?). OTHERTYPE is who knows what... */
1056
ccaa32c7
GS
1057#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1058#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1059 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1060#endif
c906108c 1061
e0d24f8d
WZ
1062#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1063#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1064 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1065#endif
1066
c906108c
SS
1067
1068/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1069 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1070 success, non-zero for failure. */
1071
ccaa32c7
GS
1072#ifndef target_insert_watchpoint
1073#define target_insert_watchpoint(addr, len, type) \
1074 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1075
ccaa32c7
GS
1076#define target_remove_watchpoint(addr, len, type) \
1077 (*current_target.to_remove_watchpoint) (addr, len, type)
1078#endif
c906108c
SS
1079
1080#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1081#define target_insert_hw_breakpoint(bp_tgt) \
1082 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1083
8181d85f
DJ
1084#define target_remove_hw_breakpoint(bp_tgt) \
1085 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1086#endif
1087
4aa7a7f5
JJ
1088extern int target_stopped_data_address_p (struct target_ops *);
1089
c906108c 1090#ifndef target_stopped_data_address
4aa7a7f5
JJ
1091#define target_stopped_data_address(target, x) \
1092 (*target.to_stopped_data_address) (target, x)
1093#else
1094/* Horrible hack to get around existing macros :-(. */
1095#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1096#endif
1097
5009afc5
AS
1098#define target_watchpoint_addr_within_range(target, addr, start, length) \
1099 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1100
424163ea
DJ
1101extern const struct target_desc *target_read_description (struct target_ops *);
1102
49d03eab
MR
1103/* Command logging facility. */
1104
1105#define target_log_command(p) \
1106 do \
1107 if (current_target.to_log_command) \
1108 (*current_target.to_log_command) (p); \
1109 while (0)
1110
c906108c
SS
1111/* Routines for maintenance of the target structures...
1112
1113 add_target: Add a target to the list of all possible targets.
1114
1115 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1116 targets, within its particular stratum of the stack. Result
1117 is 0 if now atop the stack, nonzero if not on top (maybe
1118 should warn user).
c906108c
SS
1119
1120 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1121 no matter where it is on the list. Returns 0 if no
1122 change, 1 if removed from stack.
c906108c 1123
c5aa993b 1124 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1125
a14ed312 1126extern void add_target (struct target_ops *);
c906108c 1127
a14ed312 1128extern int push_target (struct target_ops *);
c906108c 1129
a14ed312 1130extern int unpush_target (struct target_ops *);
c906108c 1131
fd79ecee
DJ
1132extern void target_pre_inferior (int);
1133
a14ed312 1134extern void target_preopen (int);
c906108c 1135
a14ed312 1136extern void pop_target (void);
c906108c 1137
9e35dae4
DJ
1138extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1139 CORE_ADDR offset);
1140
52bb452f
DJ
1141/* Mark a pushed target as running or exited, for targets which do not
1142 automatically pop when not active. */
1143
1144void target_mark_running (struct target_ops *);
1145
1146void target_mark_exited (struct target_ops *);
1147
c906108c
SS
1148/* Struct section_table maps address ranges to file sections. It is
1149 mostly used with BFD files, but can be used without (e.g. for handling
1150 raw disks, or files not in formats handled by BFD). */
1151
c5aa993b
JM
1152struct section_table
1153 {
1154 CORE_ADDR addr; /* Lowest address in section */
1155 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1156
7be0c536 1157 struct bfd_section *the_bfd_section;
c906108c 1158
c5aa993b
JM
1159 bfd *bfd; /* BFD file pointer */
1160 };
c906108c 1161
8db32d44
AC
1162/* Return the "section" containing the specified address. */
1163struct section_table *target_section_by_addr (struct target_ops *target,
1164 CORE_ADDR addr);
1165
1166
c906108c
SS
1167/* From mem-break.c */
1168
8181d85f 1169extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1170
8181d85f 1171extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1172
ae4b2284 1173extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1174
ae4b2284 1175extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1176
c906108c
SS
1177
1178/* From target.c */
1179
a14ed312 1180extern void initialize_targets (void);
c906108c 1181
a14ed312 1182extern void noprocess (void);
c906108c 1183
8edfe269
DJ
1184extern void target_require_runnable (void);
1185
a14ed312 1186extern void find_default_attach (char *, int);
c906108c 1187
c27cda74 1188extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1189
a14ed312 1190extern struct target_ops *find_run_target (void);
7a292a7a 1191
a14ed312 1192extern struct target_ops *find_core_target (void);
6426a772 1193
a14ed312 1194extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1195
570b8f7c
AC
1196extern int target_resize_to_sections (struct target_ops *target,
1197 int num_added);
07cd4b97
JB
1198
1199extern void remove_target_sections (bfd *abfd);
1200
c906108c
SS
1201\f
1202/* Stuff that should be shared among the various remote targets. */
1203
1204/* Debugging level. 0 is off, and non-zero values mean to print some debug
1205 information (higher values, more information). */
1206extern int remote_debug;
1207
1208/* Speed in bits per second, or -1 which means don't mess with the speed. */
1209extern int baud_rate;
1210/* Timeout limit for response from target. */
1211extern int remote_timeout;
1212
c906108c
SS
1213\f
1214/* Functions for helping to write a native target. */
1215
1216/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1217extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1218
c2d11a7d 1219/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1220 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1221/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1222 to the shorter target_signal_p() because it is far less ambigious.
1223 In this context ``target_signal'' refers to GDB's internal
1224 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1225 refers to the target operating system's signal. Confused? */
1226
c2d11a7d
JM
1227extern int target_signal_to_host_p (enum target_signal signo);
1228
1229/* Convert between host signal numbers and enum target_signal's.
1230 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1231 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1232/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1233 refering to the target operating system's signal numbering.
1234 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1235 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1236 internal representation of a target operating system's signal. */
1237
a14ed312
KB
1238extern enum target_signal target_signal_from_host (int);
1239extern int target_signal_to_host (enum target_signal);
c906108c 1240
1cded358
AR
1241extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1242 int);
1243extern int default_target_signal_to_host (struct gdbarch *,
1244 enum target_signal);
1245
c906108c 1246/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1247extern enum target_signal target_signal_from_command (int);
c906108c
SS
1248
1249/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1250extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1251
1252/* Set the show memory breakpoints mode to show, and installs a cleanup
1253 to restore it back to the current value. */
1254extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1255
c906108c
SS
1256\f
1257/* Imported from machine dependent code */
1258
c906108c 1259/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1260void target_ignore (void);
c906108c 1261
1df84f13 1262extern struct target_ops deprecated_child_ops;
5ac10fd1 1263
c5aa993b 1264#endif /* !defined (TARGET_H) */
This page took 1.066405 seconds and 4 git commands to generate.