Add md expression support; Cleanup alpha warnings
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
c5aa993b
JM
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
c906108c 74
c5aa993b
JM
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
c906108c 78
c5aa993b
JM
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
c906108c 82
c5aa993b
JM
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 85 */
c5aa993b 86 TARGET_WAITKIND_FORKED,
c906108c 87
c5aa993b 88 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 89 */
c5aa993b 90 TARGET_WAITKIND_VFORKED,
c906108c 91
c5aa993b
JM
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
c906108c 94 */
c5aa993b 95 TARGET_WAITKIND_EXECD,
c906108c 96
c5aa993b
JM
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
c906108c 100 */
c5aa993b
JM
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 103
c5aa993b
JM
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
107 TARGET_WAITKIND_SPURIOUS
c906108c
SS
108 };
109
110/* The numbering of these signals is chosen to match traditional unix
111 signals (insofar as various unices use the same numbers, anyway).
112 It is also the numbering of the GDB remote protocol. Other remote
113 protocols, if they use a different numbering, should make sure to
cd0fc7c3 114 translate appropriately.
c906108c 115
cd0fc7c3
SS
116 Since these numbers have actually made it out into other software
117 (stubs, etc.), you mustn't disturb the assigned numbering. If you
118 need to add new signals here, add them to the end of the explicitly
119 numbered signals.
120
121 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
122 (1) This set of signals represents a widely-accepted attempt to
123 represent events of this sort in a portable fashion, (2) we want a
124 signal to make it from wait to child_wait to the user intact, (3) many
125 remote protocols use a similar encoding. However, it is
126 recognized that this set of signals has limitations (such as not
127 distinguishing between various kinds of SIGSEGV, or not
128 distinguishing hitting a breakpoint from finishing a single step).
129 So in the future we may get around this either by adding additional
130 signals for breakpoint, single-step, etc., or by adding signal
131 codes; the latter seems more in the spirit of what BSD, System V,
132 etc. are doing to address these issues. */
133
134/* For an explanation of what each signal means, see
135 target_signal_to_string. */
136
c5aa993b
JM
137enum target_signal
138 {
139 /* Used some places (e.g. stop_signal) to record the concept that
140 there is no signal. */
141 TARGET_SIGNAL_0 = 0,
142 TARGET_SIGNAL_FIRST = 0,
143 TARGET_SIGNAL_HUP = 1,
144 TARGET_SIGNAL_INT = 2,
145 TARGET_SIGNAL_QUIT = 3,
146 TARGET_SIGNAL_ILL = 4,
147 TARGET_SIGNAL_TRAP = 5,
148 TARGET_SIGNAL_ABRT = 6,
149 TARGET_SIGNAL_EMT = 7,
150 TARGET_SIGNAL_FPE = 8,
151 TARGET_SIGNAL_KILL = 9,
152 TARGET_SIGNAL_BUS = 10,
153 TARGET_SIGNAL_SEGV = 11,
154 TARGET_SIGNAL_SYS = 12,
155 TARGET_SIGNAL_PIPE = 13,
156 TARGET_SIGNAL_ALRM = 14,
157 TARGET_SIGNAL_TERM = 15,
158 TARGET_SIGNAL_URG = 16,
159 TARGET_SIGNAL_STOP = 17,
160 TARGET_SIGNAL_TSTP = 18,
161 TARGET_SIGNAL_CONT = 19,
162 TARGET_SIGNAL_CHLD = 20,
163 TARGET_SIGNAL_TTIN = 21,
164 TARGET_SIGNAL_TTOU = 22,
165 TARGET_SIGNAL_IO = 23,
166 TARGET_SIGNAL_XCPU = 24,
167 TARGET_SIGNAL_XFSZ = 25,
168 TARGET_SIGNAL_VTALRM = 26,
169 TARGET_SIGNAL_PROF = 27,
170 TARGET_SIGNAL_WINCH = 28,
171 TARGET_SIGNAL_LOST = 29,
172 TARGET_SIGNAL_USR1 = 30,
173 TARGET_SIGNAL_USR2 = 31,
174 TARGET_SIGNAL_PWR = 32,
175 /* Similar to SIGIO. Perhaps they should have the same number. */
176 TARGET_SIGNAL_POLL = 33,
177 TARGET_SIGNAL_WIND = 34,
178 TARGET_SIGNAL_PHONE = 35,
179 TARGET_SIGNAL_WAITING = 36,
180 TARGET_SIGNAL_LWP = 37,
181 TARGET_SIGNAL_DANGER = 38,
182 TARGET_SIGNAL_GRANT = 39,
183 TARGET_SIGNAL_RETRACT = 40,
184 TARGET_SIGNAL_MSG = 41,
185 TARGET_SIGNAL_SOUND = 42,
186 TARGET_SIGNAL_SAK = 43,
187 TARGET_SIGNAL_PRIO = 44,
188 TARGET_SIGNAL_REALTIME_33 = 45,
189 TARGET_SIGNAL_REALTIME_34 = 46,
190 TARGET_SIGNAL_REALTIME_35 = 47,
191 TARGET_SIGNAL_REALTIME_36 = 48,
192 TARGET_SIGNAL_REALTIME_37 = 49,
193 TARGET_SIGNAL_REALTIME_38 = 50,
194 TARGET_SIGNAL_REALTIME_39 = 51,
195 TARGET_SIGNAL_REALTIME_40 = 52,
196 TARGET_SIGNAL_REALTIME_41 = 53,
197 TARGET_SIGNAL_REALTIME_42 = 54,
198 TARGET_SIGNAL_REALTIME_43 = 55,
199 TARGET_SIGNAL_REALTIME_44 = 56,
200 TARGET_SIGNAL_REALTIME_45 = 57,
201 TARGET_SIGNAL_REALTIME_46 = 58,
202 TARGET_SIGNAL_REALTIME_47 = 59,
203 TARGET_SIGNAL_REALTIME_48 = 60,
204 TARGET_SIGNAL_REALTIME_49 = 61,
205 TARGET_SIGNAL_REALTIME_50 = 62,
206 TARGET_SIGNAL_REALTIME_51 = 63,
207 TARGET_SIGNAL_REALTIME_52 = 64,
208 TARGET_SIGNAL_REALTIME_53 = 65,
209 TARGET_SIGNAL_REALTIME_54 = 66,
210 TARGET_SIGNAL_REALTIME_55 = 67,
211 TARGET_SIGNAL_REALTIME_56 = 68,
212 TARGET_SIGNAL_REALTIME_57 = 69,
213 TARGET_SIGNAL_REALTIME_58 = 70,
214 TARGET_SIGNAL_REALTIME_59 = 71,
215 TARGET_SIGNAL_REALTIME_60 = 72,
216 TARGET_SIGNAL_REALTIME_61 = 73,
217 TARGET_SIGNAL_REALTIME_62 = 74,
218 TARGET_SIGNAL_REALTIME_63 = 75,
219
220 /* Used internally by Solaris threads. See signal(5) on Solaris. */
221 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 222
d4f3574e
SS
223 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
224 Linux does, and we can't disturb the numbering, since it's part
225 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
226 is number 76. */
227 TARGET_SIGNAL_REALTIME_32,
228
c906108c 229#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
230 /* Mach exceptions */
231 TARGET_EXC_BAD_ACCESS,
232 TARGET_EXC_BAD_INSTRUCTION,
233 TARGET_EXC_ARITHMETIC,
234 TARGET_EXC_EMULATION,
235 TARGET_EXC_SOFTWARE,
236 TARGET_EXC_BREAKPOINT,
c906108c 237#endif
c5aa993b 238 TARGET_SIGNAL_INFO,
c906108c 239
c5aa993b
JM
240 /* Some signal we don't know about. */
241 TARGET_SIGNAL_UNKNOWN,
c906108c 242
c5aa993b
JM
243 /* Use whatever signal we use when one is not specifically specified
244 (for passing to proceed and so on). */
245 TARGET_SIGNAL_DEFAULT,
c906108c 246
c5aa993b
JM
247 /* Last and unused enum value, for sizing arrays, etc. */
248 TARGET_SIGNAL_LAST
249 };
c906108c 250
c5aa993b
JM
251struct target_waitstatus
252 {
253 enum target_waitkind kind;
254
255 /* Forked child pid, execd pathname, exit status or signal number. */
256 union
257 {
258 int integer;
259 enum target_signal sig;
260 int related_pid;
261 char *execd_pathname;
262 int syscall_id;
263 }
264 value;
265 };
c906108c 266
2acceee2
JM
267/* Possible types of events that the inferior handler will have to
268 deal with. */
269enum inferior_event_type
270 {
271 /* There is a request to quit the inferior, abandon it. */
272 INF_QUIT_REQ,
273 /* Process a normal inferior event which will result in target_wait
274 being called. */
275 INF_REG_EVENT,
276 /* Deal with an error on the inferior. */
277 INF_ERROR,
278 /* We are called because a timer went off. */
279 INF_TIMER,
280 /* We are called to do stuff after the inferior stops. */
281 INF_EXEC_COMPLETE
282 };
283
c906108c
SS
284/* Return the string for a signal. */
285extern char *target_signal_to_string PARAMS ((enum target_signal));
286
287/* Return the name (SIGHUP, etc.) for a signal. */
288extern char *target_signal_to_name PARAMS ((enum target_signal));
289
290/* Given a name (SIGHUP, etc.), return its signal. */
291enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 292\f
c5aa993b 293
c906108c
SS
294/* If certain kinds of activity happen, target_wait should perform
295 callbacks. */
296/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
297 on TARGET_ACTIVITY_FD. */
298extern int target_activity_fd;
299/* Returns zero to leave the inferior alone, one to interrupt it. */
300extern int (*target_activity_function) PARAMS ((void));
301\f
302struct target_ops
c5aa993b
JM
303 {
304 char *to_shortname; /* Name this target type */
305 char *to_longname; /* Name for printing */
306 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
307 newline, and starts with a one-line descrip-
308 tion (probably similar to to_longname). */
c5aa993b
JM
309 void (*to_open) PARAMS ((char *, int));
310 void (*to_close) PARAMS ((int));
311 void (*to_attach) PARAMS ((char *, int));
312 void (*to_post_attach) PARAMS ((int));
313 void (*to_require_attach) PARAMS ((char *, int));
314 void (*to_detach) PARAMS ((char *, int));
315 void (*to_require_detach) PARAMS ((int, char *, int));
316 void (*to_resume) PARAMS ((int, int, enum target_signal));
317 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
318 void (*to_post_wait) PARAMS ((int, int));
319 void (*to_fetch_registers) PARAMS ((int));
320 void (*to_store_registers) PARAMS ((int));
321 void (*to_prepare_to_store) PARAMS ((void));
322
323 /* Transfer LEN bytes of memory between GDB address MYADDR and
324 target address MEMADDR. If WRITE, transfer them to the target, else
325 transfer them from the target. TARGET is the target from which we
326 get this function.
327
328 Return value, N, is one of the following:
329
330 0 means that we can't handle this. If errno has been set, it is the
331 error which prevented us from doing it (FIXME: What about bfd_error?).
332
333 positive (call it N) means that we have transferred N bytes
334 starting at MEMADDR. We might be able to handle more bytes
335 beyond this length, but no promises.
336
337 negative (call its absolute value N) means that we cannot
338 transfer right at MEMADDR, but we could transfer at least
339 something at MEMADDR + N. */
340
341 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
342 int len, int write,
343 struct target_ops * target));
c906108c
SS
344
345#if 0
c5aa993b 346 /* Enable this after 4.12. */
c906108c 347
c5aa993b
JM
348 /* Search target memory. Start at STARTADDR and take LEN bytes of
349 target memory, and them with MASK, and compare to DATA. If they
350 match, set *ADDR_FOUND to the address we found it at, store the data
351 we found at LEN bytes starting at DATA_FOUND, and return. If
352 not, add INCREMENT to the search address and keep trying until
353 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 354
c5aa993b
JM
355 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
356 void (*to_search) PARAMS ((int len, char *data, char *mask,
357 CORE_ADDR startaddr, int increment,
358 CORE_ADDR lorange, CORE_ADDR hirange,
359 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
360
361#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
362 (*current_target.to_search) (len, data, mask, startaddr, increment, \
363 lorange, hirange, addr_found, data_found)
c5aa993b
JM
364#endif /* 0 */
365
366 void (*to_files_info) PARAMS ((struct target_ops *));
367 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
368 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
369 void (*to_terminal_init) PARAMS ((void));
370 void (*to_terminal_inferior) PARAMS ((void));
371 void (*to_terminal_ours_for_output) PARAMS ((void));
372 void (*to_terminal_ours) PARAMS ((void));
373 void (*to_terminal_info) PARAMS ((char *, int));
374 void (*to_kill) PARAMS ((void));
375 void (*to_load) PARAMS ((char *, int));
376 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
377 void (*to_create_inferior) PARAMS ((char *, char *, char **));
378 void (*to_post_startup_inferior) PARAMS ((int));
379 void (*to_acknowledge_created_inferior) PARAMS ((int));
380 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
381 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
382 int (*to_insert_fork_catchpoint) PARAMS ((int));
383 int (*to_remove_fork_catchpoint) PARAMS ((int));
384 int (*to_insert_vfork_catchpoint) PARAMS ((int));
385 int (*to_remove_vfork_catchpoint) PARAMS ((int));
386 int (*to_has_forked) PARAMS ((int, int *));
387 int (*to_has_vforked) PARAMS ((int, int *));
388 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
389 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
390 int (*to_insert_exec_catchpoint) PARAMS ((int));
391 int (*to_remove_exec_catchpoint) PARAMS ((int));
392 int (*to_has_execd) PARAMS ((int, char **));
393 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
394 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
395 int (*to_has_exited) PARAMS ((int, int, int *));
396 void (*to_mourn_inferior) PARAMS ((void));
397 int (*to_can_run) PARAMS ((void));
398 void (*to_notice_signals) PARAMS ((int pid));
399 int (*to_thread_alive) PARAMS ((int pid));
400 void (*to_find_new_threads) PARAMS ((void));
401 void (*to_stop) PARAMS ((void));
402 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
96baa820 403 void (*to_rcmd) (char *command, struct gdb_file *output);
c5aa993b
JM
404 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
405 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
406 char *(*to_pid_to_exec_file) PARAMS ((int pid));
407 char *(*to_core_file_to_sym_file) PARAMS ((char *));
408 enum strata to_stratum;
409 struct target_ops
410 *DONT_USE; /* formerly to_next */
411 int to_has_all_memory;
412 int to_has_memory;
413 int to_has_stack;
414 int to_has_registers;
415 int to_has_execution;
416 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
417 struct section_table
418 *to_sections;
419 struct section_table
420 *to_sections_end;
6426a772
JM
421 /* ASYNC target controls */
422 int (*to_can_async_p) (void);
423 int (*to_is_async_p) (void);
2acceee2 424 void (*to_async) (void (*cb) (enum inferior_event_type, void *context), void *context);
c5aa993b
JM
425 int to_magic;
426 /* Need sub-structure for target machine related rather than comm related? */
427 };
c906108c
SS
428
429/* Magic number for checking ops size. If a struct doesn't end with this
430 number, somebody changed the declaration but didn't change all the
431 places that initialize one. */
432
433#define OPS_MAGIC 3840
434
435/* The ops structure for our "current" target process. This should
436 never be NULL. If there is no target, it points to the dummy_target. */
437
c5aa993b 438extern struct target_ops current_target;
c906108c
SS
439
440/* An item on the target stack. */
441
442struct target_stack_item
c5aa993b
JM
443 {
444 struct target_stack_item *next;
445 struct target_ops *target_ops;
446 };
c906108c
SS
447
448/* The target stack. */
449
450extern struct target_stack_item *target_stack;
451
452/* Define easy words for doing these operations on our current target. */
453
454#define target_shortname (current_target.to_shortname)
455#define target_longname (current_target.to_longname)
456
457/* The open routine takes the rest of the parameters from the command,
458 and (if successful) pushes a new target onto the stack.
459 Targets should supply this routine, if only to provide an error message. */
460#define target_open(name, from_tty) \
461 (*current_target.to_open) (name, from_tty)
462
463/* Does whatever cleanup is required for a target that we are no longer
464 going to be calling. Argument says whether we are quitting gdb and
465 should not get hung in case of errors, or whether we want a clean
466 termination even if it takes a while. This routine is automatically
467 always called just before a routine is popped off the target stack.
468 Closing file descriptors and freeing memory are typical things it should
469 do. */
470
471#define target_close(quitting) \
472 (*current_target.to_close) (quitting)
473
474/* Attaches to a process on the target side. Arguments are as passed
475 to the `attach' command by the user. This routine can be called
476 when the target is not on the target-stack, if the target_can_run
477 routine returns 1; in that case, it must push itself onto the stack.
478 Upon exit, the target should be ready for normal operations, and
479 should be ready to deliver the status of the process immediately
480 (without waiting) to an upcoming target_wait call. */
481
482#define target_attach(args, from_tty) \
483 (*current_target.to_attach) (args, from_tty)
484
485/* The target_attach operation places a process under debugger control,
486 and stops the process.
487
488 This operation provides a target-specific hook that allows the
489 necessary bookkeeping to be performed after an attach completes.
c5aa993b 490 */
c906108c
SS
491#define target_post_attach(pid) \
492 (*current_target.to_post_attach) (pid)
493
494/* Attaches to a process on the target side, if not already attached.
495 (If already attached, takes no action.)
496
497 This operation can be used to follow the child process of a fork.
498 On some targets, such child processes of an original inferior process
499 are automatically under debugger control, and thus do not require an
500 actual attach operation. */
501
502#define target_require_attach(args, from_tty) \
503 (*current_target.to_require_attach) (args, from_tty)
504
505/* Takes a program previously attached to and detaches it.
506 The program may resume execution (some targets do, some don't) and will
507 no longer stop on signals, etc. We better not have left any breakpoints
508 in the program or it'll die when it hits one. ARGS is arguments
509 typed by the user (e.g. a signal to send the process). FROM_TTY
510 says whether to be verbose or not. */
511
512extern void
513target_detach PARAMS ((char *, int));
514
515/* Detaches from a process on the target side, if not already dettached.
516 (If already detached, takes no action.)
517
518 This operation can be used to follow the parent process of a fork.
519 On some targets, such child processes of an original inferior process
520 are automatically under debugger control, and thus do require an actual
521 detach operation.
522
523 PID is the process id of the child to detach from.
524 ARGS is arguments typed by the user (e.g. a signal to send the process).
525 FROM_TTY says whether to be verbose or not. */
526
527#define target_require_detach(pid, args, from_tty) \
528 (*current_target.to_require_detach) (pid, args, from_tty)
529
530/* Resume execution of the target process PID. STEP says whether to
531 single-step or to run free; SIGGNAL is the signal to be given to
532 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
533 pass TARGET_SIGNAL_DEFAULT. */
534
535#define target_resume(pid, step, siggnal) \
536 (*current_target.to_resume) (pid, step, siggnal)
537
538/* Wait for process pid to do something. Pid = -1 to wait for any pid
539 to do something. Return pid of child, or -1 in case of error;
540 store status through argument pointer STATUS. Note that it is
541 *not* OK to return_to_top_level out of target_wait without popping
542 the debugging target from the stack; GDB isn't prepared to get back
543 to the prompt with a debugging target but without the frame cache,
544 stop_pc, etc., set up. */
545
546#define target_wait(pid, status) \
547 (*current_target.to_wait) (pid, status)
548
549/* The target_wait operation waits for a process event to occur, and
550 thereby stop the process.
551
552 On some targets, certain events may happen in sequences. gdb's
553 correct response to any single event of such a sequence may require
554 knowledge of what earlier events in the sequence have been seen.
555
556 This operation provides a target-specific hook that allows the
557 necessary bookkeeping to be performed to track such sequences.
c5aa993b 558 */
c906108c
SS
559
560#define target_post_wait(pid, status) \
561 (*current_target.to_post_wait) (pid, status)
562
563/* Fetch register REGNO, or all regs if regno == -1. No result. */
564
565#define target_fetch_registers(regno) \
566 (*current_target.to_fetch_registers) (regno)
567
568/* Store at least register REGNO, or all regs if REGNO == -1.
569 It can store as many registers as it wants to, so target_prepare_to_store
570 must have been previously called. Calls error() if there are problems. */
571
572#define target_store_registers(regs) \
573 (*current_target.to_store_registers) (regs)
574
575/* Get ready to modify the registers array. On machines which store
576 individual registers, this doesn't need to do anything. On machines
577 which store all the registers in one fell swoop, this makes sure
578 that REGISTERS contains all the registers from the program being
579 debugged. */
580
581#define target_prepare_to_store() \
582 (*current_target.to_prepare_to_store) ()
583
584extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
585
586extern int
587target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
588
589extern int
590target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 591 asection * bfd_section));
c906108c
SS
592
593extern int
594target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
595
596extern int
597target_write_memory PARAMS ((CORE_ADDR, char *, int));
598
599extern int
600xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
601
602extern int
603child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
604
605extern char *
c5aa993b 606 child_pid_to_exec_file PARAMS ((int));
c906108c
SS
607
608extern char *
c5aa993b 609 child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
610
611#if defined(CHILD_POST_ATTACH)
612extern void
613child_post_attach PARAMS ((int));
614#endif
615
616extern void
617child_post_wait PARAMS ((int, int));
618
619extern void
620child_post_startup_inferior PARAMS ((int));
621
622extern void
623child_acknowledge_created_inferior PARAMS ((int));
624
625extern void
626child_clone_and_follow_inferior PARAMS ((int, int *));
627
628extern void
629child_post_follow_inferior_by_clone PARAMS ((void));
630
631extern int
632child_insert_fork_catchpoint PARAMS ((int));
633
634extern int
635child_remove_fork_catchpoint PARAMS ((int));
636
637extern int
638child_insert_vfork_catchpoint PARAMS ((int));
639
640extern int
641child_remove_vfork_catchpoint PARAMS ((int));
642
643extern int
644child_has_forked PARAMS ((int, int *));
645
646extern int
647child_has_vforked PARAMS ((int, int *));
648
649extern void
650child_acknowledge_created_inferior PARAMS ((int));
651
652extern int
653child_can_follow_vfork_prior_to_exec PARAMS ((void));
654
655extern void
656child_post_follow_vfork PARAMS ((int, int, int, int));
657
658extern int
659child_insert_exec_catchpoint PARAMS ((int));
660
661extern int
662child_remove_exec_catchpoint PARAMS ((int));
663
664extern int
665child_has_execd PARAMS ((int, char **));
666
667extern int
668child_reported_exec_events_per_exec_call PARAMS ((void));
669
670extern int
671child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
672
673extern int
674child_has_exited PARAMS ((int, int, int *));
675
676extern int
677child_thread_alive PARAMS ((int));
678
679/* From exec.c */
680
681extern void
682print_section_info PARAMS ((struct target_ops *, bfd *));
683
684/* Print a line about the current target. */
685
686#define target_files_info() \
687 (*current_target.to_files_info) (&current_target)
688
689/* Insert a breakpoint at address ADDR in the target machine.
690 SAVE is a pointer to memory allocated for saving the
691 target contents. It is guaranteed by the caller to be long enough
692 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
693 an errno value. */
694
695#define target_insert_breakpoint(addr, save) \
696 (*current_target.to_insert_breakpoint) (addr, save)
697
698/* Remove a breakpoint at address ADDR in the target machine.
699 SAVE is a pointer to the same save area
700 that was previously passed to target_insert_breakpoint.
701 Result is 0 for success, or an errno value. */
702
703#define target_remove_breakpoint(addr, save) \
704 (*current_target.to_remove_breakpoint) (addr, save)
705
706/* Initialize the terminal settings we record for the inferior,
707 before we actually run the inferior. */
708
709#define target_terminal_init() \
710 (*current_target.to_terminal_init) ()
711
712/* Put the inferior's terminal settings into effect.
713 This is preparation for starting or resuming the inferior. */
714
715#define target_terminal_inferior() \
716 (*current_target.to_terminal_inferior) ()
717
718/* Put some of our terminal settings into effect,
719 enough to get proper results from our output,
720 but do not change into or out of RAW mode
721 so that no input is discarded.
722
723 After doing this, either terminal_ours or terminal_inferior
724 should be called to get back to a normal state of affairs. */
725
726#define target_terminal_ours_for_output() \
727 (*current_target.to_terminal_ours_for_output) ()
728
729/* Put our terminal settings into effect.
730 First record the inferior's terminal settings
731 so they can be restored properly later. */
732
733#define target_terminal_ours() \
734 (*current_target.to_terminal_ours) ()
735
736/* Print useful information about our terminal status, if such a thing
737 exists. */
738
739#define target_terminal_info(arg, from_tty) \
740 (*current_target.to_terminal_info) (arg, from_tty)
741
742/* Kill the inferior process. Make it go away. */
743
744#define target_kill() \
745 (*current_target.to_kill) ()
746
747/* Load an executable file into the target process. This is expected to
748 not only bring new code into the target process, but also to update
749 GDB's symbol tables to match. */
750
751#define target_load(arg, from_tty) \
752 (*current_target.to_load) (arg, from_tty)
753
754/* Look up a symbol in the target's symbol table. NAME is the symbol
755 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
756 should be returned. The result is 0 if successful, nonzero if the
757 symbol does not exist in the target environment. This function should
758 not call error() if communication with the target is interrupted, since
759 it is called from symbol reading, but should return nonzero, possibly
760 doing a complain(). */
761
762#define target_lookup_symbol(name, addrp) \
763 (*current_target.to_lookup_symbol) (name, addrp)
764
765/* Start an inferior process and set inferior_pid to its pid.
766 EXEC_FILE is the file to run.
767 ALLARGS is a string containing the arguments to the program.
768 ENV is the environment vector to pass. Errors reported with error().
769 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 770
c906108c
SS
771#define target_create_inferior(exec_file, args, env) \
772 (*current_target.to_create_inferior) (exec_file, args, env)
773
774
775/* Some targets (such as ttrace-based HPUX) don't allow us to request
776 notification of inferior events such as fork and vork immediately
777 after the inferior is created. (This because of how gdb gets an
778 inferior created via invoking a shell to do it. In such a scenario,
779 if the shell init file has commands in it, the shell will fork and
780 exec for each of those commands, and we will see each such fork
781 event. Very bad.)
c5aa993b 782
c906108c 783 Such targets will supply an appropriate definition for this function.
c5aa993b 784 */
c906108c
SS
785#define target_post_startup_inferior(pid) \
786 (*current_target.to_post_startup_inferior) (pid)
787
788/* On some targets, the sequence of starting up an inferior requires
789 some synchronization between gdb and the new inferior process, PID.
c5aa993b 790 */
c906108c
SS
791#define target_acknowledge_created_inferior(pid) \
792 (*current_target.to_acknowledge_created_inferior) (pid)
793
794/* An inferior process has been created via a fork() or similar
795 system call. This function will clone the debugger, then ensure
796 that CHILD_PID is attached to by that debugger.
797
798 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
799 and FALSE otherwise. (The original and clone debuggers can use this
800 to determine which they are, if need be.)
801
802 (This is not a terribly useful feature without a GUI to prevent
803 the two debuggers from competing for shell input.)
c5aa993b 804 */
c906108c
SS
805#define target_clone_and_follow_inferior(child_pid,followed_child) \
806 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
807
808/* This operation is intended to be used as the last in a sequence of
809 steps taken when following both parent and child of a fork. This
810 is used by a clone of the debugger, which will follow the child.
811
812 The original debugger has detached from this process, and the
813 clone has attached to it.
814
815 On some targets, this requires a bit of cleanup to make it work
816 correctly.
c5aa993b 817 */
c906108c
SS
818#define target_post_follow_inferior_by_clone() \
819 (*current_target.to_post_follow_inferior_by_clone) ()
820
821/* On some targets, we can catch an inferior fork or vfork event when it
822 occurs. These functions insert/remove an already-created catchpoint for
823 such events.
c5aa993b 824 */
c906108c
SS
825#define target_insert_fork_catchpoint(pid) \
826 (*current_target.to_insert_fork_catchpoint) (pid)
827
828#define target_remove_fork_catchpoint(pid) \
829 (*current_target.to_remove_fork_catchpoint) (pid)
830
831#define target_insert_vfork_catchpoint(pid) \
832 (*current_target.to_insert_vfork_catchpoint) (pid)
833
834#define target_remove_vfork_catchpoint(pid) \
835 (*current_target.to_remove_vfork_catchpoint) (pid)
836
837/* Returns TRUE if PID has invoked the fork() system call. And,
838 also sets CHILD_PID to the process id of the other ("child")
839 inferior process that was created by that call.
c5aa993b 840 */
c906108c
SS
841#define target_has_forked(pid,child_pid) \
842 (*current_target.to_has_forked) (pid,child_pid)
843
844/* Returns TRUE if PID has invoked the vfork() system call. And,
845 also sets CHILD_PID to the process id of the other ("child")
846 inferior process that was created by that call.
c5aa993b 847 */
c906108c
SS
848#define target_has_vforked(pid,child_pid) \
849 (*current_target.to_has_vforked) (pid,child_pid)
850
851/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
852 anything to a vforked child before it subsequently calls exec().
853 On such platforms, we say that the debugger cannot "follow" the
854 child until it has vforked.
855
856 This function should be defined to return 1 by those targets
857 which can allow the debugger to immediately follow a vforked
858 child, and 0 if they cannot.
c5aa993b 859 */
c906108c
SS
860#define target_can_follow_vfork_prior_to_exec() \
861 (*current_target.to_can_follow_vfork_prior_to_exec) ()
862
863/* An inferior process has been created via a vfork() system call.
864 The debugger has followed the parent, the child, or both. The
865 process of setting up for that follow may have required some
866 target-specific trickery to track the sequence of reported events.
867 If so, this function should be defined by those targets that
868 require the debugger to perform cleanup or initialization after
869 the vfork follow.
c5aa993b 870 */
c906108c
SS
871#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
872 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
873
874/* On some targets, we can catch an inferior exec event when it
875 occurs. These functions insert/remove an already-created catchpoint
876 for such events.
c5aa993b 877 */
c906108c
SS
878#define target_insert_exec_catchpoint(pid) \
879 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 880
c906108c
SS
881#define target_remove_exec_catchpoint(pid) \
882 (*current_target.to_remove_exec_catchpoint) (pid)
883
884/* Returns TRUE if PID has invoked a flavor of the exec() system call.
885 And, also sets EXECD_PATHNAME to the pathname of the executable file
886 that was passed to exec(), and is now being executed.
c5aa993b 887 */
c906108c
SS
888#define target_has_execd(pid,execd_pathname) \
889 (*current_target.to_has_execd) (pid,execd_pathname)
890
891/* Returns the number of exec events that are reported when a process
892 invokes a flavor of the exec() system call on this target, if exec
893 events are being reported.
c5aa993b 894 */
c906108c
SS
895#define target_reported_exec_events_per_exec_call() \
896 (*current_target.to_reported_exec_events_per_exec_call) ()
897
898/* Returns TRUE if PID has reported a syscall event. And, also sets
899 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
900 the unique integer ID of the syscall.
c5aa993b 901 */
c906108c
SS
902#define target_has_syscall_event(pid,kind,syscall_id) \
903 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
904
905/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
906 exit code of PID, if any.
c5aa993b 907 */
c906108c
SS
908#define target_has_exited(pid,wait_status,exit_status) \
909 (*current_target.to_has_exited) (pid,wait_status,exit_status)
910
911/* The debugger has completed a blocking wait() call. There is now
912 some process event that must be processed. This function should
913 be defined by those targets that require the debugger to perform
914 cleanup or internal state changes in response to the process event.
c5aa993b 915 */
c906108c
SS
916
917/* The inferior process has died. Do what is right. */
918
919#define target_mourn_inferior() \
920 (*current_target.to_mourn_inferior) ()
921
922/* Does target have enough data to do a run or attach command? */
923
924#define target_can_run(t) \
925 ((t)->to_can_run) ()
926
927/* post process changes to signal handling in the inferior. */
928
929#define target_notice_signals(pid) \
930 (*current_target.to_notice_signals) (pid)
931
932/* Check to see if a thread is still alive. */
933
934#define target_thread_alive(pid) \
935 (*current_target.to_thread_alive) (pid)
936
b83266a0
SS
937/* Query for new threads and add them to the thread list. */
938
939#define target_find_new_threads() \
940 do { \
941 if (current_target.to_find_new_threads) \
942 (*current_target.to_find_new_threads) (); \
943 } while (0);
944
c906108c
SS
945/* Make target stop in a continuable fashion. (For instance, under Unix, this
946 should act like SIGSTOP). This function is normally used by GUIs to
947 implement a stop button. */
948
949#define target_stop current_target.to_stop
950
951/* Queries the target side for some information. The first argument is a
952 letter specifying the type of the query, which is used to determine who
953 should process it. The second argument is a string that specifies which
954 information is desired and the third is a buffer that carries back the
955 response from the target side. The fourth parameter is the size of the
956 output buffer supplied. */
c5aa993b 957
c906108c
SS
958#define target_query(query_type, query, resp_buffer, bufffer_size) \
959 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
960
96baa820
JM
961/* Send the specified COMMAND to the target's monitor
962 (shell,interpreter) for execution. The result of the query is
963 placed in OUTBUF. */
964
965#define target_rcmd(command, outbuf) \
966 (*current_target.to_rcmd) (command, outbuf)
967
968
c906108c
SS
969/* Get the symbol information for a breakpointable routine called when
970 an exception event occurs.
971 Intended mainly for C++, and for those
972 platforms/implementations where such a callback mechanism is available,
973 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
974 different mechanisms for debugging exceptions. */
975
976#define target_enable_exception_callback(kind, enable) \
977 (*current_target.to_enable_exception_callback) (kind, enable)
978
979/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 980
c906108c
SS
981#define target_get_current_exception_event() \
982 (*current_target.to_get_current_exception_event) ()
983
984/* Pointer to next target in the chain, e.g. a core file and an exec file. */
985
986#define target_next \
987 (current_target.to_next)
988
989/* Does the target include all of memory, or only part of it? This
990 determines whether we look up the target chain for other parts of
991 memory if this target can't satisfy a request. */
992
993#define target_has_all_memory \
994 (current_target.to_has_all_memory)
995
996/* Does the target include memory? (Dummy targets don't.) */
997
998#define target_has_memory \
999 (current_target.to_has_memory)
1000
1001/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1002 we start a process.) */
c5aa993b 1003
c906108c
SS
1004#define target_has_stack \
1005 (current_target.to_has_stack)
1006
1007/* Does the target have registers? (Exec files don't.) */
1008
1009#define target_has_registers \
1010 (current_target.to_has_registers)
1011
1012/* Does the target have execution? Can we make it jump (through
1013 hoops), or pop its stack a few times? FIXME: If this is to work that
1014 way, it needs to check whether an inferior actually exists.
1015 remote-udi.c and probably other targets can be the current target
1016 when the inferior doesn't actually exist at the moment. Right now
1017 this just tells us whether this target is *capable* of execution. */
1018
1019#define target_has_execution \
1020 (current_target.to_has_execution)
1021
1022/* Can the target support the debugger control of thread execution?
1023 a) Can it lock the thread scheduler?
1024 b) Can it switch the currently running thread? */
1025
1026#define target_can_lock_scheduler \
1027 (current_target.to_has_thread_control & tc_schedlock)
1028
1029#define target_can_switch_threads \
1030 (current_target.to_has_thread_control & tc_switch)
1031
6426a772
JM
1032/* Can the target support asynchronous execution? */
1033#define target_can_async_p() (current_target.to_can_async_p ())
1034
1035/* Is the target in asynchronous execution mode? */
1036#define target_is_async_p() (current_target.to_is_async_p())
1037
1038/* Put the target in async mode with the specified callback function. */
1039#define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1040
c906108c
SS
1041extern void target_link PARAMS ((char *, CORE_ADDR *));
1042
1043/* Converts a process id to a string. Usually, the string just contains
1044 `process xyz', but on some systems it may contain
1045 `process xyz thread abc'. */
1046
1047#ifndef target_pid_to_str
1048#define target_pid_to_str(PID) \
1049 normal_pid_to_str (PID)
1050extern char *normal_pid_to_str PARAMS ((int pid));
1051#endif
1052
1053#ifndef target_tid_to_str
1054#define target_tid_to_str(PID) \
1055 normal_pid_to_str (PID)
1056extern char *normal_pid_to_str PARAMS ((int pid));
1057#endif
c5aa993b 1058
c906108c
SS
1059
1060#ifndef target_new_objfile
1061#define target_new_objfile(OBJFILE)
1062#endif
1063
1064#ifndef target_pid_or_tid_to_str
1065#define target_pid_or_tid_to_str(ID) \
1066 normal_pid_to_str (ID)
1067#endif
1068
1069/* Attempts to find the pathname of the executable file
1070 that was run to create a specified process.
1071
1072 The process PID must be stopped when this operation is used.
c5aa993b 1073
c906108c
SS
1074 If the executable file cannot be determined, NULL is returned.
1075
1076 Else, a pointer to a character string containing the pathname
1077 is returned. This string should be copied into a buffer by
1078 the client if the string will not be immediately used, or if
1079 it must persist.
c5aa993b 1080 */
c906108c
SS
1081
1082#define target_pid_to_exec_file(pid) \
1083 (current_target.to_pid_to_exec_file) (pid)
1084
1085/* Hook to call target-dependant code after reading in a new symbol table. */
1086
1087#ifndef TARGET_SYMFILE_POSTREAD
1088#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1089#endif
1090
1091/* Hook to call target dependant code just after inferior target process has
1092 started. */
1093
1094#ifndef TARGET_CREATE_INFERIOR_HOOK
1095#define TARGET_CREATE_INFERIOR_HOOK(PID)
1096#endif
1097
1098/* Hardware watchpoint interfaces. */
1099
1100/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1101 write). */
1102
1103#ifndef STOPPED_BY_WATCHPOINT
1104#define STOPPED_BY_WATCHPOINT(w) 0
1105#endif
1106
1107/* HP-UX supplies these operations, which respectively disable and enable
1108 the memory page-protections that are used to implement hardware watchpoints
1109 on that platform. See wait_for_inferior's use of these.
c5aa993b 1110 */
c906108c
SS
1111#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1112#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1113#endif
1114
1115#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1116#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1117#endif
1118
1119/* Provide defaults for systems that don't support hardware watchpoints. */
1120
1121#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1122
1123/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1124 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1125 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1126 (including this one?). OTHERTYPE is who knows what... */
1127
1128#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1129
1130#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1131#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1132 (LONGEST)(byte_count) <= REGISTER_SIZE
1133#endif
1134
1135/* However, some addresses may not be profitable to use hardware to watch,
1136 or may be difficult to understand when the addressed object is out of
1137 scope, and hence should be unwatched. On some targets, this may have
1138 severe performance penalties, such that we might as well use regular
1139 watchpoints, and save (possibly precious) hardware watchpoints for other
1140 locations.
c5aa993b 1141 */
c906108c
SS
1142#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1143#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1144#endif
1145
1146
1147/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1148 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1149 success, non-zero for failure. */
1150
1151#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1152#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1153
1154#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1155
1156#ifndef target_insert_hw_breakpoint
1157#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1158#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1159#endif
1160
1161#ifndef target_stopped_data_address
1162#define target_stopped_data_address() 0
1163#endif
1164
1165/* If defined, then we need to decr pc by this much after a hardware break-
1166 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1167
1168#ifndef DECR_PC_AFTER_HW_BREAK
1169#define DECR_PC_AFTER_HW_BREAK 0
1170#endif
1171
1172/* Sometimes gdb may pick up what appears to be a valid target address
1173 from a minimal symbol, but the value really means, essentially,
1174 "This is an index into a table which is populated when the inferior
1175 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1176 */
c906108c
SS
1177#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1178#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1179#endif
1180
1181/* This will only be defined by a target that supports catching vfork events,
1182 such as HP-UX.
1183
1184 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1185 child process after it has exec'd, causes the parent process to resume as
1186 well. To prevent the parent from running spontaneously, such targets should
1187 define this to a function that prevents that from happening.
c5aa993b 1188 */
c906108c
SS
1189#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1190#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1191#endif
1192
1193/* This will only be defined by a target that supports catching vfork events,
1194 such as HP-UX.
1195
1196 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1197 process must be resumed when it delivers its exec event, before the parent
1198 vfork event will be delivered to us.
c5aa993b 1199 */
c906108c
SS
1200#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1201#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1202#endif
1203
1204/* Routines for maintenance of the target structures...
1205
1206 add_target: Add a target to the list of all possible targets.
1207
1208 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1209 targets, within its particular stratum of the stack. Result
1210 is 0 if now atop the stack, nonzero if not on top (maybe
1211 should warn user).
c906108c
SS
1212
1213 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1214 no matter where it is on the list. Returns 0 if no
1215 change, 1 if removed from stack.
c906108c 1216
c5aa993b 1217 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1218
1219extern void
1220add_target PARAMS ((struct target_ops *));
1221
1222extern int
1223push_target PARAMS ((struct target_ops *));
1224
1225extern int
1226unpush_target PARAMS ((struct target_ops *));
1227
1228extern void
1229target_preopen PARAMS ((int));
1230
1231extern void
1232pop_target PARAMS ((void));
1233
1234/* Struct section_table maps address ranges to file sections. It is
1235 mostly used with BFD files, but can be used without (e.g. for handling
1236 raw disks, or files not in formats handled by BFD). */
1237
c5aa993b
JM
1238struct section_table
1239 {
1240 CORE_ADDR addr; /* Lowest address in section */
1241 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1242
c5aa993b 1243 sec_ptr the_bfd_section;
c906108c 1244
c5aa993b
JM
1245 bfd *bfd; /* BFD file pointer */
1246 };
c906108c
SS
1247
1248/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1249 Returns 0 if OK, 1 on error. */
1250
1251extern int
1252build_section_table PARAMS ((bfd *, struct section_table **,
1253 struct section_table **));
1254
1255/* From mem-break.c */
1256
1257extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1258
1259extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1260
1261extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1262#ifndef BREAKPOINT_FROM_PC
1263#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1264#endif
1265
1266
1267/* From target.c */
1268
1269extern void
1270initialize_targets PARAMS ((void));
1271
1272extern void
1273noprocess PARAMS ((void));
1274
1275extern void
1276find_default_attach PARAMS ((char *, int));
1277
1278void
1279find_default_require_attach PARAMS ((char *, int));
1280
1281void
1282find_default_require_detach PARAMS ((int, char *, int));
1283
1284extern void
1285find_default_create_inferior PARAMS ((char *, char *, char **));
1286
1287void
1288find_default_clone_and_follow_inferior PARAMS ((int, int *));
1289
7a292a7a
SS
1290extern struct target_ops *find_run_target PARAMS ((void));
1291
c906108c 1292extern struct target_ops *
c5aa993b 1293 find_core_target PARAMS ((void));
6426a772
JM
1294
1295int
1296target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1297\f
1298/* Stuff that should be shared among the various remote targets. */
1299
1300/* Debugging level. 0 is off, and non-zero values mean to print some debug
1301 information (higher values, more information). */
1302extern int remote_debug;
1303
1304/* Speed in bits per second, or -1 which means don't mess with the speed. */
1305extern int baud_rate;
1306/* Timeout limit for response from target. */
1307extern int remote_timeout;
1308
1309extern asection *target_memory_bfd_section;
1310\f
1311/* Functions for helping to write a native target. */
1312
1313/* This is for native targets which use a unix/POSIX-style waitstatus. */
1314extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1315
1316/* Convert between host signal numbers and enum target_signal's. */
1317extern enum target_signal target_signal_from_host PARAMS ((int));
1318extern int target_signal_to_host PARAMS ((enum target_signal));
1319
1320/* Convert from a number used in a GDB command to an enum target_signal. */
1321extern enum target_signal target_signal_from_command PARAMS ((int));
1322
1323/* Any target can call this to switch to remote protocol (in remote.c). */
1324extern void push_remote_target PARAMS ((char *name, int from_tty));
1325\f
1326/* Imported from machine dependent code */
1327
1328#ifndef SOFTWARE_SINGLE_STEP_P
1329#define SOFTWARE_SINGLE_STEP_P 0
1330#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1331#endif /* SOFTWARE_SINGLE_STEP_P */
1332
1333/* Blank target vector entries are initialized to target_ignore. */
1334void target_ignore PARAMS ((void));
1335
1336/* Macro for getting target's idea of a frame pointer.
1337 FIXME: GDB's whole scheme for dealing with "frames" and
1338 "frame pointers" needs a serious shakedown. */
1339#ifndef TARGET_VIRTUAL_FRAME_POINTER
1340#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1341 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1342#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1343
c5aa993b 1344#endif /* !defined (TARGET_H) */
This page took 0.150353 seconds and 4 git commands to generate.