Don't rely on ecs->wait_for_more.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
c4093a6a 131 TARGET_WAITKIND_IGNORE
c906108c
SS
132 };
133
c5aa993b
JM
134struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
3a3e9ee3 143 ptid_t related_pid;
c5aa993b
JM
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
c906108c 149
2acceee2 150/* Possible types of events that the inferior handler will have to
0d06e24b 151 deal with. */
2acceee2
JM
152enum inferior_event_type
153 {
0d06e24b 154 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
0d06e24b 157 being called. */
2146d243 158 INF_REG_EVENT,
0d06e24b 159 /* Deal with an error on the inferior. */
2acceee2 160 INF_ERROR,
0d06e24b 161 /* We are called because a timer went off. */
2acceee2 162 INF_TIMER,
0d06e24b 163 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
0d06e24b 168 'step n' like commands. */
c2d11a7d 169 INF_EXEC_CONTINUE
2acceee2
JM
170 };
171
c906108c 172/* Return the string for a signal. */
a14ed312 173extern char *target_signal_to_string (enum target_signal);
c906108c
SS
174
175/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 176extern char *target_signal_to_name (enum target_signal);
c906108c
SS
177
178/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 179enum target_signal target_signal_from_name (char *);
c906108c 180\f
13547ab6
DJ
181/* Target objects which can be transfered using target_read,
182 target_write, et cetera. */
1e3ff5ad
AC
183
184enum target_object
185{
1e3ff5ad
AC
186 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
187 TARGET_OBJECT_AVR,
23d964e7
UW
188 /* SPU target specific transfer. See "spu-tdep.c". */
189 TARGET_OBJECT_SPU,
1e3ff5ad 190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889 200 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
201 TARGET_OBJECT_WCOOKIE,
202 /* Target memory map in XML format. */
203 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
204 /* Flash memory. This object can be used to write contents to
205 a previously erased flash memory. Using it without erasing
206 flash can have unexpected results. Addresses are physical
207 address on target, and not relative to flash start. */
23181151
DJ
208 TARGET_OBJECT_FLASH,
209 /* Available target-specific features, e.g. registers and coprocessors.
210 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
211 TARGET_OBJECT_AVAILABLE_FEATURES,
212 /* Currently loaded libraries, in XML format. */
213 TARGET_OBJECT_LIBRARIES
2146d243 214 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
215};
216
13547ab6
DJ
217/* Request that OPS transfer up to LEN 8-bit bytes of the target's
218 OBJECT. The OFFSET, for a seekable object, specifies the
219 starting point. The ANNEX can be used to provide additional
220 data-specific information to the target.
1e3ff5ad 221
13547ab6
DJ
222 Return the number of bytes actually transfered, or -1 if the
223 transfer is not supported or otherwise fails. Return of a positive
224 value less than LEN indicates that no further transfer is possible.
225 Unlike the raw to_xfer_partial interface, callers of these
226 functions do not need to retry partial transfers. */
1e3ff5ad 227
1e3ff5ad
AC
228extern LONGEST target_read (struct target_ops *ops,
229 enum target_object object,
1b0ba102 230 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
231 ULONGEST offset, LONGEST len);
232
d5086790
VP
233extern LONGEST target_read_until_error (struct target_ops *ops,
234 enum target_object object,
235 const char *annex, gdb_byte *buf,
236 ULONGEST offset, LONGEST len);
237
1e3ff5ad
AC
238extern LONGEST target_write (struct target_ops *ops,
239 enum target_object object,
1b0ba102 240 const char *annex, const gdb_byte *buf,
1e3ff5ad 241 ULONGEST offset, LONGEST len);
b6591e8b 242
a76d924d
DJ
243/* Similar to target_write, except that it also calls PROGRESS with
244 the number of bytes written and the opaque BATON after every
245 successful partial write (and before the first write). This is
246 useful for progress reporting and user interaction while writing
247 data. To abort the transfer, the progress callback can throw an
248 exception. */
249
cf7a04e8
DJ
250LONGEST target_write_with_progress (struct target_ops *ops,
251 enum target_object object,
252 const char *annex, const gdb_byte *buf,
253 ULONGEST offset, LONGEST len,
254 void (*progress) (ULONGEST, void *),
255 void *baton);
256
13547ab6
DJ
257/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
258 be read using OPS. The return value will be -1 if the transfer
259 fails or is not supported; 0 if the object is empty; or the length
260 of the object otherwise. If a positive value is returned, a
261 sufficiently large buffer will be allocated using xmalloc and
262 returned in *BUF_P containing the contents of the object.
263
264 This method should be used for objects sufficiently small to store
265 in a single xmalloc'd buffer, when no fixed bound on the object's
266 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
267 through this function. */
268
269extern LONGEST target_read_alloc (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte **buf_p);
272
159f81f3
DJ
273/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
274 returned as a string, allocated using xmalloc. If an error occurs
275 or the transfer is unsupported, NULL is returned. Empty objects
276 are returned as allocated but empty strings. A warning is issued
277 if the result contains any embedded NUL bytes. */
278
279extern char *target_read_stralloc (struct target_ops *ops,
280 enum target_object object,
281 const char *annex);
282
b6591e8b
AC
283/* Wrappers to target read/write that perform memory transfers. They
284 throw an error if the memory transfer fails.
285
286 NOTE: cagney/2003-10-23: The naming schema is lifted from
287 "frame.h". The parameter order is lifted from get_frame_memory,
288 which in turn lifted it from read_memory. */
289
290extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 291 gdb_byte *buf, LONGEST len);
b6591e8b
AC
292extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
293 CORE_ADDR addr, int len);
1e3ff5ad 294\f
c5aa993b 295
c906108c
SS
296/* If certain kinds of activity happen, target_wait should perform
297 callbacks. */
298/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 299 on TARGET_ACTIVITY_FD. */
c906108c
SS
300extern int target_activity_fd;
301/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 302extern int (*target_activity_function) (void);
c906108c 303\f
0d06e24b
JM
304struct thread_info; /* fwd decl for parameter list below: */
305
c906108c 306struct target_ops
c5aa993b 307 {
258b763a 308 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
309 char *to_shortname; /* Name this target type */
310 char *to_longname; /* Name for printing */
311 char *to_doc; /* Documentation. Does not include trailing
c906108c 312 newline, and starts with a one-line descrip-
0d06e24b 313 tion (probably similar to to_longname). */
bba2d28d
AC
314 /* Per-target scratch pad. */
315 void *to_data;
f1c07ab0
AC
316 /* The open routine takes the rest of the parameters from the
317 command, and (if successful) pushes a new target onto the
318 stack. Targets should supply this routine, if only to provide
319 an error message. */
507f3c78 320 void (*to_open) (char *, int);
f1c07ab0
AC
321 /* Old targets with a static target vector provide "to_close".
322 New re-entrant targets provide "to_xclose" and that is expected
323 to xfree everything (including the "struct target_ops"). */
324 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
325 void (*to_close) (int);
326 void (*to_attach) (char *, int);
327 void (*to_post_attach) (int);
507f3c78 328 void (*to_detach) (char *, int);
597320e7 329 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
330 void (*to_resume) (ptid_t, int, enum target_signal);
331 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
332 void (*to_fetch_registers) (struct regcache *, int);
333 void (*to_store_registers) (struct regcache *, int);
316f2060 334 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
335
336 /* Transfer LEN bytes of memory between GDB address MYADDR and
337 target address MEMADDR. If WRITE, transfer them to the target, else
338 transfer them from the target. TARGET is the target from which we
339 get this function.
340
341 Return value, N, is one of the following:
342
343 0 means that we can't handle this. If errno has been set, it is the
344 error which prevented us from doing it (FIXME: What about bfd_error?).
345
346 positive (call it N) means that we have transferred N bytes
347 starting at MEMADDR. We might be able to handle more bytes
348 beyond this length, but no promises.
349
350 negative (call its absolute value N) means that we cannot
351 transfer right at MEMADDR, but we could transfer at least
c8e73a31 352 something at MEMADDR + N.
c5aa993b 353
c8e73a31
AC
354 NOTE: cagney/2004-10-01: This has been entirely superseeded by
355 to_xfer_partial and inferior inheritance. */
356
1b0ba102 357 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
358 int len, int write,
359 struct mem_attrib *attrib,
360 struct target_ops *target);
c906108c 361
507f3c78 362 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
363 int (*to_insert_breakpoint) (struct bp_target_info *);
364 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 365 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
366 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
367 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
368 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
369 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
370 int (*to_stopped_by_watchpoint) (void);
74174d2e 371 int to_have_steppable_watchpoint;
7df1a324 372 int to_have_continuable_watchpoint;
4aa7a7f5 373 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
374 int (*to_watchpoint_addr_within_range) (struct target_ops *,
375 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 376 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
377 void (*to_terminal_init) (void);
378 void (*to_terminal_inferior) (void);
379 void (*to_terminal_ours_for_output) (void);
380 void (*to_terminal_ours) (void);
a790ad35 381 void (*to_terminal_save_ours) (void);
507f3c78
KB
382 void (*to_terminal_info) (char *, int);
383 void (*to_kill) (void);
384 void (*to_load) (char *, int);
385 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 386 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 387 void (*to_post_startup_inferior) (ptid_t);
507f3c78 388 void (*to_acknowledge_created_inferior) (int);
fa113d1a 389 void (*to_insert_fork_catchpoint) (int);
507f3c78 390 int (*to_remove_fork_catchpoint) (int);
fa113d1a 391 void (*to_insert_vfork_catchpoint) (int);
507f3c78 392 int (*to_remove_vfork_catchpoint) (int);
ee057212 393 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 394 void (*to_insert_exec_catchpoint) (int);
507f3c78 395 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
396 int (*to_has_exited) (int, int, int *);
397 void (*to_mourn_inferior) (void);
398 int (*to_can_run) (void);
39f77062
KB
399 void (*to_notice_signals) (ptid_t ptid);
400 int (*to_thread_alive) (ptid_t ptid);
507f3c78 401 void (*to_find_new_threads) (void);
39f77062 402 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
403 char *(*to_extra_thread_info) (struct thread_info *);
404 void (*to_stop) (void);
d9fcf2fb 405 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 406 char *(*to_pid_to_exec_file) (int pid);
49d03eab 407 void (*to_log_command) (const char *);
c5aa993b 408 enum strata to_stratum;
c5aa993b
JM
409 int to_has_all_memory;
410 int to_has_memory;
411 int to_has_stack;
412 int to_has_registers;
413 int to_has_execution;
414 int to_has_thread_control; /* control thread execution */
dc177b7a 415 int to_attach_no_wait;
c5aa993b
JM
416 struct section_table
417 *to_sections;
418 struct section_table
419 *to_sections_end;
6426a772
JM
420 /* ASYNC target controls */
421 int (*to_can_async_p) (void);
422 int (*to_is_async_p) (void);
b84876c2
PA
423 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
424 int (*to_async_mask) (int);
2146d243
RM
425 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
426 unsigned long,
427 int, int, int,
428 void *),
be4d1333
MS
429 void *);
430 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
431
432 /* Return the thread-local address at OFFSET in the
433 thread-local storage for the thread PTID and the shared library
434 or executable file given by OBJFILE. If that block of
435 thread-local storage hasn't been allocated yet, this function
436 may return an error. */
437 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 438 CORE_ADDR load_module_addr,
3f47be5c
EZ
439 CORE_ADDR offset);
440
13547ab6
DJ
441 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
442 OBJECT. The OFFSET, for a seekable object, specifies the
443 starting point. The ANNEX can be used to provide additional
444 data-specific information to the target.
445
446 Return the number of bytes actually transfered, zero when no
447 further transfer is possible, and -1 when the transfer is not
448 supported. Return of a positive value smaller than LEN does
449 not indicate the end of the object, only the end of the
450 transfer; higher level code should continue transferring if
451 desired. This is handled in target.c.
452
453 The interface does not support a "retry" mechanism. Instead it
454 assumes that at least one byte will be transfered on each
455 successful call.
456
457 NOTE: cagney/2003-10-17: The current interface can lead to
458 fragmented transfers. Lower target levels should not implement
459 hacks, such as enlarging the transfer, in an attempt to
460 compensate for this. Instead, the target stack should be
461 extended so that it implements supply/collect methods and a
462 look-aside object cache. With that available, the lowest
463 target can safely and freely "push" data up the stack.
464
465 See target_read and target_write for more information. One,
466 and only one, of readbuf or writebuf must be non-NULL. */
467
4b8a223f 468 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 469 enum target_object object, const char *annex,
1b0ba102 470 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 471 ULONGEST offset, LONGEST len);
1e3ff5ad 472
fd79ecee
DJ
473 /* Returns the memory map for the target. A return value of NULL
474 means that no memory map is available. If a memory address
475 does not fall within any returned regions, it's assumed to be
476 RAM. The returned memory regions should not overlap.
477
478 The order of regions does not matter; target_memory_map will
479 sort regions by starting address. For that reason, this
480 function should not be called directly except via
481 target_memory_map.
482
483 This method should not cache data; if the memory map could
484 change unexpectedly, it should be invalidated, and higher
485 layers will re-fetch it. */
486 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
487
a76d924d
DJ
488 /* Erases the region of flash memory starting at ADDRESS, of
489 length LENGTH.
490
491 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
492 on flash block boundaries, as reported by 'to_memory_map'. */
493 void (*to_flash_erase) (struct target_ops *,
494 ULONGEST address, LONGEST length);
495
496 /* Finishes a flash memory write sequence. After this operation
497 all flash memory should be available for writing and the result
498 of reading from areas written by 'to_flash_write' should be
499 equal to what was written. */
500 void (*to_flash_done) (struct target_ops *);
501
424163ea
DJ
502 /* Describe the architecture-specific features of this target.
503 Returns the description found, or NULL if no description
504 was available. */
505 const struct target_desc *(*to_read_description) (struct target_ops *ops);
506
c47ffbe3
VP
507 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
508 Return 0 if *READPTR is already at the end of the buffer.
509 Return -1 if there is insufficient buffer for a whole entry.
510 Return 1 if an entry was read into *TYPEP and *VALP. */
511 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
512 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
513
08388c79
DE
514 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
515 sequence of bytes in PATTERN with length PATTERN_LEN.
516
517 The result is 1 if found, 0 if not found, and -1 if there was an error
518 requiring halting of the search (e.g. memory read error).
519 If the pattern is found the address is recorded in FOUND_ADDRP. */
520 int (*to_search_memory) (struct target_ops *ops,
521 CORE_ADDR start_addr, ULONGEST search_space_len,
522 const gdb_byte *pattern, ULONGEST pattern_len,
523 CORE_ADDR *found_addrp);
524
c5aa993b 525 int to_magic;
0d06e24b
JM
526 /* Need sub-structure for target machine related rather than comm related?
527 */
c5aa993b 528 };
c906108c
SS
529
530/* Magic number for checking ops size. If a struct doesn't end with this
531 number, somebody changed the declaration but didn't change all the
532 places that initialize one. */
533
534#define OPS_MAGIC 3840
535
536/* The ops structure for our "current" target process. This should
537 never be NULL. If there is no target, it points to the dummy_target. */
538
c5aa993b 539extern struct target_ops current_target;
c906108c 540
c906108c
SS
541/* Define easy words for doing these operations on our current target. */
542
543#define target_shortname (current_target.to_shortname)
544#define target_longname (current_target.to_longname)
545
f1c07ab0
AC
546/* Does whatever cleanup is required for a target that we are no
547 longer going to be calling. QUITTING indicates that GDB is exiting
548 and should not get hung on an error (otherwise it is important to
549 perform clean termination, even if it takes a while). This routine
550 is automatically always called when popping the target off the
551 target stack (to_beneath is undefined). Closing file descriptors
552 and freeing all memory allocated memory are typical things it
553 should do. */
554
555void target_close (struct target_ops *targ, int quitting);
c906108c
SS
556
557/* Attaches to a process on the target side. Arguments are as passed
558 to the `attach' command by the user. This routine can be called
559 when the target is not on the target-stack, if the target_can_run
2146d243 560 routine returns 1; in that case, it must push itself onto the stack.
c906108c 561 Upon exit, the target should be ready for normal operations, and
2146d243 562 should be ready to deliver the status of the process immediately
c906108c
SS
563 (without waiting) to an upcoming target_wait call. */
564
565#define target_attach(args, from_tty) \
0d06e24b 566 (*current_target.to_attach) (args, from_tty)
c906108c 567
dc177b7a
PA
568/* Some targets don't generate traps when attaching to the inferior,
569 or their target_attach implementation takes care of the waiting.
570 These targets must set to_attach_no_wait. */
571
572#define target_attach_no_wait \
573 (current_target.to_attach_no_wait)
574
c906108c
SS
575/* The target_attach operation places a process under debugger control,
576 and stops the process.
577
578 This operation provides a target-specific hook that allows the
0d06e24b 579 necessary bookkeeping to be performed after an attach completes. */
c906108c 580#define target_post_attach(pid) \
0d06e24b 581 (*current_target.to_post_attach) (pid)
c906108c 582
c906108c
SS
583/* Takes a program previously attached to and detaches it.
584 The program may resume execution (some targets do, some don't) and will
585 no longer stop on signals, etc. We better not have left any breakpoints
586 in the program or it'll die when it hits one. ARGS is arguments
587 typed by the user (e.g. a signal to send the process). FROM_TTY
588 says whether to be verbose or not. */
589
a14ed312 590extern void target_detach (char *, int);
c906108c 591
6ad8ae5c
DJ
592/* Disconnect from the current target without resuming it (leaving it
593 waiting for a debugger). */
594
595extern void target_disconnect (char *, int);
596
39f77062 597/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
598 single-step or to run free; SIGGNAL is the signal to be given to
599 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
600 pass TARGET_SIGNAL_DEFAULT. */
601
e1ac3328 602extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 603
b5a2688f
AC
604/* Wait for process pid to do something. PTID = -1 to wait for any
605 pid to do something. Return pid of child, or -1 in case of error;
c906108c 606 store status through argument pointer STATUS. Note that it is
b5a2688f 607 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
608 the debugging target from the stack; GDB isn't prepared to get back
609 to the prompt with a debugging target but without the frame cache,
610 stop_pc, etc., set up. */
611
39f77062
KB
612#define target_wait(ptid, status) \
613 (*current_target.to_wait) (ptid, status)
c906108c 614
17dee195 615/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 616
56be3814
UW
617#define target_fetch_registers(regcache, regno) \
618 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
619
620/* Store at least register REGNO, or all regs if REGNO == -1.
621 It can store as many registers as it wants to, so target_prepare_to_store
622 must have been previously called. Calls error() if there are problems. */
623
56be3814
UW
624#define target_store_registers(regcache, regs) \
625 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
626
627/* Get ready to modify the registers array. On machines which store
628 individual registers, this doesn't need to do anything. On machines
629 which store all the registers in one fell swoop, this makes sure
630 that REGISTERS contains all the registers from the program being
631 debugged. */
632
316f2060
UW
633#define target_prepare_to_store(regcache) \
634 (*current_target.to_prepare_to_store) (regcache)
c906108c 635
4930751a
C
636extern DCACHE *target_dcache;
637
a14ed312 638extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 639
fc1a4b47 640extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 641
fc1a4b47 642extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 643 int len);
c906108c 644
1b0ba102 645extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 646 struct mem_attrib *, struct target_ops *);
c906108c 647
fd79ecee
DJ
648/* Fetches the target's memory map. If one is found it is sorted
649 and returned, after some consistency checking. Otherwise, NULL
650 is returned. */
651VEC(mem_region_s) *target_memory_map (void);
652
a76d924d
DJ
653/* Erase the specified flash region. */
654void target_flash_erase (ULONGEST address, LONGEST length);
655
656/* Finish a sequence of flash operations. */
657void target_flash_done (void);
658
659/* Describes a request for a memory write operation. */
660struct memory_write_request
661 {
662 /* Begining address that must be written. */
663 ULONGEST begin;
664 /* Past-the-end address. */
665 ULONGEST end;
666 /* The data to write. */
667 gdb_byte *data;
668 /* A callback baton for progress reporting for this request. */
669 void *baton;
670 };
671typedef struct memory_write_request memory_write_request_s;
672DEF_VEC_O(memory_write_request_s);
673
674/* Enumeration specifying different flash preservation behaviour. */
675enum flash_preserve_mode
676 {
677 flash_preserve,
678 flash_discard
679 };
680
681/* Write several memory blocks at once. This version can be more
682 efficient than making several calls to target_write_memory, in
683 particular because it can optimize accesses to flash memory.
684
685 Moreover, this is currently the only memory access function in gdb
686 that supports writing to flash memory, and it should be used for
687 all cases where access to flash memory is desirable.
688
689 REQUESTS is the vector (see vec.h) of memory_write_request.
690 PRESERVE_FLASH_P indicates what to do with blocks which must be
691 erased, but not completely rewritten.
692 PROGRESS_CB is a function that will be periodically called to provide
693 feedback to user. It will be called with the baton corresponding
694 to the request currently being written. It may also be called
695 with a NULL baton, when preserved flash sectors are being rewritten.
696
697 The function returns 0 on success, and error otherwise. */
698int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
699 enum flash_preserve_mode preserve_flash_p,
700 void (*progress_cb) (ULONGEST, void *));
701
47932f85
DJ
702/* From infrun.c. */
703
3a3e9ee3 704extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 705
3a3e9ee3 706extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 707
3a3e9ee3 708extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 709
c906108c
SS
710/* From exec.c */
711
a14ed312 712extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
713
714/* Print a line about the current target. */
715
716#define target_files_info() \
0d06e24b 717 (*current_target.to_files_info) (&current_target)
c906108c 718
8181d85f
DJ
719/* Insert a breakpoint at address BP_TGT->placed_address in the target
720 machine. Result is 0 for success, or an errno value. */
c906108c 721
8181d85f
DJ
722#define target_insert_breakpoint(bp_tgt) \
723 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 724
8181d85f
DJ
725/* Remove a breakpoint at address BP_TGT->placed_address in the target
726 machine. Result is 0 for success, or an errno value. */
c906108c 727
8181d85f
DJ
728#define target_remove_breakpoint(bp_tgt) \
729 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
730
731/* Initialize the terminal settings we record for the inferior,
732 before we actually run the inferior. */
733
734#define target_terminal_init() \
0d06e24b 735 (*current_target.to_terminal_init) ()
c906108c
SS
736
737/* Put the inferior's terminal settings into effect.
738 This is preparation for starting or resuming the inferior. */
739
740#define target_terminal_inferior() \
0d06e24b 741 (*current_target.to_terminal_inferior) ()
c906108c
SS
742
743/* Put some of our terminal settings into effect,
744 enough to get proper results from our output,
745 but do not change into or out of RAW mode
746 so that no input is discarded.
747
748 After doing this, either terminal_ours or terminal_inferior
749 should be called to get back to a normal state of affairs. */
750
751#define target_terminal_ours_for_output() \
0d06e24b 752 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
753
754/* Put our terminal settings into effect.
755 First record the inferior's terminal settings
756 so they can be restored properly later. */
757
758#define target_terminal_ours() \
0d06e24b 759 (*current_target.to_terminal_ours) ()
c906108c 760
a790ad35
SC
761/* Save our terminal settings.
762 This is called from TUI after entering or leaving the curses
763 mode. Since curses modifies our terminal this call is here
764 to take this change into account. */
765
766#define target_terminal_save_ours() \
767 (*current_target.to_terminal_save_ours) ()
768
c906108c
SS
769/* Print useful information about our terminal status, if such a thing
770 exists. */
771
772#define target_terminal_info(arg, from_tty) \
0d06e24b 773 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
774
775/* Kill the inferior process. Make it go away. */
776
777#define target_kill() \
0d06e24b 778 (*current_target.to_kill) ()
c906108c 779
0d06e24b
JM
780/* Load an executable file into the target process. This is expected
781 to not only bring new code into the target process, but also to
1986bccd
AS
782 update GDB's symbol tables to match.
783
784 ARG contains command-line arguments, to be broken down with
785 buildargv (). The first non-switch argument is the filename to
786 load, FILE; the second is a number (as parsed by strtoul (..., ...,
787 0)), which is an offset to apply to the load addresses of FILE's
788 sections. The target may define switches, or other non-switch
789 arguments, as it pleases. */
c906108c 790
11cf8741 791extern void target_load (char *arg, int from_tty);
c906108c
SS
792
793/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
794 name. ADDRP is a CORE_ADDR * pointing to where the value of the
795 symbol should be returned. The result is 0 if successful, nonzero
796 if the symbol does not exist in the target environment. This
797 function should not call error() if communication with the target
798 is interrupted, since it is called from symbol reading, but should
799 return nonzero, possibly doing a complain(). */
c906108c 800
0d06e24b
JM
801#define target_lookup_symbol(name, addrp) \
802 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 803
39f77062 804/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
805 EXEC_FILE is the file to run.
806 ALLARGS is a string containing the arguments to the program.
807 ENV is the environment vector to pass. Errors reported with error().
808 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 809
c27cda74
AC
810#define target_create_inferior(exec_file, args, env, FROM_TTY) \
811 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
812
813
814/* Some targets (such as ttrace-based HPUX) don't allow us to request
815 notification of inferior events such as fork and vork immediately
816 after the inferior is created. (This because of how gdb gets an
817 inferior created via invoking a shell to do it. In such a scenario,
818 if the shell init file has commands in it, the shell will fork and
819 exec for each of those commands, and we will see each such fork
820 event. Very bad.)
c5aa993b 821
0d06e24b
JM
822 Such targets will supply an appropriate definition for this function. */
823
39f77062
KB
824#define target_post_startup_inferior(ptid) \
825 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
826
827/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
828 some synchronization between gdb and the new inferior process, PID. */
829
c906108c 830#define target_acknowledge_created_inferior(pid) \
0d06e24b 831 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 832
0d06e24b
JM
833/* On some targets, we can catch an inferior fork or vfork event when
834 it occurs. These functions insert/remove an already-created
835 catchpoint for such events. */
c906108c 836
c906108c 837#define target_insert_fork_catchpoint(pid) \
0d06e24b 838 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
839
840#define target_remove_fork_catchpoint(pid) \
0d06e24b 841 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
842
843#define target_insert_vfork_catchpoint(pid) \
0d06e24b 844 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
845
846#define target_remove_vfork_catchpoint(pid) \
0d06e24b 847 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 848
6604731b
DJ
849/* If the inferior forks or vforks, this function will be called at
850 the next resume in order to perform any bookkeeping and fiddling
851 necessary to continue debugging either the parent or child, as
852 requested, and releasing the other. Information about the fork
853 or vfork event is available via get_last_target_status ().
854 This function returns 1 if the inferior should not be resumed
855 (i.e. there is another event pending). */
0d06e24b 856
ee057212 857int target_follow_fork (int follow_child);
c906108c
SS
858
859/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
860 occurs. These functions insert/remove an already-created
861 catchpoint for such events. */
862
c906108c 863#define target_insert_exec_catchpoint(pid) \
0d06e24b 864 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 865
c906108c 866#define target_remove_exec_catchpoint(pid) \
0d06e24b 867 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 868
c906108c 869/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
870 exit code of PID, if any. */
871
c906108c 872#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 873 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
874
875/* The debugger has completed a blocking wait() call. There is now
2146d243 876 some process event that must be processed. This function should
c906108c 877 be defined by those targets that require the debugger to perform
0d06e24b 878 cleanup or internal state changes in response to the process event. */
c906108c
SS
879
880/* The inferior process has died. Do what is right. */
881
882#define target_mourn_inferior() \
0d06e24b 883 (*current_target.to_mourn_inferior) ()
c906108c
SS
884
885/* Does target have enough data to do a run or attach command? */
886
887#define target_can_run(t) \
0d06e24b 888 ((t)->to_can_run) ()
c906108c
SS
889
890/* post process changes to signal handling in the inferior. */
891
39f77062
KB
892#define target_notice_signals(ptid) \
893 (*current_target.to_notice_signals) (ptid)
c906108c
SS
894
895/* Check to see if a thread is still alive. */
896
39f77062
KB
897#define target_thread_alive(ptid) \
898 (*current_target.to_thread_alive) (ptid)
c906108c 899
b83266a0
SS
900/* Query for new threads and add them to the thread list. */
901
902#define target_find_new_threads() \
4becf47c 903 (*current_target.to_find_new_threads) ()
b83266a0 904
0d06e24b
JM
905/* Make target stop in a continuable fashion. (For instance, under
906 Unix, this should act like SIGSTOP). This function is normally
907 used by GUIs to implement a stop button. */
c906108c
SS
908
909#define target_stop current_target.to_stop
910
96baa820
JM
911/* Send the specified COMMAND to the target's monitor
912 (shell,interpreter) for execution. The result of the query is
0d06e24b 913 placed in OUTBUF. */
96baa820
JM
914
915#define target_rcmd(command, outbuf) \
916 (*current_target.to_rcmd) (command, outbuf)
917
918
c906108c
SS
919/* Does the target include all of memory, or only part of it? This
920 determines whether we look up the target chain for other parts of
921 memory if this target can't satisfy a request. */
922
923#define target_has_all_memory \
0d06e24b 924 (current_target.to_has_all_memory)
c906108c
SS
925
926/* Does the target include memory? (Dummy targets don't.) */
927
928#define target_has_memory \
0d06e24b 929 (current_target.to_has_memory)
c906108c
SS
930
931/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
932 we start a process.) */
c5aa993b 933
c906108c 934#define target_has_stack \
0d06e24b 935 (current_target.to_has_stack)
c906108c
SS
936
937/* Does the target have registers? (Exec files don't.) */
938
939#define target_has_registers \
0d06e24b 940 (current_target.to_has_registers)
c906108c
SS
941
942/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
943 hoops), or pop its stack a few times? This means that the current
944 target is currently executing; for some targets, that's the same as
945 whether or not the target is capable of execution, but there are
946 also targets which can be current while not executing. In that
947 case this will become true after target_create_inferior or
948 target_attach. */
c906108c
SS
949
950#define target_has_execution \
0d06e24b 951 (current_target.to_has_execution)
c906108c
SS
952
953/* Can the target support the debugger control of thread execution?
d6350901 954 Can it lock the thread scheduler? */
c906108c
SS
955
956#define target_can_lock_scheduler \
0d06e24b 957 (current_target.to_has_thread_control & tc_schedlock)
c906108c 958
6426a772
JM
959/* Can the target support asynchronous execution? */
960#define target_can_async_p() (current_target.to_can_async_p ())
961
962/* Is the target in asynchronous execution mode? */
b84876c2 963#define target_is_async_p() (current_target.to_is_async_p ())
6426a772
JM
964
965/* Put the target in async mode with the specified callback function. */
0d06e24b 966#define target_async(CALLBACK,CONTEXT) \
b84876c2 967 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 968
04714b91
AC
969/* This is to be used ONLY within call_function_by_hand(). It provides
970 a workaround, to have inferior function calls done in sychronous
971 mode, even though the target is asynchronous. After
ed9a39eb
JM
972 target_async_mask(0) is called, calls to target_can_async_p() will
973 return FALSE , so that target_resume() will not try to start the
974 target asynchronously. After the inferior stops, we IMMEDIATELY
975 restore the previous nature of the target, by calling
976 target_async_mask(1). After that, target_can_async_p() will return
04714b91 977 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
978
979 FIXME ezannoni 1999-12-13: we won't need this once we move
980 the turning async on and off to the single execution commands,
0d06e24b 981 from where it is done currently, in remote_resume(). */
ed9a39eb 982
b84876c2
PA
983#define target_async_mask(MASK) \
984 (current_target.to_async_mask (MASK))
ed9a39eb 985
c906108c
SS
986/* Converts a process id to a string. Usually, the string just contains
987 `process xyz', but on some systems it may contain
988 `process xyz thread abc'. */
989
ed9a39eb
JM
990#undef target_pid_to_str
991#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
992
993#ifndef target_tid_to_str
994#define target_tid_to_str(PID) \
0d06e24b 995 target_pid_to_str (PID)
39f77062 996extern char *normal_pid_to_str (ptid_t ptid);
c906108c 997#endif
c5aa993b 998
0d06e24b
JM
999/* Return a short string describing extra information about PID,
1000 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1001 is okay. */
1002
1003#define target_extra_thread_info(TP) \
1004 (current_target.to_extra_thread_info (TP))
ed9a39eb 1005
c906108c
SS
1006/* Attempts to find the pathname of the executable file
1007 that was run to create a specified process.
1008
1009 The process PID must be stopped when this operation is used.
c5aa993b 1010
c906108c
SS
1011 If the executable file cannot be determined, NULL is returned.
1012
1013 Else, a pointer to a character string containing the pathname
1014 is returned. This string should be copied into a buffer by
1015 the client if the string will not be immediately used, or if
0d06e24b 1016 it must persist. */
c906108c
SS
1017
1018#define target_pid_to_exec_file(pid) \
0d06e24b 1019 (current_target.to_pid_to_exec_file) (pid)
c906108c 1020
be4d1333
MS
1021/*
1022 * Iterator function for target memory regions.
1023 * Calls a callback function once for each memory region 'mapped'
1024 * in the child process. Defined as a simple macro rather than
2146d243 1025 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1026 */
1027
1028#define target_find_memory_regions(FUNC, DATA) \
1029 (current_target.to_find_memory_regions) (FUNC, DATA)
1030
1031/*
1032 * Compose corefile .note section.
1033 */
1034
1035#define target_make_corefile_notes(BFD, SIZE_P) \
1036 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1037
3f47be5c
EZ
1038/* Thread-local values. */
1039#define target_get_thread_local_address \
1040 (current_target.to_get_thread_local_address)
1041#define target_get_thread_local_address_p() \
1042 (target_get_thread_local_address != NULL)
1043
c906108c
SS
1044
1045/* Hardware watchpoint interfaces. */
1046
1047/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1048 write). */
1049
1050#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1051#define STOPPED_BY_WATCHPOINT(w) \
1052 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1053#endif
7df1a324 1054
74174d2e
UW
1055/* Non-zero if we have steppable watchpoints */
1056
1057#ifndef HAVE_STEPPABLE_WATCHPOINT
1058#define HAVE_STEPPABLE_WATCHPOINT \
1059 (current_target.to_have_steppable_watchpoint)
1060#endif
1061
7df1a324
KW
1062/* Non-zero if we have continuable watchpoints */
1063
1064#ifndef HAVE_CONTINUABLE_WATCHPOINT
1065#define HAVE_CONTINUABLE_WATCHPOINT \
1066 (current_target.to_have_continuable_watchpoint)
1067#endif
c906108c 1068
ccaa32c7 1069/* Provide defaults for hardware watchpoint functions. */
c906108c 1070
2146d243 1071/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1072 elsewhere use the definitions in the target vector. */
c906108c
SS
1073
1074/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1075 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1076 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1077 (including this one?). OTHERTYPE is who knows what... */
1078
ccaa32c7
GS
1079#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1080#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1081 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1082#endif
c906108c 1083
e0d24f8d
WZ
1084#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1085#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1086 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1087#endif
1088
c906108c
SS
1089
1090/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1091 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1092 success, non-zero for failure. */
1093
ccaa32c7
GS
1094#ifndef target_insert_watchpoint
1095#define target_insert_watchpoint(addr, len, type) \
1096 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1097
ccaa32c7
GS
1098#define target_remove_watchpoint(addr, len, type) \
1099 (*current_target.to_remove_watchpoint) (addr, len, type)
1100#endif
c906108c
SS
1101
1102#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1103#define target_insert_hw_breakpoint(bp_tgt) \
1104 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1105
8181d85f
DJ
1106#define target_remove_hw_breakpoint(bp_tgt) \
1107 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1108#endif
1109
4aa7a7f5
JJ
1110extern int target_stopped_data_address_p (struct target_ops *);
1111
c906108c 1112#ifndef target_stopped_data_address
4aa7a7f5
JJ
1113#define target_stopped_data_address(target, x) \
1114 (*target.to_stopped_data_address) (target, x)
1115#else
1116/* Horrible hack to get around existing macros :-(. */
1117#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1118#endif
1119
5009afc5
AS
1120#define target_watchpoint_addr_within_range(target, addr, start, length) \
1121 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1122
424163ea
DJ
1123extern const struct target_desc *target_read_description (struct target_ops *);
1124
08388c79
DE
1125/* Utility implementation of searching memory. */
1126extern int simple_search_memory (struct target_ops* ops,
1127 CORE_ADDR start_addr,
1128 ULONGEST search_space_len,
1129 const gdb_byte *pattern,
1130 ULONGEST pattern_len,
1131 CORE_ADDR *found_addrp);
1132
1133/* Main entry point for searching memory. */
1134extern int target_search_memory (CORE_ADDR start_addr,
1135 ULONGEST search_space_len,
1136 const gdb_byte *pattern,
1137 ULONGEST pattern_len,
1138 CORE_ADDR *found_addrp);
1139
49d03eab
MR
1140/* Command logging facility. */
1141
1142#define target_log_command(p) \
1143 do \
1144 if (current_target.to_log_command) \
1145 (*current_target.to_log_command) (p); \
1146 while (0)
1147
c906108c
SS
1148/* Routines for maintenance of the target structures...
1149
1150 add_target: Add a target to the list of all possible targets.
1151
1152 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1153 targets, within its particular stratum of the stack. Result
1154 is 0 if now atop the stack, nonzero if not on top (maybe
1155 should warn user).
c906108c
SS
1156
1157 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1158 no matter where it is on the list. Returns 0 if no
1159 change, 1 if removed from stack.
c906108c 1160
c5aa993b 1161 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1162
a14ed312 1163extern void add_target (struct target_ops *);
c906108c 1164
a14ed312 1165extern int push_target (struct target_ops *);
c906108c 1166
a14ed312 1167extern int unpush_target (struct target_ops *);
c906108c 1168
fd79ecee
DJ
1169extern void target_pre_inferior (int);
1170
a14ed312 1171extern void target_preopen (int);
c906108c 1172
a14ed312 1173extern void pop_target (void);
c906108c 1174
9e35dae4
DJ
1175extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1176 CORE_ADDR offset);
1177
52bb452f
DJ
1178/* Mark a pushed target as running or exited, for targets which do not
1179 automatically pop when not active. */
1180
1181void target_mark_running (struct target_ops *);
1182
1183void target_mark_exited (struct target_ops *);
1184
c906108c
SS
1185/* Struct section_table maps address ranges to file sections. It is
1186 mostly used with BFD files, but can be used without (e.g. for handling
1187 raw disks, or files not in formats handled by BFD). */
1188
c5aa993b
JM
1189struct section_table
1190 {
1191 CORE_ADDR addr; /* Lowest address in section */
1192 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1193
7be0c536 1194 struct bfd_section *the_bfd_section;
c906108c 1195
c5aa993b
JM
1196 bfd *bfd; /* BFD file pointer */
1197 };
c906108c 1198
8db32d44
AC
1199/* Return the "section" containing the specified address. */
1200struct section_table *target_section_by_addr (struct target_ops *target,
1201 CORE_ADDR addr);
1202
1203
c906108c
SS
1204/* From mem-break.c */
1205
8181d85f 1206extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1207
8181d85f 1208extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1209
ae4b2284 1210extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1211
ae4b2284 1212extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1213
c906108c
SS
1214
1215/* From target.c */
1216
a14ed312 1217extern void initialize_targets (void);
c906108c 1218
a14ed312 1219extern void noprocess (void);
c906108c 1220
8edfe269
DJ
1221extern void target_require_runnable (void);
1222
a14ed312 1223extern void find_default_attach (char *, int);
c906108c 1224
c27cda74 1225extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1226
a14ed312 1227extern struct target_ops *find_run_target (void);
7a292a7a 1228
a14ed312 1229extern struct target_ops *find_core_target (void);
6426a772 1230
a14ed312 1231extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1232
570b8f7c
AC
1233extern int target_resize_to_sections (struct target_ops *target,
1234 int num_added);
07cd4b97
JB
1235
1236extern void remove_target_sections (bfd *abfd);
1237
c906108c
SS
1238\f
1239/* Stuff that should be shared among the various remote targets. */
1240
1241/* Debugging level. 0 is off, and non-zero values mean to print some debug
1242 information (higher values, more information). */
1243extern int remote_debug;
1244
1245/* Speed in bits per second, or -1 which means don't mess with the speed. */
1246extern int baud_rate;
1247/* Timeout limit for response from target. */
1248extern int remote_timeout;
1249
c906108c
SS
1250\f
1251/* Functions for helping to write a native target. */
1252
1253/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1254extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1255
c2d11a7d 1256/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1257 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1258/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1259 to the shorter target_signal_p() because it is far less ambigious.
1260 In this context ``target_signal'' refers to GDB's internal
1261 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1262 refers to the target operating system's signal. Confused? */
1263
c2d11a7d
JM
1264extern int target_signal_to_host_p (enum target_signal signo);
1265
1266/* Convert between host signal numbers and enum target_signal's.
1267 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1268 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1269/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1270 refering to the target operating system's signal numbering.
1271 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1272 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1273 internal representation of a target operating system's signal. */
1274
a14ed312
KB
1275extern enum target_signal target_signal_from_host (int);
1276extern int target_signal_to_host (enum target_signal);
c906108c 1277
1cded358
AR
1278extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1279 int);
1280extern int default_target_signal_to_host (struct gdbarch *,
1281 enum target_signal);
1282
c906108c 1283/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1284extern enum target_signal target_signal_from_command (int);
c906108c
SS
1285
1286/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1287extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1288
1289/* Set the show memory breakpoints mode to show, and installs a cleanup
1290 to restore it back to the current value. */
1291extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1292
c906108c
SS
1293\f
1294/* Imported from machine dependent code */
1295
c906108c 1296/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1297void target_ignore (void);
c906108c 1298
1df84f13 1299extern struct target_ops deprecated_child_ops;
5ac10fd1 1300
c5aa993b 1301#endif /* !defined (TARGET_H) */
This page took 0.869285 seconds and 4 git commands to generate.