* tui.h (tui_show_assembly): Declare.
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
b6ba6518
KB
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
d9fcf2fb 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
39424bef 24#include "gdb_assert.h"
c906108c
SS
25#include <ctype.h>
26#include "gdb_string.h"
c2c6d25f 27#include "event-top.h"
c906108c
SS
28
29#ifdef HAVE_CURSES_H
30#include <curses.h>
31#endif
32#ifdef HAVE_TERM_H
33#include <term.h>
34#endif
35
9d271fd8
AC
36#ifdef __GO32__
37#include <pc.h>
38#endif
39
c906108c
SS
40/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41#ifdef reg
42#undef reg
43#endif
44
042be3a9 45#include <signal.h>
c906108c
SS
46#include "gdbcmd.h"
47#include "serial.h"
48#include "bfd.h"
49#include "target.h"
50#include "demangle.h"
51#include "expression.h"
52#include "language.h"
53#include "annotate.h"
54
ac2e2ef7
AC
55#include "inferior.h" /* for signed_pointer_to_address */
56
c906108c
SS
57#include <readline/readline.h>
58
81b8eb80 59#ifndef MALLOC_INCOMPATIBLE
3c37485b
AC
60#ifdef NEED_DECLARATION_MALLOC
61extern PTR malloc ();
62#endif
0e52036f
AC
63#ifdef NEED_DECLARATION_REALLOC
64extern PTR realloc ();
65#endif
81b8eb80
AC
66#ifdef NEED_DECLARATION_FREE
67extern void free ();
68#endif
69#endif
70
917317f4
JM
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
c906108c
SS
74/* readline defines this. */
75#undef savestring
76
507f3c78 77void (*error_begin_hook) (void);
c906108c 78
2acceee2
JM
79/* Holds the last error message issued by gdb */
80
d9fcf2fb 81static struct ui_file *gdb_lasterr;
2acceee2 82
c906108c
SS
83/* Prototypes for local functions */
84
d9fcf2fb
JM
85static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
c906108c 87
d9fcf2fb 88static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
89
90#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
a14ed312 91static void malloc_botch (void);
c906108c
SS
92#endif
93
a14ed312 94static void prompt_for_continue (void);
c906108c 95
a14ed312 96static void set_width_command (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_width (void);
c906108c 99
c906108c
SS
100/* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
c5aa993b
JM
103static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
107/* cleaned up on each error from within an execution command */
108static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
109
110/* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114struct continuation *cmd_continuation;
c2d11a7d 115struct continuation *intermediate_continuation;
c906108c
SS
116
117/* Nonzero if we have job control. */
118
119int job_control;
120
121/* Nonzero means a quit has been requested. */
122
123int quit_flag;
124
125/* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136int immediate_quit;
137
138/* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141int demangle = 1;
142
143/* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147int asm_demangle = 0;
148
149/* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153int sevenbit_strings = 0;
154
155/* String to be printed before error messages, if any. */
156
157char *error_pre_print;
158
159/* String to be printed before quit messages, if any. */
160
161char *quit_pre_print;
162
163/* String to be printed before warning messages, if any. */
164
165char *warning_pre_print = "\nwarning: ";
166
167int pagination_enabled = 1;
c906108c 168\f
c5aa993b 169
c906108c
SS
170/* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175struct cleanup *
e4005526 176make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 177{
c5aa993b 178 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
179}
180
181struct cleanup *
e4005526 182make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 183{
c5aa993b 184 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 185}
7a292a7a 186
c906108c 187struct cleanup *
e4005526 188make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 189{
c5aa993b 190 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 191}
7a292a7a 192
43ff13b4 193struct cleanup *
e4005526 194make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 195{
c5aa993b 196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
197}
198
6426a772 199struct cleanup *
e4005526 200make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
201{
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203}
204
7a292a7a 205static void
fba45db2 206do_freeargv (void *arg)
7a292a7a 207{
c5aa993b 208 freeargv ((char **) arg);
7a292a7a
SS
209}
210
211struct cleanup *
fba45db2 212make_cleanup_freeargv (char **arg)
7a292a7a
SS
213{
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215}
216
5c65bbb6
AC
217static void
218do_bfd_close_cleanup (void *arg)
219{
220 bfd_close (arg);
221}
222
223struct cleanup *
224make_cleanup_bfd_close (bfd *abfd)
225{
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227}
228
f5ff8c83
AC
229static void
230do_close_cleanup (void *arg)
231{
f042532c
AC
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
f5ff8c83
AC
235}
236
237struct cleanup *
238make_cleanup_close (int fd)
239{
f042532c
AC
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
f5ff8c83
AC
243}
244
11cf8741 245static void
d9fcf2fb 246do_ui_file_delete (void *arg)
11cf8741 247{
d9fcf2fb 248 ui_file_delete (arg);
11cf8741
JM
249}
250
251struct cleanup *
d9fcf2fb 252make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 253{
d9fcf2fb 254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
255}
256
c906108c 257struct cleanup *
e4005526
AC
258make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
c906108c
SS
260{
261 register struct cleanup *new
c5aa993b 262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271}
272
273/* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276void
fba45db2 277do_cleanups (register struct cleanup *old_chain)
c906108c 278{
c5aa993b 279 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
280}
281
282void
fba45db2 283do_final_cleanups (register struct cleanup *old_chain)
c906108c 284{
c5aa993b 285 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
286}
287
288void
fba45db2 289do_run_cleanups (register struct cleanup *old_chain)
c906108c 290{
c5aa993b 291 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
292}
293
43ff13b4 294void
fba45db2 295do_exec_cleanups (register struct cleanup *old_chain)
43ff13b4 296{
c5aa993b 297 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
298}
299
6426a772 300void
fba45db2 301do_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
302{
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304}
305
c906108c 306void
fba45db2
KB
307do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
c906108c
SS
309{
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
b8c9b27d 315 xfree (ptr);
c906108c
SS
316 }
317}
318
319/* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322void
fba45db2 323discard_cleanups (register struct cleanup *old_chain)
c906108c 324{
c5aa993b 325 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
326}
327
328void
fba45db2 329discard_final_cleanups (register struct cleanup *old_chain)
c906108c 330{
c5aa993b 331 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
332}
333
6426a772 334void
fba45db2 335discard_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
336{
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338}
339
c906108c 340void
fba45db2
KB
341discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
c906108c
SS
343{
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
b8c9b27d 348 xfree (ptr);
c906108c
SS
349 }
350}
351
352/* Set the cleanup_chain to 0, and return the old cleanup chain. */
353struct cleanup *
fba45db2 354save_cleanups (void)
c906108c 355{
c5aa993b 356 return save_my_cleanups (&cleanup_chain);
c906108c
SS
357}
358
359struct cleanup *
fba45db2 360save_final_cleanups (void)
c906108c 361{
c5aa993b 362 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
363}
364
365struct cleanup *
fba45db2 366save_my_cleanups (struct cleanup **pmy_chain)
c906108c
SS
367{
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372}
373
374/* Restore the cleanup chain from a previously saved chain. */
375void
fba45db2 376restore_cleanups (struct cleanup *chain)
c906108c 377{
c5aa993b 378 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
379}
380
381void
fba45db2 382restore_final_cleanups (struct cleanup *chain)
c906108c 383{
c5aa993b 384 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
385}
386
387void
fba45db2 388restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
c906108c
SS
389{
390 *pmy_chain = chain;
391}
392
393/* This function is useful for cleanups.
394 Do
395
c5aa993b
JM
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
398
399 to arrange to free the object thus allocated. */
400
401void
2f9429ae 402free_current_contents (void *ptr)
c906108c 403{
2f9429ae 404 void **location = ptr;
e2f9c474 405 if (location == NULL)
8e65ff28
AC
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
2f9429ae 408 if (*location != NULL)
e2f9c474 409 {
b8c9b27d 410 xfree (*location);
e2f9c474
AC
411 *location = NULL;
412 }
c906108c
SS
413}
414
415/* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422/* ARGSUSED */
423void
e4005526 424null_cleanup (void *arg)
c906108c
SS
425{
426}
427
74f832da 428/* Add a continuation to the continuation list, the global list
c2d11a7d 429 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4 430void
74f832da
KB
431add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
43ff13b4 433{
c5aa993b 434 struct continuation *continuation_ptr;
43ff13b4 435
c5aa993b
JM
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
43ff13b4
JM
441}
442
443/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
c5aa993b 451void
fba45db2 452do_all_continuations (void)
c2d11a7d
JM
453{
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
b8c9b27d 470 xfree (saved_continuation);
c2d11a7d
JM
471 }
472}
473
474/* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476void
fba45db2 477discard_all_continuations (void)
43ff13b4 478{
c5aa993b 479 struct continuation *continuation_ptr;
43ff13b4 480
c5aa993b
JM
481 while (cmd_continuation)
482 {
c5aa993b
JM
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
b8c9b27d 485 xfree (continuation_ptr);
c5aa993b 486 }
43ff13b4 487}
c2c6d25f 488
57e687d9 489/* Add a continuation to the continuation list, the global list
c2d11a7d
JM
490 intermediate_continuation. The new continuation will be added at the front.*/
491void
74f832da
KB
492add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
c2d11a7d
JM
495{
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503}
504
505/* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513void
fba45db2 514do_all_intermediate_continuations (void)
c2d11a7d
JM
515{
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
b8c9b27d 532 xfree (saved_continuation);
c2d11a7d
JM
533 }
534}
535
c2c6d25f
JM
536/* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538void
fba45db2 539discard_all_intermediate_continuations (void)
c2c6d25f
JM
540{
541 struct continuation *continuation_ptr;
542
c2d11a7d 543 while (intermediate_continuation)
c2c6d25f 544 {
c2d11a7d
JM
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
b8c9b27d 547 xfree (continuation_ptr);
c2c6d25f
JM
548 }
549}
550
c906108c 551\f
c5aa993b 552
c906108c
SS
553/* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562void
fba45db2 563warning_begin (void)
c906108c
SS
564{
565 target_terminal_ours ();
c5aa993b 566 wrap_here (""); /* Force out any buffered output */
c906108c
SS
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570}
571
572/* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
c906108c 578void
c5aa993b 579warning (const char *string,...)
c906108c
SS
580{
581 va_list args;
c906108c 582 va_start (args, string);
c906108c
SS
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
c5aa993b
JM
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
c906108c
SS
592}
593
594/* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601void
fba45db2 602error_begin (void)
c906108c
SS
603{
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
c5aa993b 608 wrap_here (""); /* Force out any buffered output */
c906108c
SS
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615}
616
617/* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
4ce44c66
JM
621NORETURN void
622verror (const char *string, va_list args)
623{
c2d11a7d
JM
624 char *err_string;
625 struct cleanup *err_string_cleanup;
4ce44c66 626 /* FIXME: cagney/1999-11-10: All error calls should come here.
e26cc349 627 Unfortunately some code uses the sequence: error_begin(); print
4ce44c66
JM
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
c2d11a7d
JM
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
d9fcf2fb 638 ui_file_rewind (gdb_lasterr);
4ce44c66 639 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
b8c9b27d 642 err_string_cleanup = make_cleanup (xfree, err_string);
c2d11a7d
JM
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
4ce44c66
JM
646 return_to_top_level (RETURN_ERROR);
647}
648
c906108c 649NORETURN void
c5aa993b 650error (const char *string,...)
c906108c
SS
651{
652 va_list args;
c906108c 653 va_start (args, string);
4ce44c66
JM
654 verror (string, args);
655 va_end (args);
c906108c
SS
656}
657
2acceee2 658NORETURN void
d9fcf2fb 659error_stream (struct ui_file *stream)
2acceee2 660{
4ce44c66 661 long size;
d9fcf2fb 662 char *msg = ui_file_xstrdup (stream, &size);
b8c9b27d 663 make_cleanup (xfree, msg);
4ce44c66 664 error ("%s", msg);
2acceee2
JM
665}
666
667/* Get the last error message issued by gdb */
668
669char *
670error_last_message (void)
671{
4ce44c66 672 long len;
d9fcf2fb 673 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 674}
4ce44c66 675
2acceee2
JM
676/* This is to be called by main() at the very beginning */
677
678void
679error_init (void)
680{
4ce44c66 681 gdb_lasterr = mem_fileopen ();
2acceee2 682}
c906108c 683
96baa820
JM
684/* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
c906108c 686
c906108c 687NORETURN void
8e65ff28
AC
688internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
c906108c 690{
96baa820
JM
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
7be570e7
JM
693 int continue_p;
694 int dump_core_p;
c906108c 695
96baa820
JM
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
e1e9e218 705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
96baa820
JM
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
c906108c 711
96baa820 712 /* Try to get the message out */
4261bedc 713 target_terminal_ours ();
8e65ff28 714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
4ce44c66 715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 716 fputs_unfiltered ("\n", gdb_stderr);
c906108c 717
7be570e7
JM
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
62fd9fad 721An internal GDB error was detected. This may make further\n\
7be570e7
JM
722debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
e1e9e218 734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
735 }
736 }
737 else
738 {
739 if (dump_core_p)
e1e9e218 740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
741 else
742 exit (1);
743 }
96baa820
JM
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
c906108c
SS
747}
748
4ce44c66 749NORETURN void
8e65ff28 750internal_error (const char *file, int line, const char *string, ...)
4ce44c66
JM
751{
752 va_list ap;
753 va_start (ap, string);
4261bedc 754
8e65ff28 755 internal_verror (file, line, string, ap);
4ce44c66
JM
756 va_end (ap);
757}
758
c906108c
SS
759/* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763char *
fba45db2 764safe_strerror (int errnum)
c906108c
SS
765{
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775}
776
c906108c
SS
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
fba45db2 782perror_with_name (char *string)
c906108c
SS
783{
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
c5aa993b 799 error ("%s.", combined);
c906108c
SS
800}
801
802/* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805void
fba45db2 806print_sys_errmsg (char *string, int errcode)
c906108c
SS
807{
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821}
822
823/* Control C eventually causes this to be called, at a convenient time. */
824
825void
fba45db2 826quit (void)
c906108c 827{
819cc324 828 struct serial *gdb_stdout_serial = serial_fdopen (1);
c906108c
SS
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
c5aa993b 838 wrap_here ((char *) 0);
c906108c
SS
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
2cd58942
AC
845 serial_drain_output (gdb_stdout_serial);
846 serial_un_fdopen (gdb_stdout_serial);
c906108c
SS
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
7be570e7
JM
854#ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858#else
c906108c 859 if (job_control
c5aa993b
JM
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
c906108c
SS
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
c5aa993b 866 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 867#endif
c906108c
SS
868 return_to_top_level (RETURN_QUIT);
869}
870
c906108c 871/* Control C comes here */
c906108c 872void
fba45db2 873request_quit (int signo)
c906108c
SS
874{
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881#ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883#else
c5aa993b 884 if (immediate_quit)
c906108c
SS
885 quit ();
886#endif
887}
c906108c
SS
888\f
889/* Memory management stuff (malloc friends). */
890
c906108c
SS
891#if !defined (USE_MMALLOC)
892
c0e61796
AC
893/* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
ed9a39eb 895
c906108c 896PTR
fba45db2 897mmalloc (PTR md, size_t size)
c906108c 898{
c0e61796 899 return malloc (size); /* NOTE: GDB's only call to malloc() */
c906108c
SS
900}
901
902PTR
fba45db2 903mrealloc (PTR md, PTR ptr, size_t size)
c906108c 904{
c5aa993b 905 if (ptr == 0) /* Guard against old realloc's */
c0e61796 906 return mmalloc (md, size);
c906108c 907 else
c0e61796
AC
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909}
910
911PTR
912mcalloc (PTR md, size_t number, size_t size)
913{
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
c906108c
SS
915}
916
917void
fba45db2 918mfree (PTR md, PTR ptr)
c906108c 919{
c0e61796 920 free (ptr); /* NOTE: GDB's only call to free() */
c906108c
SS
921}
922
c5aa993b 923#endif /* USE_MMALLOC */
c906108c
SS
924
925#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927void
082faf24 928init_malloc (void *md)
c906108c
SS
929{
930}
931
932#else /* Have mmalloc and want corruption checking */
933
934static void
fba45db2 935malloc_botch (void)
c906108c 936{
96baa820 937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
e1e9e218 938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
939}
940
941/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955#ifndef MMCHECK_FORCE
956#define MMCHECK_FORCE 0
957#endif
958
959void
082faf24 960init_malloc (void *md)
c906108c
SS
961{
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
965 to something other than dummy_target, until after
966 initialize_all_files(). */
c906108c
SS
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975}
976
977#endif /* Have mmalloc and want corruption checking */
978
979/* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982NORETURN void
fba45db2 983nomem (long size)
c906108c
SS
984{
985 if (size > 0)
986 {
8e65ff28
AC
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
989 }
990 else
991 {
8e65ff28
AC
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
c906108c
SS
994 }
995}
996
c0e61796 997/* The xmmalloc() family of memory management routines.
c906108c 998
c0e61796
AC
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007void *
1008xmmalloc (void *md, size_t size)
c906108c 1009{
c0e61796 1010 void *val;
c906108c
SS
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
c0e61796 1016 else
c906108c 1017 {
c0e61796
AC
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
c906108c
SS
1021 }
1022 return (val);
1023}
1024
c0e61796
AC
1025void *
1026xmrealloc (void *md, void *ptr, size_t size)
c906108c 1027{
c0e61796 1028 void *val;
c906108c 1029
d7fa9de0 1030 if (size == 0)
c906108c 1031 {
d7fa9de0
KB
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
c906108c
SS
1035 }
1036 else
1037 {
d7fa9de0
KB
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
c906108c
SS
1050 }
1051 return (val);
1052}
1053
c0e61796
AC
1054void *
1055xmcalloc (void *md, size_t number, size_t size)
ed9a39eb 1056{
d7fa9de0 1057 void *mem;
d7fa9de0
KB
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
c0e61796 1062 mem = mcalloc (md, number, size);
d7fa9de0
KB
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
ed9a39eb
JM
1066 return mem;
1067}
1068
c0e61796
AC
1069void
1070xmfree (void *md, void *ptr)
1071{
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074}
1075
1076/* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084/* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087PTR
1088xmalloc (size_t size)
1089{
1090 return xmmalloc (NULL, size);
1091}
c906108c
SS
1092
1093PTR
fba45db2 1094xrealloc (PTR ptr, size_t size)
c906108c 1095{
c0e61796 1096 return xmrealloc (NULL, ptr, size);
c906108c 1097}
b8c9b27d 1098
c0e61796
AC
1099PTR
1100xcalloc (size_t number, size_t size)
1101{
1102 return xmcalloc (NULL, number, size);
1103}
b8c9b27d
KB
1104
1105void
1106xfree (void *ptr)
1107{
c0e61796 1108 xmfree (NULL, ptr);
b8c9b27d 1109}
c906108c 1110\f
c5aa993b 1111
76995688
AC
1112/* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115void
1116xasprintf (char **ret, const char *format, ...)
1117{
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122}
1123
1124void
1125xvasprintf (char **ret, const char *format, va_list ap)
1126{
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
8e65ff28
AC
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
76995688
AC
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
8e65ff28
AC
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
76995688
AC
1140}
1141
1142
c906108c
SS
1143/* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146int
fba45db2 1147myread (int desc, char *addr, int len)
c906108c
SS
1148{
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163}
1164\f
1165/* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169char *
5565b556 1170savestring (const char *ptr, size_t size)
c906108c
SS
1171{
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176}
1177
1178char *
5565b556 1179msavestring (void *md, const char *ptr, size_t size)
c906108c
SS
1180{
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185}
1186
c906108c 1187char *
082faf24 1188mstrsave (void *md, const char *ptr)
c906108c
SS
1189{
1190 return (msavestring (md, ptr, strlen (ptr)));
1191}
1192
1193void
fba45db2 1194print_spaces (register int n, register struct ui_file *file)
c906108c 1195{
392a587b 1196 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1197}
1198
1199/* Print a host address. */
1200
1201void
d9fcf2fb 1202gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1203{
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
c5aa993b 1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1210}
1211
1212/* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217/* VARARGS */
1218int
c5aa993b 1219query (char *ctlstr,...)
c906108c
SS
1220{
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
c906108c 1226 va_start (args, ctlstr);
c906108c
SS
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
d036b4d9
AC
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
c906108c
SS
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
d036b4d9
AC
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
c906108c 1262
c5aa993b 1263 wrap_here ("");
c906108c
SS
1264 gdb_flush (gdb_stdout);
1265
37767e42 1266 answer = fgetc (stdin);
c906108c
SS
1267 clearerr (stdin); /* in case of C-d */
1268 if (answer == EOF) /* C-d */
c5aa993b 1269 {
c906108c
SS
1270 retval = 1;
1271 break;
1272 }
1273 /* Eat rest of input line, to EOF or newline */
37767e42 1274 if (answer != '\n')
c5aa993b 1275 do
c906108c 1276 {
37767e42 1277 ans2 = fgetc (stdin);
c906108c
SS
1278 clearerr (stdin);
1279 }
c5aa993b 1280 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
c906108c
SS
1281
1282 if (answer >= 'a')
1283 answer -= 040;
1284 if (answer == 'Y')
1285 {
1286 retval = 1;
1287 break;
1288 }
1289 if (answer == 'N')
1290 {
1291 retval = 0;
1292 break;
1293 }
1294 printf_filtered ("Please answer y or n.\n");
1295 }
1296
1297 if (annotation_level > 1)
1298 printf_filtered ("\n\032\032post-query\n");
1299 return retval;
1300}
c906108c 1301\f
c5aa993b 1302
c906108c
SS
1303/* Parse a C escape sequence. STRING_PTR points to a variable
1304 containing a pointer to the string to parse. That pointer
1305 should point to the character after the \. That pointer
1306 is updated past the characters we use. The value of the
1307 escape sequence is returned.
1308
1309 A negative value means the sequence \ newline was seen,
1310 which is supposed to be equivalent to nothing at all.
1311
1312 If \ is followed by a null character, we return a negative
1313 value and leave the string pointer pointing at the null character.
1314
1315 If \ is followed by 000, we return 0 and leave the string pointer
1316 after the zeros. A value of 0 does not mean end of string. */
1317
1318int
fba45db2 1319parse_escape (char **string_ptr)
c906108c
SS
1320{
1321 register int c = *(*string_ptr)++;
1322 switch (c)
1323 {
1324 case 'a':
1325 return 007; /* Bell (alert) char */
1326 case 'b':
1327 return '\b';
1328 case 'e': /* Escape character */
1329 return 033;
1330 case 'f':
1331 return '\f';
1332 case 'n':
1333 return '\n';
1334 case 'r':
1335 return '\r';
1336 case 't':
1337 return '\t';
1338 case 'v':
1339 return '\v';
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 c = *(*string_ptr)++;
1347 if (c == '\\')
1348 c = parse_escape (string_ptr);
1349 if (c == '?')
1350 return 0177;
1351 return (c & 0200) | (c & 037);
c5aa993b 1352
c906108c
SS
1353 case '0':
1354 case '1':
1355 case '2':
1356 case '3':
1357 case '4':
1358 case '5':
1359 case '6':
1360 case '7':
1361 {
1362 register int i = c - '0';
1363 register int count = 0;
1364 while (++count < 3)
1365 {
1366 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1367 {
1368 i *= 8;
1369 i += c - '0';
1370 }
1371 else
1372 {
1373 (*string_ptr)--;
1374 break;
1375 }
1376 }
1377 return i;
1378 }
1379 default:
1380 return c;
1381 }
1382}
1383\f
1384/* Print the character C on STREAM as part of the contents of a literal
1385 string whose delimiter is QUOTER. Note that this routine should only
1386 be call for printing things which are independent of the language
1387 of the program being debugged. */
1388
43e526b9 1389static void
74f832da
KB
1390printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1391 void (*do_fprintf) (struct ui_file *, const char *, ...),
1392 struct ui_file *stream, int quoter)
c906108c
SS
1393{
1394
1395 c &= 0xFF; /* Avoid sign bit follies */
1396
c5aa993b
JM
1397 if (c < 0x20 || /* Low control chars */
1398 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1399 (sevenbit_strings && c >= 0x80))
1400 { /* high order bit set */
1401 switch (c)
1402 {
1403 case '\n':
43e526b9 1404 do_fputs ("\\n", stream);
c5aa993b
JM
1405 break;
1406 case '\b':
43e526b9 1407 do_fputs ("\\b", stream);
c5aa993b
JM
1408 break;
1409 case '\t':
43e526b9 1410 do_fputs ("\\t", stream);
c5aa993b
JM
1411 break;
1412 case '\f':
43e526b9 1413 do_fputs ("\\f", stream);
c5aa993b
JM
1414 break;
1415 case '\r':
43e526b9 1416 do_fputs ("\\r", stream);
c5aa993b
JM
1417 break;
1418 case '\033':
43e526b9 1419 do_fputs ("\\e", stream);
c5aa993b
JM
1420 break;
1421 case '\007':
43e526b9 1422 do_fputs ("\\a", stream);
c5aa993b
JM
1423 break;
1424 default:
43e526b9 1425 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 if (c == '\\' || c == quoter)
43e526b9
JM
1432 do_fputs ("\\", stream);
1433 do_fprintf (stream, "%c", c);
c5aa993b 1434 }
c906108c 1435}
43e526b9
JM
1436
1437/* Print the character C on STREAM as part of the contents of a
1438 literal string whose delimiter is QUOTER. Note that these routines
1439 should only be call for printing things which are independent of
1440 the language of the program being debugged. */
1441
1442void
fba45db2 1443fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1444{
1445 while (*str)
1446 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1447}
1448
1449void
fba45db2 1450fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1451{
1452 while (*str)
1453 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1454}
1455
1456void
fba45db2 1457fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
43e526b9
JM
1458{
1459 int i;
1460 for (i = 0; i < n; i++)
1461 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1462}
1463
c906108c 1464\f
c5aa993b 1465
c906108c
SS
1466/* Number of lines per page or UINT_MAX if paging is disabled. */
1467static unsigned int lines_per_page;
cbfbd72a 1468/* Number of chars per line or UINT_MAX if line folding is disabled. */
c906108c
SS
1469static unsigned int chars_per_line;
1470/* Current count of lines printed on this page, chars on this line. */
1471static unsigned int lines_printed, chars_printed;
1472
1473/* Buffer and start column of buffered text, for doing smarter word-
1474 wrapping. When someone calls wrap_here(), we start buffering output
1475 that comes through fputs_filtered(). If we see a newline, we just
1476 spit it out and forget about the wrap_here(). If we see another
1477 wrap_here(), we spit it out and remember the newer one. If we see
1478 the end of the line, we spit out a newline, the indent, and then
1479 the buffered output. */
1480
1481/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1482 are waiting to be output (they have already been counted in chars_printed).
1483 When wrap_buffer[0] is null, the buffer is empty. */
1484static char *wrap_buffer;
1485
1486/* Pointer in wrap_buffer to the next character to fill. */
1487static char *wrap_pointer;
1488
1489/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1490 is non-zero. */
1491static char *wrap_indent;
1492
1493/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1494 is not in effect. */
1495static int wrap_column;
c906108c 1496\f
c5aa993b 1497
c906108c
SS
1498/* Inialize the lines and chars per page */
1499void
fba45db2 1500init_page_info (void)
c906108c
SS
1501{
1502#if defined(TUI)
c5aa993b 1503 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1504 {
1505 lines_per_page = cmdWin->generic.height;
1506 chars_per_line = cmdWin->generic.width;
1507 }
1508 else
1509#endif
1510 {
1511 /* These defaults will be used if we are unable to get the correct
1512 values from termcap. */
1513#if defined(__GO32__)
c5aa993b
JM
1514 lines_per_page = ScreenRows ();
1515 chars_per_line = ScreenCols ();
1516#else
c906108c
SS
1517 lines_per_page = 24;
1518 chars_per_line = 80;
1519
d036b4d9 1520#if !defined (_WIN32)
c906108c
SS
1521 /* No termcap under MPW, although might be cool to do something
1522 by looking at worksheet or console window sizes. */
1523 /* Initialize the screen height and width from termcap. */
1524 {
c5aa993b 1525 char *termtype = getenv ("TERM");
c906108c 1526
c5aa993b
JM
1527 /* Positive means success, nonpositive means failure. */
1528 int status;
c906108c 1529
c5aa993b
JM
1530 /* 2048 is large enough for all known terminals, according to the
1531 GNU termcap manual. */
1532 char term_buffer[2048];
c906108c 1533
c5aa993b
JM
1534 if (termtype)
1535 {
c906108c
SS
1536 status = tgetent (term_buffer, termtype);
1537 if (status > 0)
1538 {
c5aa993b 1539 int val;
c906108c 1540 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1541
1542 val = tgetnum ("li");
1543 if (val >= 0 && !running_in_emacs)
1544 lines_per_page = val;
1545 else
1546 /* The number of lines per page is not mentioned
c906108c
SS
1547 in the terminal description. This probably means
1548 that paging is not useful (e.g. emacs shell window),
1549 so disable paging. */
c5aa993b
JM
1550 lines_per_page = UINT_MAX;
1551
1552 val = tgetnum ("co");
1553 if (val >= 0)
1554 chars_per_line = val;
c906108c 1555 }
c5aa993b 1556 }
c906108c
SS
1557 }
1558#endif /* MPW */
1559
1560#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1561
1562 /* If there is a better way to determine the window size, use it. */
1563 SIGWINCH_HANDLER (SIGWINCH);
1564#endif
1565#endif
1566 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1567 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1568 lines_per_page = UINT_MAX;
1569 } /* the command_line_version */
1570 set_width ();
c906108c
SS
1571}
1572
1573static void
fba45db2 1574set_width (void)
c906108c
SS
1575{
1576 if (chars_per_line == 0)
c5aa993b 1577 init_page_info ();
c906108c
SS
1578
1579 if (!wrap_buffer)
1580 {
1581 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1582 wrap_buffer[0] = '\0';
1583 }
1584 else
1585 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1586 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1587}
1588
1589/* ARGSUSED */
c5aa993b 1590static void
fba45db2 1591set_width_command (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1592{
1593 set_width ();
1594}
1595
1596/* Wait, so the user can read what's on the screen. Prompt the user
1597 to continue by pressing RETURN. */
1598
1599static void
fba45db2 1600prompt_for_continue (void)
c906108c
SS
1601{
1602 char *ignore;
1603 char cont_prompt[120];
1604
1605 if (annotation_level > 1)
1606 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1607
1608 strcpy (cont_prompt,
1609 "---Type <return> to continue, or q <return> to quit---");
1610 if (annotation_level > 1)
1611 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1612
1613 /* We must do this *before* we call gdb_readline, else it will eventually
1614 call us -- thinking that we're trying to print beyond the end of the
1615 screen. */
1616 reinitialize_more_filter ();
1617
1618 immediate_quit++;
1619 /* On a real operating system, the user can quit with SIGINT.
1620 But not on GO32.
1621
1622 'q' is provided on all systems so users don't have to change habits
1623 from system to system, and because telling them what to do in
1624 the prompt is more user-friendly than expecting them to think of
1625 SIGINT. */
1626 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1627 whereas control-C to gdb_readline will cause the user to get dumped
1628 out to DOS. */
1629 ignore = readline (cont_prompt);
1630
1631 if (annotation_level > 1)
1632 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1633
1634 if (ignore)
1635 {
1636 char *p = ignore;
1637 while (*p == ' ' || *p == '\t')
1638 ++p;
1639 if (p[0] == 'q')
0f71a2f6 1640 {
6426a772 1641 if (!event_loop_p)
0f71a2f6
JM
1642 request_quit (SIGINT);
1643 else
c5aa993b 1644 async_request_quit (0);
0f71a2f6 1645 }
b8c9b27d 1646 xfree (ignore);
c906108c
SS
1647 }
1648 immediate_quit--;
1649
1650 /* Now we have to do this again, so that GDB will know that it doesn't
1651 need to save the ---Type <return>--- line at the top of the screen. */
1652 reinitialize_more_filter ();
1653
1654 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1655}
1656
1657/* Reinitialize filter; ie. tell it to reset to original values. */
1658
1659void
fba45db2 1660reinitialize_more_filter (void)
c906108c
SS
1661{
1662 lines_printed = 0;
1663 chars_printed = 0;
1664}
1665
1666/* Indicate that if the next sequence of characters overflows the line,
1667 a newline should be inserted here rather than when it hits the end.
1668 If INDENT is non-null, it is a string to be printed to indent the
1669 wrapped part on the next line. INDENT must remain accessible until
1670 the next call to wrap_here() or until a newline is printed through
1671 fputs_filtered().
1672
1673 If the line is already overfull, we immediately print a newline and
1674 the indentation, and disable further wrapping.
1675
1676 If we don't know the width of lines, but we know the page height,
1677 we must not wrap words, but should still keep track of newlines
1678 that were explicitly printed.
1679
1680 INDENT should not contain tabs, as that will mess up the char count
1681 on the next line. FIXME.
1682
1683 This routine is guaranteed to force out any output which has been
1684 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1685 used to force out output from the wrap_buffer. */
1686
1687void
fba45db2 1688wrap_here (char *indent)
c906108c
SS
1689{
1690 /* This should have been allocated, but be paranoid anyway. */
1691 if (!wrap_buffer)
e1e9e218 1692 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
1693
1694 if (wrap_buffer[0])
1695 {
1696 *wrap_pointer = '\0';
1697 fputs_unfiltered (wrap_buffer, gdb_stdout);
1698 }
1699 wrap_pointer = wrap_buffer;
1700 wrap_buffer[0] = '\0';
c5aa993b 1701 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1702 {
1703 wrap_column = 0;
1704 }
1705 else if (chars_printed >= chars_per_line)
1706 {
1707 puts_filtered ("\n");
1708 if (indent != NULL)
1709 puts_filtered (indent);
1710 wrap_column = 0;
1711 }
1712 else
1713 {
1714 wrap_column = chars_printed;
1715 if (indent == NULL)
1716 wrap_indent = "";
1717 else
1718 wrap_indent = indent;
1719 }
1720}
1721
1722/* Ensure that whatever gets printed next, using the filtered output
1723 commands, starts at the beginning of the line. I.E. if there is
1724 any pending output for the current line, flush it and start a new
1725 line. Otherwise do nothing. */
1726
1727void
fba45db2 1728begin_line (void)
c906108c
SS
1729{
1730 if (chars_printed > 0)
1731 {
1732 puts_filtered ("\n");
1733 }
1734}
1735
ac9a91a7 1736
c906108c
SS
1737/* Like fputs but if FILTER is true, pause after every screenful.
1738
1739 Regardless of FILTER can wrap at points other than the final
1740 character of a line.
1741
1742 Unlike fputs, fputs_maybe_filtered does not return a value.
1743 It is OK for LINEBUFFER to be NULL, in which case just don't print
1744 anything.
1745
1746 Note that a longjmp to top level may occur in this routine (only if
1747 FILTER is true) (since prompt_for_continue may do so) so this
1748 routine should not be called when cleanups are not in place. */
1749
1750static void
fba45db2
KB
1751fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1752 int filter)
c906108c
SS
1753{
1754 const char *lineptr;
1755
1756 if (linebuffer == 0)
1757 return;
1758
1759 /* Don't do any filtering if it is disabled. */
7a292a7a 1760 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1761 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1762 {
1763 fputs_unfiltered (linebuffer, stream);
1764 return;
1765 }
1766
1767 /* Go through and output each character. Show line extension
1768 when this is necessary; prompt user for new page when this is
1769 necessary. */
c5aa993b 1770
c906108c
SS
1771 lineptr = linebuffer;
1772 while (*lineptr)
1773 {
1774 /* Possible new page. */
1775 if (filter &&
1776 (lines_printed >= lines_per_page - 1))
1777 prompt_for_continue ();
1778
1779 while (*lineptr && *lineptr != '\n')
1780 {
1781 /* Print a single line. */
1782 if (*lineptr == '\t')
1783 {
1784 if (wrap_column)
1785 *wrap_pointer++ = '\t';
1786 else
1787 fputc_unfiltered ('\t', stream);
1788 /* Shifting right by 3 produces the number of tab stops
1789 we have already passed, and then adding one and
c5aa993b 1790 shifting left 3 advances to the next tab stop. */
c906108c
SS
1791 chars_printed = ((chars_printed >> 3) + 1) << 3;
1792 lineptr++;
1793 }
1794 else
1795 {
1796 if (wrap_column)
1797 *wrap_pointer++ = *lineptr;
1798 else
c5aa993b 1799 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1800 chars_printed++;
1801 lineptr++;
1802 }
c5aa993b 1803
c906108c
SS
1804 if (chars_printed >= chars_per_line)
1805 {
1806 unsigned int save_chars = chars_printed;
1807
1808 chars_printed = 0;
1809 lines_printed++;
1810 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1811 if chars_per_line is right, we probably just overflowed
1812 anyway; if it's wrong, let us keep going. */
c906108c
SS
1813 if (wrap_column)
1814 fputc_unfiltered ('\n', stream);
1815
1816 /* Possible new page. */
1817 if (lines_printed >= lines_per_page - 1)
1818 prompt_for_continue ();
1819
1820 /* Now output indentation and wrapped string */
1821 if (wrap_column)
1822 {
1823 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1824 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1825 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1826 /* FIXME, this strlen is what prevents wrap_indent from
1827 containing tabs. However, if we recurse to print it
1828 and count its chars, we risk trouble if wrap_indent is
1829 longer than (the user settable) chars_per_line.
1830 Note also that this can set chars_printed > chars_per_line
1831 if we are printing a long string. */
1832 chars_printed = strlen (wrap_indent)
c5aa993b 1833 + (save_chars - wrap_column);
c906108c
SS
1834 wrap_pointer = wrap_buffer; /* Reset buffer */
1835 wrap_buffer[0] = '\0';
c5aa993b
JM
1836 wrap_column = 0; /* And disable fancy wrap */
1837 }
c906108c
SS
1838 }
1839 }
1840
1841 if (*lineptr == '\n')
1842 {
1843 chars_printed = 0;
c5aa993b 1844 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1845 lines_printed++;
1846 fputc_unfiltered ('\n', stream);
1847 lineptr++;
1848 }
1849 }
1850}
1851
1852void
fba45db2 1853fputs_filtered (const char *linebuffer, struct ui_file *stream)
c906108c
SS
1854{
1855 fputs_maybe_filtered (linebuffer, stream, 1);
1856}
1857
1858int
fba45db2 1859putchar_unfiltered (int c)
c906108c 1860{
11cf8741 1861 char buf = c;
d9fcf2fb 1862 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1863 return c;
1864}
1865
d1f4cff8
AC
1866/* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1867 May return nonlocally. */
1868
1869int
1870putchar_filtered (int c)
1871{
1872 return fputc_filtered (c, gdb_stdout);
1873}
1874
c906108c 1875int
fba45db2 1876fputc_unfiltered (int c, struct ui_file *stream)
c906108c 1877{
11cf8741 1878 char buf = c;
d9fcf2fb 1879 ui_file_write (stream, &buf, 1);
c906108c
SS
1880 return c;
1881}
1882
1883int
fba45db2 1884fputc_filtered (int c, struct ui_file *stream)
c906108c
SS
1885{
1886 char buf[2];
1887
1888 buf[0] = c;
1889 buf[1] = 0;
1890 fputs_filtered (buf, stream);
1891 return c;
1892}
1893
1894/* puts_debug is like fputs_unfiltered, except it prints special
1895 characters in printable fashion. */
1896
1897void
fba45db2 1898puts_debug (char *prefix, char *string, char *suffix)
c906108c
SS
1899{
1900 int ch;
1901
1902 /* Print prefix and suffix after each line. */
1903 static int new_line = 1;
1904 static int return_p = 0;
1905 static char *prev_prefix = "";
1906 static char *prev_suffix = "";
1907
1908 if (*string == '\n')
1909 return_p = 0;
1910
1911 /* If the prefix is changing, print the previous suffix, a new line,
1912 and the new prefix. */
c5aa993b 1913 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1914 {
9846de1b
JM
1915 fputs_unfiltered (prev_suffix, gdb_stdlog);
1916 fputs_unfiltered ("\n", gdb_stdlog);
1917 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1918 }
1919
1920 /* Print prefix if we printed a newline during the previous call. */
1921 if (new_line)
1922 {
1923 new_line = 0;
9846de1b 1924 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1925 }
1926
1927 prev_prefix = prefix;
1928 prev_suffix = suffix;
1929
1930 /* Output characters in a printable format. */
1931 while ((ch = *string++) != '\0')
1932 {
1933 switch (ch)
c5aa993b 1934 {
c906108c
SS
1935 default:
1936 if (isprint (ch))
9846de1b 1937 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1938
1939 else
9846de1b 1940 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1941 break;
1942
c5aa993b
JM
1943 case '\\':
1944 fputs_unfiltered ("\\\\", gdb_stdlog);
1945 break;
1946 case '\b':
1947 fputs_unfiltered ("\\b", gdb_stdlog);
1948 break;
1949 case '\f':
1950 fputs_unfiltered ("\\f", gdb_stdlog);
1951 break;
1952 case '\n':
1953 new_line = 1;
1954 fputs_unfiltered ("\\n", gdb_stdlog);
1955 break;
1956 case '\r':
1957 fputs_unfiltered ("\\r", gdb_stdlog);
1958 break;
1959 case '\t':
1960 fputs_unfiltered ("\\t", gdb_stdlog);
1961 break;
1962 case '\v':
1963 fputs_unfiltered ("\\v", gdb_stdlog);
1964 break;
1965 }
c906108c
SS
1966
1967 return_p = ch == '\r';
1968 }
1969
1970 /* Print suffix if we printed a newline. */
1971 if (new_line)
1972 {
9846de1b
JM
1973 fputs_unfiltered (suffix, gdb_stdlog);
1974 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
1975 }
1976}
1977
1978
1979/* Print a variable number of ARGS using format FORMAT. If this
1980 information is going to put the amount written (since the last call
1981 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1982 call prompt_for_continue to get the users permision to continue.
1983
1984 Unlike fprintf, this function does not return a value.
1985
1986 We implement three variants, vfprintf (takes a vararg list and stream),
1987 fprintf (takes a stream to write on), and printf (the usual).
1988
1989 Note also that a longjmp to top level may occur in this routine
1990 (since prompt_for_continue may do so) so this routine should not be
1991 called when cleanups are not in place. */
1992
1993static void
fba45db2
KB
1994vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1995 va_list args, int filter)
c906108c
SS
1996{
1997 char *linebuffer;
1998 struct cleanup *old_cleanups;
1999
76995688 2000 xvasprintf (&linebuffer, format, args);
b8c9b27d 2001 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2002 fputs_maybe_filtered (linebuffer, stream, filter);
2003 do_cleanups (old_cleanups);
2004}
2005
2006
2007void
fba45db2 2008vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2009{
2010 vfprintf_maybe_filtered (stream, format, args, 1);
2011}
2012
2013void
fba45db2 2014vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2015{
2016 char *linebuffer;
2017 struct cleanup *old_cleanups;
2018
76995688 2019 xvasprintf (&linebuffer, format, args);
b8c9b27d 2020 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2021 fputs_unfiltered (linebuffer, stream);
2022 do_cleanups (old_cleanups);
2023}
2024
2025void
fba45db2 2026vprintf_filtered (const char *format, va_list args)
c906108c
SS
2027{
2028 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2029}
2030
2031void
fba45db2 2032vprintf_unfiltered (const char *format, va_list args)
c906108c
SS
2033{
2034 vfprintf_unfiltered (gdb_stdout, format, args);
2035}
2036
c906108c 2037void
d9fcf2fb 2038fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2039{
2040 va_list args;
c906108c 2041 va_start (args, format);
c906108c
SS
2042 vfprintf_filtered (stream, format, args);
2043 va_end (args);
2044}
2045
c906108c 2046void
d9fcf2fb 2047fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2048{
2049 va_list args;
c906108c 2050 va_start (args, format);
c906108c
SS
2051 vfprintf_unfiltered (stream, format, args);
2052 va_end (args);
2053}
2054
2055/* Like fprintf_filtered, but prints its result indented.
2056 Called as fprintfi_filtered (spaces, stream, format, ...); */
2057
c906108c 2058void
d9fcf2fb 2059fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2060{
2061 va_list args;
c906108c 2062 va_start (args, format);
c906108c
SS
2063 print_spaces_filtered (spaces, stream);
2064
2065 vfprintf_filtered (stream, format, args);
2066 va_end (args);
2067}
2068
2069
c906108c 2070void
c5aa993b 2071printf_filtered (const char *format,...)
c906108c
SS
2072{
2073 va_list args;
c906108c 2074 va_start (args, format);
c906108c
SS
2075 vfprintf_filtered (gdb_stdout, format, args);
2076 va_end (args);
2077}
2078
2079
c906108c 2080void
c5aa993b 2081printf_unfiltered (const char *format,...)
c906108c
SS
2082{
2083 va_list args;
c906108c 2084 va_start (args, format);
c906108c
SS
2085 vfprintf_unfiltered (gdb_stdout, format, args);
2086 va_end (args);
2087}
2088
2089/* Like printf_filtered, but prints it's result indented.
2090 Called as printfi_filtered (spaces, format, ...); */
2091
c906108c 2092void
c5aa993b 2093printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2094{
2095 va_list args;
c906108c 2096 va_start (args, format);
c906108c
SS
2097 print_spaces_filtered (spaces, gdb_stdout);
2098 vfprintf_filtered (gdb_stdout, format, args);
2099 va_end (args);
2100}
2101
2102/* Easy -- but watch out!
2103
2104 This routine is *not* a replacement for puts()! puts() appends a newline.
2105 This one doesn't, and had better not! */
2106
2107void
fba45db2 2108puts_filtered (const char *string)
c906108c
SS
2109{
2110 fputs_filtered (string, gdb_stdout);
2111}
2112
2113void
fba45db2 2114puts_unfiltered (const char *string)
c906108c
SS
2115{
2116 fputs_unfiltered (string, gdb_stdout);
2117}
2118
2119/* Return a pointer to N spaces and a null. The pointer is good
2120 until the next call to here. */
2121char *
fba45db2 2122n_spaces (int n)
c906108c 2123{
392a587b
JM
2124 char *t;
2125 static char *spaces = 0;
2126 static int max_spaces = -1;
c906108c
SS
2127
2128 if (n > max_spaces)
2129 {
2130 if (spaces)
b8c9b27d 2131 xfree (spaces);
c5aa993b
JM
2132 spaces = (char *) xmalloc (n + 1);
2133 for (t = spaces + n; t != spaces;)
c906108c
SS
2134 *--t = ' ';
2135 spaces[n] = '\0';
2136 max_spaces = n;
2137 }
2138
2139 return spaces + max_spaces - n;
2140}
2141
2142/* Print N spaces. */
2143void
fba45db2 2144print_spaces_filtered (int n, struct ui_file *stream)
c906108c
SS
2145{
2146 fputs_filtered (n_spaces (n), stream);
2147}
2148\f
2149/* C++ demangler stuff. */
2150
2151/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2152 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2153 If the name is not mangled, or the language for the name is unknown, or
2154 demangling is off, the name is printed in its "raw" form. */
2155
2156void
fba45db2
KB
2157fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2158 int arg_mode)
c906108c
SS
2159{
2160 char *demangled;
2161
2162 if (name != NULL)
2163 {
2164 /* If user wants to see raw output, no problem. */
2165 if (!demangle)
2166 {
2167 fputs_filtered (name, stream);
2168 }
2169 else
2170 {
2171 switch (lang)
2172 {
2173 case language_cplus:
2174 demangled = cplus_demangle (name, arg_mode);
2175 break;
2176 case language_java:
2177 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2178 break;
2179 case language_chill:
2180 demangled = chill_demangle (name);
2181 break;
2182 default:
2183 demangled = NULL;
2184 break;
2185 }
2186 fputs_filtered (demangled ? demangled : name, stream);
2187 if (demangled != NULL)
2188 {
b8c9b27d 2189 xfree (demangled);
c906108c
SS
2190 }
2191 }
2192 }
2193}
2194
2195/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2196 differences in whitespace. Returns 0 if they match, non-zero if they
2197 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2198
c906108c
SS
2199 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2200 This "feature" is useful when searching for matching C++ function names
2201 (such as if the user types 'break FOO', where FOO is a mangled C++
2202 function). */
2203
2204int
fba45db2 2205strcmp_iw (const char *string1, const char *string2)
c906108c
SS
2206{
2207 while ((*string1 != '\0') && (*string2 != '\0'))
2208 {
2209 while (isspace (*string1))
2210 {
2211 string1++;
2212 }
2213 while (isspace (*string2))
2214 {
2215 string2++;
2216 }
2217 if (*string1 != *string2)
2218 {
2219 break;
2220 }
2221 if (*string1 != '\0')
2222 {
2223 string1++;
2224 string2++;
2225 }
2226 }
2227 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2228}
c906108c 2229\f
c5aa993b 2230
c906108c 2231/*
c5aa993b
JM
2232 ** subset_compare()
2233 ** Answer whether string_to_compare is a full or partial match to
2234 ** template_string. The partial match must be in sequence starting
2235 ** at index 0.
2236 */
c906108c 2237int
fba45db2 2238subset_compare (char *string_to_compare, char *template_string)
7a292a7a
SS
2239{
2240 int match;
c5aa993b
JM
2241 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2242 strlen (string_to_compare) <= strlen (template_string))
2243 match = (strncmp (template_string,
2244 string_to_compare,
2245 strlen (string_to_compare)) == 0);
7a292a7a
SS
2246 else
2247 match = 0;
2248 return match;
2249}
c906108c
SS
2250
2251
a14ed312 2252static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2253static void
fba45db2 2254pagination_on_command (char *arg, int from_tty)
c906108c
SS
2255{
2256 pagination_enabled = 1;
2257}
2258
a14ed312 2259static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2260static void
fba45db2 2261pagination_off_command (char *arg, int from_tty)
c906108c
SS
2262{
2263 pagination_enabled = 0;
2264}
c906108c 2265\f
c5aa993b 2266
c906108c 2267void
fba45db2 2268initialize_utils (void)
c906108c
SS
2269{
2270 struct cmd_list_element *c;
2271
c5aa993b
JM
2272 c = add_set_cmd ("width", class_support, var_uinteger,
2273 (char *) &chars_per_line,
2274 "Set number of characters gdb thinks are in a line.",
2275 &setlist);
c906108c
SS
2276 add_show_from_set (c, &showlist);
2277 c->function.sfunc = set_width_command;
2278
2279 add_show_from_set
2280 (add_set_cmd ("height", class_support,
c5aa993b 2281 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2282 "Set number of lines gdb thinks are in a page.", &setlist),
2283 &showlist);
c5aa993b 2284
c906108c
SS
2285 init_page_info ();
2286
2287 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2288 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2289 lines_per_page = UINT_MAX;
2290
c5aa993b 2291 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2292
2293 add_show_from_set
c5aa993b
JM
2294 (add_set_cmd ("demangle", class_support, var_boolean,
2295 (char *) &demangle,
2296 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2297 &setprintlist),
2298 &showprintlist);
2299
2300 add_show_from_set
2301 (add_set_cmd ("pagination", class_support,
c5aa993b 2302 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2303 "Set state of pagination.", &setlist),
2304 &showlist);
4261bedc 2305
c906108c
SS
2306 if (xdb_commands)
2307 {
c5aa993b
JM
2308 add_com ("am", class_support, pagination_on_command,
2309 "Enable pagination");
2310 add_com ("sm", class_support, pagination_off_command,
2311 "Disable pagination");
c906108c
SS
2312 }
2313
2314 add_show_from_set
c5aa993b
JM
2315 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2316 (char *) &sevenbit_strings,
2317 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2318 &setprintlist),
2319 &showprintlist);
2320
2321 add_show_from_set
c5aa993b
JM
2322 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2323 (char *) &asm_demangle,
2324 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2325 &setprintlist),
2326 &showprintlist);
2327}
2328
2329/* Machine specific function to handle SIGWINCH signal. */
2330
2331#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2332SIGWINCH_HANDLER_BODY
c906108c
SS
2333#endif
2334\f
2335/* Support for converting target fp numbers into host DOUBLEST format. */
2336
2337/* XXX - This code should really be in libiberty/floatformat.c, however
2338 configuration issues with libiberty made this very difficult to do in the
2339 available time. */
2340
2341#include "floatformat.h"
2342#include <math.h> /* ldexp */
2343
2344/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2345 going to bother with trying to muck around with whether it is defined in
2346 a system header, what we do if not, etc. */
2347#define FLOATFORMAT_CHAR_BIT 8
2348
a14ed312
KB
2349static unsigned long get_field (unsigned char *,
2350 enum floatformat_byteorders,
2351 unsigned int, unsigned int, unsigned int);
c906108c
SS
2352
2353/* Extract a field which starts at START and is LEN bytes long. DATA and
2354 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2355static unsigned long
fba45db2
KB
2356get_field (unsigned char *data, enum floatformat_byteorders order,
2357 unsigned int total_len, unsigned int start, unsigned int len)
c906108c
SS
2358{
2359 unsigned long result;
2360 unsigned int cur_byte;
2361 int cur_bitshift;
2362
2363 /* Start at the least significant part of the field. */
c906108c 2364 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2365 {
2366 /* We start counting from the other end (i.e, from the high bytes
2367 rather than the low bytes). As such, we need to be concerned
2368 with what happens if bit 0 doesn't start on a byte boundary.
2369 I.e, we need to properly handle the case where total_len is
2370 not evenly divisible by 8. So we compute ``excess'' which
2371 represents the number of bits from the end of our starting
2372 byte needed to get to bit 0. */
2373 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2374 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2375 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2376 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2377 - FLOATFORMAT_CHAR_BIT;
2378 }
2379 else
2380 {
2381 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2382 cur_bitshift =
2383 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2384 }
2385 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2386 result = *(data + cur_byte) >> (-cur_bitshift);
2387 else
2388 result = 0;
c906108c
SS
2389 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2390 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2391 ++cur_byte;
2392 else
2393 --cur_byte;
2394
2395 /* Move towards the most significant part of the field. */
2396 while (cur_bitshift < len)
2397 {
0fda6bd2 2398 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2399 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2400 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2401 ++cur_byte;
2402 else
2403 --cur_byte;
2404 }
0fda6bd2
JM
2405 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2406 /* Mask out bits which are not part of the field */
2407 result &= ((1UL << len) - 1);
c906108c
SS
2408 return result;
2409}
c5aa993b 2410
c906108c
SS
2411/* Convert from FMT to a DOUBLEST.
2412 FROM is the address of the extended float.
2413 Store the DOUBLEST in *TO. */
2414
2415void
fba45db2
KB
2416floatformat_to_doublest (const struct floatformat *fmt, char *from,
2417 DOUBLEST *to)
c906108c 2418{
c5aa993b 2419 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2420 DOUBLEST dto;
2421 long exponent;
2422 unsigned long mant;
2423 unsigned int mant_bits, mant_off;
2424 int mant_bits_left;
2425 int special_exponent; /* It's a NaN, denorm or zero */
2426
2427 /* If the mantissa bits are not contiguous from one end of the
2428 mantissa to the other, we need to make a private copy of the
2429 source bytes that is in the right order since the unpacking
2430 algorithm assumes that the bits are contiguous.
2431
2432 Swap the bytes individually rather than accessing them through
2433 "long *" since we have no guarantee that they start on a long
2434 alignment, and also sizeof(long) for the host could be different
2435 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2436 for the target is 4. */
2437
c5aa993b 2438 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2439 {
2440 static unsigned char *newfrom;
2441 unsigned char *swapin, *swapout;
2442 int longswaps;
2443
c5aa993b 2444 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2445 longswaps >>= 3;
c5aa993b 2446
c906108c
SS
2447 if (newfrom == NULL)
2448 {
c5aa993b 2449 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2450 }
2451 swapout = newfrom;
2452 swapin = ufrom;
2453 ufrom = newfrom;
2454 while (longswaps-- > 0)
2455 {
2456 /* This is ugly, but efficient */
2457 *swapout++ = swapin[4];
2458 *swapout++ = swapin[5];
2459 *swapout++ = swapin[6];
2460 *swapout++ = swapin[7];
2461 *swapout++ = swapin[0];
2462 *swapout++ = swapin[1];
2463 *swapout++ = swapin[2];
2464 *swapout++ = swapin[3];
2465 swapin += 8;
2466 }
2467 }
2468
2469 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2470 fmt->exp_start, fmt->exp_len);
2471 /* Note that if exponent indicates a NaN, we can't really do anything useful
2472 (not knowing if the host has NaN's, or how to build one). So it will
2473 end up as an infinity or something close; that is OK. */
2474
2475 mant_bits_left = fmt->man_len;
2476 mant_off = fmt->man_start;
2477 dto = 0.0;
2478
2479 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2480
11cf8741
JM
2481/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2482 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2483 if (!special_exponent)
2484 exponent -= fmt->exp_bias;
11cf8741
JM
2485 else if (exponent == 0)
2486 exponent = 1 - fmt->exp_bias;
c906108c
SS
2487
2488 /* Build the result algebraically. Might go infinite, underflow, etc;
2489 who cares. */
2490
2491/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2492 increment the exponent by one to account for the integer bit. */
2493
2494 if (!special_exponent)
7a292a7a
SS
2495 {
2496 if (fmt->intbit == floatformat_intbit_no)
2497 dto = ldexp (1.0, exponent);
2498 else
2499 exponent++;
2500 }
c906108c
SS
2501
2502 while (mant_bits_left > 0)
2503 {
2504 mant_bits = min (mant_bits_left, 32);
2505
2506 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2507 mant_off, mant_bits);
c906108c 2508
c5aa993b 2509 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2510 exponent -= mant_bits;
2511 mant_off += mant_bits;
2512 mant_bits_left -= mant_bits;
2513 }
2514
2515 /* Negate it if negative. */
2516 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2517 dto = -dto;
2518 *to = dto;
2519}
2520\f
a14ed312
KB
2521static void put_field (unsigned char *, enum floatformat_byteorders,
2522 unsigned int,
2523 unsigned int, unsigned int, unsigned long);
c906108c
SS
2524
2525/* Set a field which starts at START and is LEN bytes long. DATA and
2526 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2527static void
fba45db2
KB
2528put_field (unsigned char *data, enum floatformat_byteorders order,
2529 unsigned int total_len, unsigned int start, unsigned int len,
2530 unsigned long stuff_to_put)
c906108c
SS
2531{
2532 unsigned int cur_byte;
2533 int cur_bitshift;
2534
2535 /* Start at the least significant part of the field. */
c906108c 2536 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2537 {
2538 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2539 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2540 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2541 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2542 - FLOATFORMAT_CHAR_BIT;
2543 }
2544 else
2545 {
2546 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2547 cur_bitshift =
2548 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2549 }
2550 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2551 {
2552 *(data + cur_byte) &=
2553 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2554 << (-cur_bitshift));
2555 *(data + cur_byte) |=
2556 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2557 }
c906108c
SS
2558 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2559 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2560 ++cur_byte;
2561 else
2562 --cur_byte;
2563
2564 /* Move towards the most significant part of the field. */
2565 while (cur_bitshift < len)
2566 {
2567 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2568 {
2569 /* This is the last byte. */
2570 *(data + cur_byte) &=
2571 ~((1 << (len - cur_bitshift)) - 1);
2572 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2573 }
2574 else
2575 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2576 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2577 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2578 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2579 ++cur_byte;
2580 else
2581 --cur_byte;
2582 }
2583}
2584
2585#ifdef HAVE_LONG_DOUBLE
2586/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2587 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2588 frexp, but operates on the long double data type. */
2589
a14ed312 2590static long double ldfrexp (long double value, int *eptr);
c906108c
SS
2591
2592static long double
fba45db2 2593ldfrexp (long double value, int *eptr)
c906108c
SS
2594{
2595 long double tmp;
2596 int exp;
2597
2598 /* Unfortunately, there are no portable functions for extracting the exponent
2599 of a long double, so we have to do it iteratively by multiplying or dividing
2600 by two until the fraction is between 0.5 and 1.0. */
2601
2602 if (value < 0.0l)
2603 value = -value;
2604
2605 tmp = 1.0l;
2606 exp = 0;
2607
2608 if (value >= tmp) /* Value >= 1.0 */
2609 while (value >= tmp)
2610 {
2611 tmp *= 2.0l;
2612 exp++;
2613 }
2614 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2615 {
2616 while (value < tmp)
2617 {
2618 tmp /= 2.0l;
2619 exp--;
2620 }
2621 tmp *= 2.0l;
2622 exp++;
2623 }
2624
2625 *eptr = exp;
c5aa993b 2626 return value / tmp;
c906108c
SS
2627}
2628#endif /* HAVE_LONG_DOUBLE */
2629
2630
2631/* The converse: convert the DOUBLEST *FROM to an extended float
2632 and store where TO points. Neither FROM nor TO have any alignment
2633 restrictions. */
2634
2635void
fba45db2
KB
2636floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2637 char *to)
c906108c
SS
2638{
2639 DOUBLEST dfrom;
2640 int exponent;
2641 DOUBLEST mant;
2642 unsigned int mant_bits, mant_off;
2643 int mant_bits_left;
c5aa993b 2644 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2645
2646 memcpy (&dfrom, from, sizeof (dfrom));
ba8966d6
KB
2647 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2648 / FLOATFORMAT_CHAR_BIT);
c906108c
SS
2649 if (dfrom == 0)
2650 return; /* Result is zero */
2651 if (dfrom != dfrom) /* Result is NaN */
2652 {
2653 /* From is NaN */
2654 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2655 fmt->exp_len, fmt->exp_nan);
2656 /* Be sure it's not infinity, but NaN value is irrel */
2657 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2658 32, 1);
2659 return;
2660 }
2661
2662 /* If negative, set the sign bit. */
2663 if (dfrom < 0)
2664 {
2665 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2666 dfrom = -dfrom;
2667 }
2668
2669 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2670 {
2671 /* Infinity exponent is same as NaN's. */
2672 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2673 fmt->exp_len, fmt->exp_nan);
2674 /* Infinity mantissa is all zeroes. */
2675 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2676 fmt->man_len, 0);
2677 return;
2678 }
2679
2680#ifdef HAVE_LONG_DOUBLE
2681 mant = ldfrexp (dfrom, &exponent);
2682#else
2683 mant = frexp (dfrom, &exponent);
2684#endif
2685
2686 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2687 exponent + fmt->exp_bias - 1);
2688
2689 mant_bits_left = fmt->man_len;
2690 mant_off = fmt->man_start;
2691 while (mant_bits_left > 0)
2692 {
2693 unsigned long mant_long;
2694 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2695
2696 mant *= 4294967296.0;
ba8966d6 2697 mant_long = ((unsigned long) mant) & 0xffffffffL;
c906108c
SS
2698 mant -= mant_long;
2699
2700 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2701 If we are discarding a zero, we should be (but are not) creating
2702 a denormalized number which means adjusting the exponent
2703 (I think). */
c906108c
SS
2704 if (mant_bits_left == fmt->man_len
2705 && fmt->intbit == floatformat_intbit_no)
2706 {
2707 mant_long <<= 1;
ba8966d6 2708 mant_long &= 0xffffffffL;
c906108c
SS
2709 mant_bits -= 1;
2710 }
2711
2712 if (mant_bits < 32)
2713 {
2714 /* The bits we want are in the most significant MANT_BITS bits of
2715 mant_long. Move them to the least significant. */
2716 mant_long >>= 32 - mant_bits;
2717 }
2718
2719 put_field (uto, fmt->byteorder, fmt->totalsize,
2720 mant_off, mant_bits, mant_long);
2721 mant_off += mant_bits;
2722 mant_bits_left -= mant_bits;
2723 }
c5aa993b 2724 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2725 {
2726 int count;
2727 unsigned char *swaplow = uto;
2728 unsigned char *swaphigh = uto + 4;
2729 unsigned char tmp;
2730
2731 for (count = 0; count < 4; count++)
2732 {
2733 tmp = *swaplow;
2734 *swaplow++ = *swaphigh;
2735 *swaphigh++ = tmp;
2736 }
2737 }
2738}
2739
39424bef
MK
2740/* Check if VAL (which is assumed to be a floating point number whose
2741 format is described by FMT) is negative. */
2742
2743int
2744floatformat_is_negative (const struct floatformat *fmt, char *val)
2745{
2746 unsigned char *uval = (unsigned char *) val;
2747
2748 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2749}
2750
2751/* Check if VAL is "not a number" (NaN) for FMT. */
2752
2753int
2754floatformat_is_nan (const struct floatformat *fmt, char *val)
2755{
2756 unsigned char *uval = (unsigned char *) val;
2757 long exponent;
2758 unsigned long mant;
2759 unsigned int mant_bits, mant_off;
2760 int mant_bits_left;
2761
2762 if (! fmt->exp_nan)
2763 return 0;
2764
2765 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2766 fmt->exp_start, fmt->exp_len);
2767
2768 if (exponent != fmt->exp_nan)
2769 return 0;
2770
2771 mant_bits_left = fmt->man_len;
2772 mant_off = fmt->man_start;
2773
2774 while (mant_bits_left > 0)
2775 {
2776 mant_bits = min (mant_bits_left, 32);
2777
2778 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2779 mant_off, mant_bits);
2780
2781 /* If there is an explicit integer bit, mask it off. */
2782 if (mant_off == fmt->man_start
2783 && fmt->intbit == floatformat_intbit_yes)
2784 mant &= ~(1 << (mant_bits - 1));
2785
2786 if (mant)
2787 return 1;
2788
2789 mant_off += mant_bits;
2790 mant_bits_left -= mant_bits;
2791 }
2792
2793 return 0;
2794}
2795
2796/* Convert the mantissa of VAL (which is assumed to be a floating
2797 point number whose format is described by FMT) into a hexadecimal
2798 and store it in a static string. Return a pointer to that string. */
2799
2800char *
2801floatformat_mantissa (const struct floatformat *fmt, char *val)
2802{
2803 unsigned char *uval = (unsigned char *) val;
2804 unsigned long mant;
2805 unsigned int mant_bits, mant_off;
2806 int mant_bits_left;
2807 static char res[50];
2808 char buf[9];
2809
2810 /* Make sure we have enough room to store the mantissa. */
2811 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2812
2813 mant_off = fmt->man_start;
2814 mant_bits_left = fmt->man_len;
2815 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2816
2817 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2818 mant_off, mant_bits);
2819
2820 sprintf (res, "%lx", mant);
2821
2822 mant_off += mant_bits;
2823 mant_bits_left -= mant_bits;
2824
2825 while (mant_bits_left > 0)
2826 {
2827 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2828 mant_off, 32);
2829
2830 sprintf (buf, "%08lx", mant);
2831 strcat (res, buf);
2832
2833 mant_off += 32;
2834 mant_bits_left -= 32;
2835 }
2836
2837 return res;
2838}
2839
5683e87a
AC
2840/* print routines to handle variable size regs, etc. */
2841
c906108c
SS
2842/* temporary storage using circular buffer */
2843#define NUMCELLS 16
2844#define CELLSIZE 32
c5aa993b 2845static char *
fba45db2 2846get_cell (void)
c906108c
SS
2847{
2848 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2849 static int cell = 0;
2850 if (++cell >= NUMCELLS)
2851 cell = 0;
c906108c
SS
2852 return buf[cell];
2853}
2854
d4f3574e
SS
2855int
2856strlen_paddr (void)
2857{
79496e2f 2858 return (TARGET_ADDR_BIT / 8 * 2);
d4f3574e
SS
2859}
2860
c5aa993b 2861char *
104c1213 2862paddr (CORE_ADDR addr)
c906108c 2863{
79496e2f 2864 return phex (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2865}
2866
c5aa993b 2867char *
104c1213 2868paddr_nz (CORE_ADDR addr)
c906108c 2869{
79496e2f 2870 return phex_nz (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2871}
2872
104c1213
JM
2873static void
2874decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2875{
2876 /* steal code from valprint.c:print_decimal(). Should this worry
2877 about the real size of addr as the above does? */
2878 unsigned long temp[3];
2879 int i = 0;
2880 do
2881 {
2882 temp[i] = addr % (1000 * 1000 * 1000);
2883 addr /= (1000 * 1000 * 1000);
2884 i++;
2885 }
2886 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2887 switch (i)
2888 {
2889 case 1:
2890 sprintf (paddr_str, "%s%lu",
2891 sign, temp[0]);
2892 break;
2893 case 2:
2894 sprintf (paddr_str, "%s%lu%09lu",
2895 sign, temp[1], temp[0]);
2896 break;
2897 case 3:
2898 sprintf (paddr_str, "%s%lu%09lu%09lu",
2899 sign, temp[2], temp[1], temp[0]);
2900 break;
2901 default:
e1e9e218 2902 internal_error (__FILE__, __LINE__, "failed internal consistency check");
104c1213
JM
2903 }
2904}
2905
2906char *
2907paddr_u (CORE_ADDR addr)
2908{
2909 char *paddr_str = get_cell ();
2910 decimal2str (paddr_str, "", addr);
2911 return paddr_str;
2912}
2913
2914char *
2915paddr_d (LONGEST addr)
2916{
2917 char *paddr_str = get_cell ();
2918 if (addr < 0)
2919 decimal2str (paddr_str, "-", -addr);
2920 else
2921 decimal2str (paddr_str, "", addr);
2922 return paddr_str;
2923}
2924
5683e87a
AC
2925/* eliminate warning from compiler on 32-bit systems */
2926static int thirty_two = 32;
2927
104c1213 2928char *
5683e87a 2929phex (ULONGEST l, int sizeof_l)
104c1213 2930{
5683e87a
AC
2931 char *str = get_cell ();
2932 switch (sizeof_l)
104c1213
JM
2933 {
2934 case 8:
5683e87a
AC
2935 sprintf (str, "%08lx%08lx",
2936 (unsigned long) (l >> thirty_two),
2937 (unsigned long) (l & 0xffffffff));
104c1213
JM
2938 break;
2939 case 4:
5683e87a 2940 sprintf (str, "%08lx", (unsigned long) l);
104c1213
JM
2941 break;
2942 case 2:
5683e87a 2943 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
104c1213
JM
2944 break;
2945 default:
5683e87a
AC
2946 phex (l, sizeof (l));
2947 break;
104c1213 2948 }
5683e87a 2949 return str;
104c1213
JM
2950}
2951
c5aa993b 2952char *
5683e87a 2953phex_nz (ULONGEST l, int sizeof_l)
c906108c 2954{
5683e87a
AC
2955 char *str = get_cell ();
2956 switch (sizeof_l)
c906108c 2957 {
c5aa993b
JM
2958 case 8:
2959 {
5683e87a 2960 unsigned long high = (unsigned long) (l >> thirty_two);
c5aa993b 2961 if (high == 0)
5683e87a 2962 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
c5aa993b 2963 else
5683e87a
AC
2964 sprintf (str, "%lx%08lx",
2965 high, (unsigned long) (l & 0xffffffff));
c906108c 2966 break;
c5aa993b
JM
2967 }
2968 case 4:
5683e87a 2969 sprintf (str, "%lx", (unsigned long) l);
c5aa993b
JM
2970 break;
2971 case 2:
5683e87a 2972 sprintf (str, "%x", (unsigned short) (l & 0xffff));
c5aa993b
JM
2973 break;
2974 default:
5683e87a
AC
2975 phex_nz (l, sizeof (l));
2976 break;
c906108c 2977 }
5683e87a 2978 return str;
c906108c 2979}
ac2e2ef7
AC
2980
2981
2982/* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2983 using the target's conversion routines. */
2984CORE_ADDR
2985host_pointer_to_address (void *ptr)
2986{
090a2205 2987 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
8e65ff28
AC
2988 internal_error (__FILE__, __LINE__,
2989 "core_addr_to_void_ptr: bad cast");
090a2205 2990 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
ac2e2ef7
AC
2991}
2992
2993void *
2994address_to_host_pointer (CORE_ADDR addr)
2995{
2996 void *ptr;
090a2205 2997 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
8e65ff28
AC
2998 internal_error (__FILE__, __LINE__,
2999 "core_addr_to_void_ptr: bad cast");
090a2205 3000 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
ac2e2ef7
AC
3001 return ptr;
3002}
This page took 0.356285 seconds and 4 git commands to generate.