* Makefile.in (taz): Set PACKAGE to TOOL when not defined.
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
d9fcf2fb
JM
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include <ctype.h>
24#include "gdb_string.h"
c2c6d25f 25#include "event-top.h"
c906108c
SS
26
27#ifdef HAVE_CURSES_H
28#include <curses.h>
29#endif
30#ifdef HAVE_TERM_H
31#include <term.h>
32#endif
33
9d271fd8
AC
34#ifdef __GO32__
35#include <pc.h>
36#endif
37
c906108c
SS
38/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39#ifdef reg
40#undef reg
41#endif
42
43#include "signals.h"
44#include "gdbcmd.h"
45#include "serial.h"
46#include "bfd.h"
47#include "target.h"
48#include "demangle.h"
49#include "expression.h"
50#include "language.h"
51#include "annotate.h"
52
53#include <readline/readline.h>
54
917317f4
JM
55#undef XMALLOC
56#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
c906108c
SS
58/* readline defines this. */
59#undef savestring
60
61void (*error_begin_hook) PARAMS ((void));
62
2acceee2
JM
63/* Holds the last error message issued by gdb */
64
d9fcf2fb 65static struct ui_file *gdb_lasterr;
2acceee2 66
c906108c
SS
67/* Prototypes for local functions */
68
d9fcf2fb
JM
69static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
c906108c 71
d9fcf2fb 72static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
73
74#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75static void malloc_botch PARAMS ((void));
76#endif
77
c906108c
SS
78static void
79prompt_for_continue PARAMS ((void));
80
c5aa993b 81static void
c906108c
SS
82set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84static void
85set_width PARAMS ((void));
86
c906108c
SS
87/* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
c5aa993b
JM
90static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
94/* cleaned up on each error from within an execution command */
95static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
96
97/* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101struct continuation *cmd_continuation;
c2d11a7d 102struct continuation *intermediate_continuation;
c906108c
SS
103
104/* Nonzero if we have job control. */
105
106int job_control;
107
108/* Nonzero means a quit has been requested. */
109
110int quit_flag;
111
112/* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123int immediate_quit;
124
125/* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128int demangle = 1;
129
130/* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134int asm_demangle = 0;
135
136/* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140int sevenbit_strings = 0;
141
142/* String to be printed before error messages, if any. */
143
144char *error_pre_print;
145
146/* String to be printed before quit messages, if any. */
147
148char *quit_pre_print;
149
150/* String to be printed before warning messages, if any. */
151
152char *warning_pre_print = "\nwarning: ";
153
154int pagination_enabled = 1;
c906108c 155\f
c5aa993b 156
c906108c
SS
157/* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162struct cleanup *
163make_cleanup (function, arg)
164 void (*function) PARAMS ((PTR));
165 PTR arg;
166{
c5aa993b 167 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
168}
169
170struct cleanup *
171make_final_cleanup (function, arg)
172 void (*function) PARAMS ((PTR));
173 PTR arg;
174{
c5aa993b 175 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 176}
7a292a7a 177
c906108c
SS
178struct cleanup *
179make_run_cleanup (function, arg)
180 void (*function) PARAMS ((PTR));
181 PTR arg;
182{
c5aa993b 183 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 184}
7a292a7a 185
43ff13b4
JM
186struct cleanup *
187make_exec_cleanup (function, arg)
188 void (*function) PARAMS ((PTR));
189 PTR arg;
190{
c5aa993b 191 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
192}
193
6426a772
JM
194struct cleanup *
195make_exec_error_cleanup (function, arg)
196 void (*function) PARAMS ((PTR));
197 PTR arg;
198{
199 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
200}
201
7a292a7a
SS
202static void
203do_freeargv (arg)
204 void *arg;
205{
c5aa993b 206 freeargv ((char **) arg);
7a292a7a
SS
207}
208
209struct cleanup *
210make_cleanup_freeargv (arg)
211 char **arg;
212{
213 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
214}
215
11cf8741 216static void
d9fcf2fb 217do_ui_file_delete (void *arg)
11cf8741 218{
d9fcf2fb 219 ui_file_delete (arg);
11cf8741
JM
220}
221
222struct cleanup *
d9fcf2fb 223make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 224{
d9fcf2fb 225 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
226}
227
c906108c
SS
228struct cleanup *
229make_my_cleanup (pmy_chain, function, arg)
230 struct cleanup **pmy_chain;
231 void (*function) PARAMS ((PTR));
232 PTR arg;
233{
234 register struct cleanup *new
c5aa993b 235 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
236 register struct cleanup *old_chain = *pmy_chain;
237
238 new->next = *pmy_chain;
239 new->function = function;
240 new->arg = arg;
241 *pmy_chain = new;
242
243 return old_chain;
244}
245
246/* Discard cleanups and do the actions they describe
247 until we get back to the point OLD_CHAIN in the cleanup_chain. */
248
249void
250do_cleanups (old_chain)
251 register struct cleanup *old_chain;
252{
c5aa993b 253 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
254}
255
256void
257do_final_cleanups (old_chain)
258 register struct cleanup *old_chain;
259{
c5aa993b 260 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
261}
262
263void
264do_run_cleanups (old_chain)
265 register struct cleanup *old_chain;
266{
c5aa993b 267 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
268}
269
43ff13b4
JM
270void
271do_exec_cleanups (old_chain)
272 register struct cleanup *old_chain;
273{
c5aa993b 274 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
275}
276
6426a772
JM
277void
278do_exec_error_cleanups (old_chain)
279 register struct cleanup *old_chain;
280{
281 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
282}
283
c906108c
SS
284void
285do_my_cleanups (pmy_chain, old_chain)
286 register struct cleanup **pmy_chain;
287 register struct cleanup *old_chain;
288{
289 register struct cleanup *ptr;
290 while ((ptr = *pmy_chain) != old_chain)
291 {
292 *pmy_chain = ptr->next; /* Do this first incase recursion */
293 (*ptr->function) (ptr->arg);
294 free (ptr);
295 }
296}
297
298/* Discard cleanups, not doing the actions they describe,
299 until we get back to the point OLD_CHAIN in the cleanup_chain. */
300
301void
302discard_cleanups (old_chain)
303 register struct cleanup *old_chain;
304{
c5aa993b 305 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
306}
307
308void
309discard_final_cleanups (old_chain)
310 register struct cleanup *old_chain;
311{
c5aa993b 312 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
313}
314
6426a772
JM
315void
316discard_exec_error_cleanups (old_chain)
317 register struct cleanup *old_chain;
318{
319 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
320}
321
c906108c
SS
322void
323discard_my_cleanups (pmy_chain, old_chain)
324 register struct cleanup **pmy_chain;
325 register struct cleanup *old_chain;
326{
327 register struct cleanup *ptr;
328 while ((ptr = *pmy_chain) != old_chain)
329 {
330 *pmy_chain = ptr->next;
c5aa993b 331 free ((PTR) ptr);
c906108c
SS
332 }
333}
334
335/* Set the cleanup_chain to 0, and return the old cleanup chain. */
336struct cleanup *
337save_cleanups ()
338{
c5aa993b 339 return save_my_cleanups (&cleanup_chain);
c906108c
SS
340}
341
342struct cleanup *
343save_final_cleanups ()
344{
c5aa993b 345 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
346}
347
348struct cleanup *
349save_my_cleanups (pmy_chain)
c5aa993b 350 struct cleanup **pmy_chain;
c906108c
SS
351{
352 struct cleanup *old_chain = *pmy_chain;
353
354 *pmy_chain = 0;
355 return old_chain;
356}
357
358/* Restore the cleanup chain from a previously saved chain. */
359void
360restore_cleanups (chain)
361 struct cleanup *chain;
362{
c5aa993b 363 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
364}
365
366void
367restore_final_cleanups (chain)
368 struct cleanup *chain;
369{
c5aa993b 370 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
371}
372
373void
374restore_my_cleanups (pmy_chain, chain)
375 struct cleanup **pmy_chain;
376 struct cleanup *chain;
377{
378 *pmy_chain = chain;
379}
380
381/* This function is useful for cleanups.
382 Do
383
c5aa993b
JM
384 foo = xmalloc (...);
385 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
386
387 to arrange to free the object thus allocated. */
388
389void
390free_current_contents (location)
391 char **location;
392{
393 free (*location);
394}
395
396/* Provide a known function that does nothing, to use as a base for
397 for a possibly long chain of cleanups. This is useful where we
398 use the cleanup chain for handling normal cleanups as well as dealing
399 with cleanups that need to be done as a result of a call to error().
400 In such cases, we may not be certain where the first cleanup is, unless
401 we have a do-nothing one to always use as the base. */
402
403/* ARGSUSED */
404void
405null_cleanup (arg)
c5aa993b 406 PTR arg;
c906108c
SS
407{
408}
409
43ff13b4 410/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 411 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
412void
413add_continuation (continuation_hook, arg_list)
c5aa993b
JM
414 void (*continuation_hook) PARAMS ((struct continuation_arg *));
415 struct continuation_arg *arg_list;
43ff13b4 416{
c5aa993b 417 struct continuation *continuation_ptr;
43ff13b4 418
c5aa993b
JM
419 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
420 continuation_ptr->continuation_hook = continuation_hook;
421 continuation_ptr->arg_list = arg_list;
422 continuation_ptr->next = cmd_continuation;
423 cmd_continuation = continuation_ptr;
43ff13b4
JM
424}
425
426/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
427 continuations. There is a problem though. In some cases new
428 continuations may be added while we are in the middle of this
429 loop. If this happens they will be added in the front, and done
430 before we have a chance of exhausting those that were already
431 there. We need to then save the beginning of the list in a pointer
432 and do the continuations from there on, instead of using the
433 global beginning of list as our iteration pointer.*/
c5aa993b 434void
43ff13b4 435do_all_continuations ()
c2d11a7d
JM
436{
437 struct continuation *continuation_ptr;
438 struct continuation *saved_continuation;
439
440 /* Copy the list header into another pointer, and set the global
441 list header to null, so that the global list can change as a side
442 effect of invoking the continuations and the processing of
443 the preexisting continuations will not be affected. */
444 continuation_ptr = cmd_continuation;
445 cmd_continuation = NULL;
446
447 /* Work now on the list we have set aside. */
448 while (continuation_ptr)
449 {
450 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
451 saved_continuation = continuation_ptr;
452 continuation_ptr = continuation_ptr->next;
453 free (saved_continuation);
454 }
455}
456
457/* Walk down the cmd_continuation list, and get rid of all the
458 continuations. */
459void
460discard_all_continuations ()
43ff13b4 461{
c5aa993b 462 struct continuation *continuation_ptr;
43ff13b4 463
c5aa993b
JM
464 while (cmd_continuation)
465 {
c5aa993b
JM
466 continuation_ptr = cmd_continuation;
467 cmd_continuation = continuation_ptr->next;
468 free (continuation_ptr);
469 }
43ff13b4 470}
c2c6d25f 471
c2d11a7d
JM
472/* Add a continuation to the continuation list, the gloabl list
473 intermediate_continuation. The new continuation will be added at the front.*/
474void
475add_intermediate_continuation (continuation_hook, arg_list)
476 void (*continuation_hook) PARAMS ((struct continuation_arg *));
477 struct continuation_arg *arg_list;
478{
479 struct continuation *continuation_ptr;
480
481 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
482 continuation_ptr->continuation_hook = continuation_hook;
483 continuation_ptr->arg_list = arg_list;
484 continuation_ptr->next = intermediate_continuation;
485 intermediate_continuation = continuation_ptr;
486}
487
488/* Walk down the cmd_continuation list, and execute all the
489 continuations. There is a problem though. In some cases new
490 continuations may be added while we are in the middle of this
491 loop. If this happens they will be added in the front, and done
492 before we have a chance of exhausting those that were already
493 there. We need to then save the beginning of the list in a pointer
494 and do the continuations from there on, instead of using the
495 global beginning of list as our iteration pointer.*/
496void
497do_all_intermediate_continuations ()
498{
499 struct continuation *continuation_ptr;
500 struct continuation *saved_continuation;
501
502 /* Copy the list header into another pointer, and set the global
503 list header to null, so that the global list can change as a side
504 effect of invoking the continuations and the processing of
505 the preexisting continuations will not be affected. */
506 continuation_ptr = intermediate_continuation;
507 intermediate_continuation = NULL;
508
509 /* Work now on the list we have set aside. */
510 while (continuation_ptr)
511 {
512 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
513 saved_continuation = continuation_ptr;
514 continuation_ptr = continuation_ptr->next;
515 free (saved_continuation);
516 }
517}
518
c2c6d25f
JM
519/* Walk down the cmd_continuation list, and get rid of all the
520 continuations. */
521void
c2d11a7d 522discard_all_intermediate_continuations ()
c2c6d25f
JM
523{
524 struct continuation *continuation_ptr;
525
c2d11a7d 526 while (intermediate_continuation)
c2c6d25f 527 {
c2d11a7d
JM
528 continuation_ptr = intermediate_continuation;
529 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
530 free (continuation_ptr);
531 }
532}
533
c906108c 534\f
c5aa993b 535
c906108c
SS
536/* Print a warning message. Way to use this is to call warning_begin,
537 output the warning message (use unfiltered output to gdb_stderr),
538 ending in a newline. There is not currently a warning_end that you
539 call afterwards, but such a thing might be added if it is useful
540 for a GUI to separate warning messages from other output.
541
542 FIXME: Why do warnings use unfiltered output and errors filtered?
543 Is this anything other than a historical accident? */
544
545void
546warning_begin ()
547{
548 target_terminal_ours ();
c5aa993b 549 wrap_here (""); /* Force out any buffered output */
c906108c
SS
550 gdb_flush (gdb_stdout);
551 if (warning_pre_print)
552 fprintf_unfiltered (gdb_stderr, warning_pre_print);
553}
554
555/* Print a warning message.
556 The first argument STRING is the warning message, used as a fprintf string,
557 and the remaining args are passed as arguments to it.
558 The primary difference between warnings and errors is that a warning
559 does not force the return to command level. */
560
c906108c 561void
c5aa993b 562warning (const char *string,...)
c906108c
SS
563{
564 va_list args;
c906108c 565 va_start (args, string);
c906108c
SS
566 if (warning_hook)
567 (*warning_hook) (string, args);
568 else
c5aa993b
JM
569 {
570 warning_begin ();
571 vfprintf_unfiltered (gdb_stderr, string, args);
572 fprintf_unfiltered (gdb_stderr, "\n");
573 va_end (args);
574 }
c906108c
SS
575}
576
577/* Start the printing of an error message. Way to use this is to call
578 this, output the error message (use filtered output to gdb_stderr
579 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
580 in a newline, and then call return_to_top_level (RETURN_ERROR).
581 error() provides a convenient way to do this for the special case
582 that the error message can be formatted with a single printf call,
583 but this is more general. */
584void
585error_begin ()
586{
587 if (error_begin_hook)
588 error_begin_hook ();
589
590 target_terminal_ours ();
c5aa993b 591 wrap_here (""); /* Force out any buffered output */
c906108c
SS
592 gdb_flush (gdb_stdout);
593
594 annotate_error_begin ();
595
596 if (error_pre_print)
597 fprintf_filtered (gdb_stderr, error_pre_print);
598}
599
600/* Print an error message and return to command level.
601 The first argument STRING is the error message, used as a fprintf string,
602 and the remaining args are passed as arguments to it. */
603
4ce44c66
JM
604NORETURN void
605verror (const char *string, va_list args)
606{
c2d11a7d
JM
607 char *err_string;
608 struct cleanup *err_string_cleanup;
4ce44c66
JM
609 /* FIXME: cagney/1999-11-10: All error calls should come here.
610 Unfortunatly some code uses the sequence: error_begin(); print
611 error message; return_to_top_level. That code should be
612 flushed. */
613 error_begin ();
c2d11a7d
JM
614 /* NOTE: It's tempting to just do the following...
615 vfprintf_filtered (gdb_stderr, string, args);
616 and then follow with a similar looking statement to cause the message
617 to also go to gdb_lasterr. But if we do this, we'll be traversing the
618 va_list twice which works on some platforms and fails miserably on
619 others. */
620 /* Save it as the last error */
d9fcf2fb 621 ui_file_rewind (gdb_lasterr);
4ce44c66 622 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
623 /* Retrieve the last error and print it to gdb_stderr */
624 err_string = error_last_message ();
625 err_string_cleanup = make_cleanup (free, err_string);
626 fputs_filtered (err_string, gdb_stderr);
627 fprintf_filtered (gdb_stderr, "\n");
628 do_cleanups (err_string_cleanup);
4ce44c66
JM
629 return_to_top_level (RETURN_ERROR);
630}
631
c906108c 632NORETURN void
c5aa993b 633error (const char *string,...)
c906108c
SS
634{
635 va_list args;
c906108c 636 va_start (args, string);
4ce44c66
JM
637 verror (string, args);
638 va_end (args);
c906108c
SS
639}
640
2acceee2 641NORETURN void
d9fcf2fb 642error_stream (struct ui_file *stream)
2acceee2 643{
4ce44c66 644 long size;
d9fcf2fb 645 char *msg = ui_file_xstrdup (stream, &size);
4ce44c66
JM
646 make_cleanup (free, msg);
647 error ("%s", msg);
2acceee2
JM
648}
649
650/* Get the last error message issued by gdb */
651
652char *
653error_last_message (void)
654{
4ce44c66 655 long len;
d9fcf2fb 656 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 657}
4ce44c66 658
2acceee2
JM
659/* This is to be called by main() at the very beginning */
660
661void
662error_init (void)
663{
4ce44c66 664 gdb_lasterr = mem_fileopen ();
2acceee2 665}
c906108c 666
96baa820
JM
667/* Print a message reporting an internal error. Ask the user if they
668 want to continue, dump core, or just exit. */
c906108c 669
c906108c 670NORETURN void
4ce44c66 671internal_verror (const char *fmt, va_list ap)
c906108c 672{
96baa820
JM
673 static char msg[] = "Internal GDB error: recursive internal error.\n";
674 static int dejavu = 0;
7be570e7
JM
675 int continue_p;
676 int dump_core_p;
c906108c 677
96baa820
JM
678 /* don't allow infinite error recursion. */
679 switch (dejavu)
680 {
681 case 0:
682 dejavu = 1;
683 break;
684 case 1:
685 dejavu = 2;
686 fputs_unfiltered (msg, gdb_stderr);
687 abort ();
688 default:
689 dejavu = 3;
690 write (STDERR_FILENO, msg, sizeof (msg));
691 exit (1);
692 }
c906108c 693
96baa820 694 /* Try to get the message out */
7be570e7 695 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 696 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 697 fputs_unfiltered ("\n", gdb_stderr);
c906108c 698
7be570e7
JM
699 /* Default (no case) is to quit GDB. When in batch mode this
700 lessens the likelhood of GDB going into an infinate loop. */
701 continue_p = query ("\
702An internal GDB error was detected. This may make make further\n\
703debugging unreliable. Continue this debugging session? ");
704
705 /* Default (no case) is to not dump core. Lessen the chance of GDB
706 leaving random core files around. */
707 dump_core_p = query ("\
708Create a core file containing the current state of GDB? ");
709
710 if (continue_p)
711 {
712 if (dump_core_p)
713 {
714 if (fork () == 0)
715 abort ();
716 }
717 }
718 else
719 {
720 if (dump_core_p)
721 abort ();
722 else
723 exit (1);
724 }
96baa820
JM
725
726 dejavu = 0;
727 return_to_top_level (RETURN_ERROR);
c906108c
SS
728}
729
4ce44c66
JM
730NORETURN void
731internal_error (char *string, ...)
732{
733 va_list ap;
734 va_start (ap, string);
735 internal_verror (string, ap);
736 va_end (ap);
737}
738
c906108c
SS
739/* The strerror() function can return NULL for errno values that are
740 out of range. Provide a "safe" version that always returns a
741 printable string. */
742
743char *
744safe_strerror (errnum)
745 int errnum;
746{
747 char *msg;
748 static char buf[32];
749
750 if ((msg = strerror (errnum)) == NULL)
751 {
752 sprintf (buf, "(undocumented errno %d)", errnum);
753 msg = buf;
754 }
755 return (msg);
756}
757
758/* The strsignal() function can return NULL for signal values that are
759 out of range. Provide a "safe" version that always returns a
760 printable string. */
761
762char *
763safe_strsignal (signo)
764 int signo;
765{
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strsignal (signo)) == NULL)
770 {
771 sprintf (buf, "(undocumented signal %d)", signo);
772 msg = buf;
773 }
774 return (msg);
775}
776
777
778/* Print the system error message for errno, and also mention STRING
779 as the file name for which the error was encountered.
780 Then return to command level. */
781
782NORETURN void
783perror_with_name (string)
784 char *string;
785{
786 char *err;
787 char *combined;
788
789 err = safe_strerror (errno);
790 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
791 strcpy (combined, string);
792 strcat (combined, ": ");
793 strcat (combined, err);
794
795 /* I understand setting these is a matter of taste. Still, some people
796 may clear errno but not know about bfd_error. Doing this here is not
797 unreasonable. */
798 bfd_set_error (bfd_error_no_error);
799 errno = 0;
800
c5aa993b 801 error ("%s.", combined);
c906108c
SS
802}
803
804/* Print the system error message for ERRCODE, and also mention STRING
805 as the file name for which the error was encountered. */
806
807void
808print_sys_errmsg (string, errcode)
809 char *string;
810 int errcode;
811{
812 char *err;
813 char *combined;
814
815 err = safe_strerror (errcode);
816 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
817 strcpy (combined, string);
818 strcat (combined, ": ");
819 strcat (combined, err);
820
821 /* We want anything which was printed on stdout to come out first, before
822 this message. */
823 gdb_flush (gdb_stdout);
824 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
825}
826
827/* Control C eventually causes this to be called, at a convenient time. */
828
829void
830quit ()
831{
832 serial_t gdb_stdout_serial = serial_fdopen (1);
833
834 target_terminal_ours ();
835
836 /* We want all output to appear now, before we print "Quit". We
837 have 3 levels of buffering we have to flush (it's possible that
838 some of these should be changed to flush the lower-level ones
839 too): */
840
841 /* 1. The _filtered buffer. */
c5aa993b 842 wrap_here ((char *) 0);
c906108c
SS
843
844 /* 2. The stdio buffer. */
845 gdb_flush (gdb_stdout);
846 gdb_flush (gdb_stderr);
847
848 /* 3. The system-level buffer. */
849 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
850 SERIAL_UN_FDOPEN (gdb_stdout_serial);
851
852 annotate_error_begin ();
853
854 /* Don't use *_filtered; we don't want to prompt the user to continue. */
855 if (quit_pre_print)
856 fprintf_unfiltered (gdb_stderr, quit_pre_print);
857
7be570e7
JM
858#ifdef __MSDOS__
859 /* No steenking SIGINT will ever be coming our way when the
860 program is resumed. Don't lie. */
861 fprintf_unfiltered (gdb_stderr, "Quit\n");
862#else
c906108c 863 if (job_control
c5aa993b
JM
864 /* If there is no terminal switching for this target, then we can't
865 possibly get screwed by the lack of job control. */
c906108c
SS
866 || current_target.to_terminal_ours == NULL)
867 fprintf_unfiltered (gdb_stderr, "Quit\n");
868 else
869 fprintf_unfiltered (gdb_stderr,
c5aa993b 870 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 871#endif
c906108c
SS
872 return_to_top_level (RETURN_QUIT);
873}
874
875
7be570e7 876#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
877
878/*
879 * Windows translates all keyboard and mouse events
880 * into a message which is appended to the message
881 * queue for the process.
882 */
883
c5aa993b
JM
884void
885notice_quit ()
c906108c 886{
c5aa993b 887 int k = win32pollquit ();
c906108c
SS
888 if (k == 1)
889 quit_flag = 1;
890 else if (k == 2)
891 immediate_quit = 1;
892}
893
4ce44c66 894#else /* !defined(_MSC_VER) */
c906108c 895
c5aa993b
JM
896void
897notice_quit ()
c906108c
SS
898{
899 /* Done by signals */
900}
901
4ce44c66 902#endif /* !defined(_MSC_VER) */
c906108c 903
c906108c 904/* Control C comes here */
c906108c
SS
905void
906request_quit (signo)
907 int signo;
908{
909 quit_flag = 1;
910 /* Restore the signal handler. Harmless with BSD-style signals, needed
911 for System V-style signals. So just always do it, rather than worrying
912 about USG defines and stuff like that. */
913 signal (signo, request_quit);
914
915#ifdef REQUEST_QUIT
916 REQUEST_QUIT;
917#else
c5aa993b 918 if (immediate_quit)
c906108c
SS
919 quit ();
920#endif
921}
c906108c
SS
922\f
923/* Memory management stuff (malloc friends). */
924
925/* Make a substitute size_t for non-ANSI compilers. */
926
927#ifndef HAVE_STDDEF_H
928#ifndef size_t
929#define size_t unsigned int
930#endif
931#endif
932
933#if !defined (USE_MMALLOC)
934
ed9a39eb
JM
935void *
936mcalloc (void *md, size_t number, size_t size)
937{
938 return calloc (number, size);
939}
940
c906108c
SS
941PTR
942mmalloc (md, size)
943 PTR md;
944 size_t size;
945{
946 return malloc (size);
947}
948
949PTR
950mrealloc (md, ptr, size)
951 PTR md;
952 PTR ptr;
953 size_t size;
954{
c5aa993b 955 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
956 return malloc (size);
957 else
958 return realloc (ptr, size);
959}
960
961void
962mfree (md, ptr)
963 PTR md;
964 PTR ptr;
965{
966 free (ptr);
967}
968
c5aa993b 969#endif /* USE_MMALLOC */
c906108c
SS
970
971#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
972
973void
974init_malloc (md)
975 PTR md;
976{
977}
978
979#else /* Have mmalloc and want corruption checking */
980
981static void
982malloc_botch ()
983{
96baa820
JM
984 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
985 abort ();
c906108c
SS
986}
987
988/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
989 by MD, to detect memory corruption. Note that MD may be NULL to specify
990 the default heap that grows via sbrk.
991
992 Note that for freshly created regions, we must call mmcheckf prior to any
993 mallocs in the region. Otherwise, any region which was allocated prior to
994 installing the checking hooks, which is later reallocated or freed, will
995 fail the checks! The mmcheck function only allows initial hooks to be
996 installed before the first mmalloc. However, anytime after we have called
997 mmcheck the first time to install the checking hooks, we can call it again
998 to update the function pointer to the memory corruption handler.
999
1000 Returns zero on failure, non-zero on success. */
1001
1002#ifndef MMCHECK_FORCE
1003#define MMCHECK_FORCE 0
1004#endif
1005
1006void
1007init_malloc (md)
1008 PTR md;
1009{
1010 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1011 {
1012 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1013 to something other than dummy_target, until after
1014 initialize_all_files(). */
c906108c
SS
1015
1016 fprintf_unfiltered
1017 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1018 fprintf_unfiltered
1019 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1020 }
1021
1022 mmtrace ();
1023}
1024
1025#endif /* Have mmalloc and want corruption checking */
1026
1027/* Called when a memory allocation fails, with the number of bytes of
1028 memory requested in SIZE. */
1029
1030NORETURN void
1031nomem (size)
1032 long size;
1033{
1034 if (size > 0)
1035 {
96baa820 1036 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1037 }
1038 else
1039 {
96baa820 1040 internal_error ("virtual memory exhausted.");
c906108c
SS
1041 }
1042}
1043
1044/* Like mmalloc but get error if no storage available, and protect against
1045 the caller wanting to allocate zero bytes. Whether to return NULL for
1046 a zero byte request, or translate the request into a request for one
1047 byte of zero'd storage, is a religious issue. */
1048
1049PTR
1050xmmalloc (md, size)
1051 PTR md;
1052 long size;
1053{
1054 register PTR val;
1055
1056 if (size == 0)
1057 {
1058 val = NULL;
1059 }
1060 else if ((val = mmalloc (md, size)) == NULL)
1061 {
1062 nomem (size);
1063 }
1064 return (val);
1065}
1066
1067/* Like mrealloc but get error if no storage available. */
1068
1069PTR
1070xmrealloc (md, ptr, size)
1071 PTR md;
1072 PTR ptr;
1073 long size;
1074{
1075 register PTR val;
1076
1077 if (ptr != NULL)
1078 {
1079 val = mrealloc (md, ptr, size);
1080 }
1081 else
1082 {
1083 val = mmalloc (md, size);
1084 }
1085 if (val == NULL)
1086 {
1087 nomem (size);
1088 }
1089 return (val);
1090}
1091
1092/* Like malloc but get error if no storage available, and protect against
1093 the caller wanting to allocate zero bytes. */
1094
1095PTR
1096xmalloc (size)
1097 size_t size;
1098{
1099 return (xmmalloc ((PTR) NULL, size));
1100}
1101
ed9a39eb
JM
1102/* Like calloc but get error if no storage available */
1103
1104PTR
1105xcalloc (size_t number, size_t size)
1106{
1107 void *mem = mcalloc (NULL, number, size);
1108 if (mem == NULL)
1109 nomem (number * size);
1110 return mem;
1111}
1112
c906108c
SS
1113/* Like mrealloc but get error if no storage available. */
1114
1115PTR
1116xrealloc (ptr, size)
1117 PTR ptr;
1118 size_t size;
1119{
1120 return (xmrealloc ((PTR) NULL, ptr, size));
1121}
c906108c 1122\f
c5aa993b 1123
c906108c
SS
1124/* My replacement for the read system call.
1125 Used like `read' but keeps going if `read' returns too soon. */
1126
1127int
1128myread (desc, addr, len)
1129 int desc;
1130 char *addr;
1131 int len;
1132{
1133 register int val;
1134 int orglen = len;
1135
1136 while (len > 0)
1137 {
1138 val = read (desc, addr, len);
1139 if (val < 0)
1140 return val;
1141 if (val == 0)
1142 return orglen - len;
1143 len -= val;
1144 addr += val;
1145 }
1146 return orglen;
1147}
1148\f
1149/* Make a copy of the string at PTR with SIZE characters
1150 (and add a null character at the end in the copy).
1151 Uses malloc to get the space. Returns the address of the copy. */
1152
1153char *
1154savestring (ptr, size)
1155 const char *ptr;
1156 int size;
1157{
1158 register char *p = (char *) xmalloc (size + 1);
1159 memcpy (p, ptr, size);
1160 p[size] = 0;
1161 return p;
1162}
1163
1164char *
1165msavestring (md, ptr, size)
1166 PTR md;
1167 const char *ptr;
1168 int size;
1169{
1170 register char *p = (char *) xmmalloc (md, size + 1);
1171 memcpy (p, ptr, size);
1172 p[size] = 0;
1173 return p;
1174}
1175
1176/* The "const" is so it compiles under DGUX (which prototypes strsave
1177 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1178 Doesn't real strsave return NULL if out of memory? */
1179char *
1180strsave (ptr)
1181 const char *ptr;
1182{
1183 return savestring (ptr, strlen (ptr));
1184}
1185
1186char *
1187mstrsave (md, ptr)
1188 PTR md;
1189 const char *ptr;
1190{
1191 return (msavestring (md, ptr, strlen (ptr)));
1192}
1193
1194void
1195print_spaces (n, file)
1196 register int n;
d9fcf2fb 1197 register struct ui_file *file;
c906108c 1198{
392a587b 1199 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1200}
1201
1202/* Print a host address. */
1203
1204void
d9fcf2fb 1205gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1206{
1207
1208 /* We could use the %p conversion specifier to fprintf if we had any
1209 way of knowing whether this host supports it. But the following
1210 should work on the Alpha and on 32 bit machines. */
1211
c5aa993b 1212 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1213}
1214
1215/* Ask user a y-or-n question and return 1 iff answer is yes.
1216 Takes three args which are given to printf to print the question.
1217 The first, a control string, should end in "? ".
1218 It should not say how to answer, because we do that. */
1219
1220/* VARARGS */
1221int
c5aa993b 1222query (char *ctlstr,...)
c906108c
SS
1223{
1224 va_list args;
1225 register int answer;
1226 register int ans2;
1227 int retval;
1228
c906108c 1229 va_start (args, ctlstr);
c906108c
SS
1230
1231 if (query_hook)
1232 {
1233 return query_hook (ctlstr, args);
1234 }
1235
1236 /* Automatically answer "yes" if input is not from a terminal. */
1237 if (!input_from_terminal_p ())
1238 return 1;
1239#ifdef MPW
1240 /* FIXME Automatically answer "yes" if called from MacGDB. */
1241 if (mac_app)
1242 return 1;
1243#endif /* MPW */
1244
1245 while (1)
1246 {
1247 wrap_here (""); /* Flush any buffered output */
1248 gdb_flush (gdb_stdout);
1249
1250 if (annotation_level > 1)
1251 printf_filtered ("\n\032\032pre-query\n");
1252
1253 vfprintf_filtered (gdb_stdout, ctlstr, args);
1254 printf_filtered ("(y or n) ");
1255
1256 if (annotation_level > 1)
1257 printf_filtered ("\n\032\032query\n");
1258
1259#ifdef MPW
1260 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1261 have a prompt on the front of it. */
c906108c
SS
1262 if (!mac_app)
1263 fputs_unfiltered ("\n", gdb_stdout);
1264#endif /* MPW */
1265
c5aa993b 1266 wrap_here ("");
c906108c
SS
1267 gdb_flush (gdb_stdout);
1268
1269#if defined(TUI)
c5aa993b 1270 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1271#endif
1272 answer = fgetc (stdin);
1273#if defined(TUI)
1274 else
c5aa993b 1275 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1276
1277#endif
1278 clearerr (stdin); /* in case of C-d */
1279 if (answer == EOF) /* C-d */
c5aa993b 1280 {
c906108c
SS
1281 retval = 1;
1282 break;
1283 }
1284 /* Eat rest of input line, to EOF or newline */
1285 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1286 do
c906108c
SS
1287 {
1288#if defined(TUI)
c5aa993b 1289 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1290#endif
1291 ans2 = fgetc (stdin);
1292#if defined(TUI)
1293 else
c5aa993b 1294 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1295#endif
1296 clearerr (stdin);
1297 }
c5aa993b
JM
1298 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1299 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1300
1301 if (answer >= 'a')
1302 answer -= 040;
1303 if (answer == 'Y')
1304 {
1305 retval = 1;
1306 break;
1307 }
1308 if (answer == 'N')
1309 {
1310 retval = 0;
1311 break;
1312 }
1313 printf_filtered ("Please answer y or n.\n");
1314 }
1315
1316 if (annotation_level > 1)
1317 printf_filtered ("\n\032\032post-query\n");
1318 return retval;
1319}
c906108c 1320\f
c5aa993b 1321
c906108c
SS
1322/* Parse a C escape sequence. STRING_PTR points to a variable
1323 containing a pointer to the string to parse. That pointer
1324 should point to the character after the \. That pointer
1325 is updated past the characters we use. The value of the
1326 escape sequence is returned.
1327
1328 A negative value means the sequence \ newline was seen,
1329 which is supposed to be equivalent to nothing at all.
1330
1331 If \ is followed by a null character, we return a negative
1332 value and leave the string pointer pointing at the null character.
1333
1334 If \ is followed by 000, we return 0 and leave the string pointer
1335 after the zeros. A value of 0 does not mean end of string. */
1336
1337int
1338parse_escape (string_ptr)
1339 char **string_ptr;
1340{
1341 register int c = *(*string_ptr)++;
1342 switch (c)
1343 {
1344 case 'a':
1345 return 007; /* Bell (alert) char */
1346 case 'b':
1347 return '\b';
1348 case 'e': /* Escape character */
1349 return 033;
1350 case 'f':
1351 return '\f';
1352 case 'n':
1353 return '\n';
1354 case 'r':
1355 return '\r';
1356 case 't':
1357 return '\t';
1358 case 'v':
1359 return '\v';
1360 case '\n':
1361 return -2;
1362 case 0:
1363 (*string_ptr)--;
1364 return 0;
1365 case '^':
1366 c = *(*string_ptr)++;
1367 if (c == '\\')
1368 c = parse_escape (string_ptr);
1369 if (c == '?')
1370 return 0177;
1371 return (c & 0200) | (c & 037);
c5aa993b 1372
c906108c
SS
1373 case '0':
1374 case '1':
1375 case '2':
1376 case '3':
1377 case '4':
1378 case '5':
1379 case '6':
1380 case '7':
1381 {
1382 register int i = c - '0';
1383 register int count = 0;
1384 while (++count < 3)
1385 {
1386 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1387 {
1388 i *= 8;
1389 i += c - '0';
1390 }
1391 else
1392 {
1393 (*string_ptr)--;
1394 break;
1395 }
1396 }
1397 return i;
1398 }
1399 default:
1400 return c;
1401 }
1402}
1403\f
1404/* Print the character C on STREAM as part of the contents of a literal
1405 string whose delimiter is QUOTER. Note that this routine should only
1406 be call for printing things which are independent of the language
1407 of the program being debugged. */
1408
d9fcf2fb 1409static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
43e526b9
JM
1410
1411static void
1412printchar (c, do_fputs, do_fprintf, stream, quoter)
1413 int c;
d9fcf2fb
JM
1414 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1415 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1416 struct ui_file *stream;
c906108c
SS
1417 int quoter;
1418{
1419
1420 c &= 0xFF; /* Avoid sign bit follies */
1421
c5aa993b
JM
1422 if (c < 0x20 || /* Low control chars */
1423 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1424 (sevenbit_strings && c >= 0x80))
1425 { /* high order bit set */
1426 switch (c)
1427 {
1428 case '\n':
43e526b9 1429 do_fputs ("\\n", stream);
c5aa993b
JM
1430 break;
1431 case '\b':
43e526b9 1432 do_fputs ("\\b", stream);
c5aa993b
JM
1433 break;
1434 case '\t':
43e526b9 1435 do_fputs ("\\t", stream);
c5aa993b
JM
1436 break;
1437 case '\f':
43e526b9 1438 do_fputs ("\\f", stream);
c5aa993b
JM
1439 break;
1440 case '\r':
43e526b9 1441 do_fputs ("\\r", stream);
c5aa993b
JM
1442 break;
1443 case '\033':
43e526b9 1444 do_fputs ("\\e", stream);
c5aa993b
JM
1445 break;
1446 case '\007':
43e526b9 1447 do_fputs ("\\a", stream);
c5aa993b
JM
1448 break;
1449 default:
43e526b9 1450 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 if (c == '\\' || c == quoter)
43e526b9
JM
1457 do_fputs ("\\", stream);
1458 do_fprintf (stream, "%c", c);
c5aa993b 1459 }
c906108c 1460}
43e526b9
JM
1461
1462/* Print the character C on STREAM as part of the contents of a
1463 literal string whose delimiter is QUOTER. Note that these routines
1464 should only be call for printing things which are independent of
1465 the language of the program being debugged. */
1466
1467void
1468fputstr_filtered (str, quoter, stream)
1469 const char *str;
1470 int quoter;
d9fcf2fb 1471 struct ui_file *stream;
43e526b9
JM
1472{
1473 while (*str)
1474 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1475}
1476
1477void
1478fputstr_unfiltered (str, quoter, stream)
1479 const char *str;
1480 int quoter;
d9fcf2fb 1481 struct ui_file *stream;
43e526b9
JM
1482{
1483 while (*str)
1484 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1485}
1486
1487void
1488fputstrn_unfiltered (str, n, quoter, stream)
1489 const char *str;
1490 int n;
1491 int quoter;
d9fcf2fb 1492 struct ui_file *stream;
43e526b9
JM
1493{
1494 int i;
1495 for (i = 0; i < n; i++)
1496 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1497}
1498
c906108c 1499\f
c5aa993b 1500
c906108c
SS
1501/* Number of lines per page or UINT_MAX if paging is disabled. */
1502static unsigned int lines_per_page;
e514a9d6 1503/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1504static unsigned int chars_per_line;
1505/* Current count of lines printed on this page, chars on this line. */
1506static unsigned int lines_printed, chars_printed;
1507
1508/* Buffer and start column of buffered text, for doing smarter word-
1509 wrapping. When someone calls wrap_here(), we start buffering output
1510 that comes through fputs_filtered(). If we see a newline, we just
1511 spit it out and forget about the wrap_here(). If we see another
1512 wrap_here(), we spit it out and remember the newer one. If we see
1513 the end of the line, we spit out a newline, the indent, and then
1514 the buffered output. */
1515
1516/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1517 are waiting to be output (they have already been counted in chars_printed).
1518 When wrap_buffer[0] is null, the buffer is empty. */
1519static char *wrap_buffer;
1520
1521/* Pointer in wrap_buffer to the next character to fill. */
1522static char *wrap_pointer;
1523
1524/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1525 is non-zero. */
1526static char *wrap_indent;
1527
1528/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1529 is not in effect. */
1530static int wrap_column;
c906108c 1531\f
c5aa993b 1532
c906108c
SS
1533/* Inialize the lines and chars per page */
1534void
c5aa993b 1535init_page_info ()
c906108c
SS
1536{
1537#if defined(TUI)
c5aa993b 1538 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1539 {
1540 lines_per_page = cmdWin->generic.height;
1541 chars_per_line = cmdWin->generic.width;
1542 }
1543 else
1544#endif
1545 {
1546 /* These defaults will be used if we are unable to get the correct
1547 values from termcap. */
1548#if defined(__GO32__)
c5aa993b
JM
1549 lines_per_page = ScreenRows ();
1550 chars_per_line = ScreenCols ();
1551#else
c906108c
SS
1552 lines_per_page = 24;
1553 chars_per_line = 80;
1554
1555#if !defined (MPW) && !defined (_WIN32)
1556 /* No termcap under MPW, although might be cool to do something
1557 by looking at worksheet or console window sizes. */
1558 /* Initialize the screen height and width from termcap. */
1559 {
c5aa993b 1560 char *termtype = getenv ("TERM");
c906108c 1561
c5aa993b
JM
1562 /* Positive means success, nonpositive means failure. */
1563 int status;
c906108c 1564
c5aa993b
JM
1565 /* 2048 is large enough for all known terminals, according to the
1566 GNU termcap manual. */
1567 char term_buffer[2048];
c906108c 1568
c5aa993b
JM
1569 if (termtype)
1570 {
c906108c
SS
1571 status = tgetent (term_buffer, termtype);
1572 if (status > 0)
1573 {
c5aa993b 1574 int val;
c906108c 1575 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1576
1577 val = tgetnum ("li");
1578 if (val >= 0 && !running_in_emacs)
1579 lines_per_page = val;
1580 else
1581 /* The number of lines per page is not mentioned
c906108c
SS
1582 in the terminal description. This probably means
1583 that paging is not useful (e.g. emacs shell window),
1584 so disable paging. */
c5aa993b
JM
1585 lines_per_page = UINT_MAX;
1586
1587 val = tgetnum ("co");
1588 if (val >= 0)
1589 chars_per_line = val;
c906108c 1590 }
c5aa993b 1591 }
c906108c
SS
1592 }
1593#endif /* MPW */
1594
1595#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1596
1597 /* If there is a better way to determine the window size, use it. */
1598 SIGWINCH_HANDLER (SIGWINCH);
1599#endif
1600#endif
1601 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1602 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1603 lines_per_page = UINT_MAX;
1604 } /* the command_line_version */
1605 set_width ();
c906108c
SS
1606}
1607
1608static void
c5aa993b 1609set_width ()
c906108c
SS
1610{
1611 if (chars_per_line == 0)
c5aa993b 1612 init_page_info ();
c906108c
SS
1613
1614 if (!wrap_buffer)
1615 {
1616 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1617 wrap_buffer[0] = '\0';
1618 }
1619 else
1620 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1621 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1622}
1623
1624/* ARGSUSED */
c5aa993b 1625static void
c906108c
SS
1626set_width_command (args, from_tty, c)
1627 char *args;
1628 int from_tty;
1629 struct cmd_list_element *c;
1630{
1631 set_width ();
1632}
1633
1634/* Wait, so the user can read what's on the screen. Prompt the user
1635 to continue by pressing RETURN. */
1636
1637static void
1638prompt_for_continue ()
1639{
1640 char *ignore;
1641 char cont_prompt[120];
1642
1643 if (annotation_level > 1)
1644 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1645
1646 strcpy (cont_prompt,
1647 "---Type <return> to continue, or q <return> to quit---");
1648 if (annotation_level > 1)
1649 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1650
1651 /* We must do this *before* we call gdb_readline, else it will eventually
1652 call us -- thinking that we're trying to print beyond the end of the
1653 screen. */
1654 reinitialize_more_filter ();
1655
1656 immediate_quit++;
1657 /* On a real operating system, the user can quit with SIGINT.
1658 But not on GO32.
1659
1660 'q' is provided on all systems so users don't have to change habits
1661 from system to system, and because telling them what to do in
1662 the prompt is more user-friendly than expecting them to think of
1663 SIGINT. */
1664 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1665 whereas control-C to gdb_readline will cause the user to get dumped
1666 out to DOS. */
1667 ignore = readline (cont_prompt);
1668
1669 if (annotation_level > 1)
1670 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1671
1672 if (ignore)
1673 {
1674 char *p = ignore;
1675 while (*p == ' ' || *p == '\t')
1676 ++p;
1677 if (p[0] == 'q')
0f71a2f6 1678 {
6426a772 1679 if (!event_loop_p)
0f71a2f6
JM
1680 request_quit (SIGINT);
1681 else
c5aa993b 1682 async_request_quit (0);
0f71a2f6 1683 }
c906108c
SS
1684 free (ignore);
1685 }
1686 immediate_quit--;
1687
1688 /* Now we have to do this again, so that GDB will know that it doesn't
1689 need to save the ---Type <return>--- line at the top of the screen. */
1690 reinitialize_more_filter ();
1691
1692 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1693}
1694
1695/* Reinitialize filter; ie. tell it to reset to original values. */
1696
1697void
1698reinitialize_more_filter ()
1699{
1700 lines_printed = 0;
1701 chars_printed = 0;
1702}
1703
1704/* Indicate that if the next sequence of characters overflows the line,
1705 a newline should be inserted here rather than when it hits the end.
1706 If INDENT is non-null, it is a string to be printed to indent the
1707 wrapped part on the next line. INDENT must remain accessible until
1708 the next call to wrap_here() or until a newline is printed through
1709 fputs_filtered().
1710
1711 If the line is already overfull, we immediately print a newline and
1712 the indentation, and disable further wrapping.
1713
1714 If we don't know the width of lines, but we know the page height,
1715 we must not wrap words, but should still keep track of newlines
1716 that were explicitly printed.
1717
1718 INDENT should not contain tabs, as that will mess up the char count
1719 on the next line. FIXME.
1720
1721 This routine is guaranteed to force out any output which has been
1722 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1723 used to force out output from the wrap_buffer. */
1724
1725void
c5aa993b 1726wrap_here (indent)
c906108c
SS
1727 char *indent;
1728{
1729 /* This should have been allocated, but be paranoid anyway. */
1730 if (!wrap_buffer)
1731 abort ();
1732
1733 if (wrap_buffer[0])
1734 {
1735 *wrap_pointer = '\0';
1736 fputs_unfiltered (wrap_buffer, gdb_stdout);
1737 }
1738 wrap_pointer = wrap_buffer;
1739 wrap_buffer[0] = '\0';
c5aa993b 1740 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1741 {
1742 wrap_column = 0;
1743 }
1744 else if (chars_printed >= chars_per_line)
1745 {
1746 puts_filtered ("\n");
1747 if (indent != NULL)
1748 puts_filtered (indent);
1749 wrap_column = 0;
1750 }
1751 else
1752 {
1753 wrap_column = chars_printed;
1754 if (indent == NULL)
1755 wrap_indent = "";
1756 else
1757 wrap_indent = indent;
1758 }
1759}
1760
1761/* Ensure that whatever gets printed next, using the filtered output
1762 commands, starts at the beginning of the line. I.E. if there is
1763 any pending output for the current line, flush it and start a new
1764 line. Otherwise do nothing. */
1765
1766void
1767begin_line ()
1768{
1769 if (chars_printed > 0)
1770 {
1771 puts_filtered ("\n");
1772 }
1773}
1774
ac9a91a7 1775
c906108c
SS
1776/* Like fputs but if FILTER is true, pause after every screenful.
1777
1778 Regardless of FILTER can wrap at points other than the final
1779 character of a line.
1780
1781 Unlike fputs, fputs_maybe_filtered does not return a value.
1782 It is OK for LINEBUFFER to be NULL, in which case just don't print
1783 anything.
1784
1785 Note that a longjmp to top level may occur in this routine (only if
1786 FILTER is true) (since prompt_for_continue may do so) so this
1787 routine should not be called when cleanups are not in place. */
1788
1789static void
1790fputs_maybe_filtered (linebuffer, stream, filter)
1791 const char *linebuffer;
d9fcf2fb 1792 struct ui_file *stream;
c906108c
SS
1793 int filter;
1794{
1795 const char *lineptr;
1796
1797 if (linebuffer == 0)
1798 return;
1799
1800 /* Don't do any filtering if it is disabled. */
7a292a7a 1801 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1802 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1803 {
1804 fputs_unfiltered (linebuffer, stream);
1805 return;
1806 }
1807
1808 /* Go through and output each character. Show line extension
1809 when this is necessary; prompt user for new page when this is
1810 necessary. */
c5aa993b 1811
c906108c
SS
1812 lineptr = linebuffer;
1813 while (*lineptr)
1814 {
1815 /* Possible new page. */
1816 if (filter &&
1817 (lines_printed >= lines_per_page - 1))
1818 prompt_for_continue ();
1819
1820 while (*lineptr && *lineptr != '\n')
1821 {
1822 /* Print a single line. */
1823 if (*lineptr == '\t')
1824 {
1825 if (wrap_column)
1826 *wrap_pointer++ = '\t';
1827 else
1828 fputc_unfiltered ('\t', stream);
1829 /* Shifting right by 3 produces the number of tab stops
1830 we have already passed, and then adding one and
c5aa993b 1831 shifting left 3 advances to the next tab stop. */
c906108c
SS
1832 chars_printed = ((chars_printed >> 3) + 1) << 3;
1833 lineptr++;
1834 }
1835 else
1836 {
1837 if (wrap_column)
1838 *wrap_pointer++ = *lineptr;
1839 else
c5aa993b 1840 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1841 chars_printed++;
1842 lineptr++;
1843 }
c5aa993b 1844
c906108c
SS
1845 if (chars_printed >= chars_per_line)
1846 {
1847 unsigned int save_chars = chars_printed;
1848
1849 chars_printed = 0;
1850 lines_printed++;
1851 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1852 if chars_per_line is right, we probably just overflowed
1853 anyway; if it's wrong, let us keep going. */
c906108c
SS
1854 if (wrap_column)
1855 fputc_unfiltered ('\n', stream);
1856
1857 /* Possible new page. */
1858 if (lines_printed >= lines_per_page - 1)
1859 prompt_for_continue ();
1860
1861 /* Now output indentation and wrapped string */
1862 if (wrap_column)
1863 {
1864 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1865 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1866 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1867 /* FIXME, this strlen is what prevents wrap_indent from
1868 containing tabs. However, if we recurse to print it
1869 and count its chars, we risk trouble if wrap_indent is
1870 longer than (the user settable) chars_per_line.
1871 Note also that this can set chars_printed > chars_per_line
1872 if we are printing a long string. */
1873 chars_printed = strlen (wrap_indent)
c5aa993b 1874 + (save_chars - wrap_column);
c906108c
SS
1875 wrap_pointer = wrap_buffer; /* Reset buffer */
1876 wrap_buffer[0] = '\0';
c5aa993b
JM
1877 wrap_column = 0; /* And disable fancy wrap */
1878 }
c906108c
SS
1879 }
1880 }
1881
1882 if (*lineptr == '\n')
1883 {
1884 chars_printed = 0;
c5aa993b 1885 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1886 lines_printed++;
1887 fputc_unfiltered ('\n', stream);
1888 lineptr++;
1889 }
1890 }
1891}
1892
1893void
1894fputs_filtered (linebuffer, stream)
1895 const char *linebuffer;
d9fcf2fb 1896 struct ui_file *stream;
c906108c
SS
1897{
1898 fputs_maybe_filtered (linebuffer, stream, 1);
1899}
1900
1901int
1902putchar_unfiltered (c)
1903 int c;
1904{
11cf8741 1905 char buf = c;
d9fcf2fb 1906 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1907 return c;
1908}
1909
1910int
1911fputc_unfiltered (c, stream)
1912 int c;
d9fcf2fb 1913 struct ui_file *stream;
c906108c 1914{
11cf8741 1915 char buf = c;
d9fcf2fb 1916 ui_file_write (stream, &buf, 1);
c906108c
SS
1917 return c;
1918}
1919
1920int
1921fputc_filtered (c, stream)
1922 int c;
d9fcf2fb 1923 struct ui_file *stream;
c906108c
SS
1924{
1925 char buf[2];
1926
1927 buf[0] = c;
1928 buf[1] = 0;
1929 fputs_filtered (buf, stream);
1930 return c;
1931}
1932
1933/* puts_debug is like fputs_unfiltered, except it prints special
1934 characters in printable fashion. */
1935
1936void
1937puts_debug (prefix, string, suffix)
1938 char *prefix;
1939 char *string;
1940 char *suffix;
1941{
1942 int ch;
1943
1944 /* Print prefix and suffix after each line. */
1945 static int new_line = 1;
1946 static int return_p = 0;
1947 static char *prev_prefix = "";
1948 static char *prev_suffix = "";
1949
1950 if (*string == '\n')
1951 return_p = 0;
1952
1953 /* If the prefix is changing, print the previous suffix, a new line,
1954 and the new prefix. */
c5aa993b 1955 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1956 {
9846de1b
JM
1957 fputs_unfiltered (prev_suffix, gdb_stdlog);
1958 fputs_unfiltered ("\n", gdb_stdlog);
1959 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1960 }
1961
1962 /* Print prefix if we printed a newline during the previous call. */
1963 if (new_line)
1964 {
1965 new_line = 0;
9846de1b 1966 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1967 }
1968
1969 prev_prefix = prefix;
1970 prev_suffix = suffix;
1971
1972 /* Output characters in a printable format. */
1973 while ((ch = *string++) != '\0')
1974 {
1975 switch (ch)
c5aa993b 1976 {
c906108c
SS
1977 default:
1978 if (isprint (ch))
9846de1b 1979 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1980
1981 else
9846de1b 1982 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1983 break;
1984
c5aa993b
JM
1985 case '\\':
1986 fputs_unfiltered ("\\\\", gdb_stdlog);
1987 break;
1988 case '\b':
1989 fputs_unfiltered ("\\b", gdb_stdlog);
1990 break;
1991 case '\f':
1992 fputs_unfiltered ("\\f", gdb_stdlog);
1993 break;
1994 case '\n':
1995 new_line = 1;
1996 fputs_unfiltered ("\\n", gdb_stdlog);
1997 break;
1998 case '\r':
1999 fputs_unfiltered ("\\r", gdb_stdlog);
2000 break;
2001 case '\t':
2002 fputs_unfiltered ("\\t", gdb_stdlog);
2003 break;
2004 case '\v':
2005 fputs_unfiltered ("\\v", gdb_stdlog);
2006 break;
2007 }
c906108c
SS
2008
2009 return_p = ch == '\r';
2010 }
2011
2012 /* Print suffix if we printed a newline. */
2013 if (new_line)
2014 {
9846de1b
JM
2015 fputs_unfiltered (suffix, gdb_stdlog);
2016 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2017 }
2018}
2019
2020
2021/* Print a variable number of ARGS using format FORMAT. If this
2022 information is going to put the amount written (since the last call
2023 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2024 call prompt_for_continue to get the users permision to continue.
2025
2026 Unlike fprintf, this function does not return a value.
2027
2028 We implement three variants, vfprintf (takes a vararg list and stream),
2029 fprintf (takes a stream to write on), and printf (the usual).
2030
2031 Note also that a longjmp to top level may occur in this routine
2032 (since prompt_for_continue may do so) so this routine should not be
2033 called when cleanups are not in place. */
2034
2035static void
2036vfprintf_maybe_filtered (stream, format, args, filter)
d9fcf2fb 2037 struct ui_file *stream;
c906108c
SS
2038 const char *format;
2039 va_list args;
2040 int filter;
2041{
2042 char *linebuffer;
2043 struct cleanup *old_cleanups;
2044
2045 vasprintf (&linebuffer, format, args);
2046 if (linebuffer == NULL)
2047 {
2048 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2049 exit (1);
2050 }
2051 old_cleanups = make_cleanup (free, linebuffer);
2052 fputs_maybe_filtered (linebuffer, stream, filter);
2053 do_cleanups (old_cleanups);
2054}
2055
2056
2057void
2058vfprintf_filtered (stream, format, args)
d9fcf2fb 2059 struct ui_file *stream;
c906108c
SS
2060 const char *format;
2061 va_list args;
2062{
2063 vfprintf_maybe_filtered (stream, format, args, 1);
2064}
2065
2066void
2067vfprintf_unfiltered (stream, format, args)
d9fcf2fb 2068 struct ui_file *stream;
c906108c
SS
2069 const char *format;
2070 va_list args;
2071{
2072 char *linebuffer;
2073 struct cleanup *old_cleanups;
2074
2075 vasprintf (&linebuffer, format, args);
2076 if (linebuffer == NULL)
2077 {
2078 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2079 exit (1);
2080 }
2081 old_cleanups = make_cleanup (free, linebuffer);
2082 fputs_unfiltered (linebuffer, stream);
2083 do_cleanups (old_cleanups);
2084}
2085
2086void
2087vprintf_filtered (format, args)
2088 const char *format;
2089 va_list args;
2090{
2091 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2092}
2093
2094void
2095vprintf_unfiltered (format, args)
2096 const char *format;
2097 va_list args;
2098{
2099 vfprintf_unfiltered (gdb_stdout, format, args);
2100}
2101
c906108c 2102void
d9fcf2fb 2103fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2104{
2105 va_list args;
c906108c 2106 va_start (args, format);
c906108c
SS
2107 vfprintf_filtered (stream, format, args);
2108 va_end (args);
2109}
2110
c906108c 2111void
d9fcf2fb 2112fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2113{
2114 va_list args;
c906108c 2115 va_start (args, format);
c906108c
SS
2116 vfprintf_unfiltered (stream, format, args);
2117 va_end (args);
2118}
2119
2120/* Like fprintf_filtered, but prints its result indented.
2121 Called as fprintfi_filtered (spaces, stream, format, ...); */
2122
c906108c 2123void
d9fcf2fb 2124fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2125{
2126 va_list args;
c906108c 2127 va_start (args, format);
c906108c
SS
2128 print_spaces_filtered (spaces, stream);
2129
2130 vfprintf_filtered (stream, format, args);
2131 va_end (args);
2132}
2133
2134
c906108c 2135void
c5aa993b 2136printf_filtered (const char *format,...)
c906108c
SS
2137{
2138 va_list args;
c906108c 2139 va_start (args, format);
c906108c
SS
2140 vfprintf_filtered (gdb_stdout, format, args);
2141 va_end (args);
2142}
2143
2144
c906108c 2145void
c5aa993b 2146printf_unfiltered (const char *format,...)
c906108c
SS
2147{
2148 va_list args;
c906108c 2149 va_start (args, format);
c906108c
SS
2150 vfprintf_unfiltered (gdb_stdout, format, args);
2151 va_end (args);
2152}
2153
2154/* Like printf_filtered, but prints it's result indented.
2155 Called as printfi_filtered (spaces, format, ...); */
2156
c906108c 2157void
c5aa993b 2158printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2159{
2160 va_list args;
c906108c 2161 va_start (args, format);
c906108c
SS
2162 print_spaces_filtered (spaces, gdb_stdout);
2163 vfprintf_filtered (gdb_stdout, format, args);
2164 va_end (args);
2165}
2166
2167/* Easy -- but watch out!
2168
2169 This routine is *not* a replacement for puts()! puts() appends a newline.
2170 This one doesn't, and had better not! */
2171
2172void
2173puts_filtered (string)
2174 const char *string;
2175{
2176 fputs_filtered (string, gdb_stdout);
2177}
2178
2179void
2180puts_unfiltered (string)
2181 const char *string;
2182{
2183 fputs_unfiltered (string, gdb_stdout);
2184}
2185
2186/* Return a pointer to N spaces and a null. The pointer is good
2187 until the next call to here. */
2188char *
2189n_spaces (n)
2190 int n;
2191{
392a587b
JM
2192 char *t;
2193 static char *spaces = 0;
2194 static int max_spaces = -1;
c906108c
SS
2195
2196 if (n > max_spaces)
2197 {
2198 if (spaces)
2199 free (spaces);
c5aa993b
JM
2200 spaces = (char *) xmalloc (n + 1);
2201 for (t = spaces + n; t != spaces;)
c906108c
SS
2202 *--t = ' ';
2203 spaces[n] = '\0';
2204 max_spaces = n;
2205 }
2206
2207 return spaces + max_spaces - n;
2208}
2209
2210/* Print N spaces. */
2211void
2212print_spaces_filtered (n, stream)
2213 int n;
d9fcf2fb 2214 struct ui_file *stream;
c906108c
SS
2215{
2216 fputs_filtered (n_spaces (n), stream);
2217}
2218\f
2219/* C++ demangler stuff. */
2220
2221/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2222 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2223 If the name is not mangled, or the language for the name is unknown, or
2224 demangling is off, the name is printed in its "raw" form. */
2225
2226void
2227fprintf_symbol_filtered (stream, name, lang, arg_mode)
d9fcf2fb 2228 struct ui_file *stream;
c906108c
SS
2229 char *name;
2230 enum language lang;
2231 int arg_mode;
2232{
2233 char *demangled;
2234
2235 if (name != NULL)
2236 {
2237 /* If user wants to see raw output, no problem. */
2238 if (!demangle)
2239 {
2240 fputs_filtered (name, stream);
2241 }
2242 else
2243 {
2244 switch (lang)
2245 {
2246 case language_cplus:
2247 demangled = cplus_demangle (name, arg_mode);
2248 break;
2249 case language_java:
2250 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2251 break;
2252 case language_chill:
2253 demangled = chill_demangle (name);
2254 break;
2255 default:
2256 demangled = NULL;
2257 break;
2258 }
2259 fputs_filtered (demangled ? demangled : name, stream);
2260 if (demangled != NULL)
2261 {
2262 free (demangled);
2263 }
2264 }
2265 }
2266}
2267
2268/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2269 differences in whitespace. Returns 0 if they match, non-zero if they
2270 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2271
c906108c
SS
2272 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2273 This "feature" is useful when searching for matching C++ function names
2274 (such as if the user types 'break FOO', where FOO is a mangled C++
2275 function). */
2276
2277int
2278strcmp_iw (string1, string2)
2279 const char *string1;
2280 const char *string2;
2281{
2282 while ((*string1 != '\0') && (*string2 != '\0'))
2283 {
2284 while (isspace (*string1))
2285 {
2286 string1++;
2287 }
2288 while (isspace (*string2))
2289 {
2290 string2++;
2291 }
2292 if (*string1 != *string2)
2293 {
2294 break;
2295 }
2296 if (*string1 != '\0')
2297 {
2298 string1++;
2299 string2++;
2300 }
2301 }
2302 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2303}
c906108c 2304\f
c5aa993b 2305
c906108c 2306/*
c5aa993b
JM
2307 ** subset_compare()
2308 ** Answer whether string_to_compare is a full or partial match to
2309 ** template_string. The partial match must be in sequence starting
2310 ** at index 0.
2311 */
c906108c 2312int
7a292a7a 2313subset_compare (string_to_compare, template_string)
c5aa993b
JM
2314 char *string_to_compare;
2315 char *template_string;
7a292a7a
SS
2316{
2317 int match;
c5aa993b
JM
2318 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2319 strlen (string_to_compare) <= strlen (template_string))
2320 match = (strncmp (template_string,
2321 string_to_compare,
2322 strlen (string_to_compare)) == 0);
7a292a7a
SS
2323 else
2324 match = 0;
2325 return match;
2326}
c906108c
SS
2327
2328
7a292a7a
SS
2329static void pagination_on_command PARAMS ((char *arg, int from_tty));
2330static void
2331pagination_on_command (arg, from_tty)
c5aa993b
JM
2332 char *arg;
2333 int from_tty;
c906108c
SS
2334{
2335 pagination_enabled = 1;
2336}
2337
7a292a7a
SS
2338static void pagination_on_command PARAMS ((char *arg, int from_tty));
2339static void
2340pagination_off_command (arg, from_tty)
c5aa993b
JM
2341 char *arg;
2342 int from_tty;
c906108c
SS
2343{
2344 pagination_enabled = 0;
2345}
c906108c 2346\f
c5aa993b 2347
c906108c
SS
2348void
2349initialize_utils ()
2350{
2351 struct cmd_list_element *c;
2352
c5aa993b
JM
2353 c = add_set_cmd ("width", class_support, var_uinteger,
2354 (char *) &chars_per_line,
2355 "Set number of characters gdb thinks are in a line.",
2356 &setlist);
c906108c
SS
2357 add_show_from_set (c, &showlist);
2358 c->function.sfunc = set_width_command;
2359
2360 add_show_from_set
2361 (add_set_cmd ("height", class_support,
c5aa993b 2362 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2363 "Set number of lines gdb thinks are in a page.", &setlist),
2364 &showlist);
c5aa993b 2365
c906108c
SS
2366 init_page_info ();
2367
2368 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2369 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2370 lines_per_page = UINT_MAX;
2371
c5aa993b 2372 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2373
2374 add_show_from_set
c5aa993b
JM
2375 (add_set_cmd ("demangle", class_support, var_boolean,
2376 (char *) &demangle,
2377 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2378 &setprintlist),
2379 &showprintlist);
2380
2381 add_show_from_set
2382 (add_set_cmd ("pagination", class_support,
c5aa993b 2383 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2384 "Set state of pagination.", &setlist),
2385 &showlist);
2386 if (xdb_commands)
2387 {
c5aa993b
JM
2388 add_com ("am", class_support, pagination_on_command,
2389 "Enable pagination");
2390 add_com ("sm", class_support, pagination_off_command,
2391 "Disable pagination");
c906108c
SS
2392 }
2393
2394 add_show_from_set
c5aa993b
JM
2395 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2396 (char *) &sevenbit_strings,
2397 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2398 &setprintlist),
2399 &showprintlist);
2400
2401 add_show_from_set
c5aa993b
JM
2402 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2403 (char *) &asm_demangle,
2404 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2405 &setprintlist),
2406 &showprintlist);
2407}
2408
2409/* Machine specific function to handle SIGWINCH signal. */
2410
2411#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2412SIGWINCH_HANDLER_BODY
c906108c
SS
2413#endif
2414\f
2415/* Support for converting target fp numbers into host DOUBLEST format. */
2416
2417/* XXX - This code should really be in libiberty/floatformat.c, however
2418 configuration issues with libiberty made this very difficult to do in the
2419 available time. */
2420
2421#include "floatformat.h"
2422#include <math.h> /* ldexp */
2423
2424/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2425 going to bother with trying to muck around with whether it is defined in
2426 a system header, what we do if not, etc. */
2427#define FLOATFORMAT_CHAR_BIT 8
2428
2429static unsigned long get_field PARAMS ((unsigned char *,
2430 enum floatformat_byteorders,
2431 unsigned int,
2432 unsigned int,
2433 unsigned int));
2434
2435/* Extract a field which starts at START and is LEN bytes long. DATA and
2436 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2437static unsigned long
2438get_field (data, order, total_len, start, len)
2439 unsigned char *data;
2440 enum floatformat_byteorders order;
2441 unsigned int total_len;
2442 unsigned int start;
2443 unsigned int len;
2444{
2445 unsigned long result;
2446 unsigned int cur_byte;
2447 int cur_bitshift;
2448
2449 /* Start at the least significant part of the field. */
c906108c 2450 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2451 {
2452 /* We start counting from the other end (i.e, from the high bytes
2453 rather than the low bytes). As such, we need to be concerned
2454 with what happens if bit 0 doesn't start on a byte boundary.
2455 I.e, we need to properly handle the case where total_len is
2456 not evenly divisible by 8. So we compute ``excess'' which
2457 represents the number of bits from the end of our starting
2458 byte needed to get to bit 0. */
2459 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2460 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2461 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2462 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2463 - FLOATFORMAT_CHAR_BIT;
2464 }
2465 else
2466 {
2467 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2468 cur_bitshift =
2469 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2470 }
2471 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2472 result = *(data + cur_byte) >> (-cur_bitshift);
2473 else
2474 result = 0;
c906108c
SS
2475 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2476 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2477 ++cur_byte;
2478 else
2479 --cur_byte;
2480
2481 /* Move towards the most significant part of the field. */
2482 while (cur_bitshift < len)
2483 {
0fda6bd2 2484 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2485 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2486 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2487 ++cur_byte;
2488 else
2489 --cur_byte;
2490 }
0fda6bd2
JM
2491 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2492 /* Mask out bits which are not part of the field */
2493 result &= ((1UL << len) - 1);
c906108c
SS
2494 return result;
2495}
c5aa993b 2496
c906108c
SS
2497/* Convert from FMT to a DOUBLEST.
2498 FROM is the address of the extended float.
2499 Store the DOUBLEST in *TO. */
2500
2501void
2502floatformat_to_doublest (fmt, from, to)
2503 const struct floatformat *fmt;
2504 char *from;
2505 DOUBLEST *to;
2506{
c5aa993b 2507 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2508 DOUBLEST dto;
2509 long exponent;
2510 unsigned long mant;
2511 unsigned int mant_bits, mant_off;
2512 int mant_bits_left;
2513 int special_exponent; /* It's a NaN, denorm or zero */
2514
2515 /* If the mantissa bits are not contiguous from one end of the
2516 mantissa to the other, we need to make a private copy of the
2517 source bytes that is in the right order since the unpacking
2518 algorithm assumes that the bits are contiguous.
2519
2520 Swap the bytes individually rather than accessing them through
2521 "long *" since we have no guarantee that they start on a long
2522 alignment, and also sizeof(long) for the host could be different
2523 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2524 for the target is 4. */
2525
c5aa993b 2526 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2527 {
2528 static unsigned char *newfrom;
2529 unsigned char *swapin, *swapout;
2530 int longswaps;
2531
c5aa993b 2532 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2533 longswaps >>= 3;
c5aa993b 2534
c906108c
SS
2535 if (newfrom == NULL)
2536 {
c5aa993b 2537 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2538 }
2539 swapout = newfrom;
2540 swapin = ufrom;
2541 ufrom = newfrom;
2542 while (longswaps-- > 0)
2543 {
2544 /* This is ugly, but efficient */
2545 *swapout++ = swapin[4];
2546 *swapout++ = swapin[5];
2547 *swapout++ = swapin[6];
2548 *swapout++ = swapin[7];
2549 *swapout++ = swapin[0];
2550 *swapout++ = swapin[1];
2551 *swapout++ = swapin[2];
2552 *swapout++ = swapin[3];
2553 swapin += 8;
2554 }
2555 }
2556
2557 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2558 fmt->exp_start, fmt->exp_len);
2559 /* Note that if exponent indicates a NaN, we can't really do anything useful
2560 (not knowing if the host has NaN's, or how to build one). So it will
2561 end up as an infinity or something close; that is OK. */
2562
2563 mant_bits_left = fmt->man_len;
2564 mant_off = fmt->man_start;
2565 dto = 0.0;
2566
2567 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2568
11cf8741
JM
2569/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2570 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2571 if (!special_exponent)
2572 exponent -= fmt->exp_bias;
11cf8741
JM
2573 else if (exponent == 0)
2574 exponent = 1 - fmt->exp_bias;
c906108c
SS
2575
2576 /* Build the result algebraically. Might go infinite, underflow, etc;
2577 who cares. */
2578
2579/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2580 increment the exponent by one to account for the integer bit. */
2581
2582 if (!special_exponent)
7a292a7a
SS
2583 {
2584 if (fmt->intbit == floatformat_intbit_no)
2585 dto = ldexp (1.0, exponent);
2586 else
2587 exponent++;
2588 }
c906108c
SS
2589
2590 while (mant_bits_left > 0)
2591 {
2592 mant_bits = min (mant_bits_left, 32);
2593
2594 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2595 mant_off, mant_bits);
c906108c 2596
c5aa993b 2597 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2598 exponent -= mant_bits;
2599 mant_off += mant_bits;
2600 mant_bits_left -= mant_bits;
2601 }
2602
2603 /* Negate it if negative. */
2604 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2605 dto = -dto;
2606 *to = dto;
2607}
2608\f
2609static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2610 unsigned int,
2611 unsigned int,
2612 unsigned int,
2613 unsigned long));
2614
2615/* Set a field which starts at START and is LEN bytes long. DATA and
2616 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2617static void
2618put_field (data, order, total_len, start, len, stuff_to_put)
2619 unsigned char *data;
2620 enum floatformat_byteorders order;
2621 unsigned int total_len;
2622 unsigned int start;
2623 unsigned int len;
2624 unsigned long stuff_to_put;
2625{
2626 unsigned int cur_byte;
2627 int cur_bitshift;
2628
2629 /* Start at the least significant part of the field. */
c906108c 2630 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2631 {
2632 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2633 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2634 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2635 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2636 - FLOATFORMAT_CHAR_BIT;
2637 }
2638 else
2639 {
2640 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2641 cur_bitshift =
2642 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2643 }
2644 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2645 {
2646 *(data + cur_byte) &=
2647 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2648 << (-cur_bitshift));
2649 *(data + cur_byte) |=
2650 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2651 }
c906108c
SS
2652 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2653 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2654 ++cur_byte;
2655 else
2656 --cur_byte;
2657
2658 /* Move towards the most significant part of the field. */
2659 while (cur_bitshift < len)
2660 {
2661 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2662 {
2663 /* This is the last byte. */
2664 *(data + cur_byte) &=
2665 ~((1 << (len - cur_bitshift)) - 1);
2666 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2667 }
2668 else
2669 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2670 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2671 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2672 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2673 ++cur_byte;
2674 else
2675 --cur_byte;
2676 }
2677}
2678
2679#ifdef HAVE_LONG_DOUBLE
2680/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2681 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2682 frexp, but operates on the long double data type. */
2683
2684static long double ldfrexp PARAMS ((long double value, int *eptr));
2685
2686static long double
2687ldfrexp (value, eptr)
2688 long double value;
2689 int *eptr;
2690{
2691 long double tmp;
2692 int exp;
2693
2694 /* Unfortunately, there are no portable functions for extracting the exponent
2695 of a long double, so we have to do it iteratively by multiplying or dividing
2696 by two until the fraction is between 0.5 and 1.0. */
2697
2698 if (value < 0.0l)
2699 value = -value;
2700
2701 tmp = 1.0l;
2702 exp = 0;
2703
2704 if (value >= tmp) /* Value >= 1.0 */
2705 while (value >= tmp)
2706 {
2707 tmp *= 2.0l;
2708 exp++;
2709 }
2710 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2711 {
2712 while (value < tmp)
2713 {
2714 tmp /= 2.0l;
2715 exp--;
2716 }
2717 tmp *= 2.0l;
2718 exp++;
2719 }
2720
2721 *eptr = exp;
c5aa993b 2722 return value / tmp;
c906108c
SS
2723}
2724#endif /* HAVE_LONG_DOUBLE */
2725
2726
2727/* The converse: convert the DOUBLEST *FROM to an extended float
2728 and store where TO points. Neither FROM nor TO have any alignment
2729 restrictions. */
2730
2731void
2732floatformat_from_doublest (fmt, from, to)
2733 CONST struct floatformat *fmt;
2734 DOUBLEST *from;
2735 char *to;
2736{
2737 DOUBLEST dfrom;
2738 int exponent;
2739 DOUBLEST mant;
2740 unsigned int mant_bits, mant_off;
2741 int mant_bits_left;
c5aa993b 2742 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2743
2744 memcpy (&dfrom, from, sizeof (dfrom));
2745 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2746 if (dfrom == 0)
2747 return; /* Result is zero */
2748 if (dfrom != dfrom) /* Result is NaN */
2749 {
2750 /* From is NaN */
2751 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2752 fmt->exp_len, fmt->exp_nan);
2753 /* Be sure it's not infinity, but NaN value is irrel */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2755 32, 1);
2756 return;
2757 }
2758
2759 /* If negative, set the sign bit. */
2760 if (dfrom < 0)
2761 {
2762 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2763 dfrom = -dfrom;
2764 }
2765
2766 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2767 {
2768 /* Infinity exponent is same as NaN's. */
2769 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2770 fmt->exp_len, fmt->exp_nan);
2771 /* Infinity mantissa is all zeroes. */
2772 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2773 fmt->man_len, 0);
2774 return;
2775 }
2776
2777#ifdef HAVE_LONG_DOUBLE
2778 mant = ldfrexp (dfrom, &exponent);
2779#else
2780 mant = frexp (dfrom, &exponent);
2781#endif
2782
2783 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2784 exponent + fmt->exp_bias - 1);
2785
2786 mant_bits_left = fmt->man_len;
2787 mant_off = fmt->man_start;
2788 while (mant_bits_left > 0)
2789 {
2790 unsigned long mant_long;
2791 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2792
2793 mant *= 4294967296.0;
c5aa993b 2794 mant_long = (unsigned long) mant;
c906108c
SS
2795 mant -= mant_long;
2796
2797 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2798 If we are discarding a zero, we should be (but are not) creating
2799 a denormalized number which means adjusting the exponent
2800 (I think). */
c906108c
SS
2801 if (mant_bits_left == fmt->man_len
2802 && fmt->intbit == floatformat_intbit_no)
2803 {
2804 mant_long <<= 1;
2805 mant_bits -= 1;
2806 }
2807
2808 if (mant_bits < 32)
2809 {
2810 /* The bits we want are in the most significant MANT_BITS bits of
2811 mant_long. Move them to the least significant. */
2812 mant_long >>= 32 - mant_bits;
2813 }
2814
2815 put_field (uto, fmt->byteorder, fmt->totalsize,
2816 mant_off, mant_bits, mant_long);
2817 mant_off += mant_bits;
2818 mant_bits_left -= mant_bits;
2819 }
c5aa993b 2820 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2821 {
2822 int count;
2823 unsigned char *swaplow = uto;
2824 unsigned char *swaphigh = uto + 4;
2825 unsigned char tmp;
2826
2827 for (count = 0; count < 4; count++)
2828 {
2829 tmp = *swaplow;
2830 *swaplow++ = *swaphigh;
2831 *swaphigh++ = tmp;
2832 }
2833 }
2834}
2835
2836/* temporary storage using circular buffer */
2837#define NUMCELLS 16
2838#define CELLSIZE 32
c5aa993b
JM
2839static char *
2840get_cell ()
c906108c
SS
2841{
2842 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2843 static int cell = 0;
2844 if (++cell >= NUMCELLS)
2845 cell = 0;
c906108c
SS
2846 return buf[cell];
2847}
2848
2849/* print routines to handle variable size regs, etc.
2850
2851 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2852 unsigned long or unsigned long long, determined at configure time.
2853 If t_addr is an unsigned long long and sizeof (unsigned long long)
2854 is greater than sizeof (unsigned long), then I believe this code will
2855 probably lose, at least for little endian machines. I believe that
2856 it would also be better to eliminate the switch on the absolute size
2857 of t_addr and replace it with a sequence of if statements that compare
2858 sizeof t_addr with sizeof the various types and do the right thing,
2859 which includes knowing whether or not the host supports long long.
2860 -fnf
2861
2862 */
2863
d4f3574e
SS
2864int
2865strlen_paddr (void)
2866{
2867 return (TARGET_PTR_BIT / 8 * 2);
2868}
2869
2870
104c1213
JM
2871/* eliminate warning from compiler on 32-bit systems */
2872static int thirty_two = 32;
c906108c 2873
c5aa993b 2874char *
104c1213 2875paddr (CORE_ADDR addr)
c906108c 2876{
c5aa993b 2877 char *paddr_str = get_cell ();
104c1213 2878 switch (TARGET_PTR_BIT / 8)
c906108c 2879 {
c5aa993b
JM
2880 case 8:
2881 sprintf (paddr_str, "%08lx%08lx",
2882 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2883 break;
2884 case 4:
2885 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2886 break;
2887 case 2:
2888 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2889 break;
2890 default:
2891 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2892 }
2893 return paddr_str;
2894}
2895
c5aa993b 2896char *
104c1213 2897paddr_nz (CORE_ADDR addr)
c906108c 2898{
c5aa993b 2899 char *paddr_str = get_cell ();
104c1213 2900 switch (TARGET_PTR_BIT / 8)
c906108c 2901 {
c5aa993b
JM
2902 case 8:
2903 {
2904 unsigned long high = (unsigned long) (addr >> thirty_two);
2905 if (high == 0)
2906 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2907 else
2908 sprintf (paddr_str, "%lx%08lx",
2909 high, (unsigned long) (addr & 0xffffffff));
c906108c 2910 break;
c5aa993b
JM
2911 }
2912 case 4:
2913 sprintf (paddr_str, "%lx", (unsigned long) addr);
2914 break;
2915 case 2:
2916 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2917 break;
2918 default:
2919 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2920 }
2921 return paddr_str;
2922}
2923
104c1213
JM
2924static void
2925decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2926{
2927 /* steal code from valprint.c:print_decimal(). Should this worry
2928 about the real size of addr as the above does? */
2929 unsigned long temp[3];
2930 int i = 0;
2931 do
2932 {
2933 temp[i] = addr % (1000 * 1000 * 1000);
2934 addr /= (1000 * 1000 * 1000);
2935 i++;
2936 }
2937 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2938 switch (i)
2939 {
2940 case 1:
2941 sprintf (paddr_str, "%s%lu",
2942 sign, temp[0]);
2943 break;
2944 case 2:
2945 sprintf (paddr_str, "%s%lu%09lu",
2946 sign, temp[1], temp[0]);
2947 break;
2948 case 3:
2949 sprintf (paddr_str, "%s%lu%09lu%09lu",
2950 sign, temp[2], temp[1], temp[0]);
2951 break;
2952 default:
2953 abort ();
2954 }
2955}
2956
2957char *
2958paddr_u (CORE_ADDR addr)
2959{
2960 char *paddr_str = get_cell ();
2961 decimal2str (paddr_str, "", addr);
2962 return paddr_str;
2963}
2964
2965char *
2966paddr_d (LONGEST addr)
2967{
2968 char *paddr_str = get_cell ();
2969 if (addr < 0)
2970 decimal2str (paddr_str, "-", -addr);
2971 else
2972 decimal2str (paddr_str, "", addr);
2973 return paddr_str;
2974}
2975
2976char *
2977preg (reg)
2978 t_reg reg;
2979{
2980 char *preg_str = get_cell ();
2981 switch (sizeof (t_reg))
2982 {
2983 case 8:
2984 sprintf (preg_str, "%08lx%08lx",
2985 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2986 break;
2987 case 4:
2988 sprintf (preg_str, "%08lx", (unsigned long) reg);
2989 break;
2990 case 2:
2991 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2992 break;
2993 default:
2994 sprintf (preg_str, "%lx", (unsigned long) reg);
2995 }
2996 return preg_str;
2997}
2998
c5aa993b
JM
2999char *
3000preg_nz (reg)
3001 t_reg reg;
c906108c 3002{
c5aa993b
JM
3003 char *preg_str = get_cell ();
3004 switch (sizeof (t_reg))
c906108c 3005 {
c5aa993b
JM
3006 case 8:
3007 {
3008 unsigned long high = (unsigned long) (reg >> thirty_two);
3009 if (high == 0)
3010 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3011 else
3012 sprintf (preg_str, "%lx%08lx",
3013 high, (unsigned long) (reg & 0xffffffff));
c906108c 3014 break;
c5aa993b
JM
3015 }
3016 case 4:
3017 sprintf (preg_str, "%lx", (unsigned long) reg);
3018 break;
3019 case 2:
3020 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3021 break;
3022 default:
3023 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3024 }
3025 return preg_str;
3026}
392a587b
JM
3027
3028/* Helper functions for INNER_THAN */
3029int
3030core_addr_lessthan (lhs, rhs)
3031 CORE_ADDR lhs;
3032 CORE_ADDR rhs;
3033{
3034 return (lhs < rhs);
3035}
3036
3037int
3038core_addr_greaterthan (lhs, rhs)
3039 CORE_ADDR lhs;
3040 CORE_ADDR rhs;
3041{
3042 return (lhs > rhs);
3043}
This page took 0.195114 seconds and 4 git commands to generate.