* ld-m68hc11/far-hc11.s: New file.
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38#include <errno.h>
39#include "gdb_string.h"
4a1970e4 40#include "gdb_assert.h"
c906108c 41
c906108c
SS
42/* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44extern int hp_som_som_object_present;
45
070ad9f0 46extern int overload_debug;
c906108c
SS
47/* Local functions. */
48
ad2f7632
DJ
49static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
c906108c 51
389e51db 52static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 53static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 54
389e51db 55
f23631e4 56static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 57
f23631e4 58static struct value *search_struct_field (char *, struct value *, int,
a14ed312 59 struct type *, int);
c906108c 60
f23631e4
AC
61static struct value *search_struct_method (char *, struct value **,
62 struct value **,
a14ed312 63 int, int *, struct type *);
c906108c 64
a14ed312 65static int check_field_in (struct type *, const char *);
c906108c 66
a14ed312 67static CORE_ADDR allocate_space_in_inferior (int);
c906108c 68
f23631e4 69static struct value *cast_into_complex (struct type *, struct value *);
c906108c 70
f23631e4 71static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 72 int offset,
a14ed312
KB
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
7a292a7a 76
a14ed312 77void _initialize_valops (void);
c906108c 78
c906108c
SS
79/* Flag for whether we want to abandon failed expression evals by default. */
80
81#if 0
82static int auto_abandon = 0;
83#endif
84
85int overload_resolution = 0;
242bfc55
FN
86
87/* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92int unwind_on_signal_p = 0;
c906108c 93
1e698235
DJ
94/* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115static int coerce_float_to_double;
116\f
389e51db 117
c906108c
SS
118/* Find the address of function name NAME in the inferior. */
119
f23631e4 120struct value *
3bada2a2 121find_function_in_inferior (const char *name)
c906108c
SS
122{
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
c5aa993b 136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
137 if (msymbol != NULL)
138 {
139 struct type *type;
4478b372 140 CORE_ADDR maddr;
c906108c
SS
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
4478b372
JB
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
c906108c
SS
146 }
147 else
148 {
c5aa993b 149 if (!target_has_execution)
c906108c 150 error ("evaluation of this expression requires the target program to be active");
c5aa993b 151 else
c906108c
SS
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155}
156
157/* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
f23631e4 160struct value *
fba45db2 161value_allocate_space_in_inferior (int len)
c906108c 162{
f23631e4 163 struct value *blocklen;
5720643c 164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
c5aa993b
JM
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
c906108c
SS
174 }
175 return val;
176}
177
178static CORE_ADDR
fba45db2 179allocate_space_in_inferior (int len)
c906108c
SS
180{
181 return value_as_long (value_allocate_space_in_inferior (len));
182}
183
184/* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187/* In C++, casts may change pointer or object representations. */
188
f23631e4
AC
189struct value *
190value_cast (struct type *type, struct value *arg2)
c906108c
SS
191{
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
c5aa993b 198
c906108c
SS
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
c5aa993b 204 COERCE_REF (arg2);
c906108c
SS
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
c5aa993b 215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
c5aa993b 224 warning ("array element type size does not divide object size in cast");
c906108c
SS
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
c5aa993b 263 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
7b83ea04
AC
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
f23631e4 270 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
c5aa993b
JM
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
f23631e4 290 struct value *retvalp;
c5aa993b
JM
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 297 /* force evaluation */
802db21b 298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
2bf1f4a1
JB
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
802db21b 322 return value_from_longest (type, convert_to_boolean ?
716c501e 323 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 324 }
802db21b 325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
634acd5f 328 {
4603e466
DT
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
634acd5f 341 LONGEST longest = value_as_long (arg2);
4603e466 342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 343 {
4603e466
DT
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
c906108c
SS
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
f23631e4 360 struct value *v;
c906108c
SS
361
362 /* Look in the type of the source to see if it contains the
7b83ea04
AC
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
c906108c
SS
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
7b83ea04
AC
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 384 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
385 if (v)
386 {
d174216d
JB
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
c906108c
SS
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
2b127877 398 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
400 return arg2;
401 }
c906108c
SS
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416}
417
418/* Create a value of type TYPE that is zero, and return it. */
419
f23631e4 420struct value *
fba45db2 421value_zero (struct type *type, enum lval_type lv)
c906108c 422{
f23631e4 423 struct value *val = allocate_value (type);
c906108c
SS
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429}
430
070ad9f0 431/* Return a value with type TYPE located at ADDR.
c906108c
SS
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
c906108c
SS
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
f23631e4 443struct value *
fba45db2 444value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 445{
f23631e4 446 struct value *val;
c906108c
SS
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
75af7f68 453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460}
461
462/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
f23631e4 464struct value *
fba45db2 465value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 466{
f23631e4 467 struct value *val;
c906108c
SS
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480}
481
070ad9f0
DB
482/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494int
f23631e4 495value_fetch_lazy (struct value *val)
c906108c
SS
496{
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
c5aa993b 500 struct type *type = VALUE_TYPE (val);
75af7f68 501 if (length)
d4b2399a 502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 503
c906108c
SS
504 VALUE_LAZY (val) = 0;
505 return 0;
506}
507
508
509/* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
f23631e4
AC
512struct value *
513value_assign (struct value *toval, struct value *fromval)
c906108c
SS
514{
515 register struct type *type;
f23631e4 516 struct value *val;
e6cbd02a 517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c 518 int use_buffer = 0;
cb741690 519 struct frame_id old_frame;
c906108c
SS
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
ac9a91a7 538 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
539 {
540 int regno = VALUE_REGNO (toval);
13d01224 541 if (CONVERT_REGISTER_P (regno))
c906108c
SS
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
c906108c 548
cb741690
DJ
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
c906108c
SS
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
c5aa993b
JM
575 CORE_ADDR changed_addr;
576 int changed_len;
c906108c 577
c5aa993b
JM
578 if (VALUE_BITSIZE (toval))
579 {
c906108c
SS
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
c906108c
SS
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
e23792cc 615 target_changed_event ();
c906108c
SS
616 }
617 break;
618
c906108c 619 case lval_reg_frame_relative:
492254e9 620 case lval_register:
c906108c
SS
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
c906108c 625 int amount_copied;
492254e9
AC
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
c906108c
SS
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
492254e9
AC
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
c193f6ac 643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
c906108c
SS
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
492254e9
AC
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
c906108c 673
492254e9
AC
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
c906108c 676 amount_copied < amount_to_copy;
492254e9 677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 678 {
492254e9 679 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 680 }
492254e9 681
c906108c
SS
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
492254e9
AC
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
c906108c 689 else if (use_buffer)
492254e9
AC
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
c906108c 693 else
492254e9
AC
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699#ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702#endif
703 }
c906108c 704
492254e9
AC
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
c906108c 707 amount_copied < amount_to_copy;
492254e9 708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
492254e9
AC
713 int realnum;
714
c906108c 715 /* Just find out where to put it. */
492254e9
AC
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
c906108c
SS
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
492254e9
AC
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
c906108c 724 else if (lval == lval_register)
492254e9
AC
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
c906108c
SS
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
e23792cc 733 target_changed_event ();
492254e9 734
c906108c
SS
735 }
736 break;
492254e9
AC
737
738
c906108c
SS
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
cb741690
DJ
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
c906108c
SS
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
2b127877 794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 797
c906108c
SS
798 return val;
799}
800
801/* Extend a value VAL to COUNT repetitions of its type. */
802
f23631e4
AC
803struct value *
804value_repeat (struct value *arg1, int count)
c906108c 805{
f23631e4 806 struct value *val;
c906108c
SS
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822}
823
f23631e4 824struct value *
fba45db2 825value_of_variable (struct symbol *var, struct block *b)
c906108c 826{
f23631e4 827 struct value *val;
c906108c
SS
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
c5aa993b 836 {
c906108c 837 if (BLOCK_FUNCTION (b)
de5ad195 838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
c906108c 839 error ("No frame is currently executing in block %s.",
de5ad195 840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
c906108c
SS
841 else
842 error ("No frame is currently executing in specified block");
c5aa993b 843 }
c906108c
SS
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
de5ad195 848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
c906108c
SS
849
850 return val;
851}
852
853/* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
c5aa993b 874 */
c906108c 875
f23631e4
AC
876struct value *
877value_coerce_array (struct value *arg1)
c906108c
SS
878{
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
4478b372
JB
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
886}
887
888/* Given a value which is a function, return a value which is a pointer
889 to it. */
890
f23631e4
AC
891struct value *
892value_coerce_function (struct value *arg1)
c906108c 893{
f23631e4 894 struct value *retval;
c906108c
SS
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
4478b372
JB
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
c5aa993b 903}
c906108c
SS
904
905/* Return a pointer value for the object for which ARG1 is the contents. */
906
f23631e4
AC
907struct value *
908value_addr (struct value *arg1)
c906108c 909{
f23631e4 910 struct value *arg2;
c906108c
SS
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
c906108c
SS
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
c5aa993b 928 /* Get target memory address */
4478b372
JB
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
933
934 /* This may be a pointer to a base subobject; so remember the
c5aa993b 935 full derived object's type ... */
2b127877 936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941}
942
943/* Given a value of a pointer type, apply the C unary * operator to it. */
944
f23631e4
AC
945struct value *
946value_ind (struct value *arg1)
c906108c
SS
947{
948 struct type *base_type;
f23631e4 949 struct value *arg2;
c906108c
SS
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
c906108c
SS
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
c5aa993b 970 /* Get the real type of the enclosing object */
c906108c
SS
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
1aa20aa8 975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
c906108c
SS
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
2b127877 980 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 989 return 0; /* For lint -- never reached */
c906108c
SS
990}
991\f
992/* Pushing small parts of stack frames. */
993
994/* Push one word (the size of object that a register holds). */
995
996CORE_ADDR
fba45db2 997push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
998{
999 register int len = REGISTER_SIZE;
e6cbd02a 1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017}
1018
1019/* Push LEN bytes with data at BUFFER. */
1020
1021CORE_ADDR
fba45db2 1022push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1023{
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
2df3850c
JM
1040#ifndef PARM_BOUNDARY
1041#define PARM_BOUNDARY (0)
1042#endif
1043
1044/* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
c906108c 1046
c906108c 1047static CORE_ADDR
f23631e4 1048value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1049{
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1051 register int container_len = len;
2df3850c
JM
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
d7449b42 1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1061 offset = container_len - len;
1062 else
1063 offset = 0;
c906108c
SS
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
2df3850c
JM
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1070 }
1071 else
1072 {
1073 /* stack grows upward */
2df3850c
JM
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
c906108c
SS
1076 }
1077
1078 return sp;
1079}
1080
392a587b 1081CORE_ADDR
b81774d8
AC
1082legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1084{
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090}
1091
c906108c
SS
1092/* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
f23631e4 1098static struct value *
290b2c7a
MK
1099value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
c906108c
SS
1101{
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
290b2c7a 1104 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
491b8946
DJ
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
c906108c
SS
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1e698235 1134 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
a3162708
EZ
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
c906108c 1149 if (current_language->c_style_arrays)
a3162708
EZ
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171}
1172
070ad9f0 1173/* Determine a function's address and its return type from its value.
c906108c
SS
1174 Calls error() if the function is not valid for calling. */
1175
389e51db 1176static CORE_ADDR
f23631e4 1177find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1178{
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1aa20aa8 1195 funaddr = value_as_address (function);
c906108c
SS
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
c906108c 1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
7b83ea04 1209 Their values are characters since their addresses are char */
c906108c 1210 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1211 funaddr = value_as_address (value_addr (function));
c906108c
SS
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223}
1224
1225/* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234/* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
e8a8712a
AC
1243struct value *
1244call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c
SS
1245{
1246 register CORE_ADDR sp;
1247 register int i;
da59e081 1248 int rc;
c906108c
SS
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1253 bigger than REGISTER_SIZE.
c906108c
SS
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
7a292a7a
SS
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1262 target byte order. */
c906108c 1263
7a292a7a
SS
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
b81774d8 1267 CORE_ADDR dummy_addr;
c906108c
SS
1268 CORE_ADDR old_sp;
1269 struct type *value_type;
1270 unsigned char struct_return;
1271 CORE_ADDR struct_addr = 0;
36160dc4 1272 struct regcache *retbuf;
26e6c56a 1273 struct cleanup *retbuf_cleanup;
7a292a7a 1274 struct inferior_status *inf_status;
26e6c56a 1275 struct cleanup *inf_status_cleanup;
c906108c 1276 CORE_ADDR funaddr;
c5aa993b 1277 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1278 CORE_ADDR real_pc;
1279 struct type *param_type = NULL;
1280 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1281 int n_method_args = 0;
c906108c 1282
7a292a7a
SS
1283 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1284 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1285 dummy1 = alloca (sizeof_dummy1);
1286 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1287
c906108c 1288 if (!target_has_execution)
c5aa993b 1289 noprocess ();
c906108c 1290
26e6c56a
AC
1291 /* Create a cleanup chain that contains the retbuf (buffer
1292 containing the register values). This chain is create BEFORE the
1293 inf_status chain so that the inferior status can cleaned up
1294 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1295 retbuf = regcache_xmalloc (current_gdbarch);
1296 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1297
1298 /* A cleanup for the inferior status. Create this AFTER the retbuf
1299 so that this can be discarded or applied without interfering with
1300 the regbuf. */
7a292a7a 1301 inf_status = save_inferior_status (1);
26e6c56a 1302 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c 1303
f3824013
AC
1304 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1305 {
1306 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
749b82f6 1307 inferior registers (and frame_pop() for restoring them). (At
f3824013
AC
1308 least on most machines) they are saved on the stack in the
1309 inferior. */
1310 DEPRECATED_PUSH_DUMMY_FRAME;
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1315 to extract the generic dummy frame code from the architecture
1316 vector. Hence this direct call.
1317
1318 A follow-on change is to modify this interface so that it takes
1319 thread OR frame OR tpid as a parameter, and returns a dummy
1320 frame handle. The handle can then be used further down as a
1321 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1322 everything is ment to be using generic dummy frames, why not
1323 even use some of the dummy frame code to here - do a regcache
1324 dup and then pass the duped regcache, along with all the other
1325 stuff, at one single point.
1326
1327 In fact, you can even save the structure's return address in the
1328 dummy frame and fix one of those nasty lost struct return edge
1329 conditions. */
1330 generic_push_dummy_frame ();
1331 }
c906108c 1332
dc604539
AC
1333 old_sp = read_sp ();
1334
1335 /* Ensure that the initial SP is correctly aligned. */
1336 if (gdbarch_frame_align_p (current_gdbarch))
1337 {
1338 /* NOTE: cagney/2002-09-18:
1339
1340 On a RISC architecture, a void parameterless generic dummy
1341 frame (i.e., no parameters, no result) typically does not
1342 need to push anything the stack and hence can leave SP and
1343 FP. Similarly, a framelss (possibly leaf) function does not
1344 push anything on the stack and, hence, that too can leave FP
1345 and SP unchanged. As a consequence, a sequence of void
1346 parameterless generic dummy frame calls to frameless
1347 functions will create a sequence of effectively identical
1348 frames (SP, FP and TOS and PC the same). This, not
1349 suprisingly, results in what appears to be a stack in an
1350 infinite loop --- when GDB tries to find a generic dummy
1351 frame on the internal dummy frame stack, it will always find
1352 the first one.
1353
1354 To avoid this problem, the code below always grows the stack.
1355 That way, two dummy frames can never be identical. It does
1356 burn a few bytes of stack but that is a small price to pay
1357 :-). */
1358 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1359 if (sp == old_sp)
1360 {
1361 if (INNER_THAN (1, 2))
1362 /* Stack grows down. */
1363 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1364 else
1365 /* Stack grows up. */
1366 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1367 }
1368 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1369 || (INNER_THAN (2, 1) && sp >= old_sp));
1370 }
1371 else
1372 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1373 aligned the SP is! Further, per comment above, if the generic
1374 dummy frame ends up empty (because nothing is pushed) GDB won't
1375 be able to correctly perform back traces. If a target is
1376 having trouble with backtraces, first thing to do is add
1377 FRAME_ALIGN() to its architecture vector. After that, try
618ce49f
AC
1378 adding SAVE_DUMMY_FRAME_TOS() and modifying
1379 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1380 generic dummy, it returns the current frame's base. */
dc604539 1381 sp = old_sp;
c906108c
SS
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
7a292a7a 1386 sp -= sizeof_dummy1;
c906108c
SS
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
7a292a7a 1393 sp += sizeof_dummy1;
c906108c
SS
1394 }
1395
dc604539
AC
1396 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1397 after allocating space for the call dummy. A target can specify
1398 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1399 alignment requirements are met. */
1400
c906108c
SS
1401 funaddr = find_function_addr (function, &value_type);
1402 CHECK_TYPEDEF (value_type);
1403
1404 {
1405 struct block *b = block_for_pc (funaddr);
1406 /* If compiled without -g, assume GCC 2. */
1407 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1408 }
1409
1410 /* Are we returning a value using a structure return or a normal
1411 value return? */
1412
1413 struct_return = using_struct_return (function, funaddr, value_type,
1414 using_gcc);
1415
1416 /* Create a call sequence customized for this function
1417 and the number of arguments for it. */
7a292a7a 1418 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1419 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1420 REGISTER_SIZE,
c5aa993b 1421 (ULONGEST) dummy[i]);
c906108c
SS
1422
1423#ifdef GDB_TARGET_IS_HPPA
1424 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1425 value_type, using_gcc);
1426#else
e8ab51f7
AC
1427 if (FIX_CALL_DUMMY_P ())
1428 {
1429 /* gdb_assert (CALL_DUMMY_LOCATION == ON_STACK) true? */
1430 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, value_type,
1431 using_gcc);
1432 }
c906108c
SS
1433 real_pc = start_sp;
1434#endif
1435
b81774d8 1436 switch (CALL_DUMMY_LOCATION)
7a292a7a 1437 {
b81774d8
AC
1438 case ON_STACK:
1439 dummy_addr = start_sp;
c5aa993b 1440 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1441 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1442 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
b81774d8
AC
1443 break;
1444 case AT_ENTRY_POINT:
7a292a7a 1445 real_pc = funaddr;
b81774d8 1446 dummy_addr = CALL_DUMMY_ADDRESS ();
07555a72 1447 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1448 /* NOTE: cagney/2002-04-13: The entry point is going to be
1449 modified with a single breakpoint. */
1450 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1451 CALL_DUMMY_ADDRESS () + 1);
b81774d8
AC
1452 break;
1453 default:
1454 internal_error (__FILE__, __LINE__, "bad switch");
7a292a7a 1455 }
c906108c
SS
1456
1457#ifdef lint
c5aa993b 1458 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1459#endif
1460
ad2f7632 1461 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1462 error ("too few arguments in function call");
1463
1464 for (i = nargs - 1; i >= 0; i--)
1465 {
ad2f7632 1466 int prototyped;
76b2e19d 1467
ad2f7632
DJ
1468 /* FIXME drow/2002-05-31: Should just always mark methods as
1469 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1470 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1471 prototyped = 1;
1472 else
1473 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1474
ad2f7632
DJ
1475 if (i < TYPE_NFIELDS (ftype))
1476 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1477 prototyped);
c5aa993b 1478 else
ad2f7632 1479 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1480
070ad9f0
DB
1481 /*elz: this code is to handle the case in which the function to be called
1482 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1483 is the address of a function and not a pointer to function variable.
1484 In aCC compiled code, the calls through pointers to functions (in the body
1485 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1486 requires some registers setting, this is taken care of if we call
1487 via a function pointer variable, but not via a function address.
7b83ea04 1488 In cc this is not a problem. */
c906108c
SS
1489
1490 if (using_gcc == 0)
ad2f7632 1491 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1492 /* if this parameter is a pointer to function */
c906108c 1493 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1494 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1495 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1496 to compile the target. We want to issue the error
070ad9f0
DB
1497 message only if the compiler used was HP's aCC.
1498 If we used HP's cc, then there is no problem and no need
7b83ea04 1499 to return at this point */
c5aa993b 1500 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1501 /* go see if the actual parameter is a variable of type
c5aa993b 1502 pointer to function or just a function */
c906108c
SS
1503 if (args[i]->lval == not_lval)
1504 {
1505 char *arg_name;
c5aa993b
JM
1506 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1507 error ("\
c906108c
SS
1508You cannot use function <%s> as argument. \n\
1509You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1510 }
c906108c
SS
1511 }
1512
d03e67c9
AC
1513 if (REG_STRUCT_HAS_ADDR_P ())
1514 {
1515 /* This is a machine like the sparc, where we may need to pass a
1516 pointer to the structure, not the structure itself. */
1517 for (i = nargs - 1; i >= 0; i--)
1518 {
1519 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1520 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1522 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1523 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1525 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1526 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1527 && TYPE_LENGTH (arg_type) > 8)
1528 )
1529 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1530 {
1531 CORE_ADDR addr;
1532 int len; /* = TYPE_LENGTH (arg_type); */
1533 int aligned_len;
1534 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1535 len = TYPE_LENGTH (arg_type);
1536
1537 if (STACK_ALIGN_P ())
1538 /* MVS 11/22/96: I think at least some of this
1539 stack_align code is really broken. Better to let
1540 PUSH_ARGUMENTS adjust the stack in a target-defined
1541 manner. */
1542 aligned_len = STACK_ALIGN (len);
1543 else
1544 aligned_len = len;
1545 if (INNER_THAN (1, 2))
1546 {
1547 /* stack grows downward */
1548 sp -= aligned_len;
0b3f98d3
AC
1549 /* ... so the address of the thing we push is the
1550 stack pointer after we push it. */
1551 addr = sp;
d03e67c9
AC
1552 }
1553 else
1554 {
1555 /* The stack grows up, so the address of the thing
1556 we push is the stack pointer before we push it. */
1557 addr = sp;
d03e67c9
AC
1558 sp += aligned_len;
1559 }
0b3f98d3
AC
1560 /* Push the structure. */
1561 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1562 /* The value we're going to pass is the address of the
1563 thing we just pushed. */
1564 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1565 (LONGEST) addr); */
1566 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1567 addr);
1568 }
1569 }
1570 }
1571
c906108c
SS
1572
1573 /* Reserve space for the return structure to be written on the
dc604539
AC
1574 stack, if necessary. Make certain that the value is correctly
1575 aligned. */
c906108c
SS
1576
1577 if (struct_return)
1578 {
1579 int len = TYPE_LENGTH (value_type);
2ada493a 1580 if (STACK_ALIGN_P ())
b81774d8
AC
1581 /* NOTE: cagney/2003-03-22: Should rely on frame align, rather
1582 than stack align to force the alignment of the stack. */
2ada493a 1583 len = STACK_ALIGN (len);
c906108c
SS
1584 if (INNER_THAN (1, 2))
1585 {
dc604539
AC
1586 /* Stack grows downward. Align STRUCT_ADDR and SP after
1587 making space for the return value. */
c906108c 1588 sp -= len;
dc604539
AC
1589 if (gdbarch_frame_align_p (current_gdbarch))
1590 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1591 struct_addr = sp;
1592 }
1593 else
1594 {
dc604539
AC
1595 /* Stack grows upward. Align the frame, allocate space, and
1596 then again, re-align the frame??? */
1597 if (gdbarch_frame_align_p (current_gdbarch))
1598 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1599 struct_addr = sp;
1600 sp += len;
dc604539
AC
1601 if (gdbarch_frame_align_p (current_gdbarch))
1602 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1603 }
1604 }
1605
0a49d05e
AC
1606 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1607 on other architectures. This is because all the alignment is
1608 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1609 in hppa_push_arguments */
f933a9c5
AC
1610 /* NOTE: cagney/2003-03-24: The below code is very broken. Given an
1611 odd sized parameter the below will mis-align the stack. As was
1612 suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
1613 if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1614 {
0a49d05e 1615 /* MVS 11/22/96: I think at least some of this stack_align code
b81774d8 1616 is really broken. Better to let push_dummy_call() adjust the
0a49d05e
AC
1617 stack in a target-defined manner. */
1618 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1619 {
1620 /* If stack grows down, we must leave a hole at the top. */
1621 int len = 0;
1622
1623 for (i = nargs - 1; i >= 0; i--)
1624 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1bf6d5cc
AC
1625 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1626 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
0a49d05e
AC
1627 sp -= STACK_ALIGN (len) - len;
1628 }
c906108c 1629 }
c906108c 1630
b81774d8
AC
1631 /* Create the dummy stack frame. Pass in the call dummy address as,
1632 presumably, the ABI code knows where, in the call dummy, the
1633 return address should be pointed. */
1634 if (gdbarch_push_dummy_call_p (current_gdbarch))
1635 /* When there is no push_dummy_call method, should this code
1636 simply error out. That would the implementation of this method
1637 for all ABIs (which is probably a good thing). */
1638 sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
1639 dummy_addr, nargs, args, sp, struct_return,
1640 struct_addr);
1641 else if (DEPRECATED_PUSH_ARGUMENTS_P ())
1642 /* Keep old targets working. */
1643 sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
1644 struct_addr);
1645 else
1646 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
c906108c 1647
28f617b3 1648 if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
69a0d5f4
AC
1649 /* for targets that use no CALL_DUMMY */
1650 /* There are a number of targets now which actually don't write
1651 any CALL_DUMMY instructions into the target, but instead just
1652 save the machine state, push the arguments, and jump directly
1653 to the callee function. Since this doesn't actually involve
1654 executing a JSR/BSR instruction, the return address must be set
1655 up by hand, either by pushing onto the stack or copying into a
1656 return-address register as appropriate. Formerly this has been
1657 done in PUSH_ARGUMENTS, but that's overloading its
1658 functionality a bit, so I'm making it explicit to do it here. */
28f617b3 1659 sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1660
b81774d8
AC
1661 /* NOTE: cagney/2003-03-23: Diable this code when there is a
1662 push_dummy_call() method. Since that method will have already
1663 handled any alignment issues, the code below is entirely
1664 redundant. */
1665 if (!gdbarch_push_dummy_call_p (current_gdbarch)
1666 && STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1667 {
1668 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1669 that sp already has been advanced for the arguments! */
1bf6d5cc
AC
1670 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1671 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1672 sp = STACK_ALIGN (sp);
1673 }
c906108c
SS
1674
1675/* XXX This seems wrong. For stacks that grow down we shouldn't do
1676 anything here! */
1677 /* MVS 11/22/96: I think at least some of this stack_align code is
1678 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1679 a target-defined manner. */
1bf6d5cc 1680 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
7a292a7a
SS
1681 if (INNER_THAN (1, 2))
1682 {
1683 /* stack grows downward */
1bf6d5cc 1684 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
7a292a7a 1685 }
c906108c
SS
1686
1687 /* Store the address at which the structure is supposed to be
4183d812
AC
1688 written. */
1689 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1690 store the struct return address, this call is entirely redundant. */
1691 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1692 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
c906108c
SS
1693
1694 /* Write the stack pointer. This is here because the statements above
1695 might fool with it. On SPARC, this write also stores the register
1696 window into the right place in the new stack frame, which otherwise
1697 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
b81774d8
AC
1698 /* NOTE: cagney/2003-03-23: Disable this code when there is a
1699 push_dummy_call() method. Since that method will have already
1700 stored the stack pointer (as part of creating the fake call
1701 frame), and none of the code following that code adjusts the
1702 stack-pointer value, the below call is entirely redundant. */
6c0e89ed
AC
1703 if (DEPRECATED_DUMMY_WRITE_SP_P ())
1704 DEPRECATED_DUMMY_WRITE_SP (sp);
c906108c 1705
d1e3cf49
AC
1706 if (SAVE_DUMMY_FRAME_TOS_P ())
1707 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1708
c906108c 1709 {
c906108c
SS
1710 char *name;
1711 struct symbol *symbol;
1712
1713 name = NULL;
1714 symbol = find_pc_function (funaddr);
1715 if (symbol)
1716 {
de5ad195 1717 name = SYMBOL_PRINT_NAME (symbol);
c906108c
SS
1718 }
1719 else
1720 {
1721 /* Try the minimal symbols. */
1722 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1723
1724 if (msymbol)
1725 {
de5ad195 1726 name = SYMBOL_PRINT_NAME (msymbol);
c906108c
SS
1727 }
1728 }
1729 if (name == NULL)
1730 {
1731 char format[80];
1732 sprintf (format, "at %s", local_hex_format ());
1733 name = alloca (80);
1734 /* FIXME-32x64: assumes funaddr fits in a long. */
1735 sprintf (name, format, (unsigned long) funaddr);
1736 }
1737
1738 /* Execute the stack dummy routine, calling FUNCTION.
1739 When it is done, discard the empty frame
1740 after storing the contents of all regs into retbuf. */
da59e081
JM
1741 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1742
1743 if (rc == 1)
1744 {
1745 /* We stopped inside the FUNCTION because of a random signal.
1746 Further execution of the FUNCTION is not allowed. */
1747
7b83ea04 1748 if (unwind_on_signal_p)
242bfc55
FN
1749 {
1750 /* The user wants the context restored. */
da59e081 1751
dbe9fe58
AC
1752 /* We must get back to the frame we were before the dummy
1753 call. */
1754 frame_pop (get_current_frame ());
242bfc55
FN
1755
1756 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1757 a C++ name with arguments and stuff. */
1758 error ("\
1759The program being debugged was signaled while in a function called from GDB.\n\
1760GDB has restored the context to what it was before the call.\n\
1761To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1762Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1763 name);
1764 }
1765 else
1766 {
1767 /* The user wants to stay in the frame where we stopped (default).*/
1768
26e6c56a
AC
1769 /* If we restored the inferior status (via the cleanup),
1770 we would print a spurious error message (Unable to
1771 restore previously selected frame), would write the
1772 registers from the inf_status (which is wrong), and
1773 would do other wrong things. */
1774 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1775 discard_inferior_status (inf_status);
1776
1777 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1778 a C++ name with arguments and stuff. */
1779 error ("\
1780The program being debugged was signaled while in a function called from GDB.\n\
1781GDB remains in the frame where the signal was received.\n\
1782To change this behavior use \"set unwindonsignal on\"\n\
1783Evaluation of the expression containing the function (%s) will be abandoned.",
1784 name);
1785 }
da59e081
JM
1786 }
1787
1788 if (rc == 2)
c906108c 1789 {
da59e081 1790 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1791
26e6c56a
AC
1792 /* If we restored the inferior status (via the cleanup), we
1793 would print a spurious error message (Unable to restore
1794 previously selected frame), would write the registers from
1795 the inf_status (which is wrong), and would do other wrong
1796 things. */
1797 discard_cleanups (inf_status_cleanup);
7a292a7a 1798 discard_inferior_status (inf_status);
c906108c
SS
1799
1800 /* The following error message used to say "The expression
1801 which contained the function call has been discarded." It
1802 is a hard concept to explain in a few words. Ideally, GDB
1803 would be able to resume evaluation of the expression when
1804 the function finally is done executing. Perhaps someday
1805 this will be implemented (it would not be easy). */
1806
1807 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1808 a C++ name with arguments and stuff. */
1809 error ("\
1810The program being debugged stopped while in a function called from GDB.\n\
1811When the function (%s) is done executing, GDB will silently\n\
1812stop (instead of continuing to evaluate the expression containing\n\
1813the function call).", name);
1814 }
1815
da59e081 1816 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1817
1818 /* Restore the inferior status, via its cleanup. At this stage,
1819 leave the RETBUF alone. */
1820 do_cleanups (inf_status_cleanup);
c906108c
SS
1821
1822 /* Figure out the value returned by the function. */
dc604539
AC
1823 /* elz: I defined this new macro for the hppa architecture only.
1824 this gives us a way to get the value returned by the function
1825 from the stack, at the same address we told the function to put
1826 it. We cannot assume on the pa that r28 still contains the
1827 address of the returned structure. Usually this will be
1828 overwritten by the callee. I don't know about other
1829 architectures, so I defined this macro */
c906108c
SS
1830#ifdef VALUE_RETURNED_FROM_STACK
1831 if (struct_return)
26e6c56a
AC
1832 {
1833 do_cleanups (retbuf_cleanup);
1834 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1835 }
c906108c 1836#endif
dc604539
AC
1837 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1838 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1839 fetch the return value direct from the stack. This lack of
1840 trust comes about because legacy targets have a nasty habit of
1841 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1842 For such targets, just hope that value_being_returned() can
1843 find the adjusted value. */
1844 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1845 {
1846 struct value *retval = value_at (value_type, struct_addr, NULL);
1847 do_cleanups (retbuf_cleanup);
1848 return retval;
1849 }
1850 else
1851 {
1852 struct value *retval = value_being_returned (value_type, retbuf,
1853 struct_return);
1854 do_cleanups (retbuf_cleanup);
1855 return retval;
1856 }
c906108c
SS
1857 }
1858}
7a292a7a 1859
c906108c
SS
1860/* Create a value for an array by allocating space in the inferior, copying
1861 the data into that space, and then setting up an array value.
1862
1863 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1864 populated from the values passed in ELEMVEC.
1865
1866 The element type of the array is inherited from the type of the
1867 first element, and all elements must have the same size (though we
1868 don't currently enforce any restriction on their types). */
1869
f23631e4
AC
1870struct value *
1871value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1872{
1873 int nelem;
1874 int idx;
1875 unsigned int typelength;
f23631e4 1876 struct value *val;
c906108c
SS
1877 struct type *rangetype;
1878 struct type *arraytype;
1879 CORE_ADDR addr;
1880
1881 /* Validate that the bounds are reasonable and that each of the elements
1882 have the same size. */
1883
1884 nelem = highbound - lowbound + 1;
1885 if (nelem <= 0)
1886 {
1887 error ("bad array bounds (%d, %d)", lowbound, highbound);
1888 }
1889 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1890 for (idx = 1; idx < nelem; idx++)
1891 {
1892 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1893 {
1894 error ("array elements must all be the same size");
1895 }
1896 }
1897
1898 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1899 lowbound, highbound);
c5aa993b
JM
1900 arraytype = create_array_type ((struct type *) NULL,
1901 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1902
1903 if (!current_language->c_style_arrays)
1904 {
1905 val = allocate_value (arraytype);
1906 for (idx = 0; idx < nelem; idx++)
1907 {
1908 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1909 VALUE_CONTENTS_ALL (elemvec[idx]),
1910 typelength);
1911 }
1912 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1913 return val;
1914 }
1915
1916 /* Allocate space to store the array in the inferior, and then initialize
1917 it by copying in each element. FIXME: Is it worth it to create a
1918 local buffer in which to collect each value and then write all the
1919 bytes in one operation? */
1920
1921 addr = allocate_space_in_inferior (nelem * typelength);
1922 for (idx = 0; idx < nelem; idx++)
1923 {
1924 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1925 typelength);
1926 }
1927
1928 /* Create the array type and set up an array value to be evaluated lazily. */
1929
1930 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1931 return (val);
1932}
1933
1934/* Create a value for a string constant by allocating space in the inferior,
1935 copying the data into that space, and returning the address with type
1936 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1937 of characters.
1938 Note that string types are like array of char types with a lower bound of
1939 zero and an upper bound of LEN - 1. Also note that the string may contain
1940 embedded null bytes. */
1941
f23631e4 1942struct value *
fba45db2 1943value_string (char *ptr, int len)
c906108c 1944{
f23631e4 1945 struct value *val;
c906108c
SS
1946 int lowbound = current_language->string_lower_bound;
1947 struct type *rangetype = create_range_type ((struct type *) NULL,
1948 builtin_type_int,
1949 lowbound, len + lowbound - 1);
1950 struct type *stringtype
c5aa993b 1951 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1952 CORE_ADDR addr;
1953
1954 if (current_language->c_style_arrays == 0)
1955 {
1956 val = allocate_value (stringtype);
1957 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1958 return val;
1959 }
1960
1961
1962 /* Allocate space to store the string in the inferior, and then
1963 copy LEN bytes from PTR in gdb to that address in the inferior. */
1964
1965 addr = allocate_space_in_inferior (len);
1966 write_memory (addr, ptr, len);
1967
1968 val = value_at_lazy (stringtype, addr, NULL);
1969 return (val);
1970}
1971
f23631e4 1972struct value *
fba45db2 1973value_bitstring (char *ptr, int len)
c906108c 1974{
f23631e4 1975 struct value *val;
c906108c
SS
1976 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1977 0, len - 1);
c5aa993b 1978 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1979 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1980 val = allocate_value (type);
1981 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1982 return val;
1983}
1984\f
1985/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1986 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1987 vector. If some arguments need coercion of some sort, then the coerced
1988 values are written into T2. Return value is 0 if the arguments could be
1989 matched, or the position at which they differ if not.
c906108c
SS
1990
1991 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1992 static member function. T2 will still include the ``this'' pointer,
1993 but it will be skipped.
c906108c
SS
1994
1995 For non-static member functions, we ignore the first argument,
1996 which is the type of the instance variable. This is because we want
1997 to handle calls with objects from derived classes. This is not
1998 entirely correct: we should actually check to make sure that a
1999 requested operation is type secure, shouldn't we? FIXME. */
2000
2001static int
ad2f7632
DJ
2002typecmp (int staticp, int varargs, int nargs,
2003 struct field t1[], struct value *t2[])
c906108c
SS
2004{
2005 int i;
2006
2007 if (t2 == 0)
ad2f7632
DJ
2008 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2009
4a1970e4
DJ
2010 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2011 if (staticp)
ad2f7632
DJ
2012 t2 ++;
2013
2014 for (i = 0;
2015 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2016 i++)
c906108c 2017 {
c5aa993b 2018 struct type *tt1, *tt2;
ad2f7632 2019
c5aa993b
JM
2020 if (!t2[i])
2021 return i + 1;
ad2f7632
DJ
2022
2023 tt1 = check_typedef (t1[i].type);
c5aa993b 2024 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 2025
c906108c 2026 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2027 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2028 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2029 {
2030 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2031 t2[i] = value_coerce_array (t2[i]);
2032 else
2033 t2[i] = value_addr (t2[i]);
2034 continue;
2035 }
2036
802db21b
DB
2037 /* djb - 20000715 - Until the new type structure is in the
2038 place, and we can attempt things like implicit conversions,
2039 we need to do this so you can take something like a map<const
2040 char *>, and properly access map["hello"], because the
2041 argument to [] will be a reference to a pointer to a char,
7168a814 2042 and the argument will be a pointer to a char. */
802db21b
DB
2043 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2044 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2045 {
2046 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2047 }
2048 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2049 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2050 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2051 {
802db21b 2052 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2053 }
c5aa993b
JM
2054 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2055 continue;
c906108c
SS
2056 /* Array to pointer is a `trivial conversion' according to the ARM. */
2057
2058 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2059 of the ARM), but as a quick kludge, just check for the same type
2060 code. */
ad2f7632 2061 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2062 return i + 1;
c906108c 2063 }
ad2f7632 2064 if (varargs || t2[i] == NULL)
c5aa993b 2065 return 0;
ad2f7632 2066 return i + 1;
c906108c
SS
2067}
2068
2069/* Helper function used by value_struct_elt to recurse through baseclasses.
2070 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2071 and search in it assuming it has (class) type TYPE.
2072 If found, return value, else return NULL.
2073
2074 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2075 look for a baseclass named NAME. */
2076
f23631e4
AC
2077static struct value *
2078search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2079 register struct type *type, int looking_for_baseclass)
c906108c
SS
2080{
2081 int i;
2082 int nbases = TYPE_N_BASECLASSES (type);
2083
2084 CHECK_TYPEDEF (type);
2085
c5aa993b 2086 if (!looking_for_baseclass)
c906108c
SS
2087 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2088 {
2089 char *t_field_name = TYPE_FIELD_NAME (type, i);
2090
db577aea 2091 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2092 {
f23631e4 2093 struct value *v;
c906108c 2094 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2095 {
2096 v = value_static_field (type, i);
2097 if (v == 0)
2098 error ("field %s is nonexistent or has been optimised out",
2099 name);
2100 }
c906108c 2101 else
2c2738a0
DC
2102 {
2103 v = value_primitive_field (arg1, offset, i, type);
2104 if (v == 0)
2105 error ("there is no field named %s", name);
2106 }
c906108c
SS
2107 return v;
2108 }
2109
2110 if (t_field_name
2111 && (t_field_name[0] == '\0'
2112 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2113 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2114 {
2115 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2116 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2117 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2118 {
2119 /* Look for a match through the fields of an anonymous union,
2120 or anonymous struct. C++ provides anonymous unions.
2121
1b831c93
AC
2122 In the GNU Chill (now deleted from GDB)
2123 implementation of variant record types, each
2124 <alternative field> has an (anonymous) union type,
2125 each member of the union represents a <variant
2126 alternative>. Each <variant alternative> is
2127 represented as a struct, with a member for each
2128 <variant field>. */
c5aa993b 2129
f23631e4 2130 struct value *v;
c906108c
SS
2131 int new_offset = offset;
2132
db034ac5
AC
2133 /* This is pretty gross. In G++, the offset in an
2134 anonymous union is relative to the beginning of the
1b831c93
AC
2135 enclosing struct. In the GNU Chill (now deleted
2136 from GDB) implementation of variant records, the
2137 bitpos is zero in an anonymous union field, so we
2138 have to add the offset of the union here. */
c906108c
SS
2139 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2140 || (TYPE_NFIELDS (field_type) > 0
2141 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2142 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2143
2144 v = search_struct_field (name, arg1, new_offset, field_type,
2145 looking_for_baseclass);
2146 if (v)
2147 return v;
2148 }
2149 }
2150 }
2151
c5aa993b 2152 for (i = 0; i < nbases; i++)
c906108c 2153 {
f23631e4 2154 struct value *v;
c906108c
SS
2155 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2156 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2157 hit them. But it could happen that the base part's member name
2158 is not yet filled in. */
c906108c
SS
2159 int found_baseclass = (looking_for_baseclass
2160 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2161 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2162
2163 if (BASETYPE_VIA_VIRTUAL (type, i))
2164 {
2165 int boffset;
f23631e4 2166 struct value *v2 = allocate_value (basetype);
c906108c
SS
2167
2168 boffset = baseclass_offset (type, i,
2169 VALUE_CONTENTS (arg1) + offset,
2170 VALUE_ADDRESS (arg1)
c5aa993b 2171 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2172 if (boffset == -1)
2173 error ("virtual baseclass botch");
2174
2175 /* The virtual base class pointer might have been clobbered by the
2176 user program. Make sure that it still points to a valid memory
2177 location. */
2178
2179 boffset += offset;
2180 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2181 {
2182 CORE_ADDR base_addr;
c5aa993b 2183
c906108c
SS
2184 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2185 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2186 TYPE_LENGTH (basetype)) != 0)
2187 error ("virtual baseclass botch");
2188 VALUE_LVAL (v2) = lval_memory;
2189 VALUE_ADDRESS (v2) = base_addr;
2190 }
2191 else
2192 {
2193 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2194 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2195 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2196 if (VALUE_LAZY (arg1))
2197 VALUE_LAZY (v2) = 1;
2198 else
2199 memcpy (VALUE_CONTENTS_RAW (v2),
2200 VALUE_CONTENTS_RAW (arg1) + boffset,
2201 TYPE_LENGTH (basetype));
2202 }
2203
2204 if (found_baseclass)
2205 return v2;
2206 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2207 looking_for_baseclass);
2208 }
2209 else if (found_baseclass)
2210 v = value_primitive_field (arg1, offset, i, type);
2211 else
2212 v = search_struct_field (name, arg1,
c5aa993b 2213 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2214 basetype, looking_for_baseclass);
c5aa993b
JM
2215 if (v)
2216 return v;
c906108c
SS
2217 }
2218 return NULL;
2219}
2220
2221
2222/* Return the offset (in bytes) of the virtual base of type BASETYPE
2223 * in an object pointed to by VALADDR (on the host), assumed to be of
2224 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2225 * looking (in case VALADDR is the contents of an enclosing object).
2226 *
2227 * This routine recurses on the primary base of the derived class because
2228 * the virtual base entries of the primary base appear before the other
2229 * virtual base entries.
2230 *
2231 * If the virtual base is not found, a negative integer is returned.
2232 * The magnitude of the negative integer is the number of entries in
2233 * the virtual table to skip over (entries corresponding to various
2234 * ancestral classes in the chain of primary bases).
2235 *
2236 * Important: This assumes the HP / Taligent C++ runtime
2237 * conventions. Use baseclass_offset() instead to deal with g++
2238 * conventions. */
2239
2240void
fba45db2
KB
2241find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2242 int offset, int *boffset_p, int *skip_p)
c906108c 2243{
c5aa993b
JM
2244 int boffset; /* offset of virtual base */
2245 int index; /* displacement to use in virtual table */
c906108c 2246 int skip;
c5aa993b 2247
f23631e4 2248 struct value *vp;
c5aa993b
JM
2249 CORE_ADDR vtbl; /* the virtual table pointer */
2250 struct type *pbc; /* the primary base class */
c906108c
SS
2251
2252 /* Look for the virtual base recursively in the primary base, first.
2253 * This is because the derived class object and its primary base
2254 * subobject share the primary virtual table. */
c5aa993b 2255
c906108c 2256 boffset = 0;
c5aa993b 2257 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2258 if (pbc)
2259 {
2260 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2261 if (skip < 0)
c5aa993b
JM
2262 {
2263 *boffset_p = boffset;
2264 *skip_p = -1;
2265 return;
2266 }
c906108c
SS
2267 }
2268 else
2269 skip = 0;
2270
2271
2272 /* Find the index of the virtual base according to HP/Taligent
2273 runtime spec. (Depth-first, left-to-right.) */
2274 index = virtual_base_index_skip_primaries (basetype, type);
2275
c5aa993b
JM
2276 if (index < 0)
2277 {
2278 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2279 *boffset_p = 0;
2280 return;
2281 }
c906108c 2282
c5aa993b 2283 /* pai: FIXME -- 32x64 possible problem */
c906108c 2284 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2285 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2286
c5aa993b 2287 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2288 if (vtbl == 0)
2289 error ("Couldn't find virtual table -- object may not be constructed yet.");
2290
2291
2292 /* Find virtual base's offset -- jump over entries for primary base
2293 * ancestors, then use the index computed above. But also adjust by
2294 * HP_ACC_VBASE_START for the vtable slots before the start of the
2295 * virtual base entries. Offset is negative -- virtual base entries
2296 * appear _before_ the address point of the virtual table. */
c5aa993b 2297
070ad9f0 2298 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2299 & use long type */
c906108c
SS
2300
2301 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2302 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2303 boffset = value_as_long (vp);
2304 *skip_p = -1;
2305 *boffset_p = boffset;
2306 return;
2307}
2308
2309
2310/* Helper function used by value_struct_elt to recurse through baseclasses.
2311 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2312 and search in it assuming it has (class) type TYPE.
2313 If found, return value, else if name matched and args not return (value)-1,
2314 else return NULL. */
2315
f23631e4
AC
2316static struct value *
2317search_struct_method (char *name, struct value **arg1p,
2318 struct value **args, int offset,
fba45db2 2319 int *static_memfuncp, register struct type *type)
c906108c
SS
2320{
2321 int i;
f23631e4 2322 struct value *v;
c906108c
SS
2323 int name_matched = 0;
2324 char dem_opname[64];
2325
2326 CHECK_TYPEDEF (type);
2327 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2328 {
2329 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2330 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2331 if (strncmp (t_field_name, "__", 2) == 0 ||
2332 strncmp (t_field_name, "op", 2) == 0 ||
2333 strncmp (t_field_name, "type", 4) == 0)
c906108c 2334 {
c5aa993b
JM
2335 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2336 t_field_name = dem_opname;
2337 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2338 t_field_name = dem_opname;
c906108c 2339 }
db577aea 2340 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2341 {
2342 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2343 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2344 name_matched = 1;
c906108c 2345
de17c821 2346 check_stub_method_group (type, i);
c906108c
SS
2347 if (j > 0 && args == 0)
2348 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2349 else if (j == 0 && args == 0)
c906108c 2350 {
acf5ed49
DJ
2351 v = value_fn_field (arg1p, f, j, type, offset);
2352 if (v != NULL)
2353 return v;
c906108c 2354 }
acf5ed49
DJ
2355 else
2356 while (j >= 0)
2357 {
acf5ed49 2358 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2359 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2360 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2361 TYPE_FN_FIELD_ARGS (f, j), args))
2362 {
2363 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2364 return value_virtual_fn_field (arg1p, f, j, type, offset);
2365 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2366 *static_memfuncp = 1;
2367 v = value_fn_field (arg1p, f, j, type, offset);
2368 if (v != NULL)
2369 return v;
2370 }
2371 j--;
2372 }
c906108c
SS
2373 }
2374 }
2375
2376 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2377 {
2378 int base_offset;
2379
2380 if (BASETYPE_VIA_VIRTUAL (type, i))
2381 {
c5aa993b
JM
2382 if (TYPE_HAS_VTABLE (type))
2383 {
2384 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2385 according to HP/Taligent runtime spec. */
c5aa993b
JM
2386 int skip;
2387 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2388 VALUE_CONTENTS_ALL (*arg1p),
2389 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2390 &base_offset, &skip);
2391 if (skip >= 0)
2392 error ("Virtual base class offset not found in vtable");
2393 }
2394 else
2395 {
2396 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2397 char *base_valaddr;
2398
2399 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2400 user program. Make sure that it still points to a valid memory
2401 location. */
c5aa993b
JM
2402
2403 if (offset < 0 || offset >= TYPE_LENGTH (type))
2404 {
2405 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2406 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2407 + VALUE_OFFSET (*arg1p) + offset,
2408 base_valaddr,
2409 TYPE_LENGTH (baseclass)) != 0)
2410 error ("virtual baseclass botch");
2411 }
2412 else
2413 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2414
2415 base_offset =
2416 baseclass_offset (type, i, base_valaddr,
2417 VALUE_ADDRESS (*arg1p)
2418 + VALUE_OFFSET (*arg1p) + offset);
2419 if (base_offset == -1)
2420 error ("virtual baseclass botch");
2421 }
2422 }
c906108c
SS
2423 else
2424 {
2425 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2426 }
c906108c
SS
2427 v = search_struct_method (name, arg1p, args, base_offset + offset,
2428 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2429 if (v == (struct value *) - 1)
c906108c
SS
2430 {
2431 name_matched = 1;
2432 }
2433 else if (v)
2434 {
2435/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2436/* *arg1p = arg1_tmp; */
c906108c 2437 return v;
c5aa993b 2438 }
c906108c 2439 }
c5aa993b 2440 if (name_matched)
f23631e4 2441 return (struct value *) - 1;
c5aa993b
JM
2442 else
2443 return NULL;
c906108c
SS
2444}
2445
2446/* Given *ARGP, a value of type (pointer to a)* structure/union,
2447 extract the component named NAME from the ultimate target structure/union
2448 and return it as a value with its appropriate type.
2449 ERR is used in the error message if *ARGP's type is wrong.
2450
2451 C++: ARGS is a list of argument types to aid in the selection of
2452 an appropriate method. Also, handle derived types.
2453
2454 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2455 where the truthvalue of whether the function that was resolved was
2456 a static member function or not is stored.
2457
2458 ERR is an error message to be printed in case the field is not found. */
2459
f23631e4
AC
2460struct value *
2461value_struct_elt (struct value **argp, struct value **args,
fba45db2 2462 char *name, int *static_memfuncp, char *err)
c906108c
SS
2463{
2464 register struct type *t;
f23631e4 2465 struct value *v;
c906108c
SS
2466
2467 COERCE_ARRAY (*argp);
2468
2469 t = check_typedef (VALUE_TYPE (*argp));
2470
2471 /* Follow pointers until we get to a non-pointer. */
2472
2473 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2474 {
2475 *argp = value_ind (*argp);
2476 /* Don't coerce fn pointer to fn and then back again! */
2477 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2478 COERCE_ARRAY (*argp);
2479 t = check_typedef (VALUE_TYPE (*argp));
2480 }
2481
2482 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2483 error ("not implemented: member type in value_struct_elt");
2484
c5aa993b 2485 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2486 && TYPE_CODE (t) != TYPE_CODE_UNION)
2487 error ("Attempt to extract a component of a value that is not a %s.", err);
2488
2489 /* Assume it's not, unless we see that it is. */
2490 if (static_memfuncp)
c5aa993b 2491 *static_memfuncp = 0;
c906108c
SS
2492
2493 if (!args)
2494 {
2495 /* if there are no arguments ...do this... */
2496
2497 /* Try as a field first, because if we succeed, there
7b83ea04 2498 is less work to be done. */
c906108c
SS
2499 v = search_struct_field (name, *argp, 0, t, 0);
2500 if (v)
2501 return v;
2502
2503 /* C++: If it was not found as a data field, then try to
7b83ea04 2504 return it as a pointer to a method. */
c906108c
SS
2505
2506 if (destructor_name_p (name, t))
2507 error ("Cannot get value of destructor");
2508
2509 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2510
f23631e4 2511 if (v == (struct value *) - 1)
c906108c
SS
2512 error ("Cannot take address of a method");
2513 else if (v == 0)
2514 {
2515 if (TYPE_NFN_FIELDS (t))
2516 error ("There is no member or method named %s.", name);
2517 else
2518 error ("There is no member named %s.", name);
2519 }
2520 return v;
2521 }
2522
2523 if (destructor_name_p (name, t))
2524 {
2525 if (!args[1])
2526 {
2527 /* Destructors are a special case. */
2528 int m_index, f_index;
2529
2530 v = NULL;
2531 if (get_destructor_fn_field (t, &m_index, &f_index))
2532 {
2533 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2534 f_index, NULL, 0);
2535 }
2536 if (v == NULL)
2537 error ("could not find destructor function named %s.", name);
2538 else
2539 return v;
2540 }
2541 else
2542 {
2543 error ("destructor should not have any argument");
2544 }
2545 }
2546 else
2547 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2548
f23631e4 2549 if (v == (struct value *) - 1)
c906108c 2550 {
7168a814 2551 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2552 }
2553 else if (v == 0)
2554 {
2555 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2556 hand it back. If it's not callable (i.e., a pointer to function),
2557 gdb should give an error. */
c906108c
SS
2558 v = search_struct_field (name, *argp, 0, t, 0);
2559 }
2560
2561 if (!v)
2562 error ("Structure has no component named %s.", name);
2563 return v;
2564}
2565
2566/* Search through the methods of an object (and its bases)
2567 * to find a specified method. Return the pointer to the
2568 * fn_field list of overloaded instances.
2569 * Helper function for value_find_oload_list.
2570 * ARGP is a pointer to a pointer to a value (the object)
2571 * METHOD is a string containing the method name
2572 * OFFSET is the offset within the value
c906108c
SS
2573 * TYPE is the assumed type of the object
2574 * NUM_FNS is the number of overloaded instances
2575 * BASETYPE is set to the actual type of the subobject where the method is found
2576 * BOFFSET is the offset of the base subobject where the method is found */
2577
7a292a7a 2578static struct fn_field *
f23631e4 2579find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2580 struct type *type, int *num_fns,
fba45db2 2581 struct type **basetype, int *boffset)
c906108c
SS
2582{
2583 int i;
c5aa993b 2584 struct fn_field *f;
c906108c
SS
2585 CHECK_TYPEDEF (type);
2586
2587 *num_fns = 0;
2588
c5aa993b
JM
2589 /* First check in object itself */
2590 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2591 {
2592 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2593 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2594 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2595 {
4a1970e4
DJ
2596 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2597 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2598
2599 *num_fns = len;
c5aa993b
JM
2600 *basetype = type;
2601 *boffset = offset;
4a1970e4 2602
de17c821
DJ
2603 /* Resolve any stub methods. */
2604 check_stub_method_group (type, i);
4a1970e4
DJ
2605
2606 return f;
c5aa993b
JM
2607 }
2608 }
2609
c906108c
SS
2610 /* Not found in object, check in base subobjects */
2611 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2612 {
2613 int base_offset;
2614 if (BASETYPE_VIA_VIRTUAL (type, i))
2615 {
c5aa993b
JM
2616 if (TYPE_HAS_VTABLE (type))
2617 {
2618 /* HP aCC compiled type, search for virtual base offset
2619 * according to HP/Taligent runtime spec. */
2620 int skip;
2621 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2622 VALUE_CONTENTS_ALL (*argp),
2623 offset + VALUE_EMBEDDED_OFFSET (*argp),
2624 &base_offset, &skip);
2625 if (skip >= 0)
2626 error ("Virtual base class offset not found in vtable");
2627 }
2628 else
2629 {
2630 /* probably g++ runtime model */
2631 base_offset = VALUE_OFFSET (*argp) + offset;
2632 base_offset =
2633 baseclass_offset (type, i,
2634 VALUE_CONTENTS (*argp) + base_offset,
2635 VALUE_ADDRESS (*argp) + base_offset);
2636 if (base_offset == -1)
2637 error ("virtual baseclass botch");
2638 }
2639 }
2640 else
2641 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2642 {
2643 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2644 }
c906108c 2645 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2646 TYPE_BASECLASS (type, i), num_fns, basetype,
2647 boffset);
c906108c 2648 if (f)
c5aa993b 2649 return f;
c906108c 2650 }
c5aa993b 2651 return NULL;
c906108c
SS
2652}
2653
2654/* Return the list of overloaded methods of a specified name.
2655 * ARGP is a pointer to a pointer to a value (the object)
2656 * METHOD is the method name
2657 * OFFSET is the offset within the value contents
c906108c
SS
2658 * NUM_FNS is the number of overloaded instances
2659 * BASETYPE is set to the type of the base subobject that defines the method
2660 * BOFFSET is the offset of the base subobject which defines the method */
2661
2662struct fn_field *
f23631e4 2663value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2664 int *num_fns, struct type **basetype,
2665 int *boffset)
c906108c 2666{
c5aa993b 2667 struct type *t;
c906108c
SS
2668
2669 t = check_typedef (VALUE_TYPE (*argp));
2670
c5aa993b 2671 /* code snarfed from value_struct_elt */
c906108c
SS
2672 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2673 {
2674 *argp = value_ind (*argp);
2675 /* Don't coerce fn pointer to fn and then back again! */
2676 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2677 COERCE_ARRAY (*argp);
2678 t = check_typedef (VALUE_TYPE (*argp));
2679 }
c5aa993b 2680
c906108c
SS
2681 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2682 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2683
2684 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2685 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2686 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2687
4a1970e4 2688 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2689}
2690
2691/* Given an array of argument types (ARGTYPES) (which includes an
2692 entry for "this" in the case of C++ methods), the number of
2693 arguments NARGS, the NAME of a function whether it's a method or
2694 not (METHOD), and the degree of laxness (LAX) in conforming to
2695 overload resolution rules in ANSI C++, find the best function that
2696 matches on the argument types according to the overload resolution
2697 rules.
2698
2699 In the case of class methods, the parameter OBJ is an object value
2700 in which to search for overloaded methods.
2701
2702 In the case of non-method functions, the parameter FSYM is a symbol
2703 corresponding to one of the overloaded functions.
2704
2705 Return value is an integer: 0 -> good match, 10 -> debugger applied
2706 non-standard coercions, 100 -> incompatible.
2707
2708 If a method is being searched for, VALP will hold the value.
2709 If a non-method is being searched for, SYMP will hold the symbol for it.
2710
2711 If a method is being searched for, and it is a static method,
2712 then STATICP will point to a non-zero value.
2713
2714 Note: This function does *not* check the value of
2715 overload_resolution. Caller must check it to see whether overload
2716 resolution is permitted.
c5aa993b 2717 */
c906108c
SS
2718
2719int
fba45db2 2720find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2721 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2722 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2723{
2724 int nparms;
c5aa993b 2725 struct type **parm_types;
c906108c 2726 int champ_nparms = 0;
7f8c9282 2727 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2728
2729 short oload_champ = -1; /* Index of best overloaded function */
2730 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2731 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2732 short oload_ambig_champ = -1; /* 2nd contender for best match */
2733 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2734 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2735
2736 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2737 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2738
f23631e4 2739 struct value *temp = obj;
c5aa993b
JM
2740 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2741 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2742 int num_fns = 0; /* Number of overloaded instances being considered */
2743 struct type *basetype = NULL;
c906108c
SS
2744 int boffset;
2745 register int jj;
2746 register int ix;
4a1970e4 2747 int static_offset;
02f0d45d 2748 struct cleanup *cleanups = NULL;
c906108c 2749
c5aa993b
JM
2750 char *obj_type_name = NULL;
2751 char *func_name = NULL;
c906108c
SS
2752
2753 /* Get the list of overloaded methods or functions */
2754 if (method)
2755 {
2756 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2757 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2758 value rather than the object itself, so try again */
c906108c 2759 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2760 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2761 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2762
2763 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2764 &num_fns,
2765 &basetype, &boffset);
c906108c 2766 if (!fns_ptr || !num_fns)
c5aa993b
JM
2767 error ("Couldn't find method %s%s%s",
2768 obj_type_name,
2769 (obj_type_name && *obj_type_name) ? "::" : "",
2770 name);
4a1970e4
DJ
2771 /* If we are dealing with stub method types, they should have
2772 been resolved by find_method_list via value_find_oload_method_list
2773 above. */
2774 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2775 }
2776 else
2777 {
2778 int i = -1;
22abf04a 2779 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
c906108c 2780
917317f4 2781 /* If the name is NULL this must be a C-style function.
7b83ea04 2782 Just return the same symbol. */
917317f4 2783 if (!func_name)
7b83ea04 2784 {
917317f4 2785 *symp = fsym;
7b83ea04
AC
2786 return 0;
2787 }
917317f4 2788
c906108c 2789 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2790 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2791 while (oload_syms[++i])
c5aa993b 2792 num_fns++;
c906108c 2793 if (!num_fns)
c5aa993b 2794 error ("Couldn't find function %s", func_name);
c906108c 2795 }
c5aa993b 2796
c906108c
SS
2797 oload_champ_bv = NULL;
2798
c5aa993b 2799 /* Consider each candidate in turn */
c906108c
SS
2800 for (ix = 0; ix < num_fns; ix++)
2801 {
4a1970e4 2802 static_offset = 0;
db577aea
AC
2803 if (method)
2804 {
4a1970e4
DJ
2805 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2806 static_offset = 1;
ad2f7632 2807 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2808 }
2809 else
2810 {
2811 /* If it's not a method, this is the proper place */
2812 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2813 }
c906108c 2814
c5aa993b 2815 /* Prepare array of parameter types */
c906108c
SS
2816 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2817 for (jj = 0; jj < nparms; jj++)
db577aea 2818 parm_types[jj] = (method
ad2f7632 2819 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2820 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2821
4a1970e4
DJ
2822 /* Compare parameter types to supplied argument types. Skip THIS for
2823 static methods. */
2824 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2825 nargs - static_offset);
c5aa993b 2826
c906108c 2827 if (!oload_champ_bv)
c5aa993b
JM
2828 {
2829 oload_champ_bv = bv;
2830 oload_champ = 0;
2831 champ_nparms = nparms;
2832 }
c906108c 2833 else
c5aa993b
JM
2834 /* See whether current candidate is better or worse than previous best */
2835 switch (compare_badness (bv, oload_champ_bv))
2836 {
2837 case 0:
2838 oload_ambiguous = 1; /* top two contenders are equally good */
2839 oload_ambig_champ = ix;
2840 break;
2841 case 1:
2842 oload_ambiguous = 2; /* incomparable top contenders */
2843 oload_ambig_champ = ix;
2844 break;
2845 case 2:
2846 oload_champ_bv = bv; /* new champion, record details */
2847 oload_ambiguous = 0;
2848 oload_champ = ix;
2849 oload_ambig_champ = -1;
2850 champ_nparms = nparms;
2851 break;
2852 case 3:
2853 default:
2854 break;
2855 }
b8c9b27d 2856 xfree (parm_types);
6b1ba9a0
ND
2857 if (overload_debug)
2858 {
2859 if (method)
2860 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2861 else
2862 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2863 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2864 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2865 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2866 }
c5aa993b 2867 } /* end loop over all candidates */
db577aea
AC
2868 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2869 if they have the exact same goodness. This is because there is no
2870 way to differentiate based on return type, which we need to in
2871 cases like overloads of .begin() <It's both const and non-const> */
2872#if 0
c906108c
SS
2873 if (oload_ambiguous)
2874 {
2875 if (method)
c5aa993b
JM
2876 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2877 obj_type_name,
2878 (obj_type_name && *obj_type_name) ? "::" : "",
2879 name);
c906108c 2880 else
c5aa993b
JM
2881 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2882 func_name);
c906108c 2883 }
db577aea 2884#endif
c906108c 2885
4a1970e4
DJ
2886 /* Check how bad the best match is. */
2887 static_offset = 0;
2888 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2889 static_offset = 1;
2890 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2891 {
6b1ba9a0
ND
2892 if (oload_champ_bv->rank[ix] >= 100)
2893 oload_incompatible = 1; /* truly mismatched types */
2894
2895 else if (oload_champ_bv->rank[ix] >= 10)
2896 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2897 }
2898 if (oload_incompatible)
2899 {
2900 if (method)
c5aa993b
JM
2901 error ("Cannot resolve method %s%s%s to any overloaded instance",
2902 obj_type_name,
2903 (obj_type_name && *obj_type_name) ? "::" : "",
2904 name);
c906108c 2905 else
c5aa993b
JM
2906 error ("Cannot resolve function %s to any overloaded instance",
2907 func_name);
c906108c
SS
2908 }
2909 else if (oload_non_standard)
2910 {
2911 if (method)
c5aa993b
JM
2912 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2913 obj_type_name,
2914 (obj_type_name && *obj_type_name) ? "::" : "",
2915 name);
c906108c 2916 else
c5aa993b
JM
2917 warning ("Using non-standard conversion to match function %s to supplied arguments",
2918 func_name);
c906108c
SS
2919 }
2920
2921 if (method)
2922 {
4a1970e4
DJ
2923 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2924 *staticp = 1;
2925 else if (staticp)
2926 *staticp = 0;
c906108c 2927 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2928 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2929 else
c5aa993b 2930 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2931 }
2932 else
2933 {
2934 *symp = oload_syms[oload_champ];
b8c9b27d 2935 xfree (func_name);
c906108c
SS
2936 }
2937
7f8c9282
DJ
2938 if (objp)
2939 {
2940 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2941 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2942 {
2943 temp = value_addr (temp);
2944 }
2945 *objp = temp;
2946 }
02f0d45d
DJ
2947 if (cleanups != NULL)
2948 do_cleanups (cleanups);
2949
c906108c
SS
2950 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2951}
2952
2953/* C++: return 1 is NAME is a legitimate name for the destructor
2954 of type TYPE. If TYPE does not have a destructor, or
2955 if NAME is inappropriate for TYPE, an error is signaled. */
2956int
fba45db2 2957destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2958{
2959 /* destructors are a special case. */
2960
2961 if (name[0] == '~')
2962 {
2963 char *dname = type_name_no_tag (type);
2964 char *cp = strchr (dname, '<');
2965 unsigned int len;
2966
2967 /* Do not compare the template part for template classes. */
2968 if (cp == NULL)
2969 len = strlen (dname);
2970 else
2971 len = cp - dname;
2972 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2973 error ("name of destructor must equal name of class");
2974 else
2975 return 1;
2976 }
2977 return 0;
2978}
2979
2980/* Helper function for check_field: Given TYPE, a structure/union,
2981 return 1 if the component named NAME from the ultimate
2982 target structure/union is defined, otherwise, return 0. */
2983
2984static int
fba45db2 2985check_field_in (register struct type *type, const char *name)
c906108c
SS
2986{
2987 register int i;
2988
2989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2990 {
2991 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2992 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2993 return 1;
2994 }
2995
2996 /* C++: If it was not found as a data field, then try to
2997 return it as a pointer to a method. */
2998
2999 /* Destructors are a special case. */
3000 if (destructor_name_p (name, type))
3001 {
3002 int m_index, f_index;
3003
3004 return get_destructor_fn_field (type, &m_index, &f_index);
3005 }
3006
3007 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3008 {
db577aea 3009 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
3010 return 1;
3011 }
3012
3013 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3014 if (check_field_in (TYPE_BASECLASS (type, i), name))
3015 return 1;
c5aa993b 3016
c906108c
SS
3017 return 0;
3018}
3019
3020
3021/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3022 return 1 if the component named NAME from the ultimate
3023 target structure/union is defined, otherwise, return 0. */
3024
3025int
f23631e4 3026check_field (struct value *arg1, const char *name)
c906108c
SS
3027{
3028 register struct type *t;
3029
3030 COERCE_ARRAY (arg1);
3031
3032 t = VALUE_TYPE (arg1);
3033
3034 /* Follow pointers until we get to a non-pointer. */
3035
3036 for (;;)
3037 {
3038 CHECK_TYPEDEF (t);
3039 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3040 break;
3041 t = TYPE_TARGET_TYPE (t);
3042 }
3043
3044 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3045 error ("not implemented: member type in check_field");
3046
c5aa993b 3047 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3048 && TYPE_CODE (t) != TYPE_CODE_UNION)
3049 error ("Internal error: `this' is not an aggregate");
3050
3051 return check_field_in (t, name);
3052}
3053
3054/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3055 return the address of this member as a "pointer to member"
3056 type. If INTYPE is non-null, then it will be the type
3057 of the member we are looking for. This will help us resolve
3058 "pointers to member functions". This function is used
3059 to resolve user expressions of the form "DOMAIN::NAME". */
3060
f23631e4 3061struct value *
fba45db2
KB
3062value_struct_elt_for_reference (struct type *domain, int offset,
3063 struct type *curtype, char *name,
3064 struct type *intype)
c906108c
SS
3065{
3066 register struct type *t = curtype;
3067 register int i;
f23631e4 3068 struct value *v;
c906108c 3069
c5aa993b 3070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3071 && TYPE_CODE (t) != TYPE_CODE_UNION)
3072 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3073
3074 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3075 {
3076 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3077
c906108c
SS
3078 if (t_field_name && STREQ (t_field_name, name))
3079 {
3080 if (TYPE_FIELD_STATIC (t, i))
3081 {
3082 v = value_static_field (t, i);
3083 if (v == NULL)
2c2738a0 3084 error ("static field %s has been optimized out",
c906108c
SS
3085 name);
3086 return v;
3087 }
3088 if (TYPE_FIELD_PACKED (t, i))
3089 error ("pointers to bitfield members not allowed");
c5aa993b 3090
c906108c
SS
3091 return value_from_longest
3092 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3093 domain)),
3094 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3095 }
3096 }
3097
3098 /* C++: If it was not found as a data field, then try to
3099 return it as a pointer to a method. */
3100
3101 /* Destructors are a special case. */
3102 if (destructor_name_p (name, t))
3103 {
3104 error ("member pointers to destructors not implemented yet");
3105 }
3106
3107 /* Perform all necessary dereferencing. */
3108 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3109 intype = TYPE_TARGET_TYPE (intype);
3110
3111 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3112 {
3113 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3114 char dem_opname[64];
3115
c5aa993b
JM
3116 if (strncmp (t_field_name, "__", 2) == 0 ||
3117 strncmp (t_field_name, "op", 2) == 0 ||
3118 strncmp (t_field_name, "type", 4) == 0)
c906108c 3119 {
c5aa993b
JM
3120 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3121 t_field_name = dem_opname;
3122 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3123 t_field_name = dem_opname;
c906108c
SS
3124 }
3125 if (t_field_name && STREQ (t_field_name, name))
3126 {
3127 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3128 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3129
de17c821
DJ
3130 check_stub_method_group (t, i);
3131
c906108c
SS
3132 if (intype == 0 && j > 1)
3133 error ("non-unique member `%s' requires type instantiation", name);
3134 if (intype)
3135 {
3136 while (j--)
3137 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3138 break;
3139 if (j < 0)
3140 error ("no member function matches that type instantiation");
3141 }
3142 else
3143 j = 0;
c5aa993b 3144
c906108c
SS
3145 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3146 {
3147 return value_from_longest
3148 (lookup_reference_type
3149 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3150 domain)),
3151 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3152 }
3153 else
3154 {
3155 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3156 0, VAR_NAMESPACE, 0, NULL);
3157 if (s == NULL)
3158 {
3159 v = 0;
3160 }
3161 else
3162 {
3163 v = read_var_value (s, 0);
3164#if 0
3165 VALUE_TYPE (v) = lookup_reference_type
3166 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3167 domain));
3168#endif
3169 }
3170 return v;
3171 }
3172 }
3173 }
3174 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3175 {
f23631e4 3176 struct value *v;
c906108c
SS
3177 int base_offset;
3178
3179 if (BASETYPE_VIA_VIRTUAL (t, i))
3180 base_offset = 0;
3181 else
3182 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3183 v = value_struct_elt_for_reference (domain,
3184 offset + base_offset,
3185 TYPE_BASECLASS (t, i),
3186 name,
3187 intype);
3188 if (v)
3189 return v;
3190 }
3191 return 0;
3192}
3193
3194
c906108c
SS
3195/* Given a pointer value V, find the real (RTTI) type
3196 of the object it points to.
3197 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3198 and refer to the values computed for the object pointed to. */
3199
3200struct type *
f23631e4 3201value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3202{
f23631e4 3203 struct value *target;
c906108c
SS
3204
3205 target = value_ind (v);
3206
3207 return value_rtti_type (target, full, top, using_enc);
3208}
3209
3210/* Given a value pointed to by ARGP, check its real run-time type, and
3211 if that is different from the enclosing type, create a new value
3212 using the real run-time type as the enclosing type (and of the same
3213 type as ARGP) and return it, with the embedded offset adjusted to
3214 be the correct offset to the enclosed object
3215 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3216 parameters, computed by value_rtti_type(). If these are available,
3217 they can be supplied and a second call to value_rtti_type() is avoided.
3218 (Pass RTYPE == NULL if they're not available */
3219
f23631e4
AC
3220struct value *
3221value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3222 int xusing_enc)
c906108c 3223{
c5aa993b 3224 struct type *real_type;
c906108c
SS
3225 int full = 0;
3226 int top = -1;
3227 int using_enc = 0;
f23631e4 3228 struct value *new_val;
c906108c
SS
3229
3230 if (rtype)
3231 {
3232 real_type = rtype;
3233 full = xfull;
3234 top = xtop;
3235 using_enc = xusing_enc;
3236 }
3237 else
3238 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3239
3240 /* If no RTTI data, or if object is already complete, do nothing */
3241 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3242 return argp;
3243
3244 /* If we have the full object, but for some reason the enclosing
c5aa993b 3245 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3246 if (full)
3247 {
2b127877 3248 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3249 return argp;
3250 }
3251
3252 /* Check if object is in memory */
3253 if (VALUE_LVAL (argp) != lval_memory)
3254 {
3255 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3256
c906108c
SS
3257 return argp;
3258 }
c5aa993b 3259
c906108c
SS
3260 /* All other cases -- retrieve the complete object */
3261 /* Go back by the computed top_offset from the beginning of the object,
3262 adjusting for the embedded offset of argp if that's what value_rtti_type
3263 used for its computation. */
3264 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3265 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3266 VALUE_BFD_SECTION (argp));
c906108c
SS
3267 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3268 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3269 return new_val;
3270}
3271
389e51db
AC
3272
3273
3274
d069f99d 3275/* Return the value of the local variable, if one exists.
c906108c
SS
3276 Flag COMPLAIN signals an error if the request is made in an
3277 inappropriate context. */
3278
f23631e4 3279struct value *
d069f99d 3280value_of_local (const char *name, int complain)
c906108c
SS
3281{
3282 struct symbol *func, *sym;
3283 struct block *b;
3284 int i;
d069f99d 3285 struct value * ret;
c906108c 3286
6e7f8b9c 3287 if (deprecated_selected_frame == 0)
c906108c
SS
3288 {
3289 if (complain)
c5aa993b
JM
3290 error ("no frame selected");
3291 else
3292 return 0;
c906108c
SS
3293 }
3294
6e7f8b9c 3295 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3296 if (!func)
3297 {
3298 if (complain)
2625d86c 3299 error ("no `%s' in nameless context", name);
c5aa993b
JM
3300 else
3301 return 0;
c906108c
SS
3302 }
3303
3304 b = SYMBOL_BLOCK_VALUE (func);
3305 i = BLOCK_NSYMS (b);
3306 if (i <= 0)
3307 {
3308 if (complain)
2625d86c 3309 error ("no args, no `%s'", name);
c5aa993b
JM
3310 else
3311 return 0;
c906108c
SS
3312 }
3313
3314 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3315 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3316 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3317 if (sym == NULL)
3318 {
3319 if (complain)
2625d86c 3320 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3321 else
3322 return NULL;
3323 }
3324
6e7f8b9c 3325 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3326 if (ret == 0 && complain)
2625d86c 3327 error ("`%s' argument unreadable", name);
d069f99d
AF
3328 return ret;
3329}
3330
3331/* C++/Objective-C: return the value of the class instance variable,
3332 if one exists. Flag COMPLAIN signals an error if the request is
3333 made in an inappropriate context. */
3334
3335struct value *
3336value_of_this (int complain)
3337{
3338 if (current_language->la_language == language_objc)
3339 return value_of_local ("self", complain);
3340 else
3341 return value_of_local ("this", complain);
c906108c
SS
3342}
3343
3344/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3345 long, starting at LOWBOUND. The result has the same lower bound as
3346 the original ARRAY. */
3347
f23631e4
AC
3348struct value *
3349value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3350{
3351 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3352 LONGEST lowerbound, upperbound;
f23631e4 3353 struct value *slice;
c906108c
SS
3354 struct type *array_type;
3355 array_type = check_typedef (VALUE_TYPE (array));
3356 COERCE_VARYING_ARRAY (array, array_type);
3357 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3358 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3359 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3360 error ("cannot take slice of non-array");
3361 range_type = TYPE_INDEX_TYPE (array_type);
3362 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3363 error ("slice from bad array or bitstring");
3364 if (lowbound < lowerbound || length < 0
db034ac5 3365 || lowbound + length - 1 > upperbound)
c906108c
SS
3366 error ("slice out of range");
3367 /* FIXME-type-allocation: need a way to free this type when we are
3368 done with it. */
c5aa993b 3369 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3370 TYPE_TARGET_TYPE (range_type),
3371 lowbound, lowbound + length - 1);
3372 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3373 {
3374 int i;
c5aa993b 3375 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3376 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3377 slice = value_zero (slice_type, not_lval);
3378 for (i = 0; i < length; i++)
3379 {
3380 int element = value_bit_index (array_type,
3381 VALUE_CONTENTS (array),
3382 lowbound + i);
3383 if (element < 0)
3384 error ("internal error accessing bitstring");
3385 else if (element > 0)
3386 {
3387 int j = i % TARGET_CHAR_BIT;
3388 if (BITS_BIG_ENDIAN)
3389 j = TARGET_CHAR_BIT - 1 - j;
3390 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3391 }
3392 }
3393 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3394 can be used on the LHS, but that may require extensions to
3395 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3396 }
3397 else
3398 {
3399 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3400 LONGEST offset
c906108c 3401 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3402 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3403 slice_range_type);
3404 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3405 slice = allocate_value (slice_type);
3406 if (VALUE_LAZY (array))
3407 VALUE_LAZY (slice) = 1;
3408 else
3409 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3410 TYPE_LENGTH (slice_type));
3411 if (VALUE_LVAL (array) == lval_internalvar)
3412 VALUE_LVAL (slice) = lval_internalvar_component;
3413 else
3414 VALUE_LVAL (slice) = VALUE_LVAL (array);
3415 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3416 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3417 }
3418 return slice;
3419}
3420
070ad9f0
DB
3421/* Create a value for a FORTRAN complex number. Currently most of
3422 the time values are coerced to COMPLEX*16 (i.e. a complex number
3423 composed of 2 doubles. This really should be a smarter routine
3424 that figures out precision inteligently as opposed to assuming
c5aa993b 3425 doubles. FIXME: fmb */
c906108c 3426
f23631e4
AC
3427struct value *
3428value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3429{
f23631e4 3430 struct value *val;
c906108c
SS
3431 struct type *real_type = TYPE_TARGET_TYPE (type);
3432
3433 val = allocate_value (type);
3434 arg1 = value_cast (real_type, arg1);
3435 arg2 = value_cast (real_type, arg2);
3436
3437 memcpy (VALUE_CONTENTS_RAW (val),
3438 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3439 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3440 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3441 return val;
3442}
3443
3444/* Cast a value into the appropriate complex data type. */
3445
f23631e4
AC
3446static struct value *
3447cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3448{
3449 struct type *real_type = TYPE_TARGET_TYPE (type);
3450 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3451 {
3452 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3453 struct value *re_val = allocate_value (val_real_type);
3454 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3455
3456 memcpy (VALUE_CONTENTS_RAW (re_val),
3457 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3458 memcpy (VALUE_CONTENTS_RAW (im_val),
3459 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3460 TYPE_LENGTH (val_real_type));
c906108c
SS
3461
3462 return value_literal_complex (re_val, im_val, type);
3463 }
3464 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3465 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3466 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3467 else
3468 error ("cannot cast non-number to complex");
3469}
3470
3471void
fba45db2 3472_initialize_valops (void)
c906108c
SS
3473{
3474#if 0
3475 add_show_from_set
c5aa993b 3476 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3477 "Set automatic abandonment of expressions upon failure.",
3478 &setlist),
3479 &showlist);
3480#endif
3481
3482 add_show_from_set
c5aa993b 3483 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3484 "Set overload resolution in evaluating C++ functions.",
3485 &setlist),
3486 &showlist);
3487 overload_resolution = 1;
3488
242bfc55
FN
3489 add_show_from_set (
3490 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3491 (char *) &unwind_on_signal_p,
3492"Set unwinding of stack if a signal is received while in a call dummy.\n\
3493The unwindonsignal lets the user determine what gdb should do if a signal\n\
3494is received while in a function called from gdb (call dummy). If set, gdb\n\
3495unwinds the stack and restore the context to what as it was before the call.\n\
3496The default is to stop in the frame where the signal was received.", &setlist),
3497 &showlist);
1e698235
DJ
3498
3499 add_show_from_set
3500 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3501 (char *) &coerce_float_to_double,
3502 "Set coercion of floats to doubles when calling functions\n"
3503 "Variables of type float should generally be converted to doubles before\n"
3504 "calling an unprototyped function, and left alone when calling a prototyped\n"
3505 "function. However, some older debug info formats do not provide enough\n"
3506 "information to determine that a function is prototyped. If this flag is\n"
3507 "set, GDB will perform the conversion for a function it considers\n"
3508 "unprototyped.\n"
3509 "The default is to perform the conversion.\n",
3510 &setlist),
3511 &showlist);
3512 coerce_float_to_double = 1;
c906108c 3513}
This page took 0.520073 seconds and 4 git commands to generate.