Use breakpoint location to parse condition over current language.
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
c906108c 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("\
121Limit on string chars or array elements to print is %s.\n"),
122 value);
123}
124
c906108c
SS
125
126/* Default input and output radixes, and output format letter. */
127
128unsigned input_radix = 10;
920d2a44
AC
129static void
130show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
133 fprintf_filtered (file, _("\
134Default input radix for entering numbers is %s.\n"),
135 value);
136}
137
c906108c 138unsigned output_radix = 10;
920d2a44
AC
139static void
140show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("\
144Default output radix for printing of values is %s.\n"),
145 value);
146}
c906108c 147
e79af960
JB
148/* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
e79af960
JB
151static void
152show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156}
157
c906108c
SS
158/* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
920d2a44
AC
162static void
163show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168}
c906108c
SS
169
170/* If nonzero, stops printing of char arrays at first null. */
171
920d2a44
AC
172static void
173show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("\
177Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179}
c906108c
SS
180
181/* Controls pretty printing of structures. */
182
920d2a44
AC
183static void
184show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188}
c906108c
SS
189
190/* Controls pretty printing of arrays. */
191
920d2a44
AC
192static void
193show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197}
c906108c
SS
198
199/* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
920d2a44
AC
202static void
203show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205{
206 fprintf_filtered (file, _("\
207Printing of unions interior to structures is %s.\n"),
208 value);
209}
c906108c
SS
210
211/* If nonzero, causes machine addresses to be printed in certain contexts. */
212
920d2a44
AC
213static void
214show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216{
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218}
c906108c 219\f
c5aa993b 220
a6bac58e
TT
221/* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225static int
226scalar_type_p (struct type *type)
227{
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246}
247
d8ca156b
JB
248/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
249 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 250 stdio stream STREAM according to OPTIONS.
c906108c
SS
251
252 If the data are a string pointer, returns the number of string characters
253 printed.
254
255 FIXME: The data at VALADDR is in target byte order. If gdb is ever
256 enhanced to be able to debug more than the single target it was compiled
257 for (specific CPU type and thus specific target byte ordering), then
258 either the print routines are going to have to take this into account,
259 or the data is going to have to be passed into here already converted
260 to the host byte ordering, whichever is more convenient. */
261
262
263int
fc1a4b47 264val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d
TT
265 CORE_ADDR address, struct ui_file *stream, int recurse,
266 const struct value_print_options *options,
d8ca156b 267 const struct language_defn *language)
c906108c 268{
19ca80ba
DJ
269 volatile struct gdb_exception except;
270 int ret = 0;
79a45b7d 271 struct value_print_options local_opts = *options;
c906108c 272 struct type *real_type = check_typedef (type);
79a45b7d
TT
273
274 if (local_opts.pretty == Val_pretty_default)
275 local_opts.pretty = (local_opts.prettyprint_structs
276 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 277
c906108c
SS
278 QUIT;
279
280 /* Ensure that the type is complete and not just a stub. If the type is
281 only a stub and we can't find and substitute its complete type, then
282 print appropriate string and return. */
283
74a9bb82 284 if (TYPE_STUB (real_type))
c906108c
SS
285 {
286 fprintf_filtered (stream, "<incomplete type>");
287 gdb_flush (stream);
288 return (0);
289 }
c5aa993b 290
a6bac58e
TT
291 if (!options->raw)
292 {
293 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
294 address, stream, recurse, options,
295 language);
296 if (ret)
297 return ret;
298 }
299
300 /* Handle summary mode. If the value is a scalar, print it;
301 otherwise, print an ellipsis. */
302 if (options->summary && !scalar_type_p (type))
303 {
304 fprintf_filtered (stream, "...");
305 return 0;
306 }
307
19ca80ba
DJ
308 TRY_CATCH (except, RETURN_MASK_ERROR)
309 {
d8ca156b 310 ret = language->la_val_print (type, valaddr, embedded_offset, address,
79a45b7d 311 stream, recurse, &local_opts);
19ca80ba
DJ
312 }
313 if (except.reason < 0)
314 fprintf_filtered (stream, _("<error reading variable>"));
315
316 return ret;
c906108c
SS
317}
318
806048c6
DJ
319/* Check whether the value VAL is printable. Return 1 if it is;
320 return 0 and print an appropriate error message to STREAM if it
321 is not. */
c906108c 322
806048c6
DJ
323static int
324value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
325{
326 if (val == 0)
327 {
806048c6 328 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
329 return 0;
330 }
806048c6 331
feb13ab0 332 if (value_optimized_out (val))
c906108c 333 {
806048c6 334 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
335 return 0;
336 }
806048c6 337
bc3b79fd
TJB
338 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
339 {
340 fprintf_filtered (stream, _("<internal function %s>"),
341 value_internal_function_name (val));
342 return 0;
343 }
344
806048c6
DJ
345 return 1;
346}
347
d8ca156b 348/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 349 to OPTIONS.
806048c6
DJ
350
351 If the data are a string pointer, returns the number of string characters
352 printed.
353
354 This is a preferable interface to val_print, above, because it uses
355 GDB's value mechanism. */
356
357int
79a45b7d
TT
358common_val_print (struct value *val, struct ui_file *stream, int recurse,
359 const struct value_print_options *options,
d8ca156b 360 const struct language_defn *language)
806048c6
DJ
361{
362 if (!value_check_printable (val, stream))
363 return 0;
364
0c3acc09
JB
365 if (language->la_language == language_ada)
366 /* The value might have a dynamic type, which would cause trouble
367 below when trying to extract the value contents (since the value
368 size is determined from the type size which is unknown). So
369 get a fixed representation of our value. */
370 val = ada_to_fixed_value (val);
371
806048c6 372 return val_print (value_type (val), value_contents_all (val),
42ae5230 373 value_embedded_offset (val), value_address (val),
79a45b7d 374 stream, recurse, options, language);
806048c6
DJ
375}
376
7348c5e1
JB
377/* Print on stream STREAM the value VAL according to OPTIONS. The value
378 is printed using the current_language syntax.
379
380 If the object printed is a string pointer, return the number of string
381 bytes printed. */
806048c6
DJ
382
383int
79a45b7d
TT
384value_print (struct value *val, struct ui_file *stream,
385 const struct value_print_options *options)
806048c6
DJ
386{
387 if (!value_check_printable (val, stream))
388 return 0;
389
a6bac58e
TT
390 if (!options->raw)
391 {
392 int r = apply_val_pretty_printer (value_type (val),
393 value_contents_all (val),
394 value_embedded_offset (val),
395 value_address (val),
396 stream, 0, options,
397 current_language);
398 if (r)
399 return r;
400 }
401
79a45b7d 402 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
403}
404
405/* Called by various <lang>_val_print routines to print
406 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
407 value. STREAM is where to print the value. */
408
409void
fc1a4b47 410val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 411 struct ui_file *stream)
c906108c 412{
50810684 413 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 414
c906108c
SS
415 if (TYPE_LENGTH (type) > sizeof (LONGEST))
416 {
417 LONGEST val;
418
419 if (TYPE_UNSIGNED (type)
420 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 421 byte_order, &val))
c906108c
SS
422 {
423 print_longest (stream, 'u', 0, val);
424 }
425 else
426 {
427 /* Signed, or we couldn't turn an unsigned value into a
428 LONGEST. For signed values, one could assume two's
429 complement (a reasonable assumption, I think) and do
430 better than this. */
431 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 432 TYPE_LENGTH (type), byte_order);
c906108c
SS
433 }
434 }
435 else
436 {
c906108c
SS
437 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
438 unpack_long (type, valaddr));
c906108c
SS
439 }
440}
441
4f2aea11
MK
442void
443val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
444 struct ui_file *stream)
445{
befae759 446 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
447 int bitpos, nfields = TYPE_NFIELDS (type);
448
449 fputs_filtered ("[ ", stream);
450 for (bitpos = 0; bitpos < nfields; bitpos++)
451 {
316703b9
MK
452 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
453 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
454 {
455 if (TYPE_FIELD_NAME (type, bitpos))
456 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
457 else
458 fprintf_filtered (stream, "#%d ", bitpos);
459 }
460 }
461 fputs_filtered ("]", stream);
462}
463
c906108c
SS
464/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
465 The raison d'etre of this function is to consolidate printing of
bb599908
PH
466 LONG_LONG's into this one function. The format chars b,h,w,g are
467 from print_scalar_formatted(). Numbers are printed using C
468 format.
469
470 USE_C_FORMAT means to use C format in all cases. Without it,
471 'o' and 'x' format do not include the standard C radix prefix
472 (leading 0 or 0x).
473
474 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
475 and was intended to request formating according to the current
476 language and would be used for most integers that GDB prints. The
477 exceptional cases were things like protocols where the format of
478 the integer is a protocol thing, not a user-visible thing). The
479 parameter remains to preserve the information of what things might
480 be printed with language-specific format, should we ever resurrect
481 that capability. */
c906108c
SS
482
483void
bb599908 484print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 485 LONGEST val_long)
c906108c 486{
2bfb72ee
AC
487 const char *val;
488
c906108c
SS
489 switch (format)
490 {
491 case 'd':
bb599908 492 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 493 case 'u':
bb599908 494 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 495 case 'x':
bb599908 496 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 497 case 'b':
bb599908 498 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 499 case 'h':
bb599908 500 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 501 case 'w':
bb599908 502 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 503 case 'g':
bb599908 504 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
505 break;
506 case 'o':
bb599908 507 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 508 default:
e2e0b3e5 509 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 510 }
2bfb72ee 511 fputs_filtered (val, stream);
c906108c
SS
512}
513
c906108c
SS
514/* This used to be a macro, but I don't think it is called often enough
515 to merit such treatment. */
516/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
517 arguments to a function, number in a value history, register number, etc.)
518 where the value must not be larger than can fit in an int. */
519
520int
fba45db2 521longest_to_int (LONGEST arg)
c906108c
SS
522{
523 /* Let the compiler do the work */
524 int rtnval = (int) arg;
525
526 /* Check for overflows or underflows */
527 if (sizeof (LONGEST) > sizeof (int))
528 {
529 if (rtnval != arg)
530 {
8a3fe4f8 531 error (_("Value out of range."));
c906108c
SS
532 }
533 }
534 return (rtnval);
535}
536
a73c86fb
AC
537/* Print a floating point value of type TYPE (not always a
538 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
539
540void
fc1a4b47 541print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 542 struct ui_file *stream)
c906108c
SS
543{
544 DOUBLEST doub;
545 int inv;
a73c86fb 546 const struct floatformat *fmt = NULL;
c906108c 547 unsigned len = TYPE_LENGTH (type);
20389057 548 enum float_kind kind;
c5aa993b 549
a73c86fb
AC
550 /* If it is a floating-point, check for obvious problems. */
551 if (TYPE_CODE (type) == TYPE_CODE_FLT)
552 fmt = floatformat_from_type (type);
20389057 553 if (fmt != NULL)
39424bef 554 {
20389057
DJ
555 kind = floatformat_classify (fmt, valaddr);
556 if (kind == float_nan)
557 {
558 if (floatformat_is_negative (fmt, valaddr))
559 fprintf_filtered (stream, "-");
560 fprintf_filtered (stream, "nan(");
561 fputs_filtered ("0x", stream);
562 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
563 fprintf_filtered (stream, ")");
564 return;
565 }
566 else if (kind == float_infinite)
567 {
568 if (floatformat_is_negative (fmt, valaddr))
569 fputs_filtered ("-", stream);
570 fputs_filtered ("inf", stream);
571 return;
572 }
7355ddba 573 }
c906108c 574
a73c86fb
AC
575 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
576 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
577 needs to be used as that takes care of any necessary type
578 conversions. Such conversions are of course direct to DOUBLEST
579 and disregard any possible target floating point limitations.
580 For instance, a u64 would be converted and displayed exactly on a
581 host with 80 bit DOUBLEST but with loss of information on a host
582 with 64 bit DOUBLEST. */
c2f05ac9 583
c906108c
SS
584 doub = unpack_double (type, valaddr, &inv);
585 if (inv)
586 {
587 fprintf_filtered (stream, "<invalid float value>");
588 return;
589 }
590
39424bef
MK
591 /* FIXME: kettenis/2001-01-20: The following code makes too much
592 assumptions about the host and target floating point format. */
593
a73c86fb 594 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 595 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
596 instead uses the type's length to determine the precision of the
597 floating-point value being printed. */
c2f05ac9 598
c906108c 599 if (len < sizeof (double))
c5aa993b 600 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 601 else if (len == sizeof (double))
c5aa993b 602 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
603 else
604#ifdef PRINTF_HAS_LONG_DOUBLE
605 fprintf_filtered (stream, "%.35Lg", doub);
606#else
39424bef
MK
607 /* This at least wins with values that are representable as
608 doubles. */
c906108c
SS
609 fprintf_filtered (stream, "%.17g", (double) doub);
610#endif
611}
612
7678ef8f
TJB
613void
614print_decimal_floating (const gdb_byte *valaddr, struct type *type,
615 struct ui_file *stream)
616{
e17a4113 617 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
618 char decstr[MAX_DECIMAL_STRING];
619 unsigned len = TYPE_LENGTH (type);
620
e17a4113 621 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
622 fputs_filtered (decstr, stream);
623 return;
624}
625
c5aa993b 626void
fc1a4b47 627print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 628 unsigned len, enum bfd_endian byte_order)
c906108c
SS
629{
630
631#define BITS_IN_BYTES 8
632
fc1a4b47 633 const gdb_byte *p;
745b8ca0 634 unsigned int i;
c5aa993b 635 int b;
c906108c
SS
636
637 /* Declared "int" so it will be signed.
638 * This ensures that right shift will shift in zeros.
639 */
c5aa993b 640 const int mask = 0x080;
c906108c
SS
641
642 /* FIXME: We should be not printing leading zeroes in most cases. */
643
d44e8473 644 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
645 {
646 for (p = valaddr;
647 p < valaddr + len;
648 p++)
649 {
c5aa993b
JM
650 /* Every byte has 8 binary characters; peel off
651 * and print from the MSB end.
652 */
653 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
654 {
655 if (*p & (mask >> i))
656 b = 1;
657 else
658 b = 0;
659
660 fprintf_filtered (stream, "%1d", b);
661 }
c906108c
SS
662 }
663 }
664 else
665 {
666 for (p = valaddr + len - 1;
667 p >= valaddr;
668 p--)
669 {
c5aa993b
JM
670 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
671 {
672 if (*p & (mask >> i))
673 b = 1;
674 else
675 b = 0;
676
677 fprintf_filtered (stream, "%1d", b);
678 }
c906108c
SS
679 }
680 }
c906108c
SS
681}
682
683/* VALADDR points to an integer of LEN bytes.
684 * Print it in octal on stream or format it in buf.
685 */
686void
fc1a4b47 687print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 688 unsigned len, enum bfd_endian byte_order)
c906108c 689{
fc1a4b47 690 const gdb_byte *p;
c906108c 691 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
692 int cycle;
693
c906108c
SS
694 /* FIXME: We should be not printing leading zeroes in most cases. */
695
696
697 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
698 * the extra bits, which cycle every three bytes:
699 *
700 * Byte side: 0 1 2 3
701 * | | | |
702 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
703 *
704 * Octal side: 0 1 carry 3 4 carry ...
705 *
706 * Cycle number: 0 1 2
707 *
708 * But of course we are printing from the high side, so we have to
709 * figure out where in the cycle we are so that we end up with no
710 * left over bits at the end.
711 */
712#define BITS_IN_OCTAL 3
713#define HIGH_ZERO 0340
714#define LOW_ZERO 0016
715#define CARRY_ZERO 0003
716#define HIGH_ONE 0200
717#define MID_ONE 0160
718#define LOW_ONE 0016
719#define CARRY_ONE 0001
720#define HIGH_TWO 0300
721#define MID_TWO 0070
722#define LOW_TWO 0007
723
724 /* For 32 we start in cycle 2, with two bits and one bit carry;
725 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
726 */
727 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
728 carry = 0;
c5aa993b 729
bb599908 730 fputs_filtered ("0", stream);
d44e8473 731 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
732 {
733 for (p = valaddr;
734 p < valaddr + len;
735 p++)
736 {
c5aa993b
JM
737 switch (cycle)
738 {
739 case 0:
740 /* No carry in, carry out two bits.
741 */
742 octa1 = (HIGH_ZERO & *p) >> 5;
743 octa2 = (LOW_ZERO & *p) >> 2;
744 carry = (CARRY_ZERO & *p);
745 fprintf_filtered (stream, "%o", octa1);
746 fprintf_filtered (stream, "%o", octa2);
747 break;
748
749 case 1:
750 /* Carry in two bits, carry out one bit.
751 */
752 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
753 octa2 = (MID_ONE & *p) >> 4;
754 octa3 = (LOW_ONE & *p) >> 1;
755 carry = (CARRY_ONE & *p);
756 fprintf_filtered (stream, "%o", octa1);
757 fprintf_filtered (stream, "%o", octa2);
758 fprintf_filtered (stream, "%o", octa3);
759 break;
760
761 case 2:
762 /* Carry in one bit, no carry out.
763 */
764 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
765 octa2 = (MID_TWO & *p) >> 3;
766 octa3 = (LOW_TWO & *p);
767 carry = 0;
768 fprintf_filtered (stream, "%o", octa1);
769 fprintf_filtered (stream, "%o", octa2);
770 fprintf_filtered (stream, "%o", octa3);
771 break;
772
773 default:
8a3fe4f8 774 error (_("Internal error in octal conversion;"));
c5aa993b
JM
775 }
776
777 cycle++;
778 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
779 }
780 }
781 else
782 {
783 for (p = valaddr + len - 1;
784 p >= valaddr;
785 p--)
786 {
c5aa993b
JM
787 switch (cycle)
788 {
789 case 0:
790 /* Carry out, no carry in */
791 octa1 = (HIGH_ZERO & *p) >> 5;
792 octa2 = (LOW_ZERO & *p) >> 2;
793 carry = (CARRY_ZERO & *p);
794 fprintf_filtered (stream, "%o", octa1);
795 fprintf_filtered (stream, "%o", octa2);
796 break;
797
798 case 1:
799 /* Carry in, carry out */
800 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
801 octa2 = (MID_ONE & *p) >> 4;
802 octa3 = (LOW_ONE & *p) >> 1;
803 carry = (CARRY_ONE & *p);
804 fprintf_filtered (stream, "%o", octa1);
805 fprintf_filtered (stream, "%o", octa2);
806 fprintf_filtered (stream, "%o", octa3);
807 break;
808
809 case 2:
810 /* Carry in, no carry out */
811 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
812 octa2 = (MID_TWO & *p) >> 3;
813 octa3 = (LOW_TWO & *p);
814 carry = 0;
815 fprintf_filtered (stream, "%o", octa1);
816 fprintf_filtered (stream, "%o", octa2);
817 fprintf_filtered (stream, "%o", octa3);
818 break;
819
820 default:
8a3fe4f8 821 error (_("Internal error in octal conversion;"));
c5aa993b
JM
822 }
823
824 cycle++;
825 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
826 }
827 }
828
c906108c
SS
829}
830
831/* VALADDR points to an integer of LEN bytes.
832 * Print it in decimal on stream or format it in buf.
833 */
834void
fc1a4b47 835print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 836 unsigned len, enum bfd_endian byte_order)
c906108c
SS
837{
838#define TEN 10
c5aa993b 839#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
840#define CARRY_LEFT( x ) ((x) % TEN)
841#define SHIFT( x ) ((x) << 4)
c906108c
SS
842#define LOW_NIBBLE( x ) ( (x) & 0x00F)
843#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
844
fc1a4b47 845 const gdb_byte *p;
c906108c 846 unsigned char *digits;
c5aa993b
JM
847 int carry;
848 int decimal_len;
849 int i, j, decimal_digits;
850 int dummy;
851 int flip;
852
c906108c
SS
853 /* Base-ten number is less than twice as many digits
854 * as the base 16 number, which is 2 digits per byte.
855 */
856 decimal_len = len * 2 * 2;
3c37485b 857 digits = xmalloc (decimal_len);
c906108c 858
c5aa993b
JM
859 for (i = 0; i < decimal_len; i++)
860 {
c906108c 861 digits[i] = 0;
c5aa993b 862 }
c906108c 863
c906108c
SS
864 /* Ok, we have an unknown number of bytes of data to be printed in
865 * decimal.
866 *
867 * Given a hex number (in nibbles) as XYZ, we start by taking X and
868 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
869 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
870 *
871 * The trick is that "digits" holds a base-10 number, but sometimes
872 * the individual digits are > 10.
873 *
874 * Outer loop is per nibble (hex digit) of input, from MSD end to
875 * LSD end.
876 */
c5aa993b 877 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 878 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 879 flip = 0;
d44e8473 880 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 881 {
c906108c
SS
882 /*
883 * Multiply current base-ten number by 16 in place.
884 * Each digit was between 0 and 9, now is between
885 * 0 and 144.
886 */
c5aa993b
JM
887 for (j = 0; j < decimal_digits; j++)
888 {
889 digits[j] = SHIFT (digits[j]);
890 }
891
c906108c
SS
892 /* Take the next nibble off the input and add it to what
893 * we've got in the LSB position. Bottom 'digit' is now
894 * between 0 and 159.
895 *
896 * "flip" is used to run this loop twice for each byte.
897 */
c5aa993b
JM
898 if (flip == 0)
899 {
900 /* Take top nibble.
901 */
902 digits[0] += HIGH_NIBBLE (*p);
903 flip = 1;
904 }
905 else
906 {
907 /* Take low nibble and bump our pointer "p".
908 */
909 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
910 if (byte_order == BFD_ENDIAN_BIG)
911 p++;
912 else
913 p--;
c5aa993b
JM
914 flip = 0;
915 }
c906108c
SS
916
917 /* Re-decimalize. We have to do this often enough
918 * that we don't overflow, but once per nibble is
919 * overkill. Easier this way, though. Note that the
920 * carry is often larger than 10 (e.g. max initial
921 * carry out of lowest nibble is 15, could bubble all
922 * the way up greater than 10). So we have to do
923 * the carrying beyond the last current digit.
924 */
925 carry = 0;
c5aa993b
JM
926 for (j = 0; j < decimal_len - 1; j++)
927 {
928 digits[j] += carry;
929
930 /* "/" won't handle an unsigned char with
931 * a value that if signed would be negative.
932 * So extend to longword int via "dummy".
933 */
934 dummy = digits[j];
935 carry = CARRY_OUT (dummy);
936 digits[j] = CARRY_LEFT (dummy);
937
938 if (j >= decimal_digits && carry == 0)
939 {
940 /*
941 * All higher digits are 0 and we
942 * no longer have a carry.
943 *
944 * Note: "j" is 0-based, "decimal_digits" is
945 * 1-based.
946 */
947 decimal_digits = j + 1;
948 break;
949 }
950 }
951 }
c906108c
SS
952
953 /* Ok, now "digits" is the decimal representation, with
954 * the "decimal_digits" actual digits. Print!
955 */
c5aa993b
JM
956 for (i = decimal_digits - 1; i >= 0; i--)
957 {
958 fprintf_filtered (stream, "%1d", digits[i]);
959 }
b8c9b27d 960 xfree (digits);
c906108c
SS
961}
962
963/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
964
6b9acc27 965void
fc1a4b47 966print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 967 unsigned len, enum bfd_endian byte_order)
c906108c 968{
fc1a4b47 969 const gdb_byte *p;
c906108c
SS
970
971 /* FIXME: We should be not printing leading zeroes in most cases. */
972
bb599908 973 fputs_filtered ("0x", stream);
d44e8473 974 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
975 {
976 for (p = valaddr;
977 p < valaddr + len;
978 p++)
979 {
980 fprintf_filtered (stream, "%02x", *p);
981 }
982 }
983 else
984 {
985 for (p = valaddr + len - 1;
986 p >= valaddr;
987 p--)
988 {
989 fprintf_filtered (stream, "%02x", *p);
990 }
991 }
c906108c
SS
992}
993
6b9acc27
JJ
994/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
995 Omit any leading zero chars. */
996
997void
6c7a06a3
TT
998print_char_chars (struct ui_file *stream, struct type *type,
999 const gdb_byte *valaddr,
d44e8473 1000 unsigned len, enum bfd_endian byte_order)
6b9acc27 1001{
fc1a4b47 1002 const gdb_byte *p;
6b9acc27 1003
d44e8473 1004 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1005 {
1006 p = valaddr;
1007 while (p < valaddr + len - 1 && *p == 0)
1008 ++p;
1009
1010 while (p < valaddr + len)
1011 {
6c7a06a3 1012 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1013 ++p;
1014 }
1015 }
1016 else
1017 {
1018 p = valaddr + len - 1;
1019 while (p > valaddr && *p == 0)
1020 --p;
1021
1022 while (p >= valaddr)
1023 {
6c7a06a3 1024 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1025 --p;
1026 }
1027 }
1028}
1029
e936309c
JB
1030/* Assuming TYPE is a simple, non-empty array type, compute its upper
1031 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1032 Save the high bound into HIGH_BOUND if not NULL.
e79af960
JB
1033
1034 Return 1 if the operation was successful. Return zero otherwise,
e936309c 1035 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
e79af960 1036
e936309c
JB
1037 Computing the array upper and lower bounds is pretty easy, but this
1038 function does some additional verifications before returning them.
e79af960
JB
1039 If something incorrect is detected, it is better to return a status
1040 rather than throwing an error, making it easier for the caller to
1041 implement an error-recovery plan. For instance, it may decide to
e936309c
JB
1042 warn the user that the bounds were not found and then use some
1043 default values instead. */
e79af960
JB
1044
1045int
e936309c 1046get_array_bounds (struct type *type, long *low_bound, long *high_bound)
e79af960
JB
1047{
1048 struct type *index = TYPE_INDEX_TYPE (type);
1049 long low = 0;
e936309c 1050 long high = 0;
e79af960
JB
1051
1052 if (index == NULL)
1053 return 0;
1054
e936309c
JB
1055 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1056 {
1057 low = TYPE_LOW_BOUND (index);
1058 high = TYPE_HIGH_BOUND (index);
1059 }
1060 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1061 {
1062 const int n_enums = TYPE_NFIELDS (index);
1063
1064 low = TYPE_FIELD_BITPOS (index, 0);
1065 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1066 }
1067 else
e79af960
JB
1068 return 0;
1069
e936309c
JB
1070 /* Abort if the lower bound is greater than the higher bound, except
1071 when low = high + 1. This is a very common idiom used in Ada when
1072 defining empty ranges (for instance "range 1 .. 0"). */
1073 if (low > high + 1)
e79af960
JB
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
e936309c
JB
1079 if (high_bound)
1080 *high_bound = high;
1081
e79af960
JB
1082 return 1;
1083}
e936309c 1084
79a45b7d 1085/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1086 at INDEX of an array whose index type is INDEX_TYPE. */
1087
1088void
1089maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1090 struct ui_file *stream,
1091 const struct value_print_options *options)
e79af960
JB
1092{
1093 struct value *index_value;
1094
79a45b7d 1095 if (!options->print_array_indexes)
e79af960
JB
1096 return;
1097
1098 index_value = value_from_longest (index_type, index);
1099
79a45b7d
TT
1100 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1101}
e79af960 1102
c906108c 1103/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1104 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1105
c5aa993b
JM
1106 (FIXME?) Assumes array element separator is a comma, which is correct
1107 for all languages currently handled.
1108 (FIXME?) Some languages have a notation for repeated array elements,
1109 perhaps we should try to use that notation when appropriate.
1110 */
c906108c
SS
1111
1112void
fc1a4b47 1113val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1114 CORE_ADDR address, struct ui_file *stream,
79a45b7d
TT
1115 int recurse,
1116 const struct value_print_options *options,
fba45db2 1117 unsigned int i)
c906108c
SS
1118{
1119 unsigned int things_printed = 0;
1120 unsigned len;
e79af960 1121 struct type *elttype, *index_type;
c906108c
SS
1122 unsigned eltlen;
1123 /* Position of the array element we are examining to see
1124 whether it is repeated. */
1125 unsigned int rep1;
1126 /* Number of repetitions we have detected so far. */
1127 unsigned int reps;
168de233 1128 long low_bound_index = 0;
c5aa993b 1129
c906108c
SS
1130 elttype = TYPE_TARGET_TYPE (type);
1131 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1132 index_type = TYPE_INDEX_TYPE (type);
c906108c 1133
e936309c
JB
1134 /* Compute the number of elements in the array. On most arrays,
1135 the size of its elements is not zero, and so the number of elements
1136 is simply the size of the array divided by the size of the elements.
1137 But for arrays of elements whose size is zero, we need to look at
1138 the bounds. */
1139 if (eltlen != 0)
1140 len = TYPE_LENGTH (type) / eltlen;
1141 else
1142 {
1143 long low, hi;
1144 if (get_array_bounds (type, &low, &hi))
1145 len = hi - low + 1;
1146 else
1147 {
1148 warning (_("unable to get bounds of array, assuming null array"));
1149 len = 0;
1150 }
1151 }
1152
168de233
JB
1153 /* Get the array low bound. This only makes sense if the array
1154 has one or more element in it. */
e936309c 1155 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
168de233 1156 {
e936309c 1157 warning (_("unable to get low bound of array, using zero as default"));
168de233
JB
1158 low_bound_index = 0;
1159 }
1160
c906108c
SS
1161 annotate_array_section_begin (i, elttype);
1162
79a45b7d 1163 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1164 {
1165 if (i != 0)
1166 {
79a45b7d 1167 if (options->prettyprint_arrays)
c906108c
SS
1168 {
1169 fprintf_filtered (stream, ",\n");
1170 print_spaces_filtered (2 + 2 * recurse, stream);
1171 }
1172 else
1173 {
1174 fprintf_filtered (stream, ", ");
1175 }
1176 }
1177 wrap_here (n_spaces (2 + 2 * recurse));
e79af960 1178 maybe_print_array_index (index_type, i + low_bound_index,
79a45b7d 1179 stream, options);
c906108c
SS
1180
1181 rep1 = i + 1;
1182 reps = 1;
c5aa993b 1183 while ((rep1 < len) &&
c906108c
SS
1184 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1185 {
1186 ++reps;
1187 ++rep1;
1188 }
1189
79a45b7d 1190 if (reps > options->repeat_count_threshold)
c906108c 1191 {
f9e31323
TT
1192 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1193 stream, recurse + 1, options, current_language);
c906108c
SS
1194 annotate_elt_rep (reps);
1195 fprintf_filtered (stream, " <repeats %u times>", reps);
1196 annotate_elt_rep_end ();
1197
1198 i = rep1 - 1;
79a45b7d 1199 things_printed += options->repeat_count_threshold;
c906108c
SS
1200 }
1201 else
1202 {
f9e31323
TT
1203 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1204 stream, recurse + 1, options, current_language);
c906108c
SS
1205 annotate_elt ();
1206 things_printed++;
1207 }
1208 }
1209 annotate_array_section_end ();
1210 if (i < len)
1211 {
1212 fprintf_filtered (stream, "...");
1213 }
1214}
1215
917317f4
JM
1216/* Read LEN bytes of target memory at address MEMADDR, placing the
1217 results in GDB's memory at MYADDR. Returns a count of the bytes
1218 actually read, and optionally an errno value in the location
1219 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1220
1221/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1222 function be eliminated. */
1223
1224static int
777ea8f1 1225partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1226{
1227 int nread; /* Number of bytes actually read. */
1228 int errcode; /* Error from last read. */
1229
1230 /* First try a complete read. */
1231 errcode = target_read_memory (memaddr, myaddr, len);
1232 if (errcode == 0)
1233 {
1234 /* Got it all. */
1235 nread = len;
1236 }
1237 else
1238 {
1239 /* Loop, reading one byte at a time until we get as much as we can. */
1240 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1241 {
1242 errcode = target_read_memory (memaddr++, myaddr++, 1);
1243 }
1244 /* If an error, the last read was unsuccessful, so adjust count. */
1245 if (errcode != 0)
1246 {
1247 nread--;
1248 }
1249 }
1250 if (errnoptr != NULL)
1251 {
1252 *errnoptr = errcode;
1253 }
1254 return (nread);
1255}
1256
ae6a3a4c
TJB
1257/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1258 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1259 allocated buffer containing the string, which the caller is responsible to
1260 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1261 success, or errno on failure.
1262
1263 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1264 the middle or end of the string). If LEN is -1, stops at the first
1265 null character (not necessarily the first null byte) up to a maximum
1266 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1267 characters as possible from the string.
1268
1269 Unless an exception is thrown, BUFFER will always be allocated, even on
1270 failure. In this case, some characters might have been read before the
1271 failure happened. Check BYTES_READ to recognize this situation.
1272
1273 Note: There was a FIXME asking to make this code use target_read_string,
1274 but this function is more general (can read past null characters, up to
1275 given LEN). Besides, it is used much more often than target_read_string
1276 so it is more tested. Perhaps callers of target_read_string should use
1277 this function instead? */
c906108c
SS
1278
1279int
ae6a3a4c 1280read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1281 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1282{
ae6a3a4c
TJB
1283 int found_nul; /* Non-zero if we found the nul char. */
1284 int errcode; /* Errno returned from bad reads. */
1285 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1286 unsigned int chunksize; /* Size of each fetch, in chars. */
1287 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1288 gdb_byte *limit; /* First location past end of fetch buffer. */
1289 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1290
1291 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1292 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1293 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1294 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1295 well read in blocks that are large enough to be efficient, but not so
1296 large as to be slow if fetchlimit happens to be large. So we choose the
1297 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1298 200 is way too big for remote debugging over a serial line. */
1299
1300 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1301
ae6a3a4c
TJB
1302 /* Loop until we either have all the characters, or we encounter
1303 some error, such as bumping into the end of the address space. */
c906108c
SS
1304
1305 found_nul = 0;
b5096abe
PM
1306 *buffer = NULL;
1307
1308 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1309
1310 if (len > 0)
1311 {
ae6a3a4c
TJB
1312 *buffer = (gdb_byte *) xmalloc (len * width);
1313 bufptr = *buffer;
c906108c 1314
917317f4 1315 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1316 / width;
1317 addr += nfetch * width;
1318 bufptr += nfetch * width;
1319 }
1320 else if (len == -1)
1321 {
1322 unsigned long bufsize = 0;
ae6a3a4c 1323
c906108c
SS
1324 do
1325 {
1326 QUIT;
1327 nfetch = min (chunksize, fetchlimit - bufsize);
1328
ae6a3a4c
TJB
1329 if (*buffer == NULL)
1330 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1331 else
b5096abe
PM
1332 *buffer = (gdb_byte *) xrealloc (*buffer,
1333 (nfetch + bufsize) * width);
c906108c 1334
ae6a3a4c 1335 bufptr = *buffer + bufsize * width;
c906108c
SS
1336 bufsize += nfetch;
1337
ae6a3a4c 1338 /* Read as much as we can. */
917317f4 1339 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1340 / width;
c906108c 1341
ae6a3a4c 1342 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1343 to print. If found, we don't need to fetch any more. Note
1344 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1345 after the null character, or at the next character after the end
1346 of the buffer. */
c906108c
SS
1347
1348 limit = bufptr + nfetch * width;
1349 while (bufptr < limit)
1350 {
1351 unsigned long c;
1352
e17a4113 1353 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1354 addr += width;
1355 bufptr += width;
1356 if (c == 0)
1357 {
1358 /* We don't care about any error which happened after
ae6a3a4c 1359 the NUL terminator. */
c906108c
SS
1360 errcode = 0;
1361 found_nul = 1;
1362 break;
1363 }
1364 }
1365 }
c5aa993b 1366 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1367 && bufptr - *buffer < fetchlimit * width /* no overrun */
1368 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1369 }
1370 else
ae6a3a4c
TJB
1371 { /* Length of string is really 0! */
1372 /* We always allocate *buffer. */
1373 *buffer = bufptr = xmalloc (1);
c906108c
SS
1374 errcode = 0;
1375 }
1376
1377 /* bufptr and addr now point immediately beyond the last byte which we
1378 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1379 *bytes_read = bufptr - *buffer;
1380
1381 QUIT;
1382
1383 discard_cleanups (old_chain);
1384
1385 return errcode;
1386}
1387
1388/* Print a string from the inferior, starting at ADDR and printing up to LEN
1389 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1390 stops at the first null byte, otherwise printing proceeds (including null
1391 bytes) until either print_max or LEN characters have been printed,
1392 whichever is smaller. */
1393
1394int
6c7a06a3
TT
1395val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1396 struct ui_file *stream,
ae6a3a4c
TJB
1397 const struct value_print_options *options)
1398{
1399 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1400 int errcode; /* Errno returned from bad reads. */
1401 int found_nul; /* Non-zero if we found the nul char */
1402 unsigned int fetchlimit; /* Maximum number of chars to print. */
1403 int bytes_read;
1404 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1405 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1406 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1408 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1409
1410 /* First we need to figure out the limit on the number of characters we are
1411 going to attempt to fetch and print. This is actually pretty simple. If
1412 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1413 LEN is -1, then the limit is print_max. This is true regardless of
1414 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1415 because finding the null byte (or available memory) is what actually
1416 limits the fetch. */
1417
1418 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1419
e17a4113
UW
1420 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1421 &buffer, &bytes_read);
ae6a3a4c
TJB
1422 old_chain = make_cleanup (xfree, buffer);
1423
1424 addr += bytes_read;
c906108c
SS
1425
1426 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1427 terminated early due to an error or finding a null char when LEN is -1. */
1428
1429 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1430 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1431 byte_order) == 0;
c906108c
SS
1432 if (len == -1 && !found_nul)
1433 {
777ea8f1 1434 gdb_byte *peekbuf;
c906108c 1435
ae6a3a4c 1436 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1437 to peek at the next character. If not successful, or it is not
1438 a null byte, then force ellipsis to be printed. */
c906108c 1439
777ea8f1 1440 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1441
1442 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1443 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1444 force_ellipsis = 1;
1445 }
ae6a3a4c 1446 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1447 {
1448 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1449 than the number of characters actually requested, always make us
ae6a3a4c 1450 print ellipsis. */
c906108c
SS
1451 force_ellipsis = 1;
1452 }
1453
c906108c
SS
1454 /* If we get an error before fetching anything, don't print a string.
1455 But if we fetch something and then get an error, print the string
1456 and then the error message. */
ae6a3a4c 1457 if (errcode == 0 || bytes_read > 0)
c906108c 1458 {
79a45b7d 1459 if (options->addressprint)
c906108c
SS
1460 {
1461 fputs_filtered (" ", stream);
1462 }
be759fcf
PM
1463 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1464 NULL, force_ellipsis, options);
c906108c
SS
1465 }
1466
1467 if (errcode != 0)
1468 {
1469 if (errcode == EIO)
1470 {
1471 fprintf_filtered (stream, " <Address ");
5af949e3 1472 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1473 fprintf_filtered (stream, " out of bounds>");
1474 }
1475 else
1476 {
1477 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1478 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1479 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1480 }
1481 }
ae6a3a4c 1482
c906108c
SS
1483 gdb_flush (stream);
1484 do_cleanups (old_chain);
ae6a3a4c
TJB
1485
1486 return (bytes_read / width);
c906108c 1487}
c906108c 1488\f
c5aa993b 1489
09e6485f
PA
1490/* The 'set input-radix' command writes to this auxiliary variable.
1491 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1492 it is left unchanged. */
1493
1494static unsigned input_radix_1 = 10;
1495
c906108c
SS
1496/* Validate an input or output radix setting, and make sure the user
1497 knows what they really did here. Radix setting is confusing, e.g.
1498 setting the input radix to "10" never changes it! */
1499
c906108c 1500static void
fba45db2 1501set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1502{
09e6485f 1503 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1504}
1505
c906108c 1506static void
fba45db2 1507set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1508{
1509 /* We don't currently disallow any input radix except 0 or 1, which don't
1510 make any mathematical sense. In theory, we can deal with any input
1511 radix greater than 1, even if we don't have unique digits for every
1512 value from 0 to radix-1, but in practice we lose on large radix values.
1513 We should either fix the lossage or restrict the radix range more.
1514 (FIXME). */
1515
1516 if (radix < 2)
1517 {
09e6485f 1518 input_radix_1 = input_radix;
8a3fe4f8 1519 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1520 radix);
1521 }
09e6485f 1522 input_radix_1 = input_radix = radix;
c906108c
SS
1523 if (from_tty)
1524 {
a3f17187 1525 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1526 radix, radix, radix);
1527 }
1528}
1529
09e6485f
PA
1530/* The 'set output-radix' command writes to this auxiliary variable.
1531 If the requested radix is valid, OUTPUT_RADIX is updated,
1532 otherwise, it is left unchanged. */
1533
1534static unsigned output_radix_1 = 10;
1535
c906108c 1536static void
fba45db2 1537set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1538{
09e6485f 1539 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1540}
1541
1542static void
fba45db2 1543set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1544{
1545 /* Validate the radix and disallow ones that we aren't prepared to
1546 handle correctly, leaving the radix unchanged. */
1547 switch (radix)
1548 {
1549 case 16:
79a45b7d 1550 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1551 break;
1552 case 10:
79a45b7d 1553 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1554 break;
1555 case 8:
79a45b7d 1556 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1557 break;
1558 default:
09e6485f 1559 output_radix_1 = output_radix;
8a3fe4f8 1560 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1561 radix);
1562 }
09e6485f 1563 output_radix_1 = output_radix = radix;
c906108c
SS
1564 if (from_tty)
1565 {
a3f17187 1566 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1567 radix, radix, radix);
1568 }
1569}
1570
1571/* Set both the input and output radix at once. Try to set the output radix
1572 first, since it has the most restrictive range. An radix that is valid as
1573 an output radix is also valid as an input radix.
1574
1575 It may be useful to have an unusual input radix. If the user wishes to
1576 set an input radix that is not valid as an output radix, he needs to use
1577 the 'set input-radix' command. */
1578
1579static void
fba45db2 1580set_radix (char *arg, int from_tty)
c906108c
SS
1581{
1582 unsigned radix;
1583
bb518678 1584 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1585 set_output_radix_1 (0, radix);
1586 set_input_radix_1 (0, radix);
1587 if (from_tty)
1588 {
a3f17187 1589 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1590 radix, radix, radix);
1591 }
1592}
1593
1594/* Show both the input and output radices. */
1595
c906108c 1596static void
fba45db2 1597show_radix (char *arg, int from_tty)
c906108c
SS
1598{
1599 if (from_tty)
1600 {
1601 if (input_radix == output_radix)
1602 {
a3f17187 1603 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1604 input_radix, input_radix, input_radix);
1605 }
1606 else
1607 {
a3f17187 1608 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1609 input_radix, input_radix, input_radix);
a3f17187 1610 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1611 output_radix, output_radix, output_radix);
1612 }
1613 }
1614}
c906108c 1615\f
c5aa993b 1616
c906108c 1617static void
fba45db2 1618set_print (char *arg, int from_tty)
c906108c
SS
1619{
1620 printf_unfiltered (
c5aa993b 1621 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1622 help_list (setprintlist, "set print ", -1, gdb_stdout);
1623}
1624
c906108c 1625static void
fba45db2 1626show_print (char *args, int from_tty)
c906108c
SS
1627{
1628 cmd_show_list (showprintlist, from_tty, "");
1629}
1630\f
1631void
fba45db2 1632_initialize_valprint (void)
c906108c 1633{
c906108c 1634 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1635 _("Generic command for setting how things print."),
c906108c 1636 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1637 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1638 /* prefer set print to set prompt */
c906108c
SS
1639 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1640
1641 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1642 _("Generic command for showing print settings."),
c906108c 1643 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1644 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1645 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1646
79a45b7d
TT
1647 add_setshow_uinteger_cmd ("elements", no_class,
1648 &user_print_options.print_max, _("\
35096d9d
AC
1649Set limit on string chars or array elements to print."), _("\
1650Show limit on string chars or array elements to print."), _("\
1651\"set print elements 0\" causes there to be no limit."),
1652 NULL,
920d2a44 1653 show_print_max,
35096d9d 1654 &setprintlist, &showprintlist);
c906108c 1655
79a45b7d
TT
1656 add_setshow_boolean_cmd ("null-stop", no_class,
1657 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1658Set printing of char arrays to stop at first null char."), _("\
1659Show printing of char arrays to stop at first null char."), NULL,
1660 NULL,
920d2a44 1661 show_stop_print_at_null,
5bf193a2 1662 &setprintlist, &showprintlist);
c906108c 1663
35096d9d 1664 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1665 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1666Set threshold for repeated print elements."), _("\
1667Show threshold for repeated print elements."), _("\
1668\"set print repeats 0\" causes all elements to be individually printed."),
1669 NULL,
920d2a44 1670 show_repeat_count_threshold,
35096d9d 1671 &setprintlist, &showprintlist);
c906108c 1672
79a45b7d
TT
1673 add_setshow_boolean_cmd ("pretty", class_support,
1674 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1675Set prettyprinting of structures."), _("\
1676Show prettyprinting of structures."), NULL,
1677 NULL,
920d2a44 1678 show_prettyprint_structs,
5bf193a2
AC
1679 &setprintlist, &showprintlist);
1680
79a45b7d
TT
1681 add_setshow_boolean_cmd ("union", class_support,
1682 &user_print_options.unionprint, _("\
5bf193a2
AC
1683Set printing of unions interior to structures."), _("\
1684Show printing of unions interior to structures."), NULL,
1685 NULL,
920d2a44 1686 show_unionprint,
5bf193a2
AC
1687 &setprintlist, &showprintlist);
1688
79a45b7d
TT
1689 add_setshow_boolean_cmd ("array", class_support,
1690 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1691Set prettyprinting of arrays."), _("\
1692Show prettyprinting of arrays."), NULL,
1693 NULL,
920d2a44 1694 show_prettyprint_arrays,
5bf193a2
AC
1695 &setprintlist, &showprintlist);
1696
79a45b7d
TT
1697 add_setshow_boolean_cmd ("address", class_support,
1698 &user_print_options.addressprint, _("\
5bf193a2
AC
1699Set printing of addresses."), _("\
1700Show printing of addresses."), NULL,
1701 NULL,
920d2a44 1702 show_addressprint,
5bf193a2 1703 &setprintlist, &showprintlist);
c906108c 1704
1e8fb976
PA
1705 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1706 _("\
35096d9d
AC
1707Set default input radix for entering numbers."), _("\
1708Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1709 set_input_radix,
1710 show_input_radix,
1711 &setlist, &showlist);
35096d9d 1712
1e8fb976
PA
1713 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1714 _("\
35096d9d
AC
1715Set default output radix for printing of values."), _("\
1716Show default output radix for printing of values."), NULL,
1e8fb976
PA
1717 set_output_radix,
1718 show_output_radix,
1719 &setlist, &showlist);
c906108c 1720
cb1a6d5f
AC
1721 /* The "set radix" and "show radix" commands are special in that
1722 they are like normal set and show commands but allow two normally
1723 independent variables to be either set or shown with a single
b66df561 1724 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1725 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1726 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1727 longer true - show can display anything. */
1a966eab
AC
1728 add_cmd ("radix", class_support, set_radix, _("\
1729Set default input and output number radices.\n\
c906108c 1730Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1731Without an argument, sets both radices back to the default value of 10."),
c906108c 1732 &setlist);
1a966eab
AC
1733 add_cmd ("radix", class_support, show_radix, _("\
1734Show the default input and output number radices.\n\
1735Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1736 &showlist);
1737
e79af960 1738 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1739 &user_print_options.print_array_indexes, _("\
e79af960
JB
1740Set printing of array indexes."), _("\
1741Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1742 &setprintlist, &showprintlist);
c906108c 1743}
This page took 1.190165 seconds and 4 git commands to generate.