Factor out char printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
81eb921a
SM
428/* generic_val_print helper for TYPE_CODE_PTR. */
429
430static void
431generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435{
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449}
450
45000ea2
SM
451
452/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454static void
455generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459{
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462}
463
fe43fede
SM
464/* generic_val_print helper for TYPE_CODE_REF. */
465
466static void
467generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510}
511
ef0bc0dd
SM
512/* generic_val_print helper for TYPE_CODE_ENUM. */
513
514static void
515generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519{
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579}
580
d93880bd
SM
581/* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583static void
584generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589{
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595}
596
4a8c372f
SM
597/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599static void
600generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605{
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624}
625
e5bead4b
SM
626/* generic_val_print helper for TYPE_CODE_BOOL. */
627
628static void
629generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
630 int embedded_offset, struct ui_file *stream,
631 const struct value *original_value,
632 const struct value_print_options *options,
633 const struct generic_val_print_decorations *decorations)
634{
635 LONGEST val;
636
637 if (options->format || options->output_format)
638 {
639 struct value_print_options opts = *options;
640 opts.format = (options->format ? options->format
641 : options->output_format);
642 val_print_scalar_formatted (type, valaddr, embedded_offset,
643 original_value, &opts, 0, stream);
644 }
645 else
646 {
647 val = unpack_long (type, valaddr + embedded_offset);
648 if (val == 0)
649 fputs_filtered (decorations->false_name, stream);
650 else if (val == 1)
651 fputs_filtered (decorations->true_name, stream);
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655}
656
b21b6342
SM
657/* generic_val_print helper for TYPE_CODE_INT. */
658
659static void
660generic_val_print_int (struct type *type, const gdb_byte *valaddr,
661 int embedded_offset, struct ui_file *stream,
662 const struct value *original_value,
663 const struct value_print_options *options)
664{
665 if (options->format || options->output_format)
666 {
667 struct value_print_options opts = *options;
668
669 opts.format = (options->format ? options->format
670 : options->output_format);
671 val_print_scalar_formatted (type, valaddr, embedded_offset,
672 original_value, &opts, 0, stream);
673 }
674 else
675 val_print_type_code_int (type, valaddr + embedded_offset, stream);
676}
677
385f5aff
SM
678/* generic_val_print helper for TYPE_CODE_CHAR. */
679
680static void
681generic_val_print_char (struct type *type, struct type *unresolved_type,
682 const gdb_byte *valaddr, int embedded_offset,
683 struct ui_file *stream,
684 const struct value *original_value,
685 const struct value_print_options *options)
686{
687 LONGEST val;
688
689 if (options->format || options->output_format)
690 {
691 struct value_print_options opts = *options;
692
693 opts.format = (options->format ? options->format
694 : options->output_format);
695 val_print_scalar_formatted (type, valaddr, embedded_offset,
696 original_value, &opts, 0, stream);
697 }
698 else
699 {
700 val = unpack_long (type, valaddr + embedded_offset);
701 if (TYPE_UNSIGNED (type))
702 fprintf_filtered (stream, "%u", (unsigned int) val);
703 else
704 fprintf_filtered (stream, "%d", (int) val);
705 fputs_filtered (" ", stream);
706 LA_PRINT_CHAR (val, unresolved_type, stream);
707 }
708}
709
e88acd96
TT
710/* A generic val_print that is suitable for use by language
711 implementations of the la_val_print method. This function can
712 handle most type codes, though not all, notably exception
713 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
714 the caller.
715
716 Most arguments are as to val_print.
717
718 The additional DECORATIONS argument can be used to customize the
719 output in some small, language-specific ways. */
720
721void
722generic_val_print (struct type *type, const gdb_byte *valaddr,
723 int embedded_offset, CORE_ADDR address,
724 struct ui_file *stream, int recurse,
725 const struct value *original_value,
726 const struct value_print_options *options,
727 const struct generic_val_print_decorations *decorations)
728{
e88acd96 729 struct type *unresolved_type = type;
e88acd96 730
f168693b 731 type = check_typedef (type);
e88acd96
TT
732 switch (TYPE_CODE (type))
733 {
734 case TYPE_CODE_ARRAY:
557dbe8a
SM
735 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
736 recurse, original_value, options);
9f436164 737 break;
e88acd96
TT
738
739 case TYPE_CODE_MEMBERPTR:
45000ea2
SM
740 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
741 original_value, options);
e88acd96
TT
742 break;
743
744 case TYPE_CODE_PTR:
81eb921a
SM
745 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
746 original_value, options);
e88acd96
TT
747 break;
748
749 case TYPE_CODE_REF:
fe43fede
SM
750 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
751 original_value, options);
e88acd96
TT
752 break;
753
754 case TYPE_CODE_ENUM:
ef0bc0dd
SM
755 generic_val_print_enum (type, valaddr, embedded_offset, stream,
756 original_value, options);
e88acd96
TT
757 break;
758
759 case TYPE_CODE_FLAGS:
d93880bd
SM
760 generic_val_print_flags (type, valaddr, embedded_offset, stream,
761 original_value, options);
e88acd96
TT
762 break;
763
764 case TYPE_CODE_FUNC:
765 case TYPE_CODE_METHOD:
4a8c372f
SM
766 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
767 original_value, options);
e88acd96
TT
768 break;
769
770 case TYPE_CODE_BOOL:
e5bead4b
SM
771 generic_val_print_bool (type, valaddr, embedded_offset, stream,
772 original_value, options, decorations);
e88acd96
TT
773 break;
774
775 case TYPE_CODE_RANGE:
0c9c3474 776 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
777 range type (I think it probably should copy it from the
778 target type), so we won't print values which are too large to
779 fit in a signed integer correctly. */
780 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
781 print with the target type, though, because the size of our
782 type and the target type might differ). */
783
784 /* FALLTHROUGH */
785
786 case TYPE_CODE_INT:
b21b6342
SM
787 generic_val_print_int (type, valaddr, embedded_offset, stream,
788 original_value, options);
e88acd96
TT
789 break;
790
791 case TYPE_CODE_CHAR:
385f5aff
SM
792 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
793 stream, original_value, options);
e88acd96
TT
794 break;
795
796 case TYPE_CODE_FLT:
797 if (options->format)
798 {
799 val_print_scalar_formatted (type, valaddr, embedded_offset,
800 original_value, options, 0, stream);
801 }
802 else
803 {
804 print_floating (valaddr + embedded_offset, type, stream);
805 }
806 break;
807
808 case TYPE_CODE_DECFLOAT:
809 if (options->format)
810 val_print_scalar_formatted (type, valaddr, embedded_offset,
811 original_value, options, 0, stream);
812 else
813 print_decimal_floating (valaddr + embedded_offset,
814 type, stream);
815 break;
816
817 case TYPE_CODE_VOID:
818 fputs_filtered (decorations->void_name, stream);
819 break;
820
821 case TYPE_CODE_ERROR:
822 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
823 break;
824
825 case TYPE_CODE_UNDEF:
826 /* This happens (without TYPE_FLAG_STUB set) on systems which
827 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
828 "struct foo *bar" and no complete type for struct foo in that
829 file. */
830 fprintf_filtered (stream, _("<incomplete type>"));
831 break;
832
833 case TYPE_CODE_COMPLEX:
834 fprintf_filtered (stream, "%s", decorations->complex_prefix);
835 if (options->format)
836 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
837 valaddr, embedded_offset,
838 original_value, options, 0, stream);
839 else
840 print_floating (valaddr + embedded_offset,
841 TYPE_TARGET_TYPE (type),
842 stream);
843 fprintf_filtered (stream, "%s", decorations->complex_infix);
844 if (options->format)
845 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
846 valaddr,
847 embedded_offset
848 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
849 original_value,
850 options, 0, stream);
851 else
852 print_floating (valaddr + embedded_offset
853 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
854 TYPE_TARGET_TYPE (type),
855 stream);
856 fprintf_filtered (stream, "%s", decorations->complex_suffix);
857 break;
858
859 case TYPE_CODE_UNION:
860 case TYPE_CODE_STRUCT:
861 case TYPE_CODE_METHODPTR:
862 default:
863 error (_("Unhandled type code %d in symbol table."),
864 TYPE_CODE (type));
865 }
866 gdb_flush (stream);
867}
868
32b72a42
PA
869/* Print using the given LANGUAGE the data of type TYPE located at
870 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
871 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
872 STREAM according to OPTIONS. VAL is the whole object that came
873 from ADDRESS. VALADDR must point to the head of VAL's contents
874 buffer.
875
876 The language printers will pass down an adjusted EMBEDDED_OFFSET to
877 further helper subroutines as subfields of TYPE are printed. In
878 such cases, VALADDR is passed down unadjusted, as well as VAL, so
879 that VAL can be queried for metadata about the contents data being
880 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
881 buffer. For example: "has this field been optimized out", or "I'm
882 printing an object while inspecting a traceframe; has this
883 particular piece of data been collected?".
884
885 RECURSE indicates the amount of indentation to supply before
886 continuation lines; this amount is roughly twice the value of
35c0084b 887 RECURSE. */
32b72a42 888
35c0084b 889void
fc1a4b47 890val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 891 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 892 const struct value *val,
79a45b7d 893 const struct value_print_options *options,
d8ca156b 894 const struct language_defn *language)
c906108c 895{
19ca80ba 896 int ret = 0;
79a45b7d 897 struct value_print_options local_opts = *options;
c906108c 898 struct type *real_type = check_typedef (type);
79a45b7d 899
2a998fc0
DE
900 if (local_opts.prettyformat == Val_prettyformat_default)
901 local_opts.prettyformat = (local_opts.prettyformat_structs
902 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 903
c906108c
SS
904 QUIT;
905
906 /* Ensure that the type is complete and not just a stub. If the type is
907 only a stub and we can't find and substitute its complete type, then
908 print appropriate string and return. */
909
74a9bb82 910 if (TYPE_STUB (real_type))
c906108c 911 {
0e03807e 912 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 913 gdb_flush (stream);
35c0084b 914 return;
c906108c 915 }
c5aa993b 916
0e03807e 917 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 918 return;
0e03807e 919
a6bac58e
TT
920 if (!options->raw)
921 {
6dddc817
DE
922 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
923 address, stream, recurse,
924 val, options, language);
a6bac58e 925 if (ret)
35c0084b 926 return;
a6bac58e
TT
927 }
928
929 /* Handle summary mode. If the value is a scalar, print it;
930 otherwise, print an ellipsis. */
6211c335 931 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
932 {
933 fprintf_filtered (stream, "...");
35c0084b 934 return;
a6bac58e
TT
935 }
936
492d29ea 937 TRY
19ca80ba 938 {
d3eab38a
TT
939 language->la_val_print (type, valaddr, embedded_offset, address,
940 stream, recurse, val,
941 &local_opts);
19ca80ba 942 }
492d29ea
PA
943 CATCH (except, RETURN_MASK_ERROR)
944 {
945 fprintf_filtered (stream, _("<error reading variable>"));
946 }
947 END_CATCH
c906108c
SS
948}
949
806048c6 950/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
951 return 0 and print an appropriate error message to STREAM according to
952 OPTIONS if it is not. */
c906108c 953
806048c6 954static int
6501578c
YQ
955value_check_printable (struct value *val, struct ui_file *stream,
956 const struct value_print_options *options)
c906108c
SS
957{
958 if (val == 0)
959 {
806048c6 960 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
961 return 0;
962 }
806048c6 963
0e03807e 964 if (value_entirely_optimized_out (val))
c906108c 965 {
6211c335 966 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
967 fprintf_filtered (stream, "...");
968 else
901461f8 969 val_print_optimized_out (val, stream);
c906108c
SS
970 return 0;
971 }
806048c6 972
eebc056c
AB
973 if (value_entirely_unavailable (val))
974 {
975 if (options->summary && !val_print_scalar_type_p (value_type (val)))
976 fprintf_filtered (stream, "...");
977 else
978 val_print_unavailable (stream);
979 return 0;
980 }
981
bc3b79fd
TJB
982 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
983 {
984 fprintf_filtered (stream, _("<internal function %s>"),
985 value_internal_function_name (val));
986 return 0;
987 }
988
806048c6
DJ
989 return 1;
990}
991
d8ca156b 992/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 993 to OPTIONS.
806048c6 994
806048c6
DJ
995 This is a preferable interface to val_print, above, because it uses
996 GDB's value mechanism. */
997
a1f5dd1b 998void
79a45b7d
TT
999common_val_print (struct value *val, struct ui_file *stream, int recurse,
1000 const struct value_print_options *options,
d8ca156b 1001 const struct language_defn *language)
806048c6 1002{
6501578c 1003 if (!value_check_printable (val, stream, options))
a1f5dd1b 1004 return;
806048c6 1005
0c3acc09
JB
1006 if (language->la_language == language_ada)
1007 /* The value might have a dynamic type, which would cause trouble
1008 below when trying to extract the value contents (since the value
1009 size is determined from the type size which is unknown). So
1010 get a fixed representation of our value. */
1011 val = ada_to_fixed_value (val);
1012
a1f5dd1b
TT
1013 val_print (value_type (val), value_contents_for_printing (val),
1014 value_embedded_offset (val), value_address (val),
1015 stream, recurse,
1016 val, options, language);
806048c6
DJ
1017}
1018
7348c5e1 1019/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 1020 is printed using the current_language syntax. */
7348c5e1 1021
8e069a98 1022void
79a45b7d
TT
1023value_print (struct value *val, struct ui_file *stream,
1024 const struct value_print_options *options)
806048c6 1025{
6501578c 1026 if (!value_check_printable (val, stream, options))
8e069a98 1027 return;
806048c6 1028
a6bac58e
TT
1029 if (!options->raw)
1030 {
6dddc817
DE
1031 int r
1032 = apply_ext_lang_val_pretty_printer (value_type (val),
1033 value_contents_for_printing (val),
1034 value_embedded_offset (val),
1035 value_address (val),
1036 stream, 0,
1037 val, options, current_language);
a109c7c1 1038
a6bac58e 1039 if (r)
8e069a98 1040 return;
a6bac58e
TT
1041 }
1042
8e069a98 1043 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
1044}
1045
1046/* Called by various <lang>_val_print routines to print
1047 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1048 value. STREAM is where to print the value. */
1049
1050void
fc1a4b47 1051val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 1052 struct ui_file *stream)
c906108c 1053{
50810684 1054 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 1055
c906108c
SS
1056 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1057 {
1058 LONGEST val;
1059
1060 if (TYPE_UNSIGNED (type)
1061 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 1062 byte_order, &val))
c906108c
SS
1063 {
1064 print_longest (stream, 'u', 0, val);
1065 }
1066 else
1067 {
1068 /* Signed, or we couldn't turn an unsigned value into a
1069 LONGEST. For signed values, one could assume two's
1070 complement (a reasonable assumption, I think) and do
1071 better than this. */
1072 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 1073 TYPE_LENGTH (type), byte_order);
c906108c
SS
1074 }
1075 }
1076 else
1077 {
c906108c
SS
1078 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1079 unpack_long (type, valaddr));
c906108c
SS
1080 }
1081}
1082
4f2aea11
MK
1083void
1084val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1085 struct ui_file *stream)
1086{
befae759 1087 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
1088 int bitpos, nfields = TYPE_NFIELDS (type);
1089
1090 fputs_filtered ("[ ", stream);
1091 for (bitpos = 0; bitpos < nfields; bitpos++)
1092 {
316703b9
MK
1093 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1094 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
1095 {
1096 if (TYPE_FIELD_NAME (type, bitpos))
1097 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1098 else
1099 fprintf_filtered (stream, "#%d ", bitpos);
1100 }
1101 }
1102 fputs_filtered ("]", stream);
19c37f24 1103}
ab2188aa
PA
1104
1105/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1106 according to OPTIONS and SIZE on STREAM. Format i is not supported
1107 at this level.
1108
1109 This is how the elements of an array or structure are printed
1110 with a format. */
ab2188aa
PA
1111
1112void
1113val_print_scalar_formatted (struct type *type,
1114 const gdb_byte *valaddr, int embedded_offset,
1115 const struct value *val,
1116 const struct value_print_options *options,
1117 int size,
1118 struct ui_file *stream)
1119{
1120 gdb_assert (val != NULL);
1121 gdb_assert (valaddr == value_contents_for_printing_const (val));
1122
1123 /* If we get here with a string format, try again without it. Go
1124 all the way back to the language printers, which may call us
1125 again. */
1126 if (options->format == 's')
1127 {
1128 struct value_print_options opts = *options;
1129 opts.format = 0;
1130 opts.deref_ref = 0;
1131 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1132 current_language);
1133 return;
1134 }
1135
1136 /* A scalar object that does not have all bits available can't be
1137 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1138 if (value_bits_any_optimized_out (val,
1139 TARGET_CHAR_BIT * embedded_offset,
1140 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1141 val_print_optimized_out (val, stream);
4e07d55f
PA
1142 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1143 val_print_unavailable (stream);
ab2188aa
PA
1144 else
1145 print_scalar_formatted (valaddr + embedded_offset, type,
1146 options, size, stream);
4f2aea11
MK
1147}
1148
c906108c
SS
1149/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1150 The raison d'etre of this function is to consolidate printing of
581e13c1 1151 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1152 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1153 format.
bb599908
PH
1154
1155 USE_C_FORMAT means to use C format in all cases. Without it,
1156 'o' and 'x' format do not include the standard C radix prefix
1157 (leading 0 or 0x).
1158
1159 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1160 and was intended to request formating according to the current
1161 language and would be used for most integers that GDB prints. The
1162 exceptional cases were things like protocols where the format of
1163 the integer is a protocol thing, not a user-visible thing). The
1164 parameter remains to preserve the information of what things might
1165 be printed with language-specific format, should we ever resurrect
581e13c1 1166 that capability. */
c906108c
SS
1167
1168void
bb599908 1169print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1170 LONGEST val_long)
c906108c 1171{
2bfb72ee
AC
1172 const char *val;
1173
c906108c
SS
1174 switch (format)
1175 {
1176 case 'd':
bb599908 1177 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1178 case 'u':
bb599908 1179 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1180 case 'x':
bb599908 1181 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1182 case 'b':
bb599908 1183 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1184 case 'h':
bb599908 1185 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1186 case 'w':
bb599908 1187 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1188 case 'g':
bb599908 1189 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1190 break;
1191 case 'o':
bb599908 1192 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1193 default:
3e43a32a
MS
1194 internal_error (__FILE__, __LINE__,
1195 _("failed internal consistency check"));
bb599908 1196 }
2bfb72ee 1197 fputs_filtered (val, stream);
c906108c
SS
1198}
1199
c906108c
SS
1200/* This used to be a macro, but I don't think it is called often enough
1201 to merit such treatment. */
1202/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1203 arguments to a function, number in a value history, register number, etc.)
1204 where the value must not be larger than can fit in an int. */
1205
1206int
fba45db2 1207longest_to_int (LONGEST arg)
c906108c 1208{
581e13c1 1209 /* Let the compiler do the work. */
c906108c
SS
1210 int rtnval = (int) arg;
1211
581e13c1 1212 /* Check for overflows or underflows. */
c906108c
SS
1213 if (sizeof (LONGEST) > sizeof (int))
1214 {
1215 if (rtnval != arg)
1216 {
8a3fe4f8 1217 error (_("Value out of range."));
c906108c
SS
1218 }
1219 }
1220 return (rtnval);
1221}
1222
a73c86fb
AC
1223/* Print a floating point value of type TYPE (not always a
1224 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1225
1226void
fc1a4b47 1227print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1228 struct ui_file *stream)
c906108c
SS
1229{
1230 DOUBLEST doub;
1231 int inv;
a73c86fb 1232 const struct floatformat *fmt = NULL;
c906108c 1233 unsigned len = TYPE_LENGTH (type);
20389057 1234 enum float_kind kind;
c5aa993b 1235
a73c86fb
AC
1236 /* If it is a floating-point, check for obvious problems. */
1237 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1238 fmt = floatformat_from_type (type);
20389057 1239 if (fmt != NULL)
39424bef 1240 {
20389057
DJ
1241 kind = floatformat_classify (fmt, valaddr);
1242 if (kind == float_nan)
1243 {
1244 if (floatformat_is_negative (fmt, valaddr))
1245 fprintf_filtered (stream, "-");
1246 fprintf_filtered (stream, "nan(");
1247 fputs_filtered ("0x", stream);
1248 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1249 fprintf_filtered (stream, ")");
1250 return;
1251 }
1252 else if (kind == float_infinite)
1253 {
1254 if (floatformat_is_negative (fmt, valaddr))
1255 fputs_filtered ("-", stream);
1256 fputs_filtered ("inf", stream);
1257 return;
1258 }
7355ddba 1259 }
c906108c 1260
a73c86fb
AC
1261 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1262 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1263 needs to be used as that takes care of any necessary type
1264 conversions. Such conversions are of course direct to DOUBLEST
1265 and disregard any possible target floating point limitations.
1266 For instance, a u64 would be converted and displayed exactly on a
1267 host with 80 bit DOUBLEST but with loss of information on a host
1268 with 64 bit DOUBLEST. */
c2f05ac9 1269
c906108c
SS
1270 doub = unpack_double (type, valaddr, &inv);
1271 if (inv)
1272 {
1273 fprintf_filtered (stream, "<invalid float value>");
1274 return;
1275 }
1276
39424bef
MK
1277 /* FIXME: kettenis/2001-01-20: The following code makes too much
1278 assumptions about the host and target floating point format. */
1279
a73c86fb 1280 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1281 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1282 instead uses the type's length to determine the precision of the
1283 floating-point value being printed. */
c2f05ac9 1284
c906108c 1285 if (len < sizeof (double))
c5aa993b 1286 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1287 else if (len == sizeof (double))
c5aa993b 1288 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1289 else
1290#ifdef PRINTF_HAS_LONG_DOUBLE
1291 fprintf_filtered (stream, "%.35Lg", doub);
1292#else
39424bef
MK
1293 /* This at least wins with values that are representable as
1294 doubles. */
c906108c
SS
1295 fprintf_filtered (stream, "%.17g", (double) doub);
1296#endif
1297}
1298
7678ef8f
TJB
1299void
1300print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1301 struct ui_file *stream)
1302{
e17a4113 1303 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1304 char decstr[MAX_DECIMAL_STRING];
1305 unsigned len = TYPE_LENGTH (type);
1306
e17a4113 1307 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1308 fputs_filtered (decstr, stream);
1309 return;
1310}
1311
c5aa993b 1312void
fc1a4b47 1313print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1314 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1315{
1316
1317#define BITS_IN_BYTES 8
1318
fc1a4b47 1319 const gdb_byte *p;
745b8ca0 1320 unsigned int i;
c5aa993b 1321 int b;
c906108c
SS
1322
1323 /* Declared "int" so it will be signed.
581e13c1
MS
1324 This ensures that right shift will shift in zeros. */
1325
c5aa993b 1326 const int mask = 0x080;
c906108c
SS
1327
1328 /* FIXME: We should be not printing leading zeroes in most cases. */
1329
d44e8473 1330 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1331 {
1332 for (p = valaddr;
1333 p < valaddr + len;
1334 p++)
1335 {
c5aa993b 1336 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1337 and print from the MSB end. */
1338
c5aa993b
JM
1339 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1340 {
1341 if (*p & (mask >> i))
1342 b = 1;
1343 else
1344 b = 0;
1345
1346 fprintf_filtered (stream, "%1d", b);
1347 }
c906108c
SS
1348 }
1349 }
1350 else
1351 {
1352 for (p = valaddr + len - 1;
1353 p >= valaddr;
1354 p--)
1355 {
c5aa993b
JM
1356 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1357 {
1358 if (*p & (mask >> i))
1359 b = 1;
1360 else
1361 b = 0;
1362
1363 fprintf_filtered (stream, "%1d", b);
1364 }
c906108c
SS
1365 }
1366 }
c906108c
SS
1367}
1368
1369/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1370 Print it in octal on stream or format it in buf. */
1371
c906108c 1372void
fc1a4b47 1373print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1374 unsigned len, enum bfd_endian byte_order)
c906108c 1375{
fc1a4b47 1376 const gdb_byte *p;
c906108c 1377 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1378 int cycle;
1379
c906108c
SS
1380 /* FIXME: We should be not printing leading zeroes in most cases. */
1381
1382
1383 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1384 * the extra bits, which cycle every three bytes:
1385 *
1386 * Byte side: 0 1 2 3
1387 * | | | |
1388 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1389 *
1390 * Octal side: 0 1 carry 3 4 carry ...
1391 *
1392 * Cycle number: 0 1 2
1393 *
1394 * But of course we are printing from the high side, so we have to
1395 * figure out where in the cycle we are so that we end up with no
1396 * left over bits at the end.
1397 */
1398#define BITS_IN_OCTAL 3
1399#define HIGH_ZERO 0340
1400#define LOW_ZERO 0016
1401#define CARRY_ZERO 0003
1402#define HIGH_ONE 0200
1403#define MID_ONE 0160
1404#define LOW_ONE 0016
1405#define CARRY_ONE 0001
1406#define HIGH_TWO 0300
1407#define MID_TWO 0070
1408#define LOW_TWO 0007
1409
1410 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1411 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1412
c906108c
SS
1413 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1414 carry = 0;
c5aa993b 1415
bb599908 1416 fputs_filtered ("0", stream);
d44e8473 1417 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1418 {
1419 for (p = valaddr;
1420 p < valaddr + len;
1421 p++)
1422 {
c5aa993b
JM
1423 switch (cycle)
1424 {
1425 case 0:
581e13c1
MS
1426 /* No carry in, carry out two bits. */
1427
c5aa993b
JM
1428 octa1 = (HIGH_ZERO & *p) >> 5;
1429 octa2 = (LOW_ZERO & *p) >> 2;
1430 carry = (CARRY_ZERO & *p);
1431 fprintf_filtered (stream, "%o", octa1);
1432 fprintf_filtered (stream, "%o", octa2);
1433 break;
1434
1435 case 1:
581e13c1
MS
1436 /* Carry in two bits, carry out one bit. */
1437
c5aa993b
JM
1438 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1439 octa2 = (MID_ONE & *p) >> 4;
1440 octa3 = (LOW_ONE & *p) >> 1;
1441 carry = (CARRY_ONE & *p);
1442 fprintf_filtered (stream, "%o", octa1);
1443 fprintf_filtered (stream, "%o", octa2);
1444 fprintf_filtered (stream, "%o", octa3);
1445 break;
1446
1447 case 2:
581e13c1
MS
1448 /* Carry in one bit, no carry out. */
1449
c5aa993b
JM
1450 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1451 octa2 = (MID_TWO & *p) >> 3;
1452 octa3 = (LOW_TWO & *p);
1453 carry = 0;
1454 fprintf_filtered (stream, "%o", octa1);
1455 fprintf_filtered (stream, "%o", octa2);
1456 fprintf_filtered (stream, "%o", octa3);
1457 break;
1458
1459 default:
8a3fe4f8 1460 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1461 }
1462
1463 cycle++;
1464 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1465 }
1466 }
1467 else
1468 {
1469 for (p = valaddr + len - 1;
1470 p >= valaddr;
1471 p--)
1472 {
c5aa993b
JM
1473 switch (cycle)
1474 {
1475 case 0:
1476 /* Carry out, no carry in */
581e13c1 1477
c5aa993b
JM
1478 octa1 = (HIGH_ZERO & *p) >> 5;
1479 octa2 = (LOW_ZERO & *p) >> 2;
1480 carry = (CARRY_ZERO & *p);
1481 fprintf_filtered (stream, "%o", octa1);
1482 fprintf_filtered (stream, "%o", octa2);
1483 break;
1484
1485 case 1:
1486 /* Carry in, carry out */
581e13c1 1487
c5aa993b
JM
1488 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1489 octa2 = (MID_ONE & *p) >> 4;
1490 octa3 = (LOW_ONE & *p) >> 1;
1491 carry = (CARRY_ONE & *p);
1492 fprintf_filtered (stream, "%o", octa1);
1493 fprintf_filtered (stream, "%o", octa2);
1494 fprintf_filtered (stream, "%o", octa3);
1495 break;
1496
1497 case 2:
1498 /* Carry in, no carry out */
581e13c1 1499
c5aa993b
JM
1500 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1501 octa2 = (MID_TWO & *p) >> 3;
1502 octa3 = (LOW_TWO & *p);
1503 carry = 0;
1504 fprintf_filtered (stream, "%o", octa1);
1505 fprintf_filtered (stream, "%o", octa2);
1506 fprintf_filtered (stream, "%o", octa3);
1507 break;
1508
1509 default:
8a3fe4f8 1510 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1511 }
1512
1513 cycle++;
1514 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1515 }
1516 }
1517
c906108c
SS
1518}
1519
1520/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1521 Print it in decimal on stream or format it in buf. */
1522
c906108c 1523void
fc1a4b47 1524print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1525 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1526{
1527#define TEN 10
c5aa993b 1528#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1529#define CARRY_LEFT( x ) ((x) % TEN)
1530#define SHIFT( x ) ((x) << 4)
c906108c
SS
1531#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1532#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1533
fc1a4b47 1534 const gdb_byte *p;
c906108c 1535 unsigned char *digits;
c5aa993b
JM
1536 int carry;
1537 int decimal_len;
1538 int i, j, decimal_digits;
1539 int dummy;
1540 int flip;
1541
c906108c 1542 /* Base-ten number is less than twice as many digits
581e13c1
MS
1543 as the base 16 number, which is 2 digits per byte. */
1544
c906108c 1545 decimal_len = len * 2 * 2;
3c37485b 1546 digits = xmalloc (decimal_len);
c906108c 1547
c5aa993b
JM
1548 for (i = 0; i < decimal_len; i++)
1549 {
c906108c 1550 digits[i] = 0;
c5aa993b 1551 }
c906108c 1552
c906108c
SS
1553 /* Ok, we have an unknown number of bytes of data to be printed in
1554 * decimal.
1555 *
1556 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1557 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1558 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1559 *
1560 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1561 * the individual digits are > 10.
c906108c
SS
1562 *
1563 * Outer loop is per nibble (hex digit) of input, from MSD end to
1564 * LSD end.
1565 */
c5aa993b 1566 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1567 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1568 flip = 0;
d44e8473 1569 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1570 {
c906108c
SS
1571 /*
1572 * Multiply current base-ten number by 16 in place.
1573 * Each digit was between 0 and 9, now is between
1574 * 0 and 144.
1575 */
c5aa993b
JM
1576 for (j = 0; j < decimal_digits; j++)
1577 {
1578 digits[j] = SHIFT (digits[j]);
1579 }
1580
c906108c
SS
1581 /* Take the next nibble off the input and add it to what
1582 * we've got in the LSB position. Bottom 'digit' is now
1583 * between 0 and 159.
1584 *
1585 * "flip" is used to run this loop twice for each byte.
1586 */
c5aa993b
JM
1587 if (flip == 0)
1588 {
581e13c1
MS
1589 /* Take top nibble. */
1590
c5aa993b
JM
1591 digits[0] += HIGH_NIBBLE (*p);
1592 flip = 1;
1593 }
1594 else
1595 {
581e13c1
MS
1596 /* Take low nibble and bump our pointer "p". */
1597
c5aa993b 1598 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1599 if (byte_order == BFD_ENDIAN_BIG)
1600 p++;
1601 else
1602 p--;
c5aa993b
JM
1603 flip = 0;
1604 }
c906108c
SS
1605
1606 /* Re-decimalize. We have to do this often enough
1607 * that we don't overflow, but once per nibble is
1608 * overkill. Easier this way, though. Note that the
1609 * carry is often larger than 10 (e.g. max initial
1610 * carry out of lowest nibble is 15, could bubble all
1611 * the way up greater than 10). So we have to do
1612 * the carrying beyond the last current digit.
1613 */
1614 carry = 0;
c5aa993b
JM
1615 for (j = 0; j < decimal_len - 1; j++)
1616 {
1617 digits[j] += carry;
1618
1619 /* "/" won't handle an unsigned char with
1620 * a value that if signed would be negative.
1621 * So extend to longword int via "dummy".
1622 */
1623 dummy = digits[j];
1624 carry = CARRY_OUT (dummy);
1625 digits[j] = CARRY_LEFT (dummy);
1626
1627 if (j >= decimal_digits && carry == 0)
1628 {
1629 /*
1630 * All higher digits are 0 and we
1631 * no longer have a carry.
1632 *
1633 * Note: "j" is 0-based, "decimal_digits" is
1634 * 1-based.
1635 */
1636 decimal_digits = j + 1;
1637 break;
1638 }
1639 }
1640 }
c906108c
SS
1641
1642 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1643 the "decimal_digits" actual digits. Print! */
1644
c5aa993b
JM
1645 for (i = decimal_digits - 1; i >= 0; i--)
1646 {
1647 fprintf_filtered (stream, "%1d", digits[i]);
1648 }
b8c9b27d 1649 xfree (digits);
c906108c
SS
1650}
1651
1652/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1653
6b9acc27 1654void
fc1a4b47 1655print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1656 unsigned len, enum bfd_endian byte_order)
c906108c 1657{
fc1a4b47 1658 const gdb_byte *p;
c906108c
SS
1659
1660 /* FIXME: We should be not printing leading zeroes in most cases. */
1661
bb599908 1662 fputs_filtered ("0x", stream);
d44e8473 1663 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1664 {
1665 for (p = valaddr;
1666 p < valaddr + len;
1667 p++)
1668 {
1669 fprintf_filtered (stream, "%02x", *p);
1670 }
1671 }
1672 else
1673 {
1674 for (p = valaddr + len - 1;
1675 p >= valaddr;
1676 p--)
1677 {
1678 fprintf_filtered (stream, "%02x", *p);
1679 }
1680 }
c906108c
SS
1681}
1682
3e43a32a 1683/* VALADDR points to a char integer of LEN bytes.
581e13c1 1684 Print it out in appropriate language form on stream.
6b9acc27
JJ
1685 Omit any leading zero chars. */
1686
1687void
6c7a06a3
TT
1688print_char_chars (struct ui_file *stream, struct type *type,
1689 const gdb_byte *valaddr,
d44e8473 1690 unsigned len, enum bfd_endian byte_order)
6b9acc27 1691{
fc1a4b47 1692 const gdb_byte *p;
6b9acc27 1693
d44e8473 1694 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1695 {
1696 p = valaddr;
1697 while (p < valaddr + len - 1 && *p == 0)
1698 ++p;
1699
1700 while (p < valaddr + len)
1701 {
6c7a06a3 1702 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1703 ++p;
1704 }
1705 }
1706 else
1707 {
1708 p = valaddr + len - 1;
1709 while (p > valaddr && *p == 0)
1710 --p;
1711
1712 while (p >= valaddr)
1713 {
6c7a06a3 1714 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1715 --p;
1716 }
1717 }
1718}
1719
132c57b4
TT
1720/* Print function pointer with inferior address ADDRESS onto stdio
1721 stream STREAM. */
1722
1723void
edf0c1b7
TT
1724print_function_pointer_address (const struct value_print_options *options,
1725 struct gdbarch *gdbarch,
132c57b4 1726 CORE_ADDR address,
edf0c1b7 1727 struct ui_file *stream)
132c57b4
TT
1728{
1729 CORE_ADDR func_addr
1730 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1731 &current_target);
1732
1733 /* If the function pointer is represented by a description, print
1734 the address of the description. */
edf0c1b7 1735 if (options->addressprint && func_addr != address)
132c57b4
TT
1736 {
1737 fputs_filtered ("@", stream);
1738 fputs_filtered (paddress (gdbarch, address), stream);
1739 fputs_filtered (": ", stream);
1740 }
edf0c1b7 1741 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1742}
1743
1744
79a45b7d 1745/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1746 at INDEX of an array whose index type is INDEX_TYPE. */
1747
1748void
1749maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1750 struct ui_file *stream,
1751 const struct value_print_options *options)
e79af960
JB
1752{
1753 struct value *index_value;
1754
79a45b7d 1755 if (!options->print_array_indexes)
e79af960
JB
1756 return;
1757
1758 index_value = value_from_longest (index_type, index);
1759
79a45b7d
TT
1760 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1761}
e79af960 1762
c906108c 1763/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1764 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1765
c5aa993b
JM
1766 (FIXME?) Assumes array element separator is a comma, which is correct
1767 for all languages currently handled.
1768 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1769 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1770
1771void
490f124f
PA
1772val_print_array_elements (struct type *type,
1773 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1774 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1775 int recurse,
0e03807e 1776 const struct value *val,
79a45b7d 1777 const struct value_print_options *options,
fba45db2 1778 unsigned int i)
c906108c
SS
1779{
1780 unsigned int things_printed = 0;
1781 unsigned len;
aa715135 1782 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1783 unsigned eltlen;
1784 /* Position of the array element we are examining to see
1785 whether it is repeated. */
1786 unsigned int rep1;
1787 /* Number of repetitions we have detected so far. */
1788 unsigned int reps;
dbc98a8b 1789 LONGEST low_bound, high_bound;
aa715135 1790 LONGEST low_pos, high_pos;
c5aa993b 1791
c906108c
SS
1792 elttype = TYPE_TARGET_TYPE (type);
1793 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1794 index_type = TYPE_INDEX_TYPE (type);
c906108c 1795
dbc98a8b 1796 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1797 {
aa715135
JG
1798 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1799 base_index_type = TYPE_TARGET_TYPE (index_type);
1800 else
1801 base_index_type = index_type;
1802
1803 /* Non-contiguous enumerations types can by used as index types
1804 in some languages (e.g. Ada). In this case, the array length
1805 shall be computed from the positions of the first and last
1806 literal in the enumeration type, and not from the values
1807 of these literals. */
1808 if (!discrete_position (base_index_type, low_bound, &low_pos)
1809 || !discrete_position (base_index_type, high_bound, &high_pos))
1810 {
1811 warning (_("unable to get positions in array, use bounds instead"));
1812 low_pos = low_bound;
1813 high_pos = high_bound;
1814 }
1815
1816 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1817 But we have to be a little extra careful, because some languages
aa715135 1818 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1819 empty arrays. In that situation, the array length is just zero,
1820 not negative! */
aa715135 1821 if (low_pos > high_pos)
75be741b
JB
1822 len = 0;
1823 else
aa715135 1824 len = high_pos - low_pos + 1;
75be741b 1825 }
e936309c
JB
1826 else
1827 {
dbc98a8b
KW
1828 warning (_("unable to get bounds of array, assuming null array"));
1829 low_bound = 0;
1830 len = 0;
168de233
JB
1831 }
1832
c906108c
SS
1833 annotate_array_section_begin (i, elttype);
1834
79a45b7d 1835 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1836 {
1837 if (i != 0)
1838 {
2a998fc0 1839 if (options->prettyformat_arrays)
c906108c
SS
1840 {
1841 fprintf_filtered (stream, ",\n");
1842 print_spaces_filtered (2 + 2 * recurse, stream);
1843 }
1844 else
1845 {
1846 fprintf_filtered (stream, ", ");
1847 }
1848 }
1849 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1850 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1851 stream, options);
c906108c
SS
1852
1853 rep1 = i + 1;
1854 reps = 1;
35bef4fd
TT
1855 /* Only check for reps if repeat_count_threshold is not set to
1856 UINT_MAX (unlimited). */
1857 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1858 {
35bef4fd 1859 while (rep1 < len
9a0dc9e3
PA
1860 && value_contents_eq (val,
1861 embedded_offset + i * eltlen,
1862 val,
1863 (embedded_offset
1864 + rep1 * eltlen),
1865 eltlen))
35bef4fd
TT
1866 {
1867 ++reps;
1868 ++rep1;
1869 }
c906108c
SS
1870 }
1871
79a45b7d 1872 if (reps > options->repeat_count_threshold)
c906108c 1873 {
490f124f
PA
1874 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1875 address, stream, recurse + 1, val, options,
1876 current_language);
c906108c
SS
1877 annotate_elt_rep (reps);
1878 fprintf_filtered (stream, " <repeats %u times>", reps);
1879 annotate_elt_rep_end ();
1880
1881 i = rep1 - 1;
79a45b7d 1882 things_printed += options->repeat_count_threshold;
c906108c
SS
1883 }
1884 else
1885 {
490f124f
PA
1886 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1887 address,
0e03807e 1888 stream, recurse + 1, val, options, current_language);
c906108c
SS
1889 annotate_elt ();
1890 things_printed++;
1891 }
1892 }
1893 annotate_array_section_end ();
1894 if (i < len)
1895 {
1896 fprintf_filtered (stream, "...");
1897 }
1898}
1899
917317f4
JM
1900/* Read LEN bytes of target memory at address MEMADDR, placing the
1901 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1902 actually read, and optionally a target_xfer_status value in the
578d3588 1903 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1904
1905/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1906 function be eliminated. */
1907
1908static int
3e43a32a 1909partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1910 int len, int *errptr)
917317f4 1911{
581e13c1
MS
1912 int nread; /* Number of bytes actually read. */
1913 int errcode; /* Error from last read. */
917317f4 1914
581e13c1 1915 /* First try a complete read. */
917317f4
JM
1916 errcode = target_read_memory (memaddr, myaddr, len);
1917 if (errcode == 0)
1918 {
581e13c1 1919 /* Got it all. */
917317f4
JM
1920 nread = len;
1921 }
1922 else
1923 {
581e13c1 1924 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1925 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1926 {
1927 errcode = target_read_memory (memaddr++, myaddr++, 1);
1928 }
581e13c1 1929 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1930 if (errcode != 0)
1931 {
1932 nread--;
1933 }
1934 }
578d3588 1935 if (errptr != NULL)
917317f4 1936 {
578d3588 1937 *errptr = errcode;
917317f4
JM
1938 }
1939 return (nread);
1940}
1941
ae6a3a4c
TJB
1942/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1943 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1944 allocated buffer containing the string, which the caller is responsible to
1945 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1946 success, or a target_xfer_status on failure.
ae6a3a4c 1947
f380848e
SA
1948 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1949 (including eventual NULs in the middle or end of the string).
1950
1951 If LEN is -1, stops at the first null character (not necessarily
1952 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1953 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1954 the string.
ae6a3a4c
TJB
1955
1956 Unless an exception is thrown, BUFFER will always be allocated, even on
1957 failure. In this case, some characters might have been read before the
1958 failure happened. Check BYTES_READ to recognize this situation.
1959
1960 Note: There was a FIXME asking to make this code use target_read_string,
1961 but this function is more general (can read past null characters, up to
581e13c1 1962 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1963 so it is more tested. Perhaps callers of target_read_string should use
1964 this function instead? */
c906108c
SS
1965
1966int
ae6a3a4c 1967read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1968 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1969{
ae6a3a4c
TJB
1970 int errcode; /* Errno returned from bad reads. */
1971 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1972 gdb_byte *bufptr; /* Pointer to next available byte in
1973 buffer. */
ae6a3a4c
TJB
1974 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1975
ae6a3a4c
TJB
1976 /* Loop until we either have all the characters, or we encounter
1977 some error, such as bumping into the end of the address space. */
c906108c 1978
b5096abe
PM
1979 *buffer = NULL;
1980
1981 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1982
1983 if (len > 0)
1984 {
88db67ef
YQ
1985 /* We want fetchlimit chars, so we might as well read them all in
1986 one operation. */
f380848e
SA
1987 unsigned int fetchlen = min (len, fetchlimit);
1988
1989 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1990 bufptr = *buffer;
c906108c 1991
f380848e 1992 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1993 / width;
1994 addr += nfetch * width;
1995 bufptr += nfetch * width;
1996 }
1997 else if (len == -1)
1998 {
1999 unsigned long bufsize = 0;
88db67ef
YQ
2000 unsigned int chunksize; /* Size of each fetch, in chars. */
2001 int found_nul; /* Non-zero if we found the nul char. */
2002 gdb_byte *limit; /* First location past end of fetch buffer. */
2003
2004 found_nul = 0;
2005 /* We are looking for a NUL terminator to end the fetching, so we
2006 might as well read in blocks that are large enough to be efficient,
2007 but not so large as to be slow if fetchlimit happens to be large.
2008 So we choose the minimum of 8 and fetchlimit. We used to use 200
2009 instead of 8 but 200 is way too big for remote debugging over a
2010 serial line. */
2011 chunksize = min (8, fetchlimit);
ae6a3a4c 2012
c906108c
SS
2013 do
2014 {
2015 QUIT;
2016 nfetch = min (chunksize, fetchlimit - bufsize);
2017
ae6a3a4c
TJB
2018 if (*buffer == NULL)
2019 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 2020 else
b5096abe
PM
2021 *buffer = (gdb_byte *) xrealloc (*buffer,
2022 (nfetch + bufsize) * width);
c906108c 2023
ae6a3a4c 2024 bufptr = *buffer + bufsize * width;
c906108c
SS
2025 bufsize += nfetch;
2026
ae6a3a4c 2027 /* Read as much as we can. */
917317f4 2028 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 2029 / width;
c906108c 2030
ae6a3a4c 2031 /* Scan this chunk for the null character that terminates the string
c906108c
SS
2032 to print. If found, we don't need to fetch any more. Note
2033 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
2034 after the null character, or at the next character after the end
2035 of the buffer. */
c906108c
SS
2036
2037 limit = bufptr + nfetch * width;
2038 while (bufptr < limit)
2039 {
2040 unsigned long c;
2041
e17a4113 2042 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
2043 addr += width;
2044 bufptr += width;
2045 if (c == 0)
2046 {
2047 /* We don't care about any error which happened after
ae6a3a4c 2048 the NUL terminator. */
c906108c
SS
2049 errcode = 0;
2050 found_nul = 1;
2051 break;
2052 }
2053 }
2054 }
c5aa993b 2055 while (errcode == 0 /* no error */
ae6a3a4c
TJB
2056 && bufptr - *buffer < fetchlimit * width /* no overrun */
2057 && !found_nul); /* haven't found NUL yet */
c906108c
SS
2058 }
2059 else
ae6a3a4c
TJB
2060 { /* Length of string is really 0! */
2061 /* We always allocate *buffer. */
2062 *buffer = bufptr = xmalloc (1);
c906108c
SS
2063 errcode = 0;
2064 }
2065
2066 /* bufptr and addr now point immediately beyond the last byte which we
2067 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
2068 *bytes_read = bufptr - *buffer;
2069
2070 QUIT;
2071
2072 discard_cleanups (old_chain);
2073
2074 return errcode;
2075}
2076
3b2b8fea
TT
2077/* Return true if print_wchar can display W without resorting to a
2078 numeric escape, false otherwise. */
2079
2080static int
2081wchar_printable (gdb_wchar_t w)
2082{
2083 return (gdb_iswprint (w)
2084 || w == LCST ('\a') || w == LCST ('\b')
2085 || w == LCST ('\f') || w == LCST ('\n')
2086 || w == LCST ('\r') || w == LCST ('\t')
2087 || w == LCST ('\v'));
2088}
2089
2090/* A helper function that converts the contents of STRING to wide
2091 characters and then appends them to OUTPUT. */
2092
2093static void
2094append_string_as_wide (const char *string,
2095 struct obstack *output)
2096{
2097 for (; *string; ++string)
2098 {
2099 gdb_wchar_t w = gdb_btowc (*string);
2100 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2101 }
2102}
2103
2104/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2105 original (target) bytes representing the character, ORIG_LEN is the
2106 number of valid bytes. WIDTH is the number of bytes in a base
2107 characters of the type. OUTPUT is an obstack to which wide
2108 characters are emitted. QUOTER is a (narrow) character indicating
2109 the style of quotes surrounding the character to be printed.
2110 NEED_ESCAPE is an in/out flag which is used to track numeric
2111 escapes across calls. */
2112
2113static void
2114print_wchar (gdb_wint_t w, const gdb_byte *orig,
2115 int orig_len, int width,
2116 enum bfd_endian byte_order,
2117 struct obstack *output,
2118 int quoter, int *need_escapep)
2119{
2120 int need_escape = *need_escapep;
2121
2122 *need_escapep = 0;
3b2b8fea 2123
95c64f92
YQ
2124 /* iswprint implementation on Windows returns 1 for tab character.
2125 In order to avoid different printout on this host, we explicitly
2126 use wchar_printable function. */
2127 switch (w)
3b2b8fea 2128 {
95c64f92
YQ
2129 case LCST ('\a'):
2130 obstack_grow_wstr (output, LCST ("\\a"));
2131 break;
2132 case LCST ('\b'):
2133 obstack_grow_wstr (output, LCST ("\\b"));
2134 break;
2135 case LCST ('\f'):
2136 obstack_grow_wstr (output, LCST ("\\f"));
2137 break;
2138 case LCST ('\n'):
2139 obstack_grow_wstr (output, LCST ("\\n"));
2140 break;
2141 case LCST ('\r'):
2142 obstack_grow_wstr (output, LCST ("\\r"));
2143 break;
2144 case LCST ('\t'):
2145 obstack_grow_wstr (output, LCST ("\\t"));
2146 break;
2147 case LCST ('\v'):
2148 obstack_grow_wstr (output, LCST ("\\v"));
2149 break;
2150 default:
3b2b8fea 2151 {
95c64f92
YQ
2152 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2153 && w != LCST ('8')
2154 && w != LCST ('9'))))
2155 {
2156 gdb_wchar_t wchar = w;
3b2b8fea 2157
95c64f92
YQ
2158 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2159 obstack_grow_wstr (output, LCST ("\\"));
2160 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2161 }
2162 else
2163 {
2164 int i;
3b2b8fea 2165
95c64f92
YQ
2166 for (i = 0; i + width <= orig_len; i += width)
2167 {
2168 char octal[30];
2169 ULONGEST value;
2170
2171 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2172 byte_order);
95c64f92
YQ
2173 /* If the value fits in 3 octal digits, print it that
2174 way. Otherwise, print it as a hex escape. */
2175 if (value <= 0777)
2176 xsnprintf (octal, sizeof (octal), "\\%.3o",
2177 (int) (value & 0777));
2178 else
2179 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2180 append_string_as_wide (octal, output);
2181 }
2182 /* If we somehow have extra bytes, print them now. */
2183 while (i < orig_len)
2184 {
2185 char octal[5];
2186
2187 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2188 append_string_as_wide (octal, output);
2189 ++i;
2190 }
2191
2192 *need_escapep = 1;
2193 }
3b2b8fea
TT
2194 break;
2195 }
2196 }
2197}
2198
2199/* Print the character C on STREAM as part of the contents of a
2200 literal string whose delimiter is QUOTER. ENCODING names the
2201 encoding of C. */
2202
2203void
2204generic_emit_char (int c, struct type *type, struct ui_file *stream,
2205 int quoter, const char *encoding)
2206{
2207 enum bfd_endian byte_order
2208 = gdbarch_byte_order (get_type_arch (type));
2209 struct obstack wchar_buf, output;
2210 struct cleanup *cleanups;
2211 gdb_byte *buf;
2212 struct wchar_iterator *iter;
2213 int need_escape = 0;
2214
2215 buf = alloca (TYPE_LENGTH (type));
2216 pack_long (buf, type, c);
2217
2218 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2219 encoding, TYPE_LENGTH (type));
2220 cleanups = make_cleanup_wchar_iterator (iter);
2221
2222 /* This holds the printable form of the wchar_t data. */
2223 obstack_init (&wchar_buf);
2224 make_cleanup_obstack_free (&wchar_buf);
2225
2226 while (1)
2227 {
2228 int num_chars;
2229 gdb_wchar_t *chars;
2230 const gdb_byte *buf;
2231 size_t buflen;
2232 int print_escape = 1;
2233 enum wchar_iterate_result result;
2234
2235 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2236 if (num_chars < 0)
2237 break;
2238 if (num_chars > 0)
2239 {
2240 /* If all characters are printable, print them. Otherwise,
2241 we're going to have to print an escape sequence. We
2242 check all characters because we want to print the target
2243 bytes in the escape sequence, and we don't know character
2244 boundaries there. */
2245 int i;
2246
2247 print_escape = 0;
2248 for (i = 0; i < num_chars; ++i)
2249 if (!wchar_printable (chars[i]))
2250 {
2251 print_escape = 1;
2252 break;
2253 }
2254
2255 if (!print_escape)
2256 {
2257 for (i = 0; i < num_chars; ++i)
2258 print_wchar (chars[i], buf, buflen,
2259 TYPE_LENGTH (type), byte_order,
2260 &wchar_buf, quoter, &need_escape);
2261 }
2262 }
2263
2264 /* This handles the NUM_CHARS == 0 case as well. */
2265 if (print_escape)
2266 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2267 byte_order, &wchar_buf, quoter, &need_escape);
2268 }
2269
2270 /* The output in the host encoding. */
2271 obstack_init (&output);
2272 make_cleanup_obstack_free (&output);
2273
2274 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2275 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2276 obstack_object_size (&wchar_buf),
fff10684 2277 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2278 obstack_1grow (&output, '\0');
2279
2280 fputs_filtered (obstack_base (&output), stream);
2281
2282 do_cleanups (cleanups);
2283}
2284
0d63ecda
KS
2285/* Return the repeat count of the next character/byte in ITER,
2286 storing the result in VEC. */
2287
2288static int
2289count_next_character (struct wchar_iterator *iter,
2290 VEC (converted_character_d) **vec)
2291{
2292 struct converted_character *current;
2293
2294 if (VEC_empty (converted_character_d, *vec))
2295 {
2296 struct converted_character tmp;
2297 gdb_wchar_t *chars;
2298
2299 tmp.num_chars
2300 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2301 if (tmp.num_chars > 0)
2302 {
2303 gdb_assert (tmp.num_chars < MAX_WCHARS);
2304 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2305 }
2306 VEC_safe_push (converted_character_d, *vec, &tmp);
2307 }
2308
2309 current = VEC_last (converted_character_d, *vec);
2310
2311 /* Count repeated characters or bytes. */
2312 current->repeat_count = 1;
2313 if (current->num_chars == -1)
2314 {
2315 /* EOF */
2316 return -1;
2317 }
2318 else
2319 {
2320 gdb_wchar_t *chars;
2321 struct converted_character d;
2322 int repeat;
2323
2324 d.repeat_count = 0;
2325
2326 while (1)
2327 {
2328 /* Get the next character. */
2329 d.num_chars
2330 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2331
2332 /* If a character was successfully converted, save the character
2333 into the converted character. */
2334 if (d.num_chars > 0)
2335 {
2336 gdb_assert (d.num_chars < MAX_WCHARS);
2337 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2338 }
2339
2340 /* Determine if the current character is the same as this
2341 new character. */
2342 if (d.num_chars == current->num_chars && d.result == current->result)
2343 {
2344 /* There are two cases to consider:
2345
2346 1) Equality of converted character (num_chars > 0)
2347 2) Equality of non-converted character (num_chars == 0) */
2348 if ((current->num_chars > 0
2349 && memcmp (current->chars, d.chars,
2350 WCHAR_BUFLEN (current->num_chars)) == 0)
2351 || (current->num_chars == 0
2352 && current->buflen == d.buflen
2353 && memcmp (current->buf, d.buf, current->buflen) == 0))
2354 ++current->repeat_count;
2355 else
2356 break;
2357 }
2358 else
2359 break;
2360 }
2361
2362 /* Push this next converted character onto the result vector. */
2363 repeat = current->repeat_count;
2364 VEC_safe_push (converted_character_d, *vec, &d);
2365 return repeat;
2366 }
2367}
2368
2369/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2370 character to use with string output. WIDTH is the size of the output
2371 character type. BYTE_ORDER is the the target byte order. OPTIONS
2372 is the user's print options. */
2373
2374static void
2375print_converted_chars_to_obstack (struct obstack *obstack,
2376 VEC (converted_character_d) *chars,
2377 int quote_char, int width,
2378 enum bfd_endian byte_order,
2379 const struct value_print_options *options)
2380{
2381 unsigned int idx;
2382 struct converted_character *elem;
2383 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2384 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2385 int need_escape = 0;
2386
2387 /* Set the start state. */
2388 idx = 0;
2389 last = state = START;
2390 elem = NULL;
2391
2392 while (1)
2393 {
2394 switch (state)
2395 {
2396 case START:
2397 /* Nothing to do. */
2398 break;
2399
2400 case SINGLE:
2401 {
2402 int j;
2403
2404 /* We are outputting a single character
2405 (< options->repeat_count_threshold). */
2406
2407 if (last != SINGLE)
2408 {
2409 /* We were outputting some other type of content, so we
2410 must output and a comma and a quote. */
2411 if (last != START)
2412 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2413 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2414 }
2415 /* Output the character. */
2416 for (j = 0; j < elem->repeat_count; ++j)
2417 {
2418 if (elem->result == wchar_iterate_ok)
2419 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2420 byte_order, obstack, quote_char, &need_escape);
2421 else
2422 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2423 byte_order, obstack, quote_char, &need_escape);
2424 }
2425 }
2426 break;
2427
2428 case REPEAT:
2429 {
2430 int j;
2431 char *s;
2432
2433 /* We are outputting a character with a repeat count
2434 greater than options->repeat_count_threshold. */
2435
2436 if (last == SINGLE)
2437 {
2438 /* We were outputting a single string. Terminate the
2439 string. */
0d63ecda
KS
2440 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2441 }
2442 if (last != START)
2443 obstack_grow_wstr (obstack, LCST (", "));
2444
2445 /* Output the character and repeat string. */
2446 obstack_grow_wstr (obstack, LCST ("'"));
2447 if (elem->result == wchar_iterate_ok)
2448 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2449 byte_order, obstack, quote_char, &need_escape);
2450 else
2451 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2452 byte_order, obstack, quote_char, &need_escape);
2453 obstack_grow_wstr (obstack, LCST ("'"));
2454 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2455 for (j = 0; s[j]; ++j)
2456 {
2457 gdb_wchar_t w = gdb_btowc (s[j]);
2458 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2459 }
2460 xfree (s);
2461 }
2462 break;
2463
2464 case INCOMPLETE:
2465 /* We are outputting an incomplete sequence. */
2466 if (last == SINGLE)
2467 {
2468 /* If we were outputting a string of SINGLE characters,
2469 terminate the quote. */
0d63ecda
KS
2470 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2471 }
2472 if (last != START)
2473 obstack_grow_wstr (obstack, LCST (", "));
2474
2475 /* Output the incomplete sequence string. */
2476 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2477 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2478 obstack, 0, &need_escape);
2479 obstack_grow_wstr (obstack, LCST (">"));
2480
2481 /* We do not attempt to outupt anything after this. */
2482 state = FINISH;
2483 break;
2484
2485 case FINISH:
2486 /* All done. If we were outputting a string of SINGLE
2487 characters, the string must be terminated. Otherwise,
2488 REPEAT and INCOMPLETE are always left properly terminated. */
2489 if (last == SINGLE)
e93a8774 2490 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2491
2492 return;
2493 }
2494
2495 /* Get the next element and state. */
2496 last = state;
2497 if (state != FINISH)
2498 {
2499 elem = VEC_index (converted_character_d, chars, idx++);
2500 switch (elem->result)
2501 {
2502 case wchar_iterate_ok:
2503 case wchar_iterate_invalid:
2504 if (elem->repeat_count > options->repeat_count_threshold)
2505 state = REPEAT;
2506 else
2507 state = SINGLE;
2508 break;
2509
2510 case wchar_iterate_incomplete:
2511 state = INCOMPLETE;
2512 break;
2513
2514 case wchar_iterate_eof:
2515 state = FINISH;
2516 break;
2517 }
2518 }
2519 }
2520}
2521
3b2b8fea
TT
2522/* Print the character string STRING, printing at most LENGTH
2523 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2524 the type of each character. OPTIONS holds the printing options;
2525 printing stops early if the number hits print_max; repeat counts
2526 are printed as appropriate. Print ellipses at the end if we had to
2527 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2528 QUOTE_CHAR is the character to print at each end of the string. If
2529 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2530 omitted. */
2531
2532void
2533generic_printstr (struct ui_file *stream, struct type *type,
2534 const gdb_byte *string, unsigned int length,
2535 const char *encoding, int force_ellipses,
2536 int quote_char, int c_style_terminator,
2537 const struct value_print_options *options)
2538{
2539 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2540 unsigned int i;
3b2b8fea
TT
2541 int width = TYPE_LENGTH (type);
2542 struct obstack wchar_buf, output;
2543 struct cleanup *cleanup;
2544 struct wchar_iterator *iter;
2545 int finished = 0;
0d63ecda
KS
2546 struct converted_character *last;
2547 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2548
2549 if (length == -1)
2550 {
2551 unsigned long current_char = 1;
2552
2553 for (i = 0; current_char; ++i)
2554 {
2555 QUIT;
2556 current_char = extract_unsigned_integer (string + i * width,
2557 width, byte_order);
2558 }
2559 length = i;
2560 }
2561
2562 /* If the string was not truncated due to `set print elements', and
2563 the last byte of it is a null, we don't print that, in
2564 traditional C style. */
2565 if (c_style_terminator
2566 && !force_ellipses
2567 && length > 0
2568 && (extract_unsigned_integer (string + (length - 1) * width,
2569 width, byte_order) == 0))
2570 length--;
2571
2572 if (length == 0)
2573 {
2574 fputs_filtered ("\"\"", stream);
2575 return;
2576 }
2577
2578 /* Arrange to iterate over the characters, in wchar_t form. */
2579 iter = make_wchar_iterator (string, length * width, encoding, width);
2580 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2581 converted_chars = NULL;
2582 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2583
0d63ecda
KS
2584 /* Convert characters until the string is over or the maximum
2585 number of printed characters has been reached. */
2586 i = 0;
2587 while (i < options->print_max)
3b2b8fea 2588 {
0d63ecda 2589 int r;
3b2b8fea
TT
2590
2591 QUIT;
2592
0d63ecda
KS
2593 /* Grab the next character and repeat count. */
2594 r = count_next_character (iter, &converted_chars);
3b2b8fea 2595
0d63ecda
KS
2596 /* If less than zero, the end of the input string was reached. */
2597 if (r < 0)
2598 break;
3b2b8fea 2599
0d63ecda
KS
2600 /* Otherwise, add the count to the total print count and get
2601 the next character. */
2602 i += r;
2603 }
3b2b8fea 2604
0d63ecda
KS
2605 /* Get the last element and determine if the entire string was
2606 processed. */
2607 last = VEC_last (converted_character_d, converted_chars);
2608 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2609
0d63ecda
KS
2610 /* Ensure that CONVERTED_CHARS is terminated. */
2611 last->result = wchar_iterate_eof;
3b2b8fea 2612
0d63ecda
KS
2613 /* WCHAR_BUF is the obstack we use to represent the string in
2614 wchar_t form. */
2615 obstack_init (&wchar_buf);
2616 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2617
0d63ecda
KS
2618 /* Print the output string to the obstack. */
2619 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2620 width, byte_order, options);
3b2b8fea
TT
2621
2622 if (force_ellipses || !finished)
2623 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2624
2625 /* OUTPUT is where we collect `char's for printing. */
2626 obstack_init (&output);
2627 make_cleanup_obstack_free (&output);
2628
2629 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2630 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2631 obstack_object_size (&wchar_buf),
fff10684 2632 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2633 obstack_1grow (&output, '\0');
2634
2635 fputs_filtered (obstack_base (&output), stream);
2636
2637 do_cleanups (cleanup);
2638}
2639
ae6a3a4c
TJB
2640/* Print a string from the inferior, starting at ADDR and printing up to LEN
2641 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2642 stops at the first null byte, otherwise printing proceeds (including null
2643 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2644 whichever is smaller. ENCODING is the name of the string's
2645 encoding. It can be NULL, in which case the target encoding is
2646 assumed. */
ae6a3a4c
TJB
2647
2648int
09ca9e2e
TT
2649val_print_string (struct type *elttype, const char *encoding,
2650 CORE_ADDR addr, int len,
6c7a06a3 2651 struct ui_file *stream,
ae6a3a4c
TJB
2652 const struct value_print_options *options)
2653{
2654 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2655 int errcode; /* Errno returned from bad reads. */
581e13c1 2656 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2657 unsigned int fetchlimit; /* Maximum number of chars to print. */
2658 int bytes_read;
2659 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2660 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2661 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2663 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2664
2665 /* First we need to figure out the limit on the number of characters we are
2666 going to attempt to fetch and print. This is actually pretty simple. If
2667 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2668 LEN is -1, then the limit is print_max. This is true regardless of
2669 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2670 because finding the null byte (or available memory) is what actually
2671 limits the fetch. */
2672
3e43a32a
MS
2673 fetchlimit = (len == -1 ? options->print_max : min (len,
2674 options->print_max));
ae6a3a4c 2675
e17a4113
UW
2676 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2677 &buffer, &bytes_read);
ae6a3a4c
TJB
2678 old_chain = make_cleanup (xfree, buffer);
2679
2680 addr += bytes_read;
c906108c 2681
3e43a32a
MS
2682 /* We now have either successfully filled the buffer to fetchlimit,
2683 or terminated early due to an error or finding a null char when
2684 LEN is -1. */
ae6a3a4c
TJB
2685
2686 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2687 found_nul = 0;
2688 if (bytes_read >= width)
2689 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2690 byte_order) == 0;
c906108c
SS
2691 if (len == -1 && !found_nul)
2692 {
777ea8f1 2693 gdb_byte *peekbuf;
c906108c 2694
ae6a3a4c 2695 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2696 to peek at the next character. If not successful, or it is not
2697 a null byte, then force ellipsis to be printed. */
c906108c 2698
777ea8f1 2699 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2700
2701 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2702 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2703 force_ellipsis = 1;
2704 }
ae6a3a4c 2705 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2706 {
2707 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2708 than the number of characters actually requested, always make us
ae6a3a4c 2709 print ellipsis. */
c906108c
SS
2710 force_ellipsis = 1;
2711 }
2712
c906108c
SS
2713 /* If we get an error before fetching anything, don't print a string.
2714 But if we fetch something and then get an error, print the string
2715 and then the error message. */
ae6a3a4c 2716 if (errcode == 0 || bytes_read > 0)
c906108c 2717 {
be759fcf 2718 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2719 encoding, force_ellipsis, options);
c906108c
SS
2720 }
2721
2722 if (errcode != 0)
2723 {
578d3588
PA
2724 char *str;
2725
2726 str = memory_error_message (errcode, gdbarch, addr);
2727 make_cleanup (xfree, str);
2728
2729 fprintf_filtered (stream, "<error: ");
2730 fputs_filtered (str, stream);
2731 fprintf_filtered (stream, ">");
c906108c 2732 }
ae6a3a4c 2733
c906108c
SS
2734 gdb_flush (stream);
2735 do_cleanups (old_chain);
ae6a3a4c
TJB
2736
2737 return (bytes_read / width);
c906108c 2738}
c906108c 2739\f
c5aa993b 2740
09e6485f
PA
2741/* The 'set input-radix' command writes to this auxiliary variable.
2742 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2743 it is left unchanged. */
2744
2745static unsigned input_radix_1 = 10;
2746
c906108c
SS
2747/* Validate an input or output radix setting, and make sure the user
2748 knows what they really did here. Radix setting is confusing, e.g.
2749 setting the input radix to "10" never changes it! */
2750
c906108c 2751static void
fba45db2 2752set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2753{
09e6485f 2754 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2755}
2756
c906108c 2757static void
fba45db2 2758set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2759{
2760 /* We don't currently disallow any input radix except 0 or 1, which don't
2761 make any mathematical sense. In theory, we can deal with any input
2762 radix greater than 1, even if we don't have unique digits for every
2763 value from 0 to radix-1, but in practice we lose on large radix values.
2764 We should either fix the lossage or restrict the radix range more.
581e13c1 2765 (FIXME). */
c906108c
SS
2766
2767 if (radix < 2)
2768 {
09e6485f 2769 input_radix_1 = input_radix;
8a3fe4f8 2770 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2771 radix);
2772 }
09e6485f 2773 input_radix_1 = input_radix = radix;
c906108c
SS
2774 if (from_tty)
2775 {
3e43a32a
MS
2776 printf_filtered (_("Input radix now set to "
2777 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2778 radix, radix, radix);
2779 }
2780}
2781
09e6485f
PA
2782/* The 'set output-radix' command writes to this auxiliary variable.
2783 If the requested radix is valid, OUTPUT_RADIX is updated,
2784 otherwise, it is left unchanged. */
2785
2786static unsigned output_radix_1 = 10;
2787
c906108c 2788static void
fba45db2 2789set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2790{
09e6485f 2791 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2792}
2793
2794static void
fba45db2 2795set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2796{
2797 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2798 handle correctly, leaving the radix unchanged. */
c906108c
SS
2799 switch (radix)
2800 {
2801 case 16:
79a45b7d 2802 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2803 break;
2804 case 10:
79a45b7d 2805 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2806 break;
2807 case 8:
79a45b7d 2808 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2809 break;
2810 default:
09e6485f 2811 output_radix_1 = output_radix;
3e43a32a
MS
2812 error (_("Unsupported output radix ``decimal %u''; "
2813 "output radix unchanged."),
c906108c
SS
2814 radix);
2815 }
09e6485f 2816 output_radix_1 = output_radix = radix;
c906108c
SS
2817 if (from_tty)
2818 {
3e43a32a
MS
2819 printf_filtered (_("Output radix now set to "
2820 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2821 radix, radix, radix);
2822 }
2823}
2824
2825/* Set both the input and output radix at once. Try to set the output radix
2826 first, since it has the most restrictive range. An radix that is valid as
2827 an output radix is also valid as an input radix.
2828
2829 It may be useful to have an unusual input radix. If the user wishes to
2830 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2831 the 'set input-radix' command. */
c906108c
SS
2832
2833static void
fba45db2 2834set_radix (char *arg, int from_tty)
c906108c
SS
2835{
2836 unsigned radix;
2837
bb518678 2838 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2839 set_output_radix_1 (0, radix);
2840 set_input_radix_1 (0, radix);
2841 if (from_tty)
2842 {
3e43a32a
MS
2843 printf_filtered (_("Input and output radices now set to "
2844 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2845 radix, radix, radix);
2846 }
2847}
2848
581e13c1 2849/* Show both the input and output radices. */
c906108c 2850
c906108c 2851static void
fba45db2 2852show_radix (char *arg, int from_tty)
c906108c
SS
2853{
2854 if (from_tty)
2855 {
2856 if (input_radix == output_radix)
2857 {
3e43a32a
MS
2858 printf_filtered (_("Input and output radices set to "
2859 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2860 input_radix, input_radix, input_radix);
2861 }
2862 else
2863 {
3e43a32a
MS
2864 printf_filtered (_("Input radix set to decimal "
2865 "%u, hex %x, octal %o.\n"),
c906108c 2866 input_radix, input_radix, input_radix);
3e43a32a
MS
2867 printf_filtered (_("Output radix set to decimal "
2868 "%u, hex %x, octal %o.\n"),
c906108c
SS
2869 output_radix, output_radix, output_radix);
2870 }
2871 }
2872}
c906108c 2873\f
c5aa993b 2874
c906108c 2875static void
fba45db2 2876set_print (char *arg, int from_tty)
c906108c
SS
2877{
2878 printf_unfiltered (
c5aa993b 2879 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2880 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2881}
2882
c906108c 2883static void
fba45db2 2884show_print (char *args, int from_tty)
c906108c
SS
2885{
2886 cmd_show_list (showprintlist, from_tty, "");
2887}
e7045703
DE
2888
2889static void
2890set_print_raw (char *arg, int from_tty)
2891{
2892 printf_unfiltered (
2893 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2894 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2895}
2896
2897static void
2898show_print_raw (char *args, int from_tty)
2899{
2900 cmd_show_list (showprintrawlist, from_tty, "");
2901}
2902
c906108c
SS
2903\f
2904void
fba45db2 2905_initialize_valprint (void)
c906108c 2906{
c906108c 2907 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2908 _("Generic command for setting how things print."),
c906108c 2909 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2910 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2911 /* Prefer set print to set prompt. */
c906108c
SS
2912 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2913
2914 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2915 _("Generic command for showing print settings."),
c906108c 2916 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2917 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2918 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2919
e7045703
DE
2920 add_prefix_cmd ("raw", no_class, set_print_raw,
2921 _("\
2922Generic command for setting what things to print in \"raw\" mode."),
2923 &setprintrawlist, "set print raw ", 0, &setprintlist);
2924 add_prefix_cmd ("raw", no_class, show_print_raw,
2925 _("Generic command for showing \"print raw\" settings."),
2926 &showprintrawlist, "show print raw ", 0, &showprintlist);
2927
79a45b7d
TT
2928 add_setshow_uinteger_cmd ("elements", no_class,
2929 &user_print_options.print_max, _("\
35096d9d
AC
2930Set limit on string chars or array elements to print."), _("\
2931Show limit on string chars or array elements to print."), _("\
f81d1120 2932\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2933 NULL,
920d2a44 2934 show_print_max,
35096d9d 2935 &setprintlist, &showprintlist);
c906108c 2936
79a45b7d
TT
2937 add_setshow_boolean_cmd ("null-stop", no_class,
2938 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2939Set printing of char arrays to stop at first null char."), _("\
2940Show printing of char arrays to stop at first null char."), NULL,
2941 NULL,
920d2a44 2942 show_stop_print_at_null,
5bf193a2 2943 &setprintlist, &showprintlist);
c906108c 2944
35096d9d 2945 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2946 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2947Set threshold for repeated print elements."), _("\
2948Show threshold for repeated print elements."), _("\
f81d1120 2949\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2950 NULL,
920d2a44 2951 show_repeat_count_threshold,
35096d9d 2952 &setprintlist, &showprintlist);
c906108c 2953
79a45b7d 2954 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2955 &user_print_options.prettyformat_structs, _("\
2956Set pretty formatting of structures."), _("\
2957Show pretty formatting of structures."), NULL,
5bf193a2 2958 NULL,
2a998fc0 2959 show_prettyformat_structs,
5bf193a2
AC
2960 &setprintlist, &showprintlist);
2961
79a45b7d
TT
2962 add_setshow_boolean_cmd ("union", class_support,
2963 &user_print_options.unionprint, _("\
5bf193a2
AC
2964Set printing of unions interior to structures."), _("\
2965Show printing of unions interior to structures."), NULL,
2966 NULL,
920d2a44 2967 show_unionprint,
5bf193a2
AC
2968 &setprintlist, &showprintlist);
2969
79a45b7d 2970 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2971 &user_print_options.prettyformat_arrays, _("\
2972Set pretty formatting of arrays."), _("\
2973Show pretty formatting of arrays."), NULL,
5bf193a2 2974 NULL,
2a998fc0 2975 show_prettyformat_arrays,
5bf193a2
AC
2976 &setprintlist, &showprintlist);
2977
79a45b7d
TT
2978 add_setshow_boolean_cmd ("address", class_support,
2979 &user_print_options.addressprint, _("\
5bf193a2
AC
2980Set printing of addresses."), _("\
2981Show printing of addresses."), NULL,
2982 NULL,
920d2a44 2983 show_addressprint,
5bf193a2 2984 &setprintlist, &showprintlist);
c906108c 2985
9cb709b6
TT
2986 add_setshow_boolean_cmd ("symbol", class_support,
2987 &user_print_options.symbol_print, _("\
2988Set printing of symbol names when printing pointers."), _("\
2989Show printing of symbol names when printing pointers."),
2990 NULL, NULL,
2991 show_symbol_print,
2992 &setprintlist, &showprintlist);
2993
1e8fb976
PA
2994 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2995 _("\
35096d9d
AC
2996Set default input radix for entering numbers."), _("\
2997Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2998 set_input_radix,
2999 show_input_radix,
3000 &setlist, &showlist);
35096d9d 3001
1e8fb976
PA
3002 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3003 _("\
35096d9d
AC
3004Set default output radix for printing of values."), _("\
3005Show default output radix for printing of values."), NULL,
1e8fb976
PA
3006 set_output_radix,
3007 show_output_radix,
3008 &setlist, &showlist);
c906108c 3009
cb1a6d5f
AC
3010 /* The "set radix" and "show radix" commands are special in that
3011 they are like normal set and show commands but allow two normally
3012 independent variables to be either set or shown with a single
b66df561 3013 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 3014 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
3015 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3016 longer true - show can display anything. */
1a966eab
AC
3017 add_cmd ("radix", class_support, set_radix, _("\
3018Set default input and output number radices.\n\
c906108c 3019Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 3020Without an argument, sets both radices back to the default value of 10."),
c906108c 3021 &setlist);
1a966eab
AC
3022 add_cmd ("radix", class_support, show_radix, _("\
3023Show the default input and output number radices.\n\
3024Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
3025 &showlist);
3026
e79af960 3027 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 3028 &user_print_options.print_array_indexes, _("\
e79af960
JB
3029Set printing of array indexes."), _("\
3030Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3031 &setprintlist, &showprintlist);
c906108c 3032}
This page took 2.497266 seconds and 4 git commands to generate.