2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
c906108c 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
3e43a32a
MS
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
920d2a44
AC
123 value);
124}
125
c906108c
SS
126
127/* Default input and output radixes, and output format letter. */
128
129unsigned input_radix = 10;
920d2a44
AC
130static void
131show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133{
3e43a32a
MS
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
136 value);
137}
138
c906108c 139unsigned output_radix = 10;
920d2a44
AC
140static void
141show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
3e43a32a
MS
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
146 value);
147}
c906108c 148
e79af960
JB
149/* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
e79af960
JB
152static void
153show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157}
158
c906108c
SS
159/* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
920d2a44
AC
163static void
164show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169}
c906108c
SS
170
171/* If nonzero, stops printing of char arrays at first null. */
172
920d2a44
AC
173static void
174show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
3e43a32a
MS
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
920d2a44
AC
180 value);
181}
c906108c
SS
182
183/* Controls pretty printing of structures. */
184
920d2a44
AC
185static void
186show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188{
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190}
c906108c
SS
191
192/* Controls pretty printing of arrays. */
193
920d2a44
AC
194static void
195show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199}
c906108c
SS
200
201/* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
920d2a44
AC
204static void
205show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207{
3e43a32a
MS
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
210 value);
211}
c906108c
SS
212
213/* If nonzero, causes machine addresses to be printed in certain contexts. */
214
920d2a44
AC
215static void
216show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218{
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220}
c906108c 221\f
c5aa993b 222
a6bac58e
TT
223/* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227static int
228scalar_type_p (struct type *type)
229{
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248}
249
0e03807e
TT
250/* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260static int
261valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int offset,
264 const struct value *val)
265{
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 fprintf_filtered (stream, _("<value optimized out>"));
276 return 0;
277 }
8cf6f0b1
TT
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
0e03807e
TT
285 }
286
287 return 1;
288}
289
d8ca156b
JB
290/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
291 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 292 stdio stream STREAM according to OPTIONS.
c906108c
SS
293
294 If the data are a string pointer, returns the number of string characters
295 printed.
296
297 FIXME: The data at VALADDR is in target byte order. If gdb is ever
298 enhanced to be able to debug more than the single target it was compiled
299 for (specific CPU type and thus specific target byte ordering), then
300 either the print routines are going to have to take this into account,
301 or the data is going to have to be passed into here already converted
302 to the host byte ordering, whichever is more convenient. */
303
304
305int
fc1a4b47 306val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 307 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 308 const struct value *val,
79a45b7d 309 const struct value_print_options *options,
d8ca156b 310 const struct language_defn *language)
c906108c 311{
19ca80ba
DJ
312 volatile struct gdb_exception except;
313 int ret = 0;
79a45b7d 314 struct value_print_options local_opts = *options;
c906108c 315 struct type *real_type = check_typedef (type);
79a45b7d
TT
316
317 if (local_opts.pretty == Val_pretty_default)
318 local_opts.pretty = (local_opts.prettyprint_structs
319 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 320
c906108c
SS
321 QUIT;
322
323 /* Ensure that the type is complete and not just a stub. If the type is
324 only a stub and we can't find and substitute its complete type, then
325 print appropriate string and return. */
326
74a9bb82 327 if (TYPE_STUB (real_type))
c906108c 328 {
0e03807e 329 fprintf_filtered (stream, _("<incomplete type>"));
c906108c
SS
330 gdb_flush (stream);
331 return (0);
332 }
c5aa993b 333
0e03807e
TT
334 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
335 return 0;
336
a6bac58e
TT
337 if (!options->raw)
338 {
339 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
0e03807e
TT
340 address, stream, recurse,
341 val, options, language);
a6bac58e
TT
342 if (ret)
343 return ret;
344 }
345
346 /* Handle summary mode. If the value is a scalar, print it;
347 otherwise, print an ellipsis. */
348 if (options->summary && !scalar_type_p (type))
349 {
350 fprintf_filtered (stream, "...");
351 return 0;
352 }
353
19ca80ba
DJ
354 TRY_CATCH (except, RETURN_MASK_ERROR)
355 {
d8ca156b 356 ret = language->la_val_print (type, valaddr, embedded_offset, address,
0e03807e
TT
357 stream, recurse, val,
358 &local_opts);
19ca80ba
DJ
359 }
360 if (except.reason < 0)
361 fprintf_filtered (stream, _("<error reading variable>"));
362
363 return ret;
c906108c
SS
364}
365
806048c6
DJ
366/* Check whether the value VAL is printable. Return 1 if it is;
367 return 0 and print an appropriate error message to STREAM if it
368 is not. */
c906108c 369
806048c6
DJ
370static int
371value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
372{
373 if (val == 0)
374 {
806048c6 375 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
376 return 0;
377 }
806048c6 378
0e03807e 379 if (value_entirely_optimized_out (val))
c906108c 380 {
806048c6 381 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
382 return 0;
383 }
806048c6 384
bc3b79fd
TJB
385 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
386 {
387 fprintf_filtered (stream, _("<internal function %s>"),
388 value_internal_function_name (val));
389 return 0;
390 }
391
806048c6
DJ
392 return 1;
393}
394
d8ca156b 395/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 396 to OPTIONS.
806048c6
DJ
397
398 If the data are a string pointer, returns the number of string characters
399 printed.
400
401 This is a preferable interface to val_print, above, because it uses
402 GDB's value mechanism. */
403
404int
79a45b7d
TT
405common_val_print (struct value *val, struct ui_file *stream, int recurse,
406 const struct value_print_options *options,
d8ca156b 407 const struct language_defn *language)
806048c6
DJ
408{
409 if (!value_check_printable (val, stream))
410 return 0;
411
0c3acc09
JB
412 if (language->la_language == language_ada)
413 /* The value might have a dynamic type, which would cause trouble
414 below when trying to extract the value contents (since the value
415 size is determined from the type size which is unknown). So
416 get a fixed representation of our value. */
417 val = ada_to_fixed_value (val);
418
0e03807e 419 return val_print (value_type (val), value_contents_for_printing (val),
42ae5230 420 value_embedded_offset (val), value_address (val),
0e03807e
TT
421 stream, recurse,
422 val, options, language);
806048c6
DJ
423}
424
7348c5e1
JB
425/* Print on stream STREAM the value VAL according to OPTIONS. The value
426 is printed using the current_language syntax.
427
428 If the object printed is a string pointer, return the number of string
429 bytes printed. */
806048c6
DJ
430
431int
79a45b7d
TT
432value_print (struct value *val, struct ui_file *stream,
433 const struct value_print_options *options)
806048c6
DJ
434{
435 if (!value_check_printable (val, stream))
436 return 0;
437
a6bac58e
TT
438 if (!options->raw)
439 {
440 int r = apply_val_pretty_printer (value_type (val),
0e03807e 441 value_contents_for_printing (val),
a6bac58e
TT
442 value_embedded_offset (val),
443 value_address (val),
0e03807e
TT
444 stream, 0,
445 val, options, current_language);
a109c7c1 446
a6bac58e
TT
447 if (r)
448 return r;
449 }
450
79a45b7d 451 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
452}
453
454/* Called by various <lang>_val_print routines to print
455 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
456 value. STREAM is where to print the value. */
457
458void
fc1a4b47 459val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 460 struct ui_file *stream)
c906108c 461{
50810684 462 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 463
c906108c
SS
464 if (TYPE_LENGTH (type) > sizeof (LONGEST))
465 {
466 LONGEST val;
467
468 if (TYPE_UNSIGNED (type)
469 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 470 byte_order, &val))
c906108c
SS
471 {
472 print_longest (stream, 'u', 0, val);
473 }
474 else
475 {
476 /* Signed, or we couldn't turn an unsigned value into a
477 LONGEST. For signed values, one could assume two's
478 complement (a reasonable assumption, I think) and do
479 better than this. */
480 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 481 TYPE_LENGTH (type), byte_order);
c906108c
SS
482 }
483 }
484 else
485 {
c906108c
SS
486 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
487 unpack_long (type, valaddr));
c906108c
SS
488 }
489}
490
4f2aea11
MK
491void
492val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
493 struct ui_file *stream)
494{
befae759 495 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
496 int bitpos, nfields = TYPE_NFIELDS (type);
497
498 fputs_filtered ("[ ", stream);
499 for (bitpos = 0; bitpos < nfields; bitpos++)
500 {
316703b9
MK
501 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
502 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
503 {
504 if (TYPE_FIELD_NAME (type, bitpos))
505 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
506 else
507 fprintf_filtered (stream, "#%d ", bitpos);
508 }
509 }
510 fputs_filtered ("]", stream);
511}
512
c906108c
SS
513/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
514 The raison d'etre of this function is to consolidate printing of
bb599908
PH
515 LONG_LONG's into this one function. The format chars b,h,w,g are
516 from print_scalar_formatted(). Numbers are printed using C
517 format.
518
519 USE_C_FORMAT means to use C format in all cases. Without it,
520 'o' and 'x' format do not include the standard C radix prefix
521 (leading 0 or 0x).
522
523 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
524 and was intended to request formating according to the current
525 language and would be used for most integers that GDB prints. The
526 exceptional cases were things like protocols where the format of
527 the integer is a protocol thing, not a user-visible thing). The
528 parameter remains to preserve the information of what things might
529 be printed with language-specific format, should we ever resurrect
530 that capability. */
c906108c
SS
531
532void
bb599908 533print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 534 LONGEST val_long)
c906108c 535{
2bfb72ee
AC
536 const char *val;
537
c906108c
SS
538 switch (format)
539 {
540 case 'd':
bb599908 541 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 542 case 'u':
bb599908 543 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 544 case 'x':
bb599908 545 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 546 case 'b':
bb599908 547 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 548 case 'h':
bb599908 549 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 550 case 'w':
bb599908 551 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 552 case 'g':
bb599908 553 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
554 break;
555 case 'o':
bb599908 556 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 557 default:
3e43a32a
MS
558 internal_error (__FILE__, __LINE__,
559 _("failed internal consistency check"));
bb599908 560 }
2bfb72ee 561 fputs_filtered (val, stream);
c906108c
SS
562}
563
c906108c
SS
564/* This used to be a macro, but I don't think it is called often enough
565 to merit such treatment. */
566/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
567 arguments to a function, number in a value history, register number, etc.)
568 where the value must not be larger than can fit in an int. */
569
570int
fba45db2 571longest_to_int (LONGEST arg)
c906108c
SS
572{
573 /* Let the compiler do the work */
574 int rtnval = (int) arg;
575
576 /* Check for overflows or underflows */
577 if (sizeof (LONGEST) > sizeof (int))
578 {
579 if (rtnval != arg)
580 {
8a3fe4f8 581 error (_("Value out of range."));
c906108c
SS
582 }
583 }
584 return (rtnval);
585}
586
a73c86fb
AC
587/* Print a floating point value of type TYPE (not always a
588 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
589
590void
fc1a4b47 591print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 592 struct ui_file *stream)
c906108c
SS
593{
594 DOUBLEST doub;
595 int inv;
a73c86fb 596 const struct floatformat *fmt = NULL;
c906108c 597 unsigned len = TYPE_LENGTH (type);
20389057 598 enum float_kind kind;
c5aa993b 599
a73c86fb
AC
600 /* If it is a floating-point, check for obvious problems. */
601 if (TYPE_CODE (type) == TYPE_CODE_FLT)
602 fmt = floatformat_from_type (type);
20389057 603 if (fmt != NULL)
39424bef 604 {
20389057
DJ
605 kind = floatformat_classify (fmt, valaddr);
606 if (kind == float_nan)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fprintf_filtered (stream, "-");
610 fprintf_filtered (stream, "nan(");
611 fputs_filtered ("0x", stream);
612 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
613 fprintf_filtered (stream, ")");
614 return;
615 }
616 else if (kind == float_infinite)
617 {
618 if (floatformat_is_negative (fmt, valaddr))
619 fputs_filtered ("-", stream);
620 fputs_filtered ("inf", stream);
621 return;
622 }
7355ddba 623 }
c906108c 624
a73c86fb
AC
625 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
626 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
627 needs to be used as that takes care of any necessary type
628 conversions. Such conversions are of course direct to DOUBLEST
629 and disregard any possible target floating point limitations.
630 For instance, a u64 would be converted and displayed exactly on a
631 host with 80 bit DOUBLEST but with loss of information on a host
632 with 64 bit DOUBLEST. */
c2f05ac9 633
c906108c
SS
634 doub = unpack_double (type, valaddr, &inv);
635 if (inv)
636 {
637 fprintf_filtered (stream, "<invalid float value>");
638 return;
639 }
640
39424bef
MK
641 /* FIXME: kettenis/2001-01-20: The following code makes too much
642 assumptions about the host and target floating point format. */
643
a73c86fb 644 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 645 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
646 instead uses the type's length to determine the precision of the
647 floating-point value being printed. */
c2f05ac9 648
c906108c 649 if (len < sizeof (double))
c5aa993b 650 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 651 else if (len == sizeof (double))
c5aa993b 652 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
653 else
654#ifdef PRINTF_HAS_LONG_DOUBLE
655 fprintf_filtered (stream, "%.35Lg", doub);
656#else
39424bef
MK
657 /* This at least wins with values that are representable as
658 doubles. */
c906108c
SS
659 fprintf_filtered (stream, "%.17g", (double) doub);
660#endif
661}
662
7678ef8f
TJB
663void
664print_decimal_floating (const gdb_byte *valaddr, struct type *type,
665 struct ui_file *stream)
666{
e17a4113 667 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
668 char decstr[MAX_DECIMAL_STRING];
669 unsigned len = TYPE_LENGTH (type);
670
e17a4113 671 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
672 fputs_filtered (decstr, stream);
673 return;
674}
675
c5aa993b 676void
fc1a4b47 677print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 678 unsigned len, enum bfd_endian byte_order)
c906108c
SS
679{
680
681#define BITS_IN_BYTES 8
682
fc1a4b47 683 const gdb_byte *p;
745b8ca0 684 unsigned int i;
c5aa993b 685 int b;
c906108c
SS
686
687 /* Declared "int" so it will be signed.
688 * This ensures that right shift will shift in zeros.
689 */
c5aa993b 690 const int mask = 0x080;
c906108c
SS
691
692 /* FIXME: We should be not printing leading zeroes in most cases. */
693
d44e8473 694 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
695 {
696 for (p = valaddr;
697 p < valaddr + len;
698 p++)
699 {
c5aa993b
JM
700 /* Every byte has 8 binary characters; peel off
701 * and print from the MSB end.
702 */
703 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
704 {
705 if (*p & (mask >> i))
706 b = 1;
707 else
708 b = 0;
709
710 fprintf_filtered (stream, "%1d", b);
711 }
c906108c
SS
712 }
713 }
714 else
715 {
716 for (p = valaddr + len - 1;
717 p >= valaddr;
718 p--)
719 {
c5aa993b
JM
720 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
721 {
722 if (*p & (mask >> i))
723 b = 1;
724 else
725 b = 0;
726
727 fprintf_filtered (stream, "%1d", b);
728 }
c906108c
SS
729 }
730 }
c906108c
SS
731}
732
733/* VALADDR points to an integer of LEN bytes.
734 * Print it in octal on stream or format it in buf.
735 */
736void
fc1a4b47 737print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 738 unsigned len, enum bfd_endian byte_order)
c906108c 739{
fc1a4b47 740 const gdb_byte *p;
c906108c 741 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
742 int cycle;
743
c906108c
SS
744 /* FIXME: We should be not printing leading zeroes in most cases. */
745
746
747 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
748 * the extra bits, which cycle every three bytes:
749 *
750 * Byte side: 0 1 2 3
751 * | | | |
752 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
753 *
754 * Octal side: 0 1 carry 3 4 carry ...
755 *
756 * Cycle number: 0 1 2
757 *
758 * But of course we are printing from the high side, so we have to
759 * figure out where in the cycle we are so that we end up with no
760 * left over bits at the end.
761 */
762#define BITS_IN_OCTAL 3
763#define HIGH_ZERO 0340
764#define LOW_ZERO 0016
765#define CARRY_ZERO 0003
766#define HIGH_ONE 0200
767#define MID_ONE 0160
768#define LOW_ONE 0016
769#define CARRY_ONE 0001
770#define HIGH_TWO 0300
771#define MID_TWO 0070
772#define LOW_TWO 0007
773
774 /* For 32 we start in cycle 2, with two bits and one bit carry;
775 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
776 */
777 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
778 carry = 0;
c5aa993b 779
bb599908 780 fputs_filtered ("0", stream);
d44e8473 781 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
782 {
783 for (p = valaddr;
784 p < valaddr + len;
785 p++)
786 {
c5aa993b
JM
787 switch (cycle)
788 {
789 case 0:
790 /* No carry in, carry out two bits.
791 */
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in two bits, carry out one bit.
801 */
802 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
803 octa2 = (MID_ONE & *p) >> 4;
804 octa3 = (LOW_ONE & *p) >> 1;
805 carry = (CARRY_ONE & *p);
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 fprintf_filtered (stream, "%o", octa3);
809 break;
810
811 case 2:
812 /* Carry in one bit, no carry out.
813 */
814 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
815 octa2 = (MID_TWO & *p) >> 3;
816 octa3 = (LOW_TWO & *p);
817 carry = 0;
818 fprintf_filtered (stream, "%o", octa1);
819 fprintf_filtered (stream, "%o", octa2);
820 fprintf_filtered (stream, "%o", octa3);
821 break;
822
823 default:
8a3fe4f8 824 error (_("Internal error in octal conversion;"));
c5aa993b
JM
825 }
826
827 cycle++;
828 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
829 }
830 }
831 else
832 {
833 for (p = valaddr + len - 1;
834 p >= valaddr;
835 p--)
836 {
c5aa993b
JM
837 switch (cycle)
838 {
839 case 0:
840 /* Carry out, no carry in */
841 octa1 = (HIGH_ZERO & *p) >> 5;
842 octa2 = (LOW_ZERO & *p) >> 2;
843 carry = (CARRY_ZERO & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 break;
847
848 case 1:
849 /* Carry in, carry out */
850 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
851 octa2 = (MID_ONE & *p) >> 4;
852 octa3 = (LOW_ONE & *p) >> 1;
853 carry = (CARRY_ONE & *p);
854 fprintf_filtered (stream, "%o", octa1);
855 fprintf_filtered (stream, "%o", octa2);
856 fprintf_filtered (stream, "%o", octa3);
857 break;
858
859 case 2:
860 /* Carry in, no carry out */
861 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
862 octa2 = (MID_TWO & *p) >> 3;
863 octa3 = (LOW_TWO & *p);
864 carry = 0;
865 fprintf_filtered (stream, "%o", octa1);
866 fprintf_filtered (stream, "%o", octa2);
867 fprintf_filtered (stream, "%o", octa3);
868 break;
869
870 default:
8a3fe4f8 871 error (_("Internal error in octal conversion;"));
c5aa993b
JM
872 }
873
874 cycle++;
875 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
876 }
877 }
878
c906108c
SS
879}
880
881/* VALADDR points to an integer of LEN bytes.
882 * Print it in decimal on stream or format it in buf.
883 */
884void
fc1a4b47 885print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 886 unsigned len, enum bfd_endian byte_order)
c906108c
SS
887{
888#define TEN 10
c5aa993b 889#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
890#define CARRY_LEFT( x ) ((x) % TEN)
891#define SHIFT( x ) ((x) << 4)
c906108c
SS
892#define LOW_NIBBLE( x ) ( (x) & 0x00F)
893#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
894
fc1a4b47 895 const gdb_byte *p;
c906108c 896 unsigned char *digits;
c5aa993b
JM
897 int carry;
898 int decimal_len;
899 int i, j, decimal_digits;
900 int dummy;
901 int flip;
902
c906108c
SS
903 /* Base-ten number is less than twice as many digits
904 * as the base 16 number, which is 2 digits per byte.
905 */
906 decimal_len = len * 2 * 2;
3c37485b 907 digits = xmalloc (decimal_len);
c906108c 908
c5aa993b
JM
909 for (i = 0; i < decimal_len; i++)
910 {
c906108c 911 digits[i] = 0;
c5aa993b 912 }
c906108c 913
c906108c
SS
914 /* Ok, we have an unknown number of bytes of data to be printed in
915 * decimal.
916 *
917 * Given a hex number (in nibbles) as XYZ, we start by taking X and
918 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
919 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
920 *
921 * The trick is that "digits" holds a base-10 number, but sometimes
922 * the individual digits are > 10.
923 *
924 * Outer loop is per nibble (hex digit) of input, from MSD end to
925 * LSD end.
926 */
c5aa993b 927 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 928 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 929 flip = 0;
d44e8473 930 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 931 {
c906108c
SS
932 /*
933 * Multiply current base-ten number by 16 in place.
934 * Each digit was between 0 and 9, now is between
935 * 0 and 144.
936 */
c5aa993b
JM
937 for (j = 0; j < decimal_digits; j++)
938 {
939 digits[j] = SHIFT (digits[j]);
940 }
941
c906108c
SS
942 /* Take the next nibble off the input and add it to what
943 * we've got in the LSB position. Bottom 'digit' is now
944 * between 0 and 159.
945 *
946 * "flip" is used to run this loop twice for each byte.
947 */
c5aa993b
JM
948 if (flip == 0)
949 {
950 /* Take top nibble.
951 */
952 digits[0] += HIGH_NIBBLE (*p);
953 flip = 1;
954 }
955 else
956 {
957 /* Take low nibble and bump our pointer "p".
958 */
959 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
960 if (byte_order == BFD_ENDIAN_BIG)
961 p++;
962 else
963 p--;
c5aa993b
JM
964 flip = 0;
965 }
c906108c
SS
966
967 /* Re-decimalize. We have to do this often enough
968 * that we don't overflow, but once per nibble is
969 * overkill. Easier this way, though. Note that the
970 * carry is often larger than 10 (e.g. max initial
971 * carry out of lowest nibble is 15, could bubble all
972 * the way up greater than 10). So we have to do
973 * the carrying beyond the last current digit.
974 */
975 carry = 0;
c5aa993b
JM
976 for (j = 0; j < decimal_len - 1; j++)
977 {
978 digits[j] += carry;
979
980 /* "/" won't handle an unsigned char with
981 * a value that if signed would be negative.
982 * So extend to longword int via "dummy".
983 */
984 dummy = digits[j];
985 carry = CARRY_OUT (dummy);
986 digits[j] = CARRY_LEFT (dummy);
987
988 if (j >= decimal_digits && carry == 0)
989 {
990 /*
991 * All higher digits are 0 and we
992 * no longer have a carry.
993 *
994 * Note: "j" is 0-based, "decimal_digits" is
995 * 1-based.
996 */
997 decimal_digits = j + 1;
998 break;
999 }
1000 }
1001 }
c906108c
SS
1002
1003 /* Ok, now "digits" is the decimal representation, with
1004 * the "decimal_digits" actual digits. Print!
1005 */
c5aa993b
JM
1006 for (i = decimal_digits - 1; i >= 0; i--)
1007 {
1008 fprintf_filtered (stream, "%1d", digits[i]);
1009 }
b8c9b27d 1010 xfree (digits);
c906108c
SS
1011}
1012
1013/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1014
6b9acc27 1015void
fc1a4b47 1016print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1017 unsigned len, enum bfd_endian byte_order)
c906108c 1018{
fc1a4b47 1019 const gdb_byte *p;
c906108c
SS
1020
1021 /* FIXME: We should be not printing leading zeroes in most cases. */
1022
bb599908 1023 fputs_filtered ("0x", stream);
d44e8473 1024 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1025 {
1026 for (p = valaddr;
1027 p < valaddr + len;
1028 p++)
1029 {
1030 fprintf_filtered (stream, "%02x", *p);
1031 }
1032 }
1033 else
1034 {
1035 for (p = valaddr + len - 1;
1036 p >= valaddr;
1037 p--)
1038 {
1039 fprintf_filtered (stream, "%02x", *p);
1040 }
1041 }
c906108c
SS
1042}
1043
3e43a32a
MS
1044/* VALADDR points to a char integer of LEN bytes.
1045 Print it out in appropriate language form on stream.
6b9acc27
JJ
1046 Omit any leading zero chars. */
1047
1048void
6c7a06a3
TT
1049print_char_chars (struct ui_file *stream, struct type *type,
1050 const gdb_byte *valaddr,
d44e8473 1051 unsigned len, enum bfd_endian byte_order)
6b9acc27 1052{
fc1a4b47 1053 const gdb_byte *p;
6b9acc27 1054
d44e8473 1055 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1056 {
1057 p = valaddr;
1058 while (p < valaddr + len - 1 && *p == 0)
1059 ++p;
1060
1061 while (p < valaddr + len)
1062 {
6c7a06a3 1063 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1064 ++p;
1065 }
1066 }
1067 else
1068 {
1069 p = valaddr + len - 1;
1070 while (p > valaddr && *p == 0)
1071 --p;
1072
1073 while (p >= valaddr)
1074 {
6c7a06a3 1075 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1076 --p;
1077 }
1078 }
1079}
1080
79a45b7d 1081/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1082 at INDEX of an array whose index type is INDEX_TYPE. */
1083
1084void
1085maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1086 struct ui_file *stream,
1087 const struct value_print_options *options)
e79af960
JB
1088{
1089 struct value *index_value;
1090
79a45b7d 1091 if (!options->print_array_indexes)
e79af960
JB
1092 return;
1093
1094 index_value = value_from_longest (index_type, index);
1095
79a45b7d
TT
1096 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1097}
e79af960 1098
c906108c 1099/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1100 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1101
c5aa993b
JM
1102 (FIXME?) Assumes array element separator is a comma, which is correct
1103 for all languages currently handled.
1104 (FIXME?) Some languages have a notation for repeated array elements,
1105 perhaps we should try to use that notation when appropriate.
1106 */
c906108c
SS
1107
1108void
fc1a4b47 1109val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1110 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1111 int recurse,
0e03807e 1112 const struct value *val,
79a45b7d 1113 const struct value_print_options *options,
fba45db2 1114 unsigned int i)
c906108c
SS
1115{
1116 unsigned int things_printed = 0;
1117 unsigned len;
e79af960 1118 struct type *elttype, *index_type;
c906108c
SS
1119 unsigned eltlen;
1120 /* Position of the array element we are examining to see
1121 whether it is repeated. */
1122 unsigned int rep1;
1123 /* Number of repetitions we have detected so far. */
1124 unsigned int reps;
dbc98a8b 1125 LONGEST low_bound, high_bound;
c5aa993b 1126
c906108c
SS
1127 elttype = TYPE_TARGET_TYPE (type);
1128 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1129 index_type = TYPE_INDEX_TYPE (type);
c906108c 1130
dbc98a8b 1131 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b
JB
1132 {
1133 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1134 But we have to be a little extra careful, because some languages
1135 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1136 empty arrays. In that situation, the array length is just zero,
1137 not negative! */
1138 if (low_bound > high_bound)
1139 len = 0;
1140 else
1141 len = high_bound - low_bound + 1;
1142 }
e936309c
JB
1143 else
1144 {
dbc98a8b
KW
1145 warning (_("unable to get bounds of array, assuming null array"));
1146 low_bound = 0;
1147 len = 0;
168de233
JB
1148 }
1149
c906108c
SS
1150 annotate_array_section_begin (i, elttype);
1151
79a45b7d 1152 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1153 {
1154 if (i != 0)
1155 {
79a45b7d 1156 if (options->prettyprint_arrays)
c906108c
SS
1157 {
1158 fprintf_filtered (stream, ",\n");
1159 print_spaces_filtered (2 + 2 * recurse, stream);
1160 }
1161 else
1162 {
1163 fprintf_filtered (stream, ", ");
1164 }
1165 }
1166 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1167 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1168 stream, options);
c906108c
SS
1169
1170 rep1 = i + 1;
1171 reps = 1;
c5aa993b 1172 while ((rep1 < len) &&
c906108c
SS
1173 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1174 {
1175 ++reps;
1176 ++rep1;
1177 }
1178
79a45b7d 1179 if (reps > options->repeat_count_threshold)
c906108c 1180 {
f9e31323 1181 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
0e03807e 1182 stream, recurse + 1, val, options, current_language);
c906108c
SS
1183 annotate_elt_rep (reps);
1184 fprintf_filtered (stream, " <repeats %u times>", reps);
1185 annotate_elt_rep_end ();
1186
1187 i = rep1 - 1;
79a45b7d 1188 things_printed += options->repeat_count_threshold;
c906108c
SS
1189 }
1190 else
1191 {
f9e31323 1192 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
0e03807e 1193 stream, recurse + 1, val, options, current_language);
c906108c
SS
1194 annotate_elt ();
1195 things_printed++;
1196 }
1197 }
1198 annotate_array_section_end ();
1199 if (i < len)
1200 {
1201 fprintf_filtered (stream, "...");
1202 }
1203}
1204
917317f4
JM
1205/* Read LEN bytes of target memory at address MEMADDR, placing the
1206 results in GDB's memory at MYADDR. Returns a count of the bytes
1207 actually read, and optionally an errno value in the location
1208 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1209
1210/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1211 function be eliminated. */
1212
1213static int
3e43a32a
MS
1214partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1215 int len, int *errnoptr)
917317f4
JM
1216{
1217 int nread; /* Number of bytes actually read. */
1218 int errcode; /* Error from last read. */
1219
1220 /* First try a complete read. */
1221 errcode = target_read_memory (memaddr, myaddr, len);
1222 if (errcode == 0)
1223 {
1224 /* Got it all. */
1225 nread = len;
1226 }
1227 else
1228 {
1229 /* Loop, reading one byte at a time until we get as much as we can. */
1230 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1231 {
1232 errcode = target_read_memory (memaddr++, myaddr++, 1);
1233 }
1234 /* If an error, the last read was unsuccessful, so adjust count. */
1235 if (errcode != 0)
1236 {
1237 nread--;
1238 }
1239 }
1240 if (errnoptr != NULL)
1241 {
1242 *errnoptr = errcode;
1243 }
1244 return (nread);
1245}
1246
ae6a3a4c
TJB
1247/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1248 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1249 allocated buffer containing the string, which the caller is responsible to
1250 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1251 success, or errno on failure.
1252
1253 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1254 the middle or end of the string). If LEN is -1, stops at the first
1255 null character (not necessarily the first null byte) up to a maximum
1256 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1257 characters as possible from the string.
1258
1259 Unless an exception is thrown, BUFFER will always be allocated, even on
1260 failure. In this case, some characters might have been read before the
1261 failure happened. Check BYTES_READ to recognize this situation.
1262
1263 Note: There was a FIXME asking to make this code use target_read_string,
1264 but this function is more general (can read past null characters, up to
1265 given LEN). Besides, it is used much more often than target_read_string
1266 so it is more tested. Perhaps callers of target_read_string should use
1267 this function instead? */
c906108c
SS
1268
1269int
ae6a3a4c 1270read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1271 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1272{
ae6a3a4c
TJB
1273 int found_nul; /* Non-zero if we found the nul char. */
1274 int errcode; /* Errno returned from bad reads. */
1275 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1276 unsigned int chunksize; /* Size of each fetch, in chars. */
3e43a32a
MS
1277 gdb_byte *bufptr; /* Pointer to next available byte in
1278 buffer. */
ae6a3a4c
TJB
1279 gdb_byte *limit; /* First location past end of fetch buffer. */
1280 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1281
1282 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1283 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1284 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1285 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1286 well read in blocks that are large enough to be efficient, but not so
1287 large as to be slow if fetchlimit happens to be large. So we choose the
1288 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1289 200 is way too big for remote debugging over a serial line. */
1290
1291 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1292
ae6a3a4c
TJB
1293 /* Loop until we either have all the characters, or we encounter
1294 some error, such as bumping into the end of the address space. */
c906108c
SS
1295
1296 found_nul = 0;
b5096abe
PM
1297 *buffer = NULL;
1298
1299 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1300
1301 if (len > 0)
1302 {
ae6a3a4c
TJB
1303 *buffer = (gdb_byte *) xmalloc (len * width);
1304 bufptr = *buffer;
c906108c 1305
917317f4 1306 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1307 / width;
1308 addr += nfetch * width;
1309 bufptr += nfetch * width;
1310 }
1311 else if (len == -1)
1312 {
1313 unsigned long bufsize = 0;
ae6a3a4c 1314
c906108c
SS
1315 do
1316 {
1317 QUIT;
1318 nfetch = min (chunksize, fetchlimit - bufsize);
1319
ae6a3a4c
TJB
1320 if (*buffer == NULL)
1321 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1322 else
b5096abe
PM
1323 *buffer = (gdb_byte *) xrealloc (*buffer,
1324 (nfetch + bufsize) * width);
c906108c 1325
ae6a3a4c 1326 bufptr = *buffer + bufsize * width;
c906108c
SS
1327 bufsize += nfetch;
1328
ae6a3a4c 1329 /* Read as much as we can. */
917317f4 1330 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1331 / width;
c906108c 1332
ae6a3a4c 1333 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1334 to print. If found, we don't need to fetch any more. Note
1335 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1336 after the null character, or at the next character after the end
1337 of the buffer. */
c906108c
SS
1338
1339 limit = bufptr + nfetch * width;
1340 while (bufptr < limit)
1341 {
1342 unsigned long c;
1343
e17a4113 1344 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1345 addr += width;
1346 bufptr += width;
1347 if (c == 0)
1348 {
1349 /* We don't care about any error which happened after
ae6a3a4c 1350 the NUL terminator. */
c906108c
SS
1351 errcode = 0;
1352 found_nul = 1;
1353 break;
1354 }
1355 }
1356 }
c5aa993b 1357 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1358 && bufptr - *buffer < fetchlimit * width /* no overrun */
1359 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1360 }
1361 else
ae6a3a4c
TJB
1362 { /* Length of string is really 0! */
1363 /* We always allocate *buffer. */
1364 *buffer = bufptr = xmalloc (1);
c906108c
SS
1365 errcode = 0;
1366 }
1367
1368 /* bufptr and addr now point immediately beyond the last byte which we
1369 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1370 *bytes_read = bufptr - *buffer;
1371
1372 QUIT;
1373
1374 discard_cleanups (old_chain);
1375
1376 return errcode;
1377}
1378
1379/* Print a string from the inferior, starting at ADDR and printing up to LEN
1380 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1381 stops at the first null byte, otherwise printing proceeds (including null
1382 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
1383 whichever is smaller. ENCODING is the name of the string's
1384 encoding. It can be NULL, in which case the target encoding is
1385 assumed. */
ae6a3a4c
TJB
1386
1387int
09ca9e2e
TT
1388val_print_string (struct type *elttype, const char *encoding,
1389 CORE_ADDR addr, int len,
6c7a06a3 1390 struct ui_file *stream,
ae6a3a4c
TJB
1391 const struct value_print_options *options)
1392{
1393 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1394 int errcode; /* Errno returned from bad reads. */
1395 int found_nul; /* Non-zero if we found the nul char */
1396 unsigned int fetchlimit; /* Maximum number of chars to print. */
1397 int bytes_read;
1398 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1399 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1400 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1401 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1402 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1403
1404 /* First we need to figure out the limit on the number of characters we are
1405 going to attempt to fetch and print. This is actually pretty simple. If
1406 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1407 LEN is -1, then the limit is print_max. This is true regardless of
1408 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1409 because finding the null byte (or available memory) is what actually
1410 limits the fetch. */
1411
3e43a32a
MS
1412 fetchlimit = (len == -1 ? options->print_max : min (len,
1413 options->print_max));
ae6a3a4c 1414
e17a4113
UW
1415 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1416 &buffer, &bytes_read);
ae6a3a4c
TJB
1417 old_chain = make_cleanup (xfree, buffer);
1418
1419 addr += bytes_read;
c906108c 1420
3e43a32a
MS
1421 /* We now have either successfully filled the buffer to fetchlimit,
1422 or terminated early due to an error or finding a null char when
1423 LEN is -1. */
ae6a3a4c
TJB
1424
1425 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1426 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1427 byte_order) == 0;
c906108c
SS
1428 if (len == -1 && !found_nul)
1429 {
777ea8f1 1430 gdb_byte *peekbuf;
c906108c 1431
ae6a3a4c 1432 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1433 to peek at the next character. If not successful, or it is not
1434 a null byte, then force ellipsis to be printed. */
c906108c 1435
777ea8f1 1436 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1437
1438 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1439 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1440 force_ellipsis = 1;
1441 }
ae6a3a4c 1442 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1443 {
1444 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1445 than the number of characters actually requested, always make us
ae6a3a4c 1446 print ellipsis. */
c906108c
SS
1447 force_ellipsis = 1;
1448 }
1449
c906108c
SS
1450 /* If we get an error before fetching anything, don't print a string.
1451 But if we fetch something and then get an error, print the string
1452 and then the error message. */
ae6a3a4c 1453 if (errcode == 0 || bytes_read > 0)
c906108c 1454 {
79a45b7d 1455 if (options->addressprint)
c906108c
SS
1456 {
1457 fputs_filtered (" ", stream);
1458 }
be759fcf 1459 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 1460 encoding, force_ellipsis, options);
c906108c
SS
1461 }
1462
1463 if (errcode != 0)
1464 {
1465 if (errcode == EIO)
1466 {
1467 fprintf_filtered (stream, " <Address ");
5af949e3 1468 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1469 fprintf_filtered (stream, " out of bounds>");
1470 }
1471 else
1472 {
1473 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1474 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1475 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1476 }
1477 }
ae6a3a4c 1478
c906108c
SS
1479 gdb_flush (stream);
1480 do_cleanups (old_chain);
ae6a3a4c
TJB
1481
1482 return (bytes_read / width);
c906108c 1483}
c906108c 1484\f
c5aa993b 1485
09e6485f
PA
1486/* The 'set input-radix' command writes to this auxiliary variable.
1487 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1488 it is left unchanged. */
1489
1490static unsigned input_radix_1 = 10;
1491
c906108c
SS
1492/* Validate an input or output radix setting, and make sure the user
1493 knows what they really did here. Radix setting is confusing, e.g.
1494 setting the input radix to "10" never changes it! */
1495
c906108c 1496static void
fba45db2 1497set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1498{
09e6485f 1499 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1500}
1501
c906108c 1502static void
fba45db2 1503set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1504{
1505 /* We don't currently disallow any input radix except 0 or 1, which don't
1506 make any mathematical sense. In theory, we can deal with any input
1507 radix greater than 1, even if we don't have unique digits for every
1508 value from 0 to radix-1, but in practice we lose on large radix values.
1509 We should either fix the lossage or restrict the radix range more.
1510 (FIXME). */
1511
1512 if (radix < 2)
1513 {
09e6485f 1514 input_radix_1 = input_radix;
8a3fe4f8 1515 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1516 radix);
1517 }
09e6485f 1518 input_radix_1 = input_radix = radix;
c906108c
SS
1519 if (from_tty)
1520 {
3e43a32a
MS
1521 printf_filtered (_("Input radix now set to "
1522 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1523 radix, radix, radix);
1524 }
1525}
1526
09e6485f
PA
1527/* The 'set output-radix' command writes to this auxiliary variable.
1528 If the requested radix is valid, OUTPUT_RADIX is updated,
1529 otherwise, it is left unchanged. */
1530
1531static unsigned output_radix_1 = 10;
1532
c906108c 1533static void
fba45db2 1534set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1535{
09e6485f 1536 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1537}
1538
1539static void
fba45db2 1540set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1541{
1542 /* Validate the radix and disallow ones that we aren't prepared to
1543 handle correctly, leaving the radix unchanged. */
1544 switch (radix)
1545 {
1546 case 16:
79a45b7d 1547 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1548 break;
1549 case 10:
79a45b7d 1550 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1551 break;
1552 case 8:
79a45b7d 1553 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1554 break;
1555 default:
09e6485f 1556 output_radix_1 = output_radix;
3e43a32a
MS
1557 error (_("Unsupported output radix ``decimal %u''; "
1558 "output radix unchanged."),
c906108c
SS
1559 radix);
1560 }
09e6485f 1561 output_radix_1 = output_radix = radix;
c906108c
SS
1562 if (from_tty)
1563 {
3e43a32a
MS
1564 printf_filtered (_("Output radix now set to "
1565 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1566 radix, radix, radix);
1567 }
1568}
1569
1570/* Set both the input and output radix at once. Try to set the output radix
1571 first, since it has the most restrictive range. An radix that is valid as
1572 an output radix is also valid as an input radix.
1573
1574 It may be useful to have an unusual input radix. If the user wishes to
1575 set an input radix that is not valid as an output radix, he needs to use
1576 the 'set input-radix' command. */
1577
1578static void
fba45db2 1579set_radix (char *arg, int from_tty)
c906108c
SS
1580{
1581 unsigned radix;
1582
bb518678 1583 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1584 set_output_radix_1 (0, radix);
1585 set_input_radix_1 (0, radix);
1586 if (from_tty)
1587 {
3e43a32a
MS
1588 printf_filtered (_("Input and output radices now set to "
1589 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1590 radix, radix, radix);
1591 }
1592}
1593
1594/* Show both the input and output radices. */
1595
c906108c 1596static void
fba45db2 1597show_radix (char *arg, int from_tty)
c906108c
SS
1598{
1599 if (from_tty)
1600 {
1601 if (input_radix == output_radix)
1602 {
3e43a32a
MS
1603 printf_filtered (_("Input and output radices set to "
1604 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1605 input_radix, input_radix, input_radix);
1606 }
1607 else
1608 {
3e43a32a
MS
1609 printf_filtered (_("Input radix set to decimal "
1610 "%u, hex %x, octal %o.\n"),
c906108c 1611 input_radix, input_radix, input_radix);
3e43a32a
MS
1612 printf_filtered (_("Output radix set to decimal "
1613 "%u, hex %x, octal %o.\n"),
c906108c
SS
1614 output_radix, output_radix, output_radix);
1615 }
1616 }
1617}
c906108c 1618\f
c5aa993b 1619
c906108c 1620static void
fba45db2 1621set_print (char *arg, int from_tty)
c906108c
SS
1622{
1623 printf_unfiltered (
c5aa993b 1624 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1625 help_list (setprintlist, "set print ", -1, gdb_stdout);
1626}
1627
c906108c 1628static void
fba45db2 1629show_print (char *args, int from_tty)
c906108c
SS
1630{
1631 cmd_show_list (showprintlist, from_tty, "");
1632}
1633\f
1634void
fba45db2 1635_initialize_valprint (void)
c906108c 1636{
c906108c 1637 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1638 _("Generic command for setting how things print."),
c906108c 1639 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1640 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1641 /* prefer set print to set prompt */
c906108c
SS
1642 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1643
1644 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1645 _("Generic command for showing print settings."),
c906108c 1646 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1647 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1648 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1649
79a45b7d
TT
1650 add_setshow_uinteger_cmd ("elements", no_class,
1651 &user_print_options.print_max, _("\
35096d9d
AC
1652Set limit on string chars or array elements to print."), _("\
1653Show limit on string chars or array elements to print."), _("\
1654\"set print elements 0\" causes there to be no limit."),
1655 NULL,
920d2a44 1656 show_print_max,
35096d9d 1657 &setprintlist, &showprintlist);
c906108c 1658
79a45b7d
TT
1659 add_setshow_boolean_cmd ("null-stop", no_class,
1660 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1661Set printing of char arrays to stop at first null char."), _("\
1662Show printing of char arrays to stop at first null char."), NULL,
1663 NULL,
920d2a44 1664 show_stop_print_at_null,
5bf193a2 1665 &setprintlist, &showprintlist);
c906108c 1666
35096d9d 1667 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1668 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1669Set threshold for repeated print elements."), _("\
1670Show threshold for repeated print elements."), _("\
1671\"set print repeats 0\" causes all elements to be individually printed."),
1672 NULL,
920d2a44 1673 show_repeat_count_threshold,
35096d9d 1674 &setprintlist, &showprintlist);
c906108c 1675
79a45b7d
TT
1676 add_setshow_boolean_cmd ("pretty", class_support,
1677 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1678Set prettyprinting of structures."), _("\
1679Show prettyprinting of structures."), NULL,
1680 NULL,
920d2a44 1681 show_prettyprint_structs,
5bf193a2
AC
1682 &setprintlist, &showprintlist);
1683
79a45b7d
TT
1684 add_setshow_boolean_cmd ("union", class_support,
1685 &user_print_options.unionprint, _("\
5bf193a2
AC
1686Set printing of unions interior to structures."), _("\
1687Show printing of unions interior to structures."), NULL,
1688 NULL,
920d2a44 1689 show_unionprint,
5bf193a2
AC
1690 &setprintlist, &showprintlist);
1691
79a45b7d
TT
1692 add_setshow_boolean_cmd ("array", class_support,
1693 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1694Set prettyprinting of arrays."), _("\
1695Show prettyprinting of arrays."), NULL,
1696 NULL,
920d2a44 1697 show_prettyprint_arrays,
5bf193a2
AC
1698 &setprintlist, &showprintlist);
1699
79a45b7d
TT
1700 add_setshow_boolean_cmd ("address", class_support,
1701 &user_print_options.addressprint, _("\
5bf193a2
AC
1702Set printing of addresses."), _("\
1703Show printing of addresses."), NULL,
1704 NULL,
920d2a44 1705 show_addressprint,
5bf193a2 1706 &setprintlist, &showprintlist);
c906108c 1707
1e8fb976
PA
1708 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1709 _("\
35096d9d
AC
1710Set default input radix for entering numbers."), _("\
1711Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1712 set_input_radix,
1713 show_input_radix,
1714 &setlist, &showlist);
35096d9d 1715
1e8fb976
PA
1716 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1717 _("\
35096d9d
AC
1718Set default output radix for printing of values."), _("\
1719Show default output radix for printing of values."), NULL,
1e8fb976
PA
1720 set_output_radix,
1721 show_output_radix,
1722 &setlist, &showlist);
c906108c 1723
cb1a6d5f
AC
1724 /* The "set radix" and "show radix" commands are special in that
1725 they are like normal set and show commands but allow two normally
1726 independent variables to be either set or shown with a single
b66df561 1727 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1728 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1729 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1730 longer true - show can display anything. */
1a966eab
AC
1731 add_cmd ("radix", class_support, set_radix, _("\
1732Set default input and output number radices.\n\
c906108c 1733Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1734Without an argument, sets both radices back to the default value of 10."),
c906108c 1735 &setlist);
1a966eab
AC
1736 add_cmd ("radix", class_support, show_radix, _("\
1737Show the default input and output number radices.\n\
1738Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1739 &showlist);
1740
e79af960 1741 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1742 &user_print_options.print_array_indexes, _("\
e79af960
JB
1743Set printing of array indexes."), _("\
1744Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1745 &setprintlist, &showprintlist);
c906108c 1746}
This page took 1.323398 seconds and 4 git commands to generate.