bfd:
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
c906108c
SS
38
39#include <errno.h>
40
41/* Prototypes for local functions */
42
777ea8f1 43static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
44 int len, int *errnoptr);
45
a14ed312 46static void show_print (char *, int);
c906108c 47
a14ed312 48static void set_print (char *, int);
c906108c 49
a14ed312 50static void set_radix (char *, int);
c906108c 51
a14ed312 52static void show_radix (char *, int);
c906108c 53
a14ed312 54static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 55
a14ed312 56static void set_input_radix_1 (int, unsigned);
c906108c 57
a14ed312 58static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 59
a14ed312 60static void set_output_radix_1 (int, unsigned);
c906108c 61
a14ed312 62void _initialize_valprint (void);
c906108c 63
c906108c 64#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
65
66struct value_print_options user_print_options =
67{
68 Val_pretty_default, /* pretty */
69 0, /* prettyprint_arrays */
70 0, /* prettyprint_structs */
71 0, /* vtblprint */
72 1, /* unionprint */
73 1, /* addressprint */
74 0, /* objectprint */
75 PRINT_MAX_DEFAULT, /* print_max */
76 10, /* repeat_count_threshold */
77 0, /* output_format */
78 0, /* format */
79 0, /* stop_print_at_null */
80 0, /* inspect_it */
81 0, /* print_array_indexes */
82 0, /* deref_ref */
83 1, /* static_field_print */
a6bac58e
TT
84 1, /* pascal_static_field_print */
85 0, /* raw */
86 0 /* summary */
79a45b7d
TT
87};
88
89/* Initialize *OPTS to be a copy of the user print options. */
90void
91get_user_print_options (struct value_print_options *opts)
92{
93 *opts = user_print_options;
94}
95
96/* Initialize *OPTS to be a copy of the user print options, but with
97 pretty-printing disabled. */
98void
99get_raw_print_options (struct value_print_options *opts)
100{
101 *opts = user_print_options;
102 opts->pretty = Val_no_prettyprint;
103}
104
105/* Initialize *OPTS to be a copy of the user print options, but using
106 FORMAT as the formatting option. */
107void
108get_formatted_print_options (struct value_print_options *opts,
109 char format)
110{
111 *opts = user_print_options;
112 opts->format = format;
113}
114
920d2a44
AC
115static void
116show_print_max (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("\
120Limit on string chars or array elements to print is %s.\n"),
121 value);
122}
123
c906108c
SS
124
125/* Default input and output radixes, and output format letter. */
126
127unsigned input_radix = 10;
920d2a44
AC
128static void
129show_input_radix (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131{
132 fprintf_filtered (file, _("\
133Default input radix for entering numbers is %s.\n"),
134 value);
135}
136
c906108c 137unsigned output_radix = 10;
920d2a44
AC
138static void
139show_output_radix (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("\
143Default output radix for printing of values is %s.\n"),
144 value);
145}
c906108c 146
e79af960
JB
147/* By default we print arrays without printing the index of each element in
148 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
149
e79af960
JB
150static void
151show_print_array_indexes (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153{
154 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
155}
156
c906108c
SS
157/* Print repeat counts if there are more than this many repetitions of an
158 element in an array. Referenced by the low level language dependent
159 print routines. */
160
920d2a44
AC
161static void
162show_repeat_count_threshold (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
166 value);
167}
c906108c
SS
168
169/* If nonzero, stops printing of char arrays at first null. */
170
920d2a44
AC
171static void
172show_stop_print_at_null (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174{
175 fprintf_filtered (file, _("\
176Printing of char arrays to stop at first null char is %s.\n"),
177 value);
178}
c906108c
SS
179
180/* Controls pretty printing of structures. */
181
920d2a44
AC
182static void
183show_prettyprint_structs (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185{
186 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
187}
c906108c
SS
188
189/* Controls pretty printing of arrays. */
190
920d2a44
AC
191static void
192show_prettyprint_arrays (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194{
195 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
196}
c906108c
SS
197
198/* If nonzero, causes unions inside structures or other unions to be
199 printed. */
200
920d2a44
AC
201static void
202show_unionprint (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204{
205 fprintf_filtered (file, _("\
206Printing of unions interior to structures is %s.\n"),
207 value);
208}
c906108c
SS
209
210/* If nonzero, causes machine addresses to be printed in certain contexts. */
211
920d2a44
AC
212static void
213show_addressprint (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215{
216 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
217}
c906108c 218\f
c5aa993b 219
a6bac58e
TT
220/* A helper function for val_print. When printing in "summary" mode,
221 we want to print scalar arguments, but not aggregate arguments.
222 This function distinguishes between the two. */
223
224static int
225scalar_type_p (struct type *type)
226{
227 CHECK_TYPEDEF (type);
228 while (TYPE_CODE (type) == TYPE_CODE_REF)
229 {
230 type = TYPE_TARGET_TYPE (type);
231 CHECK_TYPEDEF (type);
232 }
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_ARRAY:
236 case TYPE_CODE_STRUCT:
237 case TYPE_CODE_UNION:
238 case TYPE_CODE_SET:
239 case TYPE_CODE_STRING:
240 case TYPE_CODE_BITSTRING:
241 return 0;
242 default:
243 return 1;
244 }
245}
246
d8ca156b
JB
247/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
248 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 249 stdio stream STREAM according to OPTIONS.
c906108c
SS
250
251 If the data are a string pointer, returns the number of string characters
252 printed.
253
254 FIXME: The data at VALADDR is in target byte order. If gdb is ever
255 enhanced to be able to debug more than the single target it was compiled
256 for (specific CPU type and thus specific target byte ordering), then
257 either the print routines are going to have to take this into account,
258 or the data is going to have to be passed into here already converted
259 to the host byte ordering, whichever is more convenient. */
260
261
262int
fc1a4b47 263val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d
TT
264 CORE_ADDR address, struct ui_file *stream, int recurse,
265 const struct value_print_options *options,
d8ca156b 266 const struct language_defn *language)
c906108c 267{
19ca80ba
DJ
268 volatile struct gdb_exception except;
269 int ret = 0;
79a45b7d 270 struct value_print_options local_opts = *options;
c906108c 271 struct type *real_type = check_typedef (type);
79a45b7d
TT
272
273 if (local_opts.pretty == Val_pretty_default)
274 local_opts.pretty = (local_opts.prettyprint_structs
275 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 276
c906108c
SS
277 QUIT;
278
279 /* Ensure that the type is complete and not just a stub. If the type is
280 only a stub and we can't find and substitute its complete type, then
281 print appropriate string and return. */
282
74a9bb82 283 if (TYPE_STUB (real_type))
c906108c
SS
284 {
285 fprintf_filtered (stream, "<incomplete type>");
286 gdb_flush (stream);
287 return (0);
288 }
c5aa993b 289
a6bac58e
TT
290 if (!options->raw)
291 {
292 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
293 address, stream, recurse, options,
294 language);
295 if (ret)
296 return ret;
297 }
298
299 /* Handle summary mode. If the value is a scalar, print it;
300 otherwise, print an ellipsis. */
301 if (options->summary && !scalar_type_p (type))
302 {
303 fprintf_filtered (stream, "...");
304 return 0;
305 }
306
19ca80ba
DJ
307 TRY_CATCH (except, RETURN_MASK_ERROR)
308 {
d8ca156b 309 ret = language->la_val_print (type, valaddr, embedded_offset, address,
79a45b7d 310 stream, recurse, &local_opts);
19ca80ba
DJ
311 }
312 if (except.reason < 0)
313 fprintf_filtered (stream, _("<error reading variable>"));
314
315 return ret;
c906108c
SS
316}
317
806048c6
DJ
318/* Check whether the value VAL is printable. Return 1 if it is;
319 return 0 and print an appropriate error message to STREAM if it
320 is not. */
c906108c 321
806048c6
DJ
322static int
323value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
324{
325 if (val == 0)
326 {
806048c6 327 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
328 return 0;
329 }
806048c6 330
feb13ab0 331 if (value_optimized_out (val))
c906108c 332 {
806048c6 333 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
334 return 0;
335 }
806048c6 336
bc3b79fd
TJB
337 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
338 {
339 fprintf_filtered (stream, _("<internal function %s>"),
340 value_internal_function_name (val));
341 return 0;
342 }
343
806048c6
DJ
344 return 1;
345}
346
d8ca156b 347/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 348 to OPTIONS.
806048c6
DJ
349
350 If the data are a string pointer, returns the number of string characters
351 printed.
352
353 This is a preferable interface to val_print, above, because it uses
354 GDB's value mechanism. */
355
356int
79a45b7d
TT
357common_val_print (struct value *val, struct ui_file *stream, int recurse,
358 const struct value_print_options *options,
d8ca156b 359 const struct language_defn *language)
806048c6
DJ
360{
361 if (!value_check_printable (val, stream))
362 return 0;
363
364 return val_print (value_type (val), value_contents_all (val),
42ae5230 365 value_embedded_offset (val), value_address (val),
79a45b7d 366 stream, recurse, options, language);
806048c6
DJ
367}
368
7348c5e1
JB
369/* Print on stream STREAM the value VAL according to OPTIONS. The value
370 is printed using the current_language syntax.
371
372 If the object printed is a string pointer, return the number of string
373 bytes printed. */
806048c6
DJ
374
375int
79a45b7d
TT
376value_print (struct value *val, struct ui_file *stream,
377 const struct value_print_options *options)
806048c6
DJ
378{
379 if (!value_check_printable (val, stream))
380 return 0;
381
a6bac58e
TT
382 if (!options->raw)
383 {
384 int r = apply_val_pretty_printer (value_type (val),
385 value_contents_all (val),
386 value_embedded_offset (val),
387 value_address (val),
388 stream, 0, options,
389 current_language);
390 if (r)
391 return r;
392 }
393
79a45b7d 394 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
395}
396
397/* Called by various <lang>_val_print routines to print
398 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
399 value. STREAM is where to print the value. */
400
401void
fc1a4b47 402val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 403 struct ui_file *stream)
c906108c 404{
50810684 405 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 406
c906108c
SS
407 if (TYPE_LENGTH (type) > sizeof (LONGEST))
408 {
409 LONGEST val;
410
411 if (TYPE_UNSIGNED (type)
412 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 413 byte_order, &val))
c906108c
SS
414 {
415 print_longest (stream, 'u', 0, val);
416 }
417 else
418 {
419 /* Signed, or we couldn't turn an unsigned value into a
420 LONGEST. For signed values, one could assume two's
421 complement (a reasonable assumption, I think) and do
422 better than this. */
423 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 424 TYPE_LENGTH (type), byte_order);
c906108c
SS
425 }
426 }
427 else
428 {
c906108c
SS
429 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
430 unpack_long (type, valaddr));
c906108c
SS
431 }
432}
433
4f2aea11
MK
434void
435val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
436 struct ui_file *stream)
437{
befae759 438 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
439 int bitpos, nfields = TYPE_NFIELDS (type);
440
441 fputs_filtered ("[ ", stream);
442 for (bitpos = 0; bitpos < nfields; bitpos++)
443 {
316703b9
MK
444 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
445 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
446 {
447 if (TYPE_FIELD_NAME (type, bitpos))
448 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
449 else
450 fprintf_filtered (stream, "#%d ", bitpos);
451 }
452 }
453 fputs_filtered ("]", stream);
454}
455
c906108c
SS
456/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
457 The raison d'etre of this function is to consolidate printing of
bb599908
PH
458 LONG_LONG's into this one function. The format chars b,h,w,g are
459 from print_scalar_formatted(). Numbers are printed using C
460 format.
461
462 USE_C_FORMAT means to use C format in all cases. Without it,
463 'o' and 'x' format do not include the standard C radix prefix
464 (leading 0 or 0x).
465
466 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
467 and was intended to request formating according to the current
468 language and would be used for most integers that GDB prints. The
469 exceptional cases were things like protocols where the format of
470 the integer is a protocol thing, not a user-visible thing). The
471 parameter remains to preserve the information of what things might
472 be printed with language-specific format, should we ever resurrect
473 that capability. */
c906108c
SS
474
475void
bb599908 476print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 477 LONGEST val_long)
c906108c 478{
2bfb72ee
AC
479 const char *val;
480
c906108c
SS
481 switch (format)
482 {
483 case 'd':
bb599908 484 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 485 case 'u':
bb599908 486 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 487 case 'x':
bb599908 488 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 489 case 'b':
bb599908 490 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 491 case 'h':
bb599908 492 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 493 case 'w':
bb599908 494 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 495 case 'g':
bb599908 496 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
497 break;
498 case 'o':
bb599908 499 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 500 default:
e2e0b3e5 501 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 502 }
2bfb72ee 503 fputs_filtered (val, stream);
c906108c
SS
504}
505
c906108c
SS
506/* This used to be a macro, but I don't think it is called often enough
507 to merit such treatment. */
508/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
509 arguments to a function, number in a value history, register number, etc.)
510 where the value must not be larger than can fit in an int. */
511
512int
fba45db2 513longest_to_int (LONGEST arg)
c906108c
SS
514{
515 /* Let the compiler do the work */
516 int rtnval = (int) arg;
517
518 /* Check for overflows or underflows */
519 if (sizeof (LONGEST) > sizeof (int))
520 {
521 if (rtnval != arg)
522 {
8a3fe4f8 523 error (_("Value out of range."));
c906108c
SS
524 }
525 }
526 return (rtnval);
527}
528
a73c86fb
AC
529/* Print a floating point value of type TYPE (not always a
530 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
531
532void
fc1a4b47 533print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 534 struct ui_file *stream)
c906108c
SS
535{
536 DOUBLEST doub;
537 int inv;
a73c86fb 538 const struct floatformat *fmt = NULL;
c906108c 539 unsigned len = TYPE_LENGTH (type);
20389057 540 enum float_kind kind;
c5aa993b 541
a73c86fb
AC
542 /* If it is a floating-point, check for obvious problems. */
543 if (TYPE_CODE (type) == TYPE_CODE_FLT)
544 fmt = floatformat_from_type (type);
20389057 545 if (fmt != NULL)
39424bef 546 {
20389057
DJ
547 kind = floatformat_classify (fmt, valaddr);
548 if (kind == float_nan)
549 {
550 if (floatformat_is_negative (fmt, valaddr))
551 fprintf_filtered (stream, "-");
552 fprintf_filtered (stream, "nan(");
553 fputs_filtered ("0x", stream);
554 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
555 fprintf_filtered (stream, ")");
556 return;
557 }
558 else if (kind == float_infinite)
559 {
560 if (floatformat_is_negative (fmt, valaddr))
561 fputs_filtered ("-", stream);
562 fputs_filtered ("inf", stream);
563 return;
564 }
7355ddba 565 }
c906108c 566
a73c86fb
AC
567 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
568 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
569 needs to be used as that takes care of any necessary type
570 conversions. Such conversions are of course direct to DOUBLEST
571 and disregard any possible target floating point limitations.
572 For instance, a u64 would be converted and displayed exactly on a
573 host with 80 bit DOUBLEST but with loss of information on a host
574 with 64 bit DOUBLEST. */
c2f05ac9 575
c906108c
SS
576 doub = unpack_double (type, valaddr, &inv);
577 if (inv)
578 {
579 fprintf_filtered (stream, "<invalid float value>");
580 return;
581 }
582
39424bef
MK
583 /* FIXME: kettenis/2001-01-20: The following code makes too much
584 assumptions about the host and target floating point format. */
585
a73c86fb 586 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 587 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
588 instead uses the type's length to determine the precision of the
589 floating-point value being printed. */
c2f05ac9 590
c906108c 591 if (len < sizeof (double))
c5aa993b 592 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 593 else if (len == sizeof (double))
c5aa993b 594 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
595 else
596#ifdef PRINTF_HAS_LONG_DOUBLE
597 fprintf_filtered (stream, "%.35Lg", doub);
598#else
39424bef
MK
599 /* This at least wins with values that are representable as
600 doubles. */
c906108c
SS
601 fprintf_filtered (stream, "%.17g", (double) doub);
602#endif
603}
604
7678ef8f
TJB
605void
606print_decimal_floating (const gdb_byte *valaddr, struct type *type,
607 struct ui_file *stream)
608{
e17a4113 609 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
610 char decstr[MAX_DECIMAL_STRING];
611 unsigned len = TYPE_LENGTH (type);
612
e17a4113 613 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
614 fputs_filtered (decstr, stream);
615 return;
616}
617
c5aa993b 618void
fc1a4b47 619print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 620 unsigned len, enum bfd_endian byte_order)
c906108c
SS
621{
622
623#define BITS_IN_BYTES 8
624
fc1a4b47 625 const gdb_byte *p;
745b8ca0 626 unsigned int i;
c5aa993b 627 int b;
c906108c
SS
628
629 /* Declared "int" so it will be signed.
630 * This ensures that right shift will shift in zeros.
631 */
c5aa993b 632 const int mask = 0x080;
c906108c
SS
633
634 /* FIXME: We should be not printing leading zeroes in most cases. */
635
d44e8473 636 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
637 {
638 for (p = valaddr;
639 p < valaddr + len;
640 p++)
641 {
c5aa993b
JM
642 /* Every byte has 8 binary characters; peel off
643 * and print from the MSB end.
644 */
645 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
646 {
647 if (*p & (mask >> i))
648 b = 1;
649 else
650 b = 0;
651
652 fprintf_filtered (stream, "%1d", b);
653 }
c906108c
SS
654 }
655 }
656 else
657 {
658 for (p = valaddr + len - 1;
659 p >= valaddr;
660 p--)
661 {
c5aa993b
JM
662 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
663 {
664 if (*p & (mask >> i))
665 b = 1;
666 else
667 b = 0;
668
669 fprintf_filtered (stream, "%1d", b);
670 }
c906108c
SS
671 }
672 }
c906108c
SS
673}
674
675/* VALADDR points to an integer of LEN bytes.
676 * Print it in octal on stream or format it in buf.
677 */
678void
fc1a4b47 679print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 680 unsigned len, enum bfd_endian byte_order)
c906108c 681{
fc1a4b47 682 const gdb_byte *p;
c906108c 683 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
684 int cycle;
685
c906108c
SS
686 /* FIXME: We should be not printing leading zeroes in most cases. */
687
688
689 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
690 * the extra bits, which cycle every three bytes:
691 *
692 * Byte side: 0 1 2 3
693 * | | | |
694 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
695 *
696 * Octal side: 0 1 carry 3 4 carry ...
697 *
698 * Cycle number: 0 1 2
699 *
700 * But of course we are printing from the high side, so we have to
701 * figure out where in the cycle we are so that we end up with no
702 * left over bits at the end.
703 */
704#define BITS_IN_OCTAL 3
705#define HIGH_ZERO 0340
706#define LOW_ZERO 0016
707#define CARRY_ZERO 0003
708#define HIGH_ONE 0200
709#define MID_ONE 0160
710#define LOW_ONE 0016
711#define CARRY_ONE 0001
712#define HIGH_TWO 0300
713#define MID_TWO 0070
714#define LOW_TWO 0007
715
716 /* For 32 we start in cycle 2, with two bits and one bit carry;
717 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
718 */
719 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
720 carry = 0;
c5aa993b 721
bb599908 722 fputs_filtered ("0", stream);
d44e8473 723 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
724 {
725 for (p = valaddr;
726 p < valaddr + len;
727 p++)
728 {
c5aa993b
JM
729 switch (cycle)
730 {
731 case 0:
732 /* No carry in, carry out two bits.
733 */
734 octa1 = (HIGH_ZERO & *p) >> 5;
735 octa2 = (LOW_ZERO & *p) >> 2;
736 carry = (CARRY_ZERO & *p);
737 fprintf_filtered (stream, "%o", octa1);
738 fprintf_filtered (stream, "%o", octa2);
739 break;
740
741 case 1:
742 /* Carry in two bits, carry out one bit.
743 */
744 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
745 octa2 = (MID_ONE & *p) >> 4;
746 octa3 = (LOW_ONE & *p) >> 1;
747 carry = (CARRY_ONE & *p);
748 fprintf_filtered (stream, "%o", octa1);
749 fprintf_filtered (stream, "%o", octa2);
750 fprintf_filtered (stream, "%o", octa3);
751 break;
752
753 case 2:
754 /* Carry in one bit, no carry out.
755 */
756 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
757 octa2 = (MID_TWO & *p) >> 3;
758 octa3 = (LOW_TWO & *p);
759 carry = 0;
760 fprintf_filtered (stream, "%o", octa1);
761 fprintf_filtered (stream, "%o", octa2);
762 fprintf_filtered (stream, "%o", octa3);
763 break;
764
765 default:
8a3fe4f8 766 error (_("Internal error in octal conversion;"));
c5aa993b
JM
767 }
768
769 cycle++;
770 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
771 }
772 }
773 else
774 {
775 for (p = valaddr + len - 1;
776 p >= valaddr;
777 p--)
778 {
c5aa993b
JM
779 switch (cycle)
780 {
781 case 0:
782 /* Carry out, no carry in */
783 octa1 = (HIGH_ZERO & *p) >> 5;
784 octa2 = (LOW_ZERO & *p) >> 2;
785 carry = (CARRY_ZERO & *p);
786 fprintf_filtered (stream, "%o", octa1);
787 fprintf_filtered (stream, "%o", octa2);
788 break;
789
790 case 1:
791 /* Carry in, carry out */
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
799 break;
800
801 case 2:
802 /* Carry in, no carry out */
803 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
804 octa2 = (MID_TWO & *p) >> 3;
805 octa3 = (LOW_TWO & *p);
806 carry = 0;
807 fprintf_filtered (stream, "%o", octa1);
808 fprintf_filtered (stream, "%o", octa2);
809 fprintf_filtered (stream, "%o", octa3);
810 break;
811
812 default:
8a3fe4f8 813 error (_("Internal error in octal conversion;"));
c5aa993b
JM
814 }
815
816 cycle++;
817 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
818 }
819 }
820
c906108c
SS
821}
822
823/* VALADDR points to an integer of LEN bytes.
824 * Print it in decimal on stream or format it in buf.
825 */
826void
fc1a4b47 827print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 828 unsigned len, enum bfd_endian byte_order)
c906108c
SS
829{
830#define TEN 10
c5aa993b 831#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
832#define CARRY_LEFT( x ) ((x) % TEN)
833#define SHIFT( x ) ((x) << 4)
c906108c
SS
834#define LOW_NIBBLE( x ) ( (x) & 0x00F)
835#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
836
fc1a4b47 837 const gdb_byte *p;
c906108c 838 unsigned char *digits;
c5aa993b
JM
839 int carry;
840 int decimal_len;
841 int i, j, decimal_digits;
842 int dummy;
843 int flip;
844
c906108c
SS
845 /* Base-ten number is less than twice as many digits
846 * as the base 16 number, which is 2 digits per byte.
847 */
848 decimal_len = len * 2 * 2;
3c37485b 849 digits = xmalloc (decimal_len);
c906108c 850
c5aa993b
JM
851 for (i = 0; i < decimal_len; i++)
852 {
c906108c 853 digits[i] = 0;
c5aa993b 854 }
c906108c 855
c906108c
SS
856 /* Ok, we have an unknown number of bytes of data to be printed in
857 * decimal.
858 *
859 * Given a hex number (in nibbles) as XYZ, we start by taking X and
860 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
861 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
862 *
863 * The trick is that "digits" holds a base-10 number, but sometimes
864 * the individual digits are > 10.
865 *
866 * Outer loop is per nibble (hex digit) of input, from MSD end to
867 * LSD end.
868 */
c5aa993b 869 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 870 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 871 flip = 0;
d44e8473 872 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 873 {
c906108c
SS
874 /*
875 * Multiply current base-ten number by 16 in place.
876 * Each digit was between 0 and 9, now is between
877 * 0 and 144.
878 */
c5aa993b
JM
879 for (j = 0; j < decimal_digits; j++)
880 {
881 digits[j] = SHIFT (digits[j]);
882 }
883
c906108c
SS
884 /* Take the next nibble off the input and add it to what
885 * we've got in the LSB position. Bottom 'digit' is now
886 * between 0 and 159.
887 *
888 * "flip" is used to run this loop twice for each byte.
889 */
c5aa993b
JM
890 if (flip == 0)
891 {
892 /* Take top nibble.
893 */
894 digits[0] += HIGH_NIBBLE (*p);
895 flip = 1;
896 }
897 else
898 {
899 /* Take low nibble and bump our pointer "p".
900 */
901 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
902 if (byte_order == BFD_ENDIAN_BIG)
903 p++;
904 else
905 p--;
c5aa993b
JM
906 flip = 0;
907 }
c906108c
SS
908
909 /* Re-decimalize. We have to do this often enough
910 * that we don't overflow, but once per nibble is
911 * overkill. Easier this way, though. Note that the
912 * carry is often larger than 10 (e.g. max initial
913 * carry out of lowest nibble is 15, could bubble all
914 * the way up greater than 10). So we have to do
915 * the carrying beyond the last current digit.
916 */
917 carry = 0;
c5aa993b
JM
918 for (j = 0; j < decimal_len - 1; j++)
919 {
920 digits[j] += carry;
921
922 /* "/" won't handle an unsigned char with
923 * a value that if signed would be negative.
924 * So extend to longword int via "dummy".
925 */
926 dummy = digits[j];
927 carry = CARRY_OUT (dummy);
928 digits[j] = CARRY_LEFT (dummy);
929
930 if (j >= decimal_digits && carry == 0)
931 {
932 /*
933 * All higher digits are 0 and we
934 * no longer have a carry.
935 *
936 * Note: "j" is 0-based, "decimal_digits" is
937 * 1-based.
938 */
939 decimal_digits = j + 1;
940 break;
941 }
942 }
943 }
c906108c
SS
944
945 /* Ok, now "digits" is the decimal representation, with
946 * the "decimal_digits" actual digits. Print!
947 */
c5aa993b
JM
948 for (i = decimal_digits - 1; i >= 0; i--)
949 {
950 fprintf_filtered (stream, "%1d", digits[i]);
951 }
b8c9b27d 952 xfree (digits);
c906108c
SS
953}
954
955/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
956
6b9acc27 957void
fc1a4b47 958print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 959 unsigned len, enum bfd_endian byte_order)
c906108c 960{
fc1a4b47 961 const gdb_byte *p;
c906108c
SS
962
963 /* FIXME: We should be not printing leading zeroes in most cases. */
964
bb599908 965 fputs_filtered ("0x", stream);
d44e8473 966 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
967 {
968 for (p = valaddr;
969 p < valaddr + len;
970 p++)
971 {
972 fprintf_filtered (stream, "%02x", *p);
973 }
974 }
975 else
976 {
977 for (p = valaddr + len - 1;
978 p >= valaddr;
979 p--)
980 {
981 fprintf_filtered (stream, "%02x", *p);
982 }
983 }
c906108c
SS
984}
985
6b9acc27
JJ
986/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
987 Omit any leading zero chars. */
988
989void
6c7a06a3
TT
990print_char_chars (struct ui_file *stream, struct type *type,
991 const gdb_byte *valaddr,
d44e8473 992 unsigned len, enum bfd_endian byte_order)
6b9acc27 993{
fc1a4b47 994 const gdb_byte *p;
6b9acc27 995
d44e8473 996 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
997 {
998 p = valaddr;
999 while (p < valaddr + len - 1 && *p == 0)
1000 ++p;
1001
1002 while (p < valaddr + len)
1003 {
6c7a06a3 1004 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1005 ++p;
1006 }
1007 }
1008 else
1009 {
1010 p = valaddr + len - 1;
1011 while (p > valaddr && *p == 0)
1012 --p;
1013
1014 while (p >= valaddr)
1015 {
6c7a06a3 1016 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1017 --p;
1018 }
1019 }
1020}
1021
e936309c
JB
1022/* Assuming TYPE is a simple, non-empty array type, compute its upper
1023 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1024 Save the high bound into HIGH_BOUND if not NULL.
e79af960
JB
1025
1026 Return 1 if the operation was successful. Return zero otherwise,
e936309c 1027 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
e79af960 1028
e936309c
JB
1029 Computing the array upper and lower bounds is pretty easy, but this
1030 function does some additional verifications before returning them.
e79af960
JB
1031 If something incorrect is detected, it is better to return a status
1032 rather than throwing an error, making it easier for the caller to
1033 implement an error-recovery plan. For instance, it may decide to
e936309c
JB
1034 warn the user that the bounds were not found and then use some
1035 default values instead. */
e79af960
JB
1036
1037int
e936309c 1038get_array_bounds (struct type *type, long *low_bound, long *high_bound)
e79af960
JB
1039{
1040 struct type *index = TYPE_INDEX_TYPE (type);
1041 long low = 0;
e936309c 1042 long high = 0;
e79af960
JB
1043
1044 if (index == NULL)
1045 return 0;
1046
e936309c
JB
1047 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1048 {
1049 low = TYPE_LOW_BOUND (index);
1050 high = TYPE_HIGH_BOUND (index);
1051 }
1052 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1053 {
1054 const int n_enums = TYPE_NFIELDS (index);
1055
1056 low = TYPE_FIELD_BITPOS (index, 0);
1057 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1058 }
1059 else
e79af960
JB
1060 return 0;
1061
e936309c
JB
1062 /* Abort if the lower bound is greater than the higher bound, except
1063 when low = high + 1. This is a very common idiom used in Ada when
1064 defining empty ranges (for instance "range 1 .. 0"). */
1065 if (low > high + 1)
e79af960
JB
1066 return 0;
1067
1068 if (low_bound)
1069 *low_bound = low;
1070
e936309c
JB
1071 if (high_bound)
1072 *high_bound = high;
1073
e79af960
JB
1074 return 1;
1075}
e936309c 1076
79a45b7d 1077/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1078 at INDEX of an array whose index type is INDEX_TYPE. */
1079
1080void
1081maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1082 struct ui_file *stream,
1083 const struct value_print_options *options)
e79af960
JB
1084{
1085 struct value *index_value;
1086
79a45b7d 1087 if (!options->print_array_indexes)
e79af960
JB
1088 return;
1089
1090 index_value = value_from_longest (index_type, index);
1091
79a45b7d
TT
1092 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1093}
e79af960 1094
c906108c 1095/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1096 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1097
c5aa993b
JM
1098 (FIXME?) Assumes array element separator is a comma, which is correct
1099 for all languages currently handled.
1100 (FIXME?) Some languages have a notation for repeated array elements,
1101 perhaps we should try to use that notation when appropriate.
1102 */
c906108c
SS
1103
1104void
fc1a4b47 1105val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1106 CORE_ADDR address, struct ui_file *stream,
79a45b7d
TT
1107 int recurse,
1108 const struct value_print_options *options,
fba45db2 1109 unsigned int i)
c906108c
SS
1110{
1111 unsigned int things_printed = 0;
1112 unsigned len;
e79af960 1113 struct type *elttype, *index_type;
c906108c
SS
1114 unsigned eltlen;
1115 /* Position of the array element we are examining to see
1116 whether it is repeated. */
1117 unsigned int rep1;
1118 /* Number of repetitions we have detected so far. */
1119 unsigned int reps;
168de233 1120 long low_bound_index = 0;
c5aa993b 1121
c906108c
SS
1122 elttype = TYPE_TARGET_TYPE (type);
1123 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1124 index_type = TYPE_INDEX_TYPE (type);
c906108c 1125
e936309c
JB
1126 /* Compute the number of elements in the array. On most arrays,
1127 the size of its elements is not zero, and so the number of elements
1128 is simply the size of the array divided by the size of the elements.
1129 But for arrays of elements whose size is zero, we need to look at
1130 the bounds. */
1131 if (eltlen != 0)
1132 len = TYPE_LENGTH (type) / eltlen;
1133 else
1134 {
1135 long low, hi;
1136 if (get_array_bounds (type, &low, &hi))
1137 len = hi - low + 1;
1138 else
1139 {
1140 warning (_("unable to get bounds of array, assuming null array"));
1141 len = 0;
1142 }
1143 }
1144
168de233
JB
1145 /* Get the array low bound. This only makes sense if the array
1146 has one or more element in it. */
e936309c 1147 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
168de233 1148 {
e936309c 1149 warning (_("unable to get low bound of array, using zero as default"));
168de233
JB
1150 low_bound_index = 0;
1151 }
1152
c906108c
SS
1153 annotate_array_section_begin (i, elttype);
1154
79a45b7d 1155 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1156 {
1157 if (i != 0)
1158 {
79a45b7d 1159 if (options->prettyprint_arrays)
c906108c
SS
1160 {
1161 fprintf_filtered (stream, ",\n");
1162 print_spaces_filtered (2 + 2 * recurse, stream);
1163 }
1164 else
1165 {
1166 fprintf_filtered (stream, ", ");
1167 }
1168 }
1169 wrap_here (n_spaces (2 + 2 * recurse));
e79af960 1170 maybe_print_array_index (index_type, i + low_bound_index,
79a45b7d 1171 stream, options);
c906108c
SS
1172
1173 rep1 = i + 1;
1174 reps = 1;
c5aa993b 1175 while ((rep1 < len) &&
c906108c
SS
1176 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1177 {
1178 ++reps;
1179 ++rep1;
1180 }
1181
79a45b7d 1182 if (reps > options->repeat_count_threshold)
c906108c 1183 {
f9e31323
TT
1184 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1185 stream, recurse + 1, options, current_language);
c906108c
SS
1186 annotate_elt_rep (reps);
1187 fprintf_filtered (stream, " <repeats %u times>", reps);
1188 annotate_elt_rep_end ();
1189
1190 i = rep1 - 1;
79a45b7d 1191 things_printed += options->repeat_count_threshold;
c906108c
SS
1192 }
1193 else
1194 {
f9e31323
TT
1195 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1196 stream, recurse + 1, options, current_language);
c906108c
SS
1197 annotate_elt ();
1198 things_printed++;
1199 }
1200 }
1201 annotate_array_section_end ();
1202 if (i < len)
1203 {
1204 fprintf_filtered (stream, "...");
1205 }
1206}
1207
917317f4
JM
1208/* Read LEN bytes of target memory at address MEMADDR, placing the
1209 results in GDB's memory at MYADDR. Returns a count of the bytes
1210 actually read, and optionally an errno value in the location
1211 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1212
1213/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1214 function be eliminated. */
1215
1216static int
777ea8f1 1217partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1218{
1219 int nread; /* Number of bytes actually read. */
1220 int errcode; /* Error from last read. */
1221
1222 /* First try a complete read. */
1223 errcode = target_read_memory (memaddr, myaddr, len);
1224 if (errcode == 0)
1225 {
1226 /* Got it all. */
1227 nread = len;
1228 }
1229 else
1230 {
1231 /* Loop, reading one byte at a time until we get as much as we can. */
1232 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1233 {
1234 errcode = target_read_memory (memaddr++, myaddr++, 1);
1235 }
1236 /* If an error, the last read was unsuccessful, so adjust count. */
1237 if (errcode != 0)
1238 {
1239 nread--;
1240 }
1241 }
1242 if (errnoptr != NULL)
1243 {
1244 *errnoptr = errcode;
1245 }
1246 return (nread);
1247}
1248
ae6a3a4c
TJB
1249/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1250 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1251 allocated buffer containing the string, which the caller is responsible to
1252 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1253 success, or errno on failure.
1254
1255 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1256 the middle or end of the string). If LEN is -1, stops at the first
1257 null character (not necessarily the first null byte) up to a maximum
1258 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1259 characters as possible from the string.
1260
1261 Unless an exception is thrown, BUFFER will always be allocated, even on
1262 failure. In this case, some characters might have been read before the
1263 failure happened. Check BYTES_READ to recognize this situation.
1264
1265 Note: There was a FIXME asking to make this code use target_read_string,
1266 but this function is more general (can read past null characters, up to
1267 given LEN). Besides, it is used much more often than target_read_string
1268 so it is more tested. Perhaps callers of target_read_string should use
1269 this function instead? */
c906108c
SS
1270
1271int
ae6a3a4c 1272read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1273 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1274{
ae6a3a4c
TJB
1275 int found_nul; /* Non-zero if we found the nul char. */
1276 int errcode; /* Errno returned from bad reads. */
1277 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1278 unsigned int chunksize; /* Size of each fetch, in chars. */
1279 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1280 gdb_byte *limit; /* First location past end of fetch buffer. */
1281 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1282
1283 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1284 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1285 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1286 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1287 well read in blocks that are large enough to be efficient, but not so
1288 large as to be slow if fetchlimit happens to be large. So we choose the
1289 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1290 200 is way too big for remote debugging over a serial line. */
1291
1292 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1293
ae6a3a4c
TJB
1294 /* Loop until we either have all the characters, or we encounter
1295 some error, such as bumping into the end of the address space. */
c906108c
SS
1296
1297 found_nul = 0;
b5096abe
PM
1298 *buffer = NULL;
1299
1300 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1301
1302 if (len > 0)
1303 {
ae6a3a4c
TJB
1304 *buffer = (gdb_byte *) xmalloc (len * width);
1305 bufptr = *buffer;
c906108c 1306
917317f4 1307 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1308 / width;
1309 addr += nfetch * width;
1310 bufptr += nfetch * width;
1311 }
1312 else if (len == -1)
1313 {
1314 unsigned long bufsize = 0;
ae6a3a4c 1315
c906108c
SS
1316 do
1317 {
1318 QUIT;
1319 nfetch = min (chunksize, fetchlimit - bufsize);
1320
ae6a3a4c
TJB
1321 if (*buffer == NULL)
1322 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1323 else
b5096abe
PM
1324 *buffer = (gdb_byte *) xrealloc (*buffer,
1325 (nfetch + bufsize) * width);
c906108c 1326
ae6a3a4c 1327 bufptr = *buffer + bufsize * width;
c906108c
SS
1328 bufsize += nfetch;
1329
ae6a3a4c 1330 /* Read as much as we can. */
917317f4 1331 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1332 / width;
c906108c 1333
ae6a3a4c 1334 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1335 to print. If found, we don't need to fetch any more. Note
1336 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1337 after the null character, or at the next character after the end
1338 of the buffer. */
c906108c
SS
1339
1340 limit = bufptr + nfetch * width;
1341 while (bufptr < limit)
1342 {
1343 unsigned long c;
1344
e17a4113 1345 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1346 addr += width;
1347 bufptr += width;
1348 if (c == 0)
1349 {
1350 /* We don't care about any error which happened after
ae6a3a4c 1351 the NUL terminator. */
c906108c
SS
1352 errcode = 0;
1353 found_nul = 1;
1354 break;
1355 }
1356 }
1357 }
c5aa993b 1358 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1359 && bufptr - *buffer < fetchlimit * width /* no overrun */
1360 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1361 }
1362 else
ae6a3a4c
TJB
1363 { /* Length of string is really 0! */
1364 /* We always allocate *buffer. */
1365 *buffer = bufptr = xmalloc (1);
c906108c
SS
1366 errcode = 0;
1367 }
1368
1369 /* bufptr and addr now point immediately beyond the last byte which we
1370 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1371 *bytes_read = bufptr - *buffer;
1372
1373 QUIT;
1374
1375 discard_cleanups (old_chain);
1376
1377 return errcode;
1378}
1379
1380/* Print a string from the inferior, starting at ADDR and printing up to LEN
1381 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1382 stops at the first null byte, otherwise printing proceeds (including null
1383 bytes) until either print_max or LEN characters have been printed,
1384 whichever is smaller. */
1385
1386int
6c7a06a3
TT
1387val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1388 struct ui_file *stream,
ae6a3a4c
TJB
1389 const struct value_print_options *options)
1390{
1391 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1392 int errcode; /* Errno returned from bad reads. */
1393 int found_nul; /* Non-zero if we found the nul char */
1394 unsigned int fetchlimit; /* Maximum number of chars to print. */
1395 int bytes_read;
1396 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1397 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1398 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1400 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1401
1402 /* First we need to figure out the limit on the number of characters we are
1403 going to attempt to fetch and print. This is actually pretty simple. If
1404 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1405 LEN is -1, then the limit is print_max. This is true regardless of
1406 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1407 because finding the null byte (or available memory) is what actually
1408 limits the fetch. */
1409
1410 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1411
e17a4113
UW
1412 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1413 &buffer, &bytes_read);
ae6a3a4c
TJB
1414 old_chain = make_cleanup (xfree, buffer);
1415
1416 addr += bytes_read;
c906108c
SS
1417
1418 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1419 terminated early due to an error or finding a null char when LEN is -1. */
1420
1421 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1422 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1423 byte_order) == 0;
c906108c
SS
1424 if (len == -1 && !found_nul)
1425 {
777ea8f1 1426 gdb_byte *peekbuf;
c906108c 1427
ae6a3a4c 1428 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1429 to peek at the next character. If not successful, or it is not
1430 a null byte, then force ellipsis to be printed. */
c906108c 1431
777ea8f1 1432 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1433
1434 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1435 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1436 force_ellipsis = 1;
1437 }
ae6a3a4c 1438 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1439 {
1440 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1441 than the number of characters actually requested, always make us
ae6a3a4c 1442 print ellipsis. */
c906108c
SS
1443 force_ellipsis = 1;
1444 }
1445
c906108c
SS
1446 /* If we get an error before fetching anything, don't print a string.
1447 But if we fetch something and then get an error, print the string
1448 and then the error message. */
ae6a3a4c 1449 if (errcode == 0 || bytes_read > 0)
c906108c 1450 {
79a45b7d 1451 if (options->addressprint)
c906108c
SS
1452 {
1453 fputs_filtered (" ", stream);
1454 }
be759fcf
PM
1455 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1456 NULL, force_ellipsis, options);
c906108c
SS
1457 }
1458
1459 if (errcode != 0)
1460 {
1461 if (errcode == EIO)
1462 {
1463 fprintf_filtered (stream, " <Address ");
5af949e3 1464 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1465 fprintf_filtered (stream, " out of bounds>");
1466 }
1467 else
1468 {
1469 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1470 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1471 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1472 }
1473 }
ae6a3a4c 1474
c906108c
SS
1475 gdb_flush (stream);
1476 do_cleanups (old_chain);
ae6a3a4c
TJB
1477
1478 return (bytes_read / width);
c906108c 1479}
c906108c 1480\f
c5aa993b 1481
09e6485f
PA
1482/* The 'set input-radix' command writes to this auxiliary variable.
1483 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1484 it is left unchanged. */
1485
1486static unsigned input_radix_1 = 10;
1487
c906108c
SS
1488/* Validate an input or output radix setting, and make sure the user
1489 knows what they really did here. Radix setting is confusing, e.g.
1490 setting the input radix to "10" never changes it! */
1491
c906108c 1492static void
fba45db2 1493set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1494{
09e6485f 1495 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1496}
1497
c906108c 1498static void
fba45db2 1499set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1500{
1501 /* We don't currently disallow any input radix except 0 or 1, which don't
1502 make any mathematical sense. In theory, we can deal with any input
1503 radix greater than 1, even if we don't have unique digits for every
1504 value from 0 to radix-1, but in practice we lose on large radix values.
1505 We should either fix the lossage or restrict the radix range more.
1506 (FIXME). */
1507
1508 if (radix < 2)
1509 {
09e6485f 1510 input_radix_1 = input_radix;
8a3fe4f8 1511 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1512 radix);
1513 }
09e6485f 1514 input_radix_1 = input_radix = radix;
c906108c
SS
1515 if (from_tty)
1516 {
a3f17187 1517 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1518 radix, radix, radix);
1519 }
1520}
1521
09e6485f
PA
1522/* The 'set output-radix' command writes to this auxiliary variable.
1523 If the requested radix is valid, OUTPUT_RADIX is updated,
1524 otherwise, it is left unchanged. */
1525
1526static unsigned output_radix_1 = 10;
1527
c906108c 1528static void
fba45db2 1529set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1530{
09e6485f 1531 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1532}
1533
1534static void
fba45db2 1535set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1536{
1537 /* Validate the radix and disallow ones that we aren't prepared to
1538 handle correctly, leaving the radix unchanged. */
1539 switch (radix)
1540 {
1541 case 16:
79a45b7d 1542 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1543 break;
1544 case 10:
79a45b7d 1545 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1546 break;
1547 case 8:
79a45b7d 1548 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1549 break;
1550 default:
09e6485f 1551 output_radix_1 = output_radix;
8a3fe4f8 1552 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1553 radix);
1554 }
09e6485f 1555 output_radix_1 = output_radix = radix;
c906108c
SS
1556 if (from_tty)
1557 {
a3f17187 1558 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1559 radix, radix, radix);
1560 }
1561}
1562
1563/* Set both the input and output radix at once. Try to set the output radix
1564 first, since it has the most restrictive range. An radix that is valid as
1565 an output radix is also valid as an input radix.
1566
1567 It may be useful to have an unusual input radix. If the user wishes to
1568 set an input radix that is not valid as an output radix, he needs to use
1569 the 'set input-radix' command. */
1570
1571static void
fba45db2 1572set_radix (char *arg, int from_tty)
c906108c
SS
1573{
1574 unsigned radix;
1575
bb518678 1576 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1577 set_output_radix_1 (0, radix);
1578 set_input_radix_1 (0, radix);
1579 if (from_tty)
1580 {
a3f17187 1581 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1582 radix, radix, radix);
1583 }
1584}
1585
1586/* Show both the input and output radices. */
1587
c906108c 1588static void
fba45db2 1589show_radix (char *arg, int from_tty)
c906108c
SS
1590{
1591 if (from_tty)
1592 {
1593 if (input_radix == output_radix)
1594 {
a3f17187 1595 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1596 input_radix, input_radix, input_radix);
1597 }
1598 else
1599 {
a3f17187 1600 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1601 input_radix, input_radix, input_radix);
a3f17187 1602 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1603 output_radix, output_radix, output_radix);
1604 }
1605 }
1606}
c906108c 1607\f
c5aa993b 1608
c906108c 1609static void
fba45db2 1610set_print (char *arg, int from_tty)
c906108c
SS
1611{
1612 printf_unfiltered (
c5aa993b 1613 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1614 help_list (setprintlist, "set print ", -1, gdb_stdout);
1615}
1616
c906108c 1617static void
fba45db2 1618show_print (char *args, int from_tty)
c906108c
SS
1619{
1620 cmd_show_list (showprintlist, from_tty, "");
1621}
1622\f
1623void
fba45db2 1624_initialize_valprint (void)
c906108c
SS
1625{
1626 struct cmd_list_element *c;
1627
1628 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1629 _("Generic command for setting how things print."),
c906108c 1630 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1631 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1632 /* prefer set print to set prompt */
c906108c
SS
1633 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1634
1635 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1636 _("Generic command for showing print settings."),
c906108c 1637 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1638 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1639 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1640
79a45b7d
TT
1641 add_setshow_uinteger_cmd ("elements", no_class,
1642 &user_print_options.print_max, _("\
35096d9d
AC
1643Set limit on string chars or array elements to print."), _("\
1644Show limit on string chars or array elements to print."), _("\
1645\"set print elements 0\" causes there to be no limit."),
1646 NULL,
920d2a44 1647 show_print_max,
35096d9d 1648 &setprintlist, &showprintlist);
c906108c 1649
79a45b7d
TT
1650 add_setshow_boolean_cmd ("null-stop", no_class,
1651 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1652Set printing of char arrays to stop at first null char."), _("\
1653Show printing of char arrays to stop at first null char."), NULL,
1654 NULL,
920d2a44 1655 show_stop_print_at_null,
5bf193a2 1656 &setprintlist, &showprintlist);
c906108c 1657
35096d9d 1658 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1659 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1660Set threshold for repeated print elements."), _("\
1661Show threshold for repeated print elements."), _("\
1662\"set print repeats 0\" causes all elements to be individually printed."),
1663 NULL,
920d2a44 1664 show_repeat_count_threshold,
35096d9d 1665 &setprintlist, &showprintlist);
c906108c 1666
79a45b7d
TT
1667 add_setshow_boolean_cmd ("pretty", class_support,
1668 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1669Set prettyprinting of structures."), _("\
1670Show prettyprinting of structures."), NULL,
1671 NULL,
920d2a44 1672 show_prettyprint_structs,
5bf193a2
AC
1673 &setprintlist, &showprintlist);
1674
79a45b7d
TT
1675 add_setshow_boolean_cmd ("union", class_support,
1676 &user_print_options.unionprint, _("\
5bf193a2
AC
1677Set printing of unions interior to structures."), _("\
1678Show printing of unions interior to structures."), NULL,
1679 NULL,
920d2a44 1680 show_unionprint,
5bf193a2
AC
1681 &setprintlist, &showprintlist);
1682
79a45b7d
TT
1683 add_setshow_boolean_cmd ("array", class_support,
1684 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1685Set prettyprinting of arrays."), _("\
1686Show prettyprinting of arrays."), NULL,
1687 NULL,
920d2a44 1688 show_prettyprint_arrays,
5bf193a2
AC
1689 &setprintlist, &showprintlist);
1690
79a45b7d
TT
1691 add_setshow_boolean_cmd ("address", class_support,
1692 &user_print_options.addressprint, _("\
5bf193a2
AC
1693Set printing of addresses."), _("\
1694Show printing of addresses."), NULL,
1695 NULL,
920d2a44 1696 show_addressprint,
5bf193a2 1697 &setprintlist, &showprintlist);
c906108c 1698
1e8fb976
PA
1699 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1700 _("\
35096d9d
AC
1701Set default input radix for entering numbers."), _("\
1702Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1703 set_input_radix,
1704 show_input_radix,
1705 &setlist, &showlist);
35096d9d 1706
1e8fb976
PA
1707 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1708 _("\
35096d9d
AC
1709Set default output radix for printing of values."), _("\
1710Show default output radix for printing of values."), NULL,
1e8fb976
PA
1711 set_output_radix,
1712 show_output_radix,
1713 &setlist, &showlist);
c906108c 1714
cb1a6d5f
AC
1715 /* The "set radix" and "show radix" commands are special in that
1716 they are like normal set and show commands but allow two normally
1717 independent variables to be either set or shown with a single
b66df561 1718 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1719 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1720 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1721 longer true - show can display anything. */
1a966eab
AC
1722 add_cmd ("radix", class_support, set_radix, _("\
1723Set default input and output number radices.\n\
c906108c 1724Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1725Without an argument, sets both radices back to the default value of 10."),
c906108c 1726 &setlist);
1a966eab
AC
1727 add_cmd ("radix", class_support, show_radix, _("\
1728Show the default input and output number radices.\n\
1729Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1730 &showlist);
1731
e79af960 1732 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1733 &user_print_options.print_array_indexes, _("\
e79af960
JB
1734Set printing of array indexes."), _("\
1735Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1736 &setprintlist, &showprintlist);
c906108c 1737}
This page took 1.133917 seconds and 4 git commands to generate.