merge from gcc
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
6aba47ca 3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
0fb0cc75 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
c906108c 30#include "language.h"
c906108c
SS
31#include "annotate.h"
32#include "valprint.h"
39424bef 33#include "floatformat.h"
d16aafd8 34#include "doublest.h"
19ca80ba 35#include "exceptions.h"
7678ef8f 36#include "dfp.h"
a6bac58e 37#include "python/python.h"
0c3acc09 38#include "ada-lang.h"
c906108c
SS
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
777ea8f1 44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
917317f4
JM
45 int len, int *errnoptr);
46
a14ed312 47static void show_print (char *, int);
c906108c 48
a14ed312 49static void set_print (char *, int);
c906108c 50
a14ed312 51static void set_radix (char *, int);
c906108c 52
a14ed312 53static void show_radix (char *, int);
c906108c 54
a14ed312 55static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 56
a14ed312 57static void set_input_radix_1 (int, unsigned);
c906108c 58
a14ed312 59static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 60
a14ed312 61static void set_output_radix_1 (int, unsigned);
c906108c 62
a14ed312 63void _initialize_valprint (void);
c906108c 64
c906108c 65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
a6bac58e
TT
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
79a45b7d
TT
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
920d2a44
AC
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("\
121Limit on string chars or array elements to print is %s.\n"),
122 value);
123}
124
c906108c
SS
125
126/* Default input and output radixes, and output format letter. */
127
128unsigned input_radix = 10;
920d2a44
AC
129static void
130show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
133 fprintf_filtered (file, _("\
134Default input radix for entering numbers is %s.\n"),
135 value);
136}
137
c906108c 138unsigned output_radix = 10;
920d2a44
AC
139static void
140show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("\
144Default output radix for printing of values is %s.\n"),
145 value);
146}
c906108c 147
e79af960
JB
148/* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
e79af960
JB
151static void
152show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156}
157
c906108c
SS
158/* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
920d2a44
AC
162static void
163show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168}
c906108c
SS
169
170/* If nonzero, stops printing of char arrays at first null. */
171
920d2a44
AC
172static void
173show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("\
177Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179}
c906108c
SS
180
181/* Controls pretty printing of structures. */
182
920d2a44
AC
183static void
184show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188}
c906108c
SS
189
190/* Controls pretty printing of arrays. */
191
920d2a44
AC
192static void
193show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197}
c906108c
SS
198
199/* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
920d2a44
AC
202static void
203show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205{
206 fprintf_filtered (file, _("\
207Printing of unions interior to structures is %s.\n"),
208 value);
209}
c906108c
SS
210
211/* If nonzero, causes machine addresses to be printed in certain contexts. */
212
920d2a44
AC
213static void
214show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216{
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218}
c906108c 219\f
c5aa993b 220
a6bac58e
TT
221/* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225static int
226scalar_type_p (struct type *type)
227{
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246}
247
0e03807e
TT
248/* Helper function to check the validity of some bits of a value.
249
250 If TYPE represents some aggregate type (e.g., a structure), return 1.
251
252 Otherwise, any of the bytes starting at OFFSET and extending for
253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
254 return 0. The checking is done using FUNCS.
255
256 Otherwise, return 1. */
257
258static int
259valprint_check_validity (struct ui_file *stream,
260 struct type *type,
261 int offset,
262 const struct value *val)
263{
264 CHECK_TYPEDEF (type);
265
266 if (TYPE_CODE (type) != TYPE_CODE_UNION
267 && TYPE_CODE (type) != TYPE_CODE_STRUCT
268 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
269 {
270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
272 {
273 fprintf_filtered (stream, _("<value optimized out>"));
274 return 0;
275 }
276 }
277
278 return 1;
279}
280
d8ca156b
JB
281/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
282 (within GDB), which came from the inferior at address ADDRESS, onto
79a45b7d 283 stdio stream STREAM according to OPTIONS.
c906108c
SS
284
285 If the data are a string pointer, returns the number of string characters
286 printed.
287
288 FIXME: The data at VALADDR is in target byte order. If gdb is ever
289 enhanced to be able to debug more than the single target it was compiled
290 for (specific CPU type and thus specific target byte ordering), then
291 either the print routines are going to have to take this into account,
292 or the data is going to have to be passed into here already converted
293 to the host byte ordering, whichever is more convenient. */
294
295
296int
fc1a4b47 297val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 298 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 299 const struct value *val,
79a45b7d 300 const struct value_print_options *options,
d8ca156b 301 const struct language_defn *language)
c906108c 302{
19ca80ba
DJ
303 volatile struct gdb_exception except;
304 int ret = 0;
79a45b7d 305 struct value_print_options local_opts = *options;
c906108c 306 struct type *real_type = check_typedef (type);
79a45b7d
TT
307
308 if (local_opts.pretty == Val_pretty_default)
309 local_opts.pretty = (local_opts.prettyprint_structs
310 ? Val_prettyprint : Val_no_prettyprint);
c5aa993b 311
c906108c
SS
312 QUIT;
313
314 /* Ensure that the type is complete and not just a stub. If the type is
315 only a stub and we can't find and substitute its complete type, then
316 print appropriate string and return. */
317
74a9bb82 318 if (TYPE_STUB (real_type))
c906108c 319 {
0e03807e 320 fprintf_filtered (stream, _("<incomplete type>"));
c906108c
SS
321 gdb_flush (stream);
322 return (0);
323 }
c5aa993b 324
0e03807e
TT
325 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
326 return 0;
327
a6bac58e
TT
328 if (!options->raw)
329 {
330 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
0e03807e
TT
331 address, stream, recurse,
332 val, options, language);
a6bac58e
TT
333 if (ret)
334 return ret;
335 }
336
337 /* Handle summary mode. If the value is a scalar, print it;
338 otherwise, print an ellipsis. */
339 if (options->summary && !scalar_type_p (type))
340 {
341 fprintf_filtered (stream, "...");
342 return 0;
343 }
344
19ca80ba
DJ
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
d8ca156b 347 ret = language->la_val_print (type, valaddr, embedded_offset, address,
0e03807e
TT
348 stream, recurse, val,
349 &local_opts);
19ca80ba
DJ
350 }
351 if (except.reason < 0)
352 fprintf_filtered (stream, _("<error reading variable>"));
353
354 return ret;
c906108c
SS
355}
356
806048c6
DJ
357/* Check whether the value VAL is printable. Return 1 if it is;
358 return 0 and print an appropriate error message to STREAM if it
359 is not. */
c906108c 360
806048c6
DJ
361static int
362value_check_printable (struct value *val, struct ui_file *stream)
c906108c
SS
363{
364 if (val == 0)
365 {
806048c6 366 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
367 return 0;
368 }
806048c6 369
0e03807e 370 if (value_entirely_optimized_out (val))
c906108c 371 {
806048c6 372 fprintf_filtered (stream, _("<value optimized out>"));
c906108c
SS
373 return 0;
374 }
806048c6 375
bc3b79fd
TJB
376 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
377 {
378 fprintf_filtered (stream, _("<internal function %s>"),
379 value_internal_function_name (val));
380 return 0;
381 }
382
806048c6
DJ
383 return 1;
384}
385
d8ca156b 386/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 387 to OPTIONS.
806048c6
DJ
388
389 If the data are a string pointer, returns the number of string characters
390 printed.
391
392 This is a preferable interface to val_print, above, because it uses
393 GDB's value mechanism. */
394
395int
79a45b7d
TT
396common_val_print (struct value *val, struct ui_file *stream, int recurse,
397 const struct value_print_options *options,
d8ca156b 398 const struct language_defn *language)
806048c6
DJ
399{
400 if (!value_check_printable (val, stream))
401 return 0;
402
0c3acc09
JB
403 if (language->la_language == language_ada)
404 /* The value might have a dynamic type, which would cause trouble
405 below when trying to extract the value contents (since the value
406 size is determined from the type size which is unknown). So
407 get a fixed representation of our value. */
408 val = ada_to_fixed_value (val);
409
0e03807e 410 return val_print (value_type (val), value_contents_for_printing (val),
42ae5230 411 value_embedded_offset (val), value_address (val),
0e03807e
TT
412 stream, recurse,
413 val, options, language);
806048c6
DJ
414}
415
7348c5e1
JB
416/* Print on stream STREAM the value VAL according to OPTIONS. The value
417 is printed using the current_language syntax.
418
419 If the object printed is a string pointer, return the number of string
420 bytes printed. */
806048c6
DJ
421
422int
79a45b7d
TT
423value_print (struct value *val, struct ui_file *stream,
424 const struct value_print_options *options)
806048c6
DJ
425{
426 if (!value_check_printable (val, stream))
427 return 0;
428
a6bac58e
TT
429 if (!options->raw)
430 {
431 int r = apply_val_pretty_printer (value_type (val),
0e03807e 432 value_contents_for_printing (val),
a6bac58e
TT
433 value_embedded_offset (val),
434 value_address (val),
0e03807e
TT
435 stream, 0,
436 val, options, current_language);
a109c7c1 437
a6bac58e
TT
438 if (r)
439 return r;
440 }
441
79a45b7d 442 return LA_VALUE_PRINT (val, stream, options);
c906108c
SS
443}
444
445/* Called by various <lang>_val_print routines to print
446 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
447 value. STREAM is where to print the value. */
448
449void
fc1a4b47 450val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 451 struct ui_file *stream)
c906108c 452{
50810684 453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 454
c906108c
SS
455 if (TYPE_LENGTH (type) > sizeof (LONGEST))
456 {
457 LONGEST val;
458
459 if (TYPE_UNSIGNED (type)
460 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 461 byte_order, &val))
c906108c
SS
462 {
463 print_longest (stream, 'u', 0, val);
464 }
465 else
466 {
467 /* Signed, or we couldn't turn an unsigned value into a
468 LONGEST. For signed values, one could assume two's
469 complement (a reasonable assumption, I think) and do
470 better than this. */
471 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 472 TYPE_LENGTH (type), byte_order);
c906108c
SS
473 }
474 }
475 else
476 {
c906108c
SS
477 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
478 unpack_long (type, valaddr));
c906108c
SS
479 }
480}
481
4f2aea11
MK
482void
483val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
484 struct ui_file *stream)
485{
befae759 486 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
487 int bitpos, nfields = TYPE_NFIELDS (type);
488
489 fputs_filtered ("[ ", stream);
490 for (bitpos = 0; bitpos < nfields; bitpos++)
491 {
316703b9
MK
492 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
493 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
494 {
495 if (TYPE_FIELD_NAME (type, bitpos))
496 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
497 else
498 fprintf_filtered (stream, "#%d ", bitpos);
499 }
500 }
501 fputs_filtered ("]", stream);
502}
503
c906108c
SS
504/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
505 The raison d'etre of this function is to consolidate printing of
bb599908
PH
506 LONG_LONG's into this one function. The format chars b,h,w,g are
507 from print_scalar_formatted(). Numbers are printed using C
508 format.
509
510 USE_C_FORMAT means to use C format in all cases. Without it,
511 'o' and 'x' format do not include the standard C radix prefix
512 (leading 0 or 0x).
513
514 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
515 and was intended to request formating according to the current
516 language and would be used for most integers that GDB prints. The
517 exceptional cases were things like protocols where the format of
518 the integer is a protocol thing, not a user-visible thing). The
519 parameter remains to preserve the information of what things might
520 be printed with language-specific format, should we ever resurrect
521 that capability. */
c906108c
SS
522
523void
bb599908 524print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 525 LONGEST val_long)
c906108c 526{
2bfb72ee
AC
527 const char *val;
528
c906108c
SS
529 switch (format)
530 {
531 case 'd':
bb599908 532 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 533 case 'u':
bb599908 534 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 535 case 'x':
bb599908 536 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 537 case 'b':
bb599908 538 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 539 case 'h':
bb599908 540 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 541 case 'w':
bb599908 542 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 543 case 'g':
bb599908 544 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
545 break;
546 case 'o':
bb599908 547 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 548 default:
e2e0b3e5 549 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
bb599908 550 }
2bfb72ee 551 fputs_filtered (val, stream);
c906108c
SS
552}
553
c906108c
SS
554/* This used to be a macro, but I don't think it is called often enough
555 to merit such treatment. */
556/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
557 arguments to a function, number in a value history, register number, etc.)
558 where the value must not be larger than can fit in an int. */
559
560int
fba45db2 561longest_to_int (LONGEST arg)
c906108c
SS
562{
563 /* Let the compiler do the work */
564 int rtnval = (int) arg;
565
566 /* Check for overflows or underflows */
567 if (sizeof (LONGEST) > sizeof (int))
568 {
569 if (rtnval != arg)
570 {
8a3fe4f8 571 error (_("Value out of range."));
c906108c
SS
572 }
573 }
574 return (rtnval);
575}
576
a73c86fb
AC
577/* Print a floating point value of type TYPE (not always a
578 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
579
580void
fc1a4b47 581print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 582 struct ui_file *stream)
c906108c
SS
583{
584 DOUBLEST doub;
585 int inv;
a73c86fb 586 const struct floatformat *fmt = NULL;
c906108c 587 unsigned len = TYPE_LENGTH (type);
20389057 588 enum float_kind kind;
c5aa993b 589
a73c86fb
AC
590 /* If it is a floating-point, check for obvious problems. */
591 if (TYPE_CODE (type) == TYPE_CODE_FLT)
592 fmt = floatformat_from_type (type);
20389057 593 if (fmt != NULL)
39424bef 594 {
20389057
DJ
595 kind = floatformat_classify (fmt, valaddr);
596 if (kind == float_nan)
597 {
598 if (floatformat_is_negative (fmt, valaddr))
599 fprintf_filtered (stream, "-");
600 fprintf_filtered (stream, "nan(");
601 fputs_filtered ("0x", stream);
602 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
603 fprintf_filtered (stream, ")");
604 return;
605 }
606 else if (kind == float_infinite)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fputs_filtered ("-", stream);
610 fputs_filtered ("inf", stream);
611 return;
612 }
7355ddba 613 }
c906108c 614
a73c86fb
AC
615 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
616 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
617 needs to be used as that takes care of any necessary type
618 conversions. Such conversions are of course direct to DOUBLEST
619 and disregard any possible target floating point limitations.
620 For instance, a u64 would be converted and displayed exactly on a
621 host with 80 bit DOUBLEST but with loss of information on a host
622 with 64 bit DOUBLEST. */
c2f05ac9 623
c906108c
SS
624 doub = unpack_double (type, valaddr, &inv);
625 if (inv)
626 {
627 fprintf_filtered (stream, "<invalid float value>");
628 return;
629 }
630
39424bef
MK
631 /* FIXME: kettenis/2001-01-20: The following code makes too much
632 assumptions about the host and target floating point format. */
633
a73c86fb 634 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 635 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
636 instead uses the type's length to determine the precision of the
637 floating-point value being printed. */
c2f05ac9 638
c906108c 639 if (len < sizeof (double))
c5aa993b 640 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 641 else if (len == sizeof (double))
c5aa993b 642 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
643 else
644#ifdef PRINTF_HAS_LONG_DOUBLE
645 fprintf_filtered (stream, "%.35Lg", doub);
646#else
39424bef
MK
647 /* This at least wins with values that are representable as
648 doubles. */
c906108c
SS
649 fprintf_filtered (stream, "%.17g", (double) doub);
650#endif
651}
652
7678ef8f
TJB
653void
654print_decimal_floating (const gdb_byte *valaddr, struct type *type,
655 struct ui_file *stream)
656{
e17a4113 657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
658 char decstr[MAX_DECIMAL_STRING];
659 unsigned len = TYPE_LENGTH (type);
660
e17a4113 661 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
662 fputs_filtered (decstr, stream);
663 return;
664}
665
c5aa993b 666void
fc1a4b47 667print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 668 unsigned len, enum bfd_endian byte_order)
c906108c
SS
669{
670
671#define BITS_IN_BYTES 8
672
fc1a4b47 673 const gdb_byte *p;
745b8ca0 674 unsigned int i;
c5aa993b 675 int b;
c906108c
SS
676
677 /* Declared "int" so it will be signed.
678 * This ensures that right shift will shift in zeros.
679 */
c5aa993b 680 const int mask = 0x080;
c906108c
SS
681
682 /* FIXME: We should be not printing leading zeroes in most cases. */
683
d44e8473 684 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
685 {
686 for (p = valaddr;
687 p < valaddr + len;
688 p++)
689 {
c5aa993b
JM
690 /* Every byte has 8 binary characters; peel off
691 * and print from the MSB end.
692 */
693 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
694 {
695 if (*p & (mask >> i))
696 b = 1;
697 else
698 b = 0;
699
700 fprintf_filtered (stream, "%1d", b);
701 }
c906108c
SS
702 }
703 }
704 else
705 {
706 for (p = valaddr + len - 1;
707 p >= valaddr;
708 p--)
709 {
c5aa993b
JM
710 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
711 {
712 if (*p & (mask >> i))
713 b = 1;
714 else
715 b = 0;
716
717 fprintf_filtered (stream, "%1d", b);
718 }
c906108c
SS
719 }
720 }
c906108c
SS
721}
722
723/* VALADDR points to an integer of LEN bytes.
724 * Print it in octal on stream or format it in buf.
725 */
726void
fc1a4b47 727print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 728 unsigned len, enum bfd_endian byte_order)
c906108c 729{
fc1a4b47 730 const gdb_byte *p;
c906108c 731 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
732 int cycle;
733
c906108c
SS
734 /* FIXME: We should be not printing leading zeroes in most cases. */
735
736
737 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
738 * the extra bits, which cycle every three bytes:
739 *
740 * Byte side: 0 1 2 3
741 * | | | |
742 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
743 *
744 * Octal side: 0 1 carry 3 4 carry ...
745 *
746 * Cycle number: 0 1 2
747 *
748 * But of course we are printing from the high side, so we have to
749 * figure out where in the cycle we are so that we end up with no
750 * left over bits at the end.
751 */
752#define BITS_IN_OCTAL 3
753#define HIGH_ZERO 0340
754#define LOW_ZERO 0016
755#define CARRY_ZERO 0003
756#define HIGH_ONE 0200
757#define MID_ONE 0160
758#define LOW_ONE 0016
759#define CARRY_ONE 0001
760#define HIGH_TWO 0300
761#define MID_TWO 0070
762#define LOW_TWO 0007
763
764 /* For 32 we start in cycle 2, with two bits and one bit carry;
765 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
766 */
767 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
768 carry = 0;
c5aa993b 769
bb599908 770 fputs_filtered ("0", stream);
d44e8473 771 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
772 {
773 for (p = valaddr;
774 p < valaddr + len;
775 p++)
776 {
c5aa993b
JM
777 switch (cycle)
778 {
779 case 0:
780 /* No carry in, carry out two bits.
781 */
782 octa1 = (HIGH_ZERO & *p) >> 5;
783 octa2 = (LOW_ZERO & *p) >> 2;
784 carry = (CARRY_ZERO & *p);
785 fprintf_filtered (stream, "%o", octa1);
786 fprintf_filtered (stream, "%o", octa2);
787 break;
788
789 case 1:
790 /* Carry in two bits, carry out one bit.
791 */
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
799 break;
800
801 case 2:
802 /* Carry in one bit, no carry out.
803 */
804 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
805 octa2 = (MID_TWO & *p) >> 3;
806 octa3 = (LOW_TWO & *p);
807 carry = 0;
808 fprintf_filtered (stream, "%o", octa1);
809 fprintf_filtered (stream, "%o", octa2);
810 fprintf_filtered (stream, "%o", octa3);
811 break;
812
813 default:
8a3fe4f8 814 error (_("Internal error in octal conversion;"));
c5aa993b
JM
815 }
816
817 cycle++;
818 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
819 }
820 }
821 else
822 {
823 for (p = valaddr + len - 1;
824 p >= valaddr;
825 p--)
826 {
c5aa993b
JM
827 switch (cycle)
828 {
829 case 0:
830 /* Carry out, no carry in */
831 octa1 = (HIGH_ZERO & *p) >> 5;
832 octa2 = (LOW_ZERO & *p) >> 2;
833 carry = (CARRY_ZERO & *p);
834 fprintf_filtered (stream, "%o", octa1);
835 fprintf_filtered (stream, "%o", octa2);
836 break;
837
838 case 1:
839 /* Carry in, carry out */
840 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
841 octa2 = (MID_ONE & *p) >> 4;
842 octa3 = (LOW_ONE & *p) >> 1;
843 carry = (CARRY_ONE & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 fprintf_filtered (stream, "%o", octa3);
847 break;
848
849 case 2:
850 /* Carry in, no carry out */
851 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
852 octa2 = (MID_TWO & *p) >> 3;
853 octa3 = (LOW_TWO & *p);
854 carry = 0;
855 fprintf_filtered (stream, "%o", octa1);
856 fprintf_filtered (stream, "%o", octa2);
857 fprintf_filtered (stream, "%o", octa3);
858 break;
859
860 default:
8a3fe4f8 861 error (_("Internal error in octal conversion;"));
c5aa993b
JM
862 }
863
864 cycle++;
865 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
866 }
867 }
868
c906108c
SS
869}
870
871/* VALADDR points to an integer of LEN bytes.
872 * Print it in decimal on stream or format it in buf.
873 */
874void
fc1a4b47 875print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 876 unsigned len, enum bfd_endian byte_order)
c906108c
SS
877{
878#define TEN 10
c5aa993b 879#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
880#define CARRY_LEFT( x ) ((x) % TEN)
881#define SHIFT( x ) ((x) << 4)
c906108c
SS
882#define LOW_NIBBLE( x ) ( (x) & 0x00F)
883#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
884
fc1a4b47 885 const gdb_byte *p;
c906108c 886 unsigned char *digits;
c5aa993b
JM
887 int carry;
888 int decimal_len;
889 int i, j, decimal_digits;
890 int dummy;
891 int flip;
892
c906108c
SS
893 /* Base-ten number is less than twice as many digits
894 * as the base 16 number, which is 2 digits per byte.
895 */
896 decimal_len = len * 2 * 2;
3c37485b 897 digits = xmalloc (decimal_len);
c906108c 898
c5aa993b
JM
899 for (i = 0; i < decimal_len; i++)
900 {
c906108c 901 digits[i] = 0;
c5aa993b 902 }
c906108c 903
c906108c
SS
904 /* Ok, we have an unknown number of bytes of data to be printed in
905 * decimal.
906 *
907 * Given a hex number (in nibbles) as XYZ, we start by taking X and
908 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
909 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
910 *
911 * The trick is that "digits" holds a base-10 number, but sometimes
912 * the individual digits are > 10.
913 *
914 * Outer loop is per nibble (hex digit) of input, from MSD end to
915 * LSD end.
916 */
c5aa993b 917 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 918 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 919 flip = 0;
d44e8473 920 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 921 {
c906108c
SS
922 /*
923 * Multiply current base-ten number by 16 in place.
924 * Each digit was between 0 and 9, now is between
925 * 0 and 144.
926 */
c5aa993b
JM
927 for (j = 0; j < decimal_digits; j++)
928 {
929 digits[j] = SHIFT (digits[j]);
930 }
931
c906108c
SS
932 /* Take the next nibble off the input and add it to what
933 * we've got in the LSB position. Bottom 'digit' is now
934 * between 0 and 159.
935 *
936 * "flip" is used to run this loop twice for each byte.
937 */
c5aa993b
JM
938 if (flip == 0)
939 {
940 /* Take top nibble.
941 */
942 digits[0] += HIGH_NIBBLE (*p);
943 flip = 1;
944 }
945 else
946 {
947 /* Take low nibble and bump our pointer "p".
948 */
949 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
950 if (byte_order == BFD_ENDIAN_BIG)
951 p++;
952 else
953 p--;
c5aa993b
JM
954 flip = 0;
955 }
c906108c
SS
956
957 /* Re-decimalize. We have to do this often enough
958 * that we don't overflow, but once per nibble is
959 * overkill. Easier this way, though. Note that the
960 * carry is often larger than 10 (e.g. max initial
961 * carry out of lowest nibble is 15, could bubble all
962 * the way up greater than 10). So we have to do
963 * the carrying beyond the last current digit.
964 */
965 carry = 0;
c5aa993b
JM
966 for (j = 0; j < decimal_len - 1; j++)
967 {
968 digits[j] += carry;
969
970 /* "/" won't handle an unsigned char with
971 * a value that if signed would be negative.
972 * So extend to longword int via "dummy".
973 */
974 dummy = digits[j];
975 carry = CARRY_OUT (dummy);
976 digits[j] = CARRY_LEFT (dummy);
977
978 if (j >= decimal_digits && carry == 0)
979 {
980 /*
981 * All higher digits are 0 and we
982 * no longer have a carry.
983 *
984 * Note: "j" is 0-based, "decimal_digits" is
985 * 1-based.
986 */
987 decimal_digits = j + 1;
988 break;
989 }
990 }
991 }
c906108c
SS
992
993 /* Ok, now "digits" is the decimal representation, with
994 * the "decimal_digits" actual digits. Print!
995 */
c5aa993b
JM
996 for (i = decimal_digits - 1; i >= 0; i--)
997 {
998 fprintf_filtered (stream, "%1d", digits[i]);
999 }
b8c9b27d 1000 xfree (digits);
c906108c
SS
1001}
1002
1003/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1004
6b9acc27 1005void
fc1a4b47 1006print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1007 unsigned len, enum bfd_endian byte_order)
c906108c 1008{
fc1a4b47 1009 const gdb_byte *p;
c906108c
SS
1010
1011 /* FIXME: We should be not printing leading zeroes in most cases. */
1012
bb599908 1013 fputs_filtered ("0x", stream);
d44e8473 1014 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1015 {
1016 for (p = valaddr;
1017 p < valaddr + len;
1018 p++)
1019 {
1020 fprintf_filtered (stream, "%02x", *p);
1021 }
1022 }
1023 else
1024 {
1025 for (p = valaddr + len - 1;
1026 p >= valaddr;
1027 p--)
1028 {
1029 fprintf_filtered (stream, "%02x", *p);
1030 }
1031 }
c906108c
SS
1032}
1033
6b9acc27
JJ
1034/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
1035 Omit any leading zero chars. */
1036
1037void
6c7a06a3
TT
1038print_char_chars (struct ui_file *stream, struct type *type,
1039 const gdb_byte *valaddr,
d44e8473 1040 unsigned len, enum bfd_endian byte_order)
6b9acc27 1041{
fc1a4b47 1042 const gdb_byte *p;
6b9acc27 1043
d44e8473 1044 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1045 {
1046 p = valaddr;
1047 while (p < valaddr + len - 1 && *p == 0)
1048 ++p;
1049
1050 while (p < valaddr + len)
1051 {
6c7a06a3 1052 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1053 ++p;
1054 }
1055 }
1056 else
1057 {
1058 p = valaddr + len - 1;
1059 while (p > valaddr && *p == 0)
1060 --p;
1061
1062 while (p >= valaddr)
1063 {
6c7a06a3 1064 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1065 --p;
1066 }
1067 }
1068}
1069
79a45b7d 1070/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1071 at INDEX of an array whose index type is INDEX_TYPE. */
1072
1073void
1074maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1075 struct ui_file *stream,
1076 const struct value_print_options *options)
e79af960
JB
1077{
1078 struct value *index_value;
1079
79a45b7d 1080 if (!options->print_array_indexes)
e79af960
JB
1081 return;
1082
1083 index_value = value_from_longest (index_type, index);
1084
79a45b7d
TT
1085 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1086}
e79af960 1087
c906108c 1088/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1089 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1090
c5aa993b
JM
1091 (FIXME?) Assumes array element separator is a comma, which is correct
1092 for all languages currently handled.
1093 (FIXME?) Some languages have a notation for repeated array elements,
1094 perhaps we should try to use that notation when appropriate.
1095 */
c906108c
SS
1096
1097void
fc1a4b47 1098val_print_array_elements (struct type *type, const gdb_byte *valaddr,
a2bd3dcd 1099 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1100 int recurse,
0e03807e 1101 const struct value *val,
79a45b7d 1102 const struct value_print_options *options,
fba45db2 1103 unsigned int i)
c906108c
SS
1104{
1105 unsigned int things_printed = 0;
1106 unsigned len;
e79af960 1107 struct type *elttype, *index_type;
c906108c
SS
1108 unsigned eltlen;
1109 /* Position of the array element we are examining to see
1110 whether it is repeated. */
1111 unsigned int rep1;
1112 /* Number of repetitions we have detected so far. */
1113 unsigned int reps;
dbc98a8b 1114 LONGEST low_bound, high_bound;
c5aa993b 1115
c906108c
SS
1116 elttype = TYPE_TARGET_TYPE (type);
1117 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1118 index_type = TYPE_INDEX_TYPE (type);
c906108c 1119
dbc98a8b 1120 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b
JB
1121 {
1122 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1123 But we have to be a little extra careful, because some languages
1124 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1125 empty arrays. In that situation, the array length is just zero,
1126 not negative! */
1127 if (low_bound > high_bound)
1128 len = 0;
1129 else
1130 len = high_bound - low_bound + 1;
1131 }
e936309c
JB
1132 else
1133 {
dbc98a8b
KW
1134 warning (_("unable to get bounds of array, assuming null array"));
1135 low_bound = 0;
1136 len = 0;
168de233
JB
1137 }
1138
c906108c
SS
1139 annotate_array_section_begin (i, elttype);
1140
79a45b7d 1141 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1142 {
1143 if (i != 0)
1144 {
79a45b7d 1145 if (options->prettyprint_arrays)
c906108c
SS
1146 {
1147 fprintf_filtered (stream, ",\n");
1148 print_spaces_filtered (2 + 2 * recurse, stream);
1149 }
1150 else
1151 {
1152 fprintf_filtered (stream, ", ");
1153 }
1154 }
1155 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1156 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1157 stream, options);
c906108c
SS
1158
1159 rep1 = i + 1;
1160 reps = 1;
c5aa993b 1161 while ((rep1 < len) &&
c906108c
SS
1162 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1163 {
1164 ++reps;
1165 ++rep1;
1166 }
1167
79a45b7d 1168 if (reps > options->repeat_count_threshold)
c906108c 1169 {
f9e31323 1170 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
0e03807e 1171 stream, recurse + 1, val, options, current_language);
c906108c
SS
1172 annotate_elt_rep (reps);
1173 fprintf_filtered (stream, " <repeats %u times>", reps);
1174 annotate_elt_rep_end ();
1175
1176 i = rep1 - 1;
79a45b7d 1177 things_printed += options->repeat_count_threshold;
c906108c
SS
1178 }
1179 else
1180 {
f9e31323 1181 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
0e03807e 1182 stream, recurse + 1, val, options, current_language);
c906108c
SS
1183 annotate_elt ();
1184 things_printed++;
1185 }
1186 }
1187 annotate_array_section_end ();
1188 if (i < len)
1189 {
1190 fprintf_filtered (stream, "...");
1191 }
1192}
1193
917317f4
JM
1194/* Read LEN bytes of target memory at address MEMADDR, placing the
1195 results in GDB's memory at MYADDR. Returns a count of the bytes
1196 actually read, and optionally an errno value in the location
1197 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1198
1199/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1200 function be eliminated. */
1201
1202static int
777ea8f1 1203partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
917317f4
JM
1204{
1205 int nread; /* Number of bytes actually read. */
1206 int errcode; /* Error from last read. */
1207
1208 /* First try a complete read. */
1209 errcode = target_read_memory (memaddr, myaddr, len);
1210 if (errcode == 0)
1211 {
1212 /* Got it all. */
1213 nread = len;
1214 }
1215 else
1216 {
1217 /* Loop, reading one byte at a time until we get as much as we can. */
1218 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1219 {
1220 errcode = target_read_memory (memaddr++, myaddr++, 1);
1221 }
1222 /* If an error, the last read was unsuccessful, so adjust count. */
1223 if (errcode != 0)
1224 {
1225 nread--;
1226 }
1227 }
1228 if (errnoptr != NULL)
1229 {
1230 *errnoptr = errcode;
1231 }
1232 return (nread);
1233}
1234
ae6a3a4c
TJB
1235/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1236 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1237 allocated buffer containing the string, which the caller is responsible to
1238 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1239 success, or errno on failure.
1240
1241 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1242 the middle or end of the string). If LEN is -1, stops at the first
1243 null character (not necessarily the first null byte) up to a maximum
1244 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1245 characters as possible from the string.
1246
1247 Unless an exception is thrown, BUFFER will always be allocated, even on
1248 failure. In this case, some characters might have been read before the
1249 failure happened. Check BYTES_READ to recognize this situation.
1250
1251 Note: There was a FIXME asking to make this code use target_read_string,
1252 but this function is more general (can read past null characters, up to
1253 given LEN). Besides, it is used much more often than target_read_string
1254 so it is more tested. Perhaps callers of target_read_string should use
1255 this function instead? */
c906108c
SS
1256
1257int
ae6a3a4c 1258read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1259 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1260{
ae6a3a4c
TJB
1261 int found_nul; /* Non-zero if we found the nul char. */
1262 int errcode; /* Errno returned from bad reads. */
1263 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1264 unsigned int chunksize; /* Size of each fetch, in chars. */
1265 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1266 gdb_byte *limit; /* First location past end of fetch buffer. */
1267 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1268
1269 /* Decide how large of chunks to try to read in one operation. This
c906108c
SS
1270 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1271 so we might as well read them all in one operation. If LEN is -1, we
ae6a3a4c 1272 are looking for a NUL terminator to end the fetching, so we might as
c906108c
SS
1273 well read in blocks that are large enough to be efficient, but not so
1274 large as to be slow if fetchlimit happens to be large. So we choose the
1275 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1276 200 is way too big for remote debugging over a serial line. */
1277
1278 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1279
ae6a3a4c
TJB
1280 /* Loop until we either have all the characters, or we encounter
1281 some error, such as bumping into the end of the address space. */
c906108c
SS
1282
1283 found_nul = 0;
b5096abe
PM
1284 *buffer = NULL;
1285
1286 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1287
1288 if (len > 0)
1289 {
ae6a3a4c
TJB
1290 *buffer = (gdb_byte *) xmalloc (len * width);
1291 bufptr = *buffer;
c906108c 1292
917317f4 1293 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
c906108c
SS
1294 / width;
1295 addr += nfetch * width;
1296 bufptr += nfetch * width;
1297 }
1298 else if (len == -1)
1299 {
1300 unsigned long bufsize = 0;
ae6a3a4c 1301
c906108c
SS
1302 do
1303 {
1304 QUIT;
1305 nfetch = min (chunksize, fetchlimit - bufsize);
1306
ae6a3a4c
TJB
1307 if (*buffer == NULL)
1308 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1309 else
b5096abe
PM
1310 *buffer = (gdb_byte *) xrealloc (*buffer,
1311 (nfetch + bufsize) * width);
c906108c 1312
ae6a3a4c 1313 bufptr = *buffer + bufsize * width;
c906108c
SS
1314 bufsize += nfetch;
1315
ae6a3a4c 1316 /* Read as much as we can. */
917317f4 1317 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1318 / width;
c906108c 1319
ae6a3a4c 1320 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1321 to print. If found, we don't need to fetch any more. Note
1322 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1323 after the null character, or at the next character after the end
1324 of the buffer. */
c906108c
SS
1325
1326 limit = bufptr + nfetch * width;
1327 while (bufptr < limit)
1328 {
1329 unsigned long c;
1330
e17a4113 1331 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1332 addr += width;
1333 bufptr += width;
1334 if (c == 0)
1335 {
1336 /* We don't care about any error which happened after
ae6a3a4c 1337 the NUL terminator. */
c906108c
SS
1338 errcode = 0;
1339 found_nul = 1;
1340 break;
1341 }
1342 }
1343 }
c5aa993b 1344 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1345 && bufptr - *buffer < fetchlimit * width /* no overrun */
1346 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1347 }
1348 else
ae6a3a4c
TJB
1349 { /* Length of string is really 0! */
1350 /* We always allocate *buffer. */
1351 *buffer = bufptr = xmalloc (1);
c906108c
SS
1352 errcode = 0;
1353 }
1354
1355 /* bufptr and addr now point immediately beyond the last byte which we
1356 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1357 *bytes_read = bufptr - *buffer;
1358
1359 QUIT;
1360
1361 discard_cleanups (old_chain);
1362
1363 return errcode;
1364}
1365
1366/* Print a string from the inferior, starting at ADDR and printing up to LEN
1367 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1368 stops at the first null byte, otherwise printing proceeds (including null
1369 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
1370 whichever is smaller. ENCODING is the name of the string's
1371 encoding. It can be NULL, in which case the target encoding is
1372 assumed. */
ae6a3a4c
TJB
1373
1374int
09ca9e2e
TT
1375val_print_string (struct type *elttype, const char *encoding,
1376 CORE_ADDR addr, int len,
6c7a06a3 1377 struct ui_file *stream,
ae6a3a4c
TJB
1378 const struct value_print_options *options)
1379{
1380 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1381 int errcode; /* Errno returned from bad reads. */
1382 int found_nul; /* Non-zero if we found the nul char */
1383 unsigned int fetchlimit; /* Maximum number of chars to print. */
1384 int bytes_read;
1385 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1386 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 1387 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 1388 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 1389 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
1390
1391 /* First we need to figure out the limit on the number of characters we are
1392 going to attempt to fetch and print. This is actually pretty simple. If
1393 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1394 LEN is -1, then the limit is print_max. This is true regardless of
1395 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1396 because finding the null byte (or available memory) is what actually
1397 limits the fetch. */
1398
1399 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1400
e17a4113
UW
1401 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1402 &buffer, &bytes_read);
ae6a3a4c
TJB
1403 old_chain = make_cleanup (xfree, buffer);
1404
1405 addr += bytes_read;
c906108c
SS
1406
1407 /* We now have either successfully filled the buffer to fetchlimit, or
ae6a3a4c
TJB
1408 terminated early due to an error or finding a null char when LEN is -1. */
1409
1410 /* Determine found_nul by looking at the last character read. */
e17a4113
UW
1411 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1412 byte_order) == 0;
c906108c
SS
1413 if (len == -1 && !found_nul)
1414 {
777ea8f1 1415 gdb_byte *peekbuf;
c906108c 1416
ae6a3a4c 1417 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
1418 to peek at the next character. If not successful, or it is not
1419 a null byte, then force ellipsis to be printed. */
c906108c 1420
777ea8f1 1421 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
1422
1423 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 1424 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
1425 force_ellipsis = 1;
1426 }
ae6a3a4c 1427 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
1428 {
1429 /* Getting an error when we have a requested length, or fetching less
c5aa993b 1430 than the number of characters actually requested, always make us
ae6a3a4c 1431 print ellipsis. */
c906108c
SS
1432 force_ellipsis = 1;
1433 }
1434
c906108c
SS
1435 /* If we get an error before fetching anything, don't print a string.
1436 But if we fetch something and then get an error, print the string
1437 and then the error message. */
ae6a3a4c 1438 if (errcode == 0 || bytes_read > 0)
c906108c 1439 {
79a45b7d 1440 if (options->addressprint)
c906108c
SS
1441 {
1442 fputs_filtered (" ", stream);
1443 }
be759fcf 1444 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 1445 encoding, force_ellipsis, options);
c906108c
SS
1446 }
1447
1448 if (errcode != 0)
1449 {
1450 if (errcode == EIO)
1451 {
1452 fprintf_filtered (stream, " <Address ");
5af949e3 1453 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1454 fprintf_filtered (stream, " out of bounds>");
1455 }
1456 else
1457 {
1458 fprintf_filtered (stream, " <Error reading address ");
5af949e3 1459 fputs_filtered (paddress (gdbarch, addr), stream);
c906108c
SS
1460 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1461 }
1462 }
ae6a3a4c 1463
c906108c
SS
1464 gdb_flush (stream);
1465 do_cleanups (old_chain);
ae6a3a4c
TJB
1466
1467 return (bytes_read / width);
c906108c 1468}
c906108c 1469\f
c5aa993b 1470
09e6485f
PA
1471/* The 'set input-radix' command writes to this auxiliary variable.
1472 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1473 it is left unchanged. */
1474
1475static unsigned input_radix_1 = 10;
1476
c906108c
SS
1477/* Validate an input or output radix setting, and make sure the user
1478 knows what they really did here. Radix setting is confusing, e.g.
1479 setting the input radix to "10" never changes it! */
1480
c906108c 1481static void
fba45db2 1482set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1483{
09e6485f 1484 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
1485}
1486
c906108c 1487static void
fba45db2 1488set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1489{
1490 /* We don't currently disallow any input radix except 0 or 1, which don't
1491 make any mathematical sense. In theory, we can deal with any input
1492 radix greater than 1, even if we don't have unique digits for every
1493 value from 0 to radix-1, but in practice we lose on large radix values.
1494 We should either fix the lossage or restrict the radix range more.
1495 (FIXME). */
1496
1497 if (radix < 2)
1498 {
09e6485f 1499 input_radix_1 = input_radix;
8a3fe4f8 1500 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
1501 radix);
1502 }
09e6485f 1503 input_radix_1 = input_radix = radix;
c906108c
SS
1504 if (from_tty)
1505 {
a3f17187 1506 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1507 radix, radix, radix);
1508 }
1509}
1510
09e6485f
PA
1511/* The 'set output-radix' command writes to this auxiliary variable.
1512 If the requested radix is valid, OUTPUT_RADIX is updated,
1513 otherwise, it is left unchanged. */
1514
1515static unsigned output_radix_1 = 10;
1516
c906108c 1517static void
fba45db2 1518set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1519{
09e6485f 1520 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
1521}
1522
1523static void
fba45db2 1524set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
1525{
1526 /* Validate the radix and disallow ones that we aren't prepared to
1527 handle correctly, leaving the radix unchanged. */
1528 switch (radix)
1529 {
1530 case 16:
79a45b7d 1531 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
1532 break;
1533 case 10:
79a45b7d 1534 user_print_options.output_format = 0; /* decimal */
c906108c
SS
1535 break;
1536 case 8:
79a45b7d 1537 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
1538 break;
1539 default:
09e6485f 1540 output_radix_1 = output_radix;
8a3fe4f8 1541 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
c906108c
SS
1542 radix);
1543 }
09e6485f 1544 output_radix_1 = output_radix = radix;
c906108c
SS
1545 if (from_tty)
1546 {
a3f17187 1547 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1548 radix, radix, radix);
1549 }
1550}
1551
1552/* Set both the input and output radix at once. Try to set the output radix
1553 first, since it has the most restrictive range. An radix that is valid as
1554 an output radix is also valid as an input radix.
1555
1556 It may be useful to have an unusual input radix. If the user wishes to
1557 set an input radix that is not valid as an output radix, he needs to use
1558 the 'set input-radix' command. */
1559
1560static void
fba45db2 1561set_radix (char *arg, int from_tty)
c906108c
SS
1562{
1563 unsigned radix;
1564
bb518678 1565 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
1566 set_output_radix_1 (0, radix);
1567 set_input_radix_1 (0, radix);
1568 if (from_tty)
1569 {
a3f17187 1570 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1571 radix, radix, radix);
1572 }
1573}
1574
1575/* Show both the input and output radices. */
1576
c906108c 1577static void
fba45db2 1578show_radix (char *arg, int from_tty)
c906108c
SS
1579{
1580 if (from_tty)
1581 {
1582 if (input_radix == output_radix)
1583 {
a3f17187 1584 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1585 input_radix, input_radix, input_radix);
1586 }
1587 else
1588 {
a3f17187 1589 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
c906108c 1590 input_radix, input_radix, input_radix);
a3f17187 1591 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
c906108c
SS
1592 output_radix, output_radix, output_radix);
1593 }
1594 }
1595}
c906108c 1596\f
c5aa993b 1597
c906108c 1598static void
fba45db2 1599set_print (char *arg, int from_tty)
c906108c
SS
1600{
1601 printf_unfiltered (
c5aa993b 1602 "\"set print\" must be followed by the name of a print subcommand.\n");
c906108c
SS
1603 help_list (setprintlist, "set print ", -1, gdb_stdout);
1604}
1605
c906108c 1606static void
fba45db2 1607show_print (char *args, int from_tty)
c906108c
SS
1608{
1609 cmd_show_list (showprintlist, from_tty, "");
1610}
1611\f
1612void
fba45db2 1613_initialize_valprint (void)
c906108c 1614{
c906108c 1615 add_prefix_cmd ("print", no_class, set_print,
1bedd215 1616 _("Generic command for setting how things print."),
c906108c 1617 &setprintlist, "set print ", 0, &setlist);
c5aa993b
JM
1618 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1619 /* prefer set print to set prompt */
c906108c
SS
1620 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1621
1622 add_prefix_cmd ("print", no_class, show_print,
1bedd215 1623 _("Generic command for showing print settings."),
c906108c 1624 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
1625 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1626 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 1627
79a45b7d
TT
1628 add_setshow_uinteger_cmd ("elements", no_class,
1629 &user_print_options.print_max, _("\
35096d9d
AC
1630Set limit on string chars or array elements to print."), _("\
1631Show limit on string chars or array elements to print."), _("\
1632\"set print elements 0\" causes there to be no limit."),
1633 NULL,
920d2a44 1634 show_print_max,
35096d9d 1635 &setprintlist, &showprintlist);
c906108c 1636
79a45b7d
TT
1637 add_setshow_boolean_cmd ("null-stop", no_class,
1638 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
1639Set printing of char arrays to stop at first null char."), _("\
1640Show printing of char arrays to stop at first null char."), NULL,
1641 NULL,
920d2a44 1642 show_stop_print_at_null,
5bf193a2 1643 &setprintlist, &showprintlist);
c906108c 1644
35096d9d 1645 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 1646 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
1647Set threshold for repeated print elements."), _("\
1648Show threshold for repeated print elements."), _("\
1649\"set print repeats 0\" causes all elements to be individually printed."),
1650 NULL,
920d2a44 1651 show_repeat_count_threshold,
35096d9d 1652 &setprintlist, &showprintlist);
c906108c 1653
79a45b7d
TT
1654 add_setshow_boolean_cmd ("pretty", class_support,
1655 &user_print_options.prettyprint_structs, _("\
5bf193a2
AC
1656Set prettyprinting of structures."), _("\
1657Show prettyprinting of structures."), NULL,
1658 NULL,
920d2a44 1659 show_prettyprint_structs,
5bf193a2
AC
1660 &setprintlist, &showprintlist);
1661
79a45b7d
TT
1662 add_setshow_boolean_cmd ("union", class_support,
1663 &user_print_options.unionprint, _("\
5bf193a2
AC
1664Set printing of unions interior to structures."), _("\
1665Show printing of unions interior to structures."), NULL,
1666 NULL,
920d2a44 1667 show_unionprint,
5bf193a2
AC
1668 &setprintlist, &showprintlist);
1669
79a45b7d
TT
1670 add_setshow_boolean_cmd ("array", class_support,
1671 &user_print_options.prettyprint_arrays, _("\
5bf193a2
AC
1672Set prettyprinting of arrays."), _("\
1673Show prettyprinting of arrays."), NULL,
1674 NULL,
920d2a44 1675 show_prettyprint_arrays,
5bf193a2
AC
1676 &setprintlist, &showprintlist);
1677
79a45b7d
TT
1678 add_setshow_boolean_cmd ("address", class_support,
1679 &user_print_options.addressprint, _("\
5bf193a2
AC
1680Set printing of addresses."), _("\
1681Show printing of addresses."), NULL,
1682 NULL,
920d2a44 1683 show_addressprint,
5bf193a2 1684 &setprintlist, &showprintlist);
c906108c 1685
1e8fb976
PA
1686 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1687 _("\
35096d9d
AC
1688Set default input radix for entering numbers."), _("\
1689Show default input radix for entering numbers."), NULL,
1e8fb976
PA
1690 set_input_radix,
1691 show_input_radix,
1692 &setlist, &showlist);
35096d9d 1693
1e8fb976
PA
1694 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1695 _("\
35096d9d
AC
1696Set default output radix for printing of values."), _("\
1697Show default output radix for printing of values."), NULL,
1e8fb976
PA
1698 set_output_radix,
1699 show_output_radix,
1700 &setlist, &showlist);
c906108c 1701
cb1a6d5f
AC
1702 /* The "set radix" and "show radix" commands are special in that
1703 they are like normal set and show commands but allow two normally
1704 independent variables to be either set or shown with a single
b66df561 1705 command. So the usual deprecated_add_set_cmd() and [deleted]
cb1a6d5f 1706 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
1707 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1708 longer true - show can display anything. */
1a966eab
AC
1709 add_cmd ("radix", class_support, set_radix, _("\
1710Set default input and output number radices.\n\
c906108c 1711Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 1712Without an argument, sets both radices back to the default value of 10."),
c906108c 1713 &setlist);
1a966eab
AC
1714 add_cmd ("radix", class_support, show_radix, _("\
1715Show the default input and output number radices.\n\
1716Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
1717 &showlist);
1718
e79af960 1719 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 1720 &user_print_options.print_array_indexes, _("\
e79af960
JB
1721Set printing of array indexes."), _("\
1722Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1723 &setprintlist, &showprintlist);
c906108c 1724}
This page took 1.964398 seconds and 4 git commands to generate.