Factor out reference printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
81eb921a
SM
428/* generic_val_print helper for TYPE_CODE_PTR. */
429
430static void
431generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435{
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449}
450
45000ea2
SM
451
452/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454static void
455generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459{
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462}
463
fe43fede
SM
464/* generic_val_print helper for TYPE_CODE_REF. */
465
466static void
467generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510}
511
e88acd96
TT
512/* A generic val_print that is suitable for use by language
513 implementations of the la_val_print method. This function can
514 handle most type codes, though not all, notably exception
515 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
516 the caller.
517
518 Most arguments are as to val_print.
519
520 The additional DECORATIONS argument can be used to customize the
521 output in some small, language-specific ways. */
522
523void
524generic_val_print (struct type *type, const gdb_byte *valaddr,
525 int embedded_offset, CORE_ADDR address,
526 struct ui_file *stream, int recurse,
527 const struct value *original_value,
528 const struct value_print_options *options,
529 const struct generic_val_print_decorations *decorations)
530{
531 struct gdbarch *gdbarch = get_type_arch (type);
e88acd96
TT
532 unsigned int i = 0; /* Number of characters printed. */
533 unsigned len;
e88acd96 534 struct type *unresolved_type = type;
e88acd96 535 LONGEST val;
e88acd96 536
f168693b 537 type = check_typedef (type);
e88acd96
TT
538 switch (TYPE_CODE (type))
539 {
540 case TYPE_CODE_ARRAY:
557dbe8a
SM
541 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
542 recurse, original_value, options);
9f436164 543 break;
e88acd96
TT
544
545 case TYPE_CODE_MEMBERPTR:
45000ea2
SM
546 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
547 original_value, options);
e88acd96
TT
548 break;
549
550 case TYPE_CODE_PTR:
81eb921a
SM
551 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
552 original_value, options);
e88acd96
TT
553 break;
554
555 case TYPE_CODE_REF:
fe43fede
SM
556 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
557 original_value, options);
e88acd96
TT
558 break;
559
560 case TYPE_CODE_ENUM:
561 if (options->format)
562 {
563 val_print_scalar_formatted (type, valaddr, embedded_offset,
564 original_value, options, 0, stream);
565 break;
566 }
567 len = TYPE_NFIELDS (type);
568 val = unpack_long (type, valaddr + embedded_offset);
569 for (i = 0; i < len; i++)
570 {
571 QUIT;
14e75d8e 572 if (val == TYPE_FIELD_ENUMVAL (type, i))
e88acd96
TT
573 {
574 break;
575 }
576 }
577 if (i < len)
578 {
579 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
580 }
581 else if (TYPE_FLAG_ENUM (type))
582 {
583 int first = 1;
584
585 /* We have a "flag" enum, so we try to decompose it into
586 pieces as appropriate. A flag enum has disjoint
587 constants by definition. */
588 fputs_filtered ("(", stream);
589 for (i = 0; i < len; ++i)
590 {
591 QUIT;
592
14e75d8e 593 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
e88acd96
TT
594 {
595 if (!first)
596 fputs_filtered (" | ", stream);
597 first = 0;
598
14e75d8e 599 val &= ~TYPE_FIELD_ENUMVAL (type, i);
e88acd96
TT
600 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
601 }
602 }
603
604 if (first || val != 0)
605 {
606 if (!first)
607 fputs_filtered (" | ", stream);
608 fputs_filtered ("unknown: ", stream);
609 print_longest (stream, 'd', 0, val);
610 }
611
612 fputs_filtered (")", stream);
613 }
614 else
615 print_longest (stream, 'd', 0, val);
616 break;
617
618 case TYPE_CODE_FLAGS:
619 if (options->format)
620 val_print_scalar_formatted (type, valaddr, embedded_offset,
621 original_value, options, 0, stream);
622 else
623 val_print_type_code_flags (type, valaddr + embedded_offset,
624 stream);
625 break;
626
627 case TYPE_CODE_FUNC:
628 case TYPE_CODE_METHOD:
629 if (options->format)
630 {
631 val_print_scalar_formatted (type, valaddr, embedded_offset,
632 original_value, options, 0, stream);
633 break;
634 }
635 /* FIXME, we should consider, at least for ANSI C language,
636 eliminating the distinction made between FUNCs and POINTERs
637 to FUNCs. */
638 fprintf_filtered (stream, "{");
639 type_print (type, "", stream, -1);
640 fprintf_filtered (stream, "} ");
641 /* Try to print what function it points to, and its address. */
edf0c1b7 642 print_address_demangle (options, gdbarch, address, stream, demangle);
e88acd96
TT
643 break;
644
645 case TYPE_CODE_BOOL:
646 if (options->format || options->output_format)
647 {
648 struct value_print_options opts = *options;
649 opts.format = (options->format ? options->format
650 : options->output_format);
651 val_print_scalar_formatted (type, valaddr, embedded_offset,
652 original_value, &opts, 0, stream);
653 }
654 else
655 {
656 val = unpack_long (type, valaddr + embedded_offset);
657 if (val == 0)
658 fputs_filtered (decorations->false_name, stream);
659 else if (val == 1)
660 fputs_filtered (decorations->true_name, stream);
661 else
662 print_longest (stream, 'd', 0, val);
663 }
664 break;
665
666 case TYPE_CODE_RANGE:
0c9c3474 667 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
668 range type (I think it probably should copy it from the
669 target type), so we won't print values which are too large to
670 fit in a signed integer correctly. */
671 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
672 print with the target type, though, because the size of our
673 type and the target type might differ). */
674
675 /* FALLTHROUGH */
676
677 case TYPE_CODE_INT:
678 if (options->format || options->output_format)
679 {
680 struct value_print_options opts = *options;
681
682 opts.format = (options->format ? options->format
683 : options->output_format);
684 val_print_scalar_formatted (type, valaddr, embedded_offset,
685 original_value, &opts, 0, stream);
686 }
687 else
688 val_print_type_code_int (type, valaddr + embedded_offset, stream);
689 break;
690
691 case TYPE_CODE_CHAR:
692 if (options->format || options->output_format)
693 {
694 struct value_print_options opts = *options;
695
696 opts.format = (options->format ? options->format
697 : options->output_format);
698 val_print_scalar_formatted (type, valaddr, embedded_offset,
699 original_value, &opts, 0, stream);
700 }
701 else
702 {
703 val = unpack_long (type, valaddr + embedded_offset);
704 if (TYPE_UNSIGNED (type))
705 fprintf_filtered (stream, "%u", (unsigned int) val);
706 else
707 fprintf_filtered (stream, "%d", (int) val);
708 fputs_filtered (" ", stream);
709 LA_PRINT_CHAR (val, unresolved_type, stream);
710 }
711 break;
712
713 case TYPE_CODE_FLT:
714 if (options->format)
715 {
716 val_print_scalar_formatted (type, valaddr, embedded_offset,
717 original_value, options, 0, stream);
718 }
719 else
720 {
721 print_floating (valaddr + embedded_offset, type, stream);
722 }
723 break;
724
725 case TYPE_CODE_DECFLOAT:
726 if (options->format)
727 val_print_scalar_formatted (type, valaddr, embedded_offset,
728 original_value, options, 0, stream);
729 else
730 print_decimal_floating (valaddr + embedded_offset,
731 type, stream);
732 break;
733
734 case TYPE_CODE_VOID:
735 fputs_filtered (decorations->void_name, stream);
736 break;
737
738 case TYPE_CODE_ERROR:
739 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
740 break;
741
742 case TYPE_CODE_UNDEF:
743 /* This happens (without TYPE_FLAG_STUB set) on systems which
744 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
745 "struct foo *bar" and no complete type for struct foo in that
746 file. */
747 fprintf_filtered (stream, _("<incomplete type>"));
748 break;
749
750 case TYPE_CODE_COMPLEX:
751 fprintf_filtered (stream, "%s", decorations->complex_prefix);
752 if (options->format)
753 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
754 valaddr, embedded_offset,
755 original_value, options, 0, stream);
756 else
757 print_floating (valaddr + embedded_offset,
758 TYPE_TARGET_TYPE (type),
759 stream);
760 fprintf_filtered (stream, "%s", decorations->complex_infix);
761 if (options->format)
762 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
763 valaddr,
764 embedded_offset
765 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
766 original_value,
767 options, 0, stream);
768 else
769 print_floating (valaddr + embedded_offset
770 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
771 TYPE_TARGET_TYPE (type),
772 stream);
773 fprintf_filtered (stream, "%s", decorations->complex_suffix);
774 break;
775
776 case TYPE_CODE_UNION:
777 case TYPE_CODE_STRUCT:
778 case TYPE_CODE_METHODPTR:
779 default:
780 error (_("Unhandled type code %d in symbol table."),
781 TYPE_CODE (type));
782 }
783 gdb_flush (stream);
784}
785
32b72a42
PA
786/* Print using the given LANGUAGE the data of type TYPE located at
787 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
788 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
789 STREAM according to OPTIONS. VAL is the whole object that came
790 from ADDRESS. VALADDR must point to the head of VAL's contents
791 buffer.
792
793 The language printers will pass down an adjusted EMBEDDED_OFFSET to
794 further helper subroutines as subfields of TYPE are printed. In
795 such cases, VALADDR is passed down unadjusted, as well as VAL, so
796 that VAL can be queried for metadata about the contents data being
797 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
798 buffer. For example: "has this field been optimized out", or "I'm
799 printing an object while inspecting a traceframe; has this
800 particular piece of data been collected?".
801
802 RECURSE indicates the amount of indentation to supply before
803 continuation lines; this amount is roughly twice the value of
35c0084b 804 RECURSE. */
32b72a42 805
35c0084b 806void
fc1a4b47 807val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 808 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 809 const struct value *val,
79a45b7d 810 const struct value_print_options *options,
d8ca156b 811 const struct language_defn *language)
c906108c 812{
19ca80ba 813 int ret = 0;
79a45b7d 814 struct value_print_options local_opts = *options;
c906108c 815 struct type *real_type = check_typedef (type);
79a45b7d 816
2a998fc0
DE
817 if (local_opts.prettyformat == Val_prettyformat_default)
818 local_opts.prettyformat = (local_opts.prettyformat_structs
819 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 820
c906108c
SS
821 QUIT;
822
823 /* Ensure that the type is complete and not just a stub. If the type is
824 only a stub and we can't find and substitute its complete type, then
825 print appropriate string and return. */
826
74a9bb82 827 if (TYPE_STUB (real_type))
c906108c 828 {
0e03807e 829 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 830 gdb_flush (stream);
35c0084b 831 return;
c906108c 832 }
c5aa993b 833
0e03807e 834 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 835 return;
0e03807e 836
a6bac58e
TT
837 if (!options->raw)
838 {
6dddc817
DE
839 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
840 address, stream, recurse,
841 val, options, language);
a6bac58e 842 if (ret)
35c0084b 843 return;
a6bac58e
TT
844 }
845
846 /* Handle summary mode. If the value is a scalar, print it;
847 otherwise, print an ellipsis. */
6211c335 848 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
849 {
850 fprintf_filtered (stream, "...");
35c0084b 851 return;
a6bac58e
TT
852 }
853
492d29ea 854 TRY
19ca80ba 855 {
d3eab38a
TT
856 language->la_val_print (type, valaddr, embedded_offset, address,
857 stream, recurse, val,
858 &local_opts);
19ca80ba 859 }
492d29ea
PA
860 CATCH (except, RETURN_MASK_ERROR)
861 {
862 fprintf_filtered (stream, _("<error reading variable>"));
863 }
864 END_CATCH
c906108c
SS
865}
866
806048c6 867/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
868 return 0 and print an appropriate error message to STREAM according to
869 OPTIONS if it is not. */
c906108c 870
806048c6 871static int
6501578c
YQ
872value_check_printable (struct value *val, struct ui_file *stream,
873 const struct value_print_options *options)
c906108c
SS
874{
875 if (val == 0)
876 {
806048c6 877 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
878 return 0;
879 }
806048c6 880
0e03807e 881 if (value_entirely_optimized_out (val))
c906108c 882 {
6211c335 883 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
884 fprintf_filtered (stream, "...");
885 else
901461f8 886 val_print_optimized_out (val, stream);
c906108c
SS
887 return 0;
888 }
806048c6 889
eebc056c
AB
890 if (value_entirely_unavailable (val))
891 {
892 if (options->summary && !val_print_scalar_type_p (value_type (val)))
893 fprintf_filtered (stream, "...");
894 else
895 val_print_unavailable (stream);
896 return 0;
897 }
898
bc3b79fd
TJB
899 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
900 {
901 fprintf_filtered (stream, _("<internal function %s>"),
902 value_internal_function_name (val));
903 return 0;
904 }
905
806048c6
DJ
906 return 1;
907}
908
d8ca156b 909/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 910 to OPTIONS.
806048c6 911
806048c6
DJ
912 This is a preferable interface to val_print, above, because it uses
913 GDB's value mechanism. */
914
a1f5dd1b 915void
79a45b7d
TT
916common_val_print (struct value *val, struct ui_file *stream, int recurse,
917 const struct value_print_options *options,
d8ca156b 918 const struct language_defn *language)
806048c6 919{
6501578c 920 if (!value_check_printable (val, stream, options))
a1f5dd1b 921 return;
806048c6 922
0c3acc09
JB
923 if (language->la_language == language_ada)
924 /* The value might have a dynamic type, which would cause trouble
925 below when trying to extract the value contents (since the value
926 size is determined from the type size which is unknown). So
927 get a fixed representation of our value. */
928 val = ada_to_fixed_value (val);
929
a1f5dd1b
TT
930 val_print (value_type (val), value_contents_for_printing (val),
931 value_embedded_offset (val), value_address (val),
932 stream, recurse,
933 val, options, language);
806048c6
DJ
934}
935
7348c5e1 936/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 937 is printed using the current_language syntax. */
7348c5e1 938
8e069a98 939void
79a45b7d
TT
940value_print (struct value *val, struct ui_file *stream,
941 const struct value_print_options *options)
806048c6 942{
6501578c 943 if (!value_check_printable (val, stream, options))
8e069a98 944 return;
806048c6 945
a6bac58e
TT
946 if (!options->raw)
947 {
6dddc817
DE
948 int r
949 = apply_ext_lang_val_pretty_printer (value_type (val),
950 value_contents_for_printing (val),
951 value_embedded_offset (val),
952 value_address (val),
953 stream, 0,
954 val, options, current_language);
a109c7c1 955
a6bac58e 956 if (r)
8e069a98 957 return;
a6bac58e
TT
958 }
959
8e069a98 960 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
961}
962
963/* Called by various <lang>_val_print routines to print
964 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
965 value. STREAM is where to print the value. */
966
967void
fc1a4b47 968val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 969 struct ui_file *stream)
c906108c 970{
50810684 971 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 972
c906108c
SS
973 if (TYPE_LENGTH (type) > sizeof (LONGEST))
974 {
975 LONGEST val;
976
977 if (TYPE_UNSIGNED (type)
978 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 979 byte_order, &val))
c906108c
SS
980 {
981 print_longest (stream, 'u', 0, val);
982 }
983 else
984 {
985 /* Signed, or we couldn't turn an unsigned value into a
986 LONGEST. For signed values, one could assume two's
987 complement (a reasonable assumption, I think) and do
988 better than this. */
989 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 990 TYPE_LENGTH (type), byte_order);
c906108c
SS
991 }
992 }
993 else
994 {
c906108c
SS
995 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
996 unpack_long (type, valaddr));
c906108c
SS
997 }
998}
999
4f2aea11
MK
1000void
1001val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1002 struct ui_file *stream)
1003{
befae759 1004 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
1005 int bitpos, nfields = TYPE_NFIELDS (type);
1006
1007 fputs_filtered ("[ ", stream);
1008 for (bitpos = 0; bitpos < nfields; bitpos++)
1009 {
316703b9
MK
1010 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1011 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
1012 {
1013 if (TYPE_FIELD_NAME (type, bitpos))
1014 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1015 else
1016 fprintf_filtered (stream, "#%d ", bitpos);
1017 }
1018 }
1019 fputs_filtered ("]", stream);
19c37f24 1020}
ab2188aa
PA
1021
1022/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1023 according to OPTIONS and SIZE on STREAM. Format i is not supported
1024 at this level.
1025
1026 This is how the elements of an array or structure are printed
1027 with a format. */
ab2188aa
PA
1028
1029void
1030val_print_scalar_formatted (struct type *type,
1031 const gdb_byte *valaddr, int embedded_offset,
1032 const struct value *val,
1033 const struct value_print_options *options,
1034 int size,
1035 struct ui_file *stream)
1036{
1037 gdb_assert (val != NULL);
1038 gdb_assert (valaddr == value_contents_for_printing_const (val));
1039
1040 /* If we get here with a string format, try again without it. Go
1041 all the way back to the language printers, which may call us
1042 again. */
1043 if (options->format == 's')
1044 {
1045 struct value_print_options opts = *options;
1046 opts.format = 0;
1047 opts.deref_ref = 0;
1048 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1049 current_language);
1050 return;
1051 }
1052
1053 /* A scalar object that does not have all bits available can't be
1054 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1055 if (value_bits_any_optimized_out (val,
1056 TARGET_CHAR_BIT * embedded_offset,
1057 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1058 val_print_optimized_out (val, stream);
4e07d55f
PA
1059 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1060 val_print_unavailable (stream);
ab2188aa
PA
1061 else
1062 print_scalar_formatted (valaddr + embedded_offset, type,
1063 options, size, stream);
4f2aea11
MK
1064}
1065
c906108c
SS
1066/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1067 The raison d'etre of this function is to consolidate printing of
581e13c1 1068 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1069 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1070 format.
bb599908
PH
1071
1072 USE_C_FORMAT means to use C format in all cases. Without it,
1073 'o' and 'x' format do not include the standard C radix prefix
1074 (leading 0 or 0x).
1075
1076 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1077 and was intended to request formating according to the current
1078 language and would be used for most integers that GDB prints. The
1079 exceptional cases were things like protocols where the format of
1080 the integer is a protocol thing, not a user-visible thing). The
1081 parameter remains to preserve the information of what things might
1082 be printed with language-specific format, should we ever resurrect
581e13c1 1083 that capability. */
c906108c
SS
1084
1085void
bb599908 1086print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1087 LONGEST val_long)
c906108c 1088{
2bfb72ee
AC
1089 const char *val;
1090
c906108c
SS
1091 switch (format)
1092 {
1093 case 'd':
bb599908 1094 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1095 case 'u':
bb599908 1096 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1097 case 'x':
bb599908 1098 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1099 case 'b':
bb599908 1100 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1101 case 'h':
bb599908 1102 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1103 case 'w':
bb599908 1104 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1105 case 'g':
bb599908 1106 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1107 break;
1108 case 'o':
bb599908 1109 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1110 default:
3e43a32a
MS
1111 internal_error (__FILE__, __LINE__,
1112 _("failed internal consistency check"));
bb599908 1113 }
2bfb72ee 1114 fputs_filtered (val, stream);
c906108c
SS
1115}
1116
c906108c
SS
1117/* This used to be a macro, but I don't think it is called often enough
1118 to merit such treatment. */
1119/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1120 arguments to a function, number in a value history, register number, etc.)
1121 where the value must not be larger than can fit in an int. */
1122
1123int
fba45db2 1124longest_to_int (LONGEST arg)
c906108c 1125{
581e13c1 1126 /* Let the compiler do the work. */
c906108c
SS
1127 int rtnval = (int) arg;
1128
581e13c1 1129 /* Check for overflows or underflows. */
c906108c
SS
1130 if (sizeof (LONGEST) > sizeof (int))
1131 {
1132 if (rtnval != arg)
1133 {
8a3fe4f8 1134 error (_("Value out of range."));
c906108c
SS
1135 }
1136 }
1137 return (rtnval);
1138}
1139
a73c86fb
AC
1140/* Print a floating point value of type TYPE (not always a
1141 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1142
1143void
fc1a4b47 1144print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1145 struct ui_file *stream)
c906108c
SS
1146{
1147 DOUBLEST doub;
1148 int inv;
a73c86fb 1149 const struct floatformat *fmt = NULL;
c906108c 1150 unsigned len = TYPE_LENGTH (type);
20389057 1151 enum float_kind kind;
c5aa993b 1152
a73c86fb
AC
1153 /* If it is a floating-point, check for obvious problems. */
1154 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1155 fmt = floatformat_from_type (type);
20389057 1156 if (fmt != NULL)
39424bef 1157 {
20389057
DJ
1158 kind = floatformat_classify (fmt, valaddr);
1159 if (kind == float_nan)
1160 {
1161 if (floatformat_is_negative (fmt, valaddr))
1162 fprintf_filtered (stream, "-");
1163 fprintf_filtered (stream, "nan(");
1164 fputs_filtered ("0x", stream);
1165 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1166 fprintf_filtered (stream, ")");
1167 return;
1168 }
1169 else if (kind == float_infinite)
1170 {
1171 if (floatformat_is_negative (fmt, valaddr))
1172 fputs_filtered ("-", stream);
1173 fputs_filtered ("inf", stream);
1174 return;
1175 }
7355ddba 1176 }
c906108c 1177
a73c86fb
AC
1178 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1179 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1180 needs to be used as that takes care of any necessary type
1181 conversions. Such conversions are of course direct to DOUBLEST
1182 and disregard any possible target floating point limitations.
1183 For instance, a u64 would be converted and displayed exactly on a
1184 host with 80 bit DOUBLEST but with loss of information on a host
1185 with 64 bit DOUBLEST. */
c2f05ac9 1186
c906108c
SS
1187 doub = unpack_double (type, valaddr, &inv);
1188 if (inv)
1189 {
1190 fprintf_filtered (stream, "<invalid float value>");
1191 return;
1192 }
1193
39424bef
MK
1194 /* FIXME: kettenis/2001-01-20: The following code makes too much
1195 assumptions about the host and target floating point format. */
1196
a73c86fb 1197 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1198 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1199 instead uses the type's length to determine the precision of the
1200 floating-point value being printed. */
c2f05ac9 1201
c906108c 1202 if (len < sizeof (double))
c5aa993b 1203 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1204 else if (len == sizeof (double))
c5aa993b 1205 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1206 else
1207#ifdef PRINTF_HAS_LONG_DOUBLE
1208 fprintf_filtered (stream, "%.35Lg", doub);
1209#else
39424bef
MK
1210 /* This at least wins with values that are representable as
1211 doubles. */
c906108c
SS
1212 fprintf_filtered (stream, "%.17g", (double) doub);
1213#endif
1214}
1215
7678ef8f
TJB
1216void
1217print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1218 struct ui_file *stream)
1219{
e17a4113 1220 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1221 char decstr[MAX_DECIMAL_STRING];
1222 unsigned len = TYPE_LENGTH (type);
1223
e17a4113 1224 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1225 fputs_filtered (decstr, stream);
1226 return;
1227}
1228
c5aa993b 1229void
fc1a4b47 1230print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1231 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1232{
1233
1234#define BITS_IN_BYTES 8
1235
fc1a4b47 1236 const gdb_byte *p;
745b8ca0 1237 unsigned int i;
c5aa993b 1238 int b;
c906108c
SS
1239
1240 /* Declared "int" so it will be signed.
581e13c1
MS
1241 This ensures that right shift will shift in zeros. */
1242
c5aa993b 1243 const int mask = 0x080;
c906108c
SS
1244
1245 /* FIXME: We should be not printing leading zeroes in most cases. */
1246
d44e8473 1247 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1248 {
1249 for (p = valaddr;
1250 p < valaddr + len;
1251 p++)
1252 {
c5aa993b 1253 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1254 and print from the MSB end. */
1255
c5aa993b
JM
1256 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1257 {
1258 if (*p & (mask >> i))
1259 b = 1;
1260 else
1261 b = 0;
1262
1263 fprintf_filtered (stream, "%1d", b);
1264 }
c906108c
SS
1265 }
1266 }
1267 else
1268 {
1269 for (p = valaddr + len - 1;
1270 p >= valaddr;
1271 p--)
1272 {
c5aa993b
JM
1273 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1274 {
1275 if (*p & (mask >> i))
1276 b = 1;
1277 else
1278 b = 0;
1279
1280 fprintf_filtered (stream, "%1d", b);
1281 }
c906108c
SS
1282 }
1283 }
c906108c
SS
1284}
1285
1286/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1287 Print it in octal on stream or format it in buf. */
1288
c906108c 1289void
fc1a4b47 1290print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1291 unsigned len, enum bfd_endian byte_order)
c906108c 1292{
fc1a4b47 1293 const gdb_byte *p;
c906108c 1294 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1295 int cycle;
1296
c906108c
SS
1297 /* FIXME: We should be not printing leading zeroes in most cases. */
1298
1299
1300 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1301 * the extra bits, which cycle every three bytes:
1302 *
1303 * Byte side: 0 1 2 3
1304 * | | | |
1305 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1306 *
1307 * Octal side: 0 1 carry 3 4 carry ...
1308 *
1309 * Cycle number: 0 1 2
1310 *
1311 * But of course we are printing from the high side, so we have to
1312 * figure out where in the cycle we are so that we end up with no
1313 * left over bits at the end.
1314 */
1315#define BITS_IN_OCTAL 3
1316#define HIGH_ZERO 0340
1317#define LOW_ZERO 0016
1318#define CARRY_ZERO 0003
1319#define HIGH_ONE 0200
1320#define MID_ONE 0160
1321#define LOW_ONE 0016
1322#define CARRY_ONE 0001
1323#define HIGH_TWO 0300
1324#define MID_TWO 0070
1325#define LOW_TWO 0007
1326
1327 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1328 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1329
c906108c
SS
1330 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1331 carry = 0;
c5aa993b 1332
bb599908 1333 fputs_filtered ("0", stream);
d44e8473 1334 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1335 {
1336 for (p = valaddr;
1337 p < valaddr + len;
1338 p++)
1339 {
c5aa993b
JM
1340 switch (cycle)
1341 {
1342 case 0:
581e13c1
MS
1343 /* No carry in, carry out two bits. */
1344
c5aa993b
JM
1345 octa1 = (HIGH_ZERO & *p) >> 5;
1346 octa2 = (LOW_ZERO & *p) >> 2;
1347 carry = (CARRY_ZERO & *p);
1348 fprintf_filtered (stream, "%o", octa1);
1349 fprintf_filtered (stream, "%o", octa2);
1350 break;
1351
1352 case 1:
581e13c1
MS
1353 /* Carry in two bits, carry out one bit. */
1354
c5aa993b
JM
1355 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1356 octa2 = (MID_ONE & *p) >> 4;
1357 octa3 = (LOW_ONE & *p) >> 1;
1358 carry = (CARRY_ONE & *p);
1359 fprintf_filtered (stream, "%o", octa1);
1360 fprintf_filtered (stream, "%o", octa2);
1361 fprintf_filtered (stream, "%o", octa3);
1362 break;
1363
1364 case 2:
581e13c1
MS
1365 /* Carry in one bit, no carry out. */
1366
c5aa993b
JM
1367 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1368 octa2 = (MID_TWO & *p) >> 3;
1369 octa3 = (LOW_TWO & *p);
1370 carry = 0;
1371 fprintf_filtered (stream, "%o", octa1);
1372 fprintf_filtered (stream, "%o", octa2);
1373 fprintf_filtered (stream, "%o", octa3);
1374 break;
1375
1376 default:
8a3fe4f8 1377 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1378 }
1379
1380 cycle++;
1381 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1382 }
1383 }
1384 else
1385 {
1386 for (p = valaddr + len - 1;
1387 p >= valaddr;
1388 p--)
1389 {
c5aa993b
JM
1390 switch (cycle)
1391 {
1392 case 0:
1393 /* Carry out, no carry in */
581e13c1 1394
c5aa993b
JM
1395 octa1 = (HIGH_ZERO & *p) >> 5;
1396 octa2 = (LOW_ZERO & *p) >> 2;
1397 carry = (CARRY_ZERO & *p);
1398 fprintf_filtered (stream, "%o", octa1);
1399 fprintf_filtered (stream, "%o", octa2);
1400 break;
1401
1402 case 1:
1403 /* Carry in, carry out */
581e13c1 1404
c5aa993b
JM
1405 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1406 octa2 = (MID_ONE & *p) >> 4;
1407 octa3 = (LOW_ONE & *p) >> 1;
1408 carry = (CARRY_ONE & *p);
1409 fprintf_filtered (stream, "%o", octa1);
1410 fprintf_filtered (stream, "%o", octa2);
1411 fprintf_filtered (stream, "%o", octa3);
1412 break;
1413
1414 case 2:
1415 /* Carry in, no carry out */
581e13c1 1416
c5aa993b
JM
1417 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1418 octa2 = (MID_TWO & *p) >> 3;
1419 octa3 = (LOW_TWO & *p);
1420 carry = 0;
1421 fprintf_filtered (stream, "%o", octa1);
1422 fprintf_filtered (stream, "%o", octa2);
1423 fprintf_filtered (stream, "%o", octa3);
1424 break;
1425
1426 default:
8a3fe4f8 1427 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1428 }
1429
1430 cycle++;
1431 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1432 }
1433 }
1434
c906108c
SS
1435}
1436
1437/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1438 Print it in decimal on stream or format it in buf. */
1439
c906108c 1440void
fc1a4b47 1441print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1442 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1443{
1444#define TEN 10
c5aa993b 1445#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1446#define CARRY_LEFT( x ) ((x) % TEN)
1447#define SHIFT( x ) ((x) << 4)
c906108c
SS
1448#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1449#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1450
fc1a4b47 1451 const gdb_byte *p;
c906108c 1452 unsigned char *digits;
c5aa993b
JM
1453 int carry;
1454 int decimal_len;
1455 int i, j, decimal_digits;
1456 int dummy;
1457 int flip;
1458
c906108c 1459 /* Base-ten number is less than twice as many digits
581e13c1
MS
1460 as the base 16 number, which is 2 digits per byte. */
1461
c906108c 1462 decimal_len = len * 2 * 2;
3c37485b 1463 digits = xmalloc (decimal_len);
c906108c 1464
c5aa993b
JM
1465 for (i = 0; i < decimal_len; i++)
1466 {
c906108c 1467 digits[i] = 0;
c5aa993b 1468 }
c906108c 1469
c906108c
SS
1470 /* Ok, we have an unknown number of bytes of data to be printed in
1471 * decimal.
1472 *
1473 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1474 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1475 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1476 *
1477 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1478 * the individual digits are > 10.
c906108c
SS
1479 *
1480 * Outer loop is per nibble (hex digit) of input, from MSD end to
1481 * LSD end.
1482 */
c5aa993b 1483 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1484 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1485 flip = 0;
d44e8473 1486 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1487 {
c906108c
SS
1488 /*
1489 * Multiply current base-ten number by 16 in place.
1490 * Each digit was between 0 and 9, now is between
1491 * 0 and 144.
1492 */
c5aa993b
JM
1493 for (j = 0; j < decimal_digits; j++)
1494 {
1495 digits[j] = SHIFT (digits[j]);
1496 }
1497
c906108c
SS
1498 /* Take the next nibble off the input and add it to what
1499 * we've got in the LSB position. Bottom 'digit' is now
1500 * between 0 and 159.
1501 *
1502 * "flip" is used to run this loop twice for each byte.
1503 */
c5aa993b
JM
1504 if (flip == 0)
1505 {
581e13c1
MS
1506 /* Take top nibble. */
1507
c5aa993b
JM
1508 digits[0] += HIGH_NIBBLE (*p);
1509 flip = 1;
1510 }
1511 else
1512 {
581e13c1
MS
1513 /* Take low nibble and bump our pointer "p". */
1514
c5aa993b 1515 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1516 if (byte_order == BFD_ENDIAN_BIG)
1517 p++;
1518 else
1519 p--;
c5aa993b
JM
1520 flip = 0;
1521 }
c906108c
SS
1522
1523 /* Re-decimalize. We have to do this often enough
1524 * that we don't overflow, but once per nibble is
1525 * overkill. Easier this way, though. Note that the
1526 * carry is often larger than 10 (e.g. max initial
1527 * carry out of lowest nibble is 15, could bubble all
1528 * the way up greater than 10). So we have to do
1529 * the carrying beyond the last current digit.
1530 */
1531 carry = 0;
c5aa993b
JM
1532 for (j = 0; j < decimal_len - 1; j++)
1533 {
1534 digits[j] += carry;
1535
1536 /* "/" won't handle an unsigned char with
1537 * a value that if signed would be negative.
1538 * So extend to longword int via "dummy".
1539 */
1540 dummy = digits[j];
1541 carry = CARRY_OUT (dummy);
1542 digits[j] = CARRY_LEFT (dummy);
1543
1544 if (j >= decimal_digits && carry == 0)
1545 {
1546 /*
1547 * All higher digits are 0 and we
1548 * no longer have a carry.
1549 *
1550 * Note: "j" is 0-based, "decimal_digits" is
1551 * 1-based.
1552 */
1553 decimal_digits = j + 1;
1554 break;
1555 }
1556 }
1557 }
c906108c
SS
1558
1559 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1560 the "decimal_digits" actual digits. Print! */
1561
c5aa993b
JM
1562 for (i = decimal_digits - 1; i >= 0; i--)
1563 {
1564 fprintf_filtered (stream, "%1d", digits[i]);
1565 }
b8c9b27d 1566 xfree (digits);
c906108c
SS
1567}
1568
1569/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1570
6b9acc27 1571void
fc1a4b47 1572print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1573 unsigned len, enum bfd_endian byte_order)
c906108c 1574{
fc1a4b47 1575 const gdb_byte *p;
c906108c
SS
1576
1577 /* FIXME: We should be not printing leading zeroes in most cases. */
1578
bb599908 1579 fputs_filtered ("0x", stream);
d44e8473 1580 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1581 {
1582 for (p = valaddr;
1583 p < valaddr + len;
1584 p++)
1585 {
1586 fprintf_filtered (stream, "%02x", *p);
1587 }
1588 }
1589 else
1590 {
1591 for (p = valaddr + len - 1;
1592 p >= valaddr;
1593 p--)
1594 {
1595 fprintf_filtered (stream, "%02x", *p);
1596 }
1597 }
c906108c
SS
1598}
1599
3e43a32a 1600/* VALADDR points to a char integer of LEN bytes.
581e13c1 1601 Print it out in appropriate language form on stream.
6b9acc27
JJ
1602 Omit any leading zero chars. */
1603
1604void
6c7a06a3
TT
1605print_char_chars (struct ui_file *stream, struct type *type,
1606 const gdb_byte *valaddr,
d44e8473 1607 unsigned len, enum bfd_endian byte_order)
6b9acc27 1608{
fc1a4b47 1609 const gdb_byte *p;
6b9acc27 1610
d44e8473 1611 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1612 {
1613 p = valaddr;
1614 while (p < valaddr + len - 1 && *p == 0)
1615 ++p;
1616
1617 while (p < valaddr + len)
1618 {
6c7a06a3 1619 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1620 ++p;
1621 }
1622 }
1623 else
1624 {
1625 p = valaddr + len - 1;
1626 while (p > valaddr && *p == 0)
1627 --p;
1628
1629 while (p >= valaddr)
1630 {
6c7a06a3 1631 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1632 --p;
1633 }
1634 }
1635}
1636
132c57b4
TT
1637/* Print function pointer with inferior address ADDRESS onto stdio
1638 stream STREAM. */
1639
1640void
edf0c1b7
TT
1641print_function_pointer_address (const struct value_print_options *options,
1642 struct gdbarch *gdbarch,
132c57b4 1643 CORE_ADDR address,
edf0c1b7 1644 struct ui_file *stream)
132c57b4
TT
1645{
1646 CORE_ADDR func_addr
1647 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1648 &current_target);
1649
1650 /* If the function pointer is represented by a description, print
1651 the address of the description. */
edf0c1b7 1652 if (options->addressprint && func_addr != address)
132c57b4
TT
1653 {
1654 fputs_filtered ("@", stream);
1655 fputs_filtered (paddress (gdbarch, address), stream);
1656 fputs_filtered (": ", stream);
1657 }
edf0c1b7 1658 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1659}
1660
1661
79a45b7d 1662/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1663 at INDEX of an array whose index type is INDEX_TYPE. */
1664
1665void
1666maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1667 struct ui_file *stream,
1668 const struct value_print_options *options)
e79af960
JB
1669{
1670 struct value *index_value;
1671
79a45b7d 1672 if (!options->print_array_indexes)
e79af960
JB
1673 return;
1674
1675 index_value = value_from_longest (index_type, index);
1676
79a45b7d
TT
1677 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1678}
e79af960 1679
c906108c 1680/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1681 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1682
c5aa993b
JM
1683 (FIXME?) Assumes array element separator is a comma, which is correct
1684 for all languages currently handled.
1685 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1686 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1687
1688void
490f124f
PA
1689val_print_array_elements (struct type *type,
1690 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1691 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1692 int recurse,
0e03807e 1693 const struct value *val,
79a45b7d 1694 const struct value_print_options *options,
fba45db2 1695 unsigned int i)
c906108c
SS
1696{
1697 unsigned int things_printed = 0;
1698 unsigned len;
aa715135 1699 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1700 unsigned eltlen;
1701 /* Position of the array element we are examining to see
1702 whether it is repeated. */
1703 unsigned int rep1;
1704 /* Number of repetitions we have detected so far. */
1705 unsigned int reps;
dbc98a8b 1706 LONGEST low_bound, high_bound;
aa715135 1707 LONGEST low_pos, high_pos;
c5aa993b 1708
c906108c
SS
1709 elttype = TYPE_TARGET_TYPE (type);
1710 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1711 index_type = TYPE_INDEX_TYPE (type);
c906108c 1712
dbc98a8b 1713 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1714 {
aa715135
JG
1715 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1716 base_index_type = TYPE_TARGET_TYPE (index_type);
1717 else
1718 base_index_type = index_type;
1719
1720 /* Non-contiguous enumerations types can by used as index types
1721 in some languages (e.g. Ada). In this case, the array length
1722 shall be computed from the positions of the first and last
1723 literal in the enumeration type, and not from the values
1724 of these literals. */
1725 if (!discrete_position (base_index_type, low_bound, &low_pos)
1726 || !discrete_position (base_index_type, high_bound, &high_pos))
1727 {
1728 warning (_("unable to get positions in array, use bounds instead"));
1729 low_pos = low_bound;
1730 high_pos = high_bound;
1731 }
1732
1733 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1734 But we have to be a little extra careful, because some languages
aa715135 1735 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1736 empty arrays. In that situation, the array length is just zero,
1737 not negative! */
aa715135 1738 if (low_pos > high_pos)
75be741b
JB
1739 len = 0;
1740 else
aa715135 1741 len = high_pos - low_pos + 1;
75be741b 1742 }
e936309c
JB
1743 else
1744 {
dbc98a8b
KW
1745 warning (_("unable to get bounds of array, assuming null array"));
1746 low_bound = 0;
1747 len = 0;
168de233
JB
1748 }
1749
c906108c
SS
1750 annotate_array_section_begin (i, elttype);
1751
79a45b7d 1752 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1753 {
1754 if (i != 0)
1755 {
2a998fc0 1756 if (options->prettyformat_arrays)
c906108c
SS
1757 {
1758 fprintf_filtered (stream, ",\n");
1759 print_spaces_filtered (2 + 2 * recurse, stream);
1760 }
1761 else
1762 {
1763 fprintf_filtered (stream, ", ");
1764 }
1765 }
1766 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1767 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1768 stream, options);
c906108c
SS
1769
1770 rep1 = i + 1;
1771 reps = 1;
35bef4fd
TT
1772 /* Only check for reps if repeat_count_threshold is not set to
1773 UINT_MAX (unlimited). */
1774 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1775 {
35bef4fd 1776 while (rep1 < len
9a0dc9e3
PA
1777 && value_contents_eq (val,
1778 embedded_offset + i * eltlen,
1779 val,
1780 (embedded_offset
1781 + rep1 * eltlen),
1782 eltlen))
35bef4fd
TT
1783 {
1784 ++reps;
1785 ++rep1;
1786 }
c906108c
SS
1787 }
1788
79a45b7d 1789 if (reps > options->repeat_count_threshold)
c906108c 1790 {
490f124f
PA
1791 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1792 address, stream, recurse + 1, val, options,
1793 current_language);
c906108c
SS
1794 annotate_elt_rep (reps);
1795 fprintf_filtered (stream, " <repeats %u times>", reps);
1796 annotate_elt_rep_end ();
1797
1798 i = rep1 - 1;
79a45b7d 1799 things_printed += options->repeat_count_threshold;
c906108c
SS
1800 }
1801 else
1802 {
490f124f
PA
1803 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1804 address,
0e03807e 1805 stream, recurse + 1, val, options, current_language);
c906108c
SS
1806 annotate_elt ();
1807 things_printed++;
1808 }
1809 }
1810 annotate_array_section_end ();
1811 if (i < len)
1812 {
1813 fprintf_filtered (stream, "...");
1814 }
1815}
1816
917317f4
JM
1817/* Read LEN bytes of target memory at address MEMADDR, placing the
1818 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1819 actually read, and optionally a target_xfer_status value in the
578d3588 1820 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1821
1822/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1823 function be eliminated. */
1824
1825static int
3e43a32a 1826partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1827 int len, int *errptr)
917317f4 1828{
581e13c1
MS
1829 int nread; /* Number of bytes actually read. */
1830 int errcode; /* Error from last read. */
917317f4 1831
581e13c1 1832 /* First try a complete read. */
917317f4
JM
1833 errcode = target_read_memory (memaddr, myaddr, len);
1834 if (errcode == 0)
1835 {
581e13c1 1836 /* Got it all. */
917317f4
JM
1837 nread = len;
1838 }
1839 else
1840 {
581e13c1 1841 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1842 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1843 {
1844 errcode = target_read_memory (memaddr++, myaddr++, 1);
1845 }
581e13c1 1846 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1847 if (errcode != 0)
1848 {
1849 nread--;
1850 }
1851 }
578d3588 1852 if (errptr != NULL)
917317f4 1853 {
578d3588 1854 *errptr = errcode;
917317f4
JM
1855 }
1856 return (nread);
1857}
1858
ae6a3a4c
TJB
1859/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1860 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1861 allocated buffer containing the string, which the caller is responsible to
1862 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1863 success, or a target_xfer_status on failure.
ae6a3a4c 1864
f380848e
SA
1865 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1866 (including eventual NULs in the middle or end of the string).
1867
1868 If LEN is -1, stops at the first null character (not necessarily
1869 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1870 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1871 the string.
ae6a3a4c
TJB
1872
1873 Unless an exception is thrown, BUFFER will always be allocated, even on
1874 failure. In this case, some characters might have been read before the
1875 failure happened. Check BYTES_READ to recognize this situation.
1876
1877 Note: There was a FIXME asking to make this code use target_read_string,
1878 but this function is more general (can read past null characters, up to
581e13c1 1879 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1880 so it is more tested. Perhaps callers of target_read_string should use
1881 this function instead? */
c906108c
SS
1882
1883int
ae6a3a4c 1884read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1885 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1886{
ae6a3a4c
TJB
1887 int errcode; /* Errno returned from bad reads. */
1888 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1889 gdb_byte *bufptr; /* Pointer to next available byte in
1890 buffer. */
ae6a3a4c
TJB
1891 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1892
ae6a3a4c
TJB
1893 /* Loop until we either have all the characters, or we encounter
1894 some error, such as bumping into the end of the address space. */
c906108c 1895
b5096abe
PM
1896 *buffer = NULL;
1897
1898 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1899
1900 if (len > 0)
1901 {
88db67ef
YQ
1902 /* We want fetchlimit chars, so we might as well read them all in
1903 one operation. */
f380848e
SA
1904 unsigned int fetchlen = min (len, fetchlimit);
1905
1906 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1907 bufptr = *buffer;
c906108c 1908
f380848e 1909 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1910 / width;
1911 addr += nfetch * width;
1912 bufptr += nfetch * width;
1913 }
1914 else if (len == -1)
1915 {
1916 unsigned long bufsize = 0;
88db67ef
YQ
1917 unsigned int chunksize; /* Size of each fetch, in chars. */
1918 int found_nul; /* Non-zero if we found the nul char. */
1919 gdb_byte *limit; /* First location past end of fetch buffer. */
1920
1921 found_nul = 0;
1922 /* We are looking for a NUL terminator to end the fetching, so we
1923 might as well read in blocks that are large enough to be efficient,
1924 but not so large as to be slow if fetchlimit happens to be large.
1925 So we choose the minimum of 8 and fetchlimit. We used to use 200
1926 instead of 8 but 200 is way too big for remote debugging over a
1927 serial line. */
1928 chunksize = min (8, fetchlimit);
ae6a3a4c 1929
c906108c
SS
1930 do
1931 {
1932 QUIT;
1933 nfetch = min (chunksize, fetchlimit - bufsize);
1934
ae6a3a4c
TJB
1935 if (*buffer == NULL)
1936 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 1937 else
b5096abe
PM
1938 *buffer = (gdb_byte *) xrealloc (*buffer,
1939 (nfetch + bufsize) * width);
c906108c 1940
ae6a3a4c 1941 bufptr = *buffer + bufsize * width;
c906108c
SS
1942 bufsize += nfetch;
1943
ae6a3a4c 1944 /* Read as much as we can. */
917317f4 1945 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 1946 / width;
c906108c 1947
ae6a3a4c 1948 /* Scan this chunk for the null character that terminates the string
c906108c
SS
1949 to print. If found, we don't need to fetch any more. Note
1950 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
1951 after the null character, or at the next character after the end
1952 of the buffer. */
c906108c
SS
1953
1954 limit = bufptr + nfetch * width;
1955 while (bufptr < limit)
1956 {
1957 unsigned long c;
1958
e17a4113 1959 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
1960 addr += width;
1961 bufptr += width;
1962 if (c == 0)
1963 {
1964 /* We don't care about any error which happened after
ae6a3a4c 1965 the NUL terminator. */
c906108c
SS
1966 errcode = 0;
1967 found_nul = 1;
1968 break;
1969 }
1970 }
1971 }
c5aa993b 1972 while (errcode == 0 /* no error */
ae6a3a4c
TJB
1973 && bufptr - *buffer < fetchlimit * width /* no overrun */
1974 && !found_nul); /* haven't found NUL yet */
c906108c
SS
1975 }
1976 else
ae6a3a4c
TJB
1977 { /* Length of string is really 0! */
1978 /* We always allocate *buffer. */
1979 *buffer = bufptr = xmalloc (1);
c906108c
SS
1980 errcode = 0;
1981 }
1982
1983 /* bufptr and addr now point immediately beyond the last byte which we
1984 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
1985 *bytes_read = bufptr - *buffer;
1986
1987 QUIT;
1988
1989 discard_cleanups (old_chain);
1990
1991 return errcode;
1992}
1993
3b2b8fea
TT
1994/* Return true if print_wchar can display W without resorting to a
1995 numeric escape, false otherwise. */
1996
1997static int
1998wchar_printable (gdb_wchar_t w)
1999{
2000 return (gdb_iswprint (w)
2001 || w == LCST ('\a') || w == LCST ('\b')
2002 || w == LCST ('\f') || w == LCST ('\n')
2003 || w == LCST ('\r') || w == LCST ('\t')
2004 || w == LCST ('\v'));
2005}
2006
2007/* A helper function that converts the contents of STRING to wide
2008 characters and then appends them to OUTPUT. */
2009
2010static void
2011append_string_as_wide (const char *string,
2012 struct obstack *output)
2013{
2014 for (; *string; ++string)
2015 {
2016 gdb_wchar_t w = gdb_btowc (*string);
2017 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2018 }
2019}
2020
2021/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2022 original (target) bytes representing the character, ORIG_LEN is the
2023 number of valid bytes. WIDTH is the number of bytes in a base
2024 characters of the type. OUTPUT is an obstack to which wide
2025 characters are emitted. QUOTER is a (narrow) character indicating
2026 the style of quotes surrounding the character to be printed.
2027 NEED_ESCAPE is an in/out flag which is used to track numeric
2028 escapes across calls. */
2029
2030static void
2031print_wchar (gdb_wint_t w, const gdb_byte *orig,
2032 int orig_len, int width,
2033 enum bfd_endian byte_order,
2034 struct obstack *output,
2035 int quoter, int *need_escapep)
2036{
2037 int need_escape = *need_escapep;
2038
2039 *need_escapep = 0;
3b2b8fea 2040
95c64f92
YQ
2041 /* iswprint implementation on Windows returns 1 for tab character.
2042 In order to avoid different printout on this host, we explicitly
2043 use wchar_printable function. */
2044 switch (w)
3b2b8fea 2045 {
95c64f92
YQ
2046 case LCST ('\a'):
2047 obstack_grow_wstr (output, LCST ("\\a"));
2048 break;
2049 case LCST ('\b'):
2050 obstack_grow_wstr (output, LCST ("\\b"));
2051 break;
2052 case LCST ('\f'):
2053 obstack_grow_wstr (output, LCST ("\\f"));
2054 break;
2055 case LCST ('\n'):
2056 obstack_grow_wstr (output, LCST ("\\n"));
2057 break;
2058 case LCST ('\r'):
2059 obstack_grow_wstr (output, LCST ("\\r"));
2060 break;
2061 case LCST ('\t'):
2062 obstack_grow_wstr (output, LCST ("\\t"));
2063 break;
2064 case LCST ('\v'):
2065 obstack_grow_wstr (output, LCST ("\\v"));
2066 break;
2067 default:
3b2b8fea 2068 {
95c64f92
YQ
2069 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2070 && w != LCST ('8')
2071 && w != LCST ('9'))))
2072 {
2073 gdb_wchar_t wchar = w;
3b2b8fea 2074
95c64f92
YQ
2075 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2076 obstack_grow_wstr (output, LCST ("\\"));
2077 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2078 }
2079 else
2080 {
2081 int i;
3b2b8fea 2082
95c64f92
YQ
2083 for (i = 0; i + width <= orig_len; i += width)
2084 {
2085 char octal[30];
2086 ULONGEST value;
2087
2088 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2089 byte_order);
95c64f92
YQ
2090 /* If the value fits in 3 octal digits, print it that
2091 way. Otherwise, print it as a hex escape. */
2092 if (value <= 0777)
2093 xsnprintf (octal, sizeof (octal), "\\%.3o",
2094 (int) (value & 0777));
2095 else
2096 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2097 append_string_as_wide (octal, output);
2098 }
2099 /* If we somehow have extra bytes, print them now. */
2100 while (i < orig_len)
2101 {
2102 char octal[5];
2103
2104 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2105 append_string_as_wide (octal, output);
2106 ++i;
2107 }
2108
2109 *need_escapep = 1;
2110 }
3b2b8fea
TT
2111 break;
2112 }
2113 }
2114}
2115
2116/* Print the character C on STREAM as part of the contents of a
2117 literal string whose delimiter is QUOTER. ENCODING names the
2118 encoding of C. */
2119
2120void
2121generic_emit_char (int c, struct type *type, struct ui_file *stream,
2122 int quoter, const char *encoding)
2123{
2124 enum bfd_endian byte_order
2125 = gdbarch_byte_order (get_type_arch (type));
2126 struct obstack wchar_buf, output;
2127 struct cleanup *cleanups;
2128 gdb_byte *buf;
2129 struct wchar_iterator *iter;
2130 int need_escape = 0;
2131
2132 buf = alloca (TYPE_LENGTH (type));
2133 pack_long (buf, type, c);
2134
2135 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2136 encoding, TYPE_LENGTH (type));
2137 cleanups = make_cleanup_wchar_iterator (iter);
2138
2139 /* This holds the printable form of the wchar_t data. */
2140 obstack_init (&wchar_buf);
2141 make_cleanup_obstack_free (&wchar_buf);
2142
2143 while (1)
2144 {
2145 int num_chars;
2146 gdb_wchar_t *chars;
2147 const gdb_byte *buf;
2148 size_t buflen;
2149 int print_escape = 1;
2150 enum wchar_iterate_result result;
2151
2152 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2153 if (num_chars < 0)
2154 break;
2155 if (num_chars > 0)
2156 {
2157 /* If all characters are printable, print them. Otherwise,
2158 we're going to have to print an escape sequence. We
2159 check all characters because we want to print the target
2160 bytes in the escape sequence, and we don't know character
2161 boundaries there. */
2162 int i;
2163
2164 print_escape = 0;
2165 for (i = 0; i < num_chars; ++i)
2166 if (!wchar_printable (chars[i]))
2167 {
2168 print_escape = 1;
2169 break;
2170 }
2171
2172 if (!print_escape)
2173 {
2174 for (i = 0; i < num_chars; ++i)
2175 print_wchar (chars[i], buf, buflen,
2176 TYPE_LENGTH (type), byte_order,
2177 &wchar_buf, quoter, &need_escape);
2178 }
2179 }
2180
2181 /* This handles the NUM_CHARS == 0 case as well. */
2182 if (print_escape)
2183 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2184 byte_order, &wchar_buf, quoter, &need_escape);
2185 }
2186
2187 /* The output in the host encoding. */
2188 obstack_init (&output);
2189 make_cleanup_obstack_free (&output);
2190
2191 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2192 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2193 obstack_object_size (&wchar_buf),
fff10684 2194 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2195 obstack_1grow (&output, '\0');
2196
2197 fputs_filtered (obstack_base (&output), stream);
2198
2199 do_cleanups (cleanups);
2200}
2201
0d63ecda
KS
2202/* Return the repeat count of the next character/byte in ITER,
2203 storing the result in VEC. */
2204
2205static int
2206count_next_character (struct wchar_iterator *iter,
2207 VEC (converted_character_d) **vec)
2208{
2209 struct converted_character *current;
2210
2211 if (VEC_empty (converted_character_d, *vec))
2212 {
2213 struct converted_character tmp;
2214 gdb_wchar_t *chars;
2215
2216 tmp.num_chars
2217 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2218 if (tmp.num_chars > 0)
2219 {
2220 gdb_assert (tmp.num_chars < MAX_WCHARS);
2221 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2222 }
2223 VEC_safe_push (converted_character_d, *vec, &tmp);
2224 }
2225
2226 current = VEC_last (converted_character_d, *vec);
2227
2228 /* Count repeated characters or bytes. */
2229 current->repeat_count = 1;
2230 if (current->num_chars == -1)
2231 {
2232 /* EOF */
2233 return -1;
2234 }
2235 else
2236 {
2237 gdb_wchar_t *chars;
2238 struct converted_character d;
2239 int repeat;
2240
2241 d.repeat_count = 0;
2242
2243 while (1)
2244 {
2245 /* Get the next character. */
2246 d.num_chars
2247 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2248
2249 /* If a character was successfully converted, save the character
2250 into the converted character. */
2251 if (d.num_chars > 0)
2252 {
2253 gdb_assert (d.num_chars < MAX_WCHARS);
2254 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2255 }
2256
2257 /* Determine if the current character is the same as this
2258 new character. */
2259 if (d.num_chars == current->num_chars && d.result == current->result)
2260 {
2261 /* There are two cases to consider:
2262
2263 1) Equality of converted character (num_chars > 0)
2264 2) Equality of non-converted character (num_chars == 0) */
2265 if ((current->num_chars > 0
2266 && memcmp (current->chars, d.chars,
2267 WCHAR_BUFLEN (current->num_chars)) == 0)
2268 || (current->num_chars == 0
2269 && current->buflen == d.buflen
2270 && memcmp (current->buf, d.buf, current->buflen) == 0))
2271 ++current->repeat_count;
2272 else
2273 break;
2274 }
2275 else
2276 break;
2277 }
2278
2279 /* Push this next converted character onto the result vector. */
2280 repeat = current->repeat_count;
2281 VEC_safe_push (converted_character_d, *vec, &d);
2282 return repeat;
2283 }
2284}
2285
2286/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2287 character to use with string output. WIDTH is the size of the output
2288 character type. BYTE_ORDER is the the target byte order. OPTIONS
2289 is the user's print options. */
2290
2291static void
2292print_converted_chars_to_obstack (struct obstack *obstack,
2293 VEC (converted_character_d) *chars,
2294 int quote_char, int width,
2295 enum bfd_endian byte_order,
2296 const struct value_print_options *options)
2297{
2298 unsigned int idx;
2299 struct converted_character *elem;
2300 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2301 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2302 int need_escape = 0;
2303
2304 /* Set the start state. */
2305 idx = 0;
2306 last = state = START;
2307 elem = NULL;
2308
2309 while (1)
2310 {
2311 switch (state)
2312 {
2313 case START:
2314 /* Nothing to do. */
2315 break;
2316
2317 case SINGLE:
2318 {
2319 int j;
2320
2321 /* We are outputting a single character
2322 (< options->repeat_count_threshold). */
2323
2324 if (last != SINGLE)
2325 {
2326 /* We were outputting some other type of content, so we
2327 must output and a comma and a quote. */
2328 if (last != START)
2329 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2330 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2331 }
2332 /* Output the character. */
2333 for (j = 0; j < elem->repeat_count; ++j)
2334 {
2335 if (elem->result == wchar_iterate_ok)
2336 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2337 byte_order, obstack, quote_char, &need_escape);
2338 else
2339 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2340 byte_order, obstack, quote_char, &need_escape);
2341 }
2342 }
2343 break;
2344
2345 case REPEAT:
2346 {
2347 int j;
2348 char *s;
2349
2350 /* We are outputting a character with a repeat count
2351 greater than options->repeat_count_threshold. */
2352
2353 if (last == SINGLE)
2354 {
2355 /* We were outputting a single string. Terminate the
2356 string. */
0d63ecda
KS
2357 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2358 }
2359 if (last != START)
2360 obstack_grow_wstr (obstack, LCST (", "));
2361
2362 /* Output the character and repeat string. */
2363 obstack_grow_wstr (obstack, LCST ("'"));
2364 if (elem->result == wchar_iterate_ok)
2365 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2366 byte_order, obstack, quote_char, &need_escape);
2367 else
2368 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2369 byte_order, obstack, quote_char, &need_escape);
2370 obstack_grow_wstr (obstack, LCST ("'"));
2371 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2372 for (j = 0; s[j]; ++j)
2373 {
2374 gdb_wchar_t w = gdb_btowc (s[j]);
2375 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2376 }
2377 xfree (s);
2378 }
2379 break;
2380
2381 case INCOMPLETE:
2382 /* We are outputting an incomplete sequence. */
2383 if (last == SINGLE)
2384 {
2385 /* If we were outputting a string of SINGLE characters,
2386 terminate the quote. */
0d63ecda
KS
2387 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2388 }
2389 if (last != START)
2390 obstack_grow_wstr (obstack, LCST (", "));
2391
2392 /* Output the incomplete sequence string. */
2393 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2394 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2395 obstack, 0, &need_escape);
2396 obstack_grow_wstr (obstack, LCST (">"));
2397
2398 /* We do not attempt to outupt anything after this. */
2399 state = FINISH;
2400 break;
2401
2402 case FINISH:
2403 /* All done. If we were outputting a string of SINGLE
2404 characters, the string must be terminated. Otherwise,
2405 REPEAT and INCOMPLETE are always left properly terminated. */
2406 if (last == SINGLE)
e93a8774 2407 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2408
2409 return;
2410 }
2411
2412 /* Get the next element and state. */
2413 last = state;
2414 if (state != FINISH)
2415 {
2416 elem = VEC_index (converted_character_d, chars, idx++);
2417 switch (elem->result)
2418 {
2419 case wchar_iterate_ok:
2420 case wchar_iterate_invalid:
2421 if (elem->repeat_count > options->repeat_count_threshold)
2422 state = REPEAT;
2423 else
2424 state = SINGLE;
2425 break;
2426
2427 case wchar_iterate_incomplete:
2428 state = INCOMPLETE;
2429 break;
2430
2431 case wchar_iterate_eof:
2432 state = FINISH;
2433 break;
2434 }
2435 }
2436 }
2437}
2438
3b2b8fea
TT
2439/* Print the character string STRING, printing at most LENGTH
2440 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2441 the type of each character. OPTIONS holds the printing options;
2442 printing stops early if the number hits print_max; repeat counts
2443 are printed as appropriate. Print ellipses at the end if we had to
2444 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2445 QUOTE_CHAR is the character to print at each end of the string. If
2446 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2447 omitted. */
2448
2449void
2450generic_printstr (struct ui_file *stream, struct type *type,
2451 const gdb_byte *string, unsigned int length,
2452 const char *encoding, int force_ellipses,
2453 int quote_char, int c_style_terminator,
2454 const struct value_print_options *options)
2455{
2456 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2457 unsigned int i;
3b2b8fea
TT
2458 int width = TYPE_LENGTH (type);
2459 struct obstack wchar_buf, output;
2460 struct cleanup *cleanup;
2461 struct wchar_iterator *iter;
2462 int finished = 0;
0d63ecda
KS
2463 struct converted_character *last;
2464 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2465
2466 if (length == -1)
2467 {
2468 unsigned long current_char = 1;
2469
2470 for (i = 0; current_char; ++i)
2471 {
2472 QUIT;
2473 current_char = extract_unsigned_integer (string + i * width,
2474 width, byte_order);
2475 }
2476 length = i;
2477 }
2478
2479 /* If the string was not truncated due to `set print elements', and
2480 the last byte of it is a null, we don't print that, in
2481 traditional C style. */
2482 if (c_style_terminator
2483 && !force_ellipses
2484 && length > 0
2485 && (extract_unsigned_integer (string + (length - 1) * width,
2486 width, byte_order) == 0))
2487 length--;
2488
2489 if (length == 0)
2490 {
2491 fputs_filtered ("\"\"", stream);
2492 return;
2493 }
2494
2495 /* Arrange to iterate over the characters, in wchar_t form. */
2496 iter = make_wchar_iterator (string, length * width, encoding, width);
2497 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2498 converted_chars = NULL;
2499 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2500
0d63ecda
KS
2501 /* Convert characters until the string is over or the maximum
2502 number of printed characters has been reached. */
2503 i = 0;
2504 while (i < options->print_max)
3b2b8fea 2505 {
0d63ecda 2506 int r;
3b2b8fea
TT
2507
2508 QUIT;
2509
0d63ecda
KS
2510 /* Grab the next character and repeat count. */
2511 r = count_next_character (iter, &converted_chars);
3b2b8fea 2512
0d63ecda
KS
2513 /* If less than zero, the end of the input string was reached. */
2514 if (r < 0)
2515 break;
3b2b8fea 2516
0d63ecda
KS
2517 /* Otherwise, add the count to the total print count and get
2518 the next character. */
2519 i += r;
2520 }
3b2b8fea 2521
0d63ecda
KS
2522 /* Get the last element and determine if the entire string was
2523 processed. */
2524 last = VEC_last (converted_character_d, converted_chars);
2525 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2526
0d63ecda
KS
2527 /* Ensure that CONVERTED_CHARS is terminated. */
2528 last->result = wchar_iterate_eof;
3b2b8fea 2529
0d63ecda
KS
2530 /* WCHAR_BUF is the obstack we use to represent the string in
2531 wchar_t form. */
2532 obstack_init (&wchar_buf);
2533 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2534
0d63ecda
KS
2535 /* Print the output string to the obstack. */
2536 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2537 width, byte_order, options);
3b2b8fea
TT
2538
2539 if (force_ellipses || !finished)
2540 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2541
2542 /* OUTPUT is where we collect `char's for printing. */
2543 obstack_init (&output);
2544 make_cleanup_obstack_free (&output);
2545
2546 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2547 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2548 obstack_object_size (&wchar_buf),
fff10684 2549 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2550 obstack_1grow (&output, '\0');
2551
2552 fputs_filtered (obstack_base (&output), stream);
2553
2554 do_cleanups (cleanup);
2555}
2556
ae6a3a4c
TJB
2557/* Print a string from the inferior, starting at ADDR and printing up to LEN
2558 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2559 stops at the first null byte, otherwise printing proceeds (including null
2560 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2561 whichever is smaller. ENCODING is the name of the string's
2562 encoding. It can be NULL, in which case the target encoding is
2563 assumed. */
ae6a3a4c
TJB
2564
2565int
09ca9e2e
TT
2566val_print_string (struct type *elttype, const char *encoding,
2567 CORE_ADDR addr, int len,
6c7a06a3 2568 struct ui_file *stream,
ae6a3a4c
TJB
2569 const struct value_print_options *options)
2570{
2571 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2572 int errcode; /* Errno returned from bad reads. */
581e13c1 2573 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2574 unsigned int fetchlimit; /* Maximum number of chars to print. */
2575 int bytes_read;
2576 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2577 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2578 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2580 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2581
2582 /* First we need to figure out the limit on the number of characters we are
2583 going to attempt to fetch and print. This is actually pretty simple. If
2584 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2585 LEN is -1, then the limit is print_max. This is true regardless of
2586 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2587 because finding the null byte (or available memory) is what actually
2588 limits the fetch. */
2589
3e43a32a
MS
2590 fetchlimit = (len == -1 ? options->print_max : min (len,
2591 options->print_max));
ae6a3a4c 2592
e17a4113
UW
2593 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2594 &buffer, &bytes_read);
ae6a3a4c
TJB
2595 old_chain = make_cleanup (xfree, buffer);
2596
2597 addr += bytes_read;
c906108c 2598
3e43a32a
MS
2599 /* We now have either successfully filled the buffer to fetchlimit,
2600 or terminated early due to an error or finding a null char when
2601 LEN is -1. */
ae6a3a4c
TJB
2602
2603 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2604 found_nul = 0;
2605 if (bytes_read >= width)
2606 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2607 byte_order) == 0;
c906108c
SS
2608 if (len == -1 && !found_nul)
2609 {
777ea8f1 2610 gdb_byte *peekbuf;
c906108c 2611
ae6a3a4c 2612 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2613 to peek at the next character. If not successful, or it is not
2614 a null byte, then force ellipsis to be printed. */
c906108c 2615
777ea8f1 2616 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2617
2618 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2619 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2620 force_ellipsis = 1;
2621 }
ae6a3a4c 2622 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2623 {
2624 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2625 than the number of characters actually requested, always make us
ae6a3a4c 2626 print ellipsis. */
c906108c
SS
2627 force_ellipsis = 1;
2628 }
2629
c906108c
SS
2630 /* If we get an error before fetching anything, don't print a string.
2631 But if we fetch something and then get an error, print the string
2632 and then the error message. */
ae6a3a4c 2633 if (errcode == 0 || bytes_read > 0)
c906108c 2634 {
be759fcf 2635 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2636 encoding, force_ellipsis, options);
c906108c
SS
2637 }
2638
2639 if (errcode != 0)
2640 {
578d3588
PA
2641 char *str;
2642
2643 str = memory_error_message (errcode, gdbarch, addr);
2644 make_cleanup (xfree, str);
2645
2646 fprintf_filtered (stream, "<error: ");
2647 fputs_filtered (str, stream);
2648 fprintf_filtered (stream, ">");
c906108c 2649 }
ae6a3a4c 2650
c906108c
SS
2651 gdb_flush (stream);
2652 do_cleanups (old_chain);
ae6a3a4c
TJB
2653
2654 return (bytes_read / width);
c906108c 2655}
c906108c 2656\f
c5aa993b 2657
09e6485f
PA
2658/* The 'set input-radix' command writes to this auxiliary variable.
2659 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2660 it is left unchanged. */
2661
2662static unsigned input_radix_1 = 10;
2663
c906108c
SS
2664/* Validate an input or output radix setting, and make sure the user
2665 knows what they really did here. Radix setting is confusing, e.g.
2666 setting the input radix to "10" never changes it! */
2667
c906108c 2668static void
fba45db2 2669set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2670{
09e6485f 2671 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2672}
2673
c906108c 2674static void
fba45db2 2675set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2676{
2677 /* We don't currently disallow any input radix except 0 or 1, which don't
2678 make any mathematical sense. In theory, we can deal with any input
2679 radix greater than 1, even if we don't have unique digits for every
2680 value from 0 to radix-1, but in practice we lose on large radix values.
2681 We should either fix the lossage or restrict the radix range more.
581e13c1 2682 (FIXME). */
c906108c
SS
2683
2684 if (radix < 2)
2685 {
09e6485f 2686 input_radix_1 = input_radix;
8a3fe4f8 2687 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2688 radix);
2689 }
09e6485f 2690 input_radix_1 = input_radix = radix;
c906108c
SS
2691 if (from_tty)
2692 {
3e43a32a
MS
2693 printf_filtered (_("Input radix now set to "
2694 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2695 radix, radix, radix);
2696 }
2697}
2698
09e6485f
PA
2699/* The 'set output-radix' command writes to this auxiliary variable.
2700 If the requested radix is valid, OUTPUT_RADIX is updated,
2701 otherwise, it is left unchanged. */
2702
2703static unsigned output_radix_1 = 10;
2704
c906108c 2705static void
fba45db2 2706set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2707{
09e6485f 2708 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2709}
2710
2711static void
fba45db2 2712set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2713{
2714 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2715 handle correctly, leaving the radix unchanged. */
c906108c
SS
2716 switch (radix)
2717 {
2718 case 16:
79a45b7d 2719 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2720 break;
2721 case 10:
79a45b7d 2722 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2723 break;
2724 case 8:
79a45b7d 2725 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2726 break;
2727 default:
09e6485f 2728 output_radix_1 = output_radix;
3e43a32a
MS
2729 error (_("Unsupported output radix ``decimal %u''; "
2730 "output radix unchanged."),
c906108c
SS
2731 radix);
2732 }
09e6485f 2733 output_radix_1 = output_radix = radix;
c906108c
SS
2734 if (from_tty)
2735 {
3e43a32a
MS
2736 printf_filtered (_("Output radix now set to "
2737 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2738 radix, radix, radix);
2739 }
2740}
2741
2742/* Set both the input and output radix at once. Try to set the output radix
2743 first, since it has the most restrictive range. An radix that is valid as
2744 an output radix is also valid as an input radix.
2745
2746 It may be useful to have an unusual input radix. If the user wishes to
2747 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2748 the 'set input-radix' command. */
c906108c
SS
2749
2750static void
fba45db2 2751set_radix (char *arg, int from_tty)
c906108c
SS
2752{
2753 unsigned radix;
2754
bb518678 2755 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2756 set_output_radix_1 (0, radix);
2757 set_input_radix_1 (0, radix);
2758 if (from_tty)
2759 {
3e43a32a
MS
2760 printf_filtered (_("Input and output radices now set to "
2761 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2762 radix, radix, radix);
2763 }
2764}
2765
581e13c1 2766/* Show both the input and output radices. */
c906108c 2767
c906108c 2768static void
fba45db2 2769show_radix (char *arg, int from_tty)
c906108c
SS
2770{
2771 if (from_tty)
2772 {
2773 if (input_radix == output_radix)
2774 {
3e43a32a
MS
2775 printf_filtered (_("Input and output radices set to "
2776 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2777 input_radix, input_radix, input_radix);
2778 }
2779 else
2780 {
3e43a32a
MS
2781 printf_filtered (_("Input radix set to decimal "
2782 "%u, hex %x, octal %o.\n"),
c906108c 2783 input_radix, input_radix, input_radix);
3e43a32a
MS
2784 printf_filtered (_("Output radix set to decimal "
2785 "%u, hex %x, octal %o.\n"),
c906108c
SS
2786 output_radix, output_radix, output_radix);
2787 }
2788 }
2789}
c906108c 2790\f
c5aa993b 2791
c906108c 2792static void
fba45db2 2793set_print (char *arg, int from_tty)
c906108c
SS
2794{
2795 printf_unfiltered (
c5aa993b 2796 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2797 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2798}
2799
c906108c 2800static void
fba45db2 2801show_print (char *args, int from_tty)
c906108c
SS
2802{
2803 cmd_show_list (showprintlist, from_tty, "");
2804}
e7045703
DE
2805
2806static void
2807set_print_raw (char *arg, int from_tty)
2808{
2809 printf_unfiltered (
2810 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2811 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2812}
2813
2814static void
2815show_print_raw (char *args, int from_tty)
2816{
2817 cmd_show_list (showprintrawlist, from_tty, "");
2818}
2819
c906108c
SS
2820\f
2821void
fba45db2 2822_initialize_valprint (void)
c906108c 2823{
c906108c 2824 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2825 _("Generic command for setting how things print."),
c906108c 2826 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2827 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2828 /* Prefer set print to set prompt. */
c906108c
SS
2829 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2830
2831 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2832 _("Generic command for showing print settings."),
c906108c 2833 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2834 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2835 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2836
e7045703
DE
2837 add_prefix_cmd ("raw", no_class, set_print_raw,
2838 _("\
2839Generic command for setting what things to print in \"raw\" mode."),
2840 &setprintrawlist, "set print raw ", 0, &setprintlist);
2841 add_prefix_cmd ("raw", no_class, show_print_raw,
2842 _("Generic command for showing \"print raw\" settings."),
2843 &showprintrawlist, "show print raw ", 0, &showprintlist);
2844
79a45b7d
TT
2845 add_setshow_uinteger_cmd ("elements", no_class,
2846 &user_print_options.print_max, _("\
35096d9d
AC
2847Set limit on string chars or array elements to print."), _("\
2848Show limit on string chars or array elements to print."), _("\
f81d1120 2849\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2850 NULL,
920d2a44 2851 show_print_max,
35096d9d 2852 &setprintlist, &showprintlist);
c906108c 2853
79a45b7d
TT
2854 add_setshow_boolean_cmd ("null-stop", no_class,
2855 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2856Set printing of char arrays to stop at first null char."), _("\
2857Show printing of char arrays to stop at first null char."), NULL,
2858 NULL,
920d2a44 2859 show_stop_print_at_null,
5bf193a2 2860 &setprintlist, &showprintlist);
c906108c 2861
35096d9d 2862 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2863 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2864Set threshold for repeated print elements."), _("\
2865Show threshold for repeated print elements."), _("\
f81d1120 2866\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2867 NULL,
920d2a44 2868 show_repeat_count_threshold,
35096d9d 2869 &setprintlist, &showprintlist);
c906108c 2870
79a45b7d 2871 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2872 &user_print_options.prettyformat_structs, _("\
2873Set pretty formatting of structures."), _("\
2874Show pretty formatting of structures."), NULL,
5bf193a2 2875 NULL,
2a998fc0 2876 show_prettyformat_structs,
5bf193a2
AC
2877 &setprintlist, &showprintlist);
2878
79a45b7d
TT
2879 add_setshow_boolean_cmd ("union", class_support,
2880 &user_print_options.unionprint, _("\
5bf193a2
AC
2881Set printing of unions interior to structures."), _("\
2882Show printing of unions interior to structures."), NULL,
2883 NULL,
920d2a44 2884 show_unionprint,
5bf193a2
AC
2885 &setprintlist, &showprintlist);
2886
79a45b7d 2887 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2888 &user_print_options.prettyformat_arrays, _("\
2889Set pretty formatting of arrays."), _("\
2890Show pretty formatting of arrays."), NULL,
5bf193a2 2891 NULL,
2a998fc0 2892 show_prettyformat_arrays,
5bf193a2
AC
2893 &setprintlist, &showprintlist);
2894
79a45b7d
TT
2895 add_setshow_boolean_cmd ("address", class_support,
2896 &user_print_options.addressprint, _("\
5bf193a2
AC
2897Set printing of addresses."), _("\
2898Show printing of addresses."), NULL,
2899 NULL,
920d2a44 2900 show_addressprint,
5bf193a2 2901 &setprintlist, &showprintlist);
c906108c 2902
9cb709b6
TT
2903 add_setshow_boolean_cmd ("symbol", class_support,
2904 &user_print_options.symbol_print, _("\
2905Set printing of symbol names when printing pointers."), _("\
2906Show printing of symbol names when printing pointers."),
2907 NULL, NULL,
2908 show_symbol_print,
2909 &setprintlist, &showprintlist);
2910
1e8fb976
PA
2911 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2912 _("\
35096d9d
AC
2913Set default input radix for entering numbers."), _("\
2914Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2915 set_input_radix,
2916 show_input_radix,
2917 &setlist, &showlist);
35096d9d 2918
1e8fb976
PA
2919 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2920 _("\
35096d9d
AC
2921Set default output radix for printing of values."), _("\
2922Show default output radix for printing of values."), NULL,
1e8fb976
PA
2923 set_output_radix,
2924 show_output_radix,
2925 &setlist, &showlist);
c906108c 2926
cb1a6d5f
AC
2927 /* The "set radix" and "show radix" commands are special in that
2928 they are like normal set and show commands but allow two normally
2929 independent variables to be either set or shown with a single
b66df561 2930 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 2931 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
2932 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2933 longer true - show can display anything. */
1a966eab
AC
2934 add_cmd ("radix", class_support, set_radix, _("\
2935Set default input and output number radices.\n\
c906108c 2936Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 2937Without an argument, sets both radices back to the default value of 10."),
c906108c 2938 &setlist);
1a966eab
AC
2939 add_cmd ("radix", class_support, show_radix, _("\
2940Show the default input and output number radices.\n\
2941Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
2942 &showlist);
2943
e79af960 2944 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 2945 &user_print_options.print_array_indexes, _("\
e79af960
JB
2946Set printing of array indexes."), _("\
2947Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2948 &setprintlist, &showprintlist);
c906108c 2949}
This page took 2.578072 seconds and 4 git commands to generate.