windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
4e07d55f 343int
bdf22206 344value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
345{
346 gdb_assert (!value->lazy);
347
348 return !ranges_contain (value->unavailable, offset, length);
349}
350
bdf22206
AB
351int
352value_bytes_available (const struct value *value, int offset, int length)
353{
354 return value_bits_available (value,
355 offset * TARGET_CHAR_BIT,
356 length * TARGET_CHAR_BIT);
357}
358
9a0dc9e3
PA
359int
360value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
361{
362 gdb_assert (!value->lazy);
363
364 return ranges_contain (value->optimized_out, bit_offset, bit_length);
365}
366
ec0a52e1
PA
367int
368value_entirely_available (struct value *value)
369{
370 /* We can only tell whether the whole value is available when we try
371 to read it. */
372 if (value->lazy)
373 value_fetch_lazy (value);
374
375 if (VEC_empty (range_s, value->unavailable))
376 return 1;
377 return 0;
378}
379
9a0dc9e3
PA
380/* Returns true if VALUE is entirely covered by RANGES. If the value
381 is lazy, it'll be read now. Note that RANGE is a pointer to
382 pointer because reading the value might change *RANGE. */
383
384static int
385value_entirely_covered_by_range_vector (struct value *value,
386 VEC(range_s) **ranges)
6211c335 387{
9a0dc9e3
PA
388 /* We can only tell whether the whole value is optimized out /
389 unavailable when we try to read it. */
6211c335
YQ
390 if (value->lazy)
391 value_fetch_lazy (value);
392
9a0dc9e3 393 if (VEC_length (range_s, *ranges) == 1)
6211c335 394 {
9a0dc9e3 395 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
396
397 if (t->offset == 0
64c46ce4
JB
398 && t->length == (TARGET_CHAR_BIT
399 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
400 return 1;
401 }
402
403 return 0;
404}
405
9a0dc9e3
PA
406int
407value_entirely_unavailable (struct value *value)
408{
409 return value_entirely_covered_by_range_vector (value, &value->unavailable);
410}
411
412int
413value_entirely_optimized_out (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
416}
417
418/* Insert into the vector pointed to by VECTORP the bit range starting of
419 OFFSET bits, and extending for the next LENGTH bits. */
420
421static void
422insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
423{
424 range_s newr;
425 int i;
426
427 /* Insert the range sorted. If there's overlap or the new range
428 would be contiguous with an existing range, merge. */
429
430 newr.offset = offset;
431 newr.length = length;
432
433 /* Do a binary search for the position the given range would be
434 inserted if we only considered the starting OFFSET of ranges.
435 Call that position I. Since we also have LENGTH to care for
436 (this is a range afterall), we need to check if the _previous_
437 range overlaps the I range. E.g., calling R the new range:
438
439 #1 - overlaps with previous
440
441 R
442 |-...-|
443 |---| |---| |------| ... |--|
444 0 1 2 N
445
446 I=1
447
448 In the case #1 above, the binary search would return `I=1',
449 meaning, this OFFSET should be inserted at position 1, and the
450 current position 1 should be pushed further (and become 2). But,
451 note that `0' overlaps with R, so we want to merge them.
452
453 A similar consideration needs to be taken if the new range would
454 be contiguous with the previous range:
455
456 #2 - contiguous with previous
457
458 R
459 |-...-|
460 |--| |---| |------| ... |--|
461 0 1 2 N
462
463 I=1
464
465 If there's no overlap with the previous range, as in:
466
467 #3 - not overlapping and not contiguous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 or if I is 0:
477
478 #4 - R is the range with lowest offset
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=0
486
487 ... we just push the new range to I.
488
489 All the 4 cases above need to consider that the new range may
490 also overlap several of the ranges that follow, or that R may be
491 contiguous with the following range, and merge. E.g.,
492
493 #5 - overlapping following ranges
494
495 R
496 |------------------------|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=0
501
502 or:
503
504 R
505 |-------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=1
510
511 */
512
9a0dc9e3 513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
514 if (i > 0)
515 {
9a0dc9e3 516 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
517
518 if (ranges_overlap (bef->offset, bef->length, offset, length))
519 {
520 /* #1 */
521 ULONGEST l = min (bef->offset, offset);
522 ULONGEST h = max (bef->offset + bef->length, offset + length);
523
524 bef->offset = l;
525 bef->length = h - l;
526 i--;
527 }
528 else if (offset == bef->offset + bef->length)
529 {
530 /* #2 */
531 bef->length += length;
532 i--;
533 }
534 else
535 {
536 /* #3 */
9a0dc9e3 537 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
538 }
539 }
540 else
541 {
542 /* #4 */
9a0dc9e3 543 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
544 }
545
546 /* Check whether the ranges following the one we've just added or
547 touched can be folded in (#5 above). */
9a0dc9e3 548 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
549 {
550 struct range *t;
551 struct range *r;
552 int removed = 0;
553 int next = i + 1;
554
555 /* Get the range we just touched. */
9a0dc9e3 556 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
557 removed = 0;
558
559 i = next;
9a0dc9e3 560 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
561 if (r->offset <= t->offset + t->length)
562 {
563 ULONGEST l, h;
564
565 l = min (t->offset, r->offset);
566 h = max (t->offset + t->length, r->offset + r->length);
567
568 t->offset = l;
569 t->length = h - l;
570
571 removed++;
572 }
573 else
574 {
575 /* If we couldn't merge this one, we won't be able to
576 merge following ones either, since the ranges are
577 always sorted by OFFSET. */
578 break;
579 }
580
581 if (removed != 0)
9a0dc9e3 582 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
583 }
584}
585
9a0dc9e3
PA
586void
587mark_value_bits_unavailable (struct value *value, int offset, int length)
588{
589 insert_into_bit_range_vector (&value->unavailable, offset, length);
590}
591
bdf22206
AB
592void
593mark_value_bytes_unavailable (struct value *value, int offset, int length)
594{
595 mark_value_bits_unavailable (value,
596 offset * TARGET_CHAR_BIT,
597 length * TARGET_CHAR_BIT);
598}
599
c8c1c22f
PA
600/* Find the first range in RANGES that overlaps the range defined by
601 OFFSET and LENGTH, starting at element POS in the RANGES vector,
602 Returns the index into RANGES where such overlapping range was
603 found, or -1 if none was found. */
604
605static int
606find_first_range_overlap (VEC(range_s) *ranges, int pos,
607 int offset, int length)
608{
609 range_s *r;
610 int i;
611
612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
613 if (ranges_overlap (r->offset, r->length, offset, length))
614 return i;
615
616 return -1;
617}
618
bdf22206
AB
619/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
621 return non-zero.
622
623 It must always be the case that:
624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
625
626 It is assumed that memory can be accessed from:
627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
628 to:
629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
630 / TARGET_CHAR_BIT) */
631static int
632memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
633 const gdb_byte *ptr2, size_t offset2_bits,
634 size_t length_bits)
635{
636 gdb_assert (offset1_bits % TARGET_CHAR_BIT
637 == offset2_bits % TARGET_CHAR_BIT);
638
639 if (offset1_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 gdb_byte mask, b1, b2;
643
644 /* The offset from the base pointers PTR1 and PTR2 is not a complete
645 number of bytes. A number of bits up to either the next exact
646 byte boundary, or LENGTH_BITS (which ever is sooner) will be
647 compared. */
648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
650 mask = (1 << bits) - 1;
651
652 if (length_bits < bits)
653 {
654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
655 bits = length_bits;
656 }
657
658 /* Now load the two bytes and mask off the bits we care about. */
659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
661
662 if (b1 != b2)
663 return 1;
664
665 /* Now update the length and offsets to take account of the bits
666 we've just compared. */
667 length_bits -= bits;
668 offset1_bits += bits;
669 offset2_bits += bits;
670 }
671
672 if (length_bits % TARGET_CHAR_BIT != 0)
673 {
674 size_t bits;
675 size_t o1, o2;
676 gdb_byte mask, b1, b2;
677
678 /* The length is not an exact number of bytes. After the previous
679 IF.. block then the offsets are byte aligned, or the
680 length is zero (in which case this code is not reached). Compare
681 a number of bits at the end of the region, starting from an exact
682 byte boundary. */
683 bits = length_bits % TARGET_CHAR_BIT;
684 o1 = offset1_bits + length_bits - bits;
685 o2 = offset2_bits + length_bits - bits;
686
687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
689
690 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
691 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
692
693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 length_bits -= bits;
700 }
701
702 if (length_bits > 0)
703 {
704 /* We've now taken care of any stray "bits" at the start, or end of
705 the region to compare, the remainder can be covered with a simple
706 memcmp. */
707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
710
711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
712 ptr2 + offset2_bits / TARGET_CHAR_BIT,
713 length_bits / TARGET_CHAR_BIT);
714 }
715
716 /* Length is zero, regions match. */
717 return 0;
718}
719
9a0dc9e3
PA
720/* Helper struct for find_first_range_overlap_and_match and
721 value_contents_bits_eq. Keep track of which slot of a given ranges
722 vector have we last looked at. */
bdf22206 723
9a0dc9e3
PA
724struct ranges_and_idx
725{
726 /* The ranges. */
727 VEC(range_s) *ranges;
728
729 /* The range we've last found in RANGES. Given ranges are sorted,
730 we can start the next lookup here. */
731 int idx;
732};
733
734/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
736 ranges starting at OFFSET2 bits. Return true if the ranges match
737 and fill in *L and *H with the overlapping window relative to
738 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
739
740static int
9a0dc9e3
PA
741find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
742 struct ranges_and_idx *rp2,
743 int offset1, int offset2,
744 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 745{
9a0dc9e3
PA
746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
747 offset1, length);
748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
749 offset2, length);
c8c1c22f 750
9a0dc9e3
PA
751 if (rp1->idx == -1 && rp2->idx == -1)
752 {
753 *l = length;
754 *h = length;
755 return 1;
756 }
757 else if (rp1->idx == -1 || rp2->idx == -1)
758 return 0;
759 else
c8c1c22f
PA
760 {
761 range_s *r1, *r2;
762 ULONGEST l1, h1;
763 ULONGEST l2, h2;
764
9a0dc9e3
PA
765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
767
768 /* Get the unavailable windows intersected by the incoming
769 ranges. The first and last ranges that overlap the argument
770 range may be wider than said incoming arguments ranges. */
771 l1 = max (offset1, r1->offset);
772 h1 = min (offset1 + length, r1->offset + r1->length);
773
774 l2 = max (offset2, r2->offset);
9a0dc9e3 775 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
776
777 /* Make them relative to the respective start offsets, so we can
778 compare them for equality. */
779 l1 -= offset1;
780 h1 -= offset1;
781
782 l2 -= offset2;
783 h2 -= offset2;
784
9a0dc9e3 785 /* Different ranges, no match. */
c8c1c22f
PA
786 if (l1 != l2 || h1 != h2)
787 return 0;
788
9a0dc9e3
PA
789 *h = h1;
790 *l = l1;
791 return 1;
792 }
793}
794
795/* Helper function for value_contents_eq. The only difference is that
796 this function is bit rather than byte based.
797
798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
800 Return true if the available bits match. */
801
802static int
803value_contents_bits_eq (const struct value *val1, int offset1,
804 const struct value *val2, int offset2,
805 int length)
806{
807 /* Each array element corresponds to a ranges source (unavailable,
808 optimized out). '1' is for VAL1, '2' for VAL2. */
809 struct ranges_and_idx rp1[2], rp2[2];
810
811 /* See function description in value.h. */
812 gdb_assert (!val1->lazy && !val2->lazy);
813
814 /* We shouldn't be trying to compare past the end of the values. */
815 gdb_assert (offset1 + length
816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
817 gdb_assert (offset2 + length
818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
819
820 memset (&rp1, 0, sizeof (rp1));
821 memset (&rp2, 0, sizeof (rp2));
822 rp1[0].ranges = val1->unavailable;
823 rp2[0].ranges = val2->unavailable;
824 rp1[1].ranges = val1->optimized_out;
825 rp2[1].ranges = val2->optimized_out;
826
827 while (length > 0)
828 {
000339af 829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
830 int i;
831
832 for (i = 0; i < 2; i++)
833 {
834 ULONGEST l_tmp, h_tmp;
835
836 /* The contents only match equal if the invalid/unavailable
837 contents ranges match as well. */
838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
839 offset1, offset2, length,
840 &l_tmp, &h_tmp))
841 return 0;
842
843 /* We're interested in the lowest/first range found. */
844 if (i == 0 || l_tmp < l)
845 {
846 l = l_tmp;
847 h = h_tmp;
848 }
849 }
850
851 /* Compare the available/valid contents. */
bdf22206 852 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 853 val2->contents, offset2, l) != 0)
c8c1c22f
PA
854 return 0;
855
9a0dc9e3
PA
856 length -= h;
857 offset1 += h;
858 offset2 += h;
c8c1c22f
PA
859 }
860
861 return 1;
862}
863
bdf22206 864int
9a0dc9e3
PA
865value_contents_eq (const struct value *val1, int offset1,
866 const struct value *val2, int offset2,
867 int length)
bdf22206 868{
9a0dc9e3
PA
869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
870 val2, offset2 * TARGET_CHAR_BIT,
871 length * TARGET_CHAR_BIT);
bdf22206
AB
872}
873
581e13c1 874/* Prototypes for local functions. */
c906108c 875
a14ed312 876static void show_values (char *, int);
c906108c 877
a14ed312 878static void show_convenience (char *, int);
c906108c 879
c906108c
SS
880
881/* The value-history records all the values printed
882 by print commands during this session. Each chunk
883 records 60 consecutive values. The first chunk on
884 the chain records the most recent values.
885 The total number of values is in value_history_count. */
886
887#define VALUE_HISTORY_CHUNK 60
888
889struct value_history_chunk
c5aa993b
JM
890 {
891 struct value_history_chunk *next;
f23631e4 892 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 893 };
c906108c
SS
894
895/* Chain of chunks now in use. */
896
897static struct value_history_chunk *value_history_chain;
898
581e13c1 899static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 900
c906108c
SS
901\f
902/* List of all value objects currently allocated
903 (except for those released by calls to release_value)
904 This is so they can be freed after each command. */
905
f23631e4 906static struct value *all_values;
c906108c 907
3e3d7139
JG
908/* Allocate a lazy value for type TYPE. Its actual content is
909 "lazily" allocated too: the content field of the return value is
910 NULL; it will be allocated when it is fetched from the target. */
c906108c 911
f23631e4 912struct value *
3e3d7139 913allocate_value_lazy (struct type *type)
c906108c 914{
f23631e4 915 struct value *val;
c54eabfa
JK
916
917 /* Call check_typedef on our type to make sure that, if TYPE
918 is a TYPE_CODE_TYPEDEF, its length is set to the length
919 of the target type instead of zero. However, we do not
920 replace the typedef type by the target type, because we want
921 to keep the typedef in order to be able to set the VAL's type
922 description correctly. */
923 check_typedef (type);
c906108c 924
3e3d7139
JG
925 val = (struct value *) xzalloc (sizeof (struct value));
926 val->contents = NULL;
df407dfe 927 val->next = all_values;
c906108c 928 all_values = val;
df407dfe 929 val->type = type;
4754a64e 930 val->enclosing_type = type;
c906108c 931 VALUE_LVAL (val) = not_lval;
42ae5230 932 val->location.address = 0;
1df6926e 933 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
934 val->offset = 0;
935 val->bitpos = 0;
936 val->bitsize = 0;
9ee8fc9d 937 VALUE_REGNUM (val) = -1;
3e3d7139 938 val->lazy = 1;
13c3b5f5 939 val->embedded_offset = 0;
b44d461b 940 val->pointed_to_offset = 0;
c906108c 941 val->modifiable = 1;
42be36b3 942 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
943
944 /* Values start out on the all_values chain. */
945 val->reference_count = 1;
946
c906108c
SS
947 return val;
948}
949
3e3d7139
JG
950/* Allocate the contents of VAL if it has not been allocated yet. */
951
548b762d 952static void
3e3d7139
JG
953allocate_value_contents (struct value *val)
954{
955 if (!val->contents)
956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
957}
958
959/* Allocate a value and its contents for type TYPE. */
960
961struct value *
962allocate_value (struct type *type)
963{
964 struct value *val = allocate_value_lazy (type);
a109c7c1 965
3e3d7139
JG
966 allocate_value_contents (val);
967 val->lazy = 0;
968 return val;
969}
970
c906108c 971/* Allocate a value that has the correct length
938f5214 972 for COUNT repetitions of type TYPE. */
c906108c 973
f23631e4 974struct value *
fba45db2 975allocate_repeat_value (struct type *type, int count)
c906108c 976{
c5aa993b 977 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
e3506a9f
UW
980 struct type *array_type
981 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 982
e3506a9f 983 return allocate_value (array_type);
c906108c
SS
984}
985
5f5233d4
PA
986struct value *
987allocate_computed_value (struct type *type,
c8f2448a 988 const struct lval_funcs *funcs,
5f5233d4
PA
989 void *closure)
990{
41e8491f 991 struct value *v = allocate_value_lazy (type);
a109c7c1 992
5f5233d4
PA
993 VALUE_LVAL (v) = lval_computed;
994 v->location.computed.funcs = funcs;
995 v->location.computed.closure = closure;
5f5233d4
PA
996
997 return v;
998}
999
a7035dbb
JK
1000/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1001
1002struct value *
1003allocate_optimized_out_value (struct type *type)
1004{
1005 struct value *retval = allocate_value_lazy (type);
1006
9a0dc9e3
PA
1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1008 set_value_lazy (retval, 0);
a7035dbb
JK
1009 return retval;
1010}
1011
df407dfe
AC
1012/* Accessor methods. */
1013
17cf0ecd
AC
1014struct value *
1015value_next (struct value *value)
1016{
1017 return value->next;
1018}
1019
df407dfe 1020struct type *
0e03807e 1021value_type (const struct value *value)
df407dfe
AC
1022{
1023 return value->type;
1024}
04624583
AC
1025void
1026deprecated_set_value_type (struct value *value, struct type *type)
1027{
1028 value->type = type;
1029}
df407dfe
AC
1030
1031int
0e03807e 1032value_offset (const struct value *value)
df407dfe
AC
1033{
1034 return value->offset;
1035}
f5cf64a7
AC
1036void
1037set_value_offset (struct value *value, int offset)
1038{
1039 value->offset = offset;
1040}
df407dfe
AC
1041
1042int
0e03807e 1043value_bitpos (const struct value *value)
df407dfe
AC
1044{
1045 return value->bitpos;
1046}
9bbda503
AC
1047void
1048set_value_bitpos (struct value *value, int bit)
1049{
1050 value->bitpos = bit;
1051}
df407dfe
AC
1052
1053int
0e03807e 1054value_bitsize (const struct value *value)
df407dfe
AC
1055{
1056 return value->bitsize;
1057}
9bbda503
AC
1058void
1059set_value_bitsize (struct value *value, int bit)
1060{
1061 value->bitsize = bit;
1062}
df407dfe 1063
4ea48cc1
DJ
1064struct value *
1065value_parent (struct value *value)
1066{
1067 return value->parent;
1068}
1069
53ba8333
JB
1070/* See value.h. */
1071
1072void
1073set_value_parent (struct value *value, struct value *parent)
1074{
40501e00
TT
1075 struct value *old = value->parent;
1076
53ba8333 1077 value->parent = parent;
40501e00
TT
1078 if (parent != NULL)
1079 value_incref (parent);
1080 value_free (old);
53ba8333
JB
1081}
1082
fc1a4b47 1083gdb_byte *
990a07ab
AC
1084value_contents_raw (struct value *value)
1085{
3e3d7139
JG
1086 allocate_value_contents (value);
1087 return value->contents + value->embedded_offset;
990a07ab
AC
1088}
1089
fc1a4b47 1090gdb_byte *
990a07ab
AC
1091value_contents_all_raw (struct value *value)
1092{
3e3d7139
JG
1093 allocate_value_contents (value);
1094 return value->contents;
990a07ab
AC
1095}
1096
4754a64e
AC
1097struct type *
1098value_enclosing_type (struct value *value)
1099{
1100 return value->enclosing_type;
1101}
1102
8264ba82
AG
1103/* Look at value.h for description. */
1104
1105struct type *
1106value_actual_type (struct value *value, int resolve_simple_types,
1107 int *real_type_found)
1108{
1109 struct value_print_options opts;
8264ba82
AG
1110 struct type *result;
1111
1112 get_user_print_options (&opts);
1113
1114 if (real_type_found)
1115 *real_type_found = 0;
1116 result = value_type (value);
1117 if (opts.objectprint)
1118 {
5e34c6c3
LM
1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1120 fetch its rtti type. */
1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1122 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1124 == TYPE_CODE_STRUCT)
8264ba82
AG
1125 {
1126 struct type *real_type;
1127
1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1129 if (real_type)
1130 {
1131 if (real_type_found)
1132 *real_type_found = 1;
1133 result = real_type;
1134 }
1135 }
1136 else if (resolve_simple_types)
1137 {
1138 if (real_type_found)
1139 *real_type_found = 1;
1140 result = value_enclosing_type (value);
1141 }
1142 }
1143
1144 return result;
1145}
1146
901461f8
PA
1147void
1148error_value_optimized_out (void)
1149{
1150 error (_("value has been optimized out"));
1151}
1152
0e03807e 1153static void
4e07d55f 1154require_not_optimized_out (const struct value *value)
0e03807e 1155{
9a0dc9e3 1156 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1157 {
1158 if (value->lval == lval_register)
1159 error (_("register has not been saved in frame"));
1160 else
1161 error_value_optimized_out ();
1162 }
0e03807e
TT
1163}
1164
4e07d55f
PA
1165static void
1166require_available (const struct value *value)
1167{
1168 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1170}
1171
fc1a4b47 1172const gdb_byte *
0e03807e 1173value_contents_for_printing (struct value *value)
46615f07
AC
1174{
1175 if (value->lazy)
1176 value_fetch_lazy (value);
3e3d7139 1177 return value->contents;
46615f07
AC
1178}
1179
de4127a3
PA
1180const gdb_byte *
1181value_contents_for_printing_const (const struct value *value)
1182{
1183 gdb_assert (!value->lazy);
1184 return value->contents;
1185}
1186
0e03807e
TT
1187const gdb_byte *
1188value_contents_all (struct value *value)
1189{
1190 const gdb_byte *result = value_contents_for_printing (value);
1191 require_not_optimized_out (value);
4e07d55f 1192 require_available (value);
0e03807e
TT
1193 return result;
1194}
1195
9a0dc9e3
PA
1196/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1198
1199static void
1200ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1201 VEC (range_s) *src_range, int src_bit_offset,
1202 int bit_length)
1203{
1204 range_s *r;
1205 int i;
1206
1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1208 {
1209 ULONGEST h, l;
1210
1211 l = max (r->offset, src_bit_offset);
1212 h = min (r->offset + r->length, src_bit_offset + bit_length);
1213
1214 if (l < h)
1215 insert_into_bit_range_vector (dst_range,
1216 dst_bit_offset + (l - src_bit_offset),
1217 h - l);
1218 }
1219}
1220
4875ffdb
PA
1221/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1223
1224static void
1225value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1226 const struct value *src, int src_bit_offset,
1227 int bit_length)
1228{
1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1230 src->unavailable, src_bit_offset,
1231 bit_length);
1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1233 src->optimized_out, src_bit_offset,
1234 bit_length);
1235}
1236
29976f3f
PA
1237/* Copy LENGTH bytes of SRC value's (all) contents
1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1239 contents, starting at DST_OFFSET. If unavailable contents are
1240 being copied from SRC, the corresponding DST contents are marked
1241 unavailable accordingly. Neither DST nor SRC may be lazy
1242 values.
1243
1244 It is assumed the contents of DST in the [DST_OFFSET,
1245 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1246
1247void
1248value_contents_copy_raw (struct value *dst, int dst_offset,
1249 struct value *src, int src_offset, int length)
1250{
1251 range_s *r;
1252 int i;
bdf22206 1253 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1254
1255 /* A lazy DST would make that this copy operation useless, since as
1256 soon as DST's contents were un-lazied (by a later value_contents
1257 call, say), the contents would be overwritten. A lazy SRC would
1258 mean we'd be copying garbage. */
1259 gdb_assert (!dst->lazy && !src->lazy);
1260
29976f3f
PA
1261 /* The overwritten DST range gets unavailability ORed in, not
1262 replaced. Make sure to remember to implement replacing if it
1263 turns out actually necessary. */
1264 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1265 gdb_assert (!value_bits_any_optimized_out (dst,
1266 TARGET_CHAR_BIT * dst_offset,
1267 TARGET_CHAR_BIT * length));
29976f3f 1268
39d37385
PA
1269 /* Copy the data. */
1270 memcpy (value_contents_all_raw (dst) + dst_offset,
1271 value_contents_all_raw (src) + src_offset,
1272 length);
1273
1274 /* Copy the meta-data, adjusted. */
bdf22206
AB
1275 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1277 bit_length = length * TARGET_CHAR_BIT;
39d37385 1278
4875ffdb
PA
1279 value_ranges_copy_adjusted (dst, dst_bit_offset,
1280 src, src_bit_offset,
1281 bit_length);
39d37385
PA
1282}
1283
29976f3f
PA
1284/* Copy LENGTH bytes of SRC value's (all) contents
1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1286 (all) contents, starting at DST_OFFSET. If unavailable contents
1287 are being copied from SRC, the corresponding DST contents are
1288 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1289 lazy, it will be fetched now.
29976f3f
PA
1290
1291 It is assumed the contents of DST in the [DST_OFFSET,
1292 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1293
1294void
1295value_contents_copy (struct value *dst, int dst_offset,
1296 struct value *src, int src_offset, int length)
1297{
39d37385
PA
1298 if (src->lazy)
1299 value_fetch_lazy (src);
1300
1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1302}
1303
d69fe07e
AC
1304int
1305value_lazy (struct value *value)
1306{
1307 return value->lazy;
1308}
1309
dfa52d88
AC
1310void
1311set_value_lazy (struct value *value, int val)
1312{
1313 value->lazy = val;
1314}
1315
4e5d721f
DE
1316int
1317value_stack (struct value *value)
1318{
1319 return value->stack;
1320}
1321
1322void
1323set_value_stack (struct value *value, int val)
1324{
1325 value->stack = val;
1326}
1327
fc1a4b47 1328const gdb_byte *
0fd88904
AC
1329value_contents (struct value *value)
1330{
0e03807e
TT
1331 const gdb_byte *result = value_contents_writeable (value);
1332 require_not_optimized_out (value);
4e07d55f 1333 require_available (value);
0e03807e 1334 return result;
0fd88904
AC
1335}
1336
fc1a4b47 1337gdb_byte *
0fd88904
AC
1338value_contents_writeable (struct value *value)
1339{
1340 if (value->lazy)
1341 value_fetch_lazy (value);
fc0c53a0 1342 return value_contents_raw (value);
0fd88904
AC
1343}
1344
feb13ab0
AC
1345int
1346value_optimized_out (struct value *value)
1347{
691a26f5
AB
1348 /* We can only know if a value is optimized out once we have tried to
1349 fetch it. */
9a0dc9e3 1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1351 value_fetch_lazy (value);
1352
9a0dc9e3 1353 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1354}
1355
9a0dc9e3
PA
1356/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1357 the following LENGTH bytes. */
eca07816 1358
feb13ab0 1359void
9a0dc9e3 1360mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1361{
9a0dc9e3
PA
1362 mark_value_bits_optimized_out (value,
1363 offset * TARGET_CHAR_BIT,
1364 length * TARGET_CHAR_BIT);
feb13ab0 1365}
13c3b5f5 1366
9a0dc9e3 1367/* See value.h. */
0e03807e 1368
9a0dc9e3
PA
1369void
1370mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1371{
9a0dc9e3 1372 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1373}
1374
8cf6f0b1
TT
1375int
1376value_bits_synthetic_pointer (const struct value *value,
1377 int offset, int length)
1378{
e7303042 1379 if (value->lval != lval_computed
8cf6f0b1
TT
1380 || !value->location.computed.funcs->check_synthetic_pointer)
1381 return 0;
1382 return value->location.computed.funcs->check_synthetic_pointer (value,
1383 offset,
1384 length);
1385}
1386
13c3b5f5
AC
1387int
1388value_embedded_offset (struct value *value)
1389{
1390 return value->embedded_offset;
1391}
1392
1393void
1394set_value_embedded_offset (struct value *value, int val)
1395{
1396 value->embedded_offset = val;
1397}
b44d461b
AC
1398
1399int
1400value_pointed_to_offset (struct value *value)
1401{
1402 return value->pointed_to_offset;
1403}
1404
1405void
1406set_value_pointed_to_offset (struct value *value, int val)
1407{
1408 value->pointed_to_offset = val;
1409}
13bb5560 1410
c8f2448a 1411const struct lval_funcs *
a471c594 1412value_computed_funcs (const struct value *v)
5f5233d4 1413{
a471c594 1414 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1415
1416 return v->location.computed.funcs;
1417}
1418
1419void *
0e03807e 1420value_computed_closure (const struct value *v)
5f5233d4 1421{
0e03807e 1422 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1423
1424 return v->location.computed.closure;
1425}
1426
13bb5560
AC
1427enum lval_type *
1428deprecated_value_lval_hack (struct value *value)
1429{
1430 return &value->lval;
1431}
1432
a471c594
JK
1433enum lval_type
1434value_lval_const (const struct value *value)
1435{
1436 return value->lval;
1437}
1438
42ae5230 1439CORE_ADDR
de4127a3 1440value_address (const struct value *value)
42ae5230
TT
1441{
1442 if (value->lval == lval_internalvar
e81e7f5e
SC
1443 || value->lval == lval_internalvar_component
1444 || value->lval == lval_xcallable)
42ae5230 1445 return 0;
53ba8333
JB
1446 if (value->parent != NULL)
1447 return value_address (value->parent) + value->offset;
1448 else
1449 return value->location.address + value->offset;
42ae5230
TT
1450}
1451
1452CORE_ADDR
1453value_raw_address (struct value *value)
1454{
1455 if (value->lval == lval_internalvar
e81e7f5e
SC
1456 || value->lval == lval_internalvar_component
1457 || value->lval == lval_xcallable)
42ae5230
TT
1458 return 0;
1459 return value->location.address;
1460}
1461
1462void
1463set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1464{
42ae5230 1465 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1466 && value->lval != lval_internalvar_component
1467 && value->lval != lval_xcallable);
42ae5230 1468 value->location.address = addr;
13bb5560
AC
1469}
1470
1471struct internalvar **
1472deprecated_value_internalvar_hack (struct value *value)
1473{
1474 return &value->location.internalvar;
1475}
1476
1477struct frame_id *
1478deprecated_value_frame_id_hack (struct value *value)
1479{
1480 return &value->frame_id;
1481}
1482
1483short *
1484deprecated_value_regnum_hack (struct value *value)
1485{
1486 return &value->regnum;
1487}
88e3b34b
AC
1488
1489int
1490deprecated_value_modifiable (struct value *value)
1491{
1492 return value->modifiable;
1493}
990a07ab 1494\f
c906108c
SS
1495/* Return a mark in the value chain. All values allocated after the
1496 mark is obtained (except for those released) are subject to being freed
1497 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1498struct value *
fba45db2 1499value_mark (void)
c906108c
SS
1500{
1501 return all_values;
1502}
1503
828d3400
DJ
1504/* Take a reference to VAL. VAL will not be deallocated until all
1505 references are released. */
1506
1507void
1508value_incref (struct value *val)
1509{
1510 val->reference_count++;
1511}
1512
1513/* Release a reference to VAL, which was acquired with value_incref.
1514 This function is also called to deallocate values from the value
1515 chain. */
1516
3e3d7139
JG
1517void
1518value_free (struct value *val)
1519{
1520 if (val)
5f5233d4 1521 {
828d3400
DJ
1522 gdb_assert (val->reference_count > 0);
1523 val->reference_count--;
1524 if (val->reference_count > 0)
1525 return;
1526
4ea48cc1
DJ
1527 /* If there's an associated parent value, drop our reference to
1528 it. */
1529 if (val->parent != NULL)
1530 value_free (val->parent);
1531
5f5233d4
PA
1532 if (VALUE_LVAL (val) == lval_computed)
1533 {
c8f2448a 1534 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1535
1536 if (funcs->free_closure)
1537 funcs->free_closure (val);
1538 }
e81e7f5e
SC
1539 else if (VALUE_LVAL (val) == lval_xcallable)
1540 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1541
1542 xfree (val->contents);
4e07d55f 1543 VEC_free (range_s, val->unavailable);
5f5233d4 1544 }
3e3d7139
JG
1545 xfree (val);
1546}
1547
c906108c
SS
1548/* Free all values allocated since MARK was obtained by value_mark
1549 (except for those released). */
1550void
f23631e4 1551value_free_to_mark (struct value *mark)
c906108c 1552{
f23631e4
AC
1553 struct value *val;
1554 struct value *next;
c906108c
SS
1555
1556 for (val = all_values; val && val != mark; val = next)
1557 {
df407dfe 1558 next = val->next;
e848a8a5 1559 val->released = 1;
c906108c
SS
1560 value_free (val);
1561 }
1562 all_values = val;
1563}
1564
1565/* Free all the values that have been allocated (except for those released).
725e88af
DE
1566 Call after each command, successful or not.
1567 In practice this is called before each command, which is sufficient. */
c906108c
SS
1568
1569void
fba45db2 1570free_all_values (void)
c906108c 1571{
f23631e4
AC
1572 struct value *val;
1573 struct value *next;
c906108c
SS
1574
1575 for (val = all_values; val; val = next)
1576 {
df407dfe 1577 next = val->next;
e848a8a5 1578 val->released = 1;
c906108c
SS
1579 value_free (val);
1580 }
1581
1582 all_values = 0;
1583}
1584
0cf6dd15
TJB
1585/* Frees all the elements in a chain of values. */
1586
1587void
1588free_value_chain (struct value *v)
1589{
1590 struct value *next;
1591
1592 for (; v; v = next)
1593 {
1594 next = value_next (v);
1595 value_free (v);
1596 }
1597}
1598
c906108c
SS
1599/* Remove VAL from the chain all_values
1600 so it will not be freed automatically. */
1601
1602void
f23631e4 1603release_value (struct value *val)
c906108c 1604{
f23631e4 1605 struct value *v;
c906108c
SS
1606
1607 if (all_values == val)
1608 {
1609 all_values = val->next;
06a64a0b 1610 val->next = NULL;
e848a8a5 1611 val->released = 1;
c906108c
SS
1612 return;
1613 }
1614
1615 for (v = all_values; v; v = v->next)
1616 {
1617 if (v->next == val)
1618 {
1619 v->next = val->next;
06a64a0b 1620 val->next = NULL;
e848a8a5 1621 val->released = 1;
c906108c
SS
1622 break;
1623 }
1624 }
1625}
1626
e848a8a5
TT
1627/* If the value is not already released, release it.
1628 If the value is already released, increment its reference count.
1629 That is, this function ensures that the value is released from the
1630 value chain and that the caller owns a reference to it. */
1631
1632void
1633release_value_or_incref (struct value *val)
1634{
1635 if (val->released)
1636 value_incref (val);
1637 else
1638 release_value (val);
1639}
1640
c906108c 1641/* Release all values up to mark */
f23631e4
AC
1642struct value *
1643value_release_to_mark (struct value *mark)
c906108c 1644{
f23631e4
AC
1645 struct value *val;
1646 struct value *next;
c906108c 1647
df407dfe 1648 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1649 {
1650 if (next->next == mark)
1651 {
1652 all_values = next->next;
1653 next->next = NULL;
1654 return val;
1655 }
1656 next->released = 1;
1657 }
c906108c
SS
1658 all_values = 0;
1659 return val;
1660}
1661
1662/* Return a copy of the value ARG.
1663 It contains the same contents, for same memory address,
1664 but it's a different block of storage. */
1665
f23631e4
AC
1666struct value *
1667value_copy (struct value *arg)
c906108c 1668{
4754a64e 1669 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1670 struct value *val;
1671
1672 if (value_lazy (arg))
1673 val = allocate_value_lazy (encl_type);
1674 else
1675 val = allocate_value (encl_type);
df407dfe 1676 val->type = arg->type;
c906108c 1677 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1678 val->location = arg->location;
df407dfe
AC
1679 val->offset = arg->offset;
1680 val->bitpos = arg->bitpos;
1681 val->bitsize = arg->bitsize;
1df6926e 1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1684 val->lazy = arg->lazy;
13c3b5f5 1685 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1686 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1687 val->modifiable = arg->modifiable;
d69fe07e 1688 if (!value_lazy (val))
c906108c 1689 {
990a07ab 1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1691 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1692
1693 }
4e07d55f 1694 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1696 set_value_parent (val, arg->parent);
5f5233d4
PA
1697 if (VALUE_LVAL (val) == lval_computed)
1698 {
c8f2448a 1699 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1700
1701 if (funcs->copy_closure)
1702 val->location.computed.closure = funcs->copy_closure (val);
1703 }
c906108c
SS
1704 return val;
1705}
74bcbdf3 1706
c37f7098
KW
1707/* Return a version of ARG that is non-lvalue. */
1708
1709struct value *
1710value_non_lval (struct value *arg)
1711{
1712 if (VALUE_LVAL (arg) != not_lval)
1713 {
1714 struct type *enc_type = value_enclosing_type (arg);
1715 struct value *val = allocate_value (enc_type);
1716
1717 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1718 TYPE_LENGTH (enc_type));
1719 val->type = arg->type;
1720 set_value_embedded_offset (val, value_embedded_offset (arg));
1721 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1722 return val;
1723 }
1724 return arg;
1725}
1726
6c659fc2
SC
1727/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1728
1729void
1730value_force_lval (struct value *v, CORE_ADDR addr)
1731{
1732 gdb_assert (VALUE_LVAL (v) == not_lval);
1733
1734 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1735 v->lval = lval_memory;
1736 v->location.address = addr;
1737}
1738
74bcbdf3 1739void
0e03807e
TT
1740set_value_component_location (struct value *component,
1741 const struct value *whole)
74bcbdf3 1742{
e81e7f5e
SC
1743 gdb_assert (whole->lval != lval_xcallable);
1744
0e03807e 1745 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1746 VALUE_LVAL (component) = lval_internalvar_component;
1747 else
0e03807e 1748 VALUE_LVAL (component) = whole->lval;
5f5233d4 1749
74bcbdf3 1750 component->location = whole->location;
0e03807e 1751 if (whole->lval == lval_computed)
5f5233d4 1752 {
c8f2448a 1753 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1754
1755 if (funcs->copy_closure)
1756 component->location.computed.closure = funcs->copy_closure (whole);
1757 }
74bcbdf3
PA
1758}
1759
c906108c
SS
1760\f
1761/* Access to the value history. */
1762
1763/* Record a new value in the value history.
eddf0bae 1764 Returns the absolute history index of the entry. */
c906108c
SS
1765
1766int
f23631e4 1767record_latest_value (struct value *val)
c906108c
SS
1768{
1769 int i;
1770
1771 /* We don't want this value to have anything to do with the inferior anymore.
1772 In particular, "set $1 = 50" should not affect the variable from which
1773 the value was taken, and fast watchpoints should be able to assume that
1774 a value on the value history never changes. */
d69fe07e 1775 if (value_lazy (val))
c906108c
SS
1776 value_fetch_lazy (val);
1777 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1778 from. This is a bit dubious, because then *&$1 does not just return $1
1779 but the current contents of that location. c'est la vie... */
1780 val->modifiable = 0;
350e1a76
DE
1781
1782 /* The value may have already been released, in which case we're adding a
1783 new reference for its entry in the history. That is why we call
1784 release_value_or_incref here instead of release_value. */
1785 release_value_or_incref (val);
c906108c
SS
1786
1787 /* Here we treat value_history_count as origin-zero
1788 and applying to the value being stored now. */
1789
1790 i = value_history_count % VALUE_HISTORY_CHUNK;
1791 if (i == 0)
1792 {
fe978cb0 1793 struct value_history_chunk *newobj
a109c7c1
MS
1794 = (struct value_history_chunk *)
1795
c5aa993b 1796 xmalloc (sizeof (struct value_history_chunk));
fe978cb0
PA
1797 memset (newobj->values, 0, sizeof newobj->values);
1798 newobj->next = value_history_chain;
1799 value_history_chain = newobj;
c906108c
SS
1800 }
1801
1802 value_history_chain->values[i] = val;
1803
1804 /* Now we regard value_history_count as origin-one
1805 and applying to the value just stored. */
1806
1807 return ++value_history_count;
1808}
1809
1810/* Return a copy of the value in the history with sequence number NUM. */
1811
f23631e4 1812struct value *
fba45db2 1813access_value_history (int num)
c906108c 1814{
f23631e4 1815 struct value_history_chunk *chunk;
52f0bd74
AC
1816 int i;
1817 int absnum = num;
c906108c
SS
1818
1819 if (absnum <= 0)
1820 absnum += value_history_count;
1821
1822 if (absnum <= 0)
1823 {
1824 if (num == 0)
8a3fe4f8 1825 error (_("The history is empty."));
c906108c 1826 else if (num == 1)
8a3fe4f8 1827 error (_("There is only one value in the history."));
c906108c 1828 else
8a3fe4f8 1829 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1830 }
1831 if (absnum > value_history_count)
8a3fe4f8 1832 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1833
1834 absnum--;
1835
1836 /* Now absnum is always absolute and origin zero. */
1837
1838 chunk = value_history_chain;
3e43a32a
MS
1839 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1840 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1841 i > 0; i--)
1842 chunk = chunk->next;
1843
1844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1845}
1846
c906108c 1847static void
fba45db2 1848show_values (char *num_exp, int from_tty)
c906108c 1849{
52f0bd74 1850 int i;
f23631e4 1851 struct value *val;
c906108c
SS
1852 static int num = 1;
1853
1854 if (num_exp)
1855 {
f132ba9d
TJB
1856 /* "show values +" should print from the stored position.
1857 "show values <exp>" should print around value number <exp>. */
c906108c 1858 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1859 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1860 }
1861 else
1862 {
f132ba9d 1863 /* "show values" means print the last 10 values. */
c906108c
SS
1864 num = value_history_count - 9;
1865 }
1866
1867 if (num <= 0)
1868 num = 1;
1869
1870 for (i = num; i < num + 10 && i <= value_history_count; i++)
1871 {
79a45b7d 1872 struct value_print_options opts;
a109c7c1 1873
c906108c 1874 val = access_value_history (i);
a3f17187 1875 printf_filtered (("$%d = "), i);
79a45b7d
TT
1876 get_user_print_options (&opts);
1877 value_print (val, gdb_stdout, &opts);
a3f17187 1878 printf_filtered (("\n"));
c906108c
SS
1879 }
1880
f132ba9d 1881 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1882 num += 10;
1883
1884 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1885 "show values +". If num_exp is null, this is unnecessary, since
1886 "show values +" is not useful after "show values". */
c906108c
SS
1887 if (from_tty && num_exp)
1888 {
1889 num_exp[0] = '+';
1890 num_exp[1] = '\0';
1891 }
1892}
1893\f
52059ffd
TT
1894enum internalvar_kind
1895{
1896 /* The internal variable is empty. */
1897 INTERNALVAR_VOID,
1898
1899 /* The value of the internal variable is provided directly as
1900 a GDB value object. */
1901 INTERNALVAR_VALUE,
1902
1903 /* A fresh value is computed via a call-back routine on every
1904 access to the internal variable. */
1905 INTERNALVAR_MAKE_VALUE,
1906
1907 /* The internal variable holds a GDB internal convenience function. */
1908 INTERNALVAR_FUNCTION,
1909
1910 /* The variable holds an integer value. */
1911 INTERNALVAR_INTEGER,
1912
1913 /* The variable holds a GDB-provided string. */
1914 INTERNALVAR_STRING,
1915};
1916
1917union internalvar_data
1918{
1919 /* A value object used with INTERNALVAR_VALUE. */
1920 struct value *value;
1921
1922 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1923 struct
1924 {
1925 /* The functions to call. */
1926 const struct internalvar_funcs *functions;
1927
1928 /* The function's user-data. */
1929 void *data;
1930 } make_value;
1931
1932 /* The internal function used with INTERNALVAR_FUNCTION. */
1933 struct
1934 {
1935 struct internal_function *function;
1936 /* True if this is the canonical name for the function. */
1937 int canonical;
1938 } fn;
1939
1940 /* An integer value used with INTERNALVAR_INTEGER. */
1941 struct
1942 {
1943 /* If type is non-NULL, it will be used as the type to generate
1944 a value for this internal variable. If type is NULL, a default
1945 integer type for the architecture is used. */
1946 struct type *type;
1947 LONGEST val;
1948 } integer;
1949
1950 /* A string value used with INTERNALVAR_STRING. */
1951 char *string;
1952};
1953
c906108c
SS
1954/* Internal variables. These are variables within the debugger
1955 that hold values assigned by debugger commands.
1956 The user refers to them with a '$' prefix
1957 that does not appear in the variable names stored internally. */
1958
4fa62494
UW
1959struct internalvar
1960{
1961 struct internalvar *next;
1962 char *name;
4fa62494 1963
78267919
UW
1964 /* We support various different kinds of content of an internal variable.
1965 enum internalvar_kind specifies the kind, and union internalvar_data
1966 provides the data associated with this particular kind. */
1967
52059ffd 1968 enum internalvar_kind kind;
4fa62494 1969
52059ffd 1970 union internalvar_data u;
4fa62494
UW
1971};
1972
c906108c
SS
1973static struct internalvar *internalvars;
1974
3e43a32a
MS
1975/* If the variable does not already exist create it and give it the
1976 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1977static void
1978init_if_undefined_command (char* args, int from_tty)
1979{
1980 struct internalvar* intvar;
1981
1982 /* Parse the expression - this is taken from set_command(). */
1983 struct expression *expr = parse_expression (args);
1984 register struct cleanup *old_chain =
1985 make_cleanup (free_current_contents, &expr);
1986
1987 /* Validate the expression.
1988 Was the expression an assignment?
1989 Or even an expression at all? */
1990 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1991 error (_("Init-if-undefined requires an assignment expression."));
1992
1993 /* Extract the variable from the parsed expression.
1994 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1995 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1996 error (_("The first parameter to init-if-undefined "
1997 "should be a GDB variable."));
53e5f3cf
AS
1998 intvar = expr->elts[2].internalvar;
1999
2000 /* Only evaluate the expression if the lvalue is void.
2001 This may still fail if the expresssion is invalid. */
78267919 2002 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2003 evaluate_expression (expr);
2004
2005 do_cleanups (old_chain);
2006}
2007
2008
c906108c
SS
2009/* Look up an internal variable with name NAME. NAME should not
2010 normally include a dollar sign.
2011
2012 If the specified internal variable does not exist,
c4a3d09a 2013 the return value is NULL. */
c906108c
SS
2014
2015struct internalvar *
bc3b79fd 2016lookup_only_internalvar (const char *name)
c906108c 2017{
52f0bd74 2018 struct internalvar *var;
c906108c
SS
2019
2020 for (var = internalvars; var; var = var->next)
5cb316ef 2021 if (strcmp (var->name, name) == 0)
c906108c
SS
2022 return var;
2023
c4a3d09a
MF
2024 return NULL;
2025}
2026
d55637df
TT
2027/* Complete NAME by comparing it to the names of internal variables.
2028 Returns a vector of newly allocated strings, or NULL if no matches
2029 were found. */
2030
2031VEC (char_ptr) *
2032complete_internalvar (const char *name)
2033{
2034 VEC (char_ptr) *result = NULL;
2035 struct internalvar *var;
2036 int len;
2037
2038 len = strlen (name);
2039
2040 for (var = internalvars; var; var = var->next)
2041 if (strncmp (var->name, name, len) == 0)
2042 {
2043 char *r = xstrdup (var->name);
2044
2045 VEC_safe_push (char_ptr, result, r);
2046 }
2047
2048 return result;
2049}
c4a3d09a
MF
2050
2051/* Create an internal variable with name NAME and with a void value.
2052 NAME should not normally include a dollar sign. */
2053
2054struct internalvar *
bc3b79fd 2055create_internalvar (const char *name)
c4a3d09a
MF
2056{
2057 struct internalvar *var;
a109c7c1 2058
c906108c 2059 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 2060 var->name = concat (name, (char *)NULL);
78267919 2061 var->kind = INTERNALVAR_VOID;
c906108c
SS
2062 var->next = internalvars;
2063 internalvars = var;
2064 return var;
2065}
2066
4aa995e1
PA
2067/* Create an internal variable with name NAME and register FUN as the
2068 function that value_of_internalvar uses to create a value whenever
2069 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2070 dollar sign. DATA is passed uninterpreted to FUN when it is
2071 called. CLEANUP, if not NULL, is called when the internal variable
2072 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2073
2074struct internalvar *
22d2b532
SDJ
2075create_internalvar_type_lazy (const char *name,
2076 const struct internalvar_funcs *funcs,
2077 void *data)
4aa995e1 2078{
4fa62494 2079 struct internalvar *var = create_internalvar (name);
a109c7c1 2080
78267919 2081 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2082 var->u.make_value.functions = funcs;
2083 var->u.make_value.data = data;
4aa995e1
PA
2084 return var;
2085}
c4a3d09a 2086
22d2b532
SDJ
2087/* See documentation in value.h. */
2088
2089int
2090compile_internalvar_to_ax (struct internalvar *var,
2091 struct agent_expr *expr,
2092 struct axs_value *value)
2093{
2094 if (var->kind != INTERNALVAR_MAKE_VALUE
2095 || var->u.make_value.functions->compile_to_ax == NULL)
2096 return 0;
2097
2098 var->u.make_value.functions->compile_to_ax (var, expr, value,
2099 var->u.make_value.data);
2100 return 1;
2101}
2102
c4a3d09a
MF
2103/* Look up an internal variable with name NAME. NAME should not
2104 normally include a dollar sign.
2105
2106 If the specified internal variable does not exist,
2107 one is created, with a void value. */
2108
2109struct internalvar *
bc3b79fd 2110lookup_internalvar (const char *name)
c4a3d09a
MF
2111{
2112 struct internalvar *var;
2113
2114 var = lookup_only_internalvar (name);
2115 if (var)
2116 return var;
2117
2118 return create_internalvar (name);
2119}
2120
78267919
UW
2121/* Return current value of internal variable VAR. For variables that
2122 are not inherently typed, use a value type appropriate for GDBARCH. */
2123
f23631e4 2124struct value *
78267919 2125value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2126{
f23631e4 2127 struct value *val;
0914bcdb
SS
2128 struct trace_state_variable *tsv;
2129
2130 /* If there is a trace state variable of the same name, assume that
2131 is what we really want to see. */
2132 tsv = find_trace_state_variable (var->name);
2133 if (tsv)
2134 {
2135 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2136 &(tsv->value));
2137 if (tsv->value_known)
2138 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2139 tsv->value);
2140 else
2141 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2142 return val;
2143 }
c906108c 2144
78267919 2145 switch (var->kind)
5f5233d4 2146 {
78267919
UW
2147 case INTERNALVAR_VOID:
2148 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2149 break;
4fa62494 2150
78267919
UW
2151 case INTERNALVAR_FUNCTION:
2152 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2153 break;
4fa62494 2154
cab0c772
UW
2155 case INTERNALVAR_INTEGER:
2156 if (!var->u.integer.type)
78267919 2157 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2158 var->u.integer.val);
78267919 2159 else
cab0c772
UW
2160 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2161 break;
2162
78267919
UW
2163 case INTERNALVAR_STRING:
2164 val = value_cstring (var->u.string, strlen (var->u.string),
2165 builtin_type (gdbarch)->builtin_char);
2166 break;
4fa62494 2167
78267919
UW
2168 case INTERNALVAR_VALUE:
2169 val = value_copy (var->u.value);
4aa995e1
PA
2170 if (value_lazy (val))
2171 value_fetch_lazy (val);
78267919 2172 break;
4aa995e1 2173
78267919 2174 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2175 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2176 var->u.make_value.data);
78267919
UW
2177 break;
2178
2179 default:
9b20d036 2180 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2181 }
2182
2183 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2184 on this value go back to affect the original internal variable.
2185
2186 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2187 no underlying modifyable state in the internal variable.
2188
2189 Likewise, if the variable's value is a computed lvalue, we want
2190 references to it to produce another computed lvalue, where
2191 references and assignments actually operate through the
2192 computed value's functions.
2193
2194 This means that internal variables with computed values
2195 behave a little differently from other internal variables:
2196 assignments to them don't just replace the previous value
2197 altogether. At the moment, this seems like the behavior we
2198 want. */
2199
2200 if (var->kind != INTERNALVAR_MAKE_VALUE
2201 && val->lval != lval_computed)
2202 {
2203 VALUE_LVAL (val) = lval_internalvar;
2204 VALUE_INTERNALVAR (val) = var;
5f5233d4 2205 }
d3c139e9 2206
4fa62494
UW
2207 return val;
2208}
d3c139e9 2209
4fa62494
UW
2210int
2211get_internalvar_integer (struct internalvar *var, LONGEST *result)
2212{
3158c6ed 2213 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2214 {
cab0c772
UW
2215 *result = var->u.integer.val;
2216 return 1;
3158c6ed 2217 }
d3c139e9 2218
3158c6ed
PA
2219 if (var->kind == INTERNALVAR_VALUE)
2220 {
2221 struct type *type = check_typedef (value_type (var->u.value));
2222
2223 if (TYPE_CODE (type) == TYPE_CODE_INT)
2224 {
2225 *result = value_as_long (var->u.value);
2226 return 1;
2227 }
4fa62494 2228 }
3158c6ed
PA
2229
2230 return 0;
4fa62494 2231}
d3c139e9 2232
4fa62494
UW
2233static int
2234get_internalvar_function (struct internalvar *var,
2235 struct internal_function **result)
2236{
78267919 2237 switch (var->kind)
d3c139e9 2238 {
78267919
UW
2239 case INTERNALVAR_FUNCTION:
2240 *result = var->u.fn.function;
4fa62494 2241 return 1;
d3c139e9 2242
4fa62494
UW
2243 default:
2244 return 0;
2245 }
c906108c
SS
2246}
2247
2248void
fba45db2 2249set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2250 int bitsize, struct value *newval)
c906108c 2251{
4fa62494 2252 gdb_byte *addr;
c906108c 2253
78267919 2254 switch (var->kind)
4fa62494 2255 {
78267919
UW
2256 case INTERNALVAR_VALUE:
2257 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2258
2259 if (bitsize)
50810684 2260 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2261 value_as_long (newval), bitpos, bitsize);
2262 else
2263 memcpy (addr + offset, value_contents (newval),
2264 TYPE_LENGTH (value_type (newval)));
2265 break;
78267919
UW
2266
2267 default:
2268 /* We can never get a component of any other kind. */
9b20d036 2269 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2270 }
c906108c
SS
2271}
2272
2273void
f23631e4 2274set_internalvar (struct internalvar *var, struct value *val)
c906108c 2275{
78267919 2276 enum internalvar_kind new_kind;
4fa62494 2277 union internalvar_data new_data = { 0 };
c906108c 2278
78267919 2279 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2280 error (_("Cannot overwrite convenience function %s"), var->name);
2281
4fa62494 2282 /* Prepare new contents. */
78267919 2283 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2284 {
2285 case TYPE_CODE_VOID:
78267919 2286 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2287 break;
2288
2289 case TYPE_CODE_INTERNAL_FUNCTION:
2290 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2291 new_kind = INTERNALVAR_FUNCTION;
2292 get_internalvar_function (VALUE_INTERNALVAR (val),
2293 &new_data.fn.function);
2294 /* Copies created here are never canonical. */
4fa62494
UW
2295 break;
2296
4fa62494 2297 default:
78267919
UW
2298 new_kind = INTERNALVAR_VALUE;
2299 new_data.value = value_copy (val);
2300 new_data.value->modifiable = 1;
4fa62494
UW
2301
2302 /* Force the value to be fetched from the target now, to avoid problems
2303 later when this internalvar is referenced and the target is gone or
2304 has changed. */
78267919
UW
2305 if (value_lazy (new_data.value))
2306 value_fetch_lazy (new_data.value);
4fa62494
UW
2307
2308 /* Release the value from the value chain to prevent it from being
2309 deleted by free_all_values. From here on this function should not
2310 call error () until new_data is installed into the var->u to avoid
2311 leaking memory. */
78267919 2312 release_value (new_data.value);
4fa62494
UW
2313 break;
2314 }
2315
2316 /* Clean up old contents. */
2317 clear_internalvar (var);
2318
2319 /* Switch over. */
78267919 2320 var->kind = new_kind;
4fa62494 2321 var->u = new_data;
c906108c
SS
2322 /* End code which must not call error(). */
2323}
2324
4fa62494
UW
2325void
2326set_internalvar_integer (struct internalvar *var, LONGEST l)
2327{
2328 /* Clean up old contents. */
2329 clear_internalvar (var);
2330
cab0c772
UW
2331 var->kind = INTERNALVAR_INTEGER;
2332 var->u.integer.type = NULL;
2333 var->u.integer.val = l;
78267919
UW
2334}
2335
2336void
2337set_internalvar_string (struct internalvar *var, const char *string)
2338{
2339 /* Clean up old contents. */
2340 clear_internalvar (var);
2341
2342 var->kind = INTERNALVAR_STRING;
2343 var->u.string = xstrdup (string);
4fa62494
UW
2344}
2345
2346static void
2347set_internalvar_function (struct internalvar *var, struct internal_function *f)
2348{
2349 /* Clean up old contents. */
2350 clear_internalvar (var);
2351
78267919
UW
2352 var->kind = INTERNALVAR_FUNCTION;
2353 var->u.fn.function = f;
2354 var->u.fn.canonical = 1;
2355 /* Variables installed here are always the canonical version. */
4fa62494
UW
2356}
2357
2358void
2359clear_internalvar (struct internalvar *var)
2360{
2361 /* Clean up old contents. */
78267919 2362 switch (var->kind)
4fa62494 2363 {
78267919
UW
2364 case INTERNALVAR_VALUE:
2365 value_free (var->u.value);
2366 break;
2367
2368 case INTERNALVAR_STRING:
2369 xfree (var->u.string);
4fa62494
UW
2370 break;
2371
22d2b532
SDJ
2372 case INTERNALVAR_MAKE_VALUE:
2373 if (var->u.make_value.functions->destroy != NULL)
2374 var->u.make_value.functions->destroy (var->u.make_value.data);
2375 break;
2376
4fa62494 2377 default:
4fa62494
UW
2378 break;
2379 }
2380
78267919
UW
2381 /* Reset to void kind. */
2382 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2383}
2384
c906108c 2385char *
fba45db2 2386internalvar_name (struct internalvar *var)
c906108c
SS
2387{
2388 return var->name;
2389}
2390
4fa62494
UW
2391static struct internal_function *
2392create_internal_function (const char *name,
2393 internal_function_fn handler, void *cookie)
bc3b79fd 2394{
bc3b79fd 2395 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2396
bc3b79fd
TJB
2397 ifn->name = xstrdup (name);
2398 ifn->handler = handler;
2399 ifn->cookie = cookie;
4fa62494 2400 return ifn;
bc3b79fd
TJB
2401}
2402
2403char *
2404value_internal_function_name (struct value *val)
2405{
4fa62494
UW
2406 struct internal_function *ifn;
2407 int result;
2408
2409 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2410 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2411 gdb_assert (result);
2412
bc3b79fd
TJB
2413 return ifn->name;
2414}
2415
2416struct value *
d452c4bc
UW
2417call_internal_function (struct gdbarch *gdbarch,
2418 const struct language_defn *language,
2419 struct value *func, int argc, struct value **argv)
bc3b79fd 2420{
4fa62494
UW
2421 struct internal_function *ifn;
2422 int result;
2423
2424 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2425 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2426 gdb_assert (result);
2427
d452c4bc 2428 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2429}
2430
2431/* The 'function' command. This does nothing -- it is just a
2432 placeholder to let "help function NAME" work. This is also used as
2433 the implementation of the sub-command that is created when
2434 registering an internal function. */
2435static void
2436function_command (char *command, int from_tty)
2437{
2438 /* Do nothing. */
2439}
2440
2441/* Clean up if an internal function's command is destroyed. */
2442static void
2443function_destroyer (struct cmd_list_element *self, void *ignore)
2444{
6f937416 2445 xfree ((char *) self->name);
1947513d 2446 xfree ((char *) self->doc);
bc3b79fd
TJB
2447}
2448
2449/* Add a new internal function. NAME is the name of the function; DOC
2450 is a documentation string describing the function. HANDLER is
2451 called when the function is invoked. COOKIE is an arbitrary
2452 pointer which is passed to HANDLER and is intended for "user
2453 data". */
2454void
2455add_internal_function (const char *name, const char *doc,
2456 internal_function_fn handler, void *cookie)
2457{
2458 struct cmd_list_element *cmd;
4fa62494 2459 struct internal_function *ifn;
bc3b79fd 2460 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2461
2462 ifn = create_internal_function (name, handler, cookie);
2463 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2464
2465 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2466 &functionlist);
2467 cmd->destroyer = function_destroyer;
2468}
2469
ae5a43e0
DJ
2470/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2471 prevent cycles / duplicates. */
2472
4e7a5ef5 2473void
ae5a43e0
DJ
2474preserve_one_value (struct value *value, struct objfile *objfile,
2475 htab_t copied_types)
2476{
2477 if (TYPE_OBJFILE (value->type) == objfile)
2478 value->type = copy_type_recursive (objfile, value->type, copied_types);
2479
2480 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2481 value->enclosing_type = copy_type_recursive (objfile,
2482 value->enclosing_type,
2483 copied_types);
2484}
2485
78267919
UW
2486/* Likewise for internal variable VAR. */
2487
2488static void
2489preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2490 htab_t copied_types)
2491{
2492 switch (var->kind)
2493 {
cab0c772
UW
2494 case INTERNALVAR_INTEGER:
2495 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2496 var->u.integer.type
2497 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2498 break;
2499
78267919
UW
2500 case INTERNALVAR_VALUE:
2501 preserve_one_value (var->u.value, objfile, copied_types);
2502 break;
2503 }
2504}
2505
ae5a43e0
DJ
2506/* Update the internal variables and value history when OBJFILE is
2507 discarded; we must copy the types out of the objfile. New global types
2508 will be created for every convenience variable which currently points to
2509 this objfile's types, and the convenience variables will be adjusted to
2510 use the new global types. */
c906108c
SS
2511
2512void
ae5a43e0 2513preserve_values (struct objfile *objfile)
c906108c 2514{
ae5a43e0
DJ
2515 htab_t copied_types;
2516 struct value_history_chunk *cur;
52f0bd74 2517 struct internalvar *var;
ae5a43e0 2518 int i;
c906108c 2519
ae5a43e0
DJ
2520 /* Create the hash table. We allocate on the objfile's obstack, since
2521 it is soon to be deleted. */
2522 copied_types = create_copied_types_hash (objfile);
2523
2524 for (cur = value_history_chain; cur; cur = cur->next)
2525 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2526 if (cur->values[i])
2527 preserve_one_value (cur->values[i], objfile, copied_types);
2528
2529 for (var = internalvars; var; var = var->next)
78267919 2530 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2531
6dddc817 2532 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2533
ae5a43e0 2534 htab_delete (copied_types);
c906108c
SS
2535}
2536
2537static void
fba45db2 2538show_convenience (char *ignore, int from_tty)
c906108c 2539{
e17c207e 2540 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2541 struct internalvar *var;
c906108c 2542 int varseen = 0;
79a45b7d 2543 struct value_print_options opts;
c906108c 2544
79a45b7d 2545 get_user_print_options (&opts);
c906108c
SS
2546 for (var = internalvars; var; var = var->next)
2547 {
c709acd1 2548
c906108c
SS
2549 if (!varseen)
2550 {
2551 varseen = 1;
2552 }
a3f17187 2553 printf_filtered (("$%s = "), var->name);
c709acd1 2554
492d29ea 2555 TRY
c709acd1
PA
2556 {
2557 struct value *val;
2558
2559 val = value_of_internalvar (gdbarch, var);
2560 value_print (val, gdb_stdout, &opts);
2561 }
492d29ea
PA
2562 CATCH (ex, RETURN_MASK_ERROR)
2563 {
2564 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2565 }
2566 END_CATCH
2567
a3f17187 2568 printf_filtered (("\n"));
c906108c
SS
2569 }
2570 if (!varseen)
f47f77df
DE
2571 {
2572 /* This text does not mention convenience functions on purpose.
2573 The user can't create them except via Python, and if Python support
2574 is installed this message will never be printed ($_streq will
2575 exist). */
2576 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2577 "Convenience variables have "
2578 "names starting with \"$\";\n"
2579 "use \"set\" as in \"set "
2580 "$foo = 5\" to define them.\n"));
2581 }
c906108c
SS
2582}
2583\f
e81e7f5e
SC
2584/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2585
2586struct value *
2587value_of_xmethod (struct xmethod_worker *worker)
2588{
2589 if (worker->value == NULL)
2590 {
2591 struct value *v;
2592
2593 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2594 v->lval = lval_xcallable;
2595 v->location.xm_worker = worker;
2596 v->modifiable = 0;
2597 worker->value = v;
2598 }
2599
2600 return worker->value;
2601}
2602
2603/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2604
2605struct value *
2606call_xmethod (struct value *method, int argc, struct value **argv)
2607{
2608 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2609 && method->lval == lval_xcallable && argc > 0);
2610
2611 return invoke_xmethod (method->location.xm_worker,
2612 argv[0], argv + 1, argc - 1);
2613}
2614\f
c906108c
SS
2615/* Extract a value as a C number (either long or double).
2616 Knows how to convert fixed values to double, or
2617 floating values to long.
2618 Does not deallocate the value. */
2619
2620LONGEST
f23631e4 2621value_as_long (struct value *val)
c906108c
SS
2622{
2623 /* This coerces arrays and functions, which is necessary (e.g.
2624 in disassemble_command). It also dereferences references, which
2625 I suspect is the most logical thing to do. */
994b9211 2626 val = coerce_array (val);
0fd88904 2627 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2628}
2629
2630DOUBLEST
f23631e4 2631value_as_double (struct value *val)
c906108c
SS
2632{
2633 DOUBLEST foo;
2634 int inv;
c5aa993b 2635
0fd88904 2636 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2637 if (inv)
8a3fe4f8 2638 error (_("Invalid floating value found in program."));
c906108c
SS
2639 return foo;
2640}
4ef30785 2641
581e13c1 2642/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2643 Note that val's type may not actually be a pointer; value_as_long
2644 handles all the cases. */
c906108c 2645CORE_ADDR
f23631e4 2646value_as_address (struct value *val)
c906108c 2647{
50810684
UW
2648 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2649
c906108c
SS
2650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2651 whether we want this to be true eventually. */
2652#if 0
bf6ae464 2653 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2654 non-address (e.g. argument to "signal", "info break", etc.), or
2655 for pointers to char, in which the low bits *are* significant. */
50810684 2656 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2657#else
f312f057
JB
2658
2659 /* There are several targets (IA-64, PowerPC, and others) which
2660 don't represent pointers to functions as simply the address of
2661 the function's entry point. For example, on the IA-64, a
2662 function pointer points to a two-word descriptor, generated by
2663 the linker, which contains the function's entry point, and the
2664 value the IA-64 "global pointer" register should have --- to
2665 support position-independent code. The linker generates
2666 descriptors only for those functions whose addresses are taken.
2667
2668 On such targets, it's difficult for GDB to convert an arbitrary
2669 function address into a function pointer; it has to either find
2670 an existing descriptor for that function, or call malloc and
2671 build its own. On some targets, it is impossible for GDB to
2672 build a descriptor at all: the descriptor must contain a jump
2673 instruction; data memory cannot be executed; and code memory
2674 cannot be modified.
2675
2676 Upon entry to this function, if VAL is a value of type `function'
2677 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2678 value_address (val) is the address of the function. This is what
f312f057
JB
2679 you'll get if you evaluate an expression like `main'. The call
2680 to COERCE_ARRAY below actually does all the usual unary
2681 conversions, which includes converting values of type `function'
2682 to `pointer to function'. This is the challenging conversion
2683 discussed above. Then, `unpack_long' will convert that pointer
2684 back into an address.
2685
2686 So, suppose the user types `disassemble foo' on an architecture
2687 with a strange function pointer representation, on which GDB
2688 cannot build its own descriptors, and suppose further that `foo'
2689 has no linker-built descriptor. The address->pointer conversion
2690 will signal an error and prevent the command from running, even
2691 though the next step would have been to convert the pointer
2692 directly back into the same address.
2693
2694 The following shortcut avoids this whole mess. If VAL is a
2695 function, just return its address directly. */
df407dfe
AC
2696 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2697 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2698 return value_address (val);
f312f057 2699
994b9211 2700 val = coerce_array (val);
fc0c74b1
AC
2701
2702 /* Some architectures (e.g. Harvard), map instruction and data
2703 addresses onto a single large unified address space. For
2704 instance: An architecture may consider a large integer in the
2705 range 0x10000000 .. 0x1000ffff to already represent a data
2706 addresses (hence not need a pointer to address conversion) while
2707 a small integer would still need to be converted integer to
2708 pointer to address. Just assume such architectures handle all
2709 integer conversions in a single function. */
2710
2711 /* JimB writes:
2712
2713 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2714 must admonish GDB hackers to make sure its behavior matches the
2715 compiler's, whenever possible.
2716
2717 In general, I think GDB should evaluate expressions the same way
2718 the compiler does. When the user copies an expression out of
2719 their source code and hands it to a `print' command, they should
2720 get the same value the compiler would have computed. Any
2721 deviation from this rule can cause major confusion and annoyance,
2722 and needs to be justified carefully. In other words, GDB doesn't
2723 really have the freedom to do these conversions in clever and
2724 useful ways.
2725
2726 AndrewC pointed out that users aren't complaining about how GDB
2727 casts integers to pointers; they are complaining that they can't
2728 take an address from a disassembly listing and give it to `x/i'.
2729 This is certainly important.
2730
79dd2d24 2731 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2732 makes it possible for GDB to "get it right" in all circumstances
2733 --- the target has complete control over how things get done, so
2734 people can Do The Right Thing for their target without breaking
2735 anyone else. The standard doesn't specify how integers get
2736 converted to pointers; usually, the ABI doesn't either, but
2737 ABI-specific code is a more reasonable place to handle it. */
2738
df407dfe
AC
2739 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2740 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2741 && gdbarch_integer_to_address_p (gdbarch))
2742 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2743 value_contents (val));
fc0c74b1 2744
0fd88904 2745 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2746#endif
2747}
2748\f
2749/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2750 as a long, or as a double, assuming the raw data is described
2751 by type TYPE. Knows how to convert different sizes of values
2752 and can convert between fixed and floating point. We don't assume
2753 any alignment for the raw data. Return value is in host byte order.
2754
2755 If you want functions and arrays to be coerced to pointers, and
2756 references to be dereferenced, call value_as_long() instead.
2757
2758 C++: It is assumed that the front-end has taken care of
2759 all matters concerning pointers to members. A pointer
2760 to member which reaches here is considered to be equivalent
2761 to an INT (or some size). After all, it is only an offset. */
2762
2763LONGEST
fc1a4b47 2764unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2765{
e17a4113 2766 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2767 enum type_code code = TYPE_CODE (type);
2768 int len = TYPE_LENGTH (type);
2769 int nosign = TYPE_UNSIGNED (type);
c906108c 2770
c906108c
SS
2771 switch (code)
2772 {
2773 case TYPE_CODE_TYPEDEF:
2774 return unpack_long (check_typedef (type), valaddr);
2775 case TYPE_CODE_ENUM:
4f2aea11 2776 case TYPE_CODE_FLAGS:
c906108c
SS
2777 case TYPE_CODE_BOOL:
2778 case TYPE_CODE_INT:
2779 case TYPE_CODE_CHAR:
2780 case TYPE_CODE_RANGE:
0d5de010 2781 case TYPE_CODE_MEMBERPTR:
c906108c 2782 if (nosign)
e17a4113 2783 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2784 else
e17a4113 2785 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2786
2787 case TYPE_CODE_FLT:
96d2f608 2788 return extract_typed_floating (valaddr, type);
c906108c 2789
4ef30785
TJB
2790 case TYPE_CODE_DECFLOAT:
2791 /* libdecnumber has a function to convert from decimal to integer, but
2792 it doesn't work when the decimal number has a fractional part. */
e17a4113 2793 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2794
c906108c
SS
2795 case TYPE_CODE_PTR:
2796 case TYPE_CODE_REF:
2797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2798 whether we want this to be true eventually. */
4478b372 2799 return extract_typed_address (valaddr, type);
c906108c 2800
c906108c 2801 default:
8a3fe4f8 2802 error (_("Value can't be converted to integer."));
c906108c 2803 }
c5aa993b 2804 return 0; /* Placate lint. */
c906108c
SS
2805}
2806
2807/* Return a double value from the specified type and address.
2808 INVP points to an int which is set to 0 for valid value,
2809 1 for invalid value (bad float format). In either case,
2810 the returned double is OK to use. Argument is in target
2811 format, result is in host format. */
2812
2813DOUBLEST
fc1a4b47 2814unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2815{
e17a4113 2816 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2817 enum type_code code;
2818 int len;
2819 int nosign;
2820
581e13c1 2821 *invp = 0; /* Assume valid. */
c906108c
SS
2822 CHECK_TYPEDEF (type);
2823 code = TYPE_CODE (type);
2824 len = TYPE_LENGTH (type);
2825 nosign = TYPE_UNSIGNED (type);
2826 if (code == TYPE_CODE_FLT)
2827 {
75bc7ddf
AC
2828 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2829 floating-point value was valid (using the macro
2830 INVALID_FLOAT). That test/macro have been removed.
2831
2832 It turns out that only the VAX defined this macro and then
2833 only in a non-portable way. Fixing the portability problem
2834 wouldn't help since the VAX floating-point code is also badly
2835 bit-rotten. The target needs to add definitions for the
ea06eb3d 2836 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2837 exactly describe the target floating-point format. The
2838 problem here is that the corresponding floatformat_vax_f and
2839 floatformat_vax_d values these methods should be set to are
2840 also not defined either. Oops!
2841
2842 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2843 definitions and the new cases for floatformat_is_valid (). */
2844
2845 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2846 {
2847 *invp = 1;
2848 return 0.0;
2849 }
2850
96d2f608 2851 return extract_typed_floating (valaddr, type);
c906108c 2852 }
4ef30785 2853 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2854 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2855 else if (nosign)
2856 {
2857 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2858 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2859 }
2860 else
2861 {
2862 /* Signed -- we are OK with unpack_long. */
2863 return unpack_long (type, valaddr);
2864 }
2865}
2866
2867/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2868 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2869 We don't assume any alignment for the raw data. Return value is in
2870 host byte order.
2871
2872 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2873 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2874
2875 C++: It is assumed that the front-end has taken care of
2876 all matters concerning pointers to members. A pointer
2877 to member which reaches here is considered to be equivalent
2878 to an INT (or some size). After all, it is only an offset. */
2879
2880CORE_ADDR
fc1a4b47 2881unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2882{
2883 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2884 whether we want this to be true eventually. */
2885 return unpack_long (type, valaddr);
2886}
4478b372 2887
c906108c 2888\f
1596cb5d 2889/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2890 TYPE. */
c906108c 2891
f23631e4 2892struct value *
fba45db2 2893value_static_field (struct type *type, int fieldno)
c906108c 2894{
948e66d9
DJ
2895 struct value *retval;
2896
1596cb5d 2897 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2898 {
1596cb5d 2899 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2900 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2901 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2902 break;
2903 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2904 {
ff355380 2905 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2906 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2907 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2908
948e66d9 2909 if (sym == NULL)
c906108c 2910 {
a109c7c1 2911 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2912 reported as non-debuggable symbols. */
3b7344d5
TT
2913 struct bound_minimal_symbol msym
2914 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2915
3b7344d5 2916 if (!msym.minsym)
686d4def 2917 return allocate_optimized_out_value (type);
c906108c 2918 else
c5aa993b 2919 {
52e9fde8 2920 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2921 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2922 }
2923 }
2924 else
515ed532 2925 retval = value_of_variable (sym, NULL);
1596cb5d 2926 break;
c906108c 2927 }
1596cb5d 2928 default:
f3574227 2929 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2930 }
2931
948e66d9 2932 return retval;
c906108c
SS
2933}
2934
4dfea560
DE
2935/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2936 You have to be careful here, since the size of the data area for the value
2937 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2938 than the old enclosing type, you have to allocate more space for the
2939 data. */
2b127877 2940
4dfea560
DE
2941void
2942set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2943{
3e3d7139
JG
2944 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2945 val->contents =
2946 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2947
2948 val->enclosing_type = new_encl_type;
2b127877
DB
2949}
2950
c906108c
SS
2951/* Given a value ARG1 (offset by OFFSET bytes)
2952 of a struct or union type ARG_TYPE,
2953 extract and return the value of one of its (non-static) fields.
581e13c1 2954 FIELDNO says which field. */
c906108c 2955
f23631e4
AC
2956struct value *
2957value_primitive_field (struct value *arg1, int offset,
aa1ee363 2958 int fieldno, struct type *arg_type)
c906108c 2959{
f23631e4 2960 struct value *v;
52f0bd74 2961 struct type *type;
c906108c
SS
2962
2963 CHECK_TYPEDEF (arg_type);
2964 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2965
2966 /* Call check_typedef on our type to make sure that, if TYPE
2967 is a TYPE_CODE_TYPEDEF, its length is set to the length
2968 of the target type instead of zero. However, we do not
2969 replace the typedef type by the target type, because we want
2970 to keep the typedef in order to be able to print the type
2971 description correctly. */
2972 check_typedef (type);
c906108c 2973
691a26f5 2974 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2975 {
22c05d8a
JK
2976 /* Handle packed fields.
2977
2978 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2979 set. If possible, arrange offset and bitpos so that we can
2980 do a single aligned read of the size of the containing type.
2981 Otherwise, adjust offset to the byte containing the first
2982 bit. Assume that the address, offset, and embedded offset
2983 are sufficiently aligned. */
22c05d8a 2984
4ea48cc1
DJ
2985 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2986 int container_bitsize = TYPE_LENGTH (type) * 8;
2987
9a0dc9e3
PA
2988 v = allocate_value_lazy (type);
2989 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2990 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2991 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2992 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2993 else
9a0dc9e3
PA
2994 v->bitpos = bitpos % 8;
2995 v->offset = (value_embedded_offset (arg1)
2996 + offset
2997 + (bitpos - v->bitpos) / 8);
2998 set_value_parent (v, arg1);
2999 if (!value_lazy (arg1))
3000 value_fetch_lazy (v);
c906108c
SS
3001 }
3002 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3003 {
3004 /* This field is actually a base subobject, so preserve the
39d37385
PA
3005 entire object's contents for later references to virtual
3006 bases, etc. */
be335936 3007 int boffset;
a4e2ee12
DJ
3008
3009 /* Lazy register values with offsets are not supported. */
3010 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3011 value_fetch_lazy (arg1);
3012
9a0dc9e3
PA
3013 /* We special case virtual inheritance here because this
3014 requires access to the contents, which we would rather avoid
3015 for references to ordinary fields of unavailable values. */
3016 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3017 boffset = baseclass_offset (arg_type, fieldno,
3018 value_contents (arg1),
3019 value_embedded_offset (arg1),
3020 value_address (arg1),
3021 arg1);
c906108c 3022 else
9a0dc9e3 3023 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3024
9a0dc9e3
PA
3025 if (value_lazy (arg1))
3026 v = allocate_value_lazy (value_enclosing_type (arg1));
3027 else
3028 {
3029 v = allocate_value (value_enclosing_type (arg1));
3030 value_contents_copy_raw (v, 0, arg1, 0,
3031 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3032 }
9a0dc9e3
PA
3033 v->type = type;
3034 v->offset = value_offset (arg1);
3035 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3036 }
3037 else
3038 {
3039 /* Plain old data member */
3040 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
3041
3042 /* Lazy register values with offsets are not supported. */
3043 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3044 value_fetch_lazy (arg1);
3045
9a0dc9e3 3046 if (value_lazy (arg1))
3e3d7139 3047 v = allocate_value_lazy (type);
c906108c 3048 else
3e3d7139
JG
3049 {
3050 v = allocate_value (type);
39d37385
PA
3051 value_contents_copy_raw (v, value_embedded_offset (v),
3052 arg1, value_embedded_offset (arg1) + offset,
3053 TYPE_LENGTH (type));
3e3d7139 3054 }
df407dfe 3055 v->offset = (value_offset (arg1) + offset
13c3b5f5 3056 + value_embedded_offset (arg1));
c906108c 3057 }
74bcbdf3 3058 set_value_component_location (v, arg1);
9ee8fc9d 3059 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3060 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3061 return v;
3062}
3063
3064/* Given a value ARG1 of a struct or union type,
3065 extract and return the value of one of its (non-static) fields.
581e13c1 3066 FIELDNO says which field. */
c906108c 3067
f23631e4 3068struct value *
aa1ee363 3069value_field (struct value *arg1, int fieldno)
c906108c 3070{
df407dfe 3071 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3072}
3073
3074/* Return a non-virtual function as a value.
3075 F is the list of member functions which contains the desired method.
0478d61c
FF
3076 J is an index into F which provides the desired method.
3077
3078 We only use the symbol for its address, so be happy with either a
581e13c1 3079 full symbol or a minimal symbol. */
c906108c 3080
f23631e4 3081struct value *
3e43a32a
MS
3082value_fn_field (struct value **arg1p, struct fn_field *f,
3083 int j, struct type *type,
fba45db2 3084 int offset)
c906108c 3085{
f23631e4 3086 struct value *v;
52f0bd74 3087 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3088 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3089 struct symbol *sym;
7c7b6655 3090 struct bound_minimal_symbol msym;
c906108c 3091
2570f2b7 3092 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 3093 if (sym != NULL)
0478d61c 3094 {
7c7b6655 3095 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3096 }
3097 else
3098 {
3099 gdb_assert (sym == NULL);
7c7b6655
TT
3100 msym = lookup_bound_minimal_symbol (physname);
3101 if (msym.minsym == NULL)
5ae326fa 3102 return NULL;
0478d61c
FF
3103 }
3104
c906108c 3105 v = allocate_value (ftype);
0478d61c
FF
3106 if (sym)
3107 {
42ae5230 3108 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3109 }
3110 else
3111 {
bccdca4a
UW
3112 /* The minimal symbol might point to a function descriptor;
3113 resolve it to the actual code address instead. */
7c7b6655 3114 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3116
42ae5230
TT
3117 set_value_address (v,
3118 gdbarch_convert_from_func_ptr_addr
77e371c0 3119 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3120 }
c906108c
SS
3121
3122 if (arg1p)
c5aa993b 3123 {
df407dfe 3124 if (type != value_type (*arg1p))
c5aa993b
JM
3125 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3126 value_addr (*arg1p)));
3127
070ad9f0 3128 /* Move the `this' pointer according to the offset.
581e13c1 3129 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3130 }
3131
3132 return v;
3133}
3134
c906108c 3135\f
c906108c 3136
4875ffdb
PA
3137/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3138 VALADDR, and store the result in *RESULT.
3139 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3140
4875ffdb
PA
3141 Extracting bits depends on endianness of the machine. Compute the
3142 number of least significant bits to discard. For big endian machines,
3143 we compute the total number of bits in the anonymous object, subtract
3144 off the bit count from the MSB of the object to the MSB of the
3145 bitfield, then the size of the bitfield, which leaves the LSB discard
3146 count. For little endian machines, the discard count is simply the
3147 number of bits from the LSB of the anonymous object to the LSB of the
3148 bitfield.
3149
3150 If the field is signed, we also do sign extension. */
3151
3152static LONGEST
3153unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3154 int bitpos, int bitsize)
c906108c 3155{
4ea48cc1 3156 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3157 ULONGEST val;
3158 ULONGEST valmask;
c906108c 3159 int lsbcount;
4a76eae5 3160 int bytes_read;
5467c6c8 3161 int read_offset;
c906108c 3162
4a76eae5
DJ
3163 /* Read the minimum number of bytes required; there may not be
3164 enough bytes to read an entire ULONGEST. */
c906108c 3165 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3166 if (bitsize)
3167 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3168 else
3169 bytes_read = TYPE_LENGTH (field_type);
3170
5467c6c8
PA
3171 read_offset = bitpos / 8;
3172
4875ffdb 3173 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3174 bytes_read, byte_order);
c906108c 3175
581e13c1 3176 /* Extract bits. See comment above. */
c906108c 3177
4ea48cc1 3178 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3179 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3180 else
3181 lsbcount = (bitpos % 8);
3182 val >>= lsbcount;
3183
3184 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3185 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3186
3187 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3188 {
3189 valmask = (((ULONGEST) 1) << bitsize) - 1;
3190 val &= valmask;
3191 if (!TYPE_UNSIGNED (field_type))
3192 {
3193 if (val & (valmask ^ (valmask >> 1)))
3194 {
3195 val |= ~valmask;
3196 }
3197 }
3198 }
5467c6c8 3199
4875ffdb 3200 return val;
5467c6c8
PA
3201}
3202
3203/* Unpack a field FIELDNO of the specified TYPE, from the object at
3204 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3205 ORIGINAL_VALUE, which must not be NULL. See
3206 unpack_value_bits_as_long for more details. */
3207
3208int
3209unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3210 int embedded_offset, int fieldno,
3211 const struct value *val, LONGEST *result)
3212{
4875ffdb
PA
3213 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3214 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3215 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3216 int bit_offset;
3217
5467c6c8
PA
3218 gdb_assert (val != NULL);
3219
4875ffdb
PA
3220 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3221 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3222 || !value_bits_available (val, bit_offset, bitsize))
3223 return 0;
3224
3225 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3226 bitpos, bitsize);
3227 return 1;
5467c6c8
PA
3228}
3229
3230/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3231 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3232
3233LONGEST
3234unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3235{
4875ffdb
PA
3236 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3237 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3238 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3239
4875ffdb
PA
3240 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3241}
3242
3243/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3244 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3245 the contents in DEST_VAL, zero or sign extending if the type of
3246 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3247 VAL. If the VAL's contents required to extract the bitfield from
3248 are unavailable/optimized out, DEST_VAL is correspondingly
3249 marked unavailable/optimized out. */
3250
bb9d5f81 3251void
4875ffdb
PA
3252unpack_value_bitfield (struct value *dest_val,
3253 int bitpos, int bitsize,
3254 const gdb_byte *valaddr, int embedded_offset,
3255 const struct value *val)
3256{
3257 enum bfd_endian byte_order;
3258 int src_bit_offset;
3259 int dst_bit_offset;
3260 LONGEST num;
3261 struct type *field_type = value_type (dest_val);
3262
3263 /* First, unpack and sign extend the bitfield as if it was wholly
3264 available. Invalid/unavailable bits are read as zero, but that's
3265 OK, as they'll end up marked below. */
3266 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3267 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3268 bitpos, bitsize);
3269 store_signed_integer (value_contents_raw (dest_val),
3270 TYPE_LENGTH (field_type), byte_order, num);
3271
3272 /* Now copy the optimized out / unavailability ranges to the right
3273 bits. */
3274 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3275 if (byte_order == BFD_ENDIAN_BIG)
3276 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3277 else
3278 dst_bit_offset = 0;
3279 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3280 val, src_bit_offset, bitsize);
5467c6c8
PA
3281}
3282
3283/* Return a new value with type TYPE, which is FIELDNO field of the
3284 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3285 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3286 from are unavailable/optimized out, the new value is
3287 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3288
3289struct value *
3290value_field_bitfield (struct type *type, int fieldno,
3291 const gdb_byte *valaddr,
3292 int embedded_offset, const struct value *val)
3293{
4875ffdb
PA
3294 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3295 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3296 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3297
4875ffdb
PA
3298 unpack_value_bitfield (res_val, bitpos, bitsize,
3299 valaddr, embedded_offset, val);
3300
3301 return res_val;
4ea48cc1
DJ
3302}
3303
c906108c
SS
3304/* Modify the value of a bitfield. ADDR points to a block of memory in
3305 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3306 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3307 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3308 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3309 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3310
3311void
50810684
UW
3312modify_field (struct type *type, gdb_byte *addr,
3313 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3314{
e17a4113 3315 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3316 ULONGEST oword;
3317 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3318 int bytesize;
3319
3320 /* Normalize BITPOS. */
3321 addr += bitpos / 8;
3322 bitpos %= 8;
c906108c
SS
3323
3324 /* If a negative fieldval fits in the field in question, chop
3325 off the sign extension bits. */
f4e88c8e
PH
3326 if ((~fieldval & ~(mask >> 1)) == 0)
3327 fieldval &= mask;
c906108c
SS
3328
3329 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3330 if (0 != (fieldval & ~mask))
c906108c
SS
3331 {
3332 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3333 we don't have a sprintf_longest. */
8a3fe4f8 3334 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3335
3336 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3337 fieldval &= mask;
c906108c
SS
3338 }
3339
19f220c3
JK
3340 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3341 false valgrind reports. */
3342
3343 bytesize = (bitpos + bitsize + 7) / 8;
3344 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3345
3346 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3347 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3348 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3349
f4e88c8e 3350 oword &= ~(mask << bitpos);
c906108c
SS
3351 oword |= fieldval << bitpos;
3352
19f220c3 3353 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3354}
3355\f
14d06750 3356/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3357
14d06750
DJ
3358void
3359pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3360{
e17a4113 3361 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3362 int len;
14d06750
DJ
3363
3364 type = check_typedef (type);
c906108c
SS
3365 len = TYPE_LENGTH (type);
3366
14d06750 3367 switch (TYPE_CODE (type))
c906108c 3368 {
c906108c
SS
3369 case TYPE_CODE_INT:
3370 case TYPE_CODE_CHAR:
3371 case TYPE_CODE_ENUM:
4f2aea11 3372 case TYPE_CODE_FLAGS:
c906108c
SS
3373 case TYPE_CODE_BOOL:
3374 case TYPE_CODE_RANGE:
0d5de010 3375 case TYPE_CODE_MEMBERPTR:
e17a4113 3376 store_signed_integer (buf, len, byte_order, num);
c906108c 3377 break;
c5aa993b 3378
c906108c
SS
3379 case TYPE_CODE_REF:
3380 case TYPE_CODE_PTR:
14d06750 3381 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3382 break;
c5aa993b 3383
c906108c 3384 default:
14d06750
DJ
3385 error (_("Unexpected type (%d) encountered for integer constant."),
3386 TYPE_CODE (type));
c906108c 3387 }
14d06750
DJ
3388}
3389
3390
595939de
PM
3391/* Pack NUM into BUF using a target format of TYPE. */
3392
70221824 3393static void
595939de
PM
3394pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3395{
3396 int len;
3397 enum bfd_endian byte_order;
3398
3399 type = check_typedef (type);
3400 len = TYPE_LENGTH (type);
3401 byte_order = gdbarch_byte_order (get_type_arch (type));
3402
3403 switch (TYPE_CODE (type))
3404 {
3405 case TYPE_CODE_INT:
3406 case TYPE_CODE_CHAR:
3407 case TYPE_CODE_ENUM:
3408 case TYPE_CODE_FLAGS:
3409 case TYPE_CODE_BOOL:
3410 case TYPE_CODE_RANGE:
3411 case TYPE_CODE_MEMBERPTR:
3412 store_unsigned_integer (buf, len, byte_order, num);
3413 break;
3414
3415 case TYPE_CODE_REF:
3416 case TYPE_CODE_PTR:
3417 store_typed_address (buf, type, (CORE_ADDR) num);
3418 break;
3419
3420 default:
3e43a32a
MS
3421 error (_("Unexpected type (%d) encountered "
3422 "for unsigned integer constant."),
595939de
PM
3423 TYPE_CODE (type));
3424 }
3425}
3426
3427
14d06750
DJ
3428/* Convert C numbers into newly allocated values. */
3429
3430struct value *
3431value_from_longest (struct type *type, LONGEST num)
3432{
3433 struct value *val = allocate_value (type);
3434
3435 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3436 return val;
3437}
3438
4478b372 3439
595939de
PM
3440/* Convert C unsigned numbers into newly allocated values. */
3441
3442struct value *
3443value_from_ulongest (struct type *type, ULONGEST num)
3444{
3445 struct value *val = allocate_value (type);
3446
3447 pack_unsigned_long (value_contents_raw (val), type, num);
3448
3449 return val;
3450}
3451
3452
4478b372 3453/* Create a value representing a pointer of type TYPE to the address
cb417230 3454 ADDR. */
80180f79 3455
f23631e4 3456struct value *
4478b372
JB
3457value_from_pointer (struct type *type, CORE_ADDR addr)
3458{
cb417230 3459 struct value *val = allocate_value (type);
a109c7c1 3460
80180f79 3461 store_typed_address (value_contents_raw (val),
cb417230 3462 check_typedef (type), addr);
4478b372
JB
3463 return val;
3464}
3465
3466
012370f6
TT
3467/* Create a value of type TYPE whose contents come from VALADDR, if it
3468 is non-null, and whose memory address (in the inferior) is
3469 ADDRESS. The type of the created value may differ from the passed
3470 type TYPE. Make sure to retrieve values new type after this call.
3471 Note that TYPE is not passed through resolve_dynamic_type; this is
3472 a special API intended for use only by Ada. */
3473
3474struct value *
3475value_from_contents_and_address_unresolved (struct type *type,
3476 const gdb_byte *valaddr,
3477 CORE_ADDR address)
3478{
3479 struct value *v;
3480
3481 if (valaddr == NULL)
3482 v = allocate_value_lazy (type);
3483 else
3484 v = value_from_contents (type, valaddr);
3485 set_value_address (v, address);
3486 VALUE_LVAL (v) = lval_memory;
3487 return v;
3488}
3489
8acb6b92
TT
3490/* Create a value of type TYPE whose contents come from VALADDR, if it
3491 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3492 ADDRESS. The type of the created value may differ from the passed
3493 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3494
3495struct value *
3496value_from_contents_and_address (struct type *type,
3497 const gdb_byte *valaddr,
3498 CORE_ADDR address)
3499{
80180f79 3500 struct type *resolved_type = resolve_dynamic_type (type, address);
d36430db 3501 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3502 struct value *v;
a109c7c1 3503
8acb6b92 3504 if (valaddr == NULL)
80180f79 3505 v = allocate_value_lazy (resolved_type);
8acb6b92 3506 else
80180f79 3507 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3508 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3509 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3510 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3511 set_value_address (v, address);
33d502b4 3512 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3513 return v;
3514}
3515
8a9b8146
TT
3516/* Create a value of type TYPE holding the contents CONTENTS.
3517 The new value is `not_lval'. */
3518
3519struct value *
3520value_from_contents (struct type *type, const gdb_byte *contents)
3521{
3522 struct value *result;
3523
3524 result = allocate_value (type);
3525 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3526 return result;
3527}
3528
f23631e4 3529struct value *
fba45db2 3530value_from_double (struct type *type, DOUBLEST num)
c906108c 3531{
f23631e4 3532 struct value *val = allocate_value (type);
c906108c 3533 struct type *base_type = check_typedef (type);
52f0bd74 3534 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3535
3536 if (code == TYPE_CODE_FLT)
3537 {
990a07ab 3538 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3539 }
3540 else
8a3fe4f8 3541 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3542
3543 return val;
3544}
994b9211 3545
27bc4d80 3546struct value *
4ef30785 3547value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3548{
3549 struct value *val = allocate_value (type);
27bc4d80 3550
4ef30785 3551 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3552 return val;
3553}
3554
3bd0f5ef
MS
3555/* Extract a value from the history file. Input will be of the form
3556 $digits or $$digits. See block comment above 'write_dollar_variable'
3557 for details. */
3558
3559struct value *
e799154c 3560value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3561{
3562 int index, len;
3563
3564 if (h[0] == '$')
3565 len = 1;
3566 else
3567 return NULL;
3568
3569 if (h[1] == '$')
3570 len = 2;
3571
3572 /* Find length of numeral string. */
3573 for (; isdigit (h[len]); len++)
3574 ;
3575
3576 /* Make sure numeral string is not part of an identifier. */
3577 if (h[len] == '_' || isalpha (h[len]))
3578 return NULL;
3579
3580 /* Now collect the index value. */
3581 if (h[1] == '$')
3582 {
3583 if (len == 2)
3584 {
3585 /* For some bizarre reason, "$$" is equivalent to "$$1",
3586 rather than to "$$0" as it ought to be! */
3587 index = -1;
3588 *endp += len;
3589 }
3590 else
e799154c
TT
3591 {
3592 char *local_end;
3593
3594 index = -strtol (&h[2], &local_end, 10);
3595 *endp = local_end;
3596 }
3bd0f5ef
MS
3597 }
3598 else
3599 {
3600 if (len == 1)
3601 {
3602 /* "$" is equivalent to "$0". */
3603 index = 0;
3604 *endp += len;
3605 }
3606 else
e799154c
TT
3607 {
3608 char *local_end;
3609
3610 index = strtol (&h[1], &local_end, 10);
3611 *endp = local_end;
3612 }
3bd0f5ef
MS
3613 }
3614
3615 return access_value_history (index);
3616}
3617
a471c594
JK
3618struct value *
3619coerce_ref_if_computed (const struct value *arg)
3620{
3621 const struct lval_funcs *funcs;
3622
3623 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3624 return NULL;
3625
3626 if (value_lval_const (arg) != lval_computed)
3627 return NULL;
3628
3629 funcs = value_computed_funcs (arg);
3630 if (funcs->coerce_ref == NULL)
3631 return NULL;
3632
3633 return funcs->coerce_ref (arg);
3634}
3635
dfcee124
AG
3636/* Look at value.h for description. */
3637
3638struct value *
3639readjust_indirect_value_type (struct value *value, struct type *enc_type,
3640 struct type *original_type,
3641 struct value *original_value)
3642{
3643 /* Re-adjust type. */
3644 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3645
3646 /* Add embedding info. */
3647 set_value_enclosing_type (value, enc_type);
3648 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3649
3650 /* We may be pointing to an object of some derived type. */
3651 return value_full_object (value, NULL, 0, 0, 0);
3652}
3653
994b9211
AC
3654struct value *
3655coerce_ref (struct value *arg)
3656{
df407dfe 3657 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3658 struct value *retval;
dfcee124 3659 struct type *enc_type;
a109c7c1 3660
a471c594
JK
3661 retval = coerce_ref_if_computed (arg);
3662 if (retval)
3663 return retval;
3664
3665 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3666 return arg;
3667
dfcee124
AG
3668 enc_type = check_typedef (value_enclosing_type (arg));
3669 enc_type = TYPE_TARGET_TYPE (enc_type);
3670
3671 retval = value_at_lazy (enc_type,
3672 unpack_pointer (value_type (arg),
3673 value_contents (arg)));
9f1f738a 3674 enc_type = value_type (retval);
dfcee124
AG
3675 return readjust_indirect_value_type (retval, enc_type,
3676 value_type_arg_tmp, arg);
994b9211
AC
3677}
3678
3679struct value *
3680coerce_array (struct value *arg)
3681{
f3134b88
TT
3682 struct type *type;
3683
994b9211 3684 arg = coerce_ref (arg);
f3134b88
TT
3685 type = check_typedef (value_type (arg));
3686
3687 switch (TYPE_CODE (type))
3688 {
3689 case TYPE_CODE_ARRAY:
7346b668 3690 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3691 arg = value_coerce_array (arg);
3692 break;
3693 case TYPE_CODE_FUNC:
3694 arg = value_coerce_function (arg);
3695 break;
3696 }
994b9211
AC
3697 return arg;
3698}
c906108c 3699\f
c906108c 3700
bbfdfe1c
DM
3701/* Return the return value convention that will be used for the
3702 specified type. */
3703
3704enum return_value_convention
3705struct_return_convention (struct gdbarch *gdbarch,
3706 struct value *function, struct type *value_type)
3707{
3708 enum type_code code = TYPE_CODE (value_type);
3709
3710 if (code == TYPE_CODE_ERROR)
3711 error (_("Function return type unknown."));
3712
3713 /* Probe the architecture for the return-value convention. */
3714 return gdbarch_return_value (gdbarch, function, value_type,
3715 NULL, NULL, NULL);
3716}
3717
48436ce6
AC
3718/* Return true if the function returning the specified type is using
3719 the convention of returning structures in memory (passing in the
82585c72 3720 address as a hidden first parameter). */
c906108c
SS
3721
3722int
d80b854b 3723using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3724 struct value *function, struct type *value_type)
c906108c 3725{
bbfdfe1c 3726 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3727 /* A void return value is never in memory. See also corresponding
44e5158b 3728 code in "print_return_value". */
667e784f
AC
3729 return 0;
3730
bbfdfe1c 3731 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3732 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3733}
3734
42be36b3
CT
3735/* Set the initialized field in a value struct. */
3736
3737void
3738set_value_initialized (struct value *val, int status)
3739{
3740 val->initialized = status;
3741}
3742
3743/* Return the initialized field in a value struct. */
3744
3745int
3746value_initialized (struct value *val)
3747{
3748 return val->initialized;
3749}
3750
a58e2656
AB
3751/* Called only from the value_contents and value_contents_all()
3752 macros, if the current data for a variable needs to be loaded into
3753 value_contents(VAL). Fetches the data from the user's process, and
3754 clears the lazy flag to indicate that the data in the buffer is
3755 valid.
3756
3757 If the value is zero-length, we avoid calling read_memory, which
3758 would abort. We mark the value as fetched anyway -- all 0 bytes of
3759 it.
3760
3761 This function returns a value because it is used in the
3762 value_contents macro as part of an expression, where a void would
3763 not work. The value is ignored. */
3764
3765int
3766value_fetch_lazy (struct value *val)
3767{
3768 gdb_assert (value_lazy (val));
3769 allocate_value_contents (val);
9a0dc9e3
PA
3770 /* A value is either lazy, or fully fetched. The
3771 availability/validity is only established as we try to fetch a
3772 value. */
3773 gdb_assert (VEC_empty (range_s, val->optimized_out));
3774 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3775 if (value_bitsize (val))
3776 {
3777 /* To read a lazy bitfield, read the entire enclosing value. This
3778 prevents reading the same block of (possibly volatile) memory once
3779 per bitfield. It would be even better to read only the containing
3780 word, but we have no way to record that just specific bits of a
3781 value have been fetched. */
3782 struct type *type = check_typedef (value_type (val));
a58e2656 3783 struct value *parent = value_parent (val);
a58e2656 3784
b0c54aa5
AB
3785 if (value_lazy (parent))
3786 value_fetch_lazy (parent);
3787
4875ffdb
PA
3788 unpack_value_bitfield (val,
3789 value_bitpos (val), value_bitsize (val),
3790 value_contents_for_printing (parent),
3791 value_offset (val), parent);
a58e2656
AB
3792 }
3793 else if (VALUE_LVAL (val) == lval_memory)
3794 {
3795 CORE_ADDR addr = value_address (val);
3796 struct type *type = check_typedef (value_enclosing_type (val));
3797
3798 if (TYPE_LENGTH (type))
3799 read_value_memory (val, 0, value_stack (val),
3800 addr, value_contents_all_raw (val),
3801 TYPE_LENGTH (type));
3802 }
3803 else if (VALUE_LVAL (val) == lval_register)
3804 {
3805 struct frame_info *frame;
3806 int regnum;
3807 struct type *type = check_typedef (value_type (val));
3808 struct value *new_val = val, *mark = value_mark ();
3809
3810 /* Offsets are not supported here; lazy register values must
3811 refer to the entire register. */
3812 gdb_assert (value_offset (val) == 0);
3813
3814 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3815 {
6eeee81c
TT
3816 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3817
3818 frame = frame_find_by_id (frame_id);
a58e2656
AB
3819 regnum = VALUE_REGNUM (new_val);
3820
3821 gdb_assert (frame != NULL);
3822
3823 /* Convertible register routines are used for multi-register
3824 values and for interpretation in different types
3825 (e.g. float or int from a double register). Lazy
3826 register values should have the register's natural type,
3827 so they do not apply. */
3828 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3829 regnum, type));
3830
3831 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3832
3833 /* If we get another lazy lval_register value, it means the
3834 register is found by reading it from the next frame.
3835 get_frame_register_value should never return a value with
3836 the frame id pointing to FRAME. If it does, it means we
3837 either have two consecutive frames with the same frame id
3838 in the frame chain, or some code is trying to unwind
3839 behind get_prev_frame's back (e.g., a frame unwind
3840 sniffer trying to unwind), bypassing its validations. In
3841 any case, it should always be an internal error to end up
3842 in this situation. */
3843 if (VALUE_LVAL (new_val) == lval_register
3844 && value_lazy (new_val)
3845 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3846 internal_error (__FILE__, __LINE__,
3847 _("infinite loop while fetching a register"));
a58e2656
AB
3848 }
3849
3850 /* If it's still lazy (for instance, a saved register on the
3851 stack), fetch it. */
3852 if (value_lazy (new_val))
3853 value_fetch_lazy (new_val);
3854
9a0dc9e3
PA
3855 /* Copy the contents and the unavailability/optimized-out
3856 meta-data from NEW_VAL to VAL. */
3857 set_value_lazy (val, 0);
3858 value_contents_copy (val, value_embedded_offset (val),
3859 new_val, value_embedded_offset (new_val),
3860 TYPE_LENGTH (type));
a58e2656
AB
3861
3862 if (frame_debug)
3863 {
3864 struct gdbarch *gdbarch;
3865 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3866 regnum = VALUE_REGNUM (val);
3867 gdbarch = get_frame_arch (frame);
3868
3869 fprintf_unfiltered (gdb_stdlog,
3870 "{ value_fetch_lazy "
3871 "(frame=%d,regnum=%d(%s),...) ",
3872 frame_relative_level (frame), regnum,
3873 user_reg_map_regnum_to_name (gdbarch, regnum));
3874
3875 fprintf_unfiltered (gdb_stdlog, "->");
3876 if (value_optimized_out (new_val))
f6c01fc5
AB
3877 {
3878 fprintf_unfiltered (gdb_stdlog, " ");
3879 val_print_optimized_out (new_val, gdb_stdlog);
3880 }
a58e2656
AB
3881 else
3882 {
3883 int i;
3884 const gdb_byte *buf = value_contents (new_val);
3885
3886 if (VALUE_LVAL (new_val) == lval_register)
3887 fprintf_unfiltered (gdb_stdlog, " register=%d",
3888 VALUE_REGNUM (new_val));
3889 else if (VALUE_LVAL (new_val) == lval_memory)
3890 fprintf_unfiltered (gdb_stdlog, " address=%s",
3891 paddress (gdbarch,
3892 value_address (new_val)));
3893 else
3894 fprintf_unfiltered (gdb_stdlog, " computed");
3895
3896 fprintf_unfiltered (gdb_stdlog, " bytes=");
3897 fprintf_unfiltered (gdb_stdlog, "[");
3898 for (i = 0; i < register_size (gdbarch, regnum); i++)
3899 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3900 fprintf_unfiltered (gdb_stdlog, "]");
3901 }
3902
3903 fprintf_unfiltered (gdb_stdlog, " }\n");
3904 }
3905
3906 /* Dispose of the intermediate values. This prevents
3907 watchpoints from trying to watch the saved frame pointer. */
3908 value_free_to_mark (mark);
3909 }
3910 else if (VALUE_LVAL (val) == lval_computed
3911 && value_computed_funcs (val)->read != NULL)
3912 value_computed_funcs (val)->read (val);
a58e2656
AB
3913 else
3914 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3915
3916 set_value_lazy (val, 0);
3917 return 0;
3918}
3919
a280dbd1
SDJ
3920/* Implementation of the convenience function $_isvoid. */
3921
3922static struct value *
3923isvoid_internal_fn (struct gdbarch *gdbarch,
3924 const struct language_defn *language,
3925 void *cookie, int argc, struct value **argv)
3926{
3927 int ret;
3928
3929 if (argc != 1)
6bc305f5 3930 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3931
3932 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3933
3934 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3935}
3936
c906108c 3937void
fba45db2 3938_initialize_values (void)
c906108c 3939{
1a966eab 3940 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3941Debugger convenience (\"$foo\") variables and functions.\n\
3942Convenience variables are created when you assign them values;\n\
3943thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3944\n\
c906108c
SS
3945A few convenience variables are given values automatically:\n\
3946\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3947\"$__\" holds the contents of the last address examined with \"x\"."
3948#ifdef HAVE_PYTHON
3949"\n\n\
3950Convenience functions are defined via the Python API."
3951#endif
3952 ), &showlist);
7e20dfcd 3953 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3954
db5f229b 3955 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3956Elements of value history around item number IDX (or last ten)."),
c906108c 3957 &showlist);
53e5f3cf
AS
3958
3959 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3960Initialize a convenience variable if necessary.\n\
3961init-if-undefined VARIABLE = EXPRESSION\n\
3962Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3963exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3964VARIABLE is already initialized."));
bc3b79fd
TJB
3965
3966 add_prefix_cmd ("function", no_class, function_command, _("\
3967Placeholder command for showing help on convenience functions."),
3968 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3969
3970 add_internal_function ("_isvoid", _("\
3971Check whether an expression is void.\n\
3972Usage: $_isvoid (expression)\n\
3973Return 1 if the expression is void, zero otherwise."),
3974 isvoid_internal_fn, NULL);
c906108c 3975}
This page took 2.057997 seconds and 4 git commands to generate.