Remove new_bfd_ref
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
d5f4488f
SM
44#include "selftest.h"
45#include "common/array-view.h"
0914bcdb 46
bc3b79fd
TJB
47/* Definition of a user function. */
48struct internal_function
49{
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60};
61
4e07d55f
PA
62/* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64struct range
65{
66 /* Lowest offset in the range. */
6b850546 67 LONGEST offset;
4e07d55f
PA
68
69 /* Length of the range. */
6b850546 70 LONGEST length;
4e07d55f 71
0c7e6dd8
TT
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
4e07d55f 76
0c7e6dd8
TT
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
d5f4488f
SM
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
0c7e6dd8 87};
4e07d55f
PA
88
89/* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92static int
6b850546
DT
93ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
4e07d55f
PA
95{
96 ULONGEST h, l;
97
325fac50
PA
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
100 return (l < h);
101}
102
4e07d55f
PA
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
0c7e6dd8
TT
107ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
4e07d55f 109{
0c7e6dd8 110 range what;
4e07d55f
PA
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
4e07d55f 146
0c7e6dd8
TT
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
4e07d55f 150 {
0c7e6dd8 151 const struct range &bef = *(i - 1);
4e07d55f 152
0c7e6dd8 153 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
154 return 1;
155 }
156
0c7e6dd8 157 if (i < ranges.end ())
4e07d55f 158 {
0c7e6dd8 159 const struct range &r = *i;
4e07d55f 160
0c7e6dd8 161 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
466ce3ae
TT
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
183 location.address = 0;
184 }
185
186 ~value ()
187 {
466ce3ae
TT
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
466ce3ae
TT
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
91294c83
AC
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
466ce3ae 203 enum lval_type lval = not_lval;
91294c83
AC
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
87784a47
TT
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
91294c83
AC
230
231 /* Location of value (if lval). */
232 union
233 {
7dc54575 234 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
235 CORE_ADDR address;
236
7dc54575
YQ
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
91294c83
AC
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
5f5233d4 250
e81e7f5e
SC
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
5f5233d4
PA
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
c8f2448a
JK
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
5f5233d4 264 } computed;
91294c83
AC
265 } location;
266
3723fda8 267 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
268 addressable memory units. Note also the member embedded_offset
269 below. */
466ce3ae 270 LONGEST offset = 0;
91294c83
AC
271
272 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 273 LONGEST bitsize = 0;
91294c83
AC
274
275 /* Only used for bitfields; position of start of field. For
32c9a795 276 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 277 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
466ce3ae 278 LONGEST bitpos = 0;
91294c83 279
87784a47
TT
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
466ce3ae 285 int reference_count = 1;
87784a47 286
4ea48cc1
DJ
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
2c8331b9 290 value_ref_ptr parent;
4ea48cc1 291
91294c83
AC
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
91294c83
AC
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
91294c83
AC
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
466ce3ae
TT
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
91294c83 338
3e3d7139
JG
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
14c88955 341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 342
4e07d55f
PA
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
9a0dc9e3
PA
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
0c7e6dd8 349 std::vector<range> unavailable;
9a0dc9e3
PA
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
0c7e6dd8 358 std::vector<range> optimized_out;
91294c83
AC
359};
360
e512cdbd
SM
361/* See value.h. */
362
363struct gdbarch *
364get_value_arch (const struct value *value)
365{
366 return get_type_arch (value_type (value));
367}
368
4e07d55f 369int
6b850546 370value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
371{
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375}
376
bdf22206 377int
6b850546
DT
378value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
bdf22206
AB
380{
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384}
385
9a0dc9e3
PA
386int
387value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388{
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392}
393
ec0a52e1
PA
394int
395value_entirely_available (struct value *value)
396{
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
0c7e6dd8 402 if (value->unavailable.empty ())
ec0a52e1
PA
403 return 1;
404 return 0;
405}
406
9a0dc9e3
PA
407/* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411static int
412value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 413 const std::vector<range> &ranges)
6211c335 414{
9a0dc9e3
PA
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
6211c335
YQ
417 if (value->lazy)
418 value_fetch_lazy (value);
419
0c7e6dd8 420 if (ranges.size () == 1)
6211c335 421 {
0c7e6dd8 422 const struct range &t = ranges[0];
6211c335 423
0c7e6dd8
TT
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
427 return 1;
428 }
429
430 return 0;
431}
432
9a0dc9e3
PA
433int
434value_entirely_unavailable (struct value *value)
435{
0c7e6dd8 436 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
437}
438
439int
440value_entirely_optimized_out (struct value *value)
441{
0c7e6dd8 442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
443}
444
445/* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448static void
0c7e6dd8 449insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 450 LONGEST offset, LONGEST length)
4e07d55f 451{
0c7e6dd8 452 range newr;
4e07d55f
PA
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
0c7e6dd8
TT
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
4e07d55f 542 {
0c7e6dd8 543 struct range &bef = *(i - 1);
4e07d55f 544
0c7e6dd8 545 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
546 {
547 /* #1 */
0c7e6dd8
TT
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 550
0c7e6dd8
TT
551 bef.offset = l;
552 bef.length = h - l;
4e07d55f
PA
553 i--;
554 }
0c7e6dd8 555 else if (offset == bef.offset + bef.length)
4e07d55f
PA
556 {
557 /* #2 */
0c7e6dd8 558 bef.length += length;
4e07d55f
PA
559 i--;
560 }
561 else
562 {
563 /* #3 */
0c7e6dd8 564 i = vectorp->insert (i, newr);
4e07d55f
PA
565 }
566 }
567 else
568 {
569 /* #4 */
0c7e6dd8 570 i = vectorp->insert (i, newr);
4e07d55f
PA
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
0c7e6dd8 575 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 576 {
4e07d55f 577 int removed = 0;
0c7e6dd8 578 auto next = i + 1;
4e07d55f
PA
579
580 /* Get the range we just touched. */
0c7e6dd8 581 struct range &t = *i;
4e07d55f
PA
582 removed = 0;
583
584 i = next;
0c7e6dd8
TT
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
4e07d55f
PA
608
609 if (removed != 0)
0c7e6dd8 610 vectorp->erase (next, next + removed);
4e07d55f
PA
611 }
612}
613
9a0dc9e3 614void
6b850546
DT
615mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
9a0dc9e3
PA
617{
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619}
620
bdf22206 621void
6b850546
DT
622mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
bdf22206
AB
624{
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628}
629
c8c1c22f
PA
630/* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635static int
0c7e6dd8 636find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 637 LONGEST offset, LONGEST length)
c8c1c22f 638{
c8c1c22f
PA
639 int i;
640
0c7e6dd8
TT
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
c8c1c22f
PA
647
648 return -1;
649}
650
bdf22206
AB
651/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663static int
664memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667{
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750}
751
9a0dc9e3
PA
752/* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
bdf22206 755
9a0dc9e3
PA
756struct ranges_and_idx
757{
758 /* The ranges. */
0c7e6dd8 759 const std::vector<range> *ranges;
9a0dc9e3
PA
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764};
765
766/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
771
772static int
9a0dc9e3
PA
773find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
6b850546
DT
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 777{
9a0dc9e3
PA
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
c8c1c22f 782
9a0dc9e3
PA
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
c8c1c22f 792 {
0c7e6dd8 793 const range *r1, *r2;
c8c1c22f
PA
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
0c7e6dd8
TT
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
325fac50
PA
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 805
325fac50
PA
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
9a0dc9e3 817 /* Different ranges, no match. */
c8c1c22f
PA
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
9a0dc9e3
PA
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825}
826
827/* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
98ead37e 834static bool
9a0dc9e3
PA
835value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838{
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
858
859 while (length > 0)
860 {
000339af 861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
98ead37e 873 return false;
9a0dc9e3
PA
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
14c88955
TT
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
98ead37e 886 return false;
c8c1c22f 887
9a0dc9e3
PA
888 length -= h;
889 offset1 += h;
890 offset2 += h;
c8c1c22f
PA
891 }
892
98ead37e 893 return true;
c8c1c22f
PA
894}
895
98ead37e 896bool
6b850546
DT
897value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
bdf22206 900{
9a0dc9e3
PA
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
bdf22206
AB
904}
905
c906108c 906
4d0266a0
TT
907/* The value-history records all the values printed by print commands
908 during this session. */
c906108c 909
4d0266a0 910static std::vector<value_ref_ptr> value_history;
bc3b79fd 911
c906108c
SS
912\f
913/* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
062d818d 917static std::vector<value_ref_ptr> all_values;
c906108c 918
3e3d7139
JG
919/* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
c906108c 922
f23631e4 923struct value *
3e3d7139 924allocate_value_lazy (struct type *type)
c906108c 925{
f23631e4 926 struct value *val;
c54eabfa
JK
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
c906108c 935
466ce3ae 936 val = new struct value (type);
828d3400
DJ
937
938 /* Values start out on the all_values chain. */
062d818d 939 all_values.emplace_back (val);
828d3400 940
c906108c
SS
941 return val;
942}
943
5fdf6324
AB
944/* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948static int max_value_size = 65536; /* 64k bytes */
949
950/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962/* Implement the "set max-value-size" command. */
963
964static void
eb4c3f4a 965set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
966 struct cmd_list_element *c)
967{
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976}
977
978/* Implement the "show max-value-size" command. */
979
980static void
981show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983{
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989}
990
991/* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997static void
998check_type_length_before_alloc (const struct type *type)
999{
1000 unsigned int length = TYPE_LENGTH (type);
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
1004 if (TYPE_NAME (type) != NULL)
1005 error (_("value of type `%s' requires %u bytes, which is more "
1006 "than max-value-size"), TYPE_NAME (type), length);
1007 else
1008 error (_("value requires %u bytes, which is more than "
1009 "max-value-size"), length);
1010 }
1011}
1012
3e3d7139
JG
1013/* Allocate the contents of VAL if it has not been allocated yet. */
1014
548b762d 1015static void
3e3d7139
JG
1016allocate_value_contents (struct value *val)
1017{
1018 if (!val->contents)
5fdf6324
AB
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1023 }
3e3d7139
JG
1024}
1025
1026/* Allocate a value and its contents for type TYPE. */
1027
1028struct value *
1029allocate_value (struct type *type)
1030{
1031 struct value *val = allocate_value_lazy (type);
a109c7c1 1032
3e3d7139
JG
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036}
1037
c906108c 1038/* Allocate a value that has the correct length
938f5214 1039 for COUNT repetitions of type TYPE. */
c906108c 1040
f23631e4 1041struct value *
fba45db2 1042allocate_repeat_value (struct type *type, int count)
c906108c 1043{
c5aa993b 1044 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1045 /* FIXME-type-allocation: need a way to free this type when we are
1046 done with it. */
e3506a9f
UW
1047 struct type *array_type
1048 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1049
e3506a9f 1050 return allocate_value (array_type);
c906108c
SS
1051}
1052
5f5233d4
PA
1053struct value *
1054allocate_computed_value (struct type *type,
c8f2448a 1055 const struct lval_funcs *funcs,
5f5233d4
PA
1056 void *closure)
1057{
41e8491f 1058 struct value *v = allocate_value_lazy (type);
a109c7c1 1059
5f5233d4
PA
1060 VALUE_LVAL (v) = lval_computed;
1061 v->location.computed.funcs = funcs;
1062 v->location.computed.closure = closure;
5f5233d4
PA
1063
1064 return v;
1065}
1066
a7035dbb
JK
1067/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1068
1069struct value *
1070allocate_optimized_out_value (struct type *type)
1071{
1072 struct value *retval = allocate_value_lazy (type);
1073
9a0dc9e3
PA
1074 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1075 set_value_lazy (retval, 0);
a7035dbb
JK
1076 return retval;
1077}
1078
df407dfe
AC
1079/* Accessor methods. */
1080
1081struct type *
0e03807e 1082value_type (const struct value *value)
df407dfe
AC
1083{
1084 return value->type;
1085}
04624583
AC
1086void
1087deprecated_set_value_type (struct value *value, struct type *type)
1088{
1089 value->type = type;
1090}
df407dfe 1091
6b850546 1092LONGEST
0e03807e 1093value_offset (const struct value *value)
df407dfe
AC
1094{
1095 return value->offset;
1096}
f5cf64a7 1097void
6b850546 1098set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1099{
1100 value->offset = offset;
1101}
df407dfe 1102
6b850546 1103LONGEST
0e03807e 1104value_bitpos (const struct value *value)
df407dfe
AC
1105{
1106 return value->bitpos;
1107}
9bbda503 1108void
6b850546 1109set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1110{
1111 value->bitpos = bit;
1112}
df407dfe 1113
6b850546 1114LONGEST
0e03807e 1115value_bitsize (const struct value *value)
df407dfe
AC
1116{
1117 return value->bitsize;
1118}
9bbda503 1119void
6b850546 1120set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1121{
1122 value->bitsize = bit;
1123}
df407dfe 1124
4ea48cc1 1125struct value *
4bf7b526 1126value_parent (const struct value *value)
4ea48cc1 1127{
2c8331b9 1128 return value->parent.get ();
4ea48cc1
DJ
1129}
1130
53ba8333
JB
1131/* See value.h. */
1132
1133void
1134set_value_parent (struct value *value, struct value *parent)
1135{
2c8331b9 1136 value->parent = value_ref_ptr (value_incref (parent));
53ba8333
JB
1137}
1138
fc1a4b47 1139gdb_byte *
990a07ab
AC
1140value_contents_raw (struct value *value)
1141{
3ae385af
SM
1142 struct gdbarch *arch = get_value_arch (value);
1143 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144
3e3d7139 1145 allocate_value_contents (value);
14c88955 1146 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1147}
1148
fc1a4b47 1149gdb_byte *
990a07ab
AC
1150value_contents_all_raw (struct value *value)
1151{
3e3d7139 1152 allocate_value_contents (value);
14c88955 1153 return value->contents.get ();
990a07ab
AC
1154}
1155
4754a64e 1156struct type *
4bf7b526 1157value_enclosing_type (const struct value *value)
4754a64e
AC
1158{
1159 return value->enclosing_type;
1160}
1161
8264ba82
AG
1162/* Look at value.h for description. */
1163
1164struct type *
1165value_actual_type (struct value *value, int resolve_simple_types,
1166 int *real_type_found)
1167{
1168 struct value_print_options opts;
8264ba82
AG
1169 struct type *result;
1170
1171 get_user_print_options (&opts);
1172
1173 if (real_type_found)
1174 *real_type_found = 0;
1175 result = value_type (value);
1176 if (opts.objectprint)
1177 {
5e34c6c3
LM
1178 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1179 fetch its rtti type. */
aa006118 1180 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1181 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1182 == TYPE_CODE_STRUCT
1183 && !value_optimized_out (value))
8264ba82
AG
1184 {
1185 struct type *real_type;
1186
1187 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1188 if (real_type)
1189 {
1190 if (real_type_found)
1191 *real_type_found = 1;
1192 result = real_type;
1193 }
1194 }
1195 else if (resolve_simple_types)
1196 {
1197 if (real_type_found)
1198 *real_type_found = 1;
1199 result = value_enclosing_type (value);
1200 }
1201 }
1202
1203 return result;
1204}
1205
901461f8
PA
1206void
1207error_value_optimized_out (void)
1208{
1209 error (_("value has been optimized out"));
1210}
1211
0e03807e 1212static void
4e07d55f 1213require_not_optimized_out (const struct value *value)
0e03807e 1214{
0c7e6dd8 1215 if (!value->optimized_out.empty ())
901461f8
PA
1216 {
1217 if (value->lval == lval_register)
1218 error (_("register has not been saved in frame"));
1219 else
1220 error_value_optimized_out ();
1221 }
0e03807e
TT
1222}
1223
4e07d55f
PA
1224static void
1225require_available (const struct value *value)
1226{
0c7e6dd8 1227 if (!value->unavailable.empty ())
8af8e3bc 1228 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1229}
1230
fc1a4b47 1231const gdb_byte *
0e03807e 1232value_contents_for_printing (struct value *value)
46615f07
AC
1233{
1234 if (value->lazy)
1235 value_fetch_lazy (value);
14c88955 1236 return value->contents.get ();
46615f07
AC
1237}
1238
de4127a3
PA
1239const gdb_byte *
1240value_contents_for_printing_const (const struct value *value)
1241{
1242 gdb_assert (!value->lazy);
14c88955 1243 return value->contents.get ();
de4127a3
PA
1244}
1245
0e03807e
TT
1246const gdb_byte *
1247value_contents_all (struct value *value)
1248{
1249 const gdb_byte *result = value_contents_for_printing (value);
1250 require_not_optimized_out (value);
4e07d55f 1251 require_available (value);
0e03807e
TT
1252 return result;
1253}
1254
9a0dc9e3
PA
1255/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1256 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1257
1258static void
0c7e6dd8
TT
1259ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1260 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1261 int bit_length)
1262{
0c7e6dd8 1263 for (const range &r : src_range)
9a0dc9e3
PA
1264 {
1265 ULONGEST h, l;
1266
0c7e6dd8
TT
1267 l = std::max (r.offset, (LONGEST) src_bit_offset);
1268 h = std::min (r.offset + r.length,
325fac50 1269 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1270
1271 if (l < h)
1272 insert_into_bit_range_vector (dst_range,
1273 dst_bit_offset + (l - src_bit_offset),
1274 h - l);
1275 }
1276}
1277
4875ffdb
PA
1278/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1280
1281static void
1282value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1283 const struct value *src, int src_bit_offset,
1284 int bit_length)
1285{
1286 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1287 src->unavailable, src_bit_offset,
1288 bit_length);
1289 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1290 src->optimized_out, src_bit_offset,
1291 bit_length);
1292}
1293
3ae385af 1294/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1295 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1296 contents, starting at DST_OFFSET. If unavailable contents are
1297 being copied from SRC, the corresponding DST contents are marked
1298 unavailable accordingly. Neither DST nor SRC may be lazy
1299 values.
1300
1301 It is assumed the contents of DST in the [DST_OFFSET,
1302 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1303
1304void
6b850546
DT
1305value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1306 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1307{
6b850546 1308 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1309 struct gdbarch *arch = get_value_arch (src);
1310 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1311
1312 /* A lazy DST would make that this copy operation useless, since as
1313 soon as DST's contents were un-lazied (by a later value_contents
1314 call, say), the contents would be overwritten. A lazy SRC would
1315 mean we'd be copying garbage. */
1316 gdb_assert (!dst->lazy && !src->lazy);
1317
29976f3f
PA
1318 /* The overwritten DST range gets unavailability ORed in, not
1319 replaced. Make sure to remember to implement replacing if it
1320 turns out actually necessary. */
1321 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1322 gdb_assert (!value_bits_any_optimized_out (dst,
1323 TARGET_CHAR_BIT * dst_offset,
1324 TARGET_CHAR_BIT * length));
29976f3f 1325
39d37385 1326 /* Copy the data. */
3ae385af
SM
1327 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1328 value_contents_all_raw (src) + src_offset * unit_size,
1329 length * unit_size);
39d37385
PA
1330
1331 /* Copy the meta-data, adjusted. */
3ae385af
SM
1332 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1333 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1334 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1335
4875ffdb
PA
1336 value_ranges_copy_adjusted (dst, dst_bit_offset,
1337 src, src_bit_offset,
1338 bit_length);
39d37385
PA
1339}
1340
29976f3f
PA
1341/* Copy LENGTH bytes of SRC value's (all) contents
1342 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1343 (all) contents, starting at DST_OFFSET. If unavailable contents
1344 are being copied from SRC, the corresponding DST contents are
1345 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1346 lazy, it will be fetched now.
29976f3f
PA
1347
1348 It is assumed the contents of DST in the [DST_OFFSET,
1349 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1350
1351void
6b850546
DT
1352value_contents_copy (struct value *dst, LONGEST dst_offset,
1353 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1354{
39d37385
PA
1355 if (src->lazy)
1356 value_fetch_lazy (src);
1357
1358 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1359}
1360
d69fe07e 1361int
4bf7b526 1362value_lazy (const struct value *value)
d69fe07e
AC
1363{
1364 return value->lazy;
1365}
1366
dfa52d88
AC
1367void
1368set_value_lazy (struct value *value, int val)
1369{
1370 value->lazy = val;
1371}
1372
4e5d721f 1373int
4bf7b526 1374value_stack (const struct value *value)
4e5d721f
DE
1375{
1376 return value->stack;
1377}
1378
1379void
1380set_value_stack (struct value *value, int val)
1381{
1382 value->stack = val;
1383}
1384
fc1a4b47 1385const gdb_byte *
0fd88904
AC
1386value_contents (struct value *value)
1387{
0e03807e
TT
1388 const gdb_byte *result = value_contents_writeable (value);
1389 require_not_optimized_out (value);
4e07d55f 1390 require_available (value);
0e03807e 1391 return result;
0fd88904
AC
1392}
1393
fc1a4b47 1394gdb_byte *
0fd88904
AC
1395value_contents_writeable (struct value *value)
1396{
1397 if (value->lazy)
1398 value_fetch_lazy (value);
fc0c53a0 1399 return value_contents_raw (value);
0fd88904
AC
1400}
1401
feb13ab0
AC
1402int
1403value_optimized_out (struct value *value)
1404{
691a26f5
AB
1405 /* We can only know if a value is optimized out once we have tried to
1406 fetch it. */
0c7e6dd8 1407 if (value->optimized_out.empty () && value->lazy)
ecf2e90c
DB
1408 {
1409 TRY
1410 {
1411 value_fetch_lazy (value);
1412 }
1413 CATCH (ex, RETURN_MASK_ERROR)
1414 {
1415 /* Fall back to checking value->optimized_out. */
1416 }
1417 END_CATCH
1418 }
691a26f5 1419
0c7e6dd8 1420 return !value->optimized_out.empty ();
feb13ab0
AC
1421}
1422
9a0dc9e3
PA
1423/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1424 the following LENGTH bytes. */
eca07816 1425
feb13ab0 1426void
9a0dc9e3 1427mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1428{
9a0dc9e3
PA
1429 mark_value_bits_optimized_out (value,
1430 offset * TARGET_CHAR_BIT,
1431 length * TARGET_CHAR_BIT);
feb13ab0 1432}
13c3b5f5 1433
9a0dc9e3 1434/* See value.h. */
0e03807e 1435
9a0dc9e3 1436void
6b850546
DT
1437mark_value_bits_optimized_out (struct value *value,
1438 LONGEST offset, LONGEST length)
0e03807e 1439{
9a0dc9e3 1440 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1441}
1442
8cf6f0b1
TT
1443int
1444value_bits_synthetic_pointer (const struct value *value,
6b850546 1445 LONGEST offset, LONGEST length)
8cf6f0b1 1446{
e7303042 1447 if (value->lval != lval_computed
8cf6f0b1
TT
1448 || !value->location.computed.funcs->check_synthetic_pointer)
1449 return 0;
1450 return value->location.computed.funcs->check_synthetic_pointer (value,
1451 offset,
1452 length);
1453}
1454
6b850546 1455LONGEST
4bf7b526 1456value_embedded_offset (const struct value *value)
13c3b5f5
AC
1457{
1458 return value->embedded_offset;
1459}
1460
1461void
6b850546 1462set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1463{
1464 value->embedded_offset = val;
1465}
b44d461b 1466
6b850546 1467LONGEST
4bf7b526 1468value_pointed_to_offset (const struct value *value)
b44d461b
AC
1469{
1470 return value->pointed_to_offset;
1471}
1472
1473void
6b850546 1474set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1475{
1476 value->pointed_to_offset = val;
1477}
13bb5560 1478
c8f2448a 1479const struct lval_funcs *
a471c594 1480value_computed_funcs (const struct value *v)
5f5233d4 1481{
a471c594 1482 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1483
1484 return v->location.computed.funcs;
1485}
1486
1487void *
0e03807e 1488value_computed_closure (const struct value *v)
5f5233d4 1489{
0e03807e 1490 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1491
1492 return v->location.computed.closure;
1493}
1494
13bb5560
AC
1495enum lval_type *
1496deprecated_value_lval_hack (struct value *value)
1497{
1498 return &value->lval;
1499}
1500
a471c594
JK
1501enum lval_type
1502value_lval_const (const struct value *value)
1503{
1504 return value->lval;
1505}
1506
42ae5230 1507CORE_ADDR
de4127a3 1508value_address (const struct value *value)
42ae5230 1509{
1a088441 1510 if (value->lval != lval_memory)
42ae5230 1511 return 0;
53ba8333 1512 if (value->parent != NULL)
2c8331b9 1513 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1514 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1515 {
1516 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1517 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1518 }
1519
1520 return value->location.address + value->offset;
42ae5230
TT
1521}
1522
1523CORE_ADDR
4bf7b526 1524value_raw_address (const struct value *value)
42ae5230 1525{
1a088441 1526 if (value->lval != lval_memory)
42ae5230
TT
1527 return 0;
1528 return value->location.address;
1529}
1530
1531void
1532set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1533{
1a088441 1534 gdb_assert (value->lval == lval_memory);
42ae5230 1535 value->location.address = addr;
13bb5560
AC
1536}
1537
1538struct internalvar **
1539deprecated_value_internalvar_hack (struct value *value)
1540{
1541 return &value->location.internalvar;
1542}
1543
1544struct frame_id *
41b56feb 1545deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1546{
7c2ba67e 1547 gdb_assert (value->lval == lval_register);
7dc54575 1548 return &value->location.reg.next_frame_id;
13bb5560
AC
1549}
1550
7dc54575 1551int *
13bb5560
AC
1552deprecated_value_regnum_hack (struct value *value)
1553{
7c2ba67e 1554 gdb_assert (value->lval == lval_register);
7dc54575 1555 return &value->location.reg.regnum;
13bb5560 1556}
88e3b34b
AC
1557
1558int
4bf7b526 1559deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1560{
1561 return value->modifiable;
1562}
990a07ab 1563\f
c906108c
SS
1564/* Return a mark in the value chain. All values allocated after the
1565 mark is obtained (except for those released) are subject to being freed
1566 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1567struct value *
fba45db2 1568value_mark (void)
c906108c 1569{
062d818d
TT
1570 if (all_values.empty ())
1571 return nullptr;
1572 return all_values.back ().get ();
c906108c
SS
1573}
1574
828d3400
DJ
1575/* Take a reference to VAL. VAL will not be deallocated until all
1576 references are released. */
1577
22bc8444 1578struct value *
828d3400
DJ
1579value_incref (struct value *val)
1580{
1581 val->reference_count++;
22bc8444 1582 return val;
828d3400
DJ
1583}
1584
1585/* Release a reference to VAL, which was acquired with value_incref.
1586 This function is also called to deallocate values from the value
1587 chain. */
1588
3e3d7139 1589void
22bc8444 1590value_decref (struct value *val)
3e3d7139 1591{
466ce3ae 1592 if (val != nullptr)
5f5233d4 1593 {
828d3400
DJ
1594 gdb_assert (val->reference_count > 0);
1595 val->reference_count--;
466ce3ae
TT
1596 if (val->reference_count == 0)
1597 delete val;
5f5233d4 1598 }
3e3d7139
JG
1599}
1600
c906108c
SS
1601/* Free all values allocated since MARK was obtained by value_mark
1602 (except for those released). */
1603void
4bf7b526 1604value_free_to_mark (const struct value *mark)
c906108c 1605{
062d818d
TT
1606 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1607 if (iter == all_values.end ())
1608 all_values.clear ();
1609 else
1610 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1611}
1612
c906108c
SS
1613/* Remove VAL from the chain all_values
1614 so it will not be freed automatically. */
1615
22bc8444 1616value_ref_ptr
f23631e4 1617release_value (struct value *val)
c906108c 1618{
f23631e4 1619 struct value *v;
c906108c 1620
850645cf
TT
1621 if (val == nullptr)
1622 return value_ref_ptr ();
1623
062d818d
TT
1624 std::vector<value_ref_ptr>::reverse_iterator iter;
1625 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1626 {
062d818d 1627 if (*iter == val)
c906108c 1628 {
062d818d
TT
1629 value_ref_ptr result = *iter;
1630 all_values.erase (iter.base () - 1);
1631 return result;
c906108c
SS
1632 }
1633 }
c906108c 1634
062d818d
TT
1635 /* We must always return an owned reference. Normally this happens
1636 because we transfer the reference from the value chain, but in
1637 this case the value was not on the chain. */
1638 return value_ref_ptr (value_incref (val));
e848a8a5
TT
1639}
1640
a6535de1
TT
1641/* See value.h. */
1642
1643std::vector<value_ref_ptr>
4bf7b526 1644value_release_to_mark (const struct value *mark)
c906108c 1645{
a6535de1 1646 std::vector<value_ref_ptr> result;
c906108c 1647
062d818d
TT
1648 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1649 if (iter == all_values.end ())
1650 std::swap (result, all_values);
1651 else
e848a8a5 1652 {
062d818d
TT
1653 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1654 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1655 }
062d818d 1656 std::reverse (result.begin (), result.end ());
a6535de1 1657 return result;
c906108c
SS
1658}
1659
1660/* Return a copy of the value ARG.
1661 It contains the same contents, for same memory address,
1662 but it's a different block of storage. */
1663
f23631e4
AC
1664struct value *
1665value_copy (struct value *arg)
c906108c 1666{
4754a64e 1667 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1668 struct value *val;
1669
1670 if (value_lazy (arg))
1671 val = allocate_value_lazy (encl_type);
1672 else
1673 val = allocate_value (encl_type);
df407dfe 1674 val->type = arg->type;
c906108c 1675 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1676 val->location = arg->location;
df407dfe
AC
1677 val->offset = arg->offset;
1678 val->bitpos = arg->bitpos;
1679 val->bitsize = arg->bitsize;
d69fe07e 1680 val->lazy = arg->lazy;
13c3b5f5 1681 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1682 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1683 val->modifiable = arg->modifiable;
d69fe07e 1684 if (!value_lazy (val))
c906108c 1685 {
990a07ab 1686 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1687 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1688
1689 }
0c7e6dd8
TT
1690 val->unavailable = arg->unavailable;
1691 val->optimized_out = arg->optimized_out;
2c8331b9 1692 val->parent = arg->parent;
5f5233d4
PA
1693 if (VALUE_LVAL (val) == lval_computed)
1694 {
c8f2448a 1695 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1696
1697 if (funcs->copy_closure)
1698 val->location.computed.closure = funcs->copy_closure (val);
1699 }
c906108c
SS
1700 return val;
1701}
74bcbdf3 1702
4c082a81
SC
1703/* Return a "const" and/or "volatile" qualified version of the value V.
1704 If CNST is true, then the returned value will be qualified with
1705 "const".
1706 if VOLTL is true, then the returned value will be qualified with
1707 "volatile". */
1708
1709struct value *
1710make_cv_value (int cnst, int voltl, struct value *v)
1711{
1712 struct type *val_type = value_type (v);
1713 struct type *enclosing_type = value_enclosing_type (v);
1714 struct value *cv_val = value_copy (v);
1715
1716 deprecated_set_value_type (cv_val,
1717 make_cv_type (cnst, voltl, val_type, NULL));
1718 set_value_enclosing_type (cv_val,
1719 make_cv_type (cnst, voltl, enclosing_type, NULL));
1720
1721 return cv_val;
1722}
1723
c37f7098
KW
1724/* Return a version of ARG that is non-lvalue. */
1725
1726struct value *
1727value_non_lval (struct value *arg)
1728{
1729 if (VALUE_LVAL (arg) != not_lval)
1730 {
1731 struct type *enc_type = value_enclosing_type (arg);
1732 struct value *val = allocate_value (enc_type);
1733
1734 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1735 TYPE_LENGTH (enc_type));
1736 val->type = arg->type;
1737 set_value_embedded_offset (val, value_embedded_offset (arg));
1738 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1739 return val;
1740 }
1741 return arg;
1742}
1743
6c659fc2
SC
1744/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1745
1746void
1747value_force_lval (struct value *v, CORE_ADDR addr)
1748{
1749 gdb_assert (VALUE_LVAL (v) == not_lval);
1750
1751 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1752 v->lval = lval_memory;
1753 v->location.address = addr;
1754}
1755
74bcbdf3 1756void
0e03807e
TT
1757set_value_component_location (struct value *component,
1758 const struct value *whole)
74bcbdf3 1759{
9920b434
BH
1760 struct type *type;
1761
e81e7f5e
SC
1762 gdb_assert (whole->lval != lval_xcallable);
1763
0e03807e 1764 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1765 VALUE_LVAL (component) = lval_internalvar_component;
1766 else
0e03807e 1767 VALUE_LVAL (component) = whole->lval;
5f5233d4 1768
74bcbdf3 1769 component->location = whole->location;
0e03807e 1770 if (whole->lval == lval_computed)
5f5233d4 1771 {
c8f2448a 1772 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1773
1774 if (funcs->copy_closure)
1775 component->location.computed.closure = funcs->copy_closure (whole);
1776 }
9920b434
BH
1777
1778 /* If type has a dynamic resolved location property
1779 update it's value address. */
1780 type = value_type (whole);
1781 if (NULL != TYPE_DATA_LOCATION (type)
1782 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1783 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1784}
1785
c906108c
SS
1786/* Access to the value history. */
1787
1788/* Record a new value in the value history.
eddf0bae 1789 Returns the absolute history index of the entry. */
c906108c
SS
1790
1791int
f23631e4 1792record_latest_value (struct value *val)
c906108c
SS
1793{
1794 int i;
1795
1796 /* We don't want this value to have anything to do with the inferior anymore.
1797 In particular, "set $1 = 50" should not affect the variable from which
1798 the value was taken, and fast watchpoints should be able to assume that
1799 a value on the value history never changes. */
d69fe07e 1800 if (value_lazy (val))
c906108c
SS
1801 value_fetch_lazy (val);
1802 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1803 from. This is a bit dubious, because then *&$1 does not just return $1
1804 but the current contents of that location. c'est la vie... */
1805 val->modifiable = 0;
350e1a76 1806
4d0266a0 1807 value_history.push_back (release_value (val));
a109c7c1 1808
4d0266a0 1809 return value_history.size ();
c906108c
SS
1810}
1811
1812/* Return a copy of the value in the history with sequence number NUM. */
1813
f23631e4 1814struct value *
fba45db2 1815access_value_history (int num)
c906108c 1816{
52f0bd74
AC
1817 int i;
1818 int absnum = num;
c906108c
SS
1819
1820 if (absnum <= 0)
4d0266a0 1821 absnum += value_history.size ();
c906108c
SS
1822
1823 if (absnum <= 0)
1824 {
1825 if (num == 0)
8a3fe4f8 1826 error (_("The history is empty."));
c906108c 1827 else if (num == 1)
8a3fe4f8 1828 error (_("There is only one value in the history."));
c906108c 1829 else
8a3fe4f8 1830 error (_("History does not go back to $$%d."), -num);
c906108c 1831 }
4d0266a0 1832 if (absnum > value_history.size ())
8a3fe4f8 1833 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1834
1835 absnum--;
1836
4d0266a0 1837 return value_copy (value_history[absnum].get ());
c906108c
SS
1838}
1839
c906108c 1840static void
5fed81ff 1841show_values (const char *num_exp, int from_tty)
c906108c 1842{
52f0bd74 1843 int i;
f23631e4 1844 struct value *val;
c906108c
SS
1845 static int num = 1;
1846
1847 if (num_exp)
1848 {
f132ba9d
TJB
1849 /* "show values +" should print from the stored position.
1850 "show values <exp>" should print around value number <exp>. */
c906108c 1851 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1852 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1853 }
1854 else
1855 {
f132ba9d 1856 /* "show values" means print the last 10 values. */
4d0266a0 1857 num = value_history.size () - 9;
c906108c
SS
1858 }
1859
1860 if (num <= 0)
1861 num = 1;
1862
4d0266a0 1863 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1864 {
79a45b7d 1865 struct value_print_options opts;
a109c7c1 1866
c906108c 1867 val = access_value_history (i);
a3f17187 1868 printf_filtered (("$%d = "), i);
79a45b7d
TT
1869 get_user_print_options (&opts);
1870 value_print (val, gdb_stdout, &opts);
a3f17187 1871 printf_filtered (("\n"));
c906108c
SS
1872 }
1873
f132ba9d 1874 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1875 num += 10;
1876
1877 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1878 "show values +". If num_exp is null, this is unnecessary, since
1879 "show values +" is not useful after "show values". */
c906108c 1880 if (from_tty && num_exp)
85c4be7c 1881 set_repeat_arguments ("+");
c906108c
SS
1882}
1883\f
52059ffd
TT
1884enum internalvar_kind
1885{
1886 /* The internal variable is empty. */
1887 INTERNALVAR_VOID,
1888
1889 /* The value of the internal variable is provided directly as
1890 a GDB value object. */
1891 INTERNALVAR_VALUE,
1892
1893 /* A fresh value is computed via a call-back routine on every
1894 access to the internal variable. */
1895 INTERNALVAR_MAKE_VALUE,
1896
1897 /* The internal variable holds a GDB internal convenience function. */
1898 INTERNALVAR_FUNCTION,
1899
1900 /* The variable holds an integer value. */
1901 INTERNALVAR_INTEGER,
1902
1903 /* The variable holds a GDB-provided string. */
1904 INTERNALVAR_STRING,
1905};
1906
1907union internalvar_data
1908{
1909 /* A value object used with INTERNALVAR_VALUE. */
1910 struct value *value;
1911
1912 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1913 struct
1914 {
1915 /* The functions to call. */
1916 const struct internalvar_funcs *functions;
1917
1918 /* The function's user-data. */
1919 void *data;
1920 } make_value;
1921
1922 /* The internal function used with INTERNALVAR_FUNCTION. */
1923 struct
1924 {
1925 struct internal_function *function;
1926 /* True if this is the canonical name for the function. */
1927 int canonical;
1928 } fn;
1929
1930 /* An integer value used with INTERNALVAR_INTEGER. */
1931 struct
1932 {
1933 /* If type is non-NULL, it will be used as the type to generate
1934 a value for this internal variable. If type is NULL, a default
1935 integer type for the architecture is used. */
1936 struct type *type;
1937 LONGEST val;
1938 } integer;
1939
1940 /* A string value used with INTERNALVAR_STRING. */
1941 char *string;
1942};
1943
c906108c
SS
1944/* Internal variables. These are variables within the debugger
1945 that hold values assigned by debugger commands.
1946 The user refers to them with a '$' prefix
1947 that does not appear in the variable names stored internally. */
1948
4fa62494
UW
1949struct internalvar
1950{
1951 struct internalvar *next;
1952 char *name;
4fa62494 1953
78267919
UW
1954 /* We support various different kinds of content of an internal variable.
1955 enum internalvar_kind specifies the kind, and union internalvar_data
1956 provides the data associated with this particular kind. */
1957
52059ffd 1958 enum internalvar_kind kind;
4fa62494 1959
52059ffd 1960 union internalvar_data u;
4fa62494
UW
1961};
1962
c906108c
SS
1963static struct internalvar *internalvars;
1964
3e43a32a
MS
1965/* If the variable does not already exist create it and give it the
1966 value given. If no value is given then the default is zero. */
53e5f3cf 1967static void
0b39b52e 1968init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1969{
1970 struct internalvar* intvar;
1971
1972 /* Parse the expression - this is taken from set_command(). */
4d01a485 1973 expression_up expr = parse_expression (args);
53e5f3cf
AS
1974
1975 /* Validate the expression.
1976 Was the expression an assignment?
1977 Or even an expression at all? */
1978 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1979 error (_("Init-if-undefined requires an assignment expression."));
1980
1981 /* Extract the variable from the parsed expression.
1982 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1983 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1984 error (_("The first parameter to init-if-undefined "
1985 "should be a GDB variable."));
53e5f3cf
AS
1986 intvar = expr->elts[2].internalvar;
1987
1988 /* Only evaluate the expression if the lvalue is void.
1989 This may still fail if the expresssion is invalid. */
78267919 1990 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1991 evaluate_expression (expr.get ());
53e5f3cf
AS
1992}
1993
1994
c906108c
SS
1995/* Look up an internal variable with name NAME. NAME should not
1996 normally include a dollar sign.
1997
1998 If the specified internal variable does not exist,
c4a3d09a 1999 the return value is NULL. */
c906108c
SS
2000
2001struct internalvar *
bc3b79fd 2002lookup_only_internalvar (const char *name)
c906108c 2003{
52f0bd74 2004 struct internalvar *var;
c906108c
SS
2005
2006 for (var = internalvars; var; var = var->next)
5cb316ef 2007 if (strcmp (var->name, name) == 0)
c906108c
SS
2008 return var;
2009
c4a3d09a
MF
2010 return NULL;
2011}
2012
eb3ff9a5
PA
2013/* Complete NAME by comparing it to the names of internal
2014 variables. */
d55637df 2015
eb3ff9a5
PA
2016void
2017complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2018{
d55637df
TT
2019 struct internalvar *var;
2020 int len;
2021
2022 len = strlen (name);
2023
2024 for (var = internalvars; var; var = var->next)
2025 if (strncmp (var->name, name, len) == 0)
2026 {
eb3ff9a5 2027 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2028
eb3ff9a5 2029 tracker.add_completion (std::move (copy));
d55637df 2030 }
d55637df 2031}
c4a3d09a
MF
2032
2033/* Create an internal variable with name NAME and with a void value.
2034 NAME should not normally include a dollar sign. */
2035
2036struct internalvar *
bc3b79fd 2037create_internalvar (const char *name)
c4a3d09a 2038{
8d749320 2039 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2040
1754f103 2041 var->name = concat (name, (char *)NULL);
78267919 2042 var->kind = INTERNALVAR_VOID;
c906108c
SS
2043 var->next = internalvars;
2044 internalvars = var;
2045 return var;
2046}
2047
4aa995e1
PA
2048/* Create an internal variable with name NAME and register FUN as the
2049 function that value_of_internalvar uses to create a value whenever
2050 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2051 dollar sign. DATA is passed uninterpreted to FUN when it is
2052 called. CLEANUP, if not NULL, is called when the internal variable
2053 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2054
2055struct internalvar *
22d2b532
SDJ
2056create_internalvar_type_lazy (const char *name,
2057 const struct internalvar_funcs *funcs,
2058 void *data)
4aa995e1 2059{
4fa62494 2060 struct internalvar *var = create_internalvar (name);
a109c7c1 2061
78267919 2062 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2063 var->u.make_value.functions = funcs;
2064 var->u.make_value.data = data;
4aa995e1
PA
2065 return var;
2066}
c4a3d09a 2067
22d2b532
SDJ
2068/* See documentation in value.h. */
2069
2070int
2071compile_internalvar_to_ax (struct internalvar *var,
2072 struct agent_expr *expr,
2073 struct axs_value *value)
2074{
2075 if (var->kind != INTERNALVAR_MAKE_VALUE
2076 || var->u.make_value.functions->compile_to_ax == NULL)
2077 return 0;
2078
2079 var->u.make_value.functions->compile_to_ax (var, expr, value,
2080 var->u.make_value.data);
2081 return 1;
2082}
2083
c4a3d09a
MF
2084/* Look up an internal variable with name NAME. NAME should not
2085 normally include a dollar sign.
2086
2087 If the specified internal variable does not exist,
2088 one is created, with a void value. */
2089
2090struct internalvar *
bc3b79fd 2091lookup_internalvar (const char *name)
c4a3d09a
MF
2092{
2093 struct internalvar *var;
2094
2095 var = lookup_only_internalvar (name);
2096 if (var)
2097 return var;
2098
2099 return create_internalvar (name);
2100}
2101
78267919
UW
2102/* Return current value of internal variable VAR. For variables that
2103 are not inherently typed, use a value type appropriate for GDBARCH. */
2104
f23631e4 2105struct value *
78267919 2106value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2107{
f23631e4 2108 struct value *val;
0914bcdb
SS
2109 struct trace_state_variable *tsv;
2110
2111 /* If there is a trace state variable of the same name, assume that
2112 is what we really want to see. */
2113 tsv = find_trace_state_variable (var->name);
2114 if (tsv)
2115 {
2116 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2117 &(tsv->value));
2118 if (tsv->value_known)
2119 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2120 tsv->value);
2121 else
2122 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2123 return val;
2124 }
c906108c 2125
78267919 2126 switch (var->kind)
5f5233d4 2127 {
78267919
UW
2128 case INTERNALVAR_VOID:
2129 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2130 break;
4fa62494 2131
78267919
UW
2132 case INTERNALVAR_FUNCTION:
2133 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2134 break;
4fa62494 2135
cab0c772
UW
2136 case INTERNALVAR_INTEGER:
2137 if (!var->u.integer.type)
78267919 2138 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2139 var->u.integer.val);
78267919 2140 else
cab0c772
UW
2141 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2142 break;
2143
78267919
UW
2144 case INTERNALVAR_STRING:
2145 val = value_cstring (var->u.string, strlen (var->u.string),
2146 builtin_type (gdbarch)->builtin_char);
2147 break;
4fa62494 2148
78267919
UW
2149 case INTERNALVAR_VALUE:
2150 val = value_copy (var->u.value);
4aa995e1
PA
2151 if (value_lazy (val))
2152 value_fetch_lazy (val);
78267919 2153 break;
4aa995e1 2154
78267919 2155 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2156 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2157 var->u.make_value.data);
78267919
UW
2158 break;
2159
2160 default:
9b20d036 2161 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2162 }
2163
2164 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2165 on this value go back to affect the original internal variable.
2166
2167 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2168 no underlying modifyable state in the internal variable.
2169
2170 Likewise, if the variable's value is a computed lvalue, we want
2171 references to it to produce another computed lvalue, where
2172 references and assignments actually operate through the
2173 computed value's functions.
2174
2175 This means that internal variables with computed values
2176 behave a little differently from other internal variables:
2177 assignments to them don't just replace the previous value
2178 altogether. At the moment, this seems like the behavior we
2179 want. */
2180
2181 if (var->kind != INTERNALVAR_MAKE_VALUE
2182 && val->lval != lval_computed)
2183 {
2184 VALUE_LVAL (val) = lval_internalvar;
2185 VALUE_INTERNALVAR (val) = var;
5f5233d4 2186 }
d3c139e9 2187
4fa62494
UW
2188 return val;
2189}
d3c139e9 2190
4fa62494
UW
2191int
2192get_internalvar_integer (struct internalvar *var, LONGEST *result)
2193{
3158c6ed 2194 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2195 {
cab0c772
UW
2196 *result = var->u.integer.val;
2197 return 1;
3158c6ed 2198 }
d3c139e9 2199
3158c6ed
PA
2200 if (var->kind == INTERNALVAR_VALUE)
2201 {
2202 struct type *type = check_typedef (value_type (var->u.value));
2203
2204 if (TYPE_CODE (type) == TYPE_CODE_INT)
2205 {
2206 *result = value_as_long (var->u.value);
2207 return 1;
2208 }
4fa62494 2209 }
3158c6ed
PA
2210
2211 return 0;
4fa62494 2212}
d3c139e9 2213
4fa62494
UW
2214static int
2215get_internalvar_function (struct internalvar *var,
2216 struct internal_function **result)
2217{
78267919 2218 switch (var->kind)
d3c139e9 2219 {
78267919
UW
2220 case INTERNALVAR_FUNCTION:
2221 *result = var->u.fn.function;
4fa62494 2222 return 1;
d3c139e9 2223
4fa62494
UW
2224 default:
2225 return 0;
2226 }
c906108c
SS
2227}
2228
2229void
6b850546
DT
2230set_internalvar_component (struct internalvar *var,
2231 LONGEST offset, LONGEST bitpos,
2232 LONGEST bitsize, struct value *newval)
c906108c 2233{
4fa62494 2234 gdb_byte *addr;
3ae385af
SM
2235 struct gdbarch *arch;
2236 int unit_size;
c906108c 2237
78267919 2238 switch (var->kind)
4fa62494 2239 {
78267919
UW
2240 case INTERNALVAR_VALUE:
2241 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2242 arch = get_value_arch (var->u.value);
2243 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2244
2245 if (bitsize)
50810684 2246 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2247 value_as_long (newval), bitpos, bitsize);
2248 else
3ae385af 2249 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2250 TYPE_LENGTH (value_type (newval)));
2251 break;
78267919
UW
2252
2253 default:
2254 /* We can never get a component of any other kind. */
9b20d036 2255 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2256 }
c906108c
SS
2257}
2258
2259void
f23631e4 2260set_internalvar (struct internalvar *var, struct value *val)
c906108c 2261{
78267919 2262 enum internalvar_kind new_kind;
4fa62494 2263 union internalvar_data new_data = { 0 };
c906108c 2264
78267919 2265 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2266 error (_("Cannot overwrite convenience function %s"), var->name);
2267
4fa62494 2268 /* Prepare new contents. */
78267919 2269 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2270 {
2271 case TYPE_CODE_VOID:
78267919 2272 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2273 break;
2274
2275 case TYPE_CODE_INTERNAL_FUNCTION:
2276 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2277 new_kind = INTERNALVAR_FUNCTION;
2278 get_internalvar_function (VALUE_INTERNALVAR (val),
2279 &new_data.fn.function);
2280 /* Copies created here are never canonical. */
4fa62494
UW
2281 break;
2282
4fa62494 2283 default:
78267919
UW
2284 new_kind = INTERNALVAR_VALUE;
2285 new_data.value = value_copy (val);
2286 new_data.value->modifiable = 1;
4fa62494
UW
2287
2288 /* Force the value to be fetched from the target now, to avoid problems
2289 later when this internalvar is referenced and the target is gone or
2290 has changed. */
78267919
UW
2291 if (value_lazy (new_data.value))
2292 value_fetch_lazy (new_data.value);
4fa62494
UW
2293
2294 /* Release the value from the value chain to prevent it from being
2295 deleted by free_all_values. From here on this function should not
2296 call error () until new_data is installed into the var->u to avoid
2297 leaking memory. */
22bc8444 2298 release_value (new_data.value).release ();
9920b434
BH
2299
2300 /* Internal variables which are created from values with a dynamic
2301 location don't need the location property of the origin anymore.
2302 The resolved dynamic location is used prior then any other address
2303 when accessing the value.
2304 If we keep it, we would still refer to the origin value.
2305 Remove the location property in case it exist. */
2306 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2307
4fa62494
UW
2308 break;
2309 }
2310
2311 /* Clean up old contents. */
2312 clear_internalvar (var);
2313
2314 /* Switch over. */
78267919 2315 var->kind = new_kind;
4fa62494 2316 var->u = new_data;
c906108c
SS
2317 /* End code which must not call error(). */
2318}
2319
4fa62494
UW
2320void
2321set_internalvar_integer (struct internalvar *var, LONGEST l)
2322{
2323 /* Clean up old contents. */
2324 clear_internalvar (var);
2325
cab0c772
UW
2326 var->kind = INTERNALVAR_INTEGER;
2327 var->u.integer.type = NULL;
2328 var->u.integer.val = l;
78267919
UW
2329}
2330
2331void
2332set_internalvar_string (struct internalvar *var, const char *string)
2333{
2334 /* Clean up old contents. */
2335 clear_internalvar (var);
2336
2337 var->kind = INTERNALVAR_STRING;
2338 var->u.string = xstrdup (string);
4fa62494
UW
2339}
2340
2341static void
2342set_internalvar_function (struct internalvar *var, struct internal_function *f)
2343{
2344 /* Clean up old contents. */
2345 clear_internalvar (var);
2346
78267919
UW
2347 var->kind = INTERNALVAR_FUNCTION;
2348 var->u.fn.function = f;
2349 var->u.fn.canonical = 1;
2350 /* Variables installed here are always the canonical version. */
4fa62494
UW
2351}
2352
2353void
2354clear_internalvar (struct internalvar *var)
2355{
2356 /* Clean up old contents. */
78267919 2357 switch (var->kind)
4fa62494 2358 {
78267919 2359 case INTERNALVAR_VALUE:
22bc8444 2360 value_decref (var->u.value);
78267919
UW
2361 break;
2362
2363 case INTERNALVAR_STRING:
2364 xfree (var->u.string);
4fa62494
UW
2365 break;
2366
22d2b532
SDJ
2367 case INTERNALVAR_MAKE_VALUE:
2368 if (var->u.make_value.functions->destroy != NULL)
2369 var->u.make_value.functions->destroy (var->u.make_value.data);
2370 break;
2371
4fa62494 2372 default:
4fa62494
UW
2373 break;
2374 }
2375
78267919
UW
2376 /* Reset to void kind. */
2377 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2378}
2379
c906108c 2380char *
4bf7b526 2381internalvar_name (const struct internalvar *var)
c906108c
SS
2382{
2383 return var->name;
2384}
2385
4fa62494
UW
2386static struct internal_function *
2387create_internal_function (const char *name,
2388 internal_function_fn handler, void *cookie)
bc3b79fd 2389{
bc3b79fd 2390 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2391
bc3b79fd
TJB
2392 ifn->name = xstrdup (name);
2393 ifn->handler = handler;
2394 ifn->cookie = cookie;
4fa62494 2395 return ifn;
bc3b79fd
TJB
2396}
2397
2398char *
2399value_internal_function_name (struct value *val)
2400{
4fa62494
UW
2401 struct internal_function *ifn;
2402 int result;
2403
2404 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2405 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2406 gdb_assert (result);
2407
bc3b79fd
TJB
2408 return ifn->name;
2409}
2410
2411struct value *
d452c4bc
UW
2412call_internal_function (struct gdbarch *gdbarch,
2413 const struct language_defn *language,
2414 struct value *func, int argc, struct value **argv)
bc3b79fd 2415{
4fa62494
UW
2416 struct internal_function *ifn;
2417 int result;
2418
2419 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2420 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2421 gdb_assert (result);
2422
d452c4bc 2423 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2424}
2425
2426/* The 'function' command. This does nothing -- it is just a
2427 placeholder to let "help function NAME" work. This is also used as
2428 the implementation of the sub-command that is created when
2429 registering an internal function. */
2430static void
981a3fb3 2431function_command (const char *command, int from_tty)
bc3b79fd
TJB
2432{
2433 /* Do nothing. */
2434}
2435
2436/* Clean up if an internal function's command is destroyed. */
2437static void
2438function_destroyer (struct cmd_list_element *self, void *ignore)
2439{
6f937416 2440 xfree ((char *) self->name);
1947513d 2441 xfree ((char *) self->doc);
bc3b79fd
TJB
2442}
2443
2444/* Add a new internal function. NAME is the name of the function; DOC
2445 is a documentation string describing the function. HANDLER is
2446 called when the function is invoked. COOKIE is an arbitrary
2447 pointer which is passed to HANDLER and is intended for "user
2448 data". */
2449void
2450add_internal_function (const char *name, const char *doc,
2451 internal_function_fn handler, void *cookie)
2452{
2453 struct cmd_list_element *cmd;
4fa62494 2454 struct internal_function *ifn;
bc3b79fd 2455 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2456
2457 ifn = create_internal_function (name, handler, cookie);
2458 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2459
2460 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2461 &functionlist);
2462 cmd->destroyer = function_destroyer;
2463}
2464
ae5a43e0
DJ
2465/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2466 prevent cycles / duplicates. */
2467
4e7a5ef5 2468void
ae5a43e0
DJ
2469preserve_one_value (struct value *value, struct objfile *objfile,
2470 htab_t copied_types)
2471{
2472 if (TYPE_OBJFILE (value->type) == objfile)
2473 value->type = copy_type_recursive (objfile, value->type, copied_types);
2474
2475 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2476 value->enclosing_type = copy_type_recursive (objfile,
2477 value->enclosing_type,
2478 copied_types);
2479}
2480
78267919
UW
2481/* Likewise for internal variable VAR. */
2482
2483static void
2484preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2485 htab_t copied_types)
2486{
2487 switch (var->kind)
2488 {
cab0c772
UW
2489 case INTERNALVAR_INTEGER:
2490 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2491 var->u.integer.type
2492 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2493 break;
2494
78267919
UW
2495 case INTERNALVAR_VALUE:
2496 preserve_one_value (var->u.value, objfile, copied_types);
2497 break;
2498 }
2499}
2500
ae5a43e0
DJ
2501/* Update the internal variables and value history when OBJFILE is
2502 discarded; we must copy the types out of the objfile. New global types
2503 will be created for every convenience variable which currently points to
2504 this objfile's types, and the convenience variables will be adjusted to
2505 use the new global types. */
c906108c
SS
2506
2507void
ae5a43e0 2508preserve_values (struct objfile *objfile)
c906108c 2509{
ae5a43e0 2510 htab_t copied_types;
52f0bd74 2511 struct internalvar *var;
ae5a43e0 2512 int i;
c906108c 2513
ae5a43e0
DJ
2514 /* Create the hash table. We allocate on the objfile's obstack, since
2515 it is soon to be deleted. */
2516 copied_types = create_copied_types_hash (objfile);
2517
4d0266a0
TT
2518 for (const value_ref_ptr &item : value_history)
2519 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2520
2521 for (var = internalvars; var; var = var->next)
78267919 2522 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2523
6dddc817 2524 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2525
ae5a43e0 2526 htab_delete (copied_types);
c906108c
SS
2527}
2528
2529static void
ad25e423 2530show_convenience (const char *ignore, int from_tty)
c906108c 2531{
e17c207e 2532 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2533 struct internalvar *var;
c906108c 2534 int varseen = 0;
79a45b7d 2535 struct value_print_options opts;
c906108c 2536
79a45b7d 2537 get_user_print_options (&opts);
c906108c
SS
2538 for (var = internalvars; var; var = var->next)
2539 {
c709acd1 2540
c906108c
SS
2541 if (!varseen)
2542 {
2543 varseen = 1;
2544 }
a3f17187 2545 printf_filtered (("$%s = "), var->name);
c709acd1 2546
492d29ea 2547 TRY
c709acd1
PA
2548 {
2549 struct value *val;
2550
2551 val = value_of_internalvar (gdbarch, var);
2552 value_print (val, gdb_stdout, &opts);
2553 }
492d29ea
PA
2554 CATCH (ex, RETURN_MASK_ERROR)
2555 {
2556 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2557 }
2558 END_CATCH
2559
a3f17187 2560 printf_filtered (("\n"));
c906108c
SS
2561 }
2562 if (!varseen)
f47f77df
DE
2563 {
2564 /* This text does not mention convenience functions on purpose.
2565 The user can't create them except via Python, and if Python support
2566 is installed this message will never be printed ($_streq will
2567 exist). */
2568 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2569 "Convenience variables have "
2570 "names starting with \"$\";\n"
2571 "use \"set\" as in \"set "
2572 "$foo = 5\" to define them.\n"));
2573 }
c906108c
SS
2574}
2575\f
ba18742c
SM
2576
2577/* See value.h. */
e81e7f5e
SC
2578
2579struct value *
ba18742c 2580value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2581{
ba18742c 2582 struct value *v;
e81e7f5e 2583
ba18742c
SM
2584 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2585 v->lval = lval_xcallable;
2586 v->location.xm_worker = worker.release ();
2587 v->modifiable = 0;
e81e7f5e 2588
ba18742c 2589 return v;
e81e7f5e
SC
2590}
2591
2ce1cdbf
DE
2592/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2593
2594struct type *
2595result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2596{
2597 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2598 && method->lval == lval_xcallable && argc > 0);
2599
ba18742c
SM
2600 return method->location.xm_worker->get_result_type
2601 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2602}
2603
e81e7f5e
SC
2604/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2605
2606struct value *
2607call_xmethod (struct value *method, int argc, struct value **argv)
2608{
2609 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2610 && method->lval == lval_xcallable && argc > 0);
2611
ba18742c 2612 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2613}
2614\f
c906108c
SS
2615/* Extract a value as a C number (either long or double).
2616 Knows how to convert fixed values to double, or
2617 floating values to long.
2618 Does not deallocate the value. */
2619
2620LONGEST
f23631e4 2621value_as_long (struct value *val)
c906108c
SS
2622{
2623 /* This coerces arrays and functions, which is necessary (e.g.
2624 in disassemble_command). It also dereferences references, which
2625 I suspect is the most logical thing to do. */
994b9211 2626 val = coerce_array (val);
0fd88904 2627 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2628}
2629
581e13c1 2630/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2631 Note that val's type may not actually be a pointer; value_as_long
2632 handles all the cases. */
c906108c 2633CORE_ADDR
f23631e4 2634value_as_address (struct value *val)
c906108c 2635{
50810684
UW
2636 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2637
c906108c
SS
2638 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2639 whether we want this to be true eventually. */
2640#if 0
bf6ae464 2641 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2642 non-address (e.g. argument to "signal", "info break", etc.), or
2643 for pointers to char, in which the low bits *are* significant. */
50810684 2644 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2645#else
f312f057
JB
2646
2647 /* There are several targets (IA-64, PowerPC, and others) which
2648 don't represent pointers to functions as simply the address of
2649 the function's entry point. For example, on the IA-64, a
2650 function pointer points to a two-word descriptor, generated by
2651 the linker, which contains the function's entry point, and the
2652 value the IA-64 "global pointer" register should have --- to
2653 support position-independent code. The linker generates
2654 descriptors only for those functions whose addresses are taken.
2655
2656 On such targets, it's difficult for GDB to convert an arbitrary
2657 function address into a function pointer; it has to either find
2658 an existing descriptor for that function, or call malloc and
2659 build its own. On some targets, it is impossible for GDB to
2660 build a descriptor at all: the descriptor must contain a jump
2661 instruction; data memory cannot be executed; and code memory
2662 cannot be modified.
2663
2664 Upon entry to this function, if VAL is a value of type `function'
2665 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2666 value_address (val) is the address of the function. This is what
f312f057
JB
2667 you'll get if you evaluate an expression like `main'. The call
2668 to COERCE_ARRAY below actually does all the usual unary
2669 conversions, which includes converting values of type `function'
2670 to `pointer to function'. This is the challenging conversion
2671 discussed above. Then, `unpack_long' will convert that pointer
2672 back into an address.
2673
2674 So, suppose the user types `disassemble foo' on an architecture
2675 with a strange function pointer representation, on which GDB
2676 cannot build its own descriptors, and suppose further that `foo'
2677 has no linker-built descriptor. The address->pointer conversion
2678 will signal an error and prevent the command from running, even
2679 though the next step would have been to convert the pointer
2680 directly back into the same address.
2681
2682 The following shortcut avoids this whole mess. If VAL is a
2683 function, just return its address directly. */
df407dfe
AC
2684 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2685 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2686 return value_address (val);
f312f057 2687
994b9211 2688 val = coerce_array (val);
fc0c74b1
AC
2689
2690 /* Some architectures (e.g. Harvard), map instruction and data
2691 addresses onto a single large unified address space. For
2692 instance: An architecture may consider a large integer in the
2693 range 0x10000000 .. 0x1000ffff to already represent a data
2694 addresses (hence not need a pointer to address conversion) while
2695 a small integer would still need to be converted integer to
2696 pointer to address. Just assume such architectures handle all
2697 integer conversions in a single function. */
2698
2699 /* JimB writes:
2700
2701 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2702 must admonish GDB hackers to make sure its behavior matches the
2703 compiler's, whenever possible.
2704
2705 In general, I think GDB should evaluate expressions the same way
2706 the compiler does. When the user copies an expression out of
2707 their source code and hands it to a `print' command, they should
2708 get the same value the compiler would have computed. Any
2709 deviation from this rule can cause major confusion and annoyance,
2710 and needs to be justified carefully. In other words, GDB doesn't
2711 really have the freedom to do these conversions in clever and
2712 useful ways.
2713
2714 AndrewC pointed out that users aren't complaining about how GDB
2715 casts integers to pointers; they are complaining that they can't
2716 take an address from a disassembly listing and give it to `x/i'.
2717 This is certainly important.
2718
79dd2d24 2719 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2720 makes it possible for GDB to "get it right" in all circumstances
2721 --- the target has complete control over how things get done, so
2722 people can Do The Right Thing for their target without breaking
2723 anyone else. The standard doesn't specify how integers get
2724 converted to pointers; usually, the ABI doesn't either, but
2725 ABI-specific code is a more reasonable place to handle it. */
2726
df407dfe 2727 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2728 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2729 && gdbarch_integer_to_address_p (gdbarch))
2730 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2731 value_contents (val));
fc0c74b1 2732
0fd88904 2733 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2734#endif
2735}
2736\f
2737/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2738 as a long, or as a double, assuming the raw data is described
2739 by type TYPE. Knows how to convert different sizes of values
2740 and can convert between fixed and floating point. We don't assume
2741 any alignment for the raw data. Return value is in host byte order.
2742
2743 If you want functions and arrays to be coerced to pointers, and
2744 references to be dereferenced, call value_as_long() instead.
2745
2746 C++: It is assumed that the front-end has taken care of
2747 all matters concerning pointers to members. A pointer
2748 to member which reaches here is considered to be equivalent
2749 to an INT (or some size). After all, it is only an offset. */
2750
2751LONGEST
fc1a4b47 2752unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2753{
e17a4113 2754 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2755 enum type_code code = TYPE_CODE (type);
2756 int len = TYPE_LENGTH (type);
2757 int nosign = TYPE_UNSIGNED (type);
c906108c 2758
c906108c
SS
2759 switch (code)
2760 {
2761 case TYPE_CODE_TYPEDEF:
2762 return unpack_long (check_typedef (type), valaddr);
2763 case TYPE_CODE_ENUM:
4f2aea11 2764 case TYPE_CODE_FLAGS:
c906108c
SS
2765 case TYPE_CODE_BOOL:
2766 case TYPE_CODE_INT:
2767 case TYPE_CODE_CHAR:
2768 case TYPE_CODE_RANGE:
0d5de010 2769 case TYPE_CODE_MEMBERPTR:
c906108c 2770 if (nosign)
e17a4113 2771 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2772 else
e17a4113 2773 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2774
2775 case TYPE_CODE_FLT:
4ef30785 2776 case TYPE_CODE_DECFLOAT:
50637b26 2777 return target_float_to_longest (valaddr, type);
4ef30785 2778
c906108c
SS
2779 case TYPE_CODE_PTR:
2780 case TYPE_CODE_REF:
aa006118 2781 case TYPE_CODE_RVALUE_REF:
c906108c 2782 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2783 whether we want this to be true eventually. */
4478b372 2784 return extract_typed_address (valaddr, type);
c906108c 2785
c906108c 2786 default:
8a3fe4f8 2787 error (_("Value can't be converted to integer."));
c906108c 2788 }
c5aa993b 2789 return 0; /* Placate lint. */
c906108c
SS
2790}
2791
c906108c
SS
2792/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2793 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2794 We don't assume any alignment for the raw data. Return value is in
2795 host byte order.
2796
2797 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2798 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2799
2800 C++: It is assumed that the front-end has taken care of
2801 all matters concerning pointers to members. A pointer
2802 to member which reaches here is considered to be equivalent
2803 to an INT (or some size). After all, it is only an offset. */
2804
2805CORE_ADDR
fc1a4b47 2806unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2807{
2808 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2809 whether we want this to be true eventually. */
2810 return unpack_long (type, valaddr);
2811}
4478b372 2812
70100014
UW
2813bool
2814is_floating_value (struct value *val)
2815{
2816 struct type *type = check_typedef (value_type (val));
2817
2818 if (is_floating_type (type))
2819 {
2820 if (!target_float_is_valid (value_contents (val), type))
2821 error (_("Invalid floating value found in program."));
2822 return true;
2823 }
2824
2825 return false;
2826}
2827
c906108c 2828\f
1596cb5d 2829/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2830 TYPE. */
c906108c 2831
f23631e4 2832struct value *
fba45db2 2833value_static_field (struct type *type, int fieldno)
c906108c 2834{
948e66d9
DJ
2835 struct value *retval;
2836
1596cb5d 2837 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2838 {
1596cb5d 2839 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2840 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2841 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2842 break;
2843 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2844 {
ff355380 2845 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2846 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2847 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2848
d12307c1 2849 if (sym.symbol == NULL)
c906108c 2850 {
a109c7c1 2851 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2852 reported as non-debuggable symbols. */
3b7344d5
TT
2853 struct bound_minimal_symbol msym
2854 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2855 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2856
3b7344d5 2857 if (!msym.minsym)
c2e0e465 2858 retval = allocate_optimized_out_value (field_type);
c906108c 2859 else
c2e0e465 2860 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2861 }
2862 else
d12307c1 2863 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2864 break;
c906108c 2865 }
1596cb5d 2866 default:
f3574227 2867 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2868 }
2869
948e66d9 2870 return retval;
c906108c
SS
2871}
2872
4dfea560
DE
2873/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2874 You have to be careful here, since the size of the data area for the value
2875 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2876 than the old enclosing type, you have to allocate more space for the
2877 data. */
2b127877 2878
4dfea560
DE
2879void
2880set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2881{
5fdf6324
AB
2882 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2883 {
2884 check_type_length_before_alloc (new_encl_type);
2885 val->contents
14c88955
TT
2886 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2887 TYPE_LENGTH (new_encl_type)));
5fdf6324 2888 }
3e3d7139
JG
2889
2890 val->enclosing_type = new_encl_type;
2b127877
DB
2891}
2892
c906108c
SS
2893/* Given a value ARG1 (offset by OFFSET bytes)
2894 of a struct or union type ARG_TYPE,
2895 extract and return the value of one of its (non-static) fields.
581e13c1 2896 FIELDNO says which field. */
c906108c 2897
f23631e4 2898struct value *
6b850546 2899value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2900 int fieldno, struct type *arg_type)
c906108c 2901{
f23631e4 2902 struct value *v;
52f0bd74 2903 struct type *type;
3ae385af
SM
2904 struct gdbarch *arch = get_value_arch (arg1);
2905 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2906
f168693b 2907 arg_type = check_typedef (arg_type);
c906108c 2908 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2909
2910 /* Call check_typedef on our type to make sure that, if TYPE
2911 is a TYPE_CODE_TYPEDEF, its length is set to the length
2912 of the target type instead of zero. However, we do not
2913 replace the typedef type by the target type, because we want
2914 to keep the typedef in order to be able to print the type
2915 description correctly. */
2916 check_typedef (type);
c906108c 2917
691a26f5 2918 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2919 {
22c05d8a
JK
2920 /* Handle packed fields.
2921
2922 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2923 set. If possible, arrange offset and bitpos so that we can
2924 do a single aligned read of the size of the containing type.
2925 Otherwise, adjust offset to the byte containing the first
2926 bit. Assume that the address, offset, and embedded offset
2927 are sufficiently aligned. */
22c05d8a 2928
6b850546
DT
2929 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2930 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2931
9a0dc9e3
PA
2932 v = allocate_value_lazy (type);
2933 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2934 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2935 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2936 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2937 else
9a0dc9e3
PA
2938 v->bitpos = bitpos % 8;
2939 v->offset = (value_embedded_offset (arg1)
2940 + offset
2941 + (bitpos - v->bitpos) / 8);
2942 set_value_parent (v, arg1);
2943 if (!value_lazy (arg1))
2944 value_fetch_lazy (v);
c906108c
SS
2945 }
2946 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2947 {
2948 /* This field is actually a base subobject, so preserve the
39d37385
PA
2949 entire object's contents for later references to virtual
2950 bases, etc. */
6b850546 2951 LONGEST boffset;
a4e2ee12
DJ
2952
2953 /* Lazy register values with offsets are not supported. */
2954 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2955 value_fetch_lazy (arg1);
2956
9a0dc9e3
PA
2957 /* We special case virtual inheritance here because this
2958 requires access to the contents, which we would rather avoid
2959 for references to ordinary fields of unavailable values. */
2960 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2961 boffset = baseclass_offset (arg_type, fieldno,
2962 value_contents (arg1),
2963 value_embedded_offset (arg1),
2964 value_address (arg1),
2965 arg1);
c906108c 2966 else
9a0dc9e3 2967 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2968
9a0dc9e3
PA
2969 if (value_lazy (arg1))
2970 v = allocate_value_lazy (value_enclosing_type (arg1));
2971 else
2972 {
2973 v = allocate_value (value_enclosing_type (arg1));
2974 value_contents_copy_raw (v, 0, arg1, 0,
2975 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2976 }
9a0dc9e3
PA
2977 v->type = type;
2978 v->offset = value_offset (arg1);
2979 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2980 }
9920b434
BH
2981 else if (NULL != TYPE_DATA_LOCATION (type))
2982 {
2983 /* Field is a dynamic data member. */
2984
2985 gdb_assert (0 == offset);
2986 /* We expect an already resolved data location. */
2987 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2988 /* For dynamic data types defer memory allocation
2989 until we actual access the value. */
2990 v = allocate_value_lazy (type);
2991 }
c906108c
SS
2992 else
2993 {
2994 /* Plain old data member */
3ae385af
SM
2995 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2996 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
2997
2998 /* Lazy register values with offsets are not supported. */
2999 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3000 value_fetch_lazy (arg1);
3001
9a0dc9e3 3002 if (value_lazy (arg1))
3e3d7139 3003 v = allocate_value_lazy (type);
c906108c 3004 else
3e3d7139
JG
3005 {
3006 v = allocate_value (type);
39d37385
PA
3007 value_contents_copy_raw (v, value_embedded_offset (v),
3008 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3009 type_length_units (type));
3e3d7139 3010 }
df407dfe 3011 v->offset = (value_offset (arg1) + offset
13c3b5f5 3012 + value_embedded_offset (arg1));
c906108c 3013 }
74bcbdf3 3014 set_value_component_location (v, arg1);
c906108c
SS
3015 return v;
3016}
3017
3018/* Given a value ARG1 of a struct or union type,
3019 extract and return the value of one of its (non-static) fields.
581e13c1 3020 FIELDNO says which field. */
c906108c 3021
f23631e4 3022struct value *
aa1ee363 3023value_field (struct value *arg1, int fieldno)
c906108c 3024{
df407dfe 3025 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3026}
3027
3028/* Return a non-virtual function as a value.
3029 F is the list of member functions which contains the desired method.
0478d61c
FF
3030 J is an index into F which provides the desired method.
3031
3032 We only use the symbol for its address, so be happy with either a
581e13c1 3033 full symbol or a minimal symbol. */
c906108c 3034
f23631e4 3035struct value *
3e43a32a
MS
3036value_fn_field (struct value **arg1p, struct fn_field *f,
3037 int j, struct type *type,
6b850546 3038 LONGEST offset)
c906108c 3039{
f23631e4 3040 struct value *v;
52f0bd74 3041 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3042 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3043 struct symbol *sym;
7c7b6655 3044 struct bound_minimal_symbol msym;
c906108c 3045
d12307c1 3046 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3047 if (sym != NULL)
0478d61c 3048 {
7c7b6655 3049 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3050 }
3051 else
3052 {
3053 gdb_assert (sym == NULL);
7c7b6655
TT
3054 msym = lookup_bound_minimal_symbol (physname);
3055 if (msym.minsym == NULL)
5ae326fa 3056 return NULL;
0478d61c
FF
3057 }
3058
c906108c 3059 v = allocate_value (ftype);
1a088441 3060 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3061 if (sym)
3062 {
42ae5230 3063 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3064 }
3065 else
3066 {
bccdca4a
UW
3067 /* The minimal symbol might point to a function descriptor;
3068 resolve it to the actual code address instead. */
7c7b6655 3069 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3071
42ae5230
TT
3072 set_value_address (v,
3073 gdbarch_convert_from_func_ptr_addr
77e371c0 3074 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3075 }
c906108c
SS
3076
3077 if (arg1p)
c5aa993b 3078 {
df407dfe 3079 if (type != value_type (*arg1p))
c5aa993b
JM
3080 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3081 value_addr (*arg1p)));
3082
070ad9f0 3083 /* Move the `this' pointer according to the offset.
581e13c1 3084 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3085 }
3086
3087 return v;
3088}
3089
c906108c 3090\f
c906108c 3091
4875ffdb
PA
3092/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3093 VALADDR, and store the result in *RESULT.
15ce8941
TT
3094 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3095 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3096
4875ffdb
PA
3097 Extracting bits depends on endianness of the machine. Compute the
3098 number of least significant bits to discard. For big endian machines,
3099 we compute the total number of bits in the anonymous object, subtract
3100 off the bit count from the MSB of the object to the MSB of the
3101 bitfield, then the size of the bitfield, which leaves the LSB discard
3102 count. For little endian machines, the discard count is simply the
3103 number of bits from the LSB of the anonymous object to the LSB of the
3104 bitfield.
3105
3106 If the field is signed, we also do sign extension. */
3107
3108static LONGEST
3109unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3110 LONGEST bitpos, LONGEST bitsize)
c906108c 3111{
4ea48cc1 3112 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3113 ULONGEST val;
3114 ULONGEST valmask;
c906108c 3115 int lsbcount;
6b850546
DT
3116 LONGEST bytes_read;
3117 LONGEST read_offset;
c906108c 3118
4a76eae5
DJ
3119 /* Read the minimum number of bytes required; there may not be
3120 enough bytes to read an entire ULONGEST. */
f168693b 3121 field_type = check_typedef (field_type);
4a76eae5
DJ
3122 if (bitsize)
3123 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3124 else
15ce8941
TT
3125 {
3126 bytes_read = TYPE_LENGTH (field_type);
3127 bitsize = 8 * bytes_read;
3128 }
4a76eae5 3129
5467c6c8
PA
3130 read_offset = bitpos / 8;
3131
4875ffdb 3132 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3133 bytes_read, byte_order);
c906108c 3134
581e13c1 3135 /* Extract bits. See comment above. */
c906108c 3136
4ea48cc1 3137 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3138 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3139 else
3140 lsbcount = (bitpos % 8);
3141 val >>= lsbcount;
3142
3143 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3144 If the field is signed, and is negative, then sign extend. */
c906108c 3145
15ce8941 3146 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3147 {
3148 valmask = (((ULONGEST) 1) << bitsize) - 1;
3149 val &= valmask;
3150 if (!TYPE_UNSIGNED (field_type))
3151 {
3152 if (val & (valmask ^ (valmask >> 1)))
3153 {
3154 val |= ~valmask;
3155 }
3156 }
3157 }
5467c6c8 3158
4875ffdb 3159 return val;
5467c6c8
PA
3160}
3161
3162/* Unpack a field FIELDNO of the specified TYPE, from the object at
3163 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3164 ORIGINAL_VALUE, which must not be NULL. See
3165 unpack_value_bits_as_long for more details. */
3166
3167int
3168unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3169 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3170 const struct value *val, LONGEST *result)
3171{
4875ffdb
PA
3172 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3173 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3174 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3175 int bit_offset;
3176
5467c6c8
PA
3177 gdb_assert (val != NULL);
3178
4875ffdb
PA
3179 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3180 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3181 || !value_bits_available (val, bit_offset, bitsize))
3182 return 0;
3183
3184 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3185 bitpos, bitsize);
3186 return 1;
5467c6c8
PA
3187}
3188
3189/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3190 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3191
3192LONGEST
3193unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3194{
4875ffdb
PA
3195 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3196 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3197 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3198
4875ffdb
PA
3199 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3200}
3201
3202/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3203 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3204 the contents in DEST_VAL, zero or sign extending if the type of
3205 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3206 VAL. If the VAL's contents required to extract the bitfield from
3207 are unavailable/optimized out, DEST_VAL is correspondingly
3208 marked unavailable/optimized out. */
3209
bb9d5f81 3210void
4875ffdb 3211unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3212 LONGEST bitpos, LONGEST bitsize,
3213 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3214 const struct value *val)
3215{
3216 enum bfd_endian byte_order;
3217 int src_bit_offset;
3218 int dst_bit_offset;
4875ffdb
PA
3219 struct type *field_type = value_type (dest_val);
3220
4875ffdb 3221 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3222
3223 /* First, unpack and sign extend the bitfield as if it was wholly
3224 valid. Optimized out/unavailable bits are read as zero, but
3225 that's OK, as they'll end up marked below. If the VAL is
3226 wholly-invalid we may have skipped allocating its contents,
3227 though. See allocate_optimized_out_value. */
3228 if (valaddr != NULL)
3229 {
3230 LONGEST num;
3231
3232 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3233 bitpos, bitsize);
3234 store_signed_integer (value_contents_raw (dest_val),
3235 TYPE_LENGTH (field_type), byte_order, num);
3236 }
4875ffdb
PA
3237
3238 /* Now copy the optimized out / unavailability ranges to the right
3239 bits. */
3240 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3241 if (byte_order == BFD_ENDIAN_BIG)
3242 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3243 else
3244 dst_bit_offset = 0;
3245 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3246 val, src_bit_offset, bitsize);
5467c6c8
PA
3247}
3248
3249/* Return a new value with type TYPE, which is FIELDNO field of the
3250 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3251 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3252 from are unavailable/optimized out, the new value is
3253 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3254
3255struct value *
3256value_field_bitfield (struct type *type, int fieldno,
3257 const gdb_byte *valaddr,
6b850546 3258 LONGEST embedded_offset, const struct value *val)
5467c6c8 3259{
4875ffdb
PA
3260 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3261 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3262 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3263
4875ffdb
PA
3264 unpack_value_bitfield (res_val, bitpos, bitsize,
3265 valaddr, embedded_offset, val);
3266
3267 return res_val;
4ea48cc1
DJ
3268}
3269
c906108c
SS
3270/* Modify the value of a bitfield. ADDR points to a block of memory in
3271 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3272 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3273 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3274 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3275 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3276
3277void
50810684 3278modify_field (struct type *type, gdb_byte *addr,
6b850546 3279 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3280{
e17a4113 3281 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3282 ULONGEST oword;
3283 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3284 LONGEST bytesize;
19f220c3
JK
3285
3286 /* Normalize BITPOS. */
3287 addr += bitpos / 8;
3288 bitpos %= 8;
c906108c
SS
3289
3290 /* If a negative fieldval fits in the field in question, chop
3291 off the sign extension bits. */
f4e88c8e
PH
3292 if ((~fieldval & ~(mask >> 1)) == 0)
3293 fieldval &= mask;
c906108c
SS
3294
3295 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3296 if (0 != (fieldval & ~mask))
c906108c
SS
3297 {
3298 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3299 we don't have a sprintf_longest. */
6b850546 3300 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3301
3302 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3303 fieldval &= mask;
c906108c
SS
3304 }
3305
19f220c3
JK
3306 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3307 false valgrind reports. */
3308
3309 bytesize = (bitpos + bitsize + 7) / 8;
3310 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3311
3312 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3313 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3314 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3315
f4e88c8e 3316 oword &= ~(mask << bitpos);
c906108c
SS
3317 oword |= fieldval << bitpos;
3318
19f220c3 3319 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3320}
3321\f
14d06750 3322/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3323
14d06750
DJ
3324void
3325pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3326{
e17a4113 3327 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3328 LONGEST len;
14d06750
DJ
3329
3330 type = check_typedef (type);
c906108c
SS
3331 len = TYPE_LENGTH (type);
3332
14d06750 3333 switch (TYPE_CODE (type))
c906108c 3334 {
c906108c
SS
3335 case TYPE_CODE_INT:
3336 case TYPE_CODE_CHAR:
3337 case TYPE_CODE_ENUM:
4f2aea11 3338 case TYPE_CODE_FLAGS:
c906108c
SS
3339 case TYPE_CODE_BOOL:
3340 case TYPE_CODE_RANGE:
0d5de010 3341 case TYPE_CODE_MEMBERPTR:
e17a4113 3342 store_signed_integer (buf, len, byte_order, num);
c906108c 3343 break;
c5aa993b 3344
c906108c 3345 case TYPE_CODE_REF:
aa006118 3346 case TYPE_CODE_RVALUE_REF:
c906108c 3347 case TYPE_CODE_PTR:
14d06750 3348 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3349 break;
c5aa993b 3350
50637b26
UW
3351 case TYPE_CODE_FLT:
3352 case TYPE_CODE_DECFLOAT:
3353 target_float_from_longest (buf, type, num);
3354 break;
3355
c906108c 3356 default:
14d06750
DJ
3357 error (_("Unexpected type (%d) encountered for integer constant."),
3358 TYPE_CODE (type));
c906108c 3359 }
14d06750
DJ
3360}
3361
3362
595939de
PM
3363/* Pack NUM into BUF using a target format of TYPE. */
3364
70221824 3365static void
595939de
PM
3366pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3367{
6b850546 3368 LONGEST len;
595939de
PM
3369 enum bfd_endian byte_order;
3370
3371 type = check_typedef (type);
3372 len = TYPE_LENGTH (type);
3373 byte_order = gdbarch_byte_order (get_type_arch (type));
3374
3375 switch (TYPE_CODE (type))
3376 {
3377 case TYPE_CODE_INT:
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_ENUM:
3380 case TYPE_CODE_FLAGS:
3381 case TYPE_CODE_BOOL:
3382 case TYPE_CODE_RANGE:
3383 case TYPE_CODE_MEMBERPTR:
3384 store_unsigned_integer (buf, len, byte_order, num);
3385 break;
3386
3387 case TYPE_CODE_REF:
aa006118 3388 case TYPE_CODE_RVALUE_REF:
595939de
PM
3389 case TYPE_CODE_PTR:
3390 store_typed_address (buf, type, (CORE_ADDR) num);
3391 break;
3392
50637b26
UW
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_DECFLOAT:
3395 target_float_from_ulongest (buf, type, num);
3396 break;
3397
595939de 3398 default:
3e43a32a
MS
3399 error (_("Unexpected type (%d) encountered "
3400 "for unsigned integer constant."),
595939de
PM
3401 TYPE_CODE (type));
3402 }
3403}
3404
3405
14d06750
DJ
3406/* Convert C numbers into newly allocated values. */
3407
3408struct value *
3409value_from_longest (struct type *type, LONGEST num)
3410{
3411 struct value *val = allocate_value (type);
3412
3413 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3414 return val;
3415}
3416
4478b372 3417
595939de
PM
3418/* Convert C unsigned numbers into newly allocated values. */
3419
3420struct value *
3421value_from_ulongest (struct type *type, ULONGEST num)
3422{
3423 struct value *val = allocate_value (type);
3424
3425 pack_unsigned_long (value_contents_raw (val), type, num);
3426
3427 return val;
3428}
3429
3430
4478b372 3431/* Create a value representing a pointer of type TYPE to the address
cb417230 3432 ADDR. */
80180f79 3433
f23631e4 3434struct value *
4478b372
JB
3435value_from_pointer (struct type *type, CORE_ADDR addr)
3436{
cb417230 3437 struct value *val = allocate_value (type);
a109c7c1 3438
80180f79 3439 store_typed_address (value_contents_raw (val),
cb417230 3440 check_typedef (type), addr);
4478b372
JB
3441 return val;
3442}
3443
3444
012370f6
TT
3445/* Create a value of type TYPE whose contents come from VALADDR, if it
3446 is non-null, and whose memory address (in the inferior) is
3447 ADDRESS. The type of the created value may differ from the passed
3448 type TYPE. Make sure to retrieve values new type after this call.
3449 Note that TYPE is not passed through resolve_dynamic_type; this is
3450 a special API intended for use only by Ada. */
3451
3452struct value *
3453value_from_contents_and_address_unresolved (struct type *type,
3454 const gdb_byte *valaddr,
3455 CORE_ADDR address)
3456{
3457 struct value *v;
3458
3459 if (valaddr == NULL)
3460 v = allocate_value_lazy (type);
3461 else
3462 v = value_from_contents (type, valaddr);
012370f6 3463 VALUE_LVAL (v) = lval_memory;
1a088441 3464 set_value_address (v, address);
012370f6
TT
3465 return v;
3466}
3467
8acb6b92
TT
3468/* Create a value of type TYPE whose contents come from VALADDR, if it
3469 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3470 ADDRESS. The type of the created value may differ from the passed
3471 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3472
3473struct value *
3474value_from_contents_and_address (struct type *type,
3475 const gdb_byte *valaddr,
3476 CORE_ADDR address)
3477{
c3345124 3478 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3479 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3480 struct value *v;
a109c7c1 3481
8acb6b92 3482 if (valaddr == NULL)
80180f79 3483 v = allocate_value_lazy (resolved_type);
8acb6b92 3484 else
80180f79 3485 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3486 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3487 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3488 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3489 VALUE_LVAL (v) = lval_memory;
1a088441 3490 set_value_address (v, address);
8acb6b92
TT
3491 return v;
3492}
3493
8a9b8146
TT
3494/* Create a value of type TYPE holding the contents CONTENTS.
3495 The new value is `not_lval'. */
3496
3497struct value *
3498value_from_contents (struct type *type, const gdb_byte *contents)
3499{
3500 struct value *result;
3501
3502 result = allocate_value (type);
3503 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3504 return result;
3505}
3506
3bd0f5ef
MS
3507/* Extract a value from the history file. Input will be of the form
3508 $digits or $$digits. See block comment above 'write_dollar_variable'
3509 for details. */
3510
3511struct value *
e799154c 3512value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3513{
3514 int index, len;
3515
3516 if (h[0] == '$')
3517 len = 1;
3518 else
3519 return NULL;
3520
3521 if (h[1] == '$')
3522 len = 2;
3523
3524 /* Find length of numeral string. */
3525 for (; isdigit (h[len]); len++)
3526 ;
3527
3528 /* Make sure numeral string is not part of an identifier. */
3529 if (h[len] == '_' || isalpha (h[len]))
3530 return NULL;
3531
3532 /* Now collect the index value. */
3533 if (h[1] == '$')
3534 {
3535 if (len == 2)
3536 {
3537 /* For some bizarre reason, "$$" is equivalent to "$$1",
3538 rather than to "$$0" as it ought to be! */
3539 index = -1;
3540 *endp += len;
3541 }
3542 else
e799154c
TT
3543 {
3544 char *local_end;
3545
3546 index = -strtol (&h[2], &local_end, 10);
3547 *endp = local_end;
3548 }
3bd0f5ef
MS
3549 }
3550 else
3551 {
3552 if (len == 1)
3553 {
3554 /* "$" is equivalent to "$0". */
3555 index = 0;
3556 *endp += len;
3557 }
3558 else
e799154c
TT
3559 {
3560 char *local_end;
3561
3562 index = strtol (&h[1], &local_end, 10);
3563 *endp = local_end;
3564 }
3bd0f5ef
MS
3565 }
3566
3567 return access_value_history (index);
3568}
3569
3fff9862
YQ
3570/* Get the component value (offset by OFFSET bytes) of a struct or
3571 union WHOLE. Component's type is TYPE. */
3572
3573struct value *
3574value_from_component (struct value *whole, struct type *type, LONGEST offset)
3575{
3576 struct value *v;
3577
3578 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3579 v = allocate_value_lazy (type);
3580 else
3581 {
3582 v = allocate_value (type);
3583 value_contents_copy (v, value_embedded_offset (v),
3584 whole, value_embedded_offset (whole) + offset,
3585 type_length_units (type));
3586 }
3587 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3588 set_value_component_location (v, whole);
3fff9862
YQ
3589
3590 return v;
3591}
3592
a471c594
JK
3593struct value *
3594coerce_ref_if_computed (const struct value *arg)
3595{
3596 const struct lval_funcs *funcs;
3597
aa006118 3598 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3599 return NULL;
3600
3601 if (value_lval_const (arg) != lval_computed)
3602 return NULL;
3603
3604 funcs = value_computed_funcs (arg);
3605 if (funcs->coerce_ref == NULL)
3606 return NULL;
3607
3608 return funcs->coerce_ref (arg);
3609}
3610
dfcee124
AG
3611/* Look at value.h for description. */
3612
3613struct value *
3614readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3615 const struct type *original_type,
3616 const struct value *original_value)
dfcee124
AG
3617{
3618 /* Re-adjust type. */
3619 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3620
3621 /* Add embedding info. */
3622 set_value_enclosing_type (value, enc_type);
3623 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3624
3625 /* We may be pointing to an object of some derived type. */
3626 return value_full_object (value, NULL, 0, 0, 0);
3627}
3628
994b9211
AC
3629struct value *
3630coerce_ref (struct value *arg)
3631{
df407dfe 3632 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3633 struct value *retval;
dfcee124 3634 struct type *enc_type;
a109c7c1 3635
a471c594
JK
3636 retval = coerce_ref_if_computed (arg);
3637 if (retval)
3638 return retval;
3639
aa006118 3640 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3641 return arg;
3642
dfcee124
AG
3643 enc_type = check_typedef (value_enclosing_type (arg));
3644 enc_type = TYPE_TARGET_TYPE (enc_type);
3645
3646 retval = value_at_lazy (enc_type,
3647 unpack_pointer (value_type (arg),
3648 value_contents (arg)));
9f1f738a 3649 enc_type = value_type (retval);
dfcee124
AG
3650 return readjust_indirect_value_type (retval, enc_type,
3651 value_type_arg_tmp, arg);
994b9211
AC
3652}
3653
3654struct value *
3655coerce_array (struct value *arg)
3656{
f3134b88
TT
3657 struct type *type;
3658
994b9211 3659 arg = coerce_ref (arg);
f3134b88
TT
3660 type = check_typedef (value_type (arg));
3661
3662 switch (TYPE_CODE (type))
3663 {
3664 case TYPE_CODE_ARRAY:
7346b668 3665 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3666 arg = value_coerce_array (arg);
3667 break;
3668 case TYPE_CODE_FUNC:
3669 arg = value_coerce_function (arg);
3670 break;
3671 }
994b9211
AC
3672 return arg;
3673}
c906108c 3674\f
c906108c 3675
bbfdfe1c
DM
3676/* Return the return value convention that will be used for the
3677 specified type. */
3678
3679enum return_value_convention
3680struct_return_convention (struct gdbarch *gdbarch,
3681 struct value *function, struct type *value_type)
3682{
3683 enum type_code code = TYPE_CODE (value_type);
3684
3685 if (code == TYPE_CODE_ERROR)
3686 error (_("Function return type unknown."));
3687
3688 /* Probe the architecture for the return-value convention. */
3689 return gdbarch_return_value (gdbarch, function, value_type,
3690 NULL, NULL, NULL);
3691}
3692
48436ce6
AC
3693/* Return true if the function returning the specified type is using
3694 the convention of returning structures in memory (passing in the
82585c72 3695 address as a hidden first parameter). */
c906108c
SS
3696
3697int
d80b854b 3698using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3699 struct value *function, struct type *value_type)
c906108c 3700{
bbfdfe1c 3701 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3702 /* A void return value is never in memory. See also corresponding
44e5158b 3703 code in "print_return_value". */
667e784f
AC
3704 return 0;
3705
bbfdfe1c 3706 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3707 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3708}
3709
42be36b3
CT
3710/* Set the initialized field in a value struct. */
3711
3712void
3713set_value_initialized (struct value *val, int status)
3714{
3715 val->initialized = status;
3716}
3717
3718/* Return the initialized field in a value struct. */
3719
3720int
4bf7b526 3721value_initialized (const struct value *val)
42be36b3
CT
3722{
3723 return val->initialized;
3724}
3725
a844296a
SM
3726/* Load the actual content of a lazy value. Fetch the data from the
3727 user's process and clear the lazy flag to indicate that the data in
3728 the buffer is valid.
a58e2656
AB
3729
3730 If the value is zero-length, we avoid calling read_memory, which
3731 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3732 it. */
a58e2656 3733
a844296a 3734void
a58e2656
AB
3735value_fetch_lazy (struct value *val)
3736{
3737 gdb_assert (value_lazy (val));
3738 allocate_value_contents (val);
9a0dc9e3
PA
3739 /* A value is either lazy, or fully fetched. The
3740 availability/validity is only established as we try to fetch a
3741 value. */
0c7e6dd8
TT
3742 gdb_assert (val->optimized_out.empty ());
3743 gdb_assert (val->unavailable.empty ());
a58e2656
AB
3744 if (value_bitsize (val))
3745 {
3746 /* To read a lazy bitfield, read the entire enclosing value. This
3747 prevents reading the same block of (possibly volatile) memory once
3748 per bitfield. It would be even better to read only the containing
3749 word, but we have no way to record that just specific bits of a
3750 value have been fetched. */
3751 struct type *type = check_typedef (value_type (val));
a58e2656 3752 struct value *parent = value_parent (val);
a58e2656 3753
b0c54aa5
AB
3754 if (value_lazy (parent))
3755 value_fetch_lazy (parent);
3756
4875ffdb
PA
3757 unpack_value_bitfield (val,
3758 value_bitpos (val), value_bitsize (val),
3759 value_contents_for_printing (parent),
3760 value_offset (val), parent);
a58e2656
AB
3761 }
3762 else if (VALUE_LVAL (val) == lval_memory)
3763 {
3764 CORE_ADDR addr = value_address (val);
3765 struct type *type = check_typedef (value_enclosing_type (val));
3766
3767 if (TYPE_LENGTH (type))
3768 read_value_memory (val, 0, value_stack (val),
3769 addr, value_contents_all_raw (val),
3ae385af 3770 type_length_units (type));
a58e2656
AB
3771 }
3772 else if (VALUE_LVAL (val) == lval_register)
3773 {
41b56feb 3774 struct frame_info *next_frame;
a58e2656
AB
3775 int regnum;
3776 struct type *type = check_typedef (value_type (val));
3777 struct value *new_val = val, *mark = value_mark ();
3778
3779 /* Offsets are not supported here; lazy register values must
3780 refer to the entire register. */
3781 gdb_assert (value_offset (val) == 0);
3782
3783 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3784 {
41b56feb 3785 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3786
41b56feb 3787 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3788 regnum = VALUE_REGNUM (new_val);
3789
41b56feb 3790 gdb_assert (next_frame != NULL);
a58e2656
AB
3791
3792 /* Convertible register routines are used for multi-register
3793 values and for interpretation in different types
3794 (e.g. float or int from a double register). Lazy
3795 register values should have the register's natural type,
3796 so they do not apply. */
41b56feb 3797 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3798 regnum, type));
3799
41b56feb
KB
3800 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3801 Since a "->next" operation was performed when setting
3802 this field, we do not need to perform a "next" operation
3803 again when unwinding the register. That's why
3804 frame_unwind_register_value() is called here instead of
3805 get_frame_register_value(). */
3806 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3807
3808 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3809 register is found by reading it from NEXT_FRAME's next frame.
3810 frame_unwind_register_value should never return a value with
3811 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3812 either have two consecutive frames with the same frame id
3813 in the frame chain, or some code is trying to unwind
3814 behind get_prev_frame's back (e.g., a frame unwind
3815 sniffer trying to unwind), bypassing its validations. In
3816 any case, it should always be an internal error to end up
3817 in this situation. */
3818 if (VALUE_LVAL (new_val) == lval_register
3819 && value_lazy (new_val)
41b56feb 3820 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3821 internal_error (__FILE__, __LINE__,
3822 _("infinite loop while fetching a register"));
a58e2656
AB
3823 }
3824
3825 /* If it's still lazy (for instance, a saved register on the
3826 stack), fetch it. */
3827 if (value_lazy (new_val))
3828 value_fetch_lazy (new_val);
3829
9a0dc9e3
PA
3830 /* Copy the contents and the unavailability/optimized-out
3831 meta-data from NEW_VAL to VAL. */
3832 set_value_lazy (val, 0);
3833 value_contents_copy (val, value_embedded_offset (val),
3834 new_val, value_embedded_offset (new_val),
3ae385af 3835 type_length_units (type));
a58e2656
AB
3836
3837 if (frame_debug)
3838 {
3839 struct gdbarch *gdbarch;
41b56feb
KB
3840 struct frame_info *frame;
3841 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3842 so that the frame level will be shown correctly. */
a58e2656
AB
3843 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3844 regnum = VALUE_REGNUM (val);
3845 gdbarch = get_frame_arch (frame);
3846
3847 fprintf_unfiltered (gdb_stdlog,
3848 "{ value_fetch_lazy "
3849 "(frame=%d,regnum=%d(%s),...) ",
3850 frame_relative_level (frame), regnum,
3851 user_reg_map_regnum_to_name (gdbarch, regnum));
3852
3853 fprintf_unfiltered (gdb_stdlog, "->");
3854 if (value_optimized_out (new_val))
f6c01fc5
AB
3855 {
3856 fprintf_unfiltered (gdb_stdlog, " ");
3857 val_print_optimized_out (new_val, gdb_stdlog);
3858 }
a58e2656
AB
3859 else
3860 {
3861 int i;
3862 const gdb_byte *buf = value_contents (new_val);
3863
3864 if (VALUE_LVAL (new_val) == lval_register)
3865 fprintf_unfiltered (gdb_stdlog, " register=%d",
3866 VALUE_REGNUM (new_val));
3867 else if (VALUE_LVAL (new_val) == lval_memory)
3868 fprintf_unfiltered (gdb_stdlog, " address=%s",
3869 paddress (gdbarch,
3870 value_address (new_val)));
3871 else
3872 fprintf_unfiltered (gdb_stdlog, " computed");
3873
3874 fprintf_unfiltered (gdb_stdlog, " bytes=");
3875 fprintf_unfiltered (gdb_stdlog, "[");
3876 for (i = 0; i < register_size (gdbarch, regnum); i++)
3877 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3878 fprintf_unfiltered (gdb_stdlog, "]");
3879 }
3880
3881 fprintf_unfiltered (gdb_stdlog, " }\n");
3882 }
3883
3884 /* Dispose of the intermediate values. This prevents
3885 watchpoints from trying to watch the saved frame pointer. */
3886 value_free_to_mark (mark);
3887 }
3888 else if (VALUE_LVAL (val) == lval_computed
3889 && value_computed_funcs (val)->read != NULL)
3890 value_computed_funcs (val)->read (val);
a58e2656
AB
3891 else
3892 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3893
3894 set_value_lazy (val, 0);
a58e2656
AB
3895}
3896
a280dbd1
SDJ
3897/* Implementation of the convenience function $_isvoid. */
3898
3899static struct value *
3900isvoid_internal_fn (struct gdbarch *gdbarch,
3901 const struct language_defn *language,
3902 void *cookie, int argc, struct value **argv)
3903{
3904 int ret;
3905
3906 if (argc != 1)
6bc305f5 3907 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3908
3909 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3910
3911 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3912}
3913
d5f4488f
SM
3914#if GDB_SELF_TEST
3915namespace selftests
3916{
3917
3918/* Test the ranges_contain function. */
3919
3920static void
3921test_ranges_contain ()
3922{
3923 std::vector<range> ranges;
3924 range r;
3925
3926 /* [10, 14] */
3927 r.offset = 10;
3928 r.length = 5;
3929 ranges.push_back (r);
3930
3931 /* [20, 24] */
3932 r.offset = 20;
3933 r.length = 5;
3934 ranges.push_back (r);
3935
3936 /* [2, 6] */
3937 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3938 /* [9, 13] */
3939 SELF_CHECK (ranges_contain (ranges, 9, 5));
3940 /* [10, 11] */
3941 SELF_CHECK (ranges_contain (ranges, 10, 2));
3942 /* [10, 14] */
3943 SELF_CHECK (ranges_contain (ranges, 10, 5));
3944 /* [13, 18] */
3945 SELF_CHECK (ranges_contain (ranges, 13, 6));
3946 /* [14, 18] */
3947 SELF_CHECK (ranges_contain (ranges, 14, 5));
3948 /* [15, 18] */
3949 SELF_CHECK (!ranges_contain (ranges, 15, 4));
3950 /* [16, 19] */
3951 SELF_CHECK (!ranges_contain (ranges, 16, 4));
3952 /* [16, 21] */
3953 SELF_CHECK (ranges_contain (ranges, 16, 6));
3954 /* [21, 21] */
3955 SELF_CHECK (ranges_contain (ranges, 21, 1));
3956 /* [21, 25] */
3957 SELF_CHECK (ranges_contain (ranges, 21, 5));
3958 /* [26, 28] */
3959 SELF_CHECK (!ranges_contain (ranges, 26, 3));
3960}
3961
3962/* Check that RANGES contains the same ranges as EXPECTED. */
3963
3964static bool
3965check_ranges_vector (gdb::array_view<const range> ranges,
3966 gdb::array_view<const range> expected)
3967{
3968 return ranges == expected;
3969}
3970
3971/* Test the insert_into_bit_range_vector function. */
3972
3973static void
3974test_insert_into_bit_range_vector ()
3975{
3976 std::vector<range> ranges;
3977
3978 /* [10, 14] */
3979 {
3980 insert_into_bit_range_vector (&ranges, 10, 5);
3981 static const range expected[] = {
3982 {10, 5}
3983 };
3984 SELF_CHECK (check_ranges_vector (ranges, expected));
3985 }
3986
3987 /* [10, 14] */
3988 {
3989 insert_into_bit_range_vector (&ranges, 11, 4);
3990 static const range expected = {10, 5};
3991 SELF_CHECK (check_ranges_vector (ranges, expected));
3992 }
3993
3994 /* [10, 14] [20, 24] */
3995 {
3996 insert_into_bit_range_vector (&ranges, 20, 5);
3997 static const range expected[] = {
3998 {10, 5},
3999 {20, 5},
4000 };
4001 SELF_CHECK (check_ranges_vector (ranges, expected));
4002 }
4003
4004 /* [10, 14] [17, 24] */
4005 {
4006 insert_into_bit_range_vector (&ranges, 17, 5);
4007 static const range expected[] = {
4008 {10, 5},
4009 {17, 8},
4010 };
4011 SELF_CHECK (check_ranges_vector (ranges, expected));
4012 }
4013
4014 /* [2, 8] [10, 14] [17, 24] */
4015 {
4016 insert_into_bit_range_vector (&ranges, 2, 7);
4017 static const range expected[] = {
4018 {2, 7},
4019 {10, 5},
4020 {17, 8},
4021 };
4022 SELF_CHECK (check_ranges_vector (ranges, expected));
4023 }
4024
4025 /* [2, 14] [17, 24] */
4026 {
4027 insert_into_bit_range_vector (&ranges, 9, 1);
4028 static const range expected[] = {
4029 {2, 13},
4030 {17, 8},
4031 };
4032 SELF_CHECK (check_ranges_vector (ranges, expected));
4033 }
4034
4035 /* [2, 14] [17, 24] */
4036 {
4037 insert_into_bit_range_vector (&ranges, 9, 1);
4038 static const range expected[] = {
4039 {2, 13},
4040 {17, 8},
4041 };
4042 SELF_CHECK (check_ranges_vector (ranges, expected));
4043 }
4044
4045 /* [2, 33] */
4046 {
4047 insert_into_bit_range_vector (&ranges, 4, 30);
4048 static const range expected = {2, 32};
4049 SELF_CHECK (check_ranges_vector (ranges, expected));
4050 }
4051}
4052
4053} /* namespace selftests */
4054#endif /* GDB_SELF_TEST */
4055
c906108c 4056void
fba45db2 4057_initialize_values (void)
c906108c 4058{
1a966eab 4059 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4060Debugger convenience (\"$foo\") variables and functions.\n\
4061Convenience variables are created when you assign them values;\n\
4062thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4063\n\
c906108c
SS
4064A few convenience variables are given values automatically:\n\
4065\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4066\"$__\" holds the contents of the last address examined with \"x\"."
4067#ifdef HAVE_PYTHON
4068"\n\n\
4069Convenience functions are defined via the Python API."
4070#endif
4071 ), &showlist);
7e20dfcd 4072 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4073
db5f229b 4074 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4075Elements of value history around item number IDX (or last ten)."),
c906108c 4076 &showlist);
53e5f3cf
AS
4077
4078 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4079Initialize a convenience variable if necessary.\n\
4080init-if-undefined VARIABLE = EXPRESSION\n\
4081Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4082exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4083VARIABLE is already initialized."));
bc3b79fd
TJB
4084
4085 add_prefix_cmd ("function", no_class, function_command, _("\
4086Placeholder command for showing help on convenience functions."),
4087 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4088
4089 add_internal_function ("_isvoid", _("\
4090Check whether an expression is void.\n\
4091Usage: $_isvoid (expression)\n\
4092Return 1 if the expression is void, zero otherwise."),
4093 isvoid_internal_fn, NULL);
5fdf6324
AB
4094
4095 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4096 class_support, &max_value_size, _("\
4097Set maximum sized value gdb will load from the inferior."), _("\
4098Show maximum sized value gdb will load from the inferior."), _("\
4099Use this to control the maximum size, in bytes, of a value that gdb\n\
4100will load from the inferior. Setting this value to 'unlimited'\n\
4101disables checking.\n\
4102Setting this does not invalidate already allocated values, it only\n\
4103prevents future values, larger than this size, from being allocated."),
4104 set_max_value_size,
4105 show_max_value_size,
4106 &setlist, &showlist);
d5f4488f
SM
4107#if GDB_SELF_TEST
4108 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4109 selftests::register_test ("insert_into_bit_range_vector",
4110 selftests::test_insert_into_bit_range_vector);
4111#endif
c906108c 4112}
This page took 2.830848 seconds and 4 git commands to generate.