Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
42a4f53d 3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0747795c 44#include "common/selftest.h"
d5f4488f 45#include "common/array-view.h"
0914bcdb 46
bc3b79fd
TJB
47/* Definition of a user function. */
48struct internal_function
49{
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60};
61
4e07d55f
PA
62/* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64struct range
65{
66 /* Lowest offset in the range. */
6b850546 67 LONGEST offset;
4e07d55f
PA
68
69 /* Length of the range. */
6b850546 70 LONGEST length;
4e07d55f 71
0c7e6dd8
TT
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
4e07d55f 76
0c7e6dd8
TT
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
d5f4488f
SM
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
0c7e6dd8 87};
4e07d55f
PA
88
89/* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92static int
6b850546
DT
93ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
4e07d55f
PA
95{
96 ULONGEST h, l;
97
325fac50
PA
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
100 return (l < h);
101}
102
4e07d55f
PA
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
0c7e6dd8
TT
107ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
4e07d55f 109{
0c7e6dd8 110 range what;
4e07d55f
PA
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
4e07d55f 146
0c7e6dd8
TT
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
4e07d55f 150 {
0c7e6dd8 151 const struct range &bef = *(i - 1);
4e07d55f 152
0c7e6dd8 153 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
154 return 1;
155 }
156
0c7e6dd8 157 if (i < ranges.end ())
4e07d55f 158 {
0c7e6dd8 159 const struct range &r = *i;
4e07d55f 160
0c7e6dd8 161 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
466ce3ae
TT
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
466ce3ae
TT
183 }
184
185 ~value ()
186 {
466ce3ae
TT
187 if (VALUE_LVAL (this) == lval_computed)
188 {
189 const struct lval_funcs *funcs = location.computed.funcs;
190
191 if (funcs->free_closure)
192 funcs->free_closure (this);
193 }
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
466ce3ae
TT
196 }
197
198 DISABLE_COPY_AND_ASSIGN (value);
199
91294c83
AC
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
466ce3ae 202 enum lval_type lval = not_lval;
91294c83
AC
203
204 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
205 unsigned int modifiable : 1;
206
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
211
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
222
87784a47
TT
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
225
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
91294c83
AC
229
230 /* Location of value (if lval). */
231 union
232 {
7dc54575 233 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
234 CORE_ADDR address;
235
7dc54575
YQ
236 /*If lval == lval_register, the value is from a register. */
237 struct
238 {
239 /* Register number. */
240 int regnum;
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
245 } reg;
246
91294c83
AC
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
5f5233d4 249
e81e7f5e
SC
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
252
5f5233d4
PA
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
255 for them to use. */
256 struct
257 {
c8f2448a
JK
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
260
261 /* Closure for those functions to use. */
262 void *closure;
5f5233d4 263 } computed;
41a883c8 264 } location {};
91294c83 265
3723fda8 266 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
267 addressable memory units. Note also the member embedded_offset
268 below. */
466ce3ae 269 LONGEST offset = 0;
91294c83
AC
270
271 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 272 LONGEST bitsize = 0;
91294c83
AC
273
274 /* Only used for bitfields; position of start of field. For
32c9a795 275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
466ce3ae 277 LONGEST bitpos = 0;
91294c83 278
87784a47
TT
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
466ce3ae 284 int reference_count = 1;
87784a47 285
4ea48cc1
DJ
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
288 bitfields. */
2c8331b9 289 value_ref_ptr parent;
4ea48cc1 290
91294c83
AC
291 /* Type of the value. */
292 struct type *type;
293
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
300
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
306
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
309 compile-time type.
310
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
314
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
91294c83
AC
321
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
91294c83
AC
330
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
333 normally. */
334 struct type *enclosing_type;
466ce3ae
TT
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
91294c83 337
3e3d7139
JG
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
14c88955 340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 341
4e07d55f
PA
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
9a0dc9e3
PA
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
0c7e6dd8 348 std::vector<range> unavailable;
9a0dc9e3
PA
349
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
0c7e6dd8 357 std::vector<range> optimized_out;
91294c83
AC
358};
359
e512cdbd
SM
360/* See value.h. */
361
362struct gdbarch *
363get_value_arch (const struct value *value)
364{
365 return get_type_arch (value_type (value));
366}
367
4e07d55f 368int
6b850546 369value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
370{
371 gdb_assert (!value->lazy);
372
373 return !ranges_contain (value->unavailable, offset, length);
374}
375
bdf22206 376int
6b850546
DT
377value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
bdf22206
AB
379{
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
383}
384
9a0dc9e3
PA
385int
386value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
387{
388 gdb_assert (!value->lazy);
389
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
391}
392
ec0a52e1
PA
393int
394value_entirely_available (struct value *value)
395{
396 /* We can only tell whether the whole value is available when we try
397 to read it. */
398 if (value->lazy)
399 value_fetch_lazy (value);
400
0c7e6dd8 401 if (value->unavailable.empty ())
ec0a52e1
PA
402 return 1;
403 return 0;
404}
405
9a0dc9e3
PA
406/* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
409
410static int
411value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 412 const std::vector<range> &ranges)
6211c335 413{
9a0dc9e3
PA
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
6211c335
YQ
416 if (value->lazy)
417 value_fetch_lazy (value);
418
0c7e6dd8 419 if (ranges.size () == 1)
6211c335 420 {
0c7e6dd8 421 const struct range &t = ranges[0];
6211c335 422
0c7e6dd8
TT
423 if (t.offset == 0
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
426 return 1;
427 }
428
429 return 0;
430}
431
9a0dc9e3
PA
432int
433value_entirely_unavailable (struct value *value)
434{
0c7e6dd8 435 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
436}
437
438int
439value_entirely_optimized_out (struct value *value)
440{
0c7e6dd8 441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
442}
443
444/* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
446
447static void
0c7e6dd8 448insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 449 LONGEST offset, LONGEST length)
4e07d55f 450{
0c7e6dd8 451 range newr;
4e07d55f
PA
452
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
455
456 newr.offset = offset;
457 newr.length = length;
458
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
464
465 #1 - overlaps with previous
466
467 R
468 |-...-|
469 |---| |---| |------| ... |--|
470 0 1 2 N
471
472 I=1
473
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
478
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
481
482 #2 - contiguous with previous
483
484 R
485 |-...-|
486 |--| |---| |------| ... |--|
487 0 1 2 N
488
489 I=1
490
491 If there's no overlap with the previous range, as in:
492
493 #3 - not overlapping and not contiguous
494
495 R
496 |-...-|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=1
501
502 or if I is 0:
503
504 #4 - R is the range with lowest offset
505
506 R
507 |-...-|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 ... we just push the new range to I.
514
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
518
519 #5 - overlapping following ranges
520
521 R
522 |------------------------|
523 |--| |---| |------| ... |--|
524 0 1 2 N
525
526 I=0
527
528 or:
529
530 R
531 |-------|
532 |--| |---| |------| ... |--|
533 0 1 2 N
534
535 I=1
536
537 */
538
0c7e6dd8
TT
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
4e07d55f 541 {
0c7e6dd8 542 struct range &bef = *(i - 1);
4e07d55f 543
0c7e6dd8 544 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
545 {
546 /* #1 */
0c7e6dd8
TT
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 549
0c7e6dd8
TT
550 bef.offset = l;
551 bef.length = h - l;
4e07d55f
PA
552 i--;
553 }
0c7e6dd8 554 else if (offset == bef.offset + bef.length)
4e07d55f
PA
555 {
556 /* #2 */
0c7e6dd8 557 bef.length += length;
4e07d55f
PA
558 i--;
559 }
560 else
561 {
562 /* #3 */
0c7e6dd8 563 i = vectorp->insert (i, newr);
4e07d55f
PA
564 }
565 }
566 else
567 {
568 /* #4 */
0c7e6dd8 569 i = vectorp->insert (i, newr);
4e07d55f
PA
570 }
571
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
0c7e6dd8 574 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 575 {
4e07d55f 576 int removed = 0;
0c7e6dd8 577 auto next = i + 1;
4e07d55f
PA
578
579 /* Get the range we just touched. */
0c7e6dd8 580 struct range &t = *i;
4e07d55f
PA
581 removed = 0;
582
583 i = next;
0c7e6dd8
TT
584 for (; i < vectorp->end (); i++)
585 {
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
588 {
589 ULONGEST l, h;
590
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
593
594 t.offset = l;
595 t.length = h - l;
596
597 removed++;
598 }
599 else
600 {
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
604 break;
605 }
606 }
4e07d55f
PA
607
608 if (removed != 0)
0c7e6dd8 609 vectorp->erase (next, next + removed);
4e07d55f
PA
610 }
611}
612
9a0dc9e3 613void
6b850546
DT
614mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
9a0dc9e3
PA
616{
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
618}
619
bdf22206 620void
6b850546
DT
621mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
bdf22206
AB
623{
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
627}
628
c8c1c22f
PA
629/* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
633
634static int
0c7e6dd8 635find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 636 LONGEST offset, LONGEST length)
c8c1c22f 637{
c8c1c22f
PA
638 int i;
639
0c7e6dd8
TT
640 for (i = pos; i < ranges->size (); i++)
641 {
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
644 return i;
645 }
c8c1c22f
PA
646
647 return -1;
648}
649
bdf22206
AB
650/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
652 return non-zero.
653
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
656
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
659 to:
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
662static int
663memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
665 size_t length_bits)
666{
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
669
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
671 {
672 size_t bits;
673 gdb_byte mask, b1, b2;
674
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
678 compared. */
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
682
683 if (length_bits < bits)
684 {
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
686 bits = length_bits;
687 }
688
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
692
693 if (b1 != b2)
694 return 1;
695
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
698 length_bits -= bits;
699 offset1_bits += bits;
700 offset2_bits += bits;
701 }
702
703 if (length_bits % TARGET_CHAR_BIT != 0)
704 {
705 size_t bits;
706 size_t o1, o2;
707 gdb_byte mask, b1, b2;
708
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
713 byte boundary. */
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
717
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
720
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
723
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
726
727 if (b1 != b2)
728 return 1;
729
730 length_bits -= bits;
731 }
732
733 if (length_bits > 0)
734 {
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
737 memcmp. */
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
741
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
745 }
746
747 /* Length is zero, regions match. */
748 return 0;
749}
750
9a0dc9e3
PA
751/* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
bdf22206 754
9a0dc9e3
PA
755struct ranges_and_idx
756{
757 /* The ranges. */
0c7e6dd8 758 const std::vector<range> *ranges;
9a0dc9e3
PA
759
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
762 int idx;
763};
764
765/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
770
771static int
9a0dc9e3
PA
772find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
6b850546
DT
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 776{
9a0dc9e3
PA
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
778 offset1, length);
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
780 offset2, length);
c8c1c22f 781
9a0dc9e3
PA
782 if (rp1->idx == -1 && rp2->idx == -1)
783 {
784 *l = length;
785 *h = length;
786 return 1;
787 }
788 else if (rp1->idx == -1 || rp2->idx == -1)
789 return 0;
790 else
c8c1c22f 791 {
0c7e6dd8 792 const range *r1, *r2;
c8c1c22f
PA
793 ULONGEST l1, h1;
794 ULONGEST l2, h2;
795
0c7e6dd8
TT
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
798
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
325fac50
PA
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 804
325fac50
PA
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
807
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
810 l1 -= offset1;
811 h1 -= offset1;
812
813 l2 -= offset2;
814 h2 -= offset2;
815
9a0dc9e3 816 /* Different ranges, no match. */
c8c1c22f
PA
817 if (l1 != l2 || h1 != h2)
818 return 0;
819
9a0dc9e3
PA
820 *h = h1;
821 *l = l1;
822 return 1;
823 }
824}
825
826/* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
828
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
832
98ead37e 833static bool
9a0dc9e3
PA
834value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
836 int length)
837{
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
841
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
844
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
850
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
857
858 while (length > 0)
859 {
000339af 860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
861 int i;
862
863 for (i = 0; i < 2; i++)
864 {
865 ULONGEST l_tmp, h_tmp;
866
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
871 &l_tmp, &h_tmp))
98ead37e 872 return false;
9a0dc9e3
PA
873
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
876 {
877 l = l_tmp;
878 h = h_tmp;
879 }
880 }
881
882 /* Compare the available/valid contents. */
14c88955
TT
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
98ead37e 885 return false;
c8c1c22f 886
9a0dc9e3
PA
887 length -= h;
888 offset1 += h;
889 offset2 += h;
c8c1c22f
PA
890 }
891
98ead37e 892 return true;
c8c1c22f
PA
893}
894
98ead37e 895bool
6b850546
DT
896value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
898 LONGEST length)
bdf22206 899{
9a0dc9e3
PA
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
bdf22206
AB
903}
904
c906108c 905
4d0266a0
TT
906/* The value-history records all the values printed by print commands
907 during this session. */
c906108c 908
4d0266a0 909static std::vector<value_ref_ptr> value_history;
bc3b79fd 910
c906108c
SS
911\f
912/* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
915
062d818d 916static std::vector<value_ref_ptr> all_values;
c906108c 917
3e3d7139
JG
918/* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
c906108c 921
f23631e4 922struct value *
3e3d7139 923allocate_value_lazy (struct type *type)
c906108c 924{
f23631e4 925 struct value *val;
c54eabfa
JK
926
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
c906108c 934
466ce3ae 935 val = new struct value (type);
828d3400
DJ
936
937 /* Values start out on the all_values chain. */
062d818d 938 all_values.emplace_back (val);
828d3400 939
c906108c
SS
940 return val;
941}
942
5fdf6324
AB
943/* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
946
947static int max_value_size = 65536; /* 64k bytes */
948
949/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
953
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
957
958#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
960
961/* Implement the "set max-value-size" command. */
962
963static void
eb4c3f4a 964set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
965 struct cmd_list_element *c)
966{
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
968
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
970 {
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
973 max_value_size);
974 }
975}
976
977/* Implement the "show max-value-size" command. */
978
979static void
980show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
982{
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
985 else
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
987 max_value_size);
988}
989
990/* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
995
996static void
997check_type_length_before_alloc (const struct type *type)
998{
999 unsigned int length = TYPE_LENGTH (type);
1000
1001 if (max_value_size > -1 && length > max_value_size)
1002 {
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1006 else
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1009 }
1010}
1011
3e3d7139
JG
1012/* Allocate the contents of VAL if it has not been allocated yet. */
1013
548b762d 1014static void
3e3d7139
JG
1015allocate_value_contents (struct value *val)
1016{
1017 if (!val->contents)
5fdf6324
AB
1018 {
1019 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1020 val->contents.reset
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1022 }
3e3d7139
JG
1023}
1024
1025/* Allocate a value and its contents for type TYPE. */
1026
1027struct value *
1028allocate_value (struct type *type)
1029{
1030 struct value *val = allocate_value_lazy (type);
a109c7c1 1031
3e3d7139
JG
1032 allocate_value_contents (val);
1033 val->lazy = 0;
1034 return val;
1035}
1036
c906108c 1037/* Allocate a value that has the correct length
938f5214 1038 for COUNT repetitions of type TYPE. */
c906108c 1039
f23631e4 1040struct value *
fba45db2 1041allocate_repeat_value (struct type *type, int count)
c906108c 1042{
c5aa993b 1043 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1044 /* FIXME-type-allocation: need a way to free this type when we are
1045 done with it. */
e3506a9f
UW
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1048
e3506a9f 1049 return allocate_value (array_type);
c906108c
SS
1050}
1051
5f5233d4
PA
1052struct value *
1053allocate_computed_value (struct type *type,
c8f2448a 1054 const struct lval_funcs *funcs,
5f5233d4
PA
1055 void *closure)
1056{
41e8491f 1057 struct value *v = allocate_value_lazy (type);
a109c7c1 1058
5f5233d4
PA
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
5f5233d4
PA
1062
1063 return v;
1064}
1065
a7035dbb
JK
1066/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1067
1068struct value *
1069allocate_optimized_out_value (struct type *type)
1070{
1071 struct value *retval = allocate_value_lazy (type);
1072
9a0dc9e3
PA
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
a7035dbb
JK
1075 return retval;
1076}
1077
df407dfe
AC
1078/* Accessor methods. */
1079
1080struct type *
0e03807e 1081value_type (const struct value *value)
df407dfe
AC
1082{
1083 return value->type;
1084}
04624583
AC
1085void
1086deprecated_set_value_type (struct value *value, struct type *type)
1087{
1088 value->type = type;
1089}
df407dfe 1090
6b850546 1091LONGEST
0e03807e 1092value_offset (const struct value *value)
df407dfe
AC
1093{
1094 return value->offset;
1095}
f5cf64a7 1096void
6b850546 1097set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1098{
1099 value->offset = offset;
1100}
df407dfe 1101
6b850546 1102LONGEST
0e03807e 1103value_bitpos (const struct value *value)
df407dfe
AC
1104{
1105 return value->bitpos;
1106}
9bbda503 1107void
6b850546 1108set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1109{
1110 value->bitpos = bit;
1111}
df407dfe 1112
6b850546 1113LONGEST
0e03807e 1114value_bitsize (const struct value *value)
df407dfe
AC
1115{
1116 return value->bitsize;
1117}
9bbda503 1118void
6b850546 1119set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1120{
1121 value->bitsize = bit;
1122}
df407dfe 1123
4ea48cc1 1124struct value *
4bf7b526 1125value_parent (const struct value *value)
4ea48cc1 1126{
2c8331b9 1127 return value->parent.get ();
4ea48cc1
DJ
1128}
1129
53ba8333
JB
1130/* See value.h. */
1131
1132void
1133set_value_parent (struct value *value, struct value *parent)
1134{
bbfa6f00 1135 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1136}
1137
fc1a4b47 1138gdb_byte *
990a07ab
AC
1139value_contents_raw (struct value *value)
1140{
3ae385af
SM
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1143
3e3d7139 1144 allocate_value_contents (value);
14c88955 1145 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1146}
1147
fc1a4b47 1148gdb_byte *
990a07ab
AC
1149value_contents_all_raw (struct value *value)
1150{
3e3d7139 1151 allocate_value_contents (value);
14c88955 1152 return value->contents.get ();
990a07ab
AC
1153}
1154
4754a64e 1155struct type *
4bf7b526 1156value_enclosing_type (const struct value *value)
4754a64e
AC
1157{
1158 return value->enclosing_type;
1159}
1160
8264ba82
AG
1161/* Look at value.h for description. */
1162
1163struct type *
1164value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1166{
1167 struct value_print_options opts;
8264ba82
AG
1168 struct type *result;
1169
1170 get_user_print_options (&opts);
1171
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1176 {
5e34c6c3
LM
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
aa006118 1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1181 == TYPE_CODE_STRUCT
1182 && !value_optimized_out (value))
8264ba82
AG
1183 {
1184 struct type *real_type;
1185
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1187 if (real_type)
1188 {
1189 if (real_type_found)
1190 *real_type_found = 1;
1191 result = real_type;
1192 }
1193 }
1194 else if (resolve_simple_types)
1195 {
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1199 }
1200 }
1201
1202 return result;
1203}
1204
901461f8
PA
1205void
1206error_value_optimized_out (void)
1207{
1208 error (_("value has been optimized out"));
1209}
1210
0e03807e 1211static void
4e07d55f 1212require_not_optimized_out (const struct value *value)
0e03807e 1213{
0c7e6dd8 1214 if (!value->optimized_out.empty ())
901461f8
PA
1215 {
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1218 else
1219 error_value_optimized_out ();
1220 }
0e03807e
TT
1221}
1222
4e07d55f
PA
1223static void
1224require_available (const struct value *value)
1225{
0c7e6dd8 1226 if (!value->unavailable.empty ())
8af8e3bc 1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1228}
1229
fc1a4b47 1230const gdb_byte *
0e03807e 1231value_contents_for_printing (struct value *value)
46615f07
AC
1232{
1233 if (value->lazy)
1234 value_fetch_lazy (value);
14c88955 1235 return value->contents.get ();
46615f07
AC
1236}
1237
de4127a3
PA
1238const gdb_byte *
1239value_contents_for_printing_const (const struct value *value)
1240{
1241 gdb_assert (!value->lazy);
14c88955 1242 return value->contents.get ();
de4127a3
PA
1243}
1244
0e03807e
TT
1245const gdb_byte *
1246value_contents_all (struct value *value)
1247{
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
4e07d55f 1250 require_available (value);
0e03807e
TT
1251 return result;
1252}
1253
9a0dc9e3
PA
1254/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1256
1257static void
0c7e6dd8
TT
1258ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1260 int bit_length)
1261{
0c7e6dd8 1262 for (const range &r : src_range)
9a0dc9e3
PA
1263 {
1264 ULONGEST h, l;
1265
0c7e6dd8
TT
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
325fac50 1268 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1269
1270 if (l < h)
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1273 h - l);
1274 }
1275}
1276
4875ffdb
PA
1277/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1279
1280static void
1281value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1283 int bit_length)
1284{
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1287 bit_length);
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1290 bit_length);
1291}
1292
3ae385af 1293/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1298 values.
1299
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1302
1303void
6b850546
DT
1304value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1306{
6b850546 1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1310
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1316
29976f3f
PA
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
29976f3f 1324
39d37385 1325 /* Copy the data. */
3ae385af
SM
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
39d37385
PA
1329
1330 /* Copy the meta-data, adjusted. */
3ae385af
SM
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1334
4875ffdb
PA
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1337 bit_length);
39d37385
PA
1338}
1339
29976f3f
PA
1340/* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1345 lazy, it will be fetched now.
29976f3f
PA
1346
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1349
1350void
6b850546
DT
1351value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1353{
39d37385
PA
1354 if (src->lazy)
1355 value_fetch_lazy (src);
1356
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1358}
1359
d69fe07e 1360int
4bf7b526 1361value_lazy (const struct value *value)
d69fe07e
AC
1362{
1363 return value->lazy;
1364}
1365
dfa52d88
AC
1366void
1367set_value_lazy (struct value *value, int val)
1368{
1369 value->lazy = val;
1370}
1371
4e5d721f 1372int
4bf7b526 1373value_stack (const struct value *value)
4e5d721f
DE
1374{
1375 return value->stack;
1376}
1377
1378void
1379set_value_stack (struct value *value, int val)
1380{
1381 value->stack = val;
1382}
1383
fc1a4b47 1384const gdb_byte *
0fd88904
AC
1385value_contents (struct value *value)
1386{
0e03807e
TT
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
4e07d55f 1389 require_available (value);
0e03807e 1390 return result;
0fd88904
AC
1391}
1392
fc1a4b47 1393gdb_byte *
0fd88904
AC
1394value_contents_writeable (struct value *value)
1395{
1396 if (value->lazy)
1397 value_fetch_lazy (value);
fc0c53a0 1398 return value_contents_raw (value);
0fd88904
AC
1399}
1400
feb13ab0
AC
1401int
1402value_optimized_out (struct value *value)
1403{
691a26f5
AB
1404 /* We can only know if a value is optimized out once we have tried to
1405 fetch it. */
0c7e6dd8 1406 if (value->optimized_out.empty () && value->lazy)
ecf2e90c 1407 {
a70b8144 1408 try
ecf2e90c
DB
1409 {
1410 value_fetch_lazy (value);
1411 }
230d2906 1412 catch (const gdb_exception_error &ex)
ecf2e90c
DB
1413 {
1414 /* Fall back to checking value->optimized_out. */
1415 }
ecf2e90c 1416 }
691a26f5 1417
0c7e6dd8 1418 return !value->optimized_out.empty ();
feb13ab0
AC
1419}
1420
9a0dc9e3
PA
1421/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1422 the following LENGTH bytes. */
eca07816 1423
feb13ab0 1424void
9a0dc9e3 1425mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1426{
9a0dc9e3
PA
1427 mark_value_bits_optimized_out (value,
1428 offset * TARGET_CHAR_BIT,
1429 length * TARGET_CHAR_BIT);
feb13ab0 1430}
13c3b5f5 1431
9a0dc9e3 1432/* See value.h. */
0e03807e 1433
9a0dc9e3 1434void
6b850546
DT
1435mark_value_bits_optimized_out (struct value *value,
1436 LONGEST offset, LONGEST length)
0e03807e 1437{
9a0dc9e3 1438 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1439}
1440
8cf6f0b1
TT
1441int
1442value_bits_synthetic_pointer (const struct value *value,
6b850546 1443 LONGEST offset, LONGEST length)
8cf6f0b1 1444{
e7303042 1445 if (value->lval != lval_computed
8cf6f0b1
TT
1446 || !value->location.computed.funcs->check_synthetic_pointer)
1447 return 0;
1448 return value->location.computed.funcs->check_synthetic_pointer (value,
1449 offset,
1450 length);
1451}
1452
6b850546 1453LONGEST
4bf7b526 1454value_embedded_offset (const struct value *value)
13c3b5f5
AC
1455{
1456 return value->embedded_offset;
1457}
1458
1459void
6b850546 1460set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1461{
1462 value->embedded_offset = val;
1463}
b44d461b 1464
6b850546 1465LONGEST
4bf7b526 1466value_pointed_to_offset (const struct value *value)
b44d461b
AC
1467{
1468 return value->pointed_to_offset;
1469}
1470
1471void
6b850546 1472set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1473{
1474 value->pointed_to_offset = val;
1475}
13bb5560 1476
c8f2448a 1477const struct lval_funcs *
a471c594 1478value_computed_funcs (const struct value *v)
5f5233d4 1479{
a471c594 1480 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1481
1482 return v->location.computed.funcs;
1483}
1484
1485void *
0e03807e 1486value_computed_closure (const struct value *v)
5f5233d4 1487{
0e03807e 1488 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1489
1490 return v->location.computed.closure;
1491}
1492
13bb5560
AC
1493enum lval_type *
1494deprecated_value_lval_hack (struct value *value)
1495{
1496 return &value->lval;
1497}
1498
a471c594
JK
1499enum lval_type
1500value_lval_const (const struct value *value)
1501{
1502 return value->lval;
1503}
1504
42ae5230 1505CORE_ADDR
de4127a3 1506value_address (const struct value *value)
42ae5230 1507{
1a088441 1508 if (value->lval != lval_memory)
42ae5230 1509 return 0;
53ba8333 1510 if (value->parent != NULL)
2c8331b9 1511 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1512 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1513 {
1514 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1515 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1516 }
1517
1518 return value->location.address + value->offset;
42ae5230
TT
1519}
1520
1521CORE_ADDR
4bf7b526 1522value_raw_address (const struct value *value)
42ae5230 1523{
1a088441 1524 if (value->lval != lval_memory)
42ae5230
TT
1525 return 0;
1526 return value->location.address;
1527}
1528
1529void
1530set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1531{
1a088441 1532 gdb_assert (value->lval == lval_memory);
42ae5230 1533 value->location.address = addr;
13bb5560
AC
1534}
1535
1536struct internalvar **
1537deprecated_value_internalvar_hack (struct value *value)
1538{
1539 return &value->location.internalvar;
1540}
1541
1542struct frame_id *
41b56feb 1543deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1544{
7c2ba67e 1545 gdb_assert (value->lval == lval_register);
7dc54575 1546 return &value->location.reg.next_frame_id;
13bb5560
AC
1547}
1548
7dc54575 1549int *
13bb5560
AC
1550deprecated_value_regnum_hack (struct value *value)
1551{
7c2ba67e 1552 gdb_assert (value->lval == lval_register);
7dc54575 1553 return &value->location.reg.regnum;
13bb5560 1554}
88e3b34b
AC
1555
1556int
4bf7b526 1557deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1558{
1559 return value->modifiable;
1560}
990a07ab 1561\f
c906108c
SS
1562/* Return a mark in the value chain. All values allocated after the
1563 mark is obtained (except for those released) are subject to being freed
1564 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1565struct value *
fba45db2 1566value_mark (void)
c906108c 1567{
062d818d
TT
1568 if (all_values.empty ())
1569 return nullptr;
1570 return all_values.back ().get ();
c906108c
SS
1571}
1572
bbfa6f00 1573/* See value.h. */
828d3400 1574
bbfa6f00 1575void
828d3400
DJ
1576value_incref (struct value *val)
1577{
1578 val->reference_count++;
1579}
1580
1581/* Release a reference to VAL, which was acquired with value_incref.
1582 This function is also called to deallocate values from the value
1583 chain. */
1584
3e3d7139 1585void
22bc8444 1586value_decref (struct value *val)
3e3d7139 1587{
466ce3ae 1588 if (val != nullptr)
5f5233d4 1589 {
828d3400
DJ
1590 gdb_assert (val->reference_count > 0);
1591 val->reference_count--;
466ce3ae
TT
1592 if (val->reference_count == 0)
1593 delete val;
5f5233d4 1594 }
3e3d7139
JG
1595}
1596
c906108c
SS
1597/* Free all values allocated since MARK was obtained by value_mark
1598 (except for those released). */
1599void
4bf7b526 1600value_free_to_mark (const struct value *mark)
c906108c 1601{
062d818d
TT
1602 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1603 if (iter == all_values.end ())
1604 all_values.clear ();
1605 else
1606 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1607}
1608
c906108c
SS
1609/* Remove VAL from the chain all_values
1610 so it will not be freed automatically. */
1611
22bc8444 1612value_ref_ptr
f23631e4 1613release_value (struct value *val)
c906108c 1614{
850645cf
TT
1615 if (val == nullptr)
1616 return value_ref_ptr ();
1617
062d818d
TT
1618 std::vector<value_ref_ptr>::reverse_iterator iter;
1619 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1620 {
062d818d 1621 if (*iter == val)
c906108c 1622 {
062d818d
TT
1623 value_ref_ptr result = *iter;
1624 all_values.erase (iter.base () - 1);
1625 return result;
c906108c
SS
1626 }
1627 }
c906108c 1628
062d818d
TT
1629 /* We must always return an owned reference. Normally this happens
1630 because we transfer the reference from the value chain, but in
1631 this case the value was not on the chain. */
bbfa6f00 1632 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1633}
1634
a6535de1
TT
1635/* See value.h. */
1636
1637std::vector<value_ref_ptr>
4bf7b526 1638value_release_to_mark (const struct value *mark)
c906108c 1639{
a6535de1 1640 std::vector<value_ref_ptr> result;
c906108c 1641
062d818d
TT
1642 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1643 if (iter == all_values.end ())
1644 std::swap (result, all_values);
1645 else
e848a8a5 1646 {
062d818d
TT
1647 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1648 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1649 }
062d818d 1650 std::reverse (result.begin (), result.end ());
a6535de1 1651 return result;
c906108c
SS
1652}
1653
1654/* Return a copy of the value ARG.
1655 It contains the same contents, for same memory address,
1656 but it's a different block of storage. */
1657
f23631e4
AC
1658struct value *
1659value_copy (struct value *arg)
c906108c 1660{
4754a64e 1661 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1662 struct value *val;
1663
1664 if (value_lazy (arg))
1665 val = allocate_value_lazy (encl_type);
1666 else
1667 val = allocate_value (encl_type);
df407dfe 1668 val->type = arg->type;
c906108c 1669 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1670 val->location = arg->location;
df407dfe
AC
1671 val->offset = arg->offset;
1672 val->bitpos = arg->bitpos;
1673 val->bitsize = arg->bitsize;
d69fe07e 1674 val->lazy = arg->lazy;
13c3b5f5 1675 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1676 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1677 val->modifiable = arg->modifiable;
d69fe07e 1678 if (!value_lazy (val))
c906108c 1679 {
990a07ab 1680 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1681 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1682
1683 }
0c7e6dd8
TT
1684 val->unavailable = arg->unavailable;
1685 val->optimized_out = arg->optimized_out;
2c8331b9 1686 val->parent = arg->parent;
5f5233d4
PA
1687 if (VALUE_LVAL (val) == lval_computed)
1688 {
c8f2448a 1689 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1690
1691 if (funcs->copy_closure)
1692 val->location.computed.closure = funcs->copy_closure (val);
1693 }
c906108c
SS
1694 return val;
1695}
74bcbdf3 1696
4c082a81
SC
1697/* Return a "const" and/or "volatile" qualified version of the value V.
1698 If CNST is true, then the returned value will be qualified with
1699 "const".
1700 if VOLTL is true, then the returned value will be qualified with
1701 "volatile". */
1702
1703struct value *
1704make_cv_value (int cnst, int voltl, struct value *v)
1705{
1706 struct type *val_type = value_type (v);
1707 struct type *enclosing_type = value_enclosing_type (v);
1708 struct value *cv_val = value_copy (v);
1709
1710 deprecated_set_value_type (cv_val,
1711 make_cv_type (cnst, voltl, val_type, NULL));
1712 set_value_enclosing_type (cv_val,
1713 make_cv_type (cnst, voltl, enclosing_type, NULL));
1714
1715 return cv_val;
1716}
1717
c37f7098
KW
1718/* Return a version of ARG that is non-lvalue. */
1719
1720struct value *
1721value_non_lval (struct value *arg)
1722{
1723 if (VALUE_LVAL (arg) != not_lval)
1724 {
1725 struct type *enc_type = value_enclosing_type (arg);
1726 struct value *val = allocate_value (enc_type);
1727
1728 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1729 TYPE_LENGTH (enc_type));
1730 val->type = arg->type;
1731 set_value_embedded_offset (val, value_embedded_offset (arg));
1732 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1733 return val;
1734 }
1735 return arg;
1736}
1737
6c659fc2
SC
1738/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1739
1740void
1741value_force_lval (struct value *v, CORE_ADDR addr)
1742{
1743 gdb_assert (VALUE_LVAL (v) == not_lval);
1744
1745 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1746 v->lval = lval_memory;
1747 v->location.address = addr;
1748}
1749
74bcbdf3 1750void
0e03807e
TT
1751set_value_component_location (struct value *component,
1752 const struct value *whole)
74bcbdf3 1753{
9920b434
BH
1754 struct type *type;
1755
e81e7f5e
SC
1756 gdb_assert (whole->lval != lval_xcallable);
1757
0e03807e 1758 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1759 VALUE_LVAL (component) = lval_internalvar_component;
1760 else
0e03807e 1761 VALUE_LVAL (component) = whole->lval;
5f5233d4 1762
74bcbdf3 1763 component->location = whole->location;
0e03807e 1764 if (whole->lval == lval_computed)
5f5233d4 1765 {
c8f2448a 1766 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1767
1768 if (funcs->copy_closure)
1769 component->location.computed.closure = funcs->copy_closure (whole);
1770 }
9920b434
BH
1771
1772 /* If type has a dynamic resolved location property
1773 update it's value address. */
1774 type = value_type (whole);
1775 if (NULL != TYPE_DATA_LOCATION (type)
1776 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1777 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1778}
1779
c906108c
SS
1780/* Access to the value history. */
1781
1782/* Record a new value in the value history.
eddf0bae 1783 Returns the absolute history index of the entry. */
c906108c
SS
1784
1785int
f23631e4 1786record_latest_value (struct value *val)
c906108c 1787{
c906108c
SS
1788 /* We don't want this value to have anything to do with the inferior anymore.
1789 In particular, "set $1 = 50" should not affect the variable from which
1790 the value was taken, and fast watchpoints should be able to assume that
1791 a value on the value history never changes. */
d69fe07e 1792 if (value_lazy (val))
c906108c
SS
1793 value_fetch_lazy (val);
1794 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1795 from. This is a bit dubious, because then *&$1 does not just return $1
1796 but the current contents of that location. c'est la vie... */
1797 val->modifiable = 0;
350e1a76 1798
4d0266a0 1799 value_history.push_back (release_value (val));
a109c7c1 1800
4d0266a0 1801 return value_history.size ();
c906108c
SS
1802}
1803
1804/* Return a copy of the value in the history with sequence number NUM. */
1805
f23631e4 1806struct value *
fba45db2 1807access_value_history (int num)
c906108c 1808{
52f0bd74 1809 int absnum = num;
c906108c
SS
1810
1811 if (absnum <= 0)
4d0266a0 1812 absnum += value_history.size ();
c906108c
SS
1813
1814 if (absnum <= 0)
1815 {
1816 if (num == 0)
8a3fe4f8 1817 error (_("The history is empty."));
c906108c 1818 else if (num == 1)
8a3fe4f8 1819 error (_("There is only one value in the history."));
c906108c 1820 else
8a3fe4f8 1821 error (_("History does not go back to $$%d."), -num);
c906108c 1822 }
4d0266a0 1823 if (absnum > value_history.size ())
8a3fe4f8 1824 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1825
1826 absnum--;
1827
4d0266a0 1828 return value_copy (value_history[absnum].get ());
c906108c
SS
1829}
1830
c906108c 1831static void
5fed81ff 1832show_values (const char *num_exp, int from_tty)
c906108c 1833{
52f0bd74 1834 int i;
f23631e4 1835 struct value *val;
c906108c
SS
1836 static int num = 1;
1837
1838 if (num_exp)
1839 {
f132ba9d
TJB
1840 /* "show values +" should print from the stored position.
1841 "show values <exp>" should print around value number <exp>. */
c906108c 1842 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1843 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1844 }
1845 else
1846 {
f132ba9d 1847 /* "show values" means print the last 10 values. */
4d0266a0 1848 num = value_history.size () - 9;
c906108c
SS
1849 }
1850
1851 if (num <= 0)
1852 num = 1;
1853
4d0266a0 1854 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1855 {
79a45b7d 1856 struct value_print_options opts;
a109c7c1 1857
c906108c 1858 val = access_value_history (i);
a3f17187 1859 printf_filtered (("$%d = "), i);
79a45b7d
TT
1860 get_user_print_options (&opts);
1861 value_print (val, gdb_stdout, &opts);
a3f17187 1862 printf_filtered (("\n"));
c906108c
SS
1863 }
1864
f132ba9d 1865 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1866 num += 10;
1867
1868 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1869 "show values +". If num_exp is null, this is unnecessary, since
1870 "show values +" is not useful after "show values". */
c906108c 1871 if (from_tty && num_exp)
85c4be7c 1872 set_repeat_arguments ("+");
c906108c
SS
1873}
1874\f
52059ffd
TT
1875enum internalvar_kind
1876{
1877 /* The internal variable is empty. */
1878 INTERNALVAR_VOID,
1879
1880 /* The value of the internal variable is provided directly as
1881 a GDB value object. */
1882 INTERNALVAR_VALUE,
1883
1884 /* A fresh value is computed via a call-back routine on every
1885 access to the internal variable. */
1886 INTERNALVAR_MAKE_VALUE,
1887
1888 /* The internal variable holds a GDB internal convenience function. */
1889 INTERNALVAR_FUNCTION,
1890
1891 /* The variable holds an integer value. */
1892 INTERNALVAR_INTEGER,
1893
1894 /* The variable holds a GDB-provided string. */
1895 INTERNALVAR_STRING,
1896};
1897
1898union internalvar_data
1899{
1900 /* A value object used with INTERNALVAR_VALUE. */
1901 struct value *value;
1902
1903 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1904 struct
1905 {
1906 /* The functions to call. */
1907 const struct internalvar_funcs *functions;
1908
1909 /* The function's user-data. */
1910 void *data;
1911 } make_value;
1912
1913 /* The internal function used with INTERNALVAR_FUNCTION. */
1914 struct
1915 {
1916 struct internal_function *function;
1917 /* True if this is the canonical name for the function. */
1918 int canonical;
1919 } fn;
1920
1921 /* An integer value used with INTERNALVAR_INTEGER. */
1922 struct
1923 {
1924 /* If type is non-NULL, it will be used as the type to generate
1925 a value for this internal variable. If type is NULL, a default
1926 integer type for the architecture is used. */
1927 struct type *type;
1928 LONGEST val;
1929 } integer;
1930
1931 /* A string value used with INTERNALVAR_STRING. */
1932 char *string;
1933};
1934
c906108c
SS
1935/* Internal variables. These are variables within the debugger
1936 that hold values assigned by debugger commands.
1937 The user refers to them with a '$' prefix
1938 that does not appear in the variable names stored internally. */
1939
4fa62494
UW
1940struct internalvar
1941{
1942 struct internalvar *next;
1943 char *name;
4fa62494 1944
78267919
UW
1945 /* We support various different kinds of content of an internal variable.
1946 enum internalvar_kind specifies the kind, and union internalvar_data
1947 provides the data associated with this particular kind. */
1948
52059ffd 1949 enum internalvar_kind kind;
4fa62494 1950
52059ffd 1951 union internalvar_data u;
4fa62494
UW
1952};
1953
c906108c
SS
1954static struct internalvar *internalvars;
1955
3e43a32a
MS
1956/* If the variable does not already exist create it and give it the
1957 value given. If no value is given then the default is zero. */
53e5f3cf 1958static void
0b39b52e 1959init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1960{
1961 struct internalvar* intvar;
1962
1963 /* Parse the expression - this is taken from set_command(). */
4d01a485 1964 expression_up expr = parse_expression (args);
53e5f3cf
AS
1965
1966 /* Validate the expression.
1967 Was the expression an assignment?
1968 Or even an expression at all? */
1969 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1970 error (_("Init-if-undefined requires an assignment expression."));
1971
1972 /* Extract the variable from the parsed expression.
1973 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1974 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1975 error (_("The first parameter to init-if-undefined "
1976 "should be a GDB variable."));
53e5f3cf
AS
1977 intvar = expr->elts[2].internalvar;
1978
1979 /* Only evaluate the expression if the lvalue is void.
1980 This may still fail if the expresssion is invalid. */
78267919 1981 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1982 evaluate_expression (expr.get ());
53e5f3cf
AS
1983}
1984
1985
c906108c
SS
1986/* Look up an internal variable with name NAME. NAME should not
1987 normally include a dollar sign.
1988
1989 If the specified internal variable does not exist,
c4a3d09a 1990 the return value is NULL. */
c906108c
SS
1991
1992struct internalvar *
bc3b79fd 1993lookup_only_internalvar (const char *name)
c906108c 1994{
52f0bd74 1995 struct internalvar *var;
c906108c
SS
1996
1997 for (var = internalvars; var; var = var->next)
5cb316ef 1998 if (strcmp (var->name, name) == 0)
c906108c
SS
1999 return var;
2000
c4a3d09a
MF
2001 return NULL;
2002}
2003
eb3ff9a5
PA
2004/* Complete NAME by comparing it to the names of internal
2005 variables. */
d55637df 2006
eb3ff9a5
PA
2007void
2008complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2009{
d55637df
TT
2010 struct internalvar *var;
2011 int len;
2012
2013 len = strlen (name);
2014
2015 for (var = internalvars; var; var = var->next)
2016 if (strncmp (var->name, name, len) == 0)
2017 {
eb3ff9a5 2018 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2019
eb3ff9a5 2020 tracker.add_completion (std::move (copy));
d55637df 2021 }
d55637df 2022}
c4a3d09a
MF
2023
2024/* Create an internal variable with name NAME and with a void value.
2025 NAME should not normally include a dollar sign. */
2026
2027struct internalvar *
bc3b79fd 2028create_internalvar (const char *name)
c4a3d09a 2029{
8d749320 2030 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2031
1754f103 2032 var->name = concat (name, (char *)NULL);
78267919 2033 var->kind = INTERNALVAR_VOID;
c906108c
SS
2034 var->next = internalvars;
2035 internalvars = var;
2036 return var;
2037}
2038
4aa995e1
PA
2039/* Create an internal variable with name NAME and register FUN as the
2040 function that value_of_internalvar uses to create a value whenever
2041 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2042 dollar sign. DATA is passed uninterpreted to FUN when it is
2043 called. CLEANUP, if not NULL, is called when the internal variable
2044 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2045
2046struct internalvar *
22d2b532
SDJ
2047create_internalvar_type_lazy (const char *name,
2048 const struct internalvar_funcs *funcs,
2049 void *data)
4aa995e1 2050{
4fa62494 2051 struct internalvar *var = create_internalvar (name);
a109c7c1 2052
78267919 2053 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2054 var->u.make_value.functions = funcs;
2055 var->u.make_value.data = data;
4aa995e1
PA
2056 return var;
2057}
c4a3d09a 2058
22d2b532
SDJ
2059/* See documentation in value.h. */
2060
2061int
2062compile_internalvar_to_ax (struct internalvar *var,
2063 struct agent_expr *expr,
2064 struct axs_value *value)
2065{
2066 if (var->kind != INTERNALVAR_MAKE_VALUE
2067 || var->u.make_value.functions->compile_to_ax == NULL)
2068 return 0;
2069
2070 var->u.make_value.functions->compile_to_ax (var, expr, value,
2071 var->u.make_value.data);
2072 return 1;
2073}
2074
c4a3d09a
MF
2075/* Look up an internal variable with name NAME. NAME should not
2076 normally include a dollar sign.
2077
2078 If the specified internal variable does not exist,
2079 one is created, with a void value. */
2080
2081struct internalvar *
bc3b79fd 2082lookup_internalvar (const char *name)
c4a3d09a
MF
2083{
2084 struct internalvar *var;
2085
2086 var = lookup_only_internalvar (name);
2087 if (var)
2088 return var;
2089
2090 return create_internalvar (name);
2091}
2092
78267919
UW
2093/* Return current value of internal variable VAR. For variables that
2094 are not inherently typed, use a value type appropriate for GDBARCH. */
2095
f23631e4 2096struct value *
78267919 2097value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2098{
f23631e4 2099 struct value *val;
0914bcdb
SS
2100 struct trace_state_variable *tsv;
2101
2102 /* If there is a trace state variable of the same name, assume that
2103 is what we really want to see. */
2104 tsv = find_trace_state_variable (var->name);
2105 if (tsv)
2106 {
2107 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2108 &(tsv->value));
2109 if (tsv->value_known)
2110 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2111 tsv->value);
2112 else
2113 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2114 return val;
2115 }
c906108c 2116
78267919 2117 switch (var->kind)
5f5233d4 2118 {
78267919
UW
2119 case INTERNALVAR_VOID:
2120 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2121 break;
4fa62494 2122
78267919
UW
2123 case INTERNALVAR_FUNCTION:
2124 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2125 break;
4fa62494 2126
cab0c772
UW
2127 case INTERNALVAR_INTEGER:
2128 if (!var->u.integer.type)
78267919 2129 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2130 var->u.integer.val);
78267919 2131 else
cab0c772
UW
2132 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2133 break;
2134
78267919
UW
2135 case INTERNALVAR_STRING:
2136 val = value_cstring (var->u.string, strlen (var->u.string),
2137 builtin_type (gdbarch)->builtin_char);
2138 break;
4fa62494 2139
78267919
UW
2140 case INTERNALVAR_VALUE:
2141 val = value_copy (var->u.value);
4aa995e1
PA
2142 if (value_lazy (val))
2143 value_fetch_lazy (val);
78267919 2144 break;
4aa995e1 2145
78267919 2146 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2147 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2148 var->u.make_value.data);
78267919
UW
2149 break;
2150
2151 default:
9b20d036 2152 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2153 }
2154
2155 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2156 on this value go back to affect the original internal variable.
2157
2158 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2159 no underlying modifyable state in the internal variable.
2160
2161 Likewise, if the variable's value is a computed lvalue, we want
2162 references to it to produce another computed lvalue, where
2163 references and assignments actually operate through the
2164 computed value's functions.
2165
2166 This means that internal variables with computed values
2167 behave a little differently from other internal variables:
2168 assignments to them don't just replace the previous value
2169 altogether. At the moment, this seems like the behavior we
2170 want. */
2171
2172 if (var->kind != INTERNALVAR_MAKE_VALUE
2173 && val->lval != lval_computed)
2174 {
2175 VALUE_LVAL (val) = lval_internalvar;
2176 VALUE_INTERNALVAR (val) = var;
5f5233d4 2177 }
d3c139e9 2178
4fa62494
UW
2179 return val;
2180}
d3c139e9 2181
4fa62494
UW
2182int
2183get_internalvar_integer (struct internalvar *var, LONGEST *result)
2184{
3158c6ed 2185 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2186 {
cab0c772
UW
2187 *result = var->u.integer.val;
2188 return 1;
3158c6ed 2189 }
d3c139e9 2190
3158c6ed
PA
2191 if (var->kind == INTERNALVAR_VALUE)
2192 {
2193 struct type *type = check_typedef (value_type (var->u.value));
2194
2195 if (TYPE_CODE (type) == TYPE_CODE_INT)
2196 {
2197 *result = value_as_long (var->u.value);
2198 return 1;
2199 }
4fa62494 2200 }
3158c6ed
PA
2201
2202 return 0;
4fa62494 2203}
d3c139e9 2204
4fa62494
UW
2205static int
2206get_internalvar_function (struct internalvar *var,
2207 struct internal_function **result)
2208{
78267919 2209 switch (var->kind)
d3c139e9 2210 {
78267919
UW
2211 case INTERNALVAR_FUNCTION:
2212 *result = var->u.fn.function;
4fa62494 2213 return 1;
d3c139e9 2214
4fa62494
UW
2215 default:
2216 return 0;
2217 }
c906108c
SS
2218}
2219
2220void
6b850546
DT
2221set_internalvar_component (struct internalvar *var,
2222 LONGEST offset, LONGEST bitpos,
2223 LONGEST bitsize, struct value *newval)
c906108c 2224{
4fa62494 2225 gdb_byte *addr;
3ae385af
SM
2226 struct gdbarch *arch;
2227 int unit_size;
c906108c 2228
78267919 2229 switch (var->kind)
4fa62494 2230 {
78267919
UW
2231 case INTERNALVAR_VALUE:
2232 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2233 arch = get_value_arch (var->u.value);
2234 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2235
2236 if (bitsize)
50810684 2237 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2238 value_as_long (newval), bitpos, bitsize);
2239 else
3ae385af 2240 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2241 TYPE_LENGTH (value_type (newval)));
2242 break;
78267919
UW
2243
2244 default:
2245 /* We can never get a component of any other kind. */
9b20d036 2246 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2247 }
c906108c
SS
2248}
2249
2250void
f23631e4 2251set_internalvar (struct internalvar *var, struct value *val)
c906108c 2252{
78267919 2253 enum internalvar_kind new_kind;
4fa62494 2254 union internalvar_data new_data = { 0 };
c906108c 2255
78267919 2256 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2257 error (_("Cannot overwrite convenience function %s"), var->name);
2258
4fa62494 2259 /* Prepare new contents. */
78267919 2260 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2261 {
2262 case TYPE_CODE_VOID:
78267919 2263 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2264 break;
2265
2266 case TYPE_CODE_INTERNAL_FUNCTION:
2267 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2268 new_kind = INTERNALVAR_FUNCTION;
2269 get_internalvar_function (VALUE_INTERNALVAR (val),
2270 &new_data.fn.function);
2271 /* Copies created here are never canonical. */
4fa62494
UW
2272 break;
2273
4fa62494 2274 default:
78267919 2275 new_kind = INTERNALVAR_VALUE;
895dafa6
TT
2276 struct value *copy = value_copy (val);
2277 copy->modifiable = 1;
4fa62494
UW
2278
2279 /* Force the value to be fetched from the target now, to avoid problems
2280 later when this internalvar is referenced and the target is gone or
2281 has changed. */
895dafa6
TT
2282 if (value_lazy (copy))
2283 value_fetch_lazy (copy);
4fa62494
UW
2284
2285 /* Release the value from the value chain to prevent it from being
2286 deleted by free_all_values. From here on this function should not
2287 call error () until new_data is installed into the var->u to avoid
2288 leaking memory. */
895dafa6 2289 new_data.value = release_value (copy).release ();
9920b434
BH
2290
2291 /* Internal variables which are created from values with a dynamic
2292 location don't need the location property of the origin anymore.
2293 The resolved dynamic location is used prior then any other address
2294 when accessing the value.
2295 If we keep it, we would still refer to the origin value.
2296 Remove the location property in case it exist. */
2297 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2298
4fa62494
UW
2299 break;
2300 }
2301
2302 /* Clean up old contents. */
2303 clear_internalvar (var);
2304
2305 /* Switch over. */
78267919 2306 var->kind = new_kind;
4fa62494 2307 var->u = new_data;
c906108c
SS
2308 /* End code which must not call error(). */
2309}
2310
4fa62494
UW
2311void
2312set_internalvar_integer (struct internalvar *var, LONGEST l)
2313{
2314 /* Clean up old contents. */
2315 clear_internalvar (var);
2316
cab0c772
UW
2317 var->kind = INTERNALVAR_INTEGER;
2318 var->u.integer.type = NULL;
2319 var->u.integer.val = l;
78267919
UW
2320}
2321
2322void
2323set_internalvar_string (struct internalvar *var, const char *string)
2324{
2325 /* Clean up old contents. */
2326 clear_internalvar (var);
2327
2328 var->kind = INTERNALVAR_STRING;
2329 var->u.string = xstrdup (string);
4fa62494
UW
2330}
2331
2332static void
2333set_internalvar_function (struct internalvar *var, struct internal_function *f)
2334{
2335 /* Clean up old contents. */
2336 clear_internalvar (var);
2337
78267919
UW
2338 var->kind = INTERNALVAR_FUNCTION;
2339 var->u.fn.function = f;
2340 var->u.fn.canonical = 1;
2341 /* Variables installed here are always the canonical version. */
4fa62494
UW
2342}
2343
2344void
2345clear_internalvar (struct internalvar *var)
2346{
2347 /* Clean up old contents. */
78267919 2348 switch (var->kind)
4fa62494 2349 {
78267919 2350 case INTERNALVAR_VALUE:
22bc8444 2351 value_decref (var->u.value);
78267919
UW
2352 break;
2353
2354 case INTERNALVAR_STRING:
2355 xfree (var->u.string);
4fa62494
UW
2356 break;
2357
22d2b532
SDJ
2358 case INTERNALVAR_MAKE_VALUE:
2359 if (var->u.make_value.functions->destroy != NULL)
2360 var->u.make_value.functions->destroy (var->u.make_value.data);
2361 break;
2362
4fa62494 2363 default:
4fa62494
UW
2364 break;
2365 }
2366
78267919
UW
2367 /* Reset to void kind. */
2368 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2369}
2370
c906108c 2371char *
4bf7b526 2372internalvar_name (const struct internalvar *var)
c906108c
SS
2373{
2374 return var->name;
2375}
2376
4fa62494
UW
2377static struct internal_function *
2378create_internal_function (const char *name,
2379 internal_function_fn handler, void *cookie)
bc3b79fd 2380{
bc3b79fd 2381 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2382
bc3b79fd
TJB
2383 ifn->name = xstrdup (name);
2384 ifn->handler = handler;
2385 ifn->cookie = cookie;
4fa62494 2386 return ifn;
bc3b79fd
TJB
2387}
2388
2389char *
2390value_internal_function_name (struct value *val)
2391{
4fa62494
UW
2392 struct internal_function *ifn;
2393 int result;
2394
2395 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2396 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2397 gdb_assert (result);
2398
bc3b79fd
TJB
2399 return ifn->name;
2400}
2401
2402struct value *
d452c4bc
UW
2403call_internal_function (struct gdbarch *gdbarch,
2404 const struct language_defn *language,
2405 struct value *func, int argc, struct value **argv)
bc3b79fd 2406{
4fa62494
UW
2407 struct internal_function *ifn;
2408 int result;
2409
2410 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2411 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2412 gdb_assert (result);
2413
d452c4bc 2414 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2415}
2416
2417/* The 'function' command. This does nothing -- it is just a
2418 placeholder to let "help function NAME" work. This is also used as
2419 the implementation of the sub-command that is created when
2420 registering an internal function. */
2421static void
981a3fb3 2422function_command (const char *command, int from_tty)
bc3b79fd
TJB
2423{
2424 /* Do nothing. */
2425}
2426
2427/* Clean up if an internal function's command is destroyed. */
2428static void
2429function_destroyer (struct cmd_list_element *self, void *ignore)
2430{
6f937416 2431 xfree ((char *) self->name);
1947513d 2432 xfree ((char *) self->doc);
bc3b79fd
TJB
2433}
2434
2435/* Add a new internal function. NAME is the name of the function; DOC
2436 is a documentation string describing the function. HANDLER is
2437 called when the function is invoked. COOKIE is an arbitrary
2438 pointer which is passed to HANDLER and is intended for "user
2439 data". */
2440void
2441add_internal_function (const char *name, const char *doc,
2442 internal_function_fn handler, void *cookie)
2443{
2444 struct cmd_list_element *cmd;
4fa62494 2445 struct internal_function *ifn;
bc3b79fd 2446 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2447
2448 ifn = create_internal_function (name, handler, cookie);
2449 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2450
2451 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2452 &functionlist);
2453 cmd->destroyer = function_destroyer;
2454}
2455
ae5a43e0
DJ
2456/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2457 prevent cycles / duplicates. */
2458
4e7a5ef5 2459void
ae5a43e0
DJ
2460preserve_one_value (struct value *value, struct objfile *objfile,
2461 htab_t copied_types)
2462{
2463 if (TYPE_OBJFILE (value->type) == objfile)
2464 value->type = copy_type_recursive (objfile, value->type, copied_types);
2465
2466 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2467 value->enclosing_type = copy_type_recursive (objfile,
2468 value->enclosing_type,
2469 copied_types);
2470}
2471
78267919
UW
2472/* Likewise for internal variable VAR. */
2473
2474static void
2475preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2476 htab_t copied_types)
2477{
2478 switch (var->kind)
2479 {
cab0c772
UW
2480 case INTERNALVAR_INTEGER:
2481 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2482 var->u.integer.type
2483 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2484 break;
2485
78267919
UW
2486 case INTERNALVAR_VALUE:
2487 preserve_one_value (var->u.value, objfile, copied_types);
2488 break;
2489 }
2490}
2491
ae5a43e0
DJ
2492/* Update the internal variables and value history when OBJFILE is
2493 discarded; we must copy the types out of the objfile. New global types
2494 will be created for every convenience variable which currently points to
2495 this objfile's types, and the convenience variables will be adjusted to
2496 use the new global types. */
c906108c
SS
2497
2498void
ae5a43e0 2499preserve_values (struct objfile *objfile)
c906108c 2500{
ae5a43e0 2501 htab_t copied_types;
52f0bd74 2502 struct internalvar *var;
c906108c 2503
ae5a43e0
DJ
2504 /* Create the hash table. We allocate on the objfile's obstack, since
2505 it is soon to be deleted. */
2506 copied_types = create_copied_types_hash (objfile);
2507
4d0266a0
TT
2508 for (const value_ref_ptr &item : value_history)
2509 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2510
2511 for (var = internalvars; var; var = var->next)
78267919 2512 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2513
6dddc817 2514 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2515
ae5a43e0 2516 htab_delete (copied_types);
c906108c
SS
2517}
2518
2519static void
ad25e423 2520show_convenience (const char *ignore, int from_tty)
c906108c 2521{
e17c207e 2522 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2523 struct internalvar *var;
c906108c 2524 int varseen = 0;
79a45b7d 2525 struct value_print_options opts;
c906108c 2526
79a45b7d 2527 get_user_print_options (&opts);
c906108c
SS
2528 for (var = internalvars; var; var = var->next)
2529 {
c709acd1 2530
c906108c
SS
2531 if (!varseen)
2532 {
2533 varseen = 1;
2534 }
a3f17187 2535 printf_filtered (("$%s = "), var->name);
c709acd1 2536
a70b8144 2537 try
c709acd1
PA
2538 {
2539 struct value *val;
2540
2541 val = value_of_internalvar (gdbarch, var);
2542 value_print (val, gdb_stdout, &opts);
2543 }
230d2906 2544 catch (const gdb_exception_error &ex)
492d29ea 2545 {
3d6e9d23 2546 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
492d29ea 2547 }
492d29ea 2548
a3f17187 2549 printf_filtered (("\n"));
c906108c
SS
2550 }
2551 if (!varseen)
f47f77df
DE
2552 {
2553 /* This text does not mention convenience functions on purpose.
2554 The user can't create them except via Python, and if Python support
2555 is installed this message will never be printed ($_streq will
2556 exist). */
2557 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2558 "Convenience variables have "
2559 "names starting with \"$\";\n"
2560 "use \"set\" as in \"set "
2561 "$foo = 5\" to define them.\n"));
2562 }
c906108c
SS
2563}
2564\f
ba18742c
SM
2565
2566/* See value.h. */
e81e7f5e
SC
2567
2568struct value *
ba18742c 2569value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2570{
ba18742c 2571 struct value *v;
e81e7f5e 2572
ba18742c
SM
2573 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2574 v->lval = lval_xcallable;
2575 v->location.xm_worker = worker.release ();
2576 v->modifiable = 0;
e81e7f5e 2577
ba18742c 2578 return v;
e81e7f5e
SC
2579}
2580
2ce1cdbf
DE
2581/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2582
2583struct type *
6b1747cd 2584result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2ce1cdbf
DE
2585{
2586 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
6b1747cd 2587 && method->lval == lval_xcallable && !argv.empty ());
2ce1cdbf 2588
6b1747cd 2589 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2ce1cdbf
DE
2590}
2591
e81e7f5e
SC
2592/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2593
2594struct value *
6b1747cd 2595call_xmethod (struct value *method, gdb::array_view<value *> argv)
e81e7f5e
SC
2596{
2597 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
6b1747cd 2598 && method->lval == lval_xcallable && !argv.empty ());
e81e7f5e 2599
6b1747cd 2600 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
e81e7f5e
SC
2601}
2602\f
c906108c
SS
2603/* Extract a value as a C number (either long or double).
2604 Knows how to convert fixed values to double, or
2605 floating values to long.
2606 Does not deallocate the value. */
2607
2608LONGEST
f23631e4 2609value_as_long (struct value *val)
c906108c
SS
2610{
2611 /* This coerces arrays and functions, which is necessary (e.g.
2612 in disassemble_command). It also dereferences references, which
2613 I suspect is the most logical thing to do. */
994b9211 2614 val = coerce_array (val);
0fd88904 2615 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2616}
2617
581e13c1 2618/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2619 Note that val's type may not actually be a pointer; value_as_long
2620 handles all the cases. */
c906108c 2621CORE_ADDR
f23631e4 2622value_as_address (struct value *val)
c906108c 2623{
50810684
UW
2624 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2625
c906108c
SS
2626 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2627 whether we want this to be true eventually. */
2628#if 0
bf6ae464 2629 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2630 non-address (e.g. argument to "signal", "info break", etc.), or
2631 for pointers to char, in which the low bits *are* significant. */
50810684 2632 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2633#else
f312f057
JB
2634
2635 /* There are several targets (IA-64, PowerPC, and others) which
2636 don't represent pointers to functions as simply the address of
2637 the function's entry point. For example, on the IA-64, a
2638 function pointer points to a two-word descriptor, generated by
2639 the linker, which contains the function's entry point, and the
2640 value the IA-64 "global pointer" register should have --- to
2641 support position-independent code. The linker generates
2642 descriptors only for those functions whose addresses are taken.
2643
2644 On such targets, it's difficult for GDB to convert an arbitrary
2645 function address into a function pointer; it has to either find
2646 an existing descriptor for that function, or call malloc and
2647 build its own. On some targets, it is impossible for GDB to
2648 build a descriptor at all: the descriptor must contain a jump
2649 instruction; data memory cannot be executed; and code memory
2650 cannot be modified.
2651
2652 Upon entry to this function, if VAL is a value of type `function'
2653 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2654 value_address (val) is the address of the function. This is what
f312f057
JB
2655 you'll get if you evaluate an expression like `main'. The call
2656 to COERCE_ARRAY below actually does all the usual unary
2657 conversions, which includes converting values of type `function'
2658 to `pointer to function'. This is the challenging conversion
2659 discussed above. Then, `unpack_long' will convert that pointer
2660 back into an address.
2661
2662 So, suppose the user types `disassemble foo' on an architecture
2663 with a strange function pointer representation, on which GDB
2664 cannot build its own descriptors, and suppose further that `foo'
2665 has no linker-built descriptor. The address->pointer conversion
2666 will signal an error and prevent the command from running, even
2667 though the next step would have been to convert the pointer
2668 directly back into the same address.
2669
2670 The following shortcut avoids this whole mess. If VAL is a
2671 function, just return its address directly. */
df407dfe
AC
2672 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2673 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2674 return value_address (val);
f312f057 2675
994b9211 2676 val = coerce_array (val);
fc0c74b1
AC
2677
2678 /* Some architectures (e.g. Harvard), map instruction and data
2679 addresses onto a single large unified address space. For
2680 instance: An architecture may consider a large integer in the
2681 range 0x10000000 .. 0x1000ffff to already represent a data
2682 addresses (hence not need a pointer to address conversion) while
2683 a small integer would still need to be converted integer to
2684 pointer to address. Just assume such architectures handle all
2685 integer conversions in a single function. */
2686
2687 /* JimB writes:
2688
2689 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2690 must admonish GDB hackers to make sure its behavior matches the
2691 compiler's, whenever possible.
2692
2693 In general, I think GDB should evaluate expressions the same way
2694 the compiler does. When the user copies an expression out of
2695 their source code and hands it to a `print' command, they should
2696 get the same value the compiler would have computed. Any
2697 deviation from this rule can cause major confusion and annoyance,
2698 and needs to be justified carefully. In other words, GDB doesn't
2699 really have the freedom to do these conversions in clever and
2700 useful ways.
2701
2702 AndrewC pointed out that users aren't complaining about how GDB
2703 casts integers to pointers; they are complaining that they can't
2704 take an address from a disassembly listing and give it to `x/i'.
2705 This is certainly important.
2706
79dd2d24 2707 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2708 makes it possible for GDB to "get it right" in all circumstances
2709 --- the target has complete control over how things get done, so
2710 people can Do The Right Thing for their target without breaking
2711 anyone else. The standard doesn't specify how integers get
2712 converted to pointers; usually, the ABI doesn't either, but
2713 ABI-specific code is a more reasonable place to handle it. */
2714
df407dfe 2715 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2716 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2717 && gdbarch_integer_to_address_p (gdbarch))
2718 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2719 value_contents (val));
fc0c74b1 2720
0fd88904 2721 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2722#endif
2723}
2724\f
2725/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2726 as a long, or as a double, assuming the raw data is described
2727 by type TYPE. Knows how to convert different sizes of values
2728 and can convert between fixed and floating point. We don't assume
2729 any alignment for the raw data. Return value is in host byte order.
2730
2731 If you want functions and arrays to be coerced to pointers, and
2732 references to be dereferenced, call value_as_long() instead.
2733
2734 C++: It is assumed that the front-end has taken care of
2735 all matters concerning pointers to members. A pointer
2736 to member which reaches here is considered to be equivalent
2737 to an INT (or some size). After all, it is only an offset. */
2738
2739LONGEST
fc1a4b47 2740unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2741{
e17a4113 2742 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2743 enum type_code code = TYPE_CODE (type);
2744 int len = TYPE_LENGTH (type);
2745 int nosign = TYPE_UNSIGNED (type);
c906108c 2746
c906108c
SS
2747 switch (code)
2748 {
2749 case TYPE_CODE_TYPEDEF:
2750 return unpack_long (check_typedef (type), valaddr);
2751 case TYPE_CODE_ENUM:
4f2aea11 2752 case TYPE_CODE_FLAGS:
c906108c
SS
2753 case TYPE_CODE_BOOL:
2754 case TYPE_CODE_INT:
2755 case TYPE_CODE_CHAR:
2756 case TYPE_CODE_RANGE:
0d5de010 2757 case TYPE_CODE_MEMBERPTR:
c906108c 2758 if (nosign)
e17a4113 2759 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2760 else
e17a4113 2761 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2762
2763 case TYPE_CODE_FLT:
4ef30785 2764 case TYPE_CODE_DECFLOAT:
50637b26 2765 return target_float_to_longest (valaddr, type);
4ef30785 2766
c906108c
SS
2767 case TYPE_CODE_PTR:
2768 case TYPE_CODE_REF:
aa006118 2769 case TYPE_CODE_RVALUE_REF:
c906108c 2770 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2771 whether we want this to be true eventually. */
4478b372 2772 return extract_typed_address (valaddr, type);
c906108c 2773
c906108c 2774 default:
8a3fe4f8 2775 error (_("Value can't be converted to integer."));
c906108c 2776 }
c906108c
SS
2777}
2778
c906108c
SS
2779/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2780 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2781 We don't assume any alignment for the raw data. Return value is in
2782 host byte order.
2783
2784 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2785 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2786
2787 C++: It is assumed that the front-end has taken care of
2788 all matters concerning pointers to members. A pointer
2789 to member which reaches here is considered to be equivalent
2790 to an INT (or some size). After all, it is only an offset. */
2791
2792CORE_ADDR
fc1a4b47 2793unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2794{
2795 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2796 whether we want this to be true eventually. */
2797 return unpack_long (type, valaddr);
2798}
4478b372 2799
70100014
UW
2800bool
2801is_floating_value (struct value *val)
2802{
2803 struct type *type = check_typedef (value_type (val));
2804
2805 if (is_floating_type (type))
2806 {
2807 if (!target_float_is_valid (value_contents (val), type))
2808 error (_("Invalid floating value found in program."));
2809 return true;
2810 }
2811
2812 return false;
2813}
2814
c906108c 2815\f
1596cb5d 2816/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2817 TYPE. */
c906108c 2818
f23631e4 2819struct value *
fba45db2 2820value_static_field (struct type *type, int fieldno)
c906108c 2821{
948e66d9
DJ
2822 struct value *retval;
2823
1596cb5d 2824 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2825 {
1596cb5d 2826 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2827 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2828 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2829 break;
2830 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2831 {
ff355380 2832 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2833 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2834 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2835
d12307c1 2836 if (sym.symbol == NULL)
c906108c 2837 {
a109c7c1 2838 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2839 reported as non-debuggable symbols. */
3b7344d5
TT
2840 struct bound_minimal_symbol msym
2841 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2842 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2843
3b7344d5 2844 if (!msym.minsym)
c2e0e465 2845 retval = allocate_optimized_out_value (field_type);
c906108c 2846 else
c2e0e465 2847 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2848 }
2849 else
d12307c1 2850 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2851 break;
c906108c 2852 }
1596cb5d 2853 default:
f3574227 2854 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2855 }
2856
948e66d9 2857 return retval;
c906108c
SS
2858}
2859
4dfea560
DE
2860/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2861 You have to be careful here, since the size of the data area for the value
2862 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2863 than the old enclosing type, you have to allocate more space for the
2864 data. */
2b127877 2865
4dfea560
DE
2866void
2867set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2868{
5fdf6324
AB
2869 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2870 {
2871 check_type_length_before_alloc (new_encl_type);
2872 val->contents
14c88955
TT
2873 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2874 TYPE_LENGTH (new_encl_type)));
5fdf6324 2875 }
3e3d7139
JG
2876
2877 val->enclosing_type = new_encl_type;
2b127877
DB
2878}
2879
c906108c
SS
2880/* Given a value ARG1 (offset by OFFSET bytes)
2881 of a struct or union type ARG_TYPE,
2882 extract and return the value of one of its (non-static) fields.
581e13c1 2883 FIELDNO says which field. */
c906108c 2884
f23631e4 2885struct value *
6b850546 2886value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2887 int fieldno, struct type *arg_type)
c906108c 2888{
f23631e4 2889 struct value *v;
52f0bd74 2890 struct type *type;
3ae385af
SM
2891 struct gdbarch *arch = get_value_arch (arg1);
2892 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2893
f168693b 2894 arg_type = check_typedef (arg_type);
c906108c 2895 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2896
2897 /* Call check_typedef on our type to make sure that, if TYPE
2898 is a TYPE_CODE_TYPEDEF, its length is set to the length
2899 of the target type instead of zero. However, we do not
2900 replace the typedef type by the target type, because we want
2901 to keep the typedef in order to be able to print the type
2902 description correctly. */
2903 check_typedef (type);
c906108c 2904
691a26f5 2905 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2906 {
22c05d8a
JK
2907 /* Handle packed fields.
2908
2909 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2910 set. If possible, arrange offset and bitpos so that we can
2911 do a single aligned read of the size of the containing type.
2912 Otherwise, adjust offset to the byte containing the first
2913 bit. Assume that the address, offset, and embedded offset
2914 are sufficiently aligned. */
22c05d8a 2915
6b850546
DT
2916 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2917 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2918
9a0dc9e3
PA
2919 v = allocate_value_lazy (type);
2920 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2921 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2922 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2923 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2924 else
9a0dc9e3
PA
2925 v->bitpos = bitpos % 8;
2926 v->offset = (value_embedded_offset (arg1)
2927 + offset
2928 + (bitpos - v->bitpos) / 8);
2929 set_value_parent (v, arg1);
2930 if (!value_lazy (arg1))
2931 value_fetch_lazy (v);
c906108c
SS
2932 }
2933 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2934 {
2935 /* This field is actually a base subobject, so preserve the
39d37385
PA
2936 entire object's contents for later references to virtual
2937 bases, etc. */
6b850546 2938 LONGEST boffset;
a4e2ee12
DJ
2939
2940 /* Lazy register values with offsets are not supported. */
2941 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2942 value_fetch_lazy (arg1);
2943
9a0dc9e3
PA
2944 /* We special case virtual inheritance here because this
2945 requires access to the contents, which we would rather avoid
2946 for references to ordinary fields of unavailable values. */
2947 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2948 boffset = baseclass_offset (arg_type, fieldno,
2949 value_contents (arg1),
2950 value_embedded_offset (arg1),
2951 value_address (arg1),
2952 arg1);
c906108c 2953 else
9a0dc9e3 2954 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2955
9a0dc9e3
PA
2956 if (value_lazy (arg1))
2957 v = allocate_value_lazy (value_enclosing_type (arg1));
2958 else
2959 {
2960 v = allocate_value (value_enclosing_type (arg1));
2961 value_contents_copy_raw (v, 0, arg1, 0,
2962 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2963 }
9a0dc9e3
PA
2964 v->type = type;
2965 v->offset = value_offset (arg1);
2966 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2967 }
9920b434
BH
2968 else if (NULL != TYPE_DATA_LOCATION (type))
2969 {
2970 /* Field is a dynamic data member. */
2971
2972 gdb_assert (0 == offset);
2973 /* We expect an already resolved data location. */
2974 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2975 /* For dynamic data types defer memory allocation
2976 until we actual access the value. */
2977 v = allocate_value_lazy (type);
2978 }
c906108c
SS
2979 else
2980 {
2981 /* Plain old data member */
3ae385af
SM
2982 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2983 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
2984
2985 /* Lazy register values with offsets are not supported. */
2986 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2987 value_fetch_lazy (arg1);
2988
9a0dc9e3 2989 if (value_lazy (arg1))
3e3d7139 2990 v = allocate_value_lazy (type);
c906108c 2991 else
3e3d7139
JG
2992 {
2993 v = allocate_value (type);
39d37385
PA
2994 value_contents_copy_raw (v, value_embedded_offset (v),
2995 arg1, value_embedded_offset (arg1) + offset,
3ae385af 2996 type_length_units (type));
3e3d7139 2997 }
df407dfe 2998 v->offset = (value_offset (arg1) + offset
13c3b5f5 2999 + value_embedded_offset (arg1));
c906108c 3000 }
74bcbdf3 3001 set_value_component_location (v, arg1);
c906108c
SS
3002 return v;
3003}
3004
3005/* Given a value ARG1 of a struct or union type,
3006 extract and return the value of one of its (non-static) fields.
581e13c1 3007 FIELDNO says which field. */
c906108c 3008
f23631e4 3009struct value *
aa1ee363 3010value_field (struct value *arg1, int fieldno)
c906108c 3011{
df407dfe 3012 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3013}
3014
3015/* Return a non-virtual function as a value.
3016 F is the list of member functions which contains the desired method.
0478d61c
FF
3017 J is an index into F which provides the desired method.
3018
3019 We only use the symbol for its address, so be happy with either a
581e13c1 3020 full symbol or a minimal symbol. */
c906108c 3021
f23631e4 3022struct value *
3e43a32a
MS
3023value_fn_field (struct value **arg1p, struct fn_field *f,
3024 int j, struct type *type,
6b850546 3025 LONGEST offset)
c906108c 3026{
f23631e4 3027 struct value *v;
52f0bd74 3028 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3029 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3030 struct symbol *sym;
7c7b6655 3031 struct bound_minimal_symbol msym;
c906108c 3032
d12307c1 3033 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3034 if (sym != NULL)
0478d61c 3035 {
7c7b6655 3036 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3037 }
3038 else
3039 {
3040 gdb_assert (sym == NULL);
7c7b6655
TT
3041 msym = lookup_bound_minimal_symbol (physname);
3042 if (msym.minsym == NULL)
5ae326fa 3043 return NULL;
0478d61c
FF
3044 }
3045
c906108c 3046 v = allocate_value (ftype);
1a088441 3047 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3048 if (sym)
3049 {
2b1ffcfd 3050 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3051 }
3052 else
3053 {
bccdca4a
UW
3054 /* The minimal symbol might point to a function descriptor;
3055 resolve it to the actual code address instead. */
7c7b6655 3056 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3057 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3058
42ae5230
TT
3059 set_value_address (v,
3060 gdbarch_convert_from_func_ptr_addr
8b88a78e 3061 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
0478d61c 3062 }
c906108c
SS
3063
3064 if (arg1p)
c5aa993b 3065 {
df407dfe 3066 if (type != value_type (*arg1p))
c5aa993b
JM
3067 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3068 value_addr (*arg1p)));
3069
070ad9f0 3070 /* Move the `this' pointer according to the offset.
581e13c1 3071 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3072 }
3073
3074 return v;
3075}
3076
c906108c 3077\f
c906108c 3078
4875ffdb
PA
3079/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3080 VALADDR, and store the result in *RESULT.
15ce8941
TT
3081 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3082 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3083
4875ffdb
PA
3084 Extracting bits depends on endianness of the machine. Compute the
3085 number of least significant bits to discard. For big endian machines,
3086 we compute the total number of bits in the anonymous object, subtract
3087 off the bit count from the MSB of the object to the MSB of the
3088 bitfield, then the size of the bitfield, which leaves the LSB discard
3089 count. For little endian machines, the discard count is simply the
3090 number of bits from the LSB of the anonymous object to the LSB of the
3091 bitfield.
3092
3093 If the field is signed, we also do sign extension. */
3094
3095static LONGEST
3096unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3097 LONGEST bitpos, LONGEST bitsize)
c906108c 3098{
4ea48cc1 3099 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3100 ULONGEST val;
3101 ULONGEST valmask;
c906108c 3102 int lsbcount;
6b850546
DT
3103 LONGEST bytes_read;
3104 LONGEST read_offset;
c906108c 3105
4a76eae5
DJ
3106 /* Read the minimum number of bytes required; there may not be
3107 enough bytes to read an entire ULONGEST. */
f168693b 3108 field_type = check_typedef (field_type);
4a76eae5
DJ
3109 if (bitsize)
3110 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3111 else
15ce8941
TT
3112 {
3113 bytes_read = TYPE_LENGTH (field_type);
3114 bitsize = 8 * bytes_read;
3115 }
4a76eae5 3116
5467c6c8
PA
3117 read_offset = bitpos / 8;
3118
4875ffdb 3119 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3120 bytes_read, byte_order);
c906108c 3121
581e13c1 3122 /* Extract bits. See comment above. */
c906108c 3123
4ea48cc1 3124 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3125 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3126 else
3127 lsbcount = (bitpos % 8);
3128 val >>= lsbcount;
3129
3130 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3131 If the field is signed, and is negative, then sign extend. */
c906108c 3132
15ce8941 3133 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3134 {
3135 valmask = (((ULONGEST) 1) << bitsize) - 1;
3136 val &= valmask;
3137 if (!TYPE_UNSIGNED (field_type))
3138 {
3139 if (val & (valmask ^ (valmask >> 1)))
3140 {
3141 val |= ~valmask;
3142 }
3143 }
3144 }
5467c6c8 3145
4875ffdb 3146 return val;
5467c6c8
PA
3147}
3148
3149/* Unpack a field FIELDNO of the specified TYPE, from the object at
3150 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3151 ORIGINAL_VALUE, which must not be NULL. See
3152 unpack_value_bits_as_long for more details. */
3153
3154int
3155unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3156 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3157 const struct value *val, LONGEST *result)
3158{
4875ffdb
PA
3159 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3160 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3161 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3162 int bit_offset;
3163
5467c6c8
PA
3164 gdb_assert (val != NULL);
3165
4875ffdb
PA
3166 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3167 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3168 || !value_bits_available (val, bit_offset, bitsize))
3169 return 0;
3170
3171 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3172 bitpos, bitsize);
3173 return 1;
5467c6c8
PA
3174}
3175
3176/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3177 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3178
3179LONGEST
3180unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3181{
4875ffdb
PA
3182 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3183 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3184 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3185
4875ffdb
PA
3186 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3187}
3188
3189/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3190 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3191 the contents in DEST_VAL, zero or sign extending if the type of
3192 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3193 VAL. If the VAL's contents required to extract the bitfield from
3194 are unavailable/optimized out, DEST_VAL is correspondingly
3195 marked unavailable/optimized out. */
3196
bb9d5f81 3197void
4875ffdb 3198unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3199 LONGEST bitpos, LONGEST bitsize,
3200 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3201 const struct value *val)
3202{
3203 enum bfd_endian byte_order;
3204 int src_bit_offset;
3205 int dst_bit_offset;
4875ffdb
PA
3206 struct type *field_type = value_type (dest_val);
3207
4875ffdb 3208 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3209
3210 /* First, unpack and sign extend the bitfield as if it was wholly
3211 valid. Optimized out/unavailable bits are read as zero, but
3212 that's OK, as they'll end up marked below. If the VAL is
3213 wholly-invalid we may have skipped allocating its contents,
3214 though. See allocate_optimized_out_value. */
3215 if (valaddr != NULL)
3216 {
3217 LONGEST num;
3218
3219 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3220 bitpos, bitsize);
3221 store_signed_integer (value_contents_raw (dest_val),
3222 TYPE_LENGTH (field_type), byte_order, num);
3223 }
4875ffdb
PA
3224
3225 /* Now copy the optimized out / unavailability ranges to the right
3226 bits. */
3227 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3228 if (byte_order == BFD_ENDIAN_BIG)
3229 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3230 else
3231 dst_bit_offset = 0;
3232 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3233 val, src_bit_offset, bitsize);
5467c6c8
PA
3234}
3235
3236/* Return a new value with type TYPE, which is FIELDNO field of the
3237 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3238 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3239 from are unavailable/optimized out, the new value is
3240 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3241
3242struct value *
3243value_field_bitfield (struct type *type, int fieldno,
3244 const gdb_byte *valaddr,
6b850546 3245 LONGEST embedded_offset, const struct value *val)
5467c6c8 3246{
4875ffdb
PA
3247 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3248 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3249 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3250
4875ffdb
PA
3251 unpack_value_bitfield (res_val, bitpos, bitsize,
3252 valaddr, embedded_offset, val);
3253
3254 return res_val;
4ea48cc1
DJ
3255}
3256
c906108c
SS
3257/* Modify the value of a bitfield. ADDR points to a block of memory in
3258 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3259 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3260 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3261 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3262 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3263
3264void
50810684 3265modify_field (struct type *type, gdb_byte *addr,
6b850546 3266 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3267{
e17a4113 3268 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3269 ULONGEST oword;
3270 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3271 LONGEST bytesize;
19f220c3
JK
3272
3273 /* Normalize BITPOS. */
3274 addr += bitpos / 8;
3275 bitpos %= 8;
c906108c
SS
3276
3277 /* If a negative fieldval fits in the field in question, chop
3278 off the sign extension bits. */
f4e88c8e
PH
3279 if ((~fieldval & ~(mask >> 1)) == 0)
3280 fieldval &= mask;
c906108c
SS
3281
3282 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3283 if (0 != (fieldval & ~mask))
c906108c
SS
3284 {
3285 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3286 we don't have a sprintf_longest. */
6b850546 3287 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3288
3289 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3290 fieldval &= mask;
c906108c
SS
3291 }
3292
19f220c3
JK
3293 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3294 false valgrind reports. */
3295
3296 bytesize = (bitpos + bitsize + 7) / 8;
3297 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3298
3299 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3300 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3301 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3302
f4e88c8e 3303 oword &= ~(mask << bitpos);
c906108c
SS
3304 oword |= fieldval << bitpos;
3305
19f220c3 3306 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3307}
3308\f
14d06750 3309/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3310
14d06750
DJ
3311void
3312pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3313{
e17a4113 3314 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3315 LONGEST len;
14d06750
DJ
3316
3317 type = check_typedef (type);
c906108c
SS
3318 len = TYPE_LENGTH (type);
3319
14d06750 3320 switch (TYPE_CODE (type))
c906108c 3321 {
c906108c
SS
3322 case TYPE_CODE_INT:
3323 case TYPE_CODE_CHAR:
3324 case TYPE_CODE_ENUM:
4f2aea11 3325 case TYPE_CODE_FLAGS:
c906108c
SS
3326 case TYPE_CODE_BOOL:
3327 case TYPE_CODE_RANGE:
0d5de010 3328 case TYPE_CODE_MEMBERPTR:
e17a4113 3329 store_signed_integer (buf, len, byte_order, num);
c906108c 3330 break;
c5aa993b 3331
c906108c 3332 case TYPE_CODE_REF:
aa006118 3333 case TYPE_CODE_RVALUE_REF:
c906108c 3334 case TYPE_CODE_PTR:
14d06750 3335 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3336 break;
c5aa993b 3337
50637b26
UW
3338 case TYPE_CODE_FLT:
3339 case TYPE_CODE_DECFLOAT:
3340 target_float_from_longest (buf, type, num);
3341 break;
3342
c906108c 3343 default:
14d06750
DJ
3344 error (_("Unexpected type (%d) encountered for integer constant."),
3345 TYPE_CODE (type));
c906108c 3346 }
14d06750
DJ
3347}
3348
3349
595939de
PM
3350/* Pack NUM into BUF using a target format of TYPE. */
3351
70221824 3352static void
595939de
PM
3353pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3354{
6b850546 3355 LONGEST len;
595939de
PM
3356 enum bfd_endian byte_order;
3357
3358 type = check_typedef (type);
3359 len = TYPE_LENGTH (type);
3360 byte_order = gdbarch_byte_order (get_type_arch (type));
3361
3362 switch (TYPE_CODE (type))
3363 {
3364 case TYPE_CODE_INT:
3365 case TYPE_CODE_CHAR:
3366 case TYPE_CODE_ENUM:
3367 case TYPE_CODE_FLAGS:
3368 case TYPE_CODE_BOOL:
3369 case TYPE_CODE_RANGE:
3370 case TYPE_CODE_MEMBERPTR:
3371 store_unsigned_integer (buf, len, byte_order, num);
3372 break;
3373
3374 case TYPE_CODE_REF:
aa006118 3375 case TYPE_CODE_RVALUE_REF:
595939de
PM
3376 case TYPE_CODE_PTR:
3377 store_typed_address (buf, type, (CORE_ADDR) num);
3378 break;
3379
50637b26
UW
3380 case TYPE_CODE_FLT:
3381 case TYPE_CODE_DECFLOAT:
3382 target_float_from_ulongest (buf, type, num);
3383 break;
3384
595939de 3385 default:
3e43a32a
MS
3386 error (_("Unexpected type (%d) encountered "
3387 "for unsigned integer constant."),
595939de
PM
3388 TYPE_CODE (type));
3389 }
3390}
3391
3392
14d06750
DJ
3393/* Convert C numbers into newly allocated values. */
3394
3395struct value *
3396value_from_longest (struct type *type, LONGEST num)
3397{
3398 struct value *val = allocate_value (type);
3399
3400 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3401 return val;
3402}
3403
4478b372 3404
595939de
PM
3405/* Convert C unsigned numbers into newly allocated values. */
3406
3407struct value *
3408value_from_ulongest (struct type *type, ULONGEST num)
3409{
3410 struct value *val = allocate_value (type);
3411
3412 pack_unsigned_long (value_contents_raw (val), type, num);
3413
3414 return val;
3415}
3416
3417
4478b372 3418/* Create a value representing a pointer of type TYPE to the address
cb417230 3419 ADDR. */
80180f79 3420
f23631e4 3421struct value *
4478b372
JB
3422value_from_pointer (struct type *type, CORE_ADDR addr)
3423{
cb417230 3424 struct value *val = allocate_value (type);
a109c7c1 3425
80180f79 3426 store_typed_address (value_contents_raw (val),
cb417230 3427 check_typedef (type), addr);
4478b372
JB
3428 return val;
3429}
3430
7584bb30
AB
3431/* Create and return a value object of TYPE containing the value D. The
3432 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3433 it is converted to target format. */
3434
3435struct value *
3436value_from_host_double (struct type *type, double d)
3437{
3438 struct value *value = allocate_value (type);
3439 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3440 target_float_from_host_double (value_contents_raw (value),
3441 value_type (value), d);
3442 return value;
3443}
4478b372 3444
012370f6
TT
3445/* Create a value of type TYPE whose contents come from VALADDR, if it
3446 is non-null, and whose memory address (in the inferior) is
3447 ADDRESS. The type of the created value may differ from the passed
3448 type TYPE. Make sure to retrieve values new type after this call.
3449 Note that TYPE is not passed through resolve_dynamic_type; this is
3450 a special API intended for use only by Ada. */
3451
3452struct value *
3453value_from_contents_and_address_unresolved (struct type *type,
3454 const gdb_byte *valaddr,
3455 CORE_ADDR address)
3456{
3457 struct value *v;
3458
3459 if (valaddr == NULL)
3460 v = allocate_value_lazy (type);
3461 else
3462 v = value_from_contents (type, valaddr);
012370f6 3463 VALUE_LVAL (v) = lval_memory;
1a088441 3464 set_value_address (v, address);
012370f6
TT
3465 return v;
3466}
3467
8acb6b92
TT
3468/* Create a value of type TYPE whose contents come from VALADDR, if it
3469 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3470 ADDRESS. The type of the created value may differ from the passed
3471 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3472
3473struct value *
3474value_from_contents_and_address (struct type *type,
3475 const gdb_byte *valaddr,
3476 CORE_ADDR address)
3477{
c3345124 3478 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3479 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3480 struct value *v;
a109c7c1 3481
8acb6b92 3482 if (valaddr == NULL)
80180f79 3483 v = allocate_value_lazy (resolved_type);
8acb6b92 3484 else
80180f79 3485 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3486 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3487 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3488 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3489 VALUE_LVAL (v) = lval_memory;
1a088441 3490 set_value_address (v, address);
8acb6b92
TT
3491 return v;
3492}
3493
8a9b8146
TT
3494/* Create a value of type TYPE holding the contents CONTENTS.
3495 The new value is `not_lval'. */
3496
3497struct value *
3498value_from_contents (struct type *type, const gdb_byte *contents)
3499{
3500 struct value *result;
3501
3502 result = allocate_value (type);
3503 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3504 return result;
3505}
3506
3bd0f5ef
MS
3507/* Extract a value from the history file. Input will be of the form
3508 $digits or $$digits. See block comment above 'write_dollar_variable'
3509 for details. */
3510
3511struct value *
e799154c 3512value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3513{
3514 int index, len;
3515
3516 if (h[0] == '$')
3517 len = 1;
3518 else
3519 return NULL;
3520
3521 if (h[1] == '$')
3522 len = 2;
3523
3524 /* Find length of numeral string. */
3525 for (; isdigit (h[len]); len++)
3526 ;
3527
3528 /* Make sure numeral string is not part of an identifier. */
3529 if (h[len] == '_' || isalpha (h[len]))
3530 return NULL;
3531
3532 /* Now collect the index value. */
3533 if (h[1] == '$')
3534 {
3535 if (len == 2)
3536 {
3537 /* For some bizarre reason, "$$" is equivalent to "$$1",
3538 rather than to "$$0" as it ought to be! */
3539 index = -1;
3540 *endp += len;
3541 }
3542 else
e799154c
TT
3543 {
3544 char *local_end;
3545
3546 index = -strtol (&h[2], &local_end, 10);
3547 *endp = local_end;
3548 }
3bd0f5ef
MS
3549 }
3550 else
3551 {
3552 if (len == 1)
3553 {
3554 /* "$" is equivalent to "$0". */
3555 index = 0;
3556 *endp += len;
3557 }
3558 else
e799154c
TT
3559 {
3560 char *local_end;
3561
3562 index = strtol (&h[1], &local_end, 10);
3563 *endp = local_end;
3564 }
3bd0f5ef
MS
3565 }
3566
3567 return access_value_history (index);
3568}
3569
3fff9862
YQ
3570/* Get the component value (offset by OFFSET bytes) of a struct or
3571 union WHOLE. Component's type is TYPE. */
3572
3573struct value *
3574value_from_component (struct value *whole, struct type *type, LONGEST offset)
3575{
3576 struct value *v;
3577
3578 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3579 v = allocate_value_lazy (type);
3580 else
3581 {
3582 v = allocate_value (type);
3583 value_contents_copy (v, value_embedded_offset (v),
3584 whole, value_embedded_offset (whole) + offset,
3585 type_length_units (type));
3586 }
3587 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3588 set_value_component_location (v, whole);
3fff9862
YQ
3589
3590 return v;
3591}
3592
a471c594
JK
3593struct value *
3594coerce_ref_if_computed (const struct value *arg)
3595{
3596 const struct lval_funcs *funcs;
3597
aa006118 3598 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3599 return NULL;
3600
3601 if (value_lval_const (arg) != lval_computed)
3602 return NULL;
3603
3604 funcs = value_computed_funcs (arg);
3605 if (funcs->coerce_ref == NULL)
3606 return NULL;
3607
3608 return funcs->coerce_ref (arg);
3609}
3610
dfcee124
AG
3611/* Look at value.h for description. */
3612
3613struct value *
3614readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3615 const struct type *original_type,
3616 const struct value *original_value)
dfcee124
AG
3617{
3618 /* Re-adjust type. */
3619 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3620
3621 /* Add embedding info. */
3622 set_value_enclosing_type (value, enc_type);
3623 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3624
3625 /* We may be pointing to an object of some derived type. */
3626 return value_full_object (value, NULL, 0, 0, 0);
3627}
3628
994b9211
AC
3629struct value *
3630coerce_ref (struct value *arg)
3631{
df407dfe 3632 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3633 struct value *retval;
dfcee124 3634 struct type *enc_type;
a109c7c1 3635
a471c594
JK
3636 retval = coerce_ref_if_computed (arg);
3637 if (retval)
3638 return retval;
3639
aa006118 3640 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3641 return arg;
3642
dfcee124
AG
3643 enc_type = check_typedef (value_enclosing_type (arg));
3644 enc_type = TYPE_TARGET_TYPE (enc_type);
3645
3646 retval = value_at_lazy (enc_type,
3647 unpack_pointer (value_type (arg),
3648 value_contents (arg)));
9f1f738a 3649 enc_type = value_type (retval);
dfcee124
AG
3650 return readjust_indirect_value_type (retval, enc_type,
3651 value_type_arg_tmp, arg);
994b9211
AC
3652}
3653
3654struct value *
3655coerce_array (struct value *arg)
3656{
f3134b88
TT
3657 struct type *type;
3658
994b9211 3659 arg = coerce_ref (arg);
f3134b88
TT
3660 type = check_typedef (value_type (arg));
3661
3662 switch (TYPE_CODE (type))
3663 {
3664 case TYPE_CODE_ARRAY:
7346b668 3665 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3666 arg = value_coerce_array (arg);
3667 break;
3668 case TYPE_CODE_FUNC:
3669 arg = value_coerce_function (arg);
3670 break;
3671 }
994b9211
AC
3672 return arg;
3673}
c906108c 3674\f
c906108c 3675
bbfdfe1c
DM
3676/* Return the return value convention that will be used for the
3677 specified type. */
3678
3679enum return_value_convention
3680struct_return_convention (struct gdbarch *gdbarch,
3681 struct value *function, struct type *value_type)
3682{
3683 enum type_code code = TYPE_CODE (value_type);
3684
3685 if (code == TYPE_CODE_ERROR)
3686 error (_("Function return type unknown."));
3687
3688 /* Probe the architecture for the return-value convention. */
3689 return gdbarch_return_value (gdbarch, function, value_type,
3690 NULL, NULL, NULL);
3691}
3692
48436ce6
AC
3693/* Return true if the function returning the specified type is using
3694 the convention of returning structures in memory (passing in the
82585c72 3695 address as a hidden first parameter). */
c906108c
SS
3696
3697int
d80b854b 3698using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3699 struct value *function, struct type *value_type)
c906108c 3700{
bbfdfe1c 3701 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3702 /* A void return value is never in memory. See also corresponding
44e5158b 3703 code in "print_return_value". */
667e784f
AC
3704 return 0;
3705
bbfdfe1c 3706 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3707 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3708}
3709
42be36b3
CT
3710/* Set the initialized field in a value struct. */
3711
3712void
3713set_value_initialized (struct value *val, int status)
3714{
3715 val->initialized = status;
3716}
3717
3718/* Return the initialized field in a value struct. */
3719
3720int
4bf7b526 3721value_initialized (const struct value *val)
42be36b3
CT
3722{
3723 return val->initialized;
3724}
3725
41c60b4b
SM
3726/* Helper for value_fetch_lazy when the value is a bitfield. */
3727
3728static void
3729value_fetch_lazy_bitfield (struct value *val)
3730{
3731 gdb_assert (value_bitsize (val) != 0);
3732
3733 /* To read a lazy bitfield, read the entire enclosing value. This
3734 prevents reading the same block of (possibly volatile) memory once
3735 per bitfield. It would be even better to read only the containing
3736 word, but we have no way to record that just specific bits of a
3737 value have been fetched. */
41c60b4b
SM
3738 struct value *parent = value_parent (val);
3739
3740 if (value_lazy (parent))
3741 value_fetch_lazy (parent);
3742
3743 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3744 value_contents_for_printing (parent),
3745 value_offset (val), parent);
3746}
3747
3748/* Helper for value_fetch_lazy when the value is in memory. */
3749
3750static void
3751value_fetch_lazy_memory (struct value *val)
3752{
3753 gdb_assert (VALUE_LVAL (val) == lval_memory);
3754
3755 CORE_ADDR addr = value_address (val);
3756 struct type *type = check_typedef (value_enclosing_type (val));
3757
3758 if (TYPE_LENGTH (type))
3759 read_value_memory (val, 0, value_stack (val),
3760 addr, value_contents_all_raw (val),
3761 type_length_units (type));
3762}
3763
3764/* Helper for value_fetch_lazy when the value is in a register. */
3765
3766static void
3767value_fetch_lazy_register (struct value *val)
3768{
3769 struct frame_info *next_frame;
3770 int regnum;
3771 struct type *type = check_typedef (value_type (val));
3772 struct value *new_val = val, *mark = value_mark ();
3773
3774 /* Offsets are not supported here; lazy register values must
3775 refer to the entire register. */
3776 gdb_assert (value_offset (val) == 0);
3777
3778 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3779 {
3780 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3781
3782 next_frame = frame_find_by_id (next_frame_id);
3783 regnum = VALUE_REGNUM (new_val);
3784
3785 gdb_assert (next_frame != NULL);
3786
3787 /* Convertible register routines are used for multi-register
3788 values and for interpretation in different types
3789 (e.g. float or int from a double register). Lazy
3790 register values should have the register's natural type,
3791 so they do not apply. */
3792 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3793 regnum, type));
3794
3795 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3796 Since a "->next" operation was performed when setting
3797 this field, we do not need to perform a "next" operation
3798 again when unwinding the register. That's why
3799 frame_unwind_register_value() is called here instead of
3800 get_frame_register_value(). */
3801 new_val = frame_unwind_register_value (next_frame, regnum);
3802
3803 /* If we get another lazy lval_register value, it means the
3804 register is found by reading it from NEXT_FRAME's next frame.
3805 frame_unwind_register_value should never return a value with
3806 the frame id pointing to NEXT_FRAME. If it does, it means we
3807 either have two consecutive frames with the same frame id
3808 in the frame chain, or some code is trying to unwind
3809 behind get_prev_frame's back (e.g., a frame unwind
3810 sniffer trying to unwind), bypassing its validations. In
3811 any case, it should always be an internal error to end up
3812 in this situation. */
3813 if (VALUE_LVAL (new_val) == lval_register
3814 && value_lazy (new_val)
3815 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3816 internal_error (__FILE__, __LINE__,
3817 _("infinite loop while fetching a register"));
3818 }
3819
3820 /* If it's still lazy (for instance, a saved register on the
3821 stack), fetch it. */
3822 if (value_lazy (new_val))
3823 value_fetch_lazy (new_val);
3824
3825 /* Copy the contents and the unavailability/optimized-out
3826 meta-data from NEW_VAL to VAL. */
3827 set_value_lazy (val, 0);
3828 value_contents_copy (val, value_embedded_offset (val),
3829 new_val, value_embedded_offset (new_val),
3830 type_length_units (type));
3831
3832 if (frame_debug)
3833 {
3834 struct gdbarch *gdbarch;
3835 struct frame_info *frame;
3836 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3837 so that the frame level will be shown correctly. */
3838 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3839 regnum = VALUE_REGNUM (val);
3840 gdbarch = get_frame_arch (frame);
3841
3842 fprintf_unfiltered (gdb_stdlog,
3843 "{ value_fetch_lazy "
3844 "(frame=%d,regnum=%d(%s),...) ",
3845 frame_relative_level (frame), regnum,
3846 user_reg_map_regnum_to_name (gdbarch, regnum));
3847
3848 fprintf_unfiltered (gdb_stdlog, "->");
3849 if (value_optimized_out (new_val))
3850 {
3851 fprintf_unfiltered (gdb_stdlog, " ");
3852 val_print_optimized_out (new_val, gdb_stdlog);
3853 }
3854 else
3855 {
3856 int i;
3857 const gdb_byte *buf = value_contents (new_val);
3858
3859 if (VALUE_LVAL (new_val) == lval_register)
3860 fprintf_unfiltered (gdb_stdlog, " register=%d",
3861 VALUE_REGNUM (new_val));
3862 else if (VALUE_LVAL (new_val) == lval_memory)
3863 fprintf_unfiltered (gdb_stdlog, " address=%s",
3864 paddress (gdbarch,
3865 value_address (new_val)));
3866 else
3867 fprintf_unfiltered (gdb_stdlog, " computed");
3868
3869 fprintf_unfiltered (gdb_stdlog, " bytes=");
3870 fprintf_unfiltered (gdb_stdlog, "[");
3871 for (i = 0; i < register_size (gdbarch, regnum); i++)
3872 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3873 fprintf_unfiltered (gdb_stdlog, "]");
3874 }
3875
3876 fprintf_unfiltered (gdb_stdlog, " }\n");
3877 }
3878
3879 /* Dispose of the intermediate values. This prevents
3880 watchpoints from trying to watch the saved frame pointer. */
3881 value_free_to_mark (mark);
3882}
3883
a844296a
SM
3884/* Load the actual content of a lazy value. Fetch the data from the
3885 user's process and clear the lazy flag to indicate that the data in
3886 the buffer is valid.
a58e2656
AB
3887
3888 If the value is zero-length, we avoid calling read_memory, which
3889 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3890 it. */
a58e2656 3891
a844296a 3892void
a58e2656
AB
3893value_fetch_lazy (struct value *val)
3894{
3895 gdb_assert (value_lazy (val));
3896 allocate_value_contents (val);
9a0dc9e3
PA
3897 /* A value is either lazy, or fully fetched. The
3898 availability/validity is only established as we try to fetch a
3899 value. */
0c7e6dd8
TT
3900 gdb_assert (val->optimized_out.empty ());
3901 gdb_assert (val->unavailable.empty ());
a58e2656 3902 if (value_bitsize (val))
41c60b4b 3903 value_fetch_lazy_bitfield (val);
a58e2656 3904 else if (VALUE_LVAL (val) == lval_memory)
41c60b4b 3905 value_fetch_lazy_memory (val);
a58e2656 3906 else if (VALUE_LVAL (val) == lval_register)
41c60b4b 3907 value_fetch_lazy_register (val);
a58e2656
AB
3908 else if (VALUE_LVAL (val) == lval_computed
3909 && value_computed_funcs (val)->read != NULL)
3910 value_computed_funcs (val)->read (val);
a58e2656
AB
3911 else
3912 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3913
3914 set_value_lazy (val, 0);
a58e2656
AB
3915}
3916
a280dbd1
SDJ
3917/* Implementation of the convenience function $_isvoid. */
3918
3919static struct value *
3920isvoid_internal_fn (struct gdbarch *gdbarch,
3921 const struct language_defn *language,
3922 void *cookie, int argc, struct value **argv)
3923{
3924 int ret;
3925
3926 if (argc != 1)
6bc305f5 3927 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3928
3929 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3930
3931 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3932}
3933
8bdc1658
AB
3934/* Implementation of the convenience function $_cimag. Extracts the
3935 real part from a complex number. */
3936
3937static struct value *
3938creal_internal_fn (struct gdbarch *gdbarch,
3939 const struct language_defn *language,
3940 void *cookie, int argc, struct value **argv)
3941{
3942 if (argc != 1)
3943 error (_("You must provide one argument for $_creal."));
3944
3945 value *cval = argv[0];
3946 type *ctype = check_typedef (value_type (cval));
3947 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3948 error (_("expected a complex number"));
3949 return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
3950}
3951
3952/* Implementation of the convenience function $_cimag. Extracts the
3953 imaginary part from a complex number. */
3954
3955static struct value *
3956cimag_internal_fn (struct gdbarch *gdbarch,
3957 const struct language_defn *language,
3958 void *cookie, int argc,
3959 struct value **argv)
3960{
3961 if (argc != 1)
3962 error (_("You must provide one argument for $_cimag."));
3963
3964 value *cval = argv[0];
3965 type *ctype = check_typedef (value_type (cval));
3966 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3967 error (_("expected a complex number"));
3968 return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
3969 TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
3970}
3971
d5f4488f
SM
3972#if GDB_SELF_TEST
3973namespace selftests
3974{
3975
3976/* Test the ranges_contain function. */
3977
3978static void
3979test_ranges_contain ()
3980{
3981 std::vector<range> ranges;
3982 range r;
3983
3984 /* [10, 14] */
3985 r.offset = 10;
3986 r.length = 5;
3987 ranges.push_back (r);
3988
3989 /* [20, 24] */
3990 r.offset = 20;
3991 r.length = 5;
3992 ranges.push_back (r);
3993
3994 /* [2, 6] */
3995 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3996 /* [9, 13] */
3997 SELF_CHECK (ranges_contain (ranges, 9, 5));
3998 /* [10, 11] */
3999 SELF_CHECK (ranges_contain (ranges, 10, 2));
4000 /* [10, 14] */
4001 SELF_CHECK (ranges_contain (ranges, 10, 5));
4002 /* [13, 18] */
4003 SELF_CHECK (ranges_contain (ranges, 13, 6));
4004 /* [14, 18] */
4005 SELF_CHECK (ranges_contain (ranges, 14, 5));
4006 /* [15, 18] */
4007 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4008 /* [16, 19] */
4009 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4010 /* [16, 21] */
4011 SELF_CHECK (ranges_contain (ranges, 16, 6));
4012 /* [21, 21] */
4013 SELF_CHECK (ranges_contain (ranges, 21, 1));
4014 /* [21, 25] */
4015 SELF_CHECK (ranges_contain (ranges, 21, 5));
4016 /* [26, 28] */
4017 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4018}
4019
4020/* Check that RANGES contains the same ranges as EXPECTED. */
4021
4022static bool
4023check_ranges_vector (gdb::array_view<const range> ranges,
4024 gdb::array_view<const range> expected)
4025{
4026 return ranges == expected;
4027}
4028
4029/* Test the insert_into_bit_range_vector function. */
4030
4031static void
4032test_insert_into_bit_range_vector ()
4033{
4034 std::vector<range> ranges;
4035
4036 /* [10, 14] */
4037 {
4038 insert_into_bit_range_vector (&ranges, 10, 5);
4039 static const range expected[] = {
4040 {10, 5}
4041 };
4042 SELF_CHECK (check_ranges_vector (ranges, expected));
4043 }
4044
4045 /* [10, 14] */
4046 {
4047 insert_into_bit_range_vector (&ranges, 11, 4);
4048 static const range expected = {10, 5};
4049 SELF_CHECK (check_ranges_vector (ranges, expected));
4050 }
4051
4052 /* [10, 14] [20, 24] */
4053 {
4054 insert_into_bit_range_vector (&ranges, 20, 5);
4055 static const range expected[] = {
4056 {10, 5},
4057 {20, 5},
4058 };
4059 SELF_CHECK (check_ranges_vector (ranges, expected));
4060 }
4061
4062 /* [10, 14] [17, 24] */
4063 {
4064 insert_into_bit_range_vector (&ranges, 17, 5);
4065 static const range expected[] = {
4066 {10, 5},
4067 {17, 8},
4068 };
4069 SELF_CHECK (check_ranges_vector (ranges, expected));
4070 }
4071
4072 /* [2, 8] [10, 14] [17, 24] */
4073 {
4074 insert_into_bit_range_vector (&ranges, 2, 7);
4075 static const range expected[] = {
4076 {2, 7},
4077 {10, 5},
4078 {17, 8},
4079 };
4080 SELF_CHECK (check_ranges_vector (ranges, expected));
4081 }
4082
4083 /* [2, 14] [17, 24] */
4084 {
4085 insert_into_bit_range_vector (&ranges, 9, 1);
4086 static const range expected[] = {
4087 {2, 13},
4088 {17, 8},
4089 };
4090 SELF_CHECK (check_ranges_vector (ranges, expected));
4091 }
4092
4093 /* [2, 14] [17, 24] */
4094 {
4095 insert_into_bit_range_vector (&ranges, 9, 1);
4096 static const range expected[] = {
4097 {2, 13},
4098 {17, 8},
4099 };
4100 SELF_CHECK (check_ranges_vector (ranges, expected));
4101 }
4102
4103 /* [2, 33] */
4104 {
4105 insert_into_bit_range_vector (&ranges, 4, 30);
4106 static const range expected = {2, 32};
4107 SELF_CHECK (check_ranges_vector (ranges, expected));
4108 }
4109}
4110
4111} /* namespace selftests */
4112#endif /* GDB_SELF_TEST */
4113
c906108c 4114void
fba45db2 4115_initialize_values (void)
c906108c 4116{
1a966eab 4117 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4118Debugger convenience (\"$foo\") variables and functions.\n\
4119Convenience variables are created when you assign them values;\n\
4120thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4121\n\
c906108c
SS
4122A few convenience variables are given values automatically:\n\
4123\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4124\"$__\" holds the contents of the last address examined with \"x\"."
4125#ifdef HAVE_PYTHON
4126"\n\n\
4127Convenience functions are defined via the Python API."
4128#endif
4129 ), &showlist);
7e20dfcd 4130 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4131
db5f229b 4132 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4133Elements of value history around item number IDX (or last ten)."),
c906108c 4134 &showlist);
53e5f3cf
AS
4135
4136 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4137Initialize a convenience variable if necessary.\n\
4138init-if-undefined VARIABLE = EXPRESSION\n\
4139Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4140exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4141VARIABLE is already initialized."));
bc3b79fd
TJB
4142
4143 add_prefix_cmd ("function", no_class, function_command, _("\
4144Placeholder command for showing help on convenience functions."),
4145 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4146
4147 add_internal_function ("_isvoid", _("\
4148Check whether an expression is void.\n\
4149Usage: $_isvoid (expression)\n\
4150Return 1 if the expression is void, zero otherwise."),
4151 isvoid_internal_fn, NULL);
5fdf6324 4152
8bdc1658
AB
4153 add_internal_function ("_creal", _("\
4154Extract the real part of a complex number.\n\
4155Usage: $_creal (expression)\n\
4156Return the real part of a complex number, the type depends on the\n\
4157type of a complex number."),
4158 creal_internal_fn, NULL);
4159
4160 add_internal_function ("_cimag", _("\
4161Extract the imaginary part of a complex number.\n\
4162Usage: $_cimag (expression)\n\
4163Return the imaginary part of a complex number, the type depends on the\n\
4164type of a complex number."),
4165 cimag_internal_fn, NULL);
4166
5fdf6324
AB
4167 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4168 class_support, &max_value_size, _("\
4169Set maximum sized value gdb will load from the inferior."), _("\
4170Show maximum sized value gdb will load from the inferior."), _("\
4171Use this to control the maximum size, in bytes, of a value that gdb\n\
4172will load from the inferior. Setting this value to 'unlimited'\n\
4173disables checking.\n\
4174Setting this does not invalidate already allocated values, it only\n\
4175prevents future values, larger than this size, from being allocated."),
4176 set_max_value_size,
4177 show_max_value_size,
4178 &setlist, &showlist);
d5f4488f
SM
4179#if GDB_SELF_TEST
4180 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4181 selftests::register_test ("insert_into_bit_range_vector",
4182 selftests::test_insert_into_bit_range_vector);
4183#endif
c906108c 4184}
9d1447e0
SDJ
4185
4186/* See value.h. */
4187
4188void
4189finalize_values ()
4190{
4191 all_values.clear ();
4192}
This page took 2.641739 seconds and 4 git commands to generate.