gdb
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
bc3b79fd 40#include "cli/cli-decode.h"
c906108c 41
a08702d6
TJB
42#include "python/python.h"
43
c906108c
SS
44/* Prototypes for exported functions. */
45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
63static struct cmd_list_element *functionlist;
64
91294c83
AC
65struct value
66{
67 /* Type of value; either not an lval, or one of the various
68 different possible kinds of lval. */
69 enum lval_type lval;
70
71 /* Is it modifiable? Only relevant if lval != not_lval. */
72 int modifiable;
73
74 /* Location of value (if lval). */
75 union
76 {
77 /* If lval == lval_memory, this is the address in the inferior.
78 If lval == lval_register, this is the byte offset into the
79 registers structure. */
80 CORE_ADDR address;
81
82 /* Pointer to internal variable. */
83 struct internalvar *internalvar;
5f5233d4
PA
84
85 /* If lval == lval_computed, this is a set of function pointers
86 to use to access and describe the value, and a closure pointer
87 for them to use. */
88 struct
89 {
90 struct lval_funcs *funcs; /* Functions to call. */
91 void *closure; /* Closure for those functions to use. */
92 } computed;
91294c83
AC
93 } location;
94
95 /* Describes offset of a value within lval of a structure in bytes.
96 If lval == lval_memory, this is an offset to the address. If
97 lval == lval_register, this is a further offset from
98 location.address within the registers structure. Note also the
99 member embedded_offset below. */
100 int offset;
101
102 /* Only used for bitfields; number of bits contained in them. */
103 int bitsize;
104
105 /* Only used for bitfields; position of start of field. For
32c9a795
MD
106 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
107 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
108 int bitpos;
109
110 /* Frame register value is relative to. This will be described in
111 the lval enum above as "lval_register". */
112 struct frame_id frame_id;
113
114 /* Type of the value. */
115 struct type *type;
116
117 /* If a value represents a C++ object, then the `type' field gives
118 the object's compile-time type. If the object actually belongs
119 to some class derived from `type', perhaps with other base
120 classes and additional members, then `type' is just a subobject
121 of the real thing, and the full object is probably larger than
122 `type' would suggest.
123
124 If `type' is a dynamic class (i.e. one with a vtable), then GDB
125 can actually determine the object's run-time type by looking at
126 the run-time type information in the vtable. When this
127 information is available, we may elect to read in the entire
128 object, for several reasons:
129
130 - When printing the value, the user would probably rather see the
131 full object, not just the limited portion apparent from the
132 compile-time type.
133
134 - If `type' has virtual base classes, then even printing `type'
135 alone may require reaching outside the `type' portion of the
136 object to wherever the virtual base class has been stored.
137
138 When we store the entire object, `enclosing_type' is the run-time
139 type -- the complete object -- and `embedded_offset' is the
140 offset of `type' within that larger type, in bytes. The
141 value_contents() macro takes `embedded_offset' into account, so
142 most GDB code continues to see the `type' portion of the value,
143 just as the inferior would.
144
145 If `type' is a pointer to an object, then `enclosing_type' is a
146 pointer to the object's run-time type, and `pointed_to_offset' is
147 the offset in bytes from the full object to the pointed-to object
148 -- that is, the value `embedded_offset' would have if we followed
149 the pointer and fetched the complete object. (I don't really see
150 the point. Why not just determine the run-time type when you
151 indirect, and avoid the special case? The contents don't matter
152 until you indirect anyway.)
153
154 If we're not doing anything fancy, `enclosing_type' is equal to
155 `type', and `embedded_offset' is zero, so everything works
156 normally. */
157 struct type *enclosing_type;
158 int embedded_offset;
159 int pointed_to_offset;
160
161 /* Values are stored in a chain, so that they can be deleted easily
162 over calls to the inferior. Values assigned to internal
a08702d6
TJB
163 variables, put into the value history or exposed to Python are
164 taken off this list. */
91294c83
AC
165 struct value *next;
166
167 /* Register number if the value is from a register. */
168 short regnum;
169
170 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
171 nonzero, contents are in inferior. If the lval field is lval_memory,
172 the contents are in inferior memory at location.address plus offset.
173 The lval field may also be lval_register.
91294c83
AC
174
175 WARNING: This field is used by the code which handles watchpoints
176 (see breakpoint.c) to decide whether a particular value can be
177 watched by hardware watchpoints. If the lazy flag is set for
178 some member of a value chain, it is assumed that this member of
179 the chain doesn't need to be watched as part of watching the
180 value itself. This is how GDB avoids watching the entire struct
181 or array when the user wants to watch a single struct member or
182 array element. If you ever change the way lazy flag is set and
183 reset, be sure to consider this use as well! */
184 char lazy;
185
186 /* If nonzero, this is the value of a variable which does not
187 actually exist in the program. */
188 char optimized_out;
189
42be36b3
CT
190 /* If value is a variable, is it initialized or not. */
191 int initialized;
192
3e3d7139
JG
193 /* Actual contents of the value. Target byte-order. NULL or not
194 valid if lazy is nonzero. */
195 gdb_byte *contents;
91294c83
AC
196};
197
c906108c
SS
198/* Prototypes for local functions. */
199
a14ed312 200static void show_values (char *, int);
c906108c 201
a14ed312 202static void show_convenience (char *, int);
c906108c 203
c906108c
SS
204
205/* The value-history records all the values printed
206 by print commands during this session. Each chunk
207 records 60 consecutive values. The first chunk on
208 the chain records the most recent values.
209 The total number of values is in value_history_count. */
210
211#define VALUE_HISTORY_CHUNK 60
212
213struct value_history_chunk
c5aa993b
JM
214 {
215 struct value_history_chunk *next;
f23631e4 216 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 217 };
c906108c
SS
218
219/* Chain of chunks now in use. */
220
221static struct value_history_chunk *value_history_chain;
222
223static int value_history_count; /* Abs number of last entry stored */
bc3b79fd
TJB
224
225/* The type of internal functions. */
226
227static struct type *internal_fn_type;
c906108c
SS
228\f
229/* List of all value objects currently allocated
230 (except for those released by calls to release_value)
231 This is so they can be freed after each command. */
232
f23631e4 233static struct value *all_values;
c906108c 234
3e3d7139
JG
235/* Allocate a lazy value for type TYPE. Its actual content is
236 "lazily" allocated too: the content field of the return value is
237 NULL; it will be allocated when it is fetched from the target. */
c906108c 238
f23631e4 239struct value *
3e3d7139 240allocate_value_lazy (struct type *type)
c906108c 241{
f23631e4 242 struct value *val;
c906108c
SS
243 struct type *atype = check_typedef (type);
244
3e3d7139
JG
245 val = (struct value *) xzalloc (sizeof (struct value));
246 val->contents = NULL;
df407dfe 247 val->next = all_values;
c906108c 248 all_values = val;
df407dfe 249 val->type = type;
4754a64e 250 val->enclosing_type = type;
c906108c
SS
251 VALUE_LVAL (val) = not_lval;
252 VALUE_ADDRESS (val) = 0;
1df6926e 253 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
254 val->offset = 0;
255 val->bitpos = 0;
256 val->bitsize = 0;
9ee8fc9d 257 VALUE_REGNUM (val) = -1;
3e3d7139 258 val->lazy = 1;
feb13ab0 259 val->optimized_out = 0;
13c3b5f5 260 val->embedded_offset = 0;
b44d461b 261 val->pointed_to_offset = 0;
c906108c 262 val->modifiable = 1;
42be36b3 263 val->initialized = 1; /* Default to initialized. */
c906108c
SS
264 return val;
265}
266
3e3d7139
JG
267/* Allocate the contents of VAL if it has not been allocated yet. */
268
269void
270allocate_value_contents (struct value *val)
271{
272 if (!val->contents)
273 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
274}
275
276/* Allocate a value and its contents for type TYPE. */
277
278struct value *
279allocate_value (struct type *type)
280{
281 struct value *val = allocate_value_lazy (type);
282 allocate_value_contents (val);
283 val->lazy = 0;
284 return val;
285}
286
c906108c 287/* Allocate a value that has the correct length
938f5214 288 for COUNT repetitions of type TYPE. */
c906108c 289
f23631e4 290struct value *
fba45db2 291allocate_repeat_value (struct type *type, int count)
c906108c 292{
c5aa993b 293 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
294 /* FIXME-type-allocation: need a way to free this type when we are
295 done with it. */
296 struct type *range_type
6d84d3d8 297 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 298 low_bound, count + low_bound - 1);
c906108c
SS
299 /* FIXME-type-allocation: need a way to free this type when we are
300 done with it. */
301 return allocate_value (create_array_type ((struct type *) NULL,
302 type, range_type));
303}
304
a08702d6
TJB
305/* Needed if another module needs to maintain its on list of values. */
306void
307value_prepend_to_list (struct value **head, struct value *val)
308{
309 val->next = *head;
310 *head = val;
311}
312
313/* Needed if another module needs to maintain its on list of values. */
314void
315value_remove_from_list (struct value **head, struct value *val)
316{
317 struct value *prev;
318
319 if (*head == val)
320 *head = (*head)->next;
321 else
322 for (prev = *head; prev->next; prev = prev->next)
323 if (prev->next == val)
324 {
325 prev->next = val->next;
326 break;
327 }
328}
329
5f5233d4
PA
330struct value *
331allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334{
335 struct value *v = allocate_value (type);
336 VALUE_LVAL (v) = lval_computed;
337 v->location.computed.funcs = funcs;
338 v->location.computed.closure = closure;
339 set_value_lazy (v, 1);
340
341 return v;
342}
343
df407dfe
AC
344/* Accessor methods. */
345
17cf0ecd
AC
346struct value *
347value_next (struct value *value)
348{
349 return value->next;
350}
351
df407dfe
AC
352struct type *
353value_type (struct value *value)
354{
355 return value->type;
356}
04624583
AC
357void
358deprecated_set_value_type (struct value *value, struct type *type)
359{
360 value->type = type;
361}
df407dfe
AC
362
363int
364value_offset (struct value *value)
365{
366 return value->offset;
367}
f5cf64a7
AC
368void
369set_value_offset (struct value *value, int offset)
370{
371 value->offset = offset;
372}
df407dfe
AC
373
374int
375value_bitpos (struct value *value)
376{
377 return value->bitpos;
378}
9bbda503
AC
379void
380set_value_bitpos (struct value *value, int bit)
381{
382 value->bitpos = bit;
383}
df407dfe
AC
384
385int
386value_bitsize (struct value *value)
387{
388 return value->bitsize;
389}
9bbda503
AC
390void
391set_value_bitsize (struct value *value, int bit)
392{
393 value->bitsize = bit;
394}
df407dfe 395
fc1a4b47 396gdb_byte *
990a07ab
AC
397value_contents_raw (struct value *value)
398{
3e3d7139
JG
399 allocate_value_contents (value);
400 return value->contents + value->embedded_offset;
990a07ab
AC
401}
402
fc1a4b47 403gdb_byte *
990a07ab
AC
404value_contents_all_raw (struct value *value)
405{
3e3d7139
JG
406 allocate_value_contents (value);
407 return value->contents;
990a07ab
AC
408}
409
4754a64e
AC
410struct type *
411value_enclosing_type (struct value *value)
412{
413 return value->enclosing_type;
414}
415
fc1a4b47 416const gdb_byte *
46615f07
AC
417value_contents_all (struct value *value)
418{
419 if (value->lazy)
420 value_fetch_lazy (value);
3e3d7139 421 return value->contents;
46615f07
AC
422}
423
d69fe07e
AC
424int
425value_lazy (struct value *value)
426{
427 return value->lazy;
428}
429
dfa52d88
AC
430void
431set_value_lazy (struct value *value, int val)
432{
433 value->lazy = val;
434}
435
fc1a4b47 436const gdb_byte *
0fd88904
AC
437value_contents (struct value *value)
438{
439 return value_contents_writeable (value);
440}
441
fc1a4b47 442gdb_byte *
0fd88904
AC
443value_contents_writeable (struct value *value)
444{
445 if (value->lazy)
446 value_fetch_lazy (value);
fc0c53a0 447 return value_contents_raw (value);
0fd88904
AC
448}
449
a6c442d8
MK
450/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
451 this function is different from value_equal; in C the operator ==
452 can return 0 even if the two values being compared are equal. */
453
454int
455value_contents_equal (struct value *val1, struct value *val2)
456{
457 struct type *type1;
458 struct type *type2;
459 int len;
460
461 type1 = check_typedef (value_type (val1));
462 type2 = check_typedef (value_type (val2));
463 len = TYPE_LENGTH (type1);
464 if (len != TYPE_LENGTH (type2))
465 return 0;
466
467 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
468}
469
feb13ab0
AC
470int
471value_optimized_out (struct value *value)
472{
473 return value->optimized_out;
474}
475
476void
477set_value_optimized_out (struct value *value, int val)
478{
479 value->optimized_out = val;
480}
13c3b5f5
AC
481
482int
483value_embedded_offset (struct value *value)
484{
485 return value->embedded_offset;
486}
487
488void
489set_value_embedded_offset (struct value *value, int val)
490{
491 value->embedded_offset = val;
492}
b44d461b
AC
493
494int
495value_pointed_to_offset (struct value *value)
496{
497 return value->pointed_to_offset;
498}
499
500void
501set_value_pointed_to_offset (struct value *value, int val)
502{
503 value->pointed_to_offset = val;
504}
13bb5560 505
5f5233d4
PA
506struct lval_funcs *
507value_computed_funcs (struct value *v)
508{
509 gdb_assert (VALUE_LVAL (v) == lval_computed);
510
511 return v->location.computed.funcs;
512}
513
514void *
515value_computed_closure (struct value *v)
516{
517 gdb_assert (VALUE_LVAL (v) == lval_computed);
518
519 return v->location.computed.closure;
520}
521
13bb5560
AC
522enum lval_type *
523deprecated_value_lval_hack (struct value *value)
524{
525 return &value->lval;
526}
527
528CORE_ADDR *
529deprecated_value_address_hack (struct value *value)
530{
531 return &value->location.address;
532}
533
534struct internalvar **
535deprecated_value_internalvar_hack (struct value *value)
536{
537 return &value->location.internalvar;
538}
539
540struct frame_id *
541deprecated_value_frame_id_hack (struct value *value)
542{
543 return &value->frame_id;
544}
545
546short *
547deprecated_value_regnum_hack (struct value *value)
548{
549 return &value->regnum;
550}
88e3b34b
AC
551
552int
553deprecated_value_modifiable (struct value *value)
554{
555 return value->modifiable;
556}
557void
558deprecated_set_value_modifiable (struct value *value, int modifiable)
559{
560 value->modifiable = modifiable;
561}
990a07ab 562\f
c906108c
SS
563/* Return a mark in the value chain. All values allocated after the
564 mark is obtained (except for those released) are subject to being freed
565 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 566struct value *
fba45db2 567value_mark (void)
c906108c
SS
568{
569 return all_values;
570}
571
3e3d7139
JG
572void
573value_free (struct value *val)
574{
575 if (val)
5f5233d4
PA
576 {
577 if (VALUE_LVAL (val) == lval_computed)
578 {
579 struct lval_funcs *funcs = val->location.computed.funcs;
580
581 if (funcs->free_closure)
582 funcs->free_closure (val);
583 }
584
585 xfree (val->contents);
586 }
3e3d7139
JG
587 xfree (val);
588}
589
c906108c
SS
590/* Free all values allocated since MARK was obtained by value_mark
591 (except for those released). */
592void
f23631e4 593value_free_to_mark (struct value *mark)
c906108c 594{
f23631e4
AC
595 struct value *val;
596 struct value *next;
c906108c
SS
597
598 for (val = all_values; val && val != mark; val = next)
599 {
df407dfe 600 next = val->next;
c906108c
SS
601 value_free (val);
602 }
603 all_values = val;
604}
605
606/* Free all the values that have been allocated (except for those released).
607 Called after each command, successful or not. */
608
609void
fba45db2 610free_all_values (void)
c906108c 611{
f23631e4
AC
612 struct value *val;
613 struct value *next;
c906108c
SS
614
615 for (val = all_values; val; val = next)
616 {
df407dfe 617 next = val->next;
c906108c
SS
618 value_free (val);
619 }
620
621 all_values = 0;
622}
623
624/* Remove VAL from the chain all_values
625 so it will not be freed automatically. */
626
627void
f23631e4 628release_value (struct value *val)
c906108c 629{
f23631e4 630 struct value *v;
c906108c
SS
631
632 if (all_values == val)
633 {
634 all_values = val->next;
635 return;
636 }
637
638 for (v = all_values; v; v = v->next)
639 {
640 if (v->next == val)
641 {
642 v->next = val->next;
643 break;
644 }
645 }
646}
647
648/* Release all values up to mark */
f23631e4
AC
649struct value *
650value_release_to_mark (struct value *mark)
c906108c 651{
f23631e4
AC
652 struct value *val;
653 struct value *next;
c906108c 654
df407dfe
AC
655 for (val = next = all_values; next; next = next->next)
656 if (next->next == mark)
c906108c 657 {
df407dfe
AC
658 all_values = next->next;
659 next->next = NULL;
c906108c
SS
660 return val;
661 }
662 all_values = 0;
663 return val;
664}
665
666/* Return a copy of the value ARG.
667 It contains the same contents, for same memory address,
668 but it's a different block of storage. */
669
f23631e4
AC
670struct value *
671value_copy (struct value *arg)
c906108c 672{
4754a64e 673 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
674 struct value *val;
675
676 if (value_lazy (arg))
677 val = allocate_value_lazy (encl_type);
678 else
679 val = allocate_value (encl_type);
df407dfe 680 val->type = arg->type;
c906108c 681 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 682 val->location = arg->location;
df407dfe
AC
683 val->offset = arg->offset;
684 val->bitpos = arg->bitpos;
685 val->bitsize = arg->bitsize;
1df6926e 686 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 687 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 688 val->lazy = arg->lazy;
feb13ab0 689 val->optimized_out = arg->optimized_out;
13c3b5f5 690 val->embedded_offset = value_embedded_offset (arg);
b44d461b 691 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 692 val->modifiable = arg->modifiable;
d69fe07e 693 if (!value_lazy (val))
c906108c 694 {
990a07ab 695 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 696 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
697
698 }
5f5233d4
PA
699 if (VALUE_LVAL (val) == lval_computed)
700 {
701 struct lval_funcs *funcs = val->location.computed.funcs;
702
703 if (funcs->copy_closure)
704 val->location.computed.closure = funcs->copy_closure (val);
705 }
c906108c
SS
706 return val;
707}
74bcbdf3
PA
708
709void
710set_value_component_location (struct value *component, struct value *whole)
711{
712 if (VALUE_LVAL (whole) == lval_internalvar)
713 VALUE_LVAL (component) = lval_internalvar_component;
714 else
715 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 716
74bcbdf3 717 component->location = whole->location;
5f5233d4
PA
718 if (VALUE_LVAL (whole) == lval_computed)
719 {
720 struct lval_funcs *funcs = whole->location.computed.funcs;
721
722 if (funcs->copy_closure)
723 component->location.computed.closure = funcs->copy_closure (whole);
724 }
74bcbdf3
PA
725}
726
c906108c
SS
727\f
728/* Access to the value history. */
729
730/* Record a new value in the value history.
731 Returns the absolute history index of the entry.
732 Result of -1 indicates the value was not saved; otherwise it is the
733 value history index of this new item. */
734
735int
f23631e4 736record_latest_value (struct value *val)
c906108c
SS
737{
738 int i;
739
740 /* We don't want this value to have anything to do with the inferior anymore.
741 In particular, "set $1 = 50" should not affect the variable from which
742 the value was taken, and fast watchpoints should be able to assume that
743 a value on the value history never changes. */
d69fe07e 744 if (value_lazy (val))
c906108c
SS
745 value_fetch_lazy (val);
746 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
747 from. This is a bit dubious, because then *&$1 does not just return $1
748 but the current contents of that location. c'est la vie... */
749 val->modifiable = 0;
750 release_value (val);
751
752 /* Here we treat value_history_count as origin-zero
753 and applying to the value being stored now. */
754
755 i = value_history_count % VALUE_HISTORY_CHUNK;
756 if (i == 0)
757 {
f23631e4 758 struct value_history_chunk *new
c5aa993b
JM
759 = (struct value_history_chunk *)
760 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
761 memset (new->values, 0, sizeof new->values);
762 new->next = value_history_chain;
763 value_history_chain = new;
764 }
765
766 value_history_chain->values[i] = val;
767
768 /* Now we regard value_history_count as origin-one
769 and applying to the value just stored. */
770
771 return ++value_history_count;
772}
773
774/* Return a copy of the value in the history with sequence number NUM. */
775
f23631e4 776struct value *
fba45db2 777access_value_history (int num)
c906108c 778{
f23631e4 779 struct value_history_chunk *chunk;
52f0bd74
AC
780 int i;
781 int absnum = num;
c906108c
SS
782
783 if (absnum <= 0)
784 absnum += value_history_count;
785
786 if (absnum <= 0)
787 {
788 if (num == 0)
8a3fe4f8 789 error (_("The history is empty."));
c906108c 790 else if (num == 1)
8a3fe4f8 791 error (_("There is only one value in the history."));
c906108c 792 else
8a3fe4f8 793 error (_("History does not go back to $$%d."), -num);
c906108c
SS
794 }
795 if (absnum > value_history_count)
8a3fe4f8 796 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
797
798 absnum--;
799
800 /* Now absnum is always absolute and origin zero. */
801
802 chunk = value_history_chain;
803 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
804 i > 0; i--)
805 chunk = chunk->next;
806
807 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
808}
809
c906108c 810static void
fba45db2 811show_values (char *num_exp, int from_tty)
c906108c 812{
52f0bd74 813 int i;
f23631e4 814 struct value *val;
c906108c
SS
815 static int num = 1;
816
817 if (num_exp)
818 {
f132ba9d
TJB
819 /* "show values +" should print from the stored position.
820 "show values <exp>" should print around value number <exp>. */
c906108c 821 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 822 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
823 }
824 else
825 {
f132ba9d 826 /* "show values" means print the last 10 values. */
c906108c
SS
827 num = value_history_count - 9;
828 }
829
830 if (num <= 0)
831 num = 1;
832
833 for (i = num; i < num + 10 && i <= value_history_count; i++)
834 {
79a45b7d 835 struct value_print_options opts;
c906108c 836 val = access_value_history (i);
a3f17187 837 printf_filtered (("$%d = "), i);
79a45b7d
TT
838 get_user_print_options (&opts);
839 value_print (val, gdb_stdout, &opts);
a3f17187 840 printf_filtered (("\n"));
c906108c
SS
841 }
842
f132ba9d 843 /* The next "show values +" should start after what we just printed. */
c906108c
SS
844 num += 10;
845
846 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
847 "show values +". If num_exp is null, this is unnecessary, since
848 "show values +" is not useful after "show values". */
c906108c
SS
849 if (from_tty && num_exp)
850 {
851 num_exp[0] = '+';
852 num_exp[1] = '\0';
853 }
854}
855\f
856/* Internal variables. These are variables within the debugger
857 that hold values assigned by debugger commands.
858 The user refers to them with a '$' prefix
859 that does not appear in the variable names stored internally. */
860
861static struct internalvar *internalvars;
862
53e5f3cf
AS
863/* If the variable does not already exist create it and give it the value given.
864 If no value is given then the default is zero. */
865static void
866init_if_undefined_command (char* args, int from_tty)
867{
868 struct internalvar* intvar;
869
870 /* Parse the expression - this is taken from set_command(). */
871 struct expression *expr = parse_expression (args);
872 register struct cleanup *old_chain =
873 make_cleanup (free_current_contents, &expr);
874
875 /* Validate the expression.
876 Was the expression an assignment?
877 Or even an expression at all? */
878 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
879 error (_("Init-if-undefined requires an assignment expression."));
880
881 /* Extract the variable from the parsed expression.
882 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
883 if (expr->elts[1].opcode != OP_INTERNALVAR)
884 error (_("The first parameter to init-if-undefined should be a GDB variable."));
885 intvar = expr->elts[2].internalvar;
886
887 /* Only evaluate the expression if the lvalue is void.
888 This may still fail if the expresssion is invalid. */
889 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
890 evaluate_expression (expr);
891
892 do_cleanups (old_chain);
893}
894
895
c906108c
SS
896/* Look up an internal variable with name NAME. NAME should not
897 normally include a dollar sign.
898
899 If the specified internal variable does not exist,
c4a3d09a 900 the return value is NULL. */
c906108c
SS
901
902struct internalvar *
bc3b79fd 903lookup_only_internalvar (const char *name)
c906108c 904{
52f0bd74 905 struct internalvar *var;
c906108c
SS
906
907 for (var = internalvars; var; var = var->next)
5cb316ef 908 if (strcmp (var->name, name) == 0)
c906108c
SS
909 return var;
910
c4a3d09a
MF
911 return NULL;
912}
913
914
915/* Create an internal variable with name NAME and with a void value.
916 NAME should not normally include a dollar sign. */
917
918struct internalvar *
bc3b79fd 919create_internalvar (const char *name)
c4a3d09a
MF
920{
921 struct internalvar *var;
c906108c 922 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 923 var->name = concat (name, (char *)NULL);
c906108c 924 var->value = allocate_value (builtin_type_void);
0d20ae72 925 var->endian = gdbarch_byte_order (current_gdbarch);
4aa995e1 926 var->make_value = NULL;
bc3b79fd 927 var->canonical = 0;
c906108c
SS
928 release_value (var->value);
929 var->next = internalvars;
930 internalvars = var;
931 return var;
932}
933
4aa995e1
PA
934/* Create an internal variable with name NAME and register FUN as the
935 function that value_of_internalvar uses to create a value whenever
936 this variable is referenced. NAME should not normally include a
937 dollar sign. */
938
939struct internalvar *
940create_internalvar_type_lazy (char *name, internalvar_make_value fun)
941{
942 struct internalvar *var;
943 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
944 var->name = concat (name, (char *)NULL);
945 var->value = NULL;
946 var->make_value = fun;
947 var->endian = gdbarch_byte_order (current_gdbarch);
948 var->next = internalvars;
949 internalvars = var;
950 return var;
951}
c4a3d09a
MF
952
953/* Look up an internal variable with name NAME. NAME should not
954 normally include a dollar sign.
955
956 If the specified internal variable does not exist,
957 one is created, with a void value. */
958
959struct internalvar *
bc3b79fd 960lookup_internalvar (const char *name)
c4a3d09a
MF
961{
962 struct internalvar *var;
963
964 var = lookup_only_internalvar (name);
965 if (var)
966 return var;
967
968 return create_internalvar (name);
969}
970
f23631e4 971struct value *
fba45db2 972value_of_internalvar (struct internalvar *var)
c906108c 973{
f23631e4 974 struct value *val;
d3c139e9
AS
975 int i, j;
976 gdb_byte temp;
c906108c 977
4aa995e1
PA
978 if (var->make_value != NULL)
979 val = (*var->make_value) (var);
5f5233d4
PA
980 else
981 {
4aa995e1
PA
982 val = value_copy (var->value);
983 if (value_lazy (val))
984 value_fetch_lazy (val);
985
986 /* If the variable's value is a computed lvalue, we want
987 references to it to produce another computed lvalue, where
988 referencces and assignments actually operate through the
989 computed value's functions.
990
991 This means that internal variables with computed values
992 behave a little differently from other internal variables:
993 assignments to them don't just replace the previous value
994 altogether. At the moment, this seems like the behavior we
995 want. */
996 if (var->value->lval == lval_computed)
997 VALUE_LVAL (val) = lval_computed;
998 else
999 {
1000 VALUE_LVAL (val) = lval_internalvar;
1001 VALUE_INTERNALVAR (val) = var;
1002 }
5f5233d4 1003 }
d3c139e9
AS
1004
1005 /* Values are always stored in the target's byte order. When connected to a
1006 target this will most likely always be correct, so there's normally no
1007 need to worry about it.
1008
1009 However, internal variables can be set up before the target endian is
1010 known and so may become out of date. Fix it up before anybody sees.
1011
1012 Internal variables usually hold simple scalar values, and we can
1013 correct those. More complex values (e.g. structures and floating
1014 point types) are left alone, because they would be too complicated
1015 to correct. */
1016
0d20ae72 1017 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
1018 {
1019 gdb_byte *array = value_contents_raw (val);
1020 struct type *type = check_typedef (value_enclosing_type (val));
1021 switch (TYPE_CODE (type))
1022 {
1023 case TYPE_CODE_INT:
1024 case TYPE_CODE_PTR:
1025 /* Reverse the bytes. */
1026 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
1027 {
1028 temp = array[j];
1029 array[j] = array[i];
1030 array[i] = temp;
1031 }
1032 break;
1033 }
1034 }
1035
c906108c
SS
1036 return val;
1037}
1038
1039void
fba45db2 1040set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1041 int bitsize, struct value *newval)
c906108c 1042{
fc1a4b47 1043 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 1044
c906108c
SS
1045 if (bitsize)
1046 modify_field (addr, value_as_long (newval),
1047 bitpos, bitsize);
1048 else
0fd88904 1049 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
1050}
1051
1052void
f23631e4 1053set_internalvar (struct internalvar *var, struct value *val)
c906108c 1054{
f23631e4 1055 struct value *newval;
c906108c 1056
bc3b79fd
TJB
1057 if (var->canonical)
1058 error (_("Cannot overwrite convenience function %s"), var->name);
1059
c906108c
SS
1060 newval = value_copy (val);
1061 newval->modifiable = 1;
1062
1063 /* Force the value to be fetched from the target now, to avoid problems
1064 later when this internalvar is referenced and the target is gone or
1065 has changed. */
d69fe07e 1066 if (value_lazy (newval))
c906108c
SS
1067 value_fetch_lazy (newval);
1068
1069 /* Begin code which must not call error(). If var->value points to
1070 something free'd, an error() obviously leaves a dangling pointer.
bc3b79fd 1071 But we also get a dangling pointer if var->value points to
c906108c
SS
1072 something in the value chain (i.e., before release_value is
1073 called), because after the error free_all_values will get called before
1074 long. */
170ce852 1075 value_free (var->value);
c906108c 1076 var->value = newval;
0d20ae72 1077 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
1078 release_value (newval);
1079 /* End code which must not call error(). */
1080}
1081
1082char *
fba45db2 1083internalvar_name (struct internalvar *var)
c906108c
SS
1084{
1085 return var->name;
1086}
1087
bc3b79fd
TJB
1088static struct value *
1089value_create_internal_function (const char *name,
1090 internal_function_fn handler,
1091 void *cookie)
1092{
1093 struct value *result = allocate_value (internal_fn_type);
1094 gdb_byte *addr = value_contents_writeable (result);
1095 struct internal_function **fnp = (struct internal_function **) addr;
1096 struct internal_function *ifn = XNEW (struct internal_function);
1097 ifn->name = xstrdup (name);
1098 ifn->handler = handler;
1099 ifn->cookie = cookie;
1100 *fnp = ifn;
1101 return result;
1102}
1103
1104char *
1105value_internal_function_name (struct value *val)
1106{
1107 gdb_byte *addr = value_contents_writeable (val);
1108 struct internal_function *ifn = * (struct internal_function **) addr;
1109 return ifn->name;
1110}
1111
1112struct value *
1113call_internal_function (struct value *func, int argc, struct value **argv)
1114{
1115 gdb_byte *addr = value_contents_writeable (func);
1116 struct internal_function *ifn = * (struct internal_function **) addr;
1117 return (*ifn->handler) (ifn->cookie, argc, argv);
1118}
1119
1120/* The 'function' command. This does nothing -- it is just a
1121 placeholder to let "help function NAME" work. This is also used as
1122 the implementation of the sub-command that is created when
1123 registering an internal function. */
1124static void
1125function_command (char *command, int from_tty)
1126{
1127 /* Do nothing. */
1128}
1129
1130/* Clean up if an internal function's command is destroyed. */
1131static void
1132function_destroyer (struct cmd_list_element *self, void *ignore)
1133{
1134 xfree (self->name);
1135 xfree (self->doc);
1136}
1137
1138/* Add a new internal function. NAME is the name of the function; DOC
1139 is a documentation string describing the function. HANDLER is
1140 called when the function is invoked. COOKIE is an arbitrary
1141 pointer which is passed to HANDLER and is intended for "user
1142 data". */
1143void
1144add_internal_function (const char *name, const char *doc,
1145 internal_function_fn handler, void *cookie)
1146{
1147 struct cmd_list_element *cmd;
1148 struct internalvar *var = lookup_internalvar (name);
1149 struct value *fnval = value_create_internal_function (name, handler, cookie);
1150 set_internalvar (var, fnval);
1151 var->canonical = 1;
1152
1153 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1154 &functionlist);
1155 cmd->destroyer = function_destroyer;
1156}
1157
ae5a43e0
DJ
1158/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1159 prevent cycles / duplicates. */
1160
1161static void
1162preserve_one_value (struct value *value, struct objfile *objfile,
1163 htab_t copied_types)
1164{
1165 if (TYPE_OBJFILE (value->type) == objfile)
1166 value->type = copy_type_recursive (objfile, value->type, copied_types);
1167
1168 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1169 value->enclosing_type = copy_type_recursive (objfile,
1170 value->enclosing_type,
1171 copied_types);
1172}
1173
1174/* Update the internal variables and value history when OBJFILE is
1175 discarded; we must copy the types out of the objfile. New global types
1176 will be created for every convenience variable which currently points to
1177 this objfile's types, and the convenience variables will be adjusted to
1178 use the new global types. */
c906108c
SS
1179
1180void
ae5a43e0 1181preserve_values (struct objfile *objfile)
c906108c 1182{
ae5a43e0
DJ
1183 htab_t copied_types;
1184 struct value_history_chunk *cur;
52f0bd74 1185 struct internalvar *var;
a08702d6 1186 struct value *val;
ae5a43e0 1187 int i;
c906108c 1188
ae5a43e0
DJ
1189 /* Create the hash table. We allocate on the objfile's obstack, since
1190 it is soon to be deleted. */
1191 copied_types = create_copied_types_hash (objfile);
1192
1193 for (cur = value_history_chain; cur; cur = cur->next)
1194 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1195 if (cur->values[i])
1196 preserve_one_value (cur->values[i], objfile, copied_types);
1197
1198 for (var = internalvars; var; var = var->next)
4aa995e1
PA
1199 if (var->value)
1200 preserve_one_value (var->value, objfile, copied_types);
ae5a43e0 1201
a08702d6
TJB
1202 for (val = values_in_python; val; val = val->next)
1203 preserve_one_value (val, objfile, copied_types);
1204
ae5a43e0 1205 htab_delete (copied_types);
c906108c
SS
1206}
1207
1208static void
fba45db2 1209show_convenience (char *ignore, int from_tty)
c906108c 1210{
52f0bd74 1211 struct internalvar *var;
c906108c 1212 int varseen = 0;
79a45b7d 1213 struct value_print_options opts;
c906108c 1214
79a45b7d 1215 get_user_print_options (&opts);
c906108c
SS
1216 for (var = internalvars; var; var = var->next)
1217 {
c906108c
SS
1218 if (!varseen)
1219 {
1220 varseen = 1;
1221 }
a3f17187 1222 printf_filtered (("$%s = "), var->name);
d3c139e9 1223 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 1224 &opts);
a3f17187 1225 printf_filtered (("\n"));
c906108c
SS
1226 }
1227 if (!varseen)
a3f17187
AC
1228 printf_unfiltered (_("\
1229No debugger convenience variables now defined.\n\
c906108c 1230Convenience variables have names starting with \"$\";\n\
a3f17187 1231use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1232}
1233\f
1234/* Extract a value as a C number (either long or double).
1235 Knows how to convert fixed values to double, or
1236 floating values to long.
1237 Does not deallocate the value. */
1238
1239LONGEST
f23631e4 1240value_as_long (struct value *val)
c906108c
SS
1241{
1242 /* This coerces arrays and functions, which is necessary (e.g.
1243 in disassemble_command). It also dereferences references, which
1244 I suspect is the most logical thing to do. */
994b9211 1245 val = coerce_array (val);
0fd88904 1246 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1247}
1248
1249DOUBLEST
f23631e4 1250value_as_double (struct value *val)
c906108c
SS
1251{
1252 DOUBLEST foo;
1253 int inv;
c5aa993b 1254
0fd88904 1255 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1256 if (inv)
8a3fe4f8 1257 error (_("Invalid floating value found in program."));
c906108c
SS
1258 return foo;
1259}
4ef30785 1260
4478b372
JB
1261/* Extract a value as a C pointer. Does not deallocate the value.
1262 Note that val's type may not actually be a pointer; value_as_long
1263 handles all the cases. */
c906108c 1264CORE_ADDR
f23631e4 1265value_as_address (struct value *val)
c906108c
SS
1266{
1267 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1268 whether we want this to be true eventually. */
1269#if 0
bf6ae464 1270 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1271 non-address (e.g. argument to "signal", "info break", etc.), or
1272 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1273 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1274#else
f312f057
JB
1275
1276 /* There are several targets (IA-64, PowerPC, and others) which
1277 don't represent pointers to functions as simply the address of
1278 the function's entry point. For example, on the IA-64, a
1279 function pointer points to a two-word descriptor, generated by
1280 the linker, which contains the function's entry point, and the
1281 value the IA-64 "global pointer" register should have --- to
1282 support position-independent code. The linker generates
1283 descriptors only for those functions whose addresses are taken.
1284
1285 On such targets, it's difficult for GDB to convert an arbitrary
1286 function address into a function pointer; it has to either find
1287 an existing descriptor for that function, or call malloc and
1288 build its own. On some targets, it is impossible for GDB to
1289 build a descriptor at all: the descriptor must contain a jump
1290 instruction; data memory cannot be executed; and code memory
1291 cannot be modified.
1292
1293 Upon entry to this function, if VAL is a value of type `function'
1294 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1295 VALUE_ADDRESS (val) is the address of the function. This is what
1296 you'll get if you evaluate an expression like `main'. The call
1297 to COERCE_ARRAY below actually does all the usual unary
1298 conversions, which includes converting values of type `function'
1299 to `pointer to function'. This is the challenging conversion
1300 discussed above. Then, `unpack_long' will convert that pointer
1301 back into an address.
1302
1303 So, suppose the user types `disassemble foo' on an architecture
1304 with a strange function pointer representation, on which GDB
1305 cannot build its own descriptors, and suppose further that `foo'
1306 has no linker-built descriptor. The address->pointer conversion
1307 will signal an error and prevent the command from running, even
1308 though the next step would have been to convert the pointer
1309 directly back into the same address.
1310
1311 The following shortcut avoids this whole mess. If VAL is a
1312 function, just return its address directly. */
df407dfe
AC
1313 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1314 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
1315 return VALUE_ADDRESS (val);
1316
994b9211 1317 val = coerce_array (val);
fc0c74b1
AC
1318
1319 /* Some architectures (e.g. Harvard), map instruction and data
1320 addresses onto a single large unified address space. For
1321 instance: An architecture may consider a large integer in the
1322 range 0x10000000 .. 0x1000ffff to already represent a data
1323 addresses (hence not need a pointer to address conversion) while
1324 a small integer would still need to be converted integer to
1325 pointer to address. Just assume such architectures handle all
1326 integer conversions in a single function. */
1327
1328 /* JimB writes:
1329
1330 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1331 must admonish GDB hackers to make sure its behavior matches the
1332 compiler's, whenever possible.
1333
1334 In general, I think GDB should evaluate expressions the same way
1335 the compiler does. When the user copies an expression out of
1336 their source code and hands it to a `print' command, they should
1337 get the same value the compiler would have computed. Any
1338 deviation from this rule can cause major confusion and annoyance,
1339 and needs to be justified carefully. In other words, GDB doesn't
1340 really have the freedom to do these conversions in clever and
1341 useful ways.
1342
1343 AndrewC pointed out that users aren't complaining about how GDB
1344 casts integers to pointers; they are complaining that they can't
1345 take an address from a disassembly listing and give it to `x/i'.
1346 This is certainly important.
1347
79dd2d24 1348 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1349 makes it possible for GDB to "get it right" in all circumstances
1350 --- the target has complete control over how things get done, so
1351 people can Do The Right Thing for their target without breaking
1352 anyone else. The standard doesn't specify how integers get
1353 converted to pointers; usually, the ABI doesn't either, but
1354 ABI-specific code is a more reasonable place to handle it. */
1355
df407dfe
AC
1356 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1357 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1358 && gdbarch_integer_to_address_p (current_gdbarch))
1359 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1360 value_contents (val));
fc0c74b1 1361
0fd88904 1362 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1363#endif
1364}
1365\f
1366/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1367 as a long, or as a double, assuming the raw data is described
1368 by type TYPE. Knows how to convert different sizes of values
1369 and can convert between fixed and floating point. We don't assume
1370 any alignment for the raw data. Return value is in host byte order.
1371
1372 If you want functions and arrays to be coerced to pointers, and
1373 references to be dereferenced, call value_as_long() instead.
1374
1375 C++: It is assumed that the front-end has taken care of
1376 all matters concerning pointers to members. A pointer
1377 to member which reaches here is considered to be equivalent
1378 to an INT (or some size). After all, it is only an offset. */
1379
1380LONGEST
fc1a4b47 1381unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1382{
52f0bd74
AC
1383 enum type_code code = TYPE_CODE (type);
1384 int len = TYPE_LENGTH (type);
1385 int nosign = TYPE_UNSIGNED (type);
c906108c 1386
c906108c
SS
1387 switch (code)
1388 {
1389 case TYPE_CODE_TYPEDEF:
1390 return unpack_long (check_typedef (type), valaddr);
1391 case TYPE_CODE_ENUM:
4f2aea11 1392 case TYPE_CODE_FLAGS:
c906108c
SS
1393 case TYPE_CODE_BOOL:
1394 case TYPE_CODE_INT:
1395 case TYPE_CODE_CHAR:
1396 case TYPE_CODE_RANGE:
0d5de010 1397 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1398 if (nosign)
1399 return extract_unsigned_integer (valaddr, len);
1400 else
1401 return extract_signed_integer (valaddr, len);
1402
1403 case TYPE_CODE_FLT:
96d2f608 1404 return extract_typed_floating (valaddr, type);
c906108c 1405
4ef30785
TJB
1406 case TYPE_CODE_DECFLOAT:
1407 /* libdecnumber has a function to convert from decimal to integer, but
1408 it doesn't work when the decimal number has a fractional part. */
ba759613 1409 return decimal_to_doublest (valaddr, len);
4ef30785 1410
c906108c
SS
1411 case TYPE_CODE_PTR:
1412 case TYPE_CODE_REF:
1413 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1414 whether we want this to be true eventually. */
4478b372 1415 return extract_typed_address (valaddr, type);
c906108c 1416
c906108c 1417 default:
8a3fe4f8 1418 error (_("Value can't be converted to integer."));
c906108c 1419 }
c5aa993b 1420 return 0; /* Placate lint. */
c906108c
SS
1421}
1422
1423/* Return a double value from the specified type and address.
1424 INVP points to an int which is set to 0 for valid value,
1425 1 for invalid value (bad float format). In either case,
1426 the returned double is OK to use. Argument is in target
1427 format, result is in host format. */
1428
1429DOUBLEST
fc1a4b47 1430unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1431{
1432 enum type_code code;
1433 int len;
1434 int nosign;
1435
1436 *invp = 0; /* Assume valid. */
1437 CHECK_TYPEDEF (type);
1438 code = TYPE_CODE (type);
1439 len = TYPE_LENGTH (type);
1440 nosign = TYPE_UNSIGNED (type);
1441 if (code == TYPE_CODE_FLT)
1442 {
75bc7ddf
AC
1443 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1444 floating-point value was valid (using the macro
1445 INVALID_FLOAT). That test/macro have been removed.
1446
1447 It turns out that only the VAX defined this macro and then
1448 only in a non-portable way. Fixing the portability problem
1449 wouldn't help since the VAX floating-point code is also badly
1450 bit-rotten. The target needs to add definitions for the
ea06eb3d 1451 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1452 exactly describe the target floating-point format. The
1453 problem here is that the corresponding floatformat_vax_f and
1454 floatformat_vax_d values these methods should be set to are
1455 also not defined either. Oops!
1456
1457 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1458 definitions and the new cases for floatformat_is_valid (). */
1459
1460 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1461 {
1462 *invp = 1;
1463 return 0.0;
1464 }
1465
96d2f608 1466 return extract_typed_floating (valaddr, type);
c906108c 1467 }
4ef30785 1468 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1469 return decimal_to_doublest (valaddr, len);
c906108c
SS
1470 else if (nosign)
1471 {
1472 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1473 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1474 }
1475 else
1476 {
1477 /* Signed -- we are OK with unpack_long. */
1478 return unpack_long (type, valaddr);
1479 }
1480}
1481
1482/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1483 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1484 We don't assume any alignment for the raw data. Return value is in
1485 host byte order.
1486
1487 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1488 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1489
1490 C++: It is assumed that the front-end has taken care of
1491 all matters concerning pointers to members. A pointer
1492 to member which reaches here is considered to be equivalent
1493 to an INT (or some size). After all, it is only an offset. */
1494
1495CORE_ADDR
fc1a4b47 1496unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1497{
1498 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1499 whether we want this to be true eventually. */
1500 return unpack_long (type, valaddr);
1501}
4478b372 1502
c906108c 1503\f
2c2738a0
DC
1504/* Get the value of the FIELDN'th field (which must be static) of
1505 TYPE. Return NULL if the field doesn't exist or has been
1506 optimized out. */
c906108c 1507
f23631e4 1508struct value *
fba45db2 1509value_static_field (struct type *type, int fieldno)
c906108c 1510{
948e66d9
DJ
1511 struct value *retval;
1512
d6a843b5 1513 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1514 {
948e66d9 1515 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1516 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1517 }
1518 else
1519 {
1520 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1521 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1522 if (sym == NULL)
c906108c
SS
1523 {
1524 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1525 as non-debuggable symbols */
1526 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1527 if (!msym)
1528 return NULL;
1529 else
c5aa993b 1530 {
948e66d9 1531 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1532 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1533 }
1534 }
1535 else
1536 {
948e66d9
DJ
1537 /* SYM should never have a SYMBOL_CLASS which will require
1538 read_var_value to use the FRAME parameter. */
1539 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1540 warning (_("static field's value depends on the current "
1541 "frame - bad debug info?"));
948e66d9 1542 retval = read_var_value (sym, NULL);
2b127877 1543 }
948e66d9
DJ
1544 if (retval && VALUE_LVAL (retval) == lval_memory)
1545 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1546 VALUE_ADDRESS (retval));
c906108c 1547 }
948e66d9 1548 return retval;
c906108c
SS
1549}
1550
2b127877
DB
1551/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1552 You have to be careful here, since the size of the data area for the value
1553 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1554 than the old enclosing type, you have to allocate more space for the data.
1555 The return value is a pointer to the new version of this value structure. */
1556
f23631e4
AC
1557struct value *
1558value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1559{
3e3d7139
JG
1560 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1561 val->contents =
1562 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1563
1564 val->enclosing_type = new_encl_type;
1565 return val;
2b127877
DB
1566}
1567
c906108c
SS
1568/* Given a value ARG1 (offset by OFFSET bytes)
1569 of a struct or union type ARG_TYPE,
1570 extract and return the value of one of its (non-static) fields.
1571 FIELDNO says which field. */
1572
f23631e4
AC
1573struct value *
1574value_primitive_field (struct value *arg1, int offset,
aa1ee363 1575 int fieldno, struct type *arg_type)
c906108c 1576{
f23631e4 1577 struct value *v;
52f0bd74 1578 struct type *type;
c906108c
SS
1579
1580 CHECK_TYPEDEF (arg_type);
1581 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1582
1583 /* Handle packed fields */
1584
1585 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1586 {
1587 v = value_from_longest (type,
1588 unpack_field_as_long (arg_type,
0fd88904 1589 value_contents (arg1)
c5aa993b 1590 + offset,
c906108c 1591 fieldno));
df407dfe
AC
1592 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1593 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1594 v->offset = value_offset (arg1) + offset
2e70b7b9 1595 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1596 }
1597 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1598 {
1599 /* This field is actually a base subobject, so preserve the
1600 entire object's contents for later references to virtual
1601 bases, etc. */
a4e2ee12
DJ
1602
1603 /* Lazy register values with offsets are not supported. */
1604 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1605 value_fetch_lazy (arg1);
1606
1607 if (value_lazy (arg1))
3e3d7139 1608 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1609 else
3e3d7139
JG
1610 {
1611 v = allocate_value (value_enclosing_type (arg1));
1612 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1613 TYPE_LENGTH (value_enclosing_type (arg1)));
1614 }
1615 v->type = type;
df407dfe 1616 v->offset = value_offset (arg1);
13c3b5f5
AC
1617 v->embedded_offset = (offset + value_embedded_offset (arg1)
1618 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1619 }
1620 else
1621 {
1622 /* Plain old data member */
1623 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1624
1625 /* Lazy register values with offsets are not supported. */
1626 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1627 value_fetch_lazy (arg1);
1628
1629 if (value_lazy (arg1))
3e3d7139 1630 v = allocate_value_lazy (type);
c906108c 1631 else
3e3d7139
JG
1632 {
1633 v = allocate_value (type);
1634 memcpy (value_contents_raw (v),
1635 value_contents_raw (arg1) + offset,
1636 TYPE_LENGTH (type));
1637 }
df407dfe 1638 v->offset = (value_offset (arg1) + offset
13c3b5f5 1639 + value_embedded_offset (arg1));
c906108c 1640 }
74bcbdf3 1641 set_value_component_location (v, arg1);
9ee8fc9d 1642 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1643 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1644 return v;
1645}
1646
1647/* Given a value ARG1 of a struct or union type,
1648 extract and return the value of one of its (non-static) fields.
1649 FIELDNO says which field. */
1650
f23631e4 1651struct value *
aa1ee363 1652value_field (struct value *arg1, int fieldno)
c906108c 1653{
df407dfe 1654 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1655}
1656
1657/* Return a non-virtual function as a value.
1658 F is the list of member functions which contains the desired method.
0478d61c
FF
1659 J is an index into F which provides the desired method.
1660
1661 We only use the symbol for its address, so be happy with either a
1662 full symbol or a minimal symbol.
1663 */
c906108c 1664
f23631e4
AC
1665struct value *
1666value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1667 int offset)
c906108c 1668{
f23631e4 1669 struct value *v;
52f0bd74 1670 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1671 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1672 struct symbol *sym;
0478d61c 1673 struct minimal_symbol *msym;
c906108c 1674
2570f2b7 1675 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1676 if (sym != NULL)
0478d61c 1677 {
5ae326fa
AC
1678 msym = NULL;
1679 }
1680 else
1681 {
1682 gdb_assert (sym == NULL);
0478d61c 1683 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1684 if (msym == NULL)
1685 return NULL;
0478d61c
FF
1686 }
1687
c906108c 1688 v = allocate_value (ftype);
0478d61c
FF
1689 if (sym)
1690 {
1691 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1692 }
1693 else
1694 {
bccdca4a
UW
1695 /* The minimal symbol might point to a function descriptor;
1696 resolve it to the actual code address instead. */
1697 struct objfile *objfile = msymbol_objfile (msym);
1698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1699
1700 VALUE_ADDRESS (v)
1701 = gdbarch_convert_from_func_ptr_addr
1702 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
0478d61c 1703 }
c906108c
SS
1704
1705 if (arg1p)
c5aa993b 1706 {
df407dfe 1707 if (type != value_type (*arg1p))
c5aa993b
JM
1708 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1709 value_addr (*arg1p)));
1710
070ad9f0 1711 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1712 VALUE_OFFSET (*arg1p) += offset;
1713 */
c906108c
SS
1714 }
1715
1716 return v;
1717}
1718
c906108c
SS
1719\f
1720/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1721 VALADDR.
1722
1723 Extracting bits depends on endianness of the machine. Compute the
1724 number of least significant bits to discard. For big endian machines,
1725 we compute the total number of bits in the anonymous object, subtract
1726 off the bit count from the MSB of the object to the MSB of the
1727 bitfield, then the size of the bitfield, which leaves the LSB discard
1728 count. For little endian machines, the discard count is simply the
1729 number of bits from the LSB of the anonymous object to the LSB of the
1730 bitfield.
1731
1732 If the field is signed, we also do sign extension. */
1733
1734LONGEST
fc1a4b47 1735unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1736{
1737 ULONGEST val;
1738 ULONGEST valmask;
1739 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1740 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1741 int lsbcount;
1742 struct type *field_type;
1743
1744 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1745 field_type = TYPE_FIELD_TYPE (type, fieldno);
1746 CHECK_TYPEDEF (field_type);
1747
1748 /* Extract bits. See comment above. */
1749
32c9a795 1750 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1751 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1752 else
1753 lsbcount = (bitpos % 8);
1754 val >>= lsbcount;
1755
1756 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1757 If the field is signed, and is negative, then sign extend. */
1758
1759 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1760 {
1761 valmask = (((ULONGEST) 1) << bitsize) - 1;
1762 val &= valmask;
1763 if (!TYPE_UNSIGNED (field_type))
1764 {
1765 if (val & (valmask ^ (valmask >> 1)))
1766 {
1767 val |= ~valmask;
1768 }
1769 }
1770 }
1771 return (val);
1772}
1773
1774/* Modify the value of a bitfield. ADDR points to a block of memory in
1775 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1776 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1777 indicate which bits (in target bit order) comprise the bitfield.
1778 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1779 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1780
1781void
fc1a4b47 1782modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1783{
f4e88c8e
PH
1784 ULONGEST oword;
1785 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1786
1787 /* If a negative fieldval fits in the field in question, chop
1788 off the sign extension bits. */
f4e88c8e
PH
1789 if ((~fieldval & ~(mask >> 1)) == 0)
1790 fieldval &= mask;
c906108c
SS
1791
1792 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1793 if (0 != (fieldval & ~mask))
c906108c
SS
1794 {
1795 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1796 we don't have a sprintf_longest. */
8a3fe4f8 1797 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1798
1799 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1800 fieldval &= mask;
c906108c
SS
1801 }
1802
f4e88c8e 1803 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1804
1805 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1806 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1807 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1808
f4e88c8e 1809 oword &= ~(mask << bitpos);
c906108c
SS
1810 oword |= fieldval << bitpos;
1811
f4e88c8e 1812 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1813}
1814\f
14d06750 1815/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1816
14d06750
DJ
1817void
1818pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1819{
52f0bd74 1820 int len;
14d06750
DJ
1821
1822 type = check_typedef (type);
c906108c
SS
1823 len = TYPE_LENGTH (type);
1824
14d06750 1825 switch (TYPE_CODE (type))
c906108c 1826 {
c906108c
SS
1827 case TYPE_CODE_INT:
1828 case TYPE_CODE_CHAR:
1829 case TYPE_CODE_ENUM:
4f2aea11 1830 case TYPE_CODE_FLAGS:
c906108c
SS
1831 case TYPE_CODE_BOOL:
1832 case TYPE_CODE_RANGE:
0d5de010 1833 case TYPE_CODE_MEMBERPTR:
14d06750 1834 store_signed_integer (buf, len, num);
c906108c 1835 break;
c5aa993b 1836
c906108c
SS
1837 case TYPE_CODE_REF:
1838 case TYPE_CODE_PTR:
14d06750 1839 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1840 break;
c5aa993b 1841
c906108c 1842 default:
14d06750
DJ
1843 error (_("Unexpected type (%d) encountered for integer constant."),
1844 TYPE_CODE (type));
c906108c 1845 }
14d06750
DJ
1846}
1847
1848
1849/* Convert C numbers into newly allocated values. */
1850
1851struct value *
1852value_from_longest (struct type *type, LONGEST num)
1853{
1854 struct value *val = allocate_value (type);
1855
1856 pack_long (value_contents_raw (val), type, num);
1857
c906108c
SS
1858 return val;
1859}
1860
4478b372
JB
1861
1862/* Create a value representing a pointer of type TYPE to the address
1863 ADDR. */
f23631e4 1864struct value *
4478b372
JB
1865value_from_pointer (struct type *type, CORE_ADDR addr)
1866{
f23631e4 1867 struct value *val = allocate_value (type);
990a07ab 1868 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1869 return val;
1870}
1871
1872
0f71a2f6 1873/* Create a value for a string constant to be stored locally
070ad9f0 1874 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1875 This is analogous to value_from_longest, which also does not
1876 use inferior memory. String shall NOT contain embedded nulls. */
1877
f23631e4 1878struct value *
fba45db2 1879value_from_string (char *ptr)
0f71a2f6 1880{
f23631e4 1881 struct value *val;
c5aa993b 1882 int len = strlen (ptr);
0f71a2f6 1883 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1884 struct type *string_char_type;
1885 struct type *rangetype;
1886 struct type *stringtype;
1887
1888 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 1889 builtin_type_int32,
f290d38e
AC
1890 lowbound, len + lowbound - 1);
1891 string_char_type = language_string_char_type (current_language,
1892 current_gdbarch);
1893 stringtype = create_array_type ((struct type *) NULL,
1894 string_char_type,
1895 rangetype);
0f71a2f6 1896 val = allocate_value (stringtype);
990a07ab 1897 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1898 return val;
1899}
1900
8acb6b92
TT
1901/* Create a value of type TYPE whose contents come from VALADDR, if it
1902 is non-null, and whose memory address (in the inferior) is
1903 ADDRESS. */
1904
1905struct value *
1906value_from_contents_and_address (struct type *type,
1907 const gdb_byte *valaddr,
1908 CORE_ADDR address)
1909{
1910 struct value *v = allocate_value (type);
1911 if (valaddr == NULL)
1912 set_value_lazy (v, 1);
1913 else
1914 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1915 VALUE_ADDRESS (v) = address;
33d502b4 1916 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
1917 return v;
1918}
1919
f23631e4 1920struct value *
fba45db2 1921value_from_double (struct type *type, DOUBLEST num)
c906108c 1922{
f23631e4 1923 struct value *val = allocate_value (type);
c906108c 1924 struct type *base_type = check_typedef (type);
52f0bd74
AC
1925 enum type_code code = TYPE_CODE (base_type);
1926 int len = TYPE_LENGTH (base_type);
c906108c
SS
1927
1928 if (code == TYPE_CODE_FLT)
1929 {
990a07ab 1930 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1931 }
1932 else
8a3fe4f8 1933 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1934
1935 return val;
1936}
994b9211 1937
27bc4d80 1938struct value *
4ef30785 1939value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
1940{
1941 struct value *val = allocate_value (type);
27bc4d80 1942
4ef30785 1943 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 1944
27bc4d80
TJB
1945 return val;
1946}
1947
994b9211
AC
1948struct value *
1949coerce_ref (struct value *arg)
1950{
df407dfe 1951 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1952 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1953 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1954 unpack_pointer (value_type (arg),
0fd88904 1955 value_contents (arg)));
994b9211
AC
1956 return arg;
1957}
1958
1959struct value *
1960coerce_array (struct value *arg)
1961{
f3134b88
TT
1962 struct type *type;
1963
994b9211 1964 arg = coerce_ref (arg);
f3134b88
TT
1965 type = check_typedef (value_type (arg));
1966
1967 switch (TYPE_CODE (type))
1968 {
1969 case TYPE_CODE_ARRAY:
1970 if (current_language->c_style_arrays)
1971 arg = value_coerce_array (arg);
1972 break;
1973 case TYPE_CODE_FUNC:
1974 arg = value_coerce_function (arg);
1975 break;
1976 }
994b9211
AC
1977 return arg;
1978}
c906108c 1979\f
c906108c 1980
48436ce6
AC
1981/* Return true if the function returning the specified type is using
1982 the convention of returning structures in memory (passing in the
82585c72 1983 address as a hidden first parameter). */
c906108c
SS
1984
1985int
c055b101 1986using_struct_return (struct type *func_type, struct type *value_type)
c906108c 1987{
52f0bd74 1988 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1989
1990 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1991 error (_("Function return type unknown."));
c906108c 1992
667e784f
AC
1993 if (code == TYPE_CODE_VOID)
1994 /* A void return value is never in memory. See also corresponding
44e5158b 1995 code in "print_return_value". */
667e784f
AC
1996 return 0;
1997
92ad9cd9 1998 /* Probe the architecture for the return-value convention. */
c055b101 1999 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 2000 NULL, NULL, NULL)
31db7b6c 2001 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2002}
2003
42be36b3
CT
2004/* Set the initialized field in a value struct. */
2005
2006void
2007set_value_initialized (struct value *val, int status)
2008{
2009 val->initialized = status;
2010}
2011
2012/* Return the initialized field in a value struct. */
2013
2014int
2015value_initialized (struct value *val)
2016{
2017 return val->initialized;
2018}
2019
c906108c 2020void
fba45db2 2021_initialize_values (void)
c906108c 2022{
1a966eab
AC
2023 add_cmd ("convenience", no_class, show_convenience, _("\
2024Debugger convenience (\"$foo\") variables.\n\
c906108c 2025These variables are created when you assign them values;\n\
1a966eab
AC
2026thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2027\n\
c906108c
SS
2028A few convenience variables are given values automatically:\n\
2029\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2030\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2031 &showlist);
2032
2033 add_cmd ("values", no_class, show_values,
1a966eab 2034 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2035 &showlist);
53e5f3cf
AS
2036
2037 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2038Initialize a convenience variable if necessary.\n\
2039init-if-undefined VARIABLE = EXPRESSION\n\
2040Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2041exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2042VARIABLE is already initialized."));
bc3b79fd
TJB
2043
2044 add_prefix_cmd ("function", no_class, function_command, _("\
2045Placeholder command for showing help on convenience functions."),
2046 &functionlist, "function ", 0, &cmdlist);
2047
2048 internal_fn_type = alloc_type (NULL);
2049 TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION;
2050 TYPE_LENGTH (internal_fn_type) = sizeof (struct internal_function *);
2051 TYPE_NAME (internal_fn_type) = "<internal function>";
c906108c 2052}
This page took 1.239885 seconds and 4 git commands to generate.