Update comment for struct type's length field, introduce type_length_units
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
4e07d55f 343int
bdf22206 344value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
345{
346 gdb_assert (!value->lazy);
347
348 return !ranges_contain (value->unavailable, offset, length);
349}
350
bdf22206
AB
351int
352value_bytes_available (const struct value *value, int offset, int length)
353{
354 return value_bits_available (value,
355 offset * TARGET_CHAR_BIT,
356 length * TARGET_CHAR_BIT);
357}
358
9a0dc9e3
PA
359int
360value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
361{
362 gdb_assert (!value->lazy);
363
364 return ranges_contain (value->optimized_out, bit_offset, bit_length);
365}
366
ec0a52e1
PA
367int
368value_entirely_available (struct value *value)
369{
370 /* We can only tell whether the whole value is available when we try
371 to read it. */
372 if (value->lazy)
373 value_fetch_lazy (value);
374
375 if (VEC_empty (range_s, value->unavailable))
376 return 1;
377 return 0;
378}
379
9a0dc9e3
PA
380/* Returns true if VALUE is entirely covered by RANGES. If the value
381 is lazy, it'll be read now. Note that RANGE is a pointer to
382 pointer because reading the value might change *RANGE. */
383
384static int
385value_entirely_covered_by_range_vector (struct value *value,
386 VEC(range_s) **ranges)
6211c335 387{
9a0dc9e3
PA
388 /* We can only tell whether the whole value is optimized out /
389 unavailable when we try to read it. */
6211c335
YQ
390 if (value->lazy)
391 value_fetch_lazy (value);
392
9a0dc9e3 393 if (VEC_length (range_s, *ranges) == 1)
6211c335 394 {
9a0dc9e3 395 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
396
397 if (t->offset == 0
64c46ce4
JB
398 && t->length == (TARGET_CHAR_BIT
399 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
400 return 1;
401 }
402
403 return 0;
404}
405
9a0dc9e3
PA
406int
407value_entirely_unavailable (struct value *value)
408{
409 return value_entirely_covered_by_range_vector (value, &value->unavailable);
410}
411
412int
413value_entirely_optimized_out (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
416}
417
418/* Insert into the vector pointed to by VECTORP the bit range starting of
419 OFFSET bits, and extending for the next LENGTH bits. */
420
421static void
422insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
423{
424 range_s newr;
425 int i;
426
427 /* Insert the range sorted. If there's overlap or the new range
428 would be contiguous with an existing range, merge. */
429
430 newr.offset = offset;
431 newr.length = length;
432
433 /* Do a binary search for the position the given range would be
434 inserted if we only considered the starting OFFSET of ranges.
435 Call that position I. Since we also have LENGTH to care for
436 (this is a range afterall), we need to check if the _previous_
437 range overlaps the I range. E.g., calling R the new range:
438
439 #1 - overlaps with previous
440
441 R
442 |-...-|
443 |---| |---| |------| ... |--|
444 0 1 2 N
445
446 I=1
447
448 In the case #1 above, the binary search would return `I=1',
449 meaning, this OFFSET should be inserted at position 1, and the
450 current position 1 should be pushed further (and become 2). But,
451 note that `0' overlaps with R, so we want to merge them.
452
453 A similar consideration needs to be taken if the new range would
454 be contiguous with the previous range:
455
456 #2 - contiguous with previous
457
458 R
459 |-...-|
460 |--| |---| |------| ... |--|
461 0 1 2 N
462
463 I=1
464
465 If there's no overlap with the previous range, as in:
466
467 #3 - not overlapping and not contiguous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 or if I is 0:
477
478 #4 - R is the range with lowest offset
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=0
486
487 ... we just push the new range to I.
488
489 All the 4 cases above need to consider that the new range may
490 also overlap several of the ranges that follow, or that R may be
491 contiguous with the following range, and merge. E.g.,
492
493 #5 - overlapping following ranges
494
495 R
496 |------------------------|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=0
501
502 or:
503
504 R
505 |-------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=1
510
511 */
512
9a0dc9e3 513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
514 if (i > 0)
515 {
9a0dc9e3 516 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
517
518 if (ranges_overlap (bef->offset, bef->length, offset, length))
519 {
520 /* #1 */
521 ULONGEST l = min (bef->offset, offset);
522 ULONGEST h = max (bef->offset + bef->length, offset + length);
523
524 bef->offset = l;
525 bef->length = h - l;
526 i--;
527 }
528 else if (offset == bef->offset + bef->length)
529 {
530 /* #2 */
531 bef->length += length;
532 i--;
533 }
534 else
535 {
536 /* #3 */
9a0dc9e3 537 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
538 }
539 }
540 else
541 {
542 /* #4 */
9a0dc9e3 543 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
544 }
545
546 /* Check whether the ranges following the one we've just added or
547 touched can be folded in (#5 above). */
9a0dc9e3 548 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
549 {
550 struct range *t;
551 struct range *r;
552 int removed = 0;
553 int next = i + 1;
554
555 /* Get the range we just touched. */
9a0dc9e3 556 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
557 removed = 0;
558
559 i = next;
9a0dc9e3 560 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
561 if (r->offset <= t->offset + t->length)
562 {
563 ULONGEST l, h;
564
565 l = min (t->offset, r->offset);
566 h = max (t->offset + t->length, r->offset + r->length);
567
568 t->offset = l;
569 t->length = h - l;
570
571 removed++;
572 }
573 else
574 {
575 /* If we couldn't merge this one, we won't be able to
576 merge following ones either, since the ranges are
577 always sorted by OFFSET. */
578 break;
579 }
580
581 if (removed != 0)
9a0dc9e3 582 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
583 }
584}
585
9a0dc9e3
PA
586void
587mark_value_bits_unavailable (struct value *value, int offset, int length)
588{
589 insert_into_bit_range_vector (&value->unavailable, offset, length);
590}
591
bdf22206
AB
592void
593mark_value_bytes_unavailable (struct value *value, int offset, int length)
594{
595 mark_value_bits_unavailable (value,
596 offset * TARGET_CHAR_BIT,
597 length * TARGET_CHAR_BIT);
598}
599
c8c1c22f
PA
600/* Find the first range in RANGES that overlaps the range defined by
601 OFFSET and LENGTH, starting at element POS in the RANGES vector,
602 Returns the index into RANGES where such overlapping range was
603 found, or -1 if none was found. */
604
605static int
606find_first_range_overlap (VEC(range_s) *ranges, int pos,
607 int offset, int length)
608{
609 range_s *r;
610 int i;
611
612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
613 if (ranges_overlap (r->offset, r->length, offset, length))
614 return i;
615
616 return -1;
617}
618
bdf22206
AB
619/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
621 return non-zero.
622
623 It must always be the case that:
624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
625
626 It is assumed that memory can be accessed from:
627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
628 to:
629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
630 / TARGET_CHAR_BIT) */
631static int
632memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
633 const gdb_byte *ptr2, size_t offset2_bits,
634 size_t length_bits)
635{
636 gdb_assert (offset1_bits % TARGET_CHAR_BIT
637 == offset2_bits % TARGET_CHAR_BIT);
638
639 if (offset1_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 gdb_byte mask, b1, b2;
643
644 /* The offset from the base pointers PTR1 and PTR2 is not a complete
645 number of bytes. A number of bits up to either the next exact
646 byte boundary, or LENGTH_BITS (which ever is sooner) will be
647 compared. */
648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
650 mask = (1 << bits) - 1;
651
652 if (length_bits < bits)
653 {
654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
655 bits = length_bits;
656 }
657
658 /* Now load the two bytes and mask off the bits we care about. */
659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
661
662 if (b1 != b2)
663 return 1;
664
665 /* Now update the length and offsets to take account of the bits
666 we've just compared. */
667 length_bits -= bits;
668 offset1_bits += bits;
669 offset2_bits += bits;
670 }
671
672 if (length_bits % TARGET_CHAR_BIT != 0)
673 {
674 size_t bits;
675 size_t o1, o2;
676 gdb_byte mask, b1, b2;
677
678 /* The length is not an exact number of bytes. After the previous
679 IF.. block then the offsets are byte aligned, or the
680 length is zero (in which case this code is not reached). Compare
681 a number of bits at the end of the region, starting from an exact
682 byte boundary. */
683 bits = length_bits % TARGET_CHAR_BIT;
684 o1 = offset1_bits + length_bits - bits;
685 o2 = offset2_bits + length_bits - bits;
686
687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
689
690 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
691 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
692
693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 length_bits -= bits;
700 }
701
702 if (length_bits > 0)
703 {
704 /* We've now taken care of any stray "bits" at the start, or end of
705 the region to compare, the remainder can be covered with a simple
706 memcmp. */
707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
710
711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
712 ptr2 + offset2_bits / TARGET_CHAR_BIT,
713 length_bits / TARGET_CHAR_BIT);
714 }
715
716 /* Length is zero, regions match. */
717 return 0;
718}
719
9a0dc9e3
PA
720/* Helper struct for find_first_range_overlap_and_match and
721 value_contents_bits_eq. Keep track of which slot of a given ranges
722 vector have we last looked at. */
bdf22206 723
9a0dc9e3
PA
724struct ranges_and_idx
725{
726 /* The ranges. */
727 VEC(range_s) *ranges;
728
729 /* The range we've last found in RANGES. Given ranges are sorted,
730 we can start the next lookup here. */
731 int idx;
732};
733
734/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
736 ranges starting at OFFSET2 bits. Return true if the ranges match
737 and fill in *L and *H with the overlapping window relative to
738 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
739
740static int
9a0dc9e3
PA
741find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
742 struct ranges_and_idx *rp2,
743 int offset1, int offset2,
744 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 745{
9a0dc9e3
PA
746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
747 offset1, length);
748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
749 offset2, length);
c8c1c22f 750
9a0dc9e3
PA
751 if (rp1->idx == -1 && rp2->idx == -1)
752 {
753 *l = length;
754 *h = length;
755 return 1;
756 }
757 else if (rp1->idx == -1 || rp2->idx == -1)
758 return 0;
759 else
c8c1c22f
PA
760 {
761 range_s *r1, *r2;
762 ULONGEST l1, h1;
763 ULONGEST l2, h2;
764
9a0dc9e3
PA
765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
767
768 /* Get the unavailable windows intersected by the incoming
769 ranges. The first and last ranges that overlap the argument
770 range may be wider than said incoming arguments ranges. */
771 l1 = max (offset1, r1->offset);
772 h1 = min (offset1 + length, r1->offset + r1->length);
773
774 l2 = max (offset2, r2->offset);
9a0dc9e3 775 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
776
777 /* Make them relative to the respective start offsets, so we can
778 compare them for equality. */
779 l1 -= offset1;
780 h1 -= offset1;
781
782 l2 -= offset2;
783 h2 -= offset2;
784
9a0dc9e3 785 /* Different ranges, no match. */
c8c1c22f
PA
786 if (l1 != l2 || h1 != h2)
787 return 0;
788
9a0dc9e3
PA
789 *h = h1;
790 *l = l1;
791 return 1;
792 }
793}
794
795/* Helper function for value_contents_eq. The only difference is that
796 this function is bit rather than byte based.
797
798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
800 Return true if the available bits match. */
801
802static int
803value_contents_bits_eq (const struct value *val1, int offset1,
804 const struct value *val2, int offset2,
805 int length)
806{
807 /* Each array element corresponds to a ranges source (unavailable,
808 optimized out). '1' is for VAL1, '2' for VAL2. */
809 struct ranges_and_idx rp1[2], rp2[2];
810
811 /* See function description in value.h. */
812 gdb_assert (!val1->lazy && !val2->lazy);
813
814 /* We shouldn't be trying to compare past the end of the values. */
815 gdb_assert (offset1 + length
816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
817 gdb_assert (offset2 + length
818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
819
820 memset (&rp1, 0, sizeof (rp1));
821 memset (&rp2, 0, sizeof (rp2));
822 rp1[0].ranges = val1->unavailable;
823 rp2[0].ranges = val2->unavailable;
824 rp1[1].ranges = val1->optimized_out;
825 rp2[1].ranges = val2->optimized_out;
826
827 while (length > 0)
828 {
000339af 829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
830 int i;
831
832 for (i = 0; i < 2; i++)
833 {
834 ULONGEST l_tmp, h_tmp;
835
836 /* The contents only match equal if the invalid/unavailable
837 contents ranges match as well. */
838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
839 offset1, offset2, length,
840 &l_tmp, &h_tmp))
841 return 0;
842
843 /* We're interested in the lowest/first range found. */
844 if (i == 0 || l_tmp < l)
845 {
846 l = l_tmp;
847 h = h_tmp;
848 }
849 }
850
851 /* Compare the available/valid contents. */
bdf22206 852 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 853 val2->contents, offset2, l) != 0)
c8c1c22f
PA
854 return 0;
855
9a0dc9e3
PA
856 length -= h;
857 offset1 += h;
858 offset2 += h;
c8c1c22f
PA
859 }
860
861 return 1;
862}
863
bdf22206 864int
9a0dc9e3
PA
865value_contents_eq (const struct value *val1, int offset1,
866 const struct value *val2, int offset2,
867 int length)
bdf22206 868{
9a0dc9e3
PA
869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
870 val2, offset2 * TARGET_CHAR_BIT,
871 length * TARGET_CHAR_BIT);
bdf22206
AB
872}
873
581e13c1 874/* Prototypes for local functions. */
c906108c 875
a14ed312 876static void show_values (char *, int);
c906108c 877
a14ed312 878static void show_convenience (char *, int);
c906108c 879
c906108c
SS
880
881/* The value-history records all the values printed
882 by print commands during this session. Each chunk
883 records 60 consecutive values. The first chunk on
884 the chain records the most recent values.
885 The total number of values is in value_history_count. */
886
887#define VALUE_HISTORY_CHUNK 60
888
889struct value_history_chunk
c5aa993b
JM
890 {
891 struct value_history_chunk *next;
f23631e4 892 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 893 };
c906108c
SS
894
895/* Chain of chunks now in use. */
896
897static struct value_history_chunk *value_history_chain;
898
581e13c1 899static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 900
c906108c
SS
901\f
902/* List of all value objects currently allocated
903 (except for those released by calls to release_value)
904 This is so they can be freed after each command. */
905
f23631e4 906static struct value *all_values;
c906108c 907
3e3d7139
JG
908/* Allocate a lazy value for type TYPE. Its actual content is
909 "lazily" allocated too: the content field of the return value is
910 NULL; it will be allocated when it is fetched from the target. */
c906108c 911
f23631e4 912struct value *
3e3d7139 913allocate_value_lazy (struct type *type)
c906108c 914{
f23631e4 915 struct value *val;
c54eabfa
JK
916
917 /* Call check_typedef on our type to make sure that, if TYPE
918 is a TYPE_CODE_TYPEDEF, its length is set to the length
919 of the target type instead of zero. However, we do not
920 replace the typedef type by the target type, because we want
921 to keep the typedef in order to be able to set the VAL's type
922 description correctly. */
923 check_typedef (type);
c906108c 924
3e3d7139
JG
925 val = (struct value *) xzalloc (sizeof (struct value));
926 val->contents = NULL;
df407dfe 927 val->next = all_values;
c906108c 928 all_values = val;
df407dfe 929 val->type = type;
4754a64e 930 val->enclosing_type = type;
c906108c 931 VALUE_LVAL (val) = not_lval;
42ae5230 932 val->location.address = 0;
1df6926e 933 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
934 val->offset = 0;
935 val->bitpos = 0;
936 val->bitsize = 0;
9ee8fc9d 937 VALUE_REGNUM (val) = -1;
3e3d7139 938 val->lazy = 1;
13c3b5f5 939 val->embedded_offset = 0;
b44d461b 940 val->pointed_to_offset = 0;
c906108c 941 val->modifiable = 1;
42be36b3 942 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
943
944 /* Values start out on the all_values chain. */
945 val->reference_count = 1;
946
c906108c
SS
947 return val;
948}
949
3e3d7139
JG
950/* Allocate the contents of VAL if it has not been allocated yet. */
951
548b762d 952static void
3e3d7139
JG
953allocate_value_contents (struct value *val)
954{
955 if (!val->contents)
956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
957}
958
959/* Allocate a value and its contents for type TYPE. */
960
961struct value *
962allocate_value (struct type *type)
963{
964 struct value *val = allocate_value_lazy (type);
a109c7c1 965
3e3d7139
JG
966 allocate_value_contents (val);
967 val->lazy = 0;
968 return val;
969}
970
c906108c 971/* Allocate a value that has the correct length
938f5214 972 for COUNT repetitions of type TYPE. */
c906108c 973
f23631e4 974struct value *
fba45db2 975allocate_repeat_value (struct type *type, int count)
c906108c 976{
c5aa993b 977 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
e3506a9f
UW
980 struct type *array_type
981 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 982
e3506a9f 983 return allocate_value (array_type);
c906108c
SS
984}
985
5f5233d4
PA
986struct value *
987allocate_computed_value (struct type *type,
c8f2448a 988 const struct lval_funcs *funcs,
5f5233d4
PA
989 void *closure)
990{
41e8491f 991 struct value *v = allocate_value_lazy (type);
a109c7c1 992
5f5233d4
PA
993 VALUE_LVAL (v) = lval_computed;
994 v->location.computed.funcs = funcs;
995 v->location.computed.closure = closure;
5f5233d4
PA
996
997 return v;
998}
999
a7035dbb
JK
1000/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1001
1002struct value *
1003allocate_optimized_out_value (struct type *type)
1004{
1005 struct value *retval = allocate_value_lazy (type);
1006
9a0dc9e3
PA
1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1008 set_value_lazy (retval, 0);
a7035dbb
JK
1009 return retval;
1010}
1011
df407dfe
AC
1012/* Accessor methods. */
1013
17cf0ecd
AC
1014struct value *
1015value_next (struct value *value)
1016{
1017 return value->next;
1018}
1019
df407dfe 1020struct type *
0e03807e 1021value_type (const struct value *value)
df407dfe
AC
1022{
1023 return value->type;
1024}
04624583
AC
1025void
1026deprecated_set_value_type (struct value *value, struct type *type)
1027{
1028 value->type = type;
1029}
df407dfe
AC
1030
1031int
0e03807e 1032value_offset (const struct value *value)
df407dfe
AC
1033{
1034 return value->offset;
1035}
f5cf64a7
AC
1036void
1037set_value_offset (struct value *value, int offset)
1038{
1039 value->offset = offset;
1040}
df407dfe
AC
1041
1042int
0e03807e 1043value_bitpos (const struct value *value)
df407dfe
AC
1044{
1045 return value->bitpos;
1046}
9bbda503
AC
1047void
1048set_value_bitpos (struct value *value, int bit)
1049{
1050 value->bitpos = bit;
1051}
df407dfe
AC
1052
1053int
0e03807e 1054value_bitsize (const struct value *value)
df407dfe
AC
1055{
1056 return value->bitsize;
1057}
9bbda503
AC
1058void
1059set_value_bitsize (struct value *value, int bit)
1060{
1061 value->bitsize = bit;
1062}
df407dfe 1063
4ea48cc1
DJ
1064struct value *
1065value_parent (struct value *value)
1066{
1067 return value->parent;
1068}
1069
53ba8333
JB
1070/* See value.h. */
1071
1072void
1073set_value_parent (struct value *value, struct value *parent)
1074{
40501e00
TT
1075 struct value *old = value->parent;
1076
53ba8333 1077 value->parent = parent;
40501e00
TT
1078 if (parent != NULL)
1079 value_incref (parent);
1080 value_free (old);
53ba8333
JB
1081}
1082
fc1a4b47 1083gdb_byte *
990a07ab
AC
1084value_contents_raw (struct value *value)
1085{
3e3d7139
JG
1086 allocate_value_contents (value);
1087 return value->contents + value->embedded_offset;
990a07ab
AC
1088}
1089
fc1a4b47 1090gdb_byte *
990a07ab
AC
1091value_contents_all_raw (struct value *value)
1092{
3e3d7139
JG
1093 allocate_value_contents (value);
1094 return value->contents;
990a07ab
AC
1095}
1096
4754a64e
AC
1097struct type *
1098value_enclosing_type (struct value *value)
1099{
1100 return value->enclosing_type;
1101}
1102
8264ba82
AG
1103/* Look at value.h for description. */
1104
1105struct type *
1106value_actual_type (struct value *value, int resolve_simple_types,
1107 int *real_type_found)
1108{
1109 struct value_print_options opts;
8264ba82
AG
1110 struct type *result;
1111
1112 get_user_print_options (&opts);
1113
1114 if (real_type_found)
1115 *real_type_found = 0;
1116 result = value_type (value);
1117 if (opts.objectprint)
1118 {
5e34c6c3
LM
1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1120 fetch its rtti type. */
1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1122 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1124 == TYPE_CODE_STRUCT)
8264ba82
AG
1125 {
1126 struct type *real_type;
1127
1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1129 if (real_type)
1130 {
1131 if (real_type_found)
1132 *real_type_found = 1;
1133 result = real_type;
1134 }
1135 }
1136 else if (resolve_simple_types)
1137 {
1138 if (real_type_found)
1139 *real_type_found = 1;
1140 result = value_enclosing_type (value);
1141 }
1142 }
1143
1144 return result;
1145}
1146
901461f8
PA
1147void
1148error_value_optimized_out (void)
1149{
1150 error (_("value has been optimized out"));
1151}
1152
0e03807e 1153static void
4e07d55f 1154require_not_optimized_out (const struct value *value)
0e03807e 1155{
9a0dc9e3 1156 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1157 {
1158 if (value->lval == lval_register)
1159 error (_("register has not been saved in frame"));
1160 else
1161 error_value_optimized_out ();
1162 }
0e03807e
TT
1163}
1164
4e07d55f
PA
1165static void
1166require_available (const struct value *value)
1167{
1168 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1170}
1171
fc1a4b47 1172const gdb_byte *
0e03807e 1173value_contents_for_printing (struct value *value)
46615f07
AC
1174{
1175 if (value->lazy)
1176 value_fetch_lazy (value);
3e3d7139 1177 return value->contents;
46615f07
AC
1178}
1179
de4127a3
PA
1180const gdb_byte *
1181value_contents_for_printing_const (const struct value *value)
1182{
1183 gdb_assert (!value->lazy);
1184 return value->contents;
1185}
1186
0e03807e
TT
1187const gdb_byte *
1188value_contents_all (struct value *value)
1189{
1190 const gdb_byte *result = value_contents_for_printing (value);
1191 require_not_optimized_out (value);
4e07d55f 1192 require_available (value);
0e03807e
TT
1193 return result;
1194}
1195
9a0dc9e3
PA
1196/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1198
1199static void
1200ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1201 VEC (range_s) *src_range, int src_bit_offset,
1202 int bit_length)
1203{
1204 range_s *r;
1205 int i;
1206
1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1208 {
1209 ULONGEST h, l;
1210
1211 l = max (r->offset, src_bit_offset);
1212 h = min (r->offset + r->length, src_bit_offset + bit_length);
1213
1214 if (l < h)
1215 insert_into_bit_range_vector (dst_range,
1216 dst_bit_offset + (l - src_bit_offset),
1217 h - l);
1218 }
1219}
1220
4875ffdb
PA
1221/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1223
1224static void
1225value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1226 const struct value *src, int src_bit_offset,
1227 int bit_length)
1228{
1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1230 src->unavailable, src_bit_offset,
1231 bit_length);
1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1233 src->optimized_out, src_bit_offset,
1234 bit_length);
1235}
1236
29976f3f
PA
1237/* Copy LENGTH bytes of SRC value's (all) contents
1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1239 contents, starting at DST_OFFSET. If unavailable contents are
1240 being copied from SRC, the corresponding DST contents are marked
1241 unavailable accordingly. Neither DST nor SRC may be lazy
1242 values.
1243
1244 It is assumed the contents of DST in the [DST_OFFSET,
1245 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1246
1247void
1248value_contents_copy_raw (struct value *dst, int dst_offset,
1249 struct value *src, int src_offset, int length)
1250{
1251 range_s *r;
1252 int i;
bdf22206 1253 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1254
1255 /* A lazy DST would make that this copy operation useless, since as
1256 soon as DST's contents were un-lazied (by a later value_contents
1257 call, say), the contents would be overwritten. A lazy SRC would
1258 mean we'd be copying garbage. */
1259 gdb_assert (!dst->lazy && !src->lazy);
1260
29976f3f
PA
1261 /* The overwritten DST range gets unavailability ORed in, not
1262 replaced. Make sure to remember to implement replacing if it
1263 turns out actually necessary. */
1264 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1265 gdb_assert (!value_bits_any_optimized_out (dst,
1266 TARGET_CHAR_BIT * dst_offset,
1267 TARGET_CHAR_BIT * length));
29976f3f 1268
39d37385
PA
1269 /* Copy the data. */
1270 memcpy (value_contents_all_raw (dst) + dst_offset,
1271 value_contents_all_raw (src) + src_offset,
1272 length);
1273
1274 /* Copy the meta-data, adjusted. */
bdf22206
AB
1275 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1277 bit_length = length * TARGET_CHAR_BIT;
39d37385 1278
4875ffdb
PA
1279 value_ranges_copy_adjusted (dst, dst_bit_offset,
1280 src, src_bit_offset,
1281 bit_length);
39d37385
PA
1282}
1283
29976f3f
PA
1284/* Copy LENGTH bytes of SRC value's (all) contents
1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1286 (all) contents, starting at DST_OFFSET. If unavailable contents
1287 are being copied from SRC, the corresponding DST contents are
1288 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1289 lazy, it will be fetched now.
29976f3f
PA
1290
1291 It is assumed the contents of DST in the [DST_OFFSET,
1292 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1293
1294void
1295value_contents_copy (struct value *dst, int dst_offset,
1296 struct value *src, int src_offset, int length)
1297{
39d37385
PA
1298 if (src->lazy)
1299 value_fetch_lazy (src);
1300
1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1302}
1303
d69fe07e
AC
1304int
1305value_lazy (struct value *value)
1306{
1307 return value->lazy;
1308}
1309
dfa52d88
AC
1310void
1311set_value_lazy (struct value *value, int val)
1312{
1313 value->lazy = val;
1314}
1315
4e5d721f
DE
1316int
1317value_stack (struct value *value)
1318{
1319 return value->stack;
1320}
1321
1322void
1323set_value_stack (struct value *value, int val)
1324{
1325 value->stack = val;
1326}
1327
fc1a4b47 1328const gdb_byte *
0fd88904
AC
1329value_contents (struct value *value)
1330{
0e03807e
TT
1331 const gdb_byte *result = value_contents_writeable (value);
1332 require_not_optimized_out (value);
4e07d55f 1333 require_available (value);
0e03807e 1334 return result;
0fd88904
AC
1335}
1336
fc1a4b47 1337gdb_byte *
0fd88904
AC
1338value_contents_writeable (struct value *value)
1339{
1340 if (value->lazy)
1341 value_fetch_lazy (value);
fc0c53a0 1342 return value_contents_raw (value);
0fd88904
AC
1343}
1344
feb13ab0
AC
1345int
1346value_optimized_out (struct value *value)
1347{
691a26f5
AB
1348 /* We can only know if a value is optimized out once we have tried to
1349 fetch it. */
9a0dc9e3 1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1351 value_fetch_lazy (value);
1352
9a0dc9e3 1353 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1354}
1355
9a0dc9e3
PA
1356/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1357 the following LENGTH bytes. */
eca07816 1358
feb13ab0 1359void
9a0dc9e3 1360mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1361{
9a0dc9e3
PA
1362 mark_value_bits_optimized_out (value,
1363 offset * TARGET_CHAR_BIT,
1364 length * TARGET_CHAR_BIT);
feb13ab0 1365}
13c3b5f5 1366
9a0dc9e3 1367/* See value.h. */
0e03807e 1368
9a0dc9e3
PA
1369void
1370mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1371{
9a0dc9e3 1372 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1373}
1374
8cf6f0b1
TT
1375int
1376value_bits_synthetic_pointer (const struct value *value,
1377 int offset, int length)
1378{
e7303042 1379 if (value->lval != lval_computed
8cf6f0b1
TT
1380 || !value->location.computed.funcs->check_synthetic_pointer)
1381 return 0;
1382 return value->location.computed.funcs->check_synthetic_pointer (value,
1383 offset,
1384 length);
1385}
1386
13c3b5f5
AC
1387int
1388value_embedded_offset (struct value *value)
1389{
1390 return value->embedded_offset;
1391}
1392
1393void
1394set_value_embedded_offset (struct value *value, int val)
1395{
1396 value->embedded_offset = val;
1397}
b44d461b
AC
1398
1399int
1400value_pointed_to_offset (struct value *value)
1401{
1402 return value->pointed_to_offset;
1403}
1404
1405void
1406set_value_pointed_to_offset (struct value *value, int val)
1407{
1408 value->pointed_to_offset = val;
1409}
13bb5560 1410
c8f2448a 1411const struct lval_funcs *
a471c594 1412value_computed_funcs (const struct value *v)
5f5233d4 1413{
a471c594 1414 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1415
1416 return v->location.computed.funcs;
1417}
1418
1419void *
0e03807e 1420value_computed_closure (const struct value *v)
5f5233d4 1421{
0e03807e 1422 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1423
1424 return v->location.computed.closure;
1425}
1426
13bb5560
AC
1427enum lval_type *
1428deprecated_value_lval_hack (struct value *value)
1429{
1430 return &value->lval;
1431}
1432
a471c594
JK
1433enum lval_type
1434value_lval_const (const struct value *value)
1435{
1436 return value->lval;
1437}
1438
42ae5230 1439CORE_ADDR
de4127a3 1440value_address (const struct value *value)
42ae5230
TT
1441{
1442 if (value->lval == lval_internalvar
e81e7f5e
SC
1443 || value->lval == lval_internalvar_component
1444 || value->lval == lval_xcallable)
42ae5230 1445 return 0;
53ba8333
JB
1446 if (value->parent != NULL)
1447 return value_address (value->parent) + value->offset;
1448 else
1449 return value->location.address + value->offset;
42ae5230
TT
1450}
1451
1452CORE_ADDR
1453value_raw_address (struct value *value)
1454{
1455 if (value->lval == lval_internalvar
e81e7f5e
SC
1456 || value->lval == lval_internalvar_component
1457 || value->lval == lval_xcallable)
42ae5230
TT
1458 return 0;
1459 return value->location.address;
1460}
1461
1462void
1463set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1464{
42ae5230 1465 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1466 && value->lval != lval_internalvar_component
1467 && value->lval != lval_xcallable);
42ae5230 1468 value->location.address = addr;
13bb5560
AC
1469}
1470
1471struct internalvar **
1472deprecated_value_internalvar_hack (struct value *value)
1473{
1474 return &value->location.internalvar;
1475}
1476
1477struct frame_id *
1478deprecated_value_frame_id_hack (struct value *value)
1479{
1480 return &value->frame_id;
1481}
1482
1483short *
1484deprecated_value_regnum_hack (struct value *value)
1485{
1486 return &value->regnum;
1487}
88e3b34b
AC
1488
1489int
1490deprecated_value_modifiable (struct value *value)
1491{
1492 return value->modifiable;
1493}
990a07ab 1494\f
c906108c
SS
1495/* Return a mark in the value chain. All values allocated after the
1496 mark is obtained (except for those released) are subject to being freed
1497 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1498struct value *
fba45db2 1499value_mark (void)
c906108c
SS
1500{
1501 return all_values;
1502}
1503
828d3400
DJ
1504/* Take a reference to VAL. VAL will not be deallocated until all
1505 references are released. */
1506
1507void
1508value_incref (struct value *val)
1509{
1510 val->reference_count++;
1511}
1512
1513/* Release a reference to VAL, which was acquired with value_incref.
1514 This function is also called to deallocate values from the value
1515 chain. */
1516
3e3d7139
JG
1517void
1518value_free (struct value *val)
1519{
1520 if (val)
5f5233d4 1521 {
828d3400
DJ
1522 gdb_assert (val->reference_count > 0);
1523 val->reference_count--;
1524 if (val->reference_count > 0)
1525 return;
1526
4ea48cc1
DJ
1527 /* If there's an associated parent value, drop our reference to
1528 it. */
1529 if (val->parent != NULL)
1530 value_free (val->parent);
1531
5f5233d4
PA
1532 if (VALUE_LVAL (val) == lval_computed)
1533 {
c8f2448a 1534 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1535
1536 if (funcs->free_closure)
1537 funcs->free_closure (val);
1538 }
e81e7f5e
SC
1539 else if (VALUE_LVAL (val) == lval_xcallable)
1540 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1541
1542 xfree (val->contents);
4e07d55f 1543 VEC_free (range_s, val->unavailable);
5f5233d4 1544 }
3e3d7139
JG
1545 xfree (val);
1546}
1547
c906108c
SS
1548/* Free all values allocated since MARK was obtained by value_mark
1549 (except for those released). */
1550void
f23631e4 1551value_free_to_mark (struct value *mark)
c906108c 1552{
f23631e4
AC
1553 struct value *val;
1554 struct value *next;
c906108c
SS
1555
1556 for (val = all_values; val && val != mark; val = next)
1557 {
df407dfe 1558 next = val->next;
e848a8a5 1559 val->released = 1;
c906108c
SS
1560 value_free (val);
1561 }
1562 all_values = val;
1563}
1564
1565/* Free all the values that have been allocated (except for those released).
725e88af
DE
1566 Call after each command, successful or not.
1567 In practice this is called before each command, which is sufficient. */
c906108c
SS
1568
1569void
fba45db2 1570free_all_values (void)
c906108c 1571{
f23631e4
AC
1572 struct value *val;
1573 struct value *next;
c906108c
SS
1574
1575 for (val = all_values; val; val = next)
1576 {
df407dfe 1577 next = val->next;
e848a8a5 1578 val->released = 1;
c906108c
SS
1579 value_free (val);
1580 }
1581
1582 all_values = 0;
1583}
1584
0cf6dd15
TJB
1585/* Frees all the elements in a chain of values. */
1586
1587void
1588free_value_chain (struct value *v)
1589{
1590 struct value *next;
1591
1592 for (; v; v = next)
1593 {
1594 next = value_next (v);
1595 value_free (v);
1596 }
1597}
1598
c906108c
SS
1599/* Remove VAL from the chain all_values
1600 so it will not be freed automatically. */
1601
1602void
f23631e4 1603release_value (struct value *val)
c906108c 1604{
f23631e4 1605 struct value *v;
c906108c
SS
1606
1607 if (all_values == val)
1608 {
1609 all_values = val->next;
06a64a0b 1610 val->next = NULL;
e848a8a5 1611 val->released = 1;
c906108c
SS
1612 return;
1613 }
1614
1615 for (v = all_values; v; v = v->next)
1616 {
1617 if (v->next == val)
1618 {
1619 v->next = val->next;
06a64a0b 1620 val->next = NULL;
e848a8a5 1621 val->released = 1;
c906108c
SS
1622 break;
1623 }
1624 }
1625}
1626
e848a8a5
TT
1627/* If the value is not already released, release it.
1628 If the value is already released, increment its reference count.
1629 That is, this function ensures that the value is released from the
1630 value chain and that the caller owns a reference to it. */
1631
1632void
1633release_value_or_incref (struct value *val)
1634{
1635 if (val->released)
1636 value_incref (val);
1637 else
1638 release_value (val);
1639}
1640
c906108c 1641/* Release all values up to mark */
f23631e4
AC
1642struct value *
1643value_release_to_mark (struct value *mark)
c906108c 1644{
f23631e4
AC
1645 struct value *val;
1646 struct value *next;
c906108c 1647
df407dfe 1648 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1649 {
1650 if (next->next == mark)
1651 {
1652 all_values = next->next;
1653 next->next = NULL;
1654 return val;
1655 }
1656 next->released = 1;
1657 }
c906108c
SS
1658 all_values = 0;
1659 return val;
1660}
1661
1662/* Return a copy of the value ARG.
1663 It contains the same contents, for same memory address,
1664 but it's a different block of storage. */
1665
f23631e4
AC
1666struct value *
1667value_copy (struct value *arg)
c906108c 1668{
4754a64e 1669 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1670 struct value *val;
1671
1672 if (value_lazy (arg))
1673 val = allocate_value_lazy (encl_type);
1674 else
1675 val = allocate_value (encl_type);
df407dfe 1676 val->type = arg->type;
c906108c 1677 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1678 val->location = arg->location;
df407dfe
AC
1679 val->offset = arg->offset;
1680 val->bitpos = arg->bitpos;
1681 val->bitsize = arg->bitsize;
1df6926e 1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1684 val->lazy = arg->lazy;
13c3b5f5 1685 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1686 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1687 val->modifiable = arg->modifiable;
d69fe07e 1688 if (!value_lazy (val))
c906108c 1689 {
990a07ab 1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1691 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1692
1693 }
4e07d55f 1694 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1696 set_value_parent (val, arg->parent);
5f5233d4
PA
1697 if (VALUE_LVAL (val) == lval_computed)
1698 {
c8f2448a 1699 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1700
1701 if (funcs->copy_closure)
1702 val->location.computed.closure = funcs->copy_closure (val);
1703 }
c906108c
SS
1704 return val;
1705}
74bcbdf3 1706
4c082a81
SC
1707/* Return a "const" and/or "volatile" qualified version of the value V.
1708 If CNST is true, then the returned value will be qualified with
1709 "const".
1710 if VOLTL is true, then the returned value will be qualified with
1711 "volatile". */
1712
1713struct value *
1714make_cv_value (int cnst, int voltl, struct value *v)
1715{
1716 struct type *val_type = value_type (v);
1717 struct type *enclosing_type = value_enclosing_type (v);
1718 struct value *cv_val = value_copy (v);
1719
1720 deprecated_set_value_type (cv_val,
1721 make_cv_type (cnst, voltl, val_type, NULL));
1722 set_value_enclosing_type (cv_val,
1723 make_cv_type (cnst, voltl, enclosing_type, NULL));
1724
1725 return cv_val;
1726}
1727
c37f7098
KW
1728/* Return a version of ARG that is non-lvalue. */
1729
1730struct value *
1731value_non_lval (struct value *arg)
1732{
1733 if (VALUE_LVAL (arg) != not_lval)
1734 {
1735 struct type *enc_type = value_enclosing_type (arg);
1736 struct value *val = allocate_value (enc_type);
1737
1738 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1739 TYPE_LENGTH (enc_type));
1740 val->type = arg->type;
1741 set_value_embedded_offset (val, value_embedded_offset (arg));
1742 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1743 return val;
1744 }
1745 return arg;
1746}
1747
6c659fc2
SC
1748/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1749
1750void
1751value_force_lval (struct value *v, CORE_ADDR addr)
1752{
1753 gdb_assert (VALUE_LVAL (v) == not_lval);
1754
1755 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1756 v->lval = lval_memory;
1757 v->location.address = addr;
1758}
1759
74bcbdf3 1760void
0e03807e
TT
1761set_value_component_location (struct value *component,
1762 const struct value *whole)
74bcbdf3 1763{
e81e7f5e
SC
1764 gdb_assert (whole->lval != lval_xcallable);
1765
0e03807e 1766 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1767 VALUE_LVAL (component) = lval_internalvar_component;
1768 else
0e03807e 1769 VALUE_LVAL (component) = whole->lval;
5f5233d4 1770
74bcbdf3 1771 component->location = whole->location;
0e03807e 1772 if (whole->lval == lval_computed)
5f5233d4 1773 {
c8f2448a 1774 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1775
1776 if (funcs->copy_closure)
1777 component->location.computed.closure = funcs->copy_closure (whole);
1778 }
74bcbdf3
PA
1779}
1780
c906108c
SS
1781\f
1782/* Access to the value history. */
1783
1784/* Record a new value in the value history.
eddf0bae 1785 Returns the absolute history index of the entry. */
c906108c
SS
1786
1787int
f23631e4 1788record_latest_value (struct value *val)
c906108c
SS
1789{
1790 int i;
1791
1792 /* We don't want this value to have anything to do with the inferior anymore.
1793 In particular, "set $1 = 50" should not affect the variable from which
1794 the value was taken, and fast watchpoints should be able to assume that
1795 a value on the value history never changes. */
d69fe07e 1796 if (value_lazy (val))
c906108c
SS
1797 value_fetch_lazy (val);
1798 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1799 from. This is a bit dubious, because then *&$1 does not just return $1
1800 but the current contents of that location. c'est la vie... */
1801 val->modifiable = 0;
350e1a76
DE
1802
1803 /* The value may have already been released, in which case we're adding a
1804 new reference for its entry in the history. That is why we call
1805 release_value_or_incref here instead of release_value. */
1806 release_value_or_incref (val);
c906108c
SS
1807
1808 /* Here we treat value_history_count as origin-zero
1809 and applying to the value being stored now. */
1810
1811 i = value_history_count % VALUE_HISTORY_CHUNK;
1812 if (i == 0)
1813 {
fe978cb0 1814 struct value_history_chunk *newobj
a109c7c1
MS
1815 = (struct value_history_chunk *)
1816
c5aa993b 1817 xmalloc (sizeof (struct value_history_chunk));
fe978cb0
PA
1818 memset (newobj->values, 0, sizeof newobj->values);
1819 newobj->next = value_history_chain;
1820 value_history_chain = newobj;
c906108c
SS
1821 }
1822
1823 value_history_chain->values[i] = val;
1824
1825 /* Now we regard value_history_count as origin-one
1826 and applying to the value just stored. */
1827
1828 return ++value_history_count;
1829}
1830
1831/* Return a copy of the value in the history with sequence number NUM. */
1832
f23631e4 1833struct value *
fba45db2 1834access_value_history (int num)
c906108c 1835{
f23631e4 1836 struct value_history_chunk *chunk;
52f0bd74
AC
1837 int i;
1838 int absnum = num;
c906108c
SS
1839
1840 if (absnum <= 0)
1841 absnum += value_history_count;
1842
1843 if (absnum <= 0)
1844 {
1845 if (num == 0)
8a3fe4f8 1846 error (_("The history is empty."));
c906108c 1847 else if (num == 1)
8a3fe4f8 1848 error (_("There is only one value in the history."));
c906108c 1849 else
8a3fe4f8 1850 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1851 }
1852 if (absnum > value_history_count)
8a3fe4f8 1853 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1854
1855 absnum--;
1856
1857 /* Now absnum is always absolute and origin zero. */
1858
1859 chunk = value_history_chain;
3e43a32a
MS
1860 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1861 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1862 i > 0; i--)
1863 chunk = chunk->next;
1864
1865 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1866}
1867
c906108c 1868static void
fba45db2 1869show_values (char *num_exp, int from_tty)
c906108c 1870{
52f0bd74 1871 int i;
f23631e4 1872 struct value *val;
c906108c
SS
1873 static int num = 1;
1874
1875 if (num_exp)
1876 {
f132ba9d
TJB
1877 /* "show values +" should print from the stored position.
1878 "show values <exp>" should print around value number <exp>. */
c906108c 1879 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1880 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1881 }
1882 else
1883 {
f132ba9d 1884 /* "show values" means print the last 10 values. */
c906108c
SS
1885 num = value_history_count - 9;
1886 }
1887
1888 if (num <= 0)
1889 num = 1;
1890
1891 for (i = num; i < num + 10 && i <= value_history_count; i++)
1892 {
79a45b7d 1893 struct value_print_options opts;
a109c7c1 1894
c906108c 1895 val = access_value_history (i);
a3f17187 1896 printf_filtered (("$%d = "), i);
79a45b7d
TT
1897 get_user_print_options (&opts);
1898 value_print (val, gdb_stdout, &opts);
a3f17187 1899 printf_filtered (("\n"));
c906108c
SS
1900 }
1901
f132ba9d 1902 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1903 num += 10;
1904
1905 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1906 "show values +". If num_exp is null, this is unnecessary, since
1907 "show values +" is not useful after "show values". */
c906108c
SS
1908 if (from_tty && num_exp)
1909 {
1910 num_exp[0] = '+';
1911 num_exp[1] = '\0';
1912 }
1913}
1914\f
52059ffd
TT
1915enum internalvar_kind
1916{
1917 /* The internal variable is empty. */
1918 INTERNALVAR_VOID,
1919
1920 /* The value of the internal variable is provided directly as
1921 a GDB value object. */
1922 INTERNALVAR_VALUE,
1923
1924 /* A fresh value is computed via a call-back routine on every
1925 access to the internal variable. */
1926 INTERNALVAR_MAKE_VALUE,
1927
1928 /* The internal variable holds a GDB internal convenience function. */
1929 INTERNALVAR_FUNCTION,
1930
1931 /* The variable holds an integer value. */
1932 INTERNALVAR_INTEGER,
1933
1934 /* The variable holds a GDB-provided string. */
1935 INTERNALVAR_STRING,
1936};
1937
1938union internalvar_data
1939{
1940 /* A value object used with INTERNALVAR_VALUE. */
1941 struct value *value;
1942
1943 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1944 struct
1945 {
1946 /* The functions to call. */
1947 const struct internalvar_funcs *functions;
1948
1949 /* The function's user-data. */
1950 void *data;
1951 } make_value;
1952
1953 /* The internal function used with INTERNALVAR_FUNCTION. */
1954 struct
1955 {
1956 struct internal_function *function;
1957 /* True if this is the canonical name for the function. */
1958 int canonical;
1959 } fn;
1960
1961 /* An integer value used with INTERNALVAR_INTEGER. */
1962 struct
1963 {
1964 /* If type is non-NULL, it will be used as the type to generate
1965 a value for this internal variable. If type is NULL, a default
1966 integer type for the architecture is used. */
1967 struct type *type;
1968 LONGEST val;
1969 } integer;
1970
1971 /* A string value used with INTERNALVAR_STRING. */
1972 char *string;
1973};
1974
c906108c
SS
1975/* Internal variables. These are variables within the debugger
1976 that hold values assigned by debugger commands.
1977 The user refers to them with a '$' prefix
1978 that does not appear in the variable names stored internally. */
1979
4fa62494
UW
1980struct internalvar
1981{
1982 struct internalvar *next;
1983 char *name;
4fa62494 1984
78267919
UW
1985 /* We support various different kinds of content of an internal variable.
1986 enum internalvar_kind specifies the kind, and union internalvar_data
1987 provides the data associated with this particular kind. */
1988
52059ffd 1989 enum internalvar_kind kind;
4fa62494 1990
52059ffd 1991 union internalvar_data u;
4fa62494
UW
1992};
1993
c906108c
SS
1994static struct internalvar *internalvars;
1995
3e43a32a
MS
1996/* If the variable does not already exist create it and give it the
1997 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1998static void
1999init_if_undefined_command (char* args, int from_tty)
2000{
2001 struct internalvar* intvar;
2002
2003 /* Parse the expression - this is taken from set_command(). */
2004 struct expression *expr = parse_expression (args);
2005 register struct cleanup *old_chain =
2006 make_cleanup (free_current_contents, &expr);
2007
2008 /* Validate the expression.
2009 Was the expression an assignment?
2010 Or even an expression at all? */
2011 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2012 error (_("Init-if-undefined requires an assignment expression."));
2013
2014 /* Extract the variable from the parsed expression.
2015 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2016 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2017 error (_("The first parameter to init-if-undefined "
2018 "should be a GDB variable."));
53e5f3cf
AS
2019 intvar = expr->elts[2].internalvar;
2020
2021 /* Only evaluate the expression if the lvalue is void.
2022 This may still fail if the expresssion is invalid. */
78267919 2023 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2024 evaluate_expression (expr);
2025
2026 do_cleanups (old_chain);
2027}
2028
2029
c906108c
SS
2030/* Look up an internal variable with name NAME. NAME should not
2031 normally include a dollar sign.
2032
2033 If the specified internal variable does not exist,
c4a3d09a 2034 the return value is NULL. */
c906108c
SS
2035
2036struct internalvar *
bc3b79fd 2037lookup_only_internalvar (const char *name)
c906108c 2038{
52f0bd74 2039 struct internalvar *var;
c906108c
SS
2040
2041 for (var = internalvars; var; var = var->next)
5cb316ef 2042 if (strcmp (var->name, name) == 0)
c906108c
SS
2043 return var;
2044
c4a3d09a
MF
2045 return NULL;
2046}
2047
d55637df
TT
2048/* Complete NAME by comparing it to the names of internal variables.
2049 Returns a vector of newly allocated strings, or NULL if no matches
2050 were found. */
2051
2052VEC (char_ptr) *
2053complete_internalvar (const char *name)
2054{
2055 VEC (char_ptr) *result = NULL;
2056 struct internalvar *var;
2057 int len;
2058
2059 len = strlen (name);
2060
2061 for (var = internalvars; var; var = var->next)
2062 if (strncmp (var->name, name, len) == 0)
2063 {
2064 char *r = xstrdup (var->name);
2065
2066 VEC_safe_push (char_ptr, result, r);
2067 }
2068
2069 return result;
2070}
c4a3d09a
MF
2071
2072/* Create an internal variable with name NAME and with a void value.
2073 NAME should not normally include a dollar sign. */
2074
2075struct internalvar *
bc3b79fd 2076create_internalvar (const char *name)
c4a3d09a
MF
2077{
2078 struct internalvar *var;
a109c7c1 2079
c906108c 2080 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 2081 var->name = concat (name, (char *)NULL);
78267919 2082 var->kind = INTERNALVAR_VOID;
c906108c
SS
2083 var->next = internalvars;
2084 internalvars = var;
2085 return var;
2086}
2087
4aa995e1
PA
2088/* Create an internal variable with name NAME and register FUN as the
2089 function that value_of_internalvar uses to create a value whenever
2090 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2091 dollar sign. DATA is passed uninterpreted to FUN when it is
2092 called. CLEANUP, if not NULL, is called when the internal variable
2093 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2094
2095struct internalvar *
22d2b532
SDJ
2096create_internalvar_type_lazy (const char *name,
2097 const struct internalvar_funcs *funcs,
2098 void *data)
4aa995e1 2099{
4fa62494 2100 struct internalvar *var = create_internalvar (name);
a109c7c1 2101
78267919 2102 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2103 var->u.make_value.functions = funcs;
2104 var->u.make_value.data = data;
4aa995e1
PA
2105 return var;
2106}
c4a3d09a 2107
22d2b532
SDJ
2108/* See documentation in value.h. */
2109
2110int
2111compile_internalvar_to_ax (struct internalvar *var,
2112 struct agent_expr *expr,
2113 struct axs_value *value)
2114{
2115 if (var->kind != INTERNALVAR_MAKE_VALUE
2116 || var->u.make_value.functions->compile_to_ax == NULL)
2117 return 0;
2118
2119 var->u.make_value.functions->compile_to_ax (var, expr, value,
2120 var->u.make_value.data);
2121 return 1;
2122}
2123
c4a3d09a
MF
2124/* Look up an internal variable with name NAME. NAME should not
2125 normally include a dollar sign.
2126
2127 If the specified internal variable does not exist,
2128 one is created, with a void value. */
2129
2130struct internalvar *
bc3b79fd 2131lookup_internalvar (const char *name)
c4a3d09a
MF
2132{
2133 struct internalvar *var;
2134
2135 var = lookup_only_internalvar (name);
2136 if (var)
2137 return var;
2138
2139 return create_internalvar (name);
2140}
2141
78267919
UW
2142/* Return current value of internal variable VAR. For variables that
2143 are not inherently typed, use a value type appropriate for GDBARCH. */
2144
f23631e4 2145struct value *
78267919 2146value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2147{
f23631e4 2148 struct value *val;
0914bcdb
SS
2149 struct trace_state_variable *tsv;
2150
2151 /* If there is a trace state variable of the same name, assume that
2152 is what we really want to see. */
2153 tsv = find_trace_state_variable (var->name);
2154 if (tsv)
2155 {
2156 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2157 &(tsv->value));
2158 if (tsv->value_known)
2159 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2160 tsv->value);
2161 else
2162 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2163 return val;
2164 }
c906108c 2165
78267919 2166 switch (var->kind)
5f5233d4 2167 {
78267919
UW
2168 case INTERNALVAR_VOID:
2169 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2170 break;
4fa62494 2171
78267919
UW
2172 case INTERNALVAR_FUNCTION:
2173 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2174 break;
4fa62494 2175
cab0c772
UW
2176 case INTERNALVAR_INTEGER:
2177 if (!var->u.integer.type)
78267919 2178 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2179 var->u.integer.val);
78267919 2180 else
cab0c772
UW
2181 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2182 break;
2183
78267919
UW
2184 case INTERNALVAR_STRING:
2185 val = value_cstring (var->u.string, strlen (var->u.string),
2186 builtin_type (gdbarch)->builtin_char);
2187 break;
4fa62494 2188
78267919
UW
2189 case INTERNALVAR_VALUE:
2190 val = value_copy (var->u.value);
4aa995e1
PA
2191 if (value_lazy (val))
2192 value_fetch_lazy (val);
78267919 2193 break;
4aa995e1 2194
78267919 2195 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2196 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2197 var->u.make_value.data);
78267919
UW
2198 break;
2199
2200 default:
9b20d036 2201 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2202 }
2203
2204 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2205 on this value go back to affect the original internal variable.
2206
2207 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2208 no underlying modifyable state in the internal variable.
2209
2210 Likewise, if the variable's value is a computed lvalue, we want
2211 references to it to produce another computed lvalue, where
2212 references and assignments actually operate through the
2213 computed value's functions.
2214
2215 This means that internal variables with computed values
2216 behave a little differently from other internal variables:
2217 assignments to them don't just replace the previous value
2218 altogether. At the moment, this seems like the behavior we
2219 want. */
2220
2221 if (var->kind != INTERNALVAR_MAKE_VALUE
2222 && val->lval != lval_computed)
2223 {
2224 VALUE_LVAL (val) = lval_internalvar;
2225 VALUE_INTERNALVAR (val) = var;
5f5233d4 2226 }
d3c139e9 2227
4fa62494
UW
2228 return val;
2229}
d3c139e9 2230
4fa62494
UW
2231int
2232get_internalvar_integer (struct internalvar *var, LONGEST *result)
2233{
3158c6ed 2234 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2235 {
cab0c772
UW
2236 *result = var->u.integer.val;
2237 return 1;
3158c6ed 2238 }
d3c139e9 2239
3158c6ed
PA
2240 if (var->kind == INTERNALVAR_VALUE)
2241 {
2242 struct type *type = check_typedef (value_type (var->u.value));
2243
2244 if (TYPE_CODE (type) == TYPE_CODE_INT)
2245 {
2246 *result = value_as_long (var->u.value);
2247 return 1;
2248 }
4fa62494 2249 }
3158c6ed
PA
2250
2251 return 0;
4fa62494 2252}
d3c139e9 2253
4fa62494
UW
2254static int
2255get_internalvar_function (struct internalvar *var,
2256 struct internal_function **result)
2257{
78267919 2258 switch (var->kind)
d3c139e9 2259 {
78267919
UW
2260 case INTERNALVAR_FUNCTION:
2261 *result = var->u.fn.function;
4fa62494 2262 return 1;
d3c139e9 2263
4fa62494
UW
2264 default:
2265 return 0;
2266 }
c906108c
SS
2267}
2268
2269void
fba45db2 2270set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2271 int bitsize, struct value *newval)
c906108c 2272{
4fa62494 2273 gdb_byte *addr;
c906108c 2274
78267919 2275 switch (var->kind)
4fa62494 2276 {
78267919
UW
2277 case INTERNALVAR_VALUE:
2278 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2279
2280 if (bitsize)
50810684 2281 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2282 value_as_long (newval), bitpos, bitsize);
2283 else
2284 memcpy (addr + offset, value_contents (newval),
2285 TYPE_LENGTH (value_type (newval)));
2286 break;
78267919
UW
2287
2288 default:
2289 /* We can never get a component of any other kind. */
9b20d036 2290 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2291 }
c906108c
SS
2292}
2293
2294void
f23631e4 2295set_internalvar (struct internalvar *var, struct value *val)
c906108c 2296{
78267919 2297 enum internalvar_kind new_kind;
4fa62494 2298 union internalvar_data new_data = { 0 };
c906108c 2299
78267919 2300 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2301 error (_("Cannot overwrite convenience function %s"), var->name);
2302
4fa62494 2303 /* Prepare new contents. */
78267919 2304 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2305 {
2306 case TYPE_CODE_VOID:
78267919 2307 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2308 break;
2309
2310 case TYPE_CODE_INTERNAL_FUNCTION:
2311 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2312 new_kind = INTERNALVAR_FUNCTION;
2313 get_internalvar_function (VALUE_INTERNALVAR (val),
2314 &new_data.fn.function);
2315 /* Copies created here are never canonical. */
4fa62494
UW
2316 break;
2317
4fa62494 2318 default:
78267919
UW
2319 new_kind = INTERNALVAR_VALUE;
2320 new_data.value = value_copy (val);
2321 new_data.value->modifiable = 1;
4fa62494
UW
2322
2323 /* Force the value to be fetched from the target now, to avoid problems
2324 later when this internalvar is referenced and the target is gone or
2325 has changed. */
78267919
UW
2326 if (value_lazy (new_data.value))
2327 value_fetch_lazy (new_data.value);
4fa62494
UW
2328
2329 /* Release the value from the value chain to prevent it from being
2330 deleted by free_all_values. From here on this function should not
2331 call error () until new_data is installed into the var->u to avoid
2332 leaking memory. */
78267919 2333 release_value (new_data.value);
4fa62494
UW
2334 break;
2335 }
2336
2337 /* Clean up old contents. */
2338 clear_internalvar (var);
2339
2340 /* Switch over. */
78267919 2341 var->kind = new_kind;
4fa62494 2342 var->u = new_data;
c906108c
SS
2343 /* End code which must not call error(). */
2344}
2345
4fa62494
UW
2346void
2347set_internalvar_integer (struct internalvar *var, LONGEST l)
2348{
2349 /* Clean up old contents. */
2350 clear_internalvar (var);
2351
cab0c772
UW
2352 var->kind = INTERNALVAR_INTEGER;
2353 var->u.integer.type = NULL;
2354 var->u.integer.val = l;
78267919
UW
2355}
2356
2357void
2358set_internalvar_string (struct internalvar *var, const char *string)
2359{
2360 /* Clean up old contents. */
2361 clear_internalvar (var);
2362
2363 var->kind = INTERNALVAR_STRING;
2364 var->u.string = xstrdup (string);
4fa62494
UW
2365}
2366
2367static void
2368set_internalvar_function (struct internalvar *var, struct internal_function *f)
2369{
2370 /* Clean up old contents. */
2371 clear_internalvar (var);
2372
78267919
UW
2373 var->kind = INTERNALVAR_FUNCTION;
2374 var->u.fn.function = f;
2375 var->u.fn.canonical = 1;
2376 /* Variables installed here are always the canonical version. */
4fa62494
UW
2377}
2378
2379void
2380clear_internalvar (struct internalvar *var)
2381{
2382 /* Clean up old contents. */
78267919 2383 switch (var->kind)
4fa62494 2384 {
78267919
UW
2385 case INTERNALVAR_VALUE:
2386 value_free (var->u.value);
2387 break;
2388
2389 case INTERNALVAR_STRING:
2390 xfree (var->u.string);
4fa62494
UW
2391 break;
2392
22d2b532
SDJ
2393 case INTERNALVAR_MAKE_VALUE:
2394 if (var->u.make_value.functions->destroy != NULL)
2395 var->u.make_value.functions->destroy (var->u.make_value.data);
2396 break;
2397
4fa62494 2398 default:
4fa62494
UW
2399 break;
2400 }
2401
78267919
UW
2402 /* Reset to void kind. */
2403 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2404}
2405
c906108c 2406char *
fba45db2 2407internalvar_name (struct internalvar *var)
c906108c
SS
2408{
2409 return var->name;
2410}
2411
4fa62494
UW
2412static struct internal_function *
2413create_internal_function (const char *name,
2414 internal_function_fn handler, void *cookie)
bc3b79fd 2415{
bc3b79fd 2416 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2417
bc3b79fd
TJB
2418 ifn->name = xstrdup (name);
2419 ifn->handler = handler;
2420 ifn->cookie = cookie;
4fa62494 2421 return ifn;
bc3b79fd
TJB
2422}
2423
2424char *
2425value_internal_function_name (struct value *val)
2426{
4fa62494
UW
2427 struct internal_function *ifn;
2428 int result;
2429
2430 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2431 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2432 gdb_assert (result);
2433
bc3b79fd
TJB
2434 return ifn->name;
2435}
2436
2437struct value *
d452c4bc
UW
2438call_internal_function (struct gdbarch *gdbarch,
2439 const struct language_defn *language,
2440 struct value *func, int argc, struct value **argv)
bc3b79fd 2441{
4fa62494
UW
2442 struct internal_function *ifn;
2443 int result;
2444
2445 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2446 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2447 gdb_assert (result);
2448
d452c4bc 2449 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2450}
2451
2452/* The 'function' command. This does nothing -- it is just a
2453 placeholder to let "help function NAME" work. This is also used as
2454 the implementation of the sub-command that is created when
2455 registering an internal function. */
2456static void
2457function_command (char *command, int from_tty)
2458{
2459 /* Do nothing. */
2460}
2461
2462/* Clean up if an internal function's command is destroyed. */
2463static void
2464function_destroyer (struct cmd_list_element *self, void *ignore)
2465{
6f937416 2466 xfree ((char *) self->name);
1947513d 2467 xfree ((char *) self->doc);
bc3b79fd
TJB
2468}
2469
2470/* Add a new internal function. NAME is the name of the function; DOC
2471 is a documentation string describing the function. HANDLER is
2472 called when the function is invoked. COOKIE is an arbitrary
2473 pointer which is passed to HANDLER and is intended for "user
2474 data". */
2475void
2476add_internal_function (const char *name, const char *doc,
2477 internal_function_fn handler, void *cookie)
2478{
2479 struct cmd_list_element *cmd;
4fa62494 2480 struct internal_function *ifn;
bc3b79fd 2481 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2482
2483 ifn = create_internal_function (name, handler, cookie);
2484 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2485
2486 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2487 &functionlist);
2488 cmd->destroyer = function_destroyer;
2489}
2490
ae5a43e0
DJ
2491/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2492 prevent cycles / duplicates. */
2493
4e7a5ef5 2494void
ae5a43e0
DJ
2495preserve_one_value (struct value *value, struct objfile *objfile,
2496 htab_t copied_types)
2497{
2498 if (TYPE_OBJFILE (value->type) == objfile)
2499 value->type = copy_type_recursive (objfile, value->type, copied_types);
2500
2501 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2502 value->enclosing_type = copy_type_recursive (objfile,
2503 value->enclosing_type,
2504 copied_types);
2505}
2506
78267919
UW
2507/* Likewise for internal variable VAR. */
2508
2509static void
2510preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2511 htab_t copied_types)
2512{
2513 switch (var->kind)
2514 {
cab0c772
UW
2515 case INTERNALVAR_INTEGER:
2516 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2517 var->u.integer.type
2518 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2519 break;
2520
78267919
UW
2521 case INTERNALVAR_VALUE:
2522 preserve_one_value (var->u.value, objfile, copied_types);
2523 break;
2524 }
2525}
2526
ae5a43e0
DJ
2527/* Update the internal variables and value history when OBJFILE is
2528 discarded; we must copy the types out of the objfile. New global types
2529 will be created for every convenience variable which currently points to
2530 this objfile's types, and the convenience variables will be adjusted to
2531 use the new global types. */
c906108c
SS
2532
2533void
ae5a43e0 2534preserve_values (struct objfile *objfile)
c906108c 2535{
ae5a43e0
DJ
2536 htab_t copied_types;
2537 struct value_history_chunk *cur;
52f0bd74 2538 struct internalvar *var;
ae5a43e0 2539 int i;
c906108c 2540
ae5a43e0
DJ
2541 /* Create the hash table. We allocate on the objfile's obstack, since
2542 it is soon to be deleted. */
2543 copied_types = create_copied_types_hash (objfile);
2544
2545 for (cur = value_history_chain; cur; cur = cur->next)
2546 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2547 if (cur->values[i])
2548 preserve_one_value (cur->values[i], objfile, copied_types);
2549
2550 for (var = internalvars; var; var = var->next)
78267919 2551 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2552
6dddc817 2553 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2554
ae5a43e0 2555 htab_delete (copied_types);
c906108c
SS
2556}
2557
2558static void
fba45db2 2559show_convenience (char *ignore, int from_tty)
c906108c 2560{
e17c207e 2561 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2562 struct internalvar *var;
c906108c 2563 int varseen = 0;
79a45b7d 2564 struct value_print_options opts;
c906108c 2565
79a45b7d 2566 get_user_print_options (&opts);
c906108c
SS
2567 for (var = internalvars; var; var = var->next)
2568 {
c709acd1 2569
c906108c
SS
2570 if (!varseen)
2571 {
2572 varseen = 1;
2573 }
a3f17187 2574 printf_filtered (("$%s = "), var->name);
c709acd1 2575
492d29ea 2576 TRY
c709acd1
PA
2577 {
2578 struct value *val;
2579
2580 val = value_of_internalvar (gdbarch, var);
2581 value_print (val, gdb_stdout, &opts);
2582 }
492d29ea
PA
2583 CATCH (ex, RETURN_MASK_ERROR)
2584 {
2585 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2586 }
2587 END_CATCH
2588
a3f17187 2589 printf_filtered (("\n"));
c906108c
SS
2590 }
2591 if (!varseen)
f47f77df
DE
2592 {
2593 /* This text does not mention convenience functions on purpose.
2594 The user can't create them except via Python, and if Python support
2595 is installed this message will never be printed ($_streq will
2596 exist). */
2597 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2598 "Convenience variables have "
2599 "names starting with \"$\";\n"
2600 "use \"set\" as in \"set "
2601 "$foo = 5\" to define them.\n"));
2602 }
c906108c
SS
2603}
2604\f
e81e7f5e
SC
2605/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2606
2607struct value *
2608value_of_xmethod (struct xmethod_worker *worker)
2609{
2610 if (worker->value == NULL)
2611 {
2612 struct value *v;
2613
2614 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2615 v->lval = lval_xcallable;
2616 v->location.xm_worker = worker;
2617 v->modifiable = 0;
2618 worker->value = v;
2619 }
2620
2621 return worker->value;
2622}
2623
2ce1cdbf
DE
2624/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2625
2626struct type *
2627result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2628{
2629 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2630 && method->lval == lval_xcallable && argc > 0);
2631
2632 return get_xmethod_result_type (method->location.xm_worker,
2633 argv[0], argv + 1, argc - 1);
2634}
2635
e81e7f5e
SC
2636/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2637
2638struct value *
2639call_xmethod (struct value *method, int argc, struct value **argv)
2640{
2641 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2642 && method->lval == lval_xcallable && argc > 0);
2643
2644 return invoke_xmethod (method->location.xm_worker,
2645 argv[0], argv + 1, argc - 1);
2646}
2647\f
c906108c
SS
2648/* Extract a value as a C number (either long or double).
2649 Knows how to convert fixed values to double, or
2650 floating values to long.
2651 Does not deallocate the value. */
2652
2653LONGEST
f23631e4 2654value_as_long (struct value *val)
c906108c
SS
2655{
2656 /* This coerces arrays and functions, which is necessary (e.g.
2657 in disassemble_command). It also dereferences references, which
2658 I suspect is the most logical thing to do. */
994b9211 2659 val = coerce_array (val);
0fd88904 2660 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2661}
2662
2663DOUBLEST
f23631e4 2664value_as_double (struct value *val)
c906108c
SS
2665{
2666 DOUBLEST foo;
2667 int inv;
c5aa993b 2668
0fd88904 2669 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2670 if (inv)
8a3fe4f8 2671 error (_("Invalid floating value found in program."));
c906108c
SS
2672 return foo;
2673}
4ef30785 2674
581e13c1 2675/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2676 Note that val's type may not actually be a pointer; value_as_long
2677 handles all the cases. */
c906108c 2678CORE_ADDR
f23631e4 2679value_as_address (struct value *val)
c906108c 2680{
50810684
UW
2681 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2682
c906108c
SS
2683 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2684 whether we want this to be true eventually. */
2685#if 0
bf6ae464 2686 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2687 non-address (e.g. argument to "signal", "info break", etc.), or
2688 for pointers to char, in which the low bits *are* significant. */
50810684 2689 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2690#else
f312f057
JB
2691
2692 /* There are several targets (IA-64, PowerPC, and others) which
2693 don't represent pointers to functions as simply the address of
2694 the function's entry point. For example, on the IA-64, a
2695 function pointer points to a two-word descriptor, generated by
2696 the linker, which contains the function's entry point, and the
2697 value the IA-64 "global pointer" register should have --- to
2698 support position-independent code. The linker generates
2699 descriptors only for those functions whose addresses are taken.
2700
2701 On such targets, it's difficult for GDB to convert an arbitrary
2702 function address into a function pointer; it has to either find
2703 an existing descriptor for that function, or call malloc and
2704 build its own. On some targets, it is impossible for GDB to
2705 build a descriptor at all: the descriptor must contain a jump
2706 instruction; data memory cannot be executed; and code memory
2707 cannot be modified.
2708
2709 Upon entry to this function, if VAL is a value of type `function'
2710 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2711 value_address (val) is the address of the function. This is what
f312f057
JB
2712 you'll get if you evaluate an expression like `main'. The call
2713 to COERCE_ARRAY below actually does all the usual unary
2714 conversions, which includes converting values of type `function'
2715 to `pointer to function'. This is the challenging conversion
2716 discussed above. Then, `unpack_long' will convert that pointer
2717 back into an address.
2718
2719 So, suppose the user types `disassemble foo' on an architecture
2720 with a strange function pointer representation, on which GDB
2721 cannot build its own descriptors, and suppose further that `foo'
2722 has no linker-built descriptor. The address->pointer conversion
2723 will signal an error and prevent the command from running, even
2724 though the next step would have been to convert the pointer
2725 directly back into the same address.
2726
2727 The following shortcut avoids this whole mess. If VAL is a
2728 function, just return its address directly. */
df407dfe
AC
2729 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2730 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2731 return value_address (val);
f312f057 2732
994b9211 2733 val = coerce_array (val);
fc0c74b1
AC
2734
2735 /* Some architectures (e.g. Harvard), map instruction and data
2736 addresses onto a single large unified address space. For
2737 instance: An architecture may consider a large integer in the
2738 range 0x10000000 .. 0x1000ffff to already represent a data
2739 addresses (hence not need a pointer to address conversion) while
2740 a small integer would still need to be converted integer to
2741 pointer to address. Just assume such architectures handle all
2742 integer conversions in a single function. */
2743
2744 /* JimB writes:
2745
2746 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2747 must admonish GDB hackers to make sure its behavior matches the
2748 compiler's, whenever possible.
2749
2750 In general, I think GDB should evaluate expressions the same way
2751 the compiler does. When the user copies an expression out of
2752 their source code and hands it to a `print' command, they should
2753 get the same value the compiler would have computed. Any
2754 deviation from this rule can cause major confusion and annoyance,
2755 and needs to be justified carefully. In other words, GDB doesn't
2756 really have the freedom to do these conversions in clever and
2757 useful ways.
2758
2759 AndrewC pointed out that users aren't complaining about how GDB
2760 casts integers to pointers; they are complaining that they can't
2761 take an address from a disassembly listing and give it to `x/i'.
2762 This is certainly important.
2763
79dd2d24 2764 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2765 makes it possible for GDB to "get it right" in all circumstances
2766 --- the target has complete control over how things get done, so
2767 people can Do The Right Thing for their target without breaking
2768 anyone else. The standard doesn't specify how integers get
2769 converted to pointers; usually, the ABI doesn't either, but
2770 ABI-specific code is a more reasonable place to handle it. */
2771
df407dfe
AC
2772 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2773 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2774 && gdbarch_integer_to_address_p (gdbarch))
2775 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2776 value_contents (val));
fc0c74b1 2777
0fd88904 2778 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2779#endif
2780}
2781\f
2782/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2783 as a long, or as a double, assuming the raw data is described
2784 by type TYPE. Knows how to convert different sizes of values
2785 and can convert between fixed and floating point. We don't assume
2786 any alignment for the raw data. Return value is in host byte order.
2787
2788 If you want functions and arrays to be coerced to pointers, and
2789 references to be dereferenced, call value_as_long() instead.
2790
2791 C++: It is assumed that the front-end has taken care of
2792 all matters concerning pointers to members. A pointer
2793 to member which reaches here is considered to be equivalent
2794 to an INT (or some size). After all, it is only an offset. */
2795
2796LONGEST
fc1a4b47 2797unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2798{
e17a4113 2799 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2800 enum type_code code = TYPE_CODE (type);
2801 int len = TYPE_LENGTH (type);
2802 int nosign = TYPE_UNSIGNED (type);
c906108c 2803
c906108c
SS
2804 switch (code)
2805 {
2806 case TYPE_CODE_TYPEDEF:
2807 return unpack_long (check_typedef (type), valaddr);
2808 case TYPE_CODE_ENUM:
4f2aea11 2809 case TYPE_CODE_FLAGS:
c906108c
SS
2810 case TYPE_CODE_BOOL:
2811 case TYPE_CODE_INT:
2812 case TYPE_CODE_CHAR:
2813 case TYPE_CODE_RANGE:
0d5de010 2814 case TYPE_CODE_MEMBERPTR:
c906108c 2815 if (nosign)
e17a4113 2816 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2817 else
e17a4113 2818 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2819
2820 case TYPE_CODE_FLT:
96d2f608 2821 return extract_typed_floating (valaddr, type);
c906108c 2822
4ef30785
TJB
2823 case TYPE_CODE_DECFLOAT:
2824 /* libdecnumber has a function to convert from decimal to integer, but
2825 it doesn't work when the decimal number has a fractional part. */
e17a4113 2826 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2827
c906108c
SS
2828 case TYPE_CODE_PTR:
2829 case TYPE_CODE_REF:
2830 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2831 whether we want this to be true eventually. */
4478b372 2832 return extract_typed_address (valaddr, type);
c906108c 2833
c906108c 2834 default:
8a3fe4f8 2835 error (_("Value can't be converted to integer."));
c906108c 2836 }
c5aa993b 2837 return 0; /* Placate lint. */
c906108c
SS
2838}
2839
2840/* Return a double value from the specified type and address.
2841 INVP points to an int which is set to 0 for valid value,
2842 1 for invalid value (bad float format). In either case,
2843 the returned double is OK to use. Argument is in target
2844 format, result is in host format. */
2845
2846DOUBLEST
fc1a4b47 2847unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2848{
e17a4113 2849 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2850 enum type_code code;
2851 int len;
2852 int nosign;
2853
581e13c1 2854 *invp = 0; /* Assume valid. */
f168693b 2855 type = check_typedef (type);
c906108c
SS
2856 code = TYPE_CODE (type);
2857 len = TYPE_LENGTH (type);
2858 nosign = TYPE_UNSIGNED (type);
2859 if (code == TYPE_CODE_FLT)
2860 {
75bc7ddf
AC
2861 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2862 floating-point value was valid (using the macro
2863 INVALID_FLOAT). That test/macro have been removed.
2864
2865 It turns out that only the VAX defined this macro and then
2866 only in a non-portable way. Fixing the portability problem
2867 wouldn't help since the VAX floating-point code is also badly
2868 bit-rotten. The target needs to add definitions for the
ea06eb3d 2869 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2870 exactly describe the target floating-point format. The
2871 problem here is that the corresponding floatformat_vax_f and
2872 floatformat_vax_d values these methods should be set to are
2873 also not defined either. Oops!
2874
2875 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2876 definitions and the new cases for floatformat_is_valid (). */
2877
2878 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2879 {
2880 *invp = 1;
2881 return 0.0;
2882 }
2883
96d2f608 2884 return extract_typed_floating (valaddr, type);
c906108c 2885 }
4ef30785 2886 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2887 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2888 else if (nosign)
2889 {
2890 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2891 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2892 }
2893 else
2894 {
2895 /* Signed -- we are OK with unpack_long. */
2896 return unpack_long (type, valaddr);
2897 }
2898}
2899
2900/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2901 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2902 We don't assume any alignment for the raw data. Return value is in
2903 host byte order.
2904
2905 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2906 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2907
2908 C++: It is assumed that the front-end has taken care of
2909 all matters concerning pointers to members. A pointer
2910 to member which reaches here is considered to be equivalent
2911 to an INT (or some size). After all, it is only an offset. */
2912
2913CORE_ADDR
fc1a4b47 2914unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2915{
2916 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2917 whether we want this to be true eventually. */
2918 return unpack_long (type, valaddr);
2919}
4478b372 2920
c906108c 2921\f
1596cb5d 2922/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2923 TYPE. */
c906108c 2924
f23631e4 2925struct value *
fba45db2 2926value_static_field (struct type *type, int fieldno)
c906108c 2927{
948e66d9
DJ
2928 struct value *retval;
2929
1596cb5d 2930 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2931 {
1596cb5d 2932 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2933 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2934 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2935 break;
2936 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2937 {
ff355380 2938 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2939 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2940 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2941
948e66d9 2942 if (sym == NULL)
c906108c 2943 {
a109c7c1 2944 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2945 reported as non-debuggable symbols. */
3b7344d5
TT
2946 struct bound_minimal_symbol msym
2947 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2948
3b7344d5 2949 if (!msym.minsym)
686d4def 2950 return allocate_optimized_out_value (type);
c906108c 2951 else
c5aa993b 2952 {
52e9fde8 2953 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2954 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2955 }
2956 }
2957 else
515ed532 2958 retval = value_of_variable (sym, NULL);
1596cb5d 2959 break;
c906108c 2960 }
1596cb5d 2961 default:
f3574227 2962 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2963 }
2964
948e66d9 2965 return retval;
c906108c
SS
2966}
2967
4dfea560
DE
2968/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2969 You have to be careful here, since the size of the data area for the value
2970 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2971 than the old enclosing type, you have to allocate more space for the
2972 data. */
2b127877 2973
4dfea560
DE
2974void
2975set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2976{
3e3d7139
JG
2977 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2978 val->contents =
2979 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2980
2981 val->enclosing_type = new_encl_type;
2b127877
DB
2982}
2983
c906108c
SS
2984/* Given a value ARG1 (offset by OFFSET bytes)
2985 of a struct or union type ARG_TYPE,
2986 extract and return the value of one of its (non-static) fields.
581e13c1 2987 FIELDNO says which field. */
c906108c 2988
f23631e4
AC
2989struct value *
2990value_primitive_field (struct value *arg1, int offset,
aa1ee363 2991 int fieldno, struct type *arg_type)
c906108c 2992{
f23631e4 2993 struct value *v;
52f0bd74 2994 struct type *type;
c906108c 2995
f168693b 2996 arg_type = check_typedef (arg_type);
c906108c 2997 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2998
2999 /* Call check_typedef on our type to make sure that, if TYPE
3000 is a TYPE_CODE_TYPEDEF, its length is set to the length
3001 of the target type instead of zero. However, we do not
3002 replace the typedef type by the target type, because we want
3003 to keep the typedef in order to be able to print the type
3004 description correctly. */
3005 check_typedef (type);
c906108c 3006
691a26f5 3007 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3008 {
22c05d8a
JK
3009 /* Handle packed fields.
3010
3011 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3012 set. If possible, arrange offset and bitpos so that we can
3013 do a single aligned read of the size of the containing type.
3014 Otherwise, adjust offset to the byte containing the first
3015 bit. Assume that the address, offset, and embedded offset
3016 are sufficiently aligned. */
22c05d8a 3017
4ea48cc1
DJ
3018 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3019 int container_bitsize = TYPE_LENGTH (type) * 8;
3020
9a0dc9e3
PA
3021 v = allocate_value_lazy (type);
3022 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3023 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3024 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3025 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3026 else
9a0dc9e3
PA
3027 v->bitpos = bitpos % 8;
3028 v->offset = (value_embedded_offset (arg1)
3029 + offset
3030 + (bitpos - v->bitpos) / 8);
3031 set_value_parent (v, arg1);
3032 if (!value_lazy (arg1))
3033 value_fetch_lazy (v);
c906108c
SS
3034 }
3035 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3036 {
3037 /* This field is actually a base subobject, so preserve the
39d37385
PA
3038 entire object's contents for later references to virtual
3039 bases, etc. */
be335936 3040 int boffset;
a4e2ee12
DJ
3041
3042 /* Lazy register values with offsets are not supported. */
3043 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3044 value_fetch_lazy (arg1);
3045
9a0dc9e3
PA
3046 /* We special case virtual inheritance here because this
3047 requires access to the contents, which we would rather avoid
3048 for references to ordinary fields of unavailable values. */
3049 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3050 boffset = baseclass_offset (arg_type, fieldno,
3051 value_contents (arg1),
3052 value_embedded_offset (arg1),
3053 value_address (arg1),
3054 arg1);
c906108c 3055 else
9a0dc9e3 3056 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3057
9a0dc9e3
PA
3058 if (value_lazy (arg1))
3059 v = allocate_value_lazy (value_enclosing_type (arg1));
3060 else
3061 {
3062 v = allocate_value (value_enclosing_type (arg1));
3063 value_contents_copy_raw (v, 0, arg1, 0,
3064 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3065 }
9a0dc9e3
PA
3066 v->type = type;
3067 v->offset = value_offset (arg1);
3068 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3069 }
3070 else
3071 {
3072 /* Plain old data member */
3073 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
3074
3075 /* Lazy register values with offsets are not supported. */
3076 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3077 value_fetch_lazy (arg1);
3078
9a0dc9e3 3079 if (value_lazy (arg1))
3e3d7139 3080 v = allocate_value_lazy (type);
c906108c 3081 else
3e3d7139
JG
3082 {
3083 v = allocate_value (type);
39d37385
PA
3084 value_contents_copy_raw (v, value_embedded_offset (v),
3085 arg1, value_embedded_offset (arg1) + offset,
3086 TYPE_LENGTH (type));
3e3d7139 3087 }
df407dfe 3088 v->offset = (value_offset (arg1) + offset
13c3b5f5 3089 + value_embedded_offset (arg1));
c906108c 3090 }
74bcbdf3 3091 set_value_component_location (v, arg1);
9ee8fc9d 3092 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3093 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3094 return v;
3095}
3096
3097/* Given a value ARG1 of a struct or union type,
3098 extract and return the value of one of its (non-static) fields.
581e13c1 3099 FIELDNO says which field. */
c906108c 3100
f23631e4 3101struct value *
aa1ee363 3102value_field (struct value *arg1, int fieldno)
c906108c 3103{
df407dfe 3104 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3105}
3106
3107/* Return a non-virtual function as a value.
3108 F is the list of member functions which contains the desired method.
0478d61c
FF
3109 J is an index into F which provides the desired method.
3110
3111 We only use the symbol for its address, so be happy with either a
581e13c1 3112 full symbol or a minimal symbol. */
c906108c 3113
f23631e4 3114struct value *
3e43a32a
MS
3115value_fn_field (struct value **arg1p, struct fn_field *f,
3116 int j, struct type *type,
fba45db2 3117 int offset)
c906108c 3118{
f23631e4 3119 struct value *v;
52f0bd74 3120 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3121 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3122 struct symbol *sym;
7c7b6655 3123 struct bound_minimal_symbol msym;
c906108c 3124
2570f2b7 3125 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 3126 if (sym != NULL)
0478d61c 3127 {
7c7b6655 3128 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3129 }
3130 else
3131 {
3132 gdb_assert (sym == NULL);
7c7b6655
TT
3133 msym = lookup_bound_minimal_symbol (physname);
3134 if (msym.minsym == NULL)
5ae326fa 3135 return NULL;
0478d61c
FF
3136 }
3137
c906108c 3138 v = allocate_value (ftype);
0478d61c
FF
3139 if (sym)
3140 {
42ae5230 3141 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3142 }
3143 else
3144 {
bccdca4a
UW
3145 /* The minimal symbol might point to a function descriptor;
3146 resolve it to the actual code address instead. */
7c7b6655 3147 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149
42ae5230
TT
3150 set_value_address (v,
3151 gdbarch_convert_from_func_ptr_addr
77e371c0 3152 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3153 }
c906108c
SS
3154
3155 if (arg1p)
c5aa993b 3156 {
df407dfe 3157 if (type != value_type (*arg1p))
c5aa993b
JM
3158 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3159 value_addr (*arg1p)));
3160
070ad9f0 3161 /* Move the `this' pointer according to the offset.
581e13c1 3162 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3163 }
3164
3165 return v;
3166}
3167
c906108c 3168\f
c906108c 3169
4875ffdb
PA
3170/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3171 VALADDR, and store the result in *RESULT.
3172 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3173
4875ffdb
PA
3174 Extracting bits depends on endianness of the machine. Compute the
3175 number of least significant bits to discard. For big endian machines,
3176 we compute the total number of bits in the anonymous object, subtract
3177 off the bit count from the MSB of the object to the MSB of the
3178 bitfield, then the size of the bitfield, which leaves the LSB discard
3179 count. For little endian machines, the discard count is simply the
3180 number of bits from the LSB of the anonymous object to the LSB of the
3181 bitfield.
3182
3183 If the field is signed, we also do sign extension. */
3184
3185static LONGEST
3186unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3187 int bitpos, int bitsize)
c906108c 3188{
4ea48cc1 3189 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3190 ULONGEST val;
3191 ULONGEST valmask;
c906108c 3192 int lsbcount;
4a76eae5 3193 int bytes_read;
5467c6c8 3194 int read_offset;
c906108c 3195
4a76eae5
DJ
3196 /* Read the minimum number of bytes required; there may not be
3197 enough bytes to read an entire ULONGEST. */
f168693b 3198 field_type = check_typedef (field_type);
4a76eae5
DJ
3199 if (bitsize)
3200 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3201 else
3202 bytes_read = TYPE_LENGTH (field_type);
3203
5467c6c8
PA
3204 read_offset = bitpos / 8;
3205
4875ffdb 3206 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3207 bytes_read, byte_order);
c906108c 3208
581e13c1 3209 /* Extract bits. See comment above. */
c906108c 3210
4ea48cc1 3211 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3212 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3213 else
3214 lsbcount = (bitpos % 8);
3215 val >>= lsbcount;
3216
3217 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3218 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3219
3220 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3221 {
3222 valmask = (((ULONGEST) 1) << bitsize) - 1;
3223 val &= valmask;
3224 if (!TYPE_UNSIGNED (field_type))
3225 {
3226 if (val & (valmask ^ (valmask >> 1)))
3227 {
3228 val |= ~valmask;
3229 }
3230 }
3231 }
5467c6c8 3232
4875ffdb 3233 return val;
5467c6c8
PA
3234}
3235
3236/* Unpack a field FIELDNO of the specified TYPE, from the object at
3237 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3238 ORIGINAL_VALUE, which must not be NULL. See
3239 unpack_value_bits_as_long for more details. */
3240
3241int
3242unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3243 int embedded_offset, int fieldno,
3244 const struct value *val, LONGEST *result)
3245{
4875ffdb
PA
3246 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3247 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3248 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3249 int bit_offset;
3250
5467c6c8
PA
3251 gdb_assert (val != NULL);
3252
4875ffdb
PA
3253 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3254 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3255 || !value_bits_available (val, bit_offset, bitsize))
3256 return 0;
3257
3258 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3259 bitpos, bitsize);
3260 return 1;
5467c6c8
PA
3261}
3262
3263/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3264 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3265
3266LONGEST
3267unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3268{
4875ffdb
PA
3269 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3270 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3271 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3272
4875ffdb
PA
3273 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3274}
3275
3276/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3277 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3278 the contents in DEST_VAL, zero or sign extending if the type of
3279 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3280 VAL. If the VAL's contents required to extract the bitfield from
3281 are unavailable/optimized out, DEST_VAL is correspondingly
3282 marked unavailable/optimized out. */
3283
bb9d5f81 3284void
4875ffdb
PA
3285unpack_value_bitfield (struct value *dest_val,
3286 int bitpos, int bitsize,
3287 const gdb_byte *valaddr, int embedded_offset,
3288 const struct value *val)
3289{
3290 enum bfd_endian byte_order;
3291 int src_bit_offset;
3292 int dst_bit_offset;
3293 LONGEST num;
3294 struct type *field_type = value_type (dest_val);
3295
3296 /* First, unpack and sign extend the bitfield as if it was wholly
3297 available. Invalid/unavailable bits are read as zero, but that's
3298 OK, as they'll end up marked below. */
3299 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3300 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3301 bitpos, bitsize);
3302 store_signed_integer (value_contents_raw (dest_val),
3303 TYPE_LENGTH (field_type), byte_order, num);
3304
3305 /* Now copy the optimized out / unavailability ranges to the right
3306 bits. */
3307 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3308 if (byte_order == BFD_ENDIAN_BIG)
3309 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3310 else
3311 dst_bit_offset = 0;
3312 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3313 val, src_bit_offset, bitsize);
5467c6c8
PA
3314}
3315
3316/* Return a new value with type TYPE, which is FIELDNO field of the
3317 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3318 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3319 from are unavailable/optimized out, the new value is
3320 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3321
3322struct value *
3323value_field_bitfield (struct type *type, int fieldno,
3324 const gdb_byte *valaddr,
3325 int embedded_offset, const struct value *val)
3326{
4875ffdb
PA
3327 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3328 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3329 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3330
4875ffdb
PA
3331 unpack_value_bitfield (res_val, bitpos, bitsize,
3332 valaddr, embedded_offset, val);
3333
3334 return res_val;
4ea48cc1
DJ
3335}
3336
c906108c
SS
3337/* Modify the value of a bitfield. ADDR points to a block of memory in
3338 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3339 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3340 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3341 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3342 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3343
3344void
50810684
UW
3345modify_field (struct type *type, gdb_byte *addr,
3346 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3347{
e17a4113 3348 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3349 ULONGEST oword;
3350 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3351 int bytesize;
3352
3353 /* Normalize BITPOS. */
3354 addr += bitpos / 8;
3355 bitpos %= 8;
c906108c
SS
3356
3357 /* If a negative fieldval fits in the field in question, chop
3358 off the sign extension bits. */
f4e88c8e
PH
3359 if ((~fieldval & ~(mask >> 1)) == 0)
3360 fieldval &= mask;
c906108c
SS
3361
3362 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3363 if (0 != (fieldval & ~mask))
c906108c
SS
3364 {
3365 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3366 we don't have a sprintf_longest. */
8a3fe4f8 3367 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3368
3369 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3370 fieldval &= mask;
c906108c
SS
3371 }
3372
19f220c3
JK
3373 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3374 false valgrind reports. */
3375
3376 bytesize = (bitpos + bitsize + 7) / 8;
3377 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3378
3379 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3380 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3381 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3382
f4e88c8e 3383 oword &= ~(mask << bitpos);
c906108c
SS
3384 oword |= fieldval << bitpos;
3385
19f220c3 3386 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3387}
3388\f
14d06750 3389/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3390
14d06750
DJ
3391void
3392pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3393{
e17a4113 3394 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3395 int len;
14d06750
DJ
3396
3397 type = check_typedef (type);
c906108c
SS
3398 len = TYPE_LENGTH (type);
3399
14d06750 3400 switch (TYPE_CODE (type))
c906108c 3401 {
c906108c
SS
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_ENUM:
4f2aea11 3405 case TYPE_CODE_FLAGS:
c906108c
SS
3406 case TYPE_CODE_BOOL:
3407 case TYPE_CODE_RANGE:
0d5de010 3408 case TYPE_CODE_MEMBERPTR:
e17a4113 3409 store_signed_integer (buf, len, byte_order, num);
c906108c 3410 break;
c5aa993b 3411
c906108c
SS
3412 case TYPE_CODE_REF:
3413 case TYPE_CODE_PTR:
14d06750 3414 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3415 break;
c5aa993b 3416
c906108c 3417 default:
14d06750
DJ
3418 error (_("Unexpected type (%d) encountered for integer constant."),
3419 TYPE_CODE (type));
c906108c 3420 }
14d06750
DJ
3421}
3422
3423
595939de
PM
3424/* Pack NUM into BUF using a target format of TYPE. */
3425
70221824 3426static void
595939de
PM
3427pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3428{
3429 int len;
3430 enum bfd_endian byte_order;
3431
3432 type = check_typedef (type);
3433 len = TYPE_LENGTH (type);
3434 byte_order = gdbarch_byte_order (get_type_arch (type));
3435
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_INT:
3439 case TYPE_CODE_CHAR:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_FLAGS:
3442 case TYPE_CODE_BOOL:
3443 case TYPE_CODE_RANGE:
3444 case TYPE_CODE_MEMBERPTR:
3445 store_unsigned_integer (buf, len, byte_order, num);
3446 break;
3447
3448 case TYPE_CODE_REF:
3449 case TYPE_CODE_PTR:
3450 store_typed_address (buf, type, (CORE_ADDR) num);
3451 break;
3452
3453 default:
3e43a32a
MS
3454 error (_("Unexpected type (%d) encountered "
3455 "for unsigned integer constant."),
595939de
PM
3456 TYPE_CODE (type));
3457 }
3458}
3459
3460
14d06750
DJ
3461/* Convert C numbers into newly allocated values. */
3462
3463struct value *
3464value_from_longest (struct type *type, LONGEST num)
3465{
3466 struct value *val = allocate_value (type);
3467
3468 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3469 return val;
3470}
3471
4478b372 3472
595939de
PM
3473/* Convert C unsigned numbers into newly allocated values. */
3474
3475struct value *
3476value_from_ulongest (struct type *type, ULONGEST num)
3477{
3478 struct value *val = allocate_value (type);
3479
3480 pack_unsigned_long (value_contents_raw (val), type, num);
3481
3482 return val;
3483}
3484
3485
4478b372 3486/* Create a value representing a pointer of type TYPE to the address
cb417230 3487 ADDR. */
80180f79 3488
f23631e4 3489struct value *
4478b372
JB
3490value_from_pointer (struct type *type, CORE_ADDR addr)
3491{
cb417230 3492 struct value *val = allocate_value (type);
a109c7c1 3493
80180f79 3494 store_typed_address (value_contents_raw (val),
cb417230 3495 check_typedef (type), addr);
4478b372
JB
3496 return val;
3497}
3498
3499
012370f6
TT
3500/* Create a value of type TYPE whose contents come from VALADDR, if it
3501 is non-null, and whose memory address (in the inferior) is
3502 ADDRESS. The type of the created value may differ from the passed
3503 type TYPE. Make sure to retrieve values new type after this call.
3504 Note that TYPE is not passed through resolve_dynamic_type; this is
3505 a special API intended for use only by Ada. */
3506
3507struct value *
3508value_from_contents_and_address_unresolved (struct type *type,
3509 const gdb_byte *valaddr,
3510 CORE_ADDR address)
3511{
3512 struct value *v;
3513
3514 if (valaddr == NULL)
3515 v = allocate_value_lazy (type);
3516 else
3517 v = value_from_contents (type, valaddr);
3518 set_value_address (v, address);
3519 VALUE_LVAL (v) = lval_memory;
3520 return v;
3521}
3522
8acb6b92
TT
3523/* Create a value of type TYPE whose contents come from VALADDR, if it
3524 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3525 ADDRESS. The type of the created value may differ from the passed
3526 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3527
3528struct value *
3529value_from_contents_and_address (struct type *type,
3530 const gdb_byte *valaddr,
3531 CORE_ADDR address)
3532{
c3345124 3533 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3534 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3535 struct value *v;
a109c7c1 3536
8acb6b92 3537 if (valaddr == NULL)
80180f79 3538 v = allocate_value_lazy (resolved_type);
8acb6b92 3539 else
80180f79 3540 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3541 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3542 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3543 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3544 set_value_address (v, address);
33d502b4 3545 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3546 return v;
3547}
3548
8a9b8146
TT
3549/* Create a value of type TYPE holding the contents CONTENTS.
3550 The new value is `not_lval'. */
3551
3552struct value *
3553value_from_contents (struct type *type, const gdb_byte *contents)
3554{
3555 struct value *result;
3556
3557 result = allocate_value (type);
3558 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3559 return result;
3560}
3561
f23631e4 3562struct value *
fba45db2 3563value_from_double (struct type *type, DOUBLEST num)
c906108c 3564{
f23631e4 3565 struct value *val = allocate_value (type);
c906108c 3566 struct type *base_type = check_typedef (type);
52f0bd74 3567 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3568
3569 if (code == TYPE_CODE_FLT)
3570 {
990a07ab 3571 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3572 }
3573 else
8a3fe4f8 3574 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3575
3576 return val;
3577}
994b9211 3578
27bc4d80 3579struct value *
4ef30785 3580value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3581{
3582 struct value *val = allocate_value (type);
27bc4d80 3583
4ef30785 3584 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3585 return val;
3586}
3587
3bd0f5ef
MS
3588/* Extract a value from the history file. Input will be of the form
3589 $digits or $$digits. See block comment above 'write_dollar_variable'
3590 for details. */
3591
3592struct value *
e799154c 3593value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3594{
3595 int index, len;
3596
3597 if (h[0] == '$')
3598 len = 1;
3599 else
3600 return NULL;
3601
3602 if (h[1] == '$')
3603 len = 2;
3604
3605 /* Find length of numeral string. */
3606 for (; isdigit (h[len]); len++)
3607 ;
3608
3609 /* Make sure numeral string is not part of an identifier. */
3610 if (h[len] == '_' || isalpha (h[len]))
3611 return NULL;
3612
3613 /* Now collect the index value. */
3614 if (h[1] == '$')
3615 {
3616 if (len == 2)
3617 {
3618 /* For some bizarre reason, "$$" is equivalent to "$$1",
3619 rather than to "$$0" as it ought to be! */
3620 index = -1;
3621 *endp += len;
3622 }
3623 else
e799154c
TT
3624 {
3625 char *local_end;
3626
3627 index = -strtol (&h[2], &local_end, 10);
3628 *endp = local_end;
3629 }
3bd0f5ef
MS
3630 }
3631 else
3632 {
3633 if (len == 1)
3634 {
3635 /* "$" is equivalent to "$0". */
3636 index = 0;
3637 *endp += len;
3638 }
3639 else
e799154c
TT
3640 {
3641 char *local_end;
3642
3643 index = strtol (&h[1], &local_end, 10);
3644 *endp = local_end;
3645 }
3bd0f5ef
MS
3646 }
3647
3648 return access_value_history (index);
3649}
3650
a471c594
JK
3651struct value *
3652coerce_ref_if_computed (const struct value *arg)
3653{
3654 const struct lval_funcs *funcs;
3655
3656 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3657 return NULL;
3658
3659 if (value_lval_const (arg) != lval_computed)
3660 return NULL;
3661
3662 funcs = value_computed_funcs (arg);
3663 if (funcs->coerce_ref == NULL)
3664 return NULL;
3665
3666 return funcs->coerce_ref (arg);
3667}
3668
dfcee124
AG
3669/* Look at value.h for description. */
3670
3671struct value *
3672readjust_indirect_value_type (struct value *value, struct type *enc_type,
3673 struct type *original_type,
3674 struct value *original_value)
3675{
3676 /* Re-adjust type. */
3677 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3678
3679 /* Add embedding info. */
3680 set_value_enclosing_type (value, enc_type);
3681 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3682
3683 /* We may be pointing to an object of some derived type. */
3684 return value_full_object (value, NULL, 0, 0, 0);
3685}
3686
994b9211
AC
3687struct value *
3688coerce_ref (struct value *arg)
3689{
df407dfe 3690 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3691 struct value *retval;
dfcee124 3692 struct type *enc_type;
a109c7c1 3693
a471c594
JK
3694 retval = coerce_ref_if_computed (arg);
3695 if (retval)
3696 return retval;
3697
3698 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3699 return arg;
3700
dfcee124
AG
3701 enc_type = check_typedef (value_enclosing_type (arg));
3702 enc_type = TYPE_TARGET_TYPE (enc_type);
3703
3704 retval = value_at_lazy (enc_type,
3705 unpack_pointer (value_type (arg),
3706 value_contents (arg)));
9f1f738a 3707 enc_type = value_type (retval);
dfcee124
AG
3708 return readjust_indirect_value_type (retval, enc_type,
3709 value_type_arg_tmp, arg);
994b9211
AC
3710}
3711
3712struct value *
3713coerce_array (struct value *arg)
3714{
f3134b88
TT
3715 struct type *type;
3716
994b9211 3717 arg = coerce_ref (arg);
f3134b88
TT
3718 type = check_typedef (value_type (arg));
3719
3720 switch (TYPE_CODE (type))
3721 {
3722 case TYPE_CODE_ARRAY:
7346b668 3723 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3724 arg = value_coerce_array (arg);
3725 break;
3726 case TYPE_CODE_FUNC:
3727 arg = value_coerce_function (arg);
3728 break;
3729 }
994b9211
AC
3730 return arg;
3731}
c906108c 3732\f
c906108c 3733
bbfdfe1c
DM
3734/* Return the return value convention that will be used for the
3735 specified type. */
3736
3737enum return_value_convention
3738struct_return_convention (struct gdbarch *gdbarch,
3739 struct value *function, struct type *value_type)
3740{
3741 enum type_code code = TYPE_CODE (value_type);
3742
3743 if (code == TYPE_CODE_ERROR)
3744 error (_("Function return type unknown."));
3745
3746 /* Probe the architecture for the return-value convention. */
3747 return gdbarch_return_value (gdbarch, function, value_type,
3748 NULL, NULL, NULL);
3749}
3750
48436ce6
AC
3751/* Return true if the function returning the specified type is using
3752 the convention of returning structures in memory (passing in the
82585c72 3753 address as a hidden first parameter). */
c906108c
SS
3754
3755int
d80b854b 3756using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3757 struct value *function, struct type *value_type)
c906108c 3758{
bbfdfe1c 3759 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3760 /* A void return value is never in memory. See also corresponding
44e5158b 3761 code in "print_return_value". */
667e784f
AC
3762 return 0;
3763
bbfdfe1c 3764 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3765 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3766}
3767
42be36b3
CT
3768/* Set the initialized field in a value struct. */
3769
3770void
3771set_value_initialized (struct value *val, int status)
3772{
3773 val->initialized = status;
3774}
3775
3776/* Return the initialized field in a value struct. */
3777
3778int
3779value_initialized (struct value *val)
3780{
3781 return val->initialized;
3782}
3783
a844296a
SM
3784/* Load the actual content of a lazy value. Fetch the data from the
3785 user's process and clear the lazy flag to indicate that the data in
3786 the buffer is valid.
a58e2656
AB
3787
3788 If the value is zero-length, we avoid calling read_memory, which
3789 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3790 it. */
a58e2656 3791
a844296a 3792void
a58e2656
AB
3793value_fetch_lazy (struct value *val)
3794{
3795 gdb_assert (value_lazy (val));
3796 allocate_value_contents (val);
9a0dc9e3
PA
3797 /* A value is either lazy, or fully fetched. The
3798 availability/validity is only established as we try to fetch a
3799 value. */
3800 gdb_assert (VEC_empty (range_s, val->optimized_out));
3801 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3802 if (value_bitsize (val))
3803 {
3804 /* To read a lazy bitfield, read the entire enclosing value. This
3805 prevents reading the same block of (possibly volatile) memory once
3806 per bitfield. It would be even better to read only the containing
3807 word, but we have no way to record that just specific bits of a
3808 value have been fetched. */
3809 struct type *type = check_typedef (value_type (val));
a58e2656 3810 struct value *parent = value_parent (val);
a58e2656 3811
b0c54aa5
AB
3812 if (value_lazy (parent))
3813 value_fetch_lazy (parent);
3814
4875ffdb
PA
3815 unpack_value_bitfield (val,
3816 value_bitpos (val), value_bitsize (val),
3817 value_contents_for_printing (parent),
3818 value_offset (val), parent);
a58e2656
AB
3819 }
3820 else if (VALUE_LVAL (val) == lval_memory)
3821 {
3822 CORE_ADDR addr = value_address (val);
3823 struct type *type = check_typedef (value_enclosing_type (val));
3824
3825 if (TYPE_LENGTH (type))
3826 read_value_memory (val, 0, value_stack (val),
3827 addr, value_contents_all_raw (val),
3828 TYPE_LENGTH (type));
3829 }
3830 else if (VALUE_LVAL (val) == lval_register)
3831 {
3832 struct frame_info *frame;
3833 int regnum;
3834 struct type *type = check_typedef (value_type (val));
3835 struct value *new_val = val, *mark = value_mark ();
3836
3837 /* Offsets are not supported here; lazy register values must
3838 refer to the entire register. */
3839 gdb_assert (value_offset (val) == 0);
3840
3841 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3842 {
6eeee81c
TT
3843 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3844
3845 frame = frame_find_by_id (frame_id);
a58e2656
AB
3846 regnum = VALUE_REGNUM (new_val);
3847
3848 gdb_assert (frame != NULL);
3849
3850 /* Convertible register routines are used for multi-register
3851 values and for interpretation in different types
3852 (e.g. float or int from a double register). Lazy
3853 register values should have the register's natural type,
3854 so they do not apply. */
3855 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3856 regnum, type));
3857
3858 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3859
3860 /* If we get another lazy lval_register value, it means the
3861 register is found by reading it from the next frame.
3862 get_frame_register_value should never return a value with
3863 the frame id pointing to FRAME. If it does, it means we
3864 either have two consecutive frames with the same frame id
3865 in the frame chain, or some code is trying to unwind
3866 behind get_prev_frame's back (e.g., a frame unwind
3867 sniffer trying to unwind), bypassing its validations. In
3868 any case, it should always be an internal error to end up
3869 in this situation. */
3870 if (VALUE_LVAL (new_val) == lval_register
3871 && value_lazy (new_val)
3872 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3873 internal_error (__FILE__, __LINE__,
3874 _("infinite loop while fetching a register"));
a58e2656
AB
3875 }
3876
3877 /* If it's still lazy (for instance, a saved register on the
3878 stack), fetch it. */
3879 if (value_lazy (new_val))
3880 value_fetch_lazy (new_val);
3881
9a0dc9e3
PA
3882 /* Copy the contents and the unavailability/optimized-out
3883 meta-data from NEW_VAL to VAL. */
3884 set_value_lazy (val, 0);
3885 value_contents_copy (val, value_embedded_offset (val),
3886 new_val, value_embedded_offset (new_val),
3887 TYPE_LENGTH (type));
a58e2656
AB
3888
3889 if (frame_debug)
3890 {
3891 struct gdbarch *gdbarch;
3892 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3893 regnum = VALUE_REGNUM (val);
3894 gdbarch = get_frame_arch (frame);
3895
3896 fprintf_unfiltered (gdb_stdlog,
3897 "{ value_fetch_lazy "
3898 "(frame=%d,regnum=%d(%s),...) ",
3899 frame_relative_level (frame), regnum,
3900 user_reg_map_regnum_to_name (gdbarch, regnum));
3901
3902 fprintf_unfiltered (gdb_stdlog, "->");
3903 if (value_optimized_out (new_val))
f6c01fc5
AB
3904 {
3905 fprintf_unfiltered (gdb_stdlog, " ");
3906 val_print_optimized_out (new_val, gdb_stdlog);
3907 }
a58e2656
AB
3908 else
3909 {
3910 int i;
3911 const gdb_byte *buf = value_contents (new_val);
3912
3913 if (VALUE_LVAL (new_val) == lval_register)
3914 fprintf_unfiltered (gdb_stdlog, " register=%d",
3915 VALUE_REGNUM (new_val));
3916 else if (VALUE_LVAL (new_val) == lval_memory)
3917 fprintf_unfiltered (gdb_stdlog, " address=%s",
3918 paddress (gdbarch,
3919 value_address (new_val)));
3920 else
3921 fprintf_unfiltered (gdb_stdlog, " computed");
3922
3923 fprintf_unfiltered (gdb_stdlog, " bytes=");
3924 fprintf_unfiltered (gdb_stdlog, "[");
3925 for (i = 0; i < register_size (gdbarch, regnum); i++)
3926 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3927 fprintf_unfiltered (gdb_stdlog, "]");
3928 }
3929
3930 fprintf_unfiltered (gdb_stdlog, " }\n");
3931 }
3932
3933 /* Dispose of the intermediate values. This prevents
3934 watchpoints from trying to watch the saved frame pointer. */
3935 value_free_to_mark (mark);
3936 }
3937 else if (VALUE_LVAL (val) == lval_computed
3938 && value_computed_funcs (val)->read != NULL)
3939 value_computed_funcs (val)->read (val);
a58e2656
AB
3940 else
3941 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3942
3943 set_value_lazy (val, 0);
a58e2656
AB
3944}
3945
a280dbd1
SDJ
3946/* Implementation of the convenience function $_isvoid. */
3947
3948static struct value *
3949isvoid_internal_fn (struct gdbarch *gdbarch,
3950 const struct language_defn *language,
3951 void *cookie, int argc, struct value **argv)
3952{
3953 int ret;
3954
3955 if (argc != 1)
6bc305f5 3956 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3957
3958 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3959
3960 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3961}
3962
c906108c 3963void
fba45db2 3964_initialize_values (void)
c906108c 3965{
1a966eab 3966 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3967Debugger convenience (\"$foo\") variables and functions.\n\
3968Convenience variables are created when you assign them values;\n\
3969thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3970\n\
c906108c
SS
3971A few convenience variables are given values automatically:\n\
3972\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3973\"$__\" holds the contents of the last address examined with \"x\"."
3974#ifdef HAVE_PYTHON
3975"\n\n\
3976Convenience functions are defined via the Python API."
3977#endif
3978 ), &showlist);
7e20dfcd 3979 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3980
db5f229b 3981 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3982Elements of value history around item number IDX (or last ten)."),
c906108c 3983 &showlist);
53e5f3cf
AS
3984
3985 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3986Initialize a convenience variable if necessary.\n\
3987init-if-undefined VARIABLE = EXPRESSION\n\
3988Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3989exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3990VARIABLE is already initialized."));
bc3b79fd
TJB
3991
3992 add_prefix_cmd ("function", no_class, function_command, _("\
3993Placeholder command for showing help on convenience functions."),
3994 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3995
3996 add_internal_function ("_isvoid", _("\
3997Check whether an expression is void.\n\
3998Usage: $_isvoid (expression)\n\
3999Return 1 if the expression is void, zero otherwise."),
4000 isvoid_internal_fn, NULL);
c906108c 4001}
This page took 2.601329 seconds and 4 git commands to generate.