* Makefile.in (VERSION,DIST,LINT,LINTFLAGS): Delete, unused.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4f2aea11 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
c906108c 40
a08702d6
TJB
41#include "python/python.h"
42
c906108c
SS
43/* Prototypes for exported functions. */
44
a14ed312 45void _initialize_values (void);
c906108c 46
91294c83
AC
47struct value
48{
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
32c9a795
MD
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
a08702d6
TJB
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
91294c83
AC
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
91294c83
AC
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
42be36b3
CT
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
91294c83
AC
166 /* Actual contents of the value. For use of this value; setting it
167 uses the stuff above. Not valid if lazy is nonzero. Target
168 byte-order. We force it to be aligned properly for any possible
169 value. Note that a value therefore extends beyond what is
170 declared here. */
171 union
172 {
fc1a4b47 173 gdb_byte contents[1];
91294c83
AC
174 DOUBLEST force_doublest_align;
175 LONGEST force_longest_align;
176 CORE_ADDR force_core_addr_align;
177 void *force_pointer_align;
178 } aligner;
179 /* Do not add any new members here -- contents above will trash
180 them. */
181};
182
c906108c
SS
183/* Prototypes for local functions. */
184
a14ed312 185static void show_values (char *, int);
c906108c 186
a14ed312 187static void show_convenience (char *, int);
c906108c 188
c906108c
SS
189
190/* The value-history records all the values printed
191 by print commands during this session. Each chunk
192 records 60 consecutive values. The first chunk on
193 the chain records the most recent values.
194 The total number of values is in value_history_count. */
195
196#define VALUE_HISTORY_CHUNK 60
197
198struct value_history_chunk
c5aa993b
JM
199 {
200 struct value_history_chunk *next;
f23631e4 201 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 202 };
c906108c
SS
203
204/* Chain of chunks now in use. */
205
206static struct value_history_chunk *value_history_chain;
207
208static int value_history_count; /* Abs number of last entry stored */
209\f
210/* List of all value objects currently allocated
211 (except for those released by calls to release_value)
212 This is so they can be freed after each command. */
213
f23631e4 214static struct value *all_values;
c906108c
SS
215
216/* Allocate a value that has the correct length for type TYPE. */
217
f23631e4 218struct value *
fba45db2 219allocate_value (struct type *type)
c906108c 220{
f23631e4 221 struct value *val;
c906108c
SS
222 struct type *atype = check_typedef (type);
223
5b90c7b5 224 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 225 val->next = all_values;
c906108c 226 all_values = val;
df407dfe 227 val->type = type;
4754a64e 228 val->enclosing_type = type;
c906108c
SS
229 VALUE_LVAL (val) = not_lval;
230 VALUE_ADDRESS (val) = 0;
1df6926e 231 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
232 val->offset = 0;
233 val->bitpos = 0;
234 val->bitsize = 0;
9ee8fc9d 235 VALUE_REGNUM (val) = -1;
d69fe07e 236 val->lazy = 0;
feb13ab0 237 val->optimized_out = 0;
13c3b5f5 238 val->embedded_offset = 0;
b44d461b 239 val->pointed_to_offset = 0;
c906108c 240 val->modifiable = 1;
42be36b3 241 val->initialized = 1; /* Default to initialized. */
c906108c
SS
242 return val;
243}
244
245/* Allocate a value that has the correct length
938f5214 246 for COUNT repetitions of type TYPE. */
c906108c 247
f23631e4 248struct value *
fba45db2 249allocate_repeat_value (struct type *type, int count)
c906108c 250{
c5aa993b 251 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
252 /* FIXME-type-allocation: need a way to free this type when we are
253 done with it. */
254 struct type *range_type
6d84d3d8 255 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 256 low_bound, count + low_bound - 1);
c906108c
SS
257 /* FIXME-type-allocation: need a way to free this type when we are
258 done with it. */
259 return allocate_value (create_array_type ((struct type *) NULL,
260 type, range_type));
261}
262
a08702d6
TJB
263/* Needed if another module needs to maintain its on list of values. */
264void
265value_prepend_to_list (struct value **head, struct value *val)
266{
267 val->next = *head;
268 *head = val;
269}
270
271/* Needed if another module needs to maintain its on list of values. */
272void
273value_remove_from_list (struct value **head, struct value *val)
274{
275 struct value *prev;
276
277 if (*head == val)
278 *head = (*head)->next;
279 else
280 for (prev = *head; prev->next; prev = prev->next)
281 if (prev->next == val)
282 {
283 prev->next = val->next;
284 break;
285 }
286}
287
df407dfe
AC
288/* Accessor methods. */
289
17cf0ecd
AC
290struct value *
291value_next (struct value *value)
292{
293 return value->next;
294}
295
df407dfe
AC
296struct type *
297value_type (struct value *value)
298{
299 return value->type;
300}
04624583
AC
301void
302deprecated_set_value_type (struct value *value, struct type *type)
303{
304 value->type = type;
305}
df407dfe
AC
306
307int
308value_offset (struct value *value)
309{
310 return value->offset;
311}
f5cf64a7
AC
312void
313set_value_offset (struct value *value, int offset)
314{
315 value->offset = offset;
316}
df407dfe
AC
317
318int
319value_bitpos (struct value *value)
320{
321 return value->bitpos;
322}
9bbda503
AC
323void
324set_value_bitpos (struct value *value, int bit)
325{
326 value->bitpos = bit;
327}
df407dfe
AC
328
329int
330value_bitsize (struct value *value)
331{
332 return value->bitsize;
333}
9bbda503
AC
334void
335set_value_bitsize (struct value *value, int bit)
336{
337 value->bitsize = bit;
338}
df407dfe 339
fc1a4b47 340gdb_byte *
990a07ab
AC
341value_contents_raw (struct value *value)
342{
343 return value->aligner.contents + value->embedded_offset;
344}
345
fc1a4b47 346gdb_byte *
990a07ab
AC
347value_contents_all_raw (struct value *value)
348{
349 return value->aligner.contents;
350}
351
4754a64e
AC
352struct type *
353value_enclosing_type (struct value *value)
354{
355 return value->enclosing_type;
356}
357
fc1a4b47 358const gdb_byte *
46615f07
AC
359value_contents_all (struct value *value)
360{
361 if (value->lazy)
362 value_fetch_lazy (value);
363 return value->aligner.contents;
364}
365
d69fe07e
AC
366int
367value_lazy (struct value *value)
368{
369 return value->lazy;
370}
371
dfa52d88
AC
372void
373set_value_lazy (struct value *value, int val)
374{
375 value->lazy = val;
376}
377
fc1a4b47 378const gdb_byte *
0fd88904
AC
379value_contents (struct value *value)
380{
381 return value_contents_writeable (value);
382}
383
fc1a4b47 384gdb_byte *
0fd88904
AC
385value_contents_writeable (struct value *value)
386{
387 if (value->lazy)
388 value_fetch_lazy (value);
fc0c53a0 389 return value_contents_raw (value);
0fd88904
AC
390}
391
a6c442d8
MK
392/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
393 this function is different from value_equal; in C the operator ==
394 can return 0 even if the two values being compared are equal. */
395
396int
397value_contents_equal (struct value *val1, struct value *val2)
398{
399 struct type *type1;
400 struct type *type2;
401 int len;
402
403 type1 = check_typedef (value_type (val1));
404 type2 = check_typedef (value_type (val2));
405 len = TYPE_LENGTH (type1);
406 if (len != TYPE_LENGTH (type2))
407 return 0;
408
409 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
410}
411
feb13ab0
AC
412int
413value_optimized_out (struct value *value)
414{
415 return value->optimized_out;
416}
417
418void
419set_value_optimized_out (struct value *value, int val)
420{
421 value->optimized_out = val;
422}
13c3b5f5
AC
423
424int
425value_embedded_offset (struct value *value)
426{
427 return value->embedded_offset;
428}
429
430void
431set_value_embedded_offset (struct value *value, int val)
432{
433 value->embedded_offset = val;
434}
b44d461b
AC
435
436int
437value_pointed_to_offset (struct value *value)
438{
439 return value->pointed_to_offset;
440}
441
442void
443set_value_pointed_to_offset (struct value *value, int val)
444{
445 value->pointed_to_offset = val;
446}
13bb5560
AC
447
448enum lval_type *
449deprecated_value_lval_hack (struct value *value)
450{
451 return &value->lval;
452}
453
454CORE_ADDR *
455deprecated_value_address_hack (struct value *value)
456{
457 return &value->location.address;
458}
459
460struct internalvar **
461deprecated_value_internalvar_hack (struct value *value)
462{
463 return &value->location.internalvar;
464}
465
466struct frame_id *
467deprecated_value_frame_id_hack (struct value *value)
468{
469 return &value->frame_id;
470}
471
472short *
473deprecated_value_regnum_hack (struct value *value)
474{
475 return &value->regnum;
476}
88e3b34b
AC
477
478int
479deprecated_value_modifiable (struct value *value)
480{
481 return value->modifiable;
482}
483void
484deprecated_set_value_modifiable (struct value *value, int modifiable)
485{
486 value->modifiable = modifiable;
487}
990a07ab 488\f
c906108c
SS
489/* Return a mark in the value chain. All values allocated after the
490 mark is obtained (except for those released) are subject to being freed
491 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 492struct value *
fba45db2 493value_mark (void)
c906108c
SS
494{
495 return all_values;
496}
497
498/* Free all values allocated since MARK was obtained by value_mark
499 (except for those released). */
500void
f23631e4 501value_free_to_mark (struct value *mark)
c906108c 502{
f23631e4
AC
503 struct value *val;
504 struct value *next;
c906108c
SS
505
506 for (val = all_values; val && val != mark; val = next)
507 {
df407dfe 508 next = val->next;
c906108c
SS
509 value_free (val);
510 }
511 all_values = val;
512}
513
514/* Free all the values that have been allocated (except for those released).
515 Called after each command, successful or not. */
516
517void
fba45db2 518free_all_values (void)
c906108c 519{
f23631e4
AC
520 struct value *val;
521 struct value *next;
c906108c
SS
522
523 for (val = all_values; val; val = next)
524 {
df407dfe 525 next = val->next;
c906108c
SS
526 value_free (val);
527 }
528
529 all_values = 0;
530}
531
532/* Remove VAL from the chain all_values
533 so it will not be freed automatically. */
534
535void
f23631e4 536release_value (struct value *val)
c906108c 537{
f23631e4 538 struct value *v;
c906108c
SS
539
540 if (all_values == val)
541 {
542 all_values = val->next;
543 return;
544 }
545
546 for (v = all_values; v; v = v->next)
547 {
548 if (v->next == val)
549 {
550 v->next = val->next;
551 break;
552 }
553 }
554}
555
556/* Release all values up to mark */
f23631e4
AC
557struct value *
558value_release_to_mark (struct value *mark)
c906108c 559{
f23631e4
AC
560 struct value *val;
561 struct value *next;
c906108c 562
df407dfe
AC
563 for (val = next = all_values; next; next = next->next)
564 if (next->next == mark)
c906108c 565 {
df407dfe
AC
566 all_values = next->next;
567 next->next = NULL;
c906108c
SS
568 return val;
569 }
570 all_values = 0;
571 return val;
572}
573
574/* Return a copy of the value ARG.
575 It contains the same contents, for same memory address,
576 but it's a different block of storage. */
577
f23631e4
AC
578struct value *
579value_copy (struct value *arg)
c906108c 580{
4754a64e 581 struct type *encl_type = value_enclosing_type (arg);
f23631e4 582 struct value *val = allocate_value (encl_type);
df407dfe 583 val->type = arg->type;
c906108c 584 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 585 val->location = arg->location;
df407dfe
AC
586 val->offset = arg->offset;
587 val->bitpos = arg->bitpos;
588 val->bitsize = arg->bitsize;
1df6926e 589 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 590 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 591 val->lazy = arg->lazy;
feb13ab0 592 val->optimized_out = arg->optimized_out;
13c3b5f5 593 val->embedded_offset = value_embedded_offset (arg);
b44d461b 594 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 595 val->modifiable = arg->modifiable;
d69fe07e 596 if (!value_lazy (val))
c906108c 597 {
990a07ab 598 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 599 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
600
601 }
602 return val;
603}
604\f
605/* Access to the value history. */
606
607/* Record a new value in the value history.
608 Returns the absolute history index of the entry.
609 Result of -1 indicates the value was not saved; otherwise it is the
610 value history index of this new item. */
611
612int
f23631e4 613record_latest_value (struct value *val)
c906108c
SS
614{
615 int i;
616
617 /* We don't want this value to have anything to do with the inferior anymore.
618 In particular, "set $1 = 50" should not affect the variable from which
619 the value was taken, and fast watchpoints should be able to assume that
620 a value on the value history never changes. */
d69fe07e 621 if (value_lazy (val))
c906108c
SS
622 value_fetch_lazy (val);
623 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
624 from. This is a bit dubious, because then *&$1 does not just return $1
625 but the current contents of that location. c'est la vie... */
626 val->modifiable = 0;
627 release_value (val);
628
629 /* Here we treat value_history_count as origin-zero
630 and applying to the value being stored now. */
631
632 i = value_history_count % VALUE_HISTORY_CHUNK;
633 if (i == 0)
634 {
f23631e4 635 struct value_history_chunk *new
c5aa993b
JM
636 = (struct value_history_chunk *)
637 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
638 memset (new->values, 0, sizeof new->values);
639 new->next = value_history_chain;
640 value_history_chain = new;
641 }
642
643 value_history_chain->values[i] = val;
644
645 /* Now we regard value_history_count as origin-one
646 and applying to the value just stored. */
647
648 return ++value_history_count;
649}
650
651/* Return a copy of the value in the history with sequence number NUM. */
652
f23631e4 653struct value *
fba45db2 654access_value_history (int num)
c906108c 655{
f23631e4 656 struct value_history_chunk *chunk;
52f0bd74
AC
657 int i;
658 int absnum = num;
c906108c
SS
659
660 if (absnum <= 0)
661 absnum += value_history_count;
662
663 if (absnum <= 0)
664 {
665 if (num == 0)
8a3fe4f8 666 error (_("The history is empty."));
c906108c 667 else if (num == 1)
8a3fe4f8 668 error (_("There is only one value in the history."));
c906108c 669 else
8a3fe4f8 670 error (_("History does not go back to $$%d."), -num);
c906108c
SS
671 }
672 if (absnum > value_history_count)
8a3fe4f8 673 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
674
675 absnum--;
676
677 /* Now absnum is always absolute and origin zero. */
678
679 chunk = value_history_chain;
680 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
681 i > 0; i--)
682 chunk = chunk->next;
683
684 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
685}
686
c906108c 687static void
fba45db2 688show_values (char *num_exp, int from_tty)
c906108c 689{
52f0bd74 690 int i;
f23631e4 691 struct value *val;
c906108c
SS
692 static int num = 1;
693
694 if (num_exp)
695 {
f132ba9d
TJB
696 /* "show values +" should print from the stored position.
697 "show values <exp>" should print around value number <exp>. */
c906108c 698 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 699 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
700 }
701 else
702 {
f132ba9d 703 /* "show values" means print the last 10 values. */
c906108c
SS
704 num = value_history_count - 9;
705 }
706
707 if (num <= 0)
708 num = 1;
709
710 for (i = num; i < num + 10 && i <= value_history_count; i++)
711 {
79a45b7d 712 struct value_print_options opts;
c906108c 713 val = access_value_history (i);
a3f17187 714 printf_filtered (("$%d = "), i);
79a45b7d
TT
715 get_user_print_options (&opts);
716 value_print (val, gdb_stdout, &opts);
a3f17187 717 printf_filtered (("\n"));
c906108c
SS
718 }
719
f132ba9d 720 /* The next "show values +" should start after what we just printed. */
c906108c
SS
721 num += 10;
722
723 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
724 "show values +". If num_exp is null, this is unnecessary, since
725 "show values +" is not useful after "show values". */
c906108c
SS
726 if (from_tty && num_exp)
727 {
728 num_exp[0] = '+';
729 num_exp[1] = '\0';
730 }
731}
732\f
733/* Internal variables. These are variables within the debugger
734 that hold values assigned by debugger commands.
735 The user refers to them with a '$' prefix
736 that does not appear in the variable names stored internally. */
737
738static struct internalvar *internalvars;
739
53e5f3cf
AS
740/* If the variable does not already exist create it and give it the value given.
741 If no value is given then the default is zero. */
742static void
743init_if_undefined_command (char* args, int from_tty)
744{
745 struct internalvar* intvar;
746
747 /* Parse the expression - this is taken from set_command(). */
748 struct expression *expr = parse_expression (args);
749 register struct cleanup *old_chain =
750 make_cleanup (free_current_contents, &expr);
751
752 /* Validate the expression.
753 Was the expression an assignment?
754 Or even an expression at all? */
755 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
756 error (_("Init-if-undefined requires an assignment expression."));
757
758 /* Extract the variable from the parsed expression.
759 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
760 if (expr->elts[1].opcode != OP_INTERNALVAR)
761 error (_("The first parameter to init-if-undefined should be a GDB variable."));
762 intvar = expr->elts[2].internalvar;
763
764 /* Only evaluate the expression if the lvalue is void.
765 This may still fail if the expresssion is invalid. */
766 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
767 evaluate_expression (expr);
768
769 do_cleanups (old_chain);
770}
771
772
c906108c
SS
773/* Look up an internal variable with name NAME. NAME should not
774 normally include a dollar sign.
775
776 If the specified internal variable does not exist,
c4a3d09a 777 the return value is NULL. */
c906108c
SS
778
779struct internalvar *
c4a3d09a 780lookup_only_internalvar (char *name)
c906108c 781{
52f0bd74 782 struct internalvar *var;
c906108c
SS
783
784 for (var = internalvars; var; var = var->next)
5cb316ef 785 if (strcmp (var->name, name) == 0)
c906108c
SS
786 return var;
787
c4a3d09a
MF
788 return NULL;
789}
790
791
792/* Create an internal variable with name NAME and with a void value.
793 NAME should not normally include a dollar sign. */
794
795struct internalvar *
796create_internalvar (char *name)
797{
798 struct internalvar *var;
c906108c 799 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 800 var->name = concat (name, (char *)NULL);
c906108c 801 var->value = allocate_value (builtin_type_void);
0d20ae72 802 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
803 release_value (var->value);
804 var->next = internalvars;
805 internalvars = var;
806 return var;
807}
808
c4a3d09a
MF
809
810/* Look up an internal variable with name NAME. NAME should not
811 normally include a dollar sign.
812
813 If the specified internal variable does not exist,
814 one is created, with a void value. */
815
816struct internalvar *
817lookup_internalvar (char *name)
818{
819 struct internalvar *var;
820
821 var = lookup_only_internalvar (name);
822 if (var)
823 return var;
824
825 return create_internalvar (name);
826}
827
f23631e4 828struct value *
fba45db2 829value_of_internalvar (struct internalvar *var)
c906108c 830{
f23631e4 831 struct value *val;
d3c139e9
AS
832 int i, j;
833 gdb_byte temp;
c906108c 834
c906108c 835 val = value_copy (var->value);
d69fe07e 836 if (value_lazy (val))
c906108c
SS
837 value_fetch_lazy (val);
838 VALUE_LVAL (val) = lval_internalvar;
839 VALUE_INTERNALVAR (val) = var;
d3c139e9
AS
840
841 /* Values are always stored in the target's byte order. When connected to a
842 target this will most likely always be correct, so there's normally no
843 need to worry about it.
844
845 However, internal variables can be set up before the target endian is
846 known and so may become out of date. Fix it up before anybody sees.
847
848 Internal variables usually hold simple scalar values, and we can
849 correct those. More complex values (e.g. structures and floating
850 point types) are left alone, because they would be too complicated
851 to correct. */
852
0d20ae72 853 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
854 {
855 gdb_byte *array = value_contents_raw (val);
856 struct type *type = check_typedef (value_enclosing_type (val));
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_PTR:
861 /* Reverse the bytes. */
862 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
863 {
864 temp = array[j];
865 array[j] = array[i];
866 array[i] = temp;
867 }
868 break;
869 }
870 }
871
c906108c
SS
872 return val;
873}
874
875void
fba45db2 876set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 877 int bitsize, struct value *newval)
c906108c 878{
fc1a4b47 879 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 880
c906108c
SS
881 if (bitsize)
882 modify_field (addr, value_as_long (newval),
883 bitpos, bitsize);
884 else
0fd88904 885 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
886}
887
888void
f23631e4 889set_internalvar (struct internalvar *var, struct value *val)
c906108c 890{
f23631e4 891 struct value *newval;
c906108c 892
c906108c
SS
893 newval = value_copy (val);
894 newval->modifiable = 1;
895
896 /* Force the value to be fetched from the target now, to avoid problems
897 later when this internalvar is referenced and the target is gone or
898 has changed. */
d69fe07e 899 if (value_lazy (newval))
c906108c
SS
900 value_fetch_lazy (newval);
901
902 /* Begin code which must not call error(). If var->value points to
903 something free'd, an error() obviously leaves a dangling pointer.
904 But we also get a danling pointer if var->value points to
905 something in the value chain (i.e., before release_value is
906 called), because after the error free_all_values will get called before
907 long. */
b8c9b27d 908 xfree (var->value);
c906108c 909 var->value = newval;
0d20ae72 910 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
911 release_value (newval);
912 /* End code which must not call error(). */
913}
914
915char *
fba45db2 916internalvar_name (struct internalvar *var)
c906108c
SS
917{
918 return var->name;
919}
920
ae5a43e0
DJ
921/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
922 prevent cycles / duplicates. */
923
924static void
925preserve_one_value (struct value *value, struct objfile *objfile,
926 htab_t copied_types)
927{
928 if (TYPE_OBJFILE (value->type) == objfile)
929 value->type = copy_type_recursive (objfile, value->type, copied_types);
930
931 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
932 value->enclosing_type = copy_type_recursive (objfile,
933 value->enclosing_type,
934 copied_types);
935}
936
937/* Update the internal variables and value history when OBJFILE is
938 discarded; we must copy the types out of the objfile. New global types
939 will be created for every convenience variable which currently points to
940 this objfile's types, and the convenience variables will be adjusted to
941 use the new global types. */
c906108c
SS
942
943void
ae5a43e0 944preserve_values (struct objfile *objfile)
c906108c 945{
ae5a43e0
DJ
946 htab_t copied_types;
947 struct value_history_chunk *cur;
52f0bd74 948 struct internalvar *var;
a08702d6 949 struct value *val;
ae5a43e0 950 int i;
c906108c 951
ae5a43e0
DJ
952 /* Create the hash table. We allocate on the objfile's obstack, since
953 it is soon to be deleted. */
954 copied_types = create_copied_types_hash (objfile);
955
956 for (cur = value_history_chain; cur; cur = cur->next)
957 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
958 if (cur->values[i])
959 preserve_one_value (cur->values[i], objfile, copied_types);
960
961 for (var = internalvars; var; var = var->next)
962 preserve_one_value (var->value, objfile, copied_types);
963
a08702d6
TJB
964 for (val = values_in_python; val; val = val->next)
965 preserve_one_value (val, objfile, copied_types);
966
ae5a43e0 967 htab_delete (copied_types);
c906108c
SS
968}
969
970static void
fba45db2 971show_convenience (char *ignore, int from_tty)
c906108c 972{
52f0bd74 973 struct internalvar *var;
c906108c 974 int varseen = 0;
79a45b7d 975 struct value_print_options opts;
c906108c 976
79a45b7d 977 get_user_print_options (&opts);
c906108c
SS
978 for (var = internalvars; var; var = var->next)
979 {
c906108c
SS
980 if (!varseen)
981 {
982 varseen = 1;
983 }
a3f17187 984 printf_filtered (("$%s = "), var->name);
d3c139e9 985 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 986 &opts);
a3f17187 987 printf_filtered (("\n"));
c906108c
SS
988 }
989 if (!varseen)
a3f17187
AC
990 printf_unfiltered (_("\
991No debugger convenience variables now defined.\n\
c906108c 992Convenience variables have names starting with \"$\";\n\
a3f17187 993use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
994}
995\f
996/* Extract a value as a C number (either long or double).
997 Knows how to convert fixed values to double, or
998 floating values to long.
999 Does not deallocate the value. */
1000
1001LONGEST
f23631e4 1002value_as_long (struct value *val)
c906108c
SS
1003{
1004 /* This coerces arrays and functions, which is necessary (e.g.
1005 in disassemble_command). It also dereferences references, which
1006 I suspect is the most logical thing to do. */
994b9211 1007 val = coerce_array (val);
0fd88904 1008 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1009}
1010
1011DOUBLEST
f23631e4 1012value_as_double (struct value *val)
c906108c
SS
1013{
1014 DOUBLEST foo;
1015 int inv;
c5aa993b 1016
0fd88904 1017 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1018 if (inv)
8a3fe4f8 1019 error (_("Invalid floating value found in program."));
c906108c
SS
1020 return foo;
1021}
4ef30785 1022
4478b372
JB
1023/* Extract a value as a C pointer. Does not deallocate the value.
1024 Note that val's type may not actually be a pointer; value_as_long
1025 handles all the cases. */
c906108c 1026CORE_ADDR
f23631e4 1027value_as_address (struct value *val)
c906108c
SS
1028{
1029 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1030 whether we want this to be true eventually. */
1031#if 0
bf6ae464 1032 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1033 non-address (e.g. argument to "signal", "info break", etc.), or
1034 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1035 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1036#else
f312f057
JB
1037
1038 /* There are several targets (IA-64, PowerPC, and others) which
1039 don't represent pointers to functions as simply the address of
1040 the function's entry point. For example, on the IA-64, a
1041 function pointer points to a two-word descriptor, generated by
1042 the linker, which contains the function's entry point, and the
1043 value the IA-64 "global pointer" register should have --- to
1044 support position-independent code. The linker generates
1045 descriptors only for those functions whose addresses are taken.
1046
1047 On such targets, it's difficult for GDB to convert an arbitrary
1048 function address into a function pointer; it has to either find
1049 an existing descriptor for that function, or call malloc and
1050 build its own. On some targets, it is impossible for GDB to
1051 build a descriptor at all: the descriptor must contain a jump
1052 instruction; data memory cannot be executed; and code memory
1053 cannot be modified.
1054
1055 Upon entry to this function, if VAL is a value of type `function'
1056 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1057 VALUE_ADDRESS (val) is the address of the function. This is what
1058 you'll get if you evaluate an expression like `main'. The call
1059 to COERCE_ARRAY below actually does all the usual unary
1060 conversions, which includes converting values of type `function'
1061 to `pointer to function'. This is the challenging conversion
1062 discussed above. Then, `unpack_long' will convert that pointer
1063 back into an address.
1064
1065 So, suppose the user types `disassemble foo' on an architecture
1066 with a strange function pointer representation, on which GDB
1067 cannot build its own descriptors, and suppose further that `foo'
1068 has no linker-built descriptor. The address->pointer conversion
1069 will signal an error and prevent the command from running, even
1070 though the next step would have been to convert the pointer
1071 directly back into the same address.
1072
1073 The following shortcut avoids this whole mess. If VAL is a
1074 function, just return its address directly. */
df407dfe
AC
1075 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1076 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
1077 return VALUE_ADDRESS (val);
1078
994b9211 1079 val = coerce_array (val);
fc0c74b1
AC
1080
1081 /* Some architectures (e.g. Harvard), map instruction and data
1082 addresses onto a single large unified address space. For
1083 instance: An architecture may consider a large integer in the
1084 range 0x10000000 .. 0x1000ffff to already represent a data
1085 addresses (hence not need a pointer to address conversion) while
1086 a small integer would still need to be converted integer to
1087 pointer to address. Just assume such architectures handle all
1088 integer conversions in a single function. */
1089
1090 /* JimB writes:
1091
1092 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1093 must admonish GDB hackers to make sure its behavior matches the
1094 compiler's, whenever possible.
1095
1096 In general, I think GDB should evaluate expressions the same way
1097 the compiler does. When the user copies an expression out of
1098 their source code and hands it to a `print' command, they should
1099 get the same value the compiler would have computed. Any
1100 deviation from this rule can cause major confusion and annoyance,
1101 and needs to be justified carefully. In other words, GDB doesn't
1102 really have the freedom to do these conversions in clever and
1103 useful ways.
1104
1105 AndrewC pointed out that users aren't complaining about how GDB
1106 casts integers to pointers; they are complaining that they can't
1107 take an address from a disassembly listing and give it to `x/i'.
1108 This is certainly important.
1109
79dd2d24 1110 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1111 makes it possible for GDB to "get it right" in all circumstances
1112 --- the target has complete control over how things get done, so
1113 people can Do The Right Thing for their target without breaking
1114 anyone else. The standard doesn't specify how integers get
1115 converted to pointers; usually, the ABI doesn't either, but
1116 ABI-specific code is a more reasonable place to handle it. */
1117
df407dfe
AC
1118 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1119 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1120 && gdbarch_integer_to_address_p (current_gdbarch))
1121 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1122 value_contents (val));
fc0c74b1 1123
0fd88904 1124 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1125#endif
1126}
1127\f
1128/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1129 as a long, or as a double, assuming the raw data is described
1130 by type TYPE. Knows how to convert different sizes of values
1131 and can convert between fixed and floating point. We don't assume
1132 any alignment for the raw data. Return value is in host byte order.
1133
1134 If you want functions and arrays to be coerced to pointers, and
1135 references to be dereferenced, call value_as_long() instead.
1136
1137 C++: It is assumed that the front-end has taken care of
1138 all matters concerning pointers to members. A pointer
1139 to member which reaches here is considered to be equivalent
1140 to an INT (or some size). After all, it is only an offset. */
1141
1142LONGEST
fc1a4b47 1143unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1144{
52f0bd74
AC
1145 enum type_code code = TYPE_CODE (type);
1146 int len = TYPE_LENGTH (type);
1147 int nosign = TYPE_UNSIGNED (type);
c906108c 1148
c906108c
SS
1149 switch (code)
1150 {
1151 case TYPE_CODE_TYPEDEF:
1152 return unpack_long (check_typedef (type), valaddr);
1153 case TYPE_CODE_ENUM:
4f2aea11 1154 case TYPE_CODE_FLAGS:
c906108c
SS
1155 case TYPE_CODE_BOOL:
1156 case TYPE_CODE_INT:
1157 case TYPE_CODE_CHAR:
1158 case TYPE_CODE_RANGE:
0d5de010 1159 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1160 if (nosign)
1161 return extract_unsigned_integer (valaddr, len);
1162 else
1163 return extract_signed_integer (valaddr, len);
1164
1165 case TYPE_CODE_FLT:
96d2f608 1166 return extract_typed_floating (valaddr, type);
c906108c 1167
4ef30785
TJB
1168 case TYPE_CODE_DECFLOAT:
1169 /* libdecnumber has a function to convert from decimal to integer, but
1170 it doesn't work when the decimal number has a fractional part. */
ba759613 1171 return decimal_to_doublest (valaddr, len);
4ef30785 1172
c906108c
SS
1173 case TYPE_CODE_PTR:
1174 case TYPE_CODE_REF:
1175 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1176 whether we want this to be true eventually. */
4478b372 1177 return extract_typed_address (valaddr, type);
c906108c 1178
c906108c 1179 default:
8a3fe4f8 1180 error (_("Value can't be converted to integer."));
c906108c 1181 }
c5aa993b 1182 return 0; /* Placate lint. */
c906108c
SS
1183}
1184
1185/* Return a double value from the specified type and address.
1186 INVP points to an int which is set to 0 for valid value,
1187 1 for invalid value (bad float format). In either case,
1188 the returned double is OK to use. Argument is in target
1189 format, result is in host format. */
1190
1191DOUBLEST
fc1a4b47 1192unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1193{
1194 enum type_code code;
1195 int len;
1196 int nosign;
1197
1198 *invp = 0; /* Assume valid. */
1199 CHECK_TYPEDEF (type);
1200 code = TYPE_CODE (type);
1201 len = TYPE_LENGTH (type);
1202 nosign = TYPE_UNSIGNED (type);
1203 if (code == TYPE_CODE_FLT)
1204 {
75bc7ddf
AC
1205 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1206 floating-point value was valid (using the macro
1207 INVALID_FLOAT). That test/macro have been removed.
1208
1209 It turns out that only the VAX defined this macro and then
1210 only in a non-portable way. Fixing the portability problem
1211 wouldn't help since the VAX floating-point code is also badly
1212 bit-rotten. The target needs to add definitions for the
ea06eb3d 1213 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1214 exactly describe the target floating-point format. The
1215 problem here is that the corresponding floatformat_vax_f and
1216 floatformat_vax_d values these methods should be set to are
1217 also not defined either. Oops!
1218
1219 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1220 definitions and the new cases for floatformat_is_valid (). */
1221
1222 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1223 {
1224 *invp = 1;
1225 return 0.0;
1226 }
1227
96d2f608 1228 return extract_typed_floating (valaddr, type);
c906108c 1229 }
4ef30785 1230 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1231 return decimal_to_doublest (valaddr, len);
c906108c
SS
1232 else if (nosign)
1233 {
1234 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1235 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1236 }
1237 else
1238 {
1239 /* Signed -- we are OK with unpack_long. */
1240 return unpack_long (type, valaddr);
1241 }
1242}
1243
1244/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1245 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1246 We don't assume any alignment for the raw data. Return value is in
1247 host byte order.
1248
1249 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1250 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1251
1252 C++: It is assumed that the front-end has taken care of
1253 all matters concerning pointers to members. A pointer
1254 to member which reaches here is considered to be equivalent
1255 to an INT (or some size). After all, it is only an offset. */
1256
1257CORE_ADDR
fc1a4b47 1258unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1259{
1260 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1261 whether we want this to be true eventually. */
1262 return unpack_long (type, valaddr);
1263}
4478b372 1264
c906108c 1265\f
2c2738a0
DC
1266/* Get the value of the FIELDN'th field (which must be static) of
1267 TYPE. Return NULL if the field doesn't exist or has been
1268 optimized out. */
c906108c 1269
f23631e4 1270struct value *
fba45db2 1271value_static_field (struct type *type, int fieldno)
c906108c 1272{
948e66d9
DJ
1273 struct value *retval;
1274
d6a843b5 1275 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1276 {
948e66d9 1277 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1278 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1279 }
1280 else
1281 {
1282 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1283 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1284 if (sym == NULL)
c906108c
SS
1285 {
1286 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1287 as non-debuggable symbols */
1288 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1289 if (!msym)
1290 return NULL;
1291 else
c5aa993b 1292 {
948e66d9 1293 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1294 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1295 }
1296 }
1297 else
1298 {
948e66d9
DJ
1299 /* SYM should never have a SYMBOL_CLASS which will require
1300 read_var_value to use the FRAME parameter. */
1301 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1302 warning (_("static field's value depends on the current "
1303 "frame - bad debug info?"));
948e66d9 1304 retval = read_var_value (sym, NULL);
2b127877 1305 }
948e66d9
DJ
1306 if (retval && VALUE_LVAL (retval) == lval_memory)
1307 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1308 VALUE_ADDRESS (retval));
c906108c 1309 }
948e66d9 1310 return retval;
c906108c
SS
1311}
1312
2b127877
DB
1313/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1314 You have to be careful here, since the size of the data area for the value
1315 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1316 than the old enclosing type, you have to allocate more space for the data.
1317 The return value is a pointer to the new version of this value structure. */
1318
f23631e4
AC
1319struct value *
1320value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1321{
4754a64e 1322 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
2b127877 1323 {
4754a64e 1324 val->enclosing_type = new_encl_type;
2b127877
DB
1325 return val;
1326 }
1327 else
1328 {
f23631e4
AC
1329 struct value *new_val;
1330 struct value *prev;
2b127877 1331
f23631e4 1332 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028 1333
4754a64e 1334 new_val->enclosing_type = new_encl_type;
cc303028 1335
2b127877
DB
1336 /* We have to make sure this ends up in the same place in the value
1337 chain as the original copy, so it's clean-up behavior is the same.
1338 If the value has been released, this is a waste of time, but there
1339 is no way to tell that in advance, so... */
1340
1341 if (val != all_values)
1342 {
1343 for (prev = all_values; prev != NULL; prev = prev->next)
1344 {
1345 if (prev->next == val)
1346 {
1347 prev->next = new_val;
1348 break;
1349 }
1350 }
1351 }
1352
1353 return new_val;
1354 }
1355}
1356
c906108c
SS
1357/* Given a value ARG1 (offset by OFFSET bytes)
1358 of a struct or union type ARG_TYPE,
1359 extract and return the value of one of its (non-static) fields.
1360 FIELDNO says which field. */
1361
f23631e4
AC
1362struct value *
1363value_primitive_field (struct value *arg1, int offset,
aa1ee363 1364 int fieldno, struct type *arg_type)
c906108c 1365{
f23631e4 1366 struct value *v;
52f0bd74 1367 struct type *type;
c906108c
SS
1368
1369 CHECK_TYPEDEF (arg_type);
1370 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1371
1372 /* Handle packed fields */
1373
1374 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1375 {
1376 v = value_from_longest (type,
1377 unpack_field_as_long (arg_type,
0fd88904 1378 value_contents (arg1)
c5aa993b 1379 + offset,
c906108c 1380 fieldno));
df407dfe
AC
1381 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1382 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1383 v->offset = value_offset (arg1) + offset
2e70b7b9 1384 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1385 }
1386 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1387 {
1388 /* This field is actually a base subobject, so preserve the
1389 entire object's contents for later references to virtual
1390 bases, etc. */
4754a64e 1391 v = allocate_value (value_enclosing_type (arg1));
df407dfe 1392 v->type = type;
a4e2ee12
DJ
1393
1394 /* Lazy register values with offsets are not supported. */
1395 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1396 value_fetch_lazy (arg1);
1397
1398 if (value_lazy (arg1))
dfa52d88 1399 set_value_lazy (v, 1);
c906108c 1400 else
990a07ab 1401 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
4754a64e 1402 TYPE_LENGTH (value_enclosing_type (arg1)));
df407dfe 1403 v->offset = value_offset (arg1);
13c3b5f5
AC
1404 v->embedded_offset = (offset + value_embedded_offset (arg1)
1405 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1406 }
1407 else
1408 {
1409 /* Plain old data member */
1410 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1411 v = allocate_value (type);
a4e2ee12
DJ
1412
1413 /* Lazy register values with offsets are not supported. */
1414 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1415 value_fetch_lazy (arg1);
1416
1417 if (value_lazy (arg1))
dfa52d88 1418 set_value_lazy (v, 1);
c906108c 1419 else
990a07ab
AC
1420 memcpy (value_contents_raw (v),
1421 value_contents_raw (arg1) + offset,
c906108c 1422 TYPE_LENGTH (type));
df407dfe 1423 v->offset = (value_offset (arg1) + offset
13c3b5f5 1424 + value_embedded_offset (arg1));
c906108c
SS
1425 }
1426 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1427 if (VALUE_LVAL (arg1) == lval_internalvar)
1428 VALUE_LVAL (v) = lval_internalvar_component;
7d85ee02 1429 v->location = arg1->location;
9ee8fc9d 1430 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1431 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1432 return v;
1433}
1434
1435/* Given a value ARG1 of a struct or union type,
1436 extract and return the value of one of its (non-static) fields.
1437 FIELDNO says which field. */
1438
f23631e4 1439struct value *
aa1ee363 1440value_field (struct value *arg1, int fieldno)
c906108c 1441{
df407dfe 1442 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1443}
1444
1445/* Return a non-virtual function as a value.
1446 F is the list of member functions which contains the desired method.
0478d61c
FF
1447 J is an index into F which provides the desired method.
1448
1449 We only use the symbol for its address, so be happy with either a
1450 full symbol or a minimal symbol.
1451 */
c906108c 1452
f23631e4
AC
1453struct value *
1454value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1455 int offset)
c906108c 1456{
f23631e4 1457 struct value *v;
52f0bd74 1458 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1459 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1460 struct symbol *sym;
0478d61c 1461 struct minimal_symbol *msym;
c906108c 1462
2570f2b7 1463 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1464 if (sym != NULL)
0478d61c 1465 {
5ae326fa
AC
1466 msym = NULL;
1467 }
1468 else
1469 {
1470 gdb_assert (sym == NULL);
0478d61c 1471 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1472 if (msym == NULL)
1473 return NULL;
0478d61c
FF
1474 }
1475
c906108c 1476 v = allocate_value (ftype);
0478d61c
FF
1477 if (sym)
1478 {
1479 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1480 }
1481 else
1482 {
bccdca4a
UW
1483 /* The minimal symbol might point to a function descriptor;
1484 resolve it to the actual code address instead. */
1485 struct objfile *objfile = msymbol_objfile (msym);
1486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1487
1488 VALUE_ADDRESS (v)
1489 = gdbarch_convert_from_func_ptr_addr
1490 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
0478d61c 1491 }
c906108c
SS
1492
1493 if (arg1p)
c5aa993b 1494 {
df407dfe 1495 if (type != value_type (*arg1p))
c5aa993b
JM
1496 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1497 value_addr (*arg1p)));
1498
070ad9f0 1499 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1500 VALUE_OFFSET (*arg1p) += offset;
1501 */
c906108c
SS
1502 }
1503
1504 return v;
1505}
1506
c906108c
SS
1507\f
1508/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1509 VALADDR.
1510
1511 Extracting bits depends on endianness of the machine. Compute the
1512 number of least significant bits to discard. For big endian machines,
1513 we compute the total number of bits in the anonymous object, subtract
1514 off the bit count from the MSB of the object to the MSB of the
1515 bitfield, then the size of the bitfield, which leaves the LSB discard
1516 count. For little endian machines, the discard count is simply the
1517 number of bits from the LSB of the anonymous object to the LSB of the
1518 bitfield.
1519
1520 If the field is signed, we also do sign extension. */
1521
1522LONGEST
fc1a4b47 1523unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1524{
1525 ULONGEST val;
1526 ULONGEST valmask;
1527 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1528 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1529 int lsbcount;
1530 struct type *field_type;
1531
1532 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1533 field_type = TYPE_FIELD_TYPE (type, fieldno);
1534 CHECK_TYPEDEF (field_type);
1535
1536 /* Extract bits. See comment above. */
1537
32c9a795 1538 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1539 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1540 else
1541 lsbcount = (bitpos % 8);
1542 val >>= lsbcount;
1543
1544 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1545 If the field is signed, and is negative, then sign extend. */
1546
1547 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1548 {
1549 valmask = (((ULONGEST) 1) << bitsize) - 1;
1550 val &= valmask;
1551 if (!TYPE_UNSIGNED (field_type))
1552 {
1553 if (val & (valmask ^ (valmask >> 1)))
1554 {
1555 val |= ~valmask;
1556 }
1557 }
1558 }
1559 return (val);
1560}
1561
1562/* Modify the value of a bitfield. ADDR points to a block of memory in
1563 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1564 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1565 indicate which bits (in target bit order) comprise the bitfield.
1566 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1567 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1568
1569void
fc1a4b47 1570modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1571{
f4e88c8e
PH
1572 ULONGEST oword;
1573 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1574
1575 /* If a negative fieldval fits in the field in question, chop
1576 off the sign extension bits. */
f4e88c8e
PH
1577 if ((~fieldval & ~(mask >> 1)) == 0)
1578 fieldval &= mask;
c906108c
SS
1579
1580 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1581 if (0 != (fieldval & ~mask))
c906108c
SS
1582 {
1583 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1584 we don't have a sprintf_longest. */
8a3fe4f8 1585 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1586
1587 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1588 fieldval &= mask;
c906108c
SS
1589 }
1590
f4e88c8e 1591 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1592
1593 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1594 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1595 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1596
f4e88c8e 1597 oword &= ~(mask << bitpos);
c906108c
SS
1598 oword |= fieldval << bitpos;
1599
f4e88c8e 1600 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1601}
1602\f
14d06750 1603/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1604
14d06750
DJ
1605void
1606pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1607{
52f0bd74 1608 int len;
14d06750
DJ
1609
1610 type = check_typedef (type);
c906108c
SS
1611 len = TYPE_LENGTH (type);
1612
14d06750 1613 switch (TYPE_CODE (type))
c906108c 1614 {
c906108c
SS
1615 case TYPE_CODE_INT:
1616 case TYPE_CODE_CHAR:
1617 case TYPE_CODE_ENUM:
4f2aea11 1618 case TYPE_CODE_FLAGS:
c906108c
SS
1619 case TYPE_CODE_BOOL:
1620 case TYPE_CODE_RANGE:
0d5de010 1621 case TYPE_CODE_MEMBERPTR:
14d06750 1622 store_signed_integer (buf, len, num);
c906108c 1623 break;
c5aa993b 1624
c906108c
SS
1625 case TYPE_CODE_REF:
1626 case TYPE_CODE_PTR:
14d06750 1627 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1628 break;
c5aa993b 1629
c906108c 1630 default:
14d06750
DJ
1631 error (_("Unexpected type (%d) encountered for integer constant."),
1632 TYPE_CODE (type));
c906108c 1633 }
14d06750
DJ
1634}
1635
1636
1637/* Convert C numbers into newly allocated values. */
1638
1639struct value *
1640value_from_longest (struct type *type, LONGEST num)
1641{
1642 struct value *val = allocate_value (type);
1643
1644 pack_long (value_contents_raw (val), type, num);
1645
c906108c
SS
1646 return val;
1647}
1648
4478b372
JB
1649
1650/* Create a value representing a pointer of type TYPE to the address
1651 ADDR. */
f23631e4 1652struct value *
4478b372
JB
1653value_from_pointer (struct type *type, CORE_ADDR addr)
1654{
f23631e4 1655 struct value *val = allocate_value (type);
990a07ab 1656 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1657 return val;
1658}
1659
1660
0f71a2f6 1661/* Create a value for a string constant to be stored locally
070ad9f0 1662 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1663 This is analogous to value_from_longest, which also does not
1664 use inferior memory. String shall NOT contain embedded nulls. */
1665
f23631e4 1666struct value *
fba45db2 1667value_from_string (char *ptr)
0f71a2f6 1668{
f23631e4 1669 struct value *val;
c5aa993b 1670 int len = strlen (ptr);
0f71a2f6 1671 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1672 struct type *string_char_type;
1673 struct type *rangetype;
1674 struct type *stringtype;
1675
1676 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 1677 builtin_type_int32,
f290d38e
AC
1678 lowbound, len + lowbound - 1);
1679 string_char_type = language_string_char_type (current_language,
1680 current_gdbarch);
1681 stringtype = create_array_type ((struct type *) NULL,
1682 string_char_type,
1683 rangetype);
0f71a2f6 1684 val = allocate_value (stringtype);
990a07ab 1685 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1686 return val;
1687}
1688
f23631e4 1689struct value *
fba45db2 1690value_from_double (struct type *type, DOUBLEST num)
c906108c 1691{
f23631e4 1692 struct value *val = allocate_value (type);
c906108c 1693 struct type *base_type = check_typedef (type);
52f0bd74
AC
1694 enum type_code code = TYPE_CODE (base_type);
1695 int len = TYPE_LENGTH (base_type);
c906108c
SS
1696
1697 if (code == TYPE_CODE_FLT)
1698 {
990a07ab 1699 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1700 }
1701 else
8a3fe4f8 1702 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1703
1704 return val;
1705}
994b9211 1706
27bc4d80 1707struct value *
4ef30785 1708value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
1709{
1710 struct value *val = allocate_value (type);
27bc4d80 1711
4ef30785 1712 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 1713
27bc4d80
TJB
1714 return val;
1715}
1716
994b9211
AC
1717struct value *
1718coerce_ref (struct value *arg)
1719{
df407dfe 1720 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1721 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1722 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1723 unpack_pointer (value_type (arg),
0fd88904 1724 value_contents (arg)));
994b9211
AC
1725 return arg;
1726}
1727
1728struct value *
1729coerce_array (struct value *arg)
1730{
f3134b88
TT
1731 struct type *type;
1732
994b9211 1733 arg = coerce_ref (arg);
f3134b88
TT
1734 type = check_typedef (value_type (arg));
1735
1736 switch (TYPE_CODE (type))
1737 {
1738 case TYPE_CODE_ARRAY:
1739 if (current_language->c_style_arrays)
1740 arg = value_coerce_array (arg);
1741 break;
1742 case TYPE_CODE_FUNC:
1743 arg = value_coerce_function (arg);
1744 break;
1745 }
994b9211
AC
1746 return arg;
1747}
c906108c 1748\f
c906108c 1749
48436ce6
AC
1750/* Return true if the function returning the specified type is using
1751 the convention of returning structures in memory (passing in the
82585c72 1752 address as a hidden first parameter). */
c906108c
SS
1753
1754int
c055b101 1755using_struct_return (struct type *func_type, struct type *value_type)
c906108c 1756{
52f0bd74 1757 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1758
1759 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1760 error (_("Function return type unknown."));
c906108c 1761
667e784f
AC
1762 if (code == TYPE_CODE_VOID)
1763 /* A void return value is never in memory. See also corresponding
44e5158b 1764 code in "print_return_value". */
667e784f
AC
1765 return 0;
1766
92ad9cd9 1767 /* Probe the architecture for the return-value convention. */
c055b101 1768 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 1769 NULL, NULL, NULL)
31db7b6c 1770 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1771}
1772
42be36b3
CT
1773/* Set the initialized field in a value struct. */
1774
1775void
1776set_value_initialized (struct value *val, int status)
1777{
1778 val->initialized = status;
1779}
1780
1781/* Return the initialized field in a value struct. */
1782
1783int
1784value_initialized (struct value *val)
1785{
1786 return val->initialized;
1787}
1788
c906108c 1789void
fba45db2 1790_initialize_values (void)
c906108c 1791{
1a966eab
AC
1792 add_cmd ("convenience", no_class, show_convenience, _("\
1793Debugger convenience (\"$foo\") variables.\n\
c906108c 1794These variables are created when you assign them values;\n\
1a966eab
AC
1795thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1796\n\
c906108c
SS
1797A few convenience variables are given values automatically:\n\
1798\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 1799\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
1800 &showlist);
1801
1802 add_cmd ("values", no_class, show_values,
1a966eab 1803 _("Elements of value history around item number IDX (or last ten)."),
c906108c 1804 &showlist);
53e5f3cf
AS
1805
1806 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1807Initialize a convenience variable if necessary.\n\
1808init-if-undefined VARIABLE = EXPRESSION\n\
1809Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1810exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1811VARIABLE is already initialized."));
c906108c 1812}
This page took 0.972313 seconds and 4 git commands to generate.