* gas/arm/req.l: Updated expected warning message.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
8af8e3bc 42#include "exceptions.h"
a08702d6 43#include "python/python.h"
3bd0f5ef 44#include <ctype.h>
0914bcdb
SS
45#include "tracepoint.h"
46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
5f5233d4
PA
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
197 struct lval_funcs *funcs; /* Functions to call. */
198 void *closure; /* Closure for those functions to use. */
199 } computed;
91294c83
AC
200 } location;
201
202 /* Describes offset of a value within lval of a structure in bytes.
203 If lval == lval_memory, this is an offset to the address. If
204 lval == lval_register, this is a further offset from
205 location.address within the registers structure. Note also the
206 member embedded_offset below. */
207 int offset;
208
209 /* Only used for bitfields; number of bits contained in them. */
210 int bitsize;
211
212 /* Only used for bitfields; position of start of field. For
32c9a795 213 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 214 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
215 int bitpos;
216
4ea48cc1
DJ
217 /* Only used for bitfields; the containing value. This allows a
218 single read from the target when displaying multiple
219 bitfields. */
220 struct value *parent;
221
91294c83
AC
222 /* Frame register value is relative to. This will be described in
223 the lval enum above as "lval_register". */
224 struct frame_id frame_id;
225
226 /* Type of the value. */
227 struct type *type;
228
229 /* If a value represents a C++ object, then the `type' field gives
230 the object's compile-time type. If the object actually belongs
231 to some class derived from `type', perhaps with other base
232 classes and additional members, then `type' is just a subobject
233 of the real thing, and the full object is probably larger than
234 `type' would suggest.
235
236 If `type' is a dynamic class (i.e. one with a vtable), then GDB
237 can actually determine the object's run-time type by looking at
238 the run-time type information in the vtable. When this
239 information is available, we may elect to read in the entire
240 object, for several reasons:
241
242 - When printing the value, the user would probably rather see the
243 full object, not just the limited portion apparent from the
244 compile-time type.
245
246 - If `type' has virtual base classes, then even printing `type'
247 alone may require reaching outside the `type' portion of the
248 object to wherever the virtual base class has been stored.
249
250 When we store the entire object, `enclosing_type' is the run-time
251 type -- the complete object -- and `embedded_offset' is the
252 offset of `type' within that larger type, in bytes. The
253 value_contents() macro takes `embedded_offset' into account, so
254 most GDB code continues to see the `type' portion of the value,
255 just as the inferior would.
256
257 If `type' is a pointer to an object, then `enclosing_type' is a
258 pointer to the object's run-time type, and `pointed_to_offset' is
259 the offset in bytes from the full object to the pointed-to object
260 -- that is, the value `embedded_offset' would have if we followed
261 the pointer and fetched the complete object. (I don't really see
262 the point. Why not just determine the run-time type when you
263 indirect, and avoid the special case? The contents don't matter
264 until you indirect anyway.)
265
266 If we're not doing anything fancy, `enclosing_type' is equal to
267 `type', and `embedded_offset' is zero, so everything works
268 normally. */
269 struct type *enclosing_type;
270 int embedded_offset;
271 int pointed_to_offset;
272
273 /* Values are stored in a chain, so that they can be deleted easily
274 over calls to the inferior. Values assigned to internal
a08702d6
TJB
275 variables, put into the value history or exposed to Python are
276 taken off this list. */
91294c83
AC
277 struct value *next;
278
279 /* Register number if the value is from a register. */
280 short regnum;
281
282 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
283 nonzero, contents are in inferior. If the lval field is lval_memory,
284 the contents are in inferior memory at location.address plus offset.
285 The lval field may also be lval_register.
91294c83
AC
286
287 WARNING: This field is used by the code which handles watchpoints
288 (see breakpoint.c) to decide whether a particular value can be
289 watched by hardware watchpoints. If the lazy flag is set for
290 some member of a value chain, it is assumed that this member of
291 the chain doesn't need to be watched as part of watching the
292 value itself. This is how GDB avoids watching the entire struct
293 or array when the user wants to watch a single struct member or
294 array element. If you ever change the way lazy flag is set and
295 reset, be sure to consider this use as well! */
296 char lazy;
297
298 /* If nonzero, this is the value of a variable which does not
299 actually exist in the program. */
300 char optimized_out;
301
42be36b3
CT
302 /* If value is a variable, is it initialized or not. */
303 int initialized;
304
4e5d721f
DE
305 /* If value is from the stack. If this is set, read_stack will be
306 used instead of read_memory to enable extra caching. */
307 int stack;
308
3e3d7139
JG
309 /* Actual contents of the value. Target byte-order. NULL or not
310 valid if lazy is nonzero. */
311 gdb_byte *contents;
828d3400 312
4e07d55f
PA
313 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
314 rather than available, since the common and default case is for a
315 value to be available. This is filled in at value read time. */
316 VEC(range_s) *unavailable;
317
828d3400
DJ
318 /* The number of references to this value. When a value is created,
319 the value chain holds a reference, so REFERENCE_COUNT is 1. If
320 release_value is called, this value is removed from the chain but
321 the caller of release_value now has a reference to this value.
322 The caller must arrange for a call to value_free later. */
323 int reference_count;
91294c83
AC
324};
325
4e07d55f
PA
326int
327value_bytes_available (const struct value *value, int offset, int length)
328{
329 gdb_assert (!value->lazy);
330
331 return !ranges_contain (value->unavailable, offset, length);
332}
333
ec0a52e1
PA
334int
335value_entirely_available (struct value *value)
336{
337 /* We can only tell whether the whole value is available when we try
338 to read it. */
339 if (value->lazy)
340 value_fetch_lazy (value);
341
342 if (VEC_empty (range_s, value->unavailable))
343 return 1;
344 return 0;
345}
346
4e07d55f
PA
347void
348mark_value_bytes_unavailable (struct value *value, int offset, int length)
349{
350 range_s newr;
351 int i;
352
353 /* Insert the range sorted. If there's overlap or the new range
354 would be contiguous with an existing range, merge. */
355
356 newr.offset = offset;
357 newr.length = length;
358
359 /* Do a binary search for the position the given range would be
360 inserted if we only considered the starting OFFSET of ranges.
361 Call that position I. Since we also have LENGTH to care for
362 (this is a range afterall), we need to check if the _previous_
363 range overlaps the I range. E.g., calling R the new range:
364
365 #1 - overlaps with previous
366
367 R
368 |-...-|
369 |---| |---| |------| ... |--|
370 0 1 2 N
371
372 I=1
373
374 In the case #1 above, the binary search would return `I=1',
375 meaning, this OFFSET should be inserted at position 1, and the
376 current position 1 should be pushed further (and become 2). But,
377 note that `0' overlaps with R, so we want to merge them.
378
379 A similar consideration needs to be taken if the new range would
380 be contiguous with the previous range:
381
382 #2 - contiguous with previous
383
384 R
385 |-...-|
386 |--| |---| |------| ... |--|
387 0 1 2 N
388
389 I=1
390
391 If there's no overlap with the previous range, as in:
392
393 #3 - not overlapping and not contiguous
394
395 R
396 |-...-|
397 |--| |---| |------| ... |--|
398 0 1 2 N
399
400 I=1
401
402 or if I is 0:
403
404 #4 - R is the range with lowest offset
405
406 R
407 |-...-|
408 |--| |---| |------| ... |--|
409 0 1 2 N
410
411 I=0
412
413 ... we just push the new range to I.
414
415 All the 4 cases above need to consider that the new range may
416 also overlap several of the ranges that follow, or that R may be
417 contiguous with the following range, and merge. E.g.,
418
419 #5 - overlapping following ranges
420
421 R
422 |------------------------|
423 |--| |---| |------| ... |--|
424 0 1 2 N
425
426 I=0
427
428 or:
429
430 R
431 |-------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=1
436
437 */
438
439 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
440 if (i > 0)
441 {
6bfc80c7 442 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
443
444 if (ranges_overlap (bef->offset, bef->length, offset, length))
445 {
446 /* #1 */
447 ULONGEST l = min (bef->offset, offset);
448 ULONGEST h = max (bef->offset + bef->length, offset + length);
449
450 bef->offset = l;
451 bef->length = h - l;
452 i--;
453 }
454 else if (offset == bef->offset + bef->length)
455 {
456 /* #2 */
457 bef->length += length;
458 i--;
459 }
460 else
461 {
462 /* #3 */
463 VEC_safe_insert (range_s, value->unavailable, i, &newr);
464 }
465 }
466 else
467 {
468 /* #4 */
469 VEC_safe_insert (range_s, value->unavailable, i, &newr);
470 }
471
472 /* Check whether the ranges following the one we've just added or
473 touched can be folded in (#5 above). */
474 if (i + 1 < VEC_length (range_s, value->unavailable))
475 {
476 struct range *t;
477 struct range *r;
478 int removed = 0;
479 int next = i + 1;
480
481 /* Get the range we just touched. */
482 t = VEC_index (range_s, value->unavailable, i);
483 removed = 0;
484
485 i = next;
486 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
487 if (r->offset <= t->offset + t->length)
488 {
489 ULONGEST l, h;
490
491 l = min (t->offset, r->offset);
492 h = max (t->offset + t->length, r->offset + r->length);
493
494 t->offset = l;
495 t->length = h - l;
496
497 removed++;
498 }
499 else
500 {
501 /* If we couldn't merge this one, we won't be able to
502 merge following ones either, since the ranges are
503 always sorted by OFFSET. */
504 break;
505 }
506
507 if (removed != 0)
508 VEC_block_remove (range_s, value->unavailable, next, removed);
509 }
510}
511
c8c1c22f
PA
512/* Find the first range in RANGES that overlaps the range defined by
513 OFFSET and LENGTH, starting at element POS in the RANGES vector,
514 Returns the index into RANGES where such overlapping range was
515 found, or -1 if none was found. */
516
517static int
518find_first_range_overlap (VEC(range_s) *ranges, int pos,
519 int offset, int length)
520{
521 range_s *r;
522 int i;
523
524 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
525 if (ranges_overlap (r->offset, r->length, offset, length))
526 return i;
527
528 return -1;
529}
530
531int
532value_available_contents_eq (const struct value *val1, int offset1,
533 const struct value *val2, int offset2,
534 int length)
535{
c8c1c22f 536 int idx1 = 0, idx2 = 0;
c8c1c22f
PA
537
538 /* This routine is used by printing routines, where we should
539 already have read the value. Note that we only know whether a
540 value chunk is available if we've tried to read it. */
541 gdb_assert (!val1->lazy && !val2->lazy);
542
c8c1c22f
PA
543 while (length > 0)
544 {
545 range_s *r1, *r2;
546 ULONGEST l1, h1;
547 ULONGEST l2, h2;
548
549 idx1 = find_first_range_overlap (val1->unavailable, idx1,
550 offset1, length);
551 idx2 = find_first_range_overlap (val2->unavailable, idx2,
552 offset2, length);
553
554 /* The usual case is for both values to be completely available. */
555 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
556 return (memcmp (val1->contents + offset1,
557 val2->contents + offset2,
558 length) == 0);
c8c1c22f
PA
559 /* The contents only match equal if the available set matches as
560 well. */
561 else if (idx1 == -1 || idx2 == -1)
562 return 0;
563
564 gdb_assert (idx1 != -1 && idx2 != -1);
565
566 r1 = VEC_index (range_s, val1->unavailable, idx1);
567 r2 = VEC_index (range_s, val2->unavailable, idx2);
568
569 /* Get the unavailable windows intersected by the incoming
570 ranges. The first and last ranges that overlap the argument
571 range may be wider than said incoming arguments ranges. */
572 l1 = max (offset1, r1->offset);
573 h1 = min (offset1 + length, r1->offset + r1->length);
574
575 l2 = max (offset2, r2->offset);
576 h2 = min (offset2 + length, r2->offset + r2->length);
577
578 /* Make them relative to the respective start offsets, so we can
579 compare them for equality. */
580 l1 -= offset1;
581 h1 -= offset1;
582
583 l2 -= offset2;
584 h2 -= offset2;
585
586 /* Different availability, no match. */
587 if (l1 != l2 || h1 != h2)
588 return 0;
589
590 /* Compare the _available_ contents. */
cd24cfaa
PA
591 if (memcmp (val1->contents + offset1,
592 val2->contents + offset2,
593 l1) != 0)
c8c1c22f
PA
594 return 0;
595
c8c1c22f
PA
596 length -= h1;
597 offset1 += h1;
598 offset2 += h1;
599 }
600
601 return 1;
602}
603
581e13c1 604/* Prototypes for local functions. */
c906108c 605
a14ed312 606static void show_values (char *, int);
c906108c 607
a14ed312 608static void show_convenience (char *, int);
c906108c 609
c906108c
SS
610
611/* The value-history records all the values printed
612 by print commands during this session. Each chunk
613 records 60 consecutive values. The first chunk on
614 the chain records the most recent values.
615 The total number of values is in value_history_count. */
616
617#define VALUE_HISTORY_CHUNK 60
618
619struct value_history_chunk
c5aa993b
JM
620 {
621 struct value_history_chunk *next;
f23631e4 622 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 623 };
c906108c
SS
624
625/* Chain of chunks now in use. */
626
627static struct value_history_chunk *value_history_chain;
628
581e13c1 629static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 630
c906108c
SS
631\f
632/* List of all value objects currently allocated
633 (except for those released by calls to release_value)
634 This is so they can be freed after each command. */
635
f23631e4 636static struct value *all_values;
c906108c 637
3e3d7139
JG
638/* Allocate a lazy value for type TYPE. Its actual content is
639 "lazily" allocated too: the content field of the return value is
640 NULL; it will be allocated when it is fetched from the target. */
c906108c 641
f23631e4 642struct value *
3e3d7139 643allocate_value_lazy (struct type *type)
c906108c 644{
f23631e4 645 struct value *val;
c54eabfa
JK
646
647 /* Call check_typedef on our type to make sure that, if TYPE
648 is a TYPE_CODE_TYPEDEF, its length is set to the length
649 of the target type instead of zero. However, we do not
650 replace the typedef type by the target type, because we want
651 to keep the typedef in order to be able to set the VAL's type
652 description correctly. */
653 check_typedef (type);
c906108c 654
3e3d7139
JG
655 val = (struct value *) xzalloc (sizeof (struct value));
656 val->contents = NULL;
df407dfe 657 val->next = all_values;
c906108c 658 all_values = val;
df407dfe 659 val->type = type;
4754a64e 660 val->enclosing_type = type;
c906108c 661 VALUE_LVAL (val) = not_lval;
42ae5230 662 val->location.address = 0;
1df6926e 663 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
664 val->offset = 0;
665 val->bitpos = 0;
666 val->bitsize = 0;
9ee8fc9d 667 VALUE_REGNUM (val) = -1;
3e3d7139 668 val->lazy = 1;
feb13ab0 669 val->optimized_out = 0;
13c3b5f5 670 val->embedded_offset = 0;
b44d461b 671 val->pointed_to_offset = 0;
c906108c 672 val->modifiable = 1;
42be36b3 673 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
674
675 /* Values start out on the all_values chain. */
676 val->reference_count = 1;
677
c906108c
SS
678 return val;
679}
680
3e3d7139
JG
681/* Allocate the contents of VAL if it has not been allocated yet. */
682
683void
684allocate_value_contents (struct value *val)
685{
686 if (!val->contents)
687 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
688}
689
690/* Allocate a value and its contents for type TYPE. */
691
692struct value *
693allocate_value (struct type *type)
694{
695 struct value *val = allocate_value_lazy (type);
a109c7c1 696
3e3d7139
JG
697 allocate_value_contents (val);
698 val->lazy = 0;
699 return val;
700}
701
c906108c 702/* Allocate a value that has the correct length
938f5214 703 for COUNT repetitions of type TYPE. */
c906108c 704
f23631e4 705struct value *
fba45db2 706allocate_repeat_value (struct type *type, int count)
c906108c 707{
c5aa993b 708 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
709 /* FIXME-type-allocation: need a way to free this type when we are
710 done with it. */
e3506a9f
UW
711 struct type *array_type
712 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 713
e3506a9f 714 return allocate_value (array_type);
c906108c
SS
715}
716
5f5233d4
PA
717struct value *
718allocate_computed_value (struct type *type,
719 struct lval_funcs *funcs,
720 void *closure)
721{
41e8491f 722 struct value *v = allocate_value_lazy (type);
a109c7c1 723
5f5233d4
PA
724 VALUE_LVAL (v) = lval_computed;
725 v->location.computed.funcs = funcs;
726 v->location.computed.closure = closure;
5f5233d4
PA
727
728 return v;
729}
730
df407dfe
AC
731/* Accessor methods. */
732
17cf0ecd
AC
733struct value *
734value_next (struct value *value)
735{
736 return value->next;
737}
738
df407dfe 739struct type *
0e03807e 740value_type (const struct value *value)
df407dfe
AC
741{
742 return value->type;
743}
04624583
AC
744void
745deprecated_set_value_type (struct value *value, struct type *type)
746{
747 value->type = type;
748}
df407dfe
AC
749
750int
0e03807e 751value_offset (const struct value *value)
df407dfe
AC
752{
753 return value->offset;
754}
f5cf64a7
AC
755void
756set_value_offset (struct value *value, int offset)
757{
758 value->offset = offset;
759}
df407dfe
AC
760
761int
0e03807e 762value_bitpos (const struct value *value)
df407dfe
AC
763{
764 return value->bitpos;
765}
9bbda503
AC
766void
767set_value_bitpos (struct value *value, int bit)
768{
769 value->bitpos = bit;
770}
df407dfe
AC
771
772int
0e03807e 773value_bitsize (const struct value *value)
df407dfe
AC
774{
775 return value->bitsize;
776}
9bbda503
AC
777void
778set_value_bitsize (struct value *value, int bit)
779{
780 value->bitsize = bit;
781}
df407dfe 782
4ea48cc1
DJ
783struct value *
784value_parent (struct value *value)
785{
786 return value->parent;
787}
788
fc1a4b47 789gdb_byte *
990a07ab
AC
790value_contents_raw (struct value *value)
791{
3e3d7139
JG
792 allocate_value_contents (value);
793 return value->contents + value->embedded_offset;
990a07ab
AC
794}
795
fc1a4b47 796gdb_byte *
990a07ab
AC
797value_contents_all_raw (struct value *value)
798{
3e3d7139
JG
799 allocate_value_contents (value);
800 return value->contents;
990a07ab
AC
801}
802
4754a64e
AC
803struct type *
804value_enclosing_type (struct value *value)
805{
806 return value->enclosing_type;
807}
808
0e03807e 809static void
4e07d55f 810require_not_optimized_out (const struct value *value)
0e03807e
TT
811{
812 if (value->optimized_out)
813 error (_("value has been optimized out"));
814}
815
4e07d55f
PA
816static void
817require_available (const struct value *value)
818{
819 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 820 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
821}
822
fc1a4b47 823const gdb_byte *
0e03807e 824value_contents_for_printing (struct value *value)
46615f07
AC
825{
826 if (value->lazy)
827 value_fetch_lazy (value);
3e3d7139 828 return value->contents;
46615f07
AC
829}
830
de4127a3
PA
831const gdb_byte *
832value_contents_for_printing_const (const struct value *value)
833{
834 gdb_assert (!value->lazy);
835 return value->contents;
836}
837
0e03807e
TT
838const gdb_byte *
839value_contents_all (struct value *value)
840{
841 const gdb_byte *result = value_contents_for_printing (value);
842 require_not_optimized_out (value);
4e07d55f 843 require_available (value);
0e03807e
TT
844 return result;
845}
846
29976f3f
PA
847/* Copy LENGTH bytes of SRC value's (all) contents
848 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
849 contents, starting at DST_OFFSET. If unavailable contents are
850 being copied from SRC, the corresponding DST contents are marked
851 unavailable accordingly. Neither DST nor SRC may be lazy
852 values.
853
854 It is assumed the contents of DST in the [DST_OFFSET,
855 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
856
857void
858value_contents_copy_raw (struct value *dst, int dst_offset,
859 struct value *src, int src_offset, int length)
860{
861 range_s *r;
862 int i;
863
864 /* A lazy DST would make that this copy operation useless, since as
865 soon as DST's contents were un-lazied (by a later value_contents
866 call, say), the contents would be overwritten. A lazy SRC would
867 mean we'd be copying garbage. */
868 gdb_assert (!dst->lazy && !src->lazy);
869
29976f3f
PA
870 /* The overwritten DST range gets unavailability ORed in, not
871 replaced. Make sure to remember to implement replacing if it
872 turns out actually necessary. */
873 gdb_assert (value_bytes_available (dst, dst_offset, length));
874
39d37385
PA
875 /* Copy the data. */
876 memcpy (value_contents_all_raw (dst) + dst_offset,
877 value_contents_all_raw (src) + src_offset,
878 length);
879
880 /* Copy the meta-data, adjusted. */
881 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
882 {
883 ULONGEST h, l;
884
885 l = max (r->offset, src_offset);
886 h = min (r->offset + r->length, src_offset + length);
887
888 if (l < h)
889 mark_value_bytes_unavailable (dst,
890 dst_offset + (l - src_offset),
891 h - l);
892 }
893}
894
29976f3f
PA
895/* Copy LENGTH bytes of SRC value's (all) contents
896 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
897 (all) contents, starting at DST_OFFSET. If unavailable contents
898 are being copied from SRC, the corresponding DST contents are
899 marked unavailable accordingly. DST must not be lazy. If SRC is
900 lazy, it will be fetched now. If SRC is not valid (is optimized
901 out), an error is thrown.
902
903 It is assumed the contents of DST in the [DST_OFFSET,
904 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
905
906void
907value_contents_copy (struct value *dst, int dst_offset,
908 struct value *src, int src_offset, int length)
909{
910 require_not_optimized_out (src);
911
912 if (src->lazy)
913 value_fetch_lazy (src);
914
915 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
916}
917
d69fe07e
AC
918int
919value_lazy (struct value *value)
920{
921 return value->lazy;
922}
923
dfa52d88
AC
924void
925set_value_lazy (struct value *value, int val)
926{
927 value->lazy = val;
928}
929
4e5d721f
DE
930int
931value_stack (struct value *value)
932{
933 return value->stack;
934}
935
936void
937set_value_stack (struct value *value, int val)
938{
939 value->stack = val;
940}
941
fc1a4b47 942const gdb_byte *
0fd88904
AC
943value_contents (struct value *value)
944{
0e03807e
TT
945 const gdb_byte *result = value_contents_writeable (value);
946 require_not_optimized_out (value);
4e07d55f 947 require_available (value);
0e03807e 948 return result;
0fd88904
AC
949}
950
fc1a4b47 951gdb_byte *
0fd88904
AC
952value_contents_writeable (struct value *value)
953{
954 if (value->lazy)
955 value_fetch_lazy (value);
fc0c53a0 956 return value_contents_raw (value);
0fd88904
AC
957}
958
a6c442d8
MK
959/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
960 this function is different from value_equal; in C the operator ==
961 can return 0 even if the two values being compared are equal. */
962
963int
964value_contents_equal (struct value *val1, struct value *val2)
965{
966 struct type *type1;
967 struct type *type2;
968 int len;
969
970 type1 = check_typedef (value_type (val1));
971 type2 = check_typedef (value_type (val2));
972 len = TYPE_LENGTH (type1);
973 if (len != TYPE_LENGTH (type2))
974 return 0;
975
976 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
977}
978
feb13ab0
AC
979int
980value_optimized_out (struct value *value)
981{
982 return value->optimized_out;
983}
984
985void
986set_value_optimized_out (struct value *value, int val)
987{
988 value->optimized_out = val;
989}
13c3b5f5 990
0e03807e
TT
991int
992value_entirely_optimized_out (const struct value *value)
993{
994 if (!value->optimized_out)
995 return 0;
996 if (value->lval != lval_computed
ba19bb4d 997 || !value->location.computed.funcs->check_any_valid)
0e03807e 998 return 1;
b65c7efe 999 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1000}
1001
1002int
1003value_bits_valid (const struct value *value, int offset, int length)
1004{
e7303042 1005 if (!value->optimized_out)
0e03807e
TT
1006 return 1;
1007 if (value->lval != lval_computed
1008 || !value->location.computed.funcs->check_validity)
1009 return 0;
1010 return value->location.computed.funcs->check_validity (value, offset,
1011 length);
1012}
1013
8cf6f0b1
TT
1014int
1015value_bits_synthetic_pointer (const struct value *value,
1016 int offset, int length)
1017{
e7303042 1018 if (value->lval != lval_computed
8cf6f0b1
TT
1019 || !value->location.computed.funcs->check_synthetic_pointer)
1020 return 0;
1021 return value->location.computed.funcs->check_synthetic_pointer (value,
1022 offset,
1023 length);
1024}
1025
13c3b5f5
AC
1026int
1027value_embedded_offset (struct value *value)
1028{
1029 return value->embedded_offset;
1030}
1031
1032void
1033set_value_embedded_offset (struct value *value, int val)
1034{
1035 value->embedded_offset = val;
1036}
b44d461b
AC
1037
1038int
1039value_pointed_to_offset (struct value *value)
1040{
1041 return value->pointed_to_offset;
1042}
1043
1044void
1045set_value_pointed_to_offset (struct value *value, int val)
1046{
1047 value->pointed_to_offset = val;
1048}
13bb5560 1049
5f5233d4
PA
1050struct lval_funcs *
1051value_computed_funcs (struct value *v)
1052{
1053 gdb_assert (VALUE_LVAL (v) == lval_computed);
1054
1055 return v->location.computed.funcs;
1056}
1057
1058void *
0e03807e 1059value_computed_closure (const struct value *v)
5f5233d4 1060{
0e03807e 1061 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1062
1063 return v->location.computed.closure;
1064}
1065
13bb5560
AC
1066enum lval_type *
1067deprecated_value_lval_hack (struct value *value)
1068{
1069 return &value->lval;
1070}
1071
42ae5230 1072CORE_ADDR
de4127a3 1073value_address (const struct value *value)
42ae5230
TT
1074{
1075 if (value->lval == lval_internalvar
1076 || value->lval == lval_internalvar_component)
1077 return 0;
1078 return value->location.address + value->offset;
1079}
1080
1081CORE_ADDR
1082value_raw_address (struct value *value)
1083{
1084 if (value->lval == lval_internalvar
1085 || value->lval == lval_internalvar_component)
1086 return 0;
1087 return value->location.address;
1088}
1089
1090void
1091set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1092{
42ae5230
TT
1093 gdb_assert (value->lval != lval_internalvar
1094 && value->lval != lval_internalvar_component);
1095 value->location.address = addr;
13bb5560
AC
1096}
1097
1098struct internalvar **
1099deprecated_value_internalvar_hack (struct value *value)
1100{
1101 return &value->location.internalvar;
1102}
1103
1104struct frame_id *
1105deprecated_value_frame_id_hack (struct value *value)
1106{
1107 return &value->frame_id;
1108}
1109
1110short *
1111deprecated_value_regnum_hack (struct value *value)
1112{
1113 return &value->regnum;
1114}
88e3b34b
AC
1115
1116int
1117deprecated_value_modifiable (struct value *value)
1118{
1119 return value->modifiable;
1120}
1121void
1122deprecated_set_value_modifiable (struct value *value, int modifiable)
1123{
1124 value->modifiable = modifiable;
1125}
990a07ab 1126\f
c906108c
SS
1127/* Return a mark in the value chain. All values allocated after the
1128 mark is obtained (except for those released) are subject to being freed
1129 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1130struct value *
fba45db2 1131value_mark (void)
c906108c
SS
1132{
1133 return all_values;
1134}
1135
828d3400
DJ
1136/* Take a reference to VAL. VAL will not be deallocated until all
1137 references are released. */
1138
1139void
1140value_incref (struct value *val)
1141{
1142 val->reference_count++;
1143}
1144
1145/* Release a reference to VAL, which was acquired with value_incref.
1146 This function is also called to deallocate values from the value
1147 chain. */
1148
3e3d7139
JG
1149void
1150value_free (struct value *val)
1151{
1152 if (val)
5f5233d4 1153 {
828d3400
DJ
1154 gdb_assert (val->reference_count > 0);
1155 val->reference_count--;
1156 if (val->reference_count > 0)
1157 return;
1158
4ea48cc1
DJ
1159 /* If there's an associated parent value, drop our reference to
1160 it. */
1161 if (val->parent != NULL)
1162 value_free (val->parent);
1163
5f5233d4
PA
1164 if (VALUE_LVAL (val) == lval_computed)
1165 {
1166 struct lval_funcs *funcs = val->location.computed.funcs;
1167
1168 if (funcs->free_closure)
1169 funcs->free_closure (val);
1170 }
1171
1172 xfree (val->contents);
4e07d55f 1173 VEC_free (range_s, val->unavailable);
5f5233d4 1174 }
3e3d7139
JG
1175 xfree (val);
1176}
1177
c906108c
SS
1178/* Free all values allocated since MARK was obtained by value_mark
1179 (except for those released). */
1180void
f23631e4 1181value_free_to_mark (struct value *mark)
c906108c 1182{
f23631e4
AC
1183 struct value *val;
1184 struct value *next;
c906108c
SS
1185
1186 for (val = all_values; val && val != mark; val = next)
1187 {
df407dfe 1188 next = val->next;
c906108c
SS
1189 value_free (val);
1190 }
1191 all_values = val;
1192}
1193
1194/* Free all the values that have been allocated (except for those released).
725e88af
DE
1195 Call after each command, successful or not.
1196 In practice this is called before each command, which is sufficient. */
c906108c
SS
1197
1198void
fba45db2 1199free_all_values (void)
c906108c 1200{
f23631e4
AC
1201 struct value *val;
1202 struct value *next;
c906108c
SS
1203
1204 for (val = all_values; val; val = next)
1205 {
df407dfe 1206 next = val->next;
c906108c
SS
1207 value_free (val);
1208 }
1209
1210 all_values = 0;
1211}
1212
0cf6dd15
TJB
1213/* Frees all the elements in a chain of values. */
1214
1215void
1216free_value_chain (struct value *v)
1217{
1218 struct value *next;
1219
1220 for (; v; v = next)
1221 {
1222 next = value_next (v);
1223 value_free (v);
1224 }
1225}
1226
c906108c
SS
1227/* Remove VAL from the chain all_values
1228 so it will not be freed automatically. */
1229
1230void
f23631e4 1231release_value (struct value *val)
c906108c 1232{
f23631e4 1233 struct value *v;
c906108c
SS
1234
1235 if (all_values == val)
1236 {
1237 all_values = val->next;
06a64a0b 1238 val->next = NULL;
c906108c
SS
1239 return;
1240 }
1241
1242 for (v = all_values; v; v = v->next)
1243 {
1244 if (v->next == val)
1245 {
1246 v->next = val->next;
06a64a0b 1247 val->next = NULL;
c906108c
SS
1248 break;
1249 }
1250 }
1251}
1252
1253/* Release all values up to mark */
f23631e4
AC
1254struct value *
1255value_release_to_mark (struct value *mark)
c906108c 1256{
f23631e4
AC
1257 struct value *val;
1258 struct value *next;
c906108c 1259
df407dfe
AC
1260 for (val = next = all_values; next; next = next->next)
1261 if (next->next == mark)
c906108c 1262 {
df407dfe
AC
1263 all_values = next->next;
1264 next->next = NULL;
c906108c
SS
1265 return val;
1266 }
1267 all_values = 0;
1268 return val;
1269}
1270
1271/* Return a copy of the value ARG.
1272 It contains the same contents, for same memory address,
1273 but it's a different block of storage. */
1274
f23631e4
AC
1275struct value *
1276value_copy (struct value *arg)
c906108c 1277{
4754a64e 1278 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1279 struct value *val;
1280
1281 if (value_lazy (arg))
1282 val = allocate_value_lazy (encl_type);
1283 else
1284 val = allocate_value (encl_type);
df407dfe 1285 val->type = arg->type;
c906108c 1286 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1287 val->location = arg->location;
df407dfe
AC
1288 val->offset = arg->offset;
1289 val->bitpos = arg->bitpos;
1290 val->bitsize = arg->bitsize;
1df6926e 1291 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1292 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1293 val->lazy = arg->lazy;
feb13ab0 1294 val->optimized_out = arg->optimized_out;
13c3b5f5 1295 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1296 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1297 val->modifiable = arg->modifiable;
d69fe07e 1298 if (!value_lazy (val))
c906108c 1299 {
990a07ab 1300 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1301 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1302
1303 }
4e07d55f 1304 val->unavailable = VEC_copy (range_s, arg->unavailable);
4ea48cc1
DJ
1305 val->parent = arg->parent;
1306 if (val->parent)
1307 value_incref (val->parent);
5f5233d4
PA
1308 if (VALUE_LVAL (val) == lval_computed)
1309 {
1310 struct lval_funcs *funcs = val->location.computed.funcs;
1311
1312 if (funcs->copy_closure)
1313 val->location.computed.closure = funcs->copy_closure (val);
1314 }
c906108c
SS
1315 return val;
1316}
74bcbdf3 1317
c37f7098
KW
1318/* Return a version of ARG that is non-lvalue. */
1319
1320struct value *
1321value_non_lval (struct value *arg)
1322{
1323 if (VALUE_LVAL (arg) != not_lval)
1324 {
1325 struct type *enc_type = value_enclosing_type (arg);
1326 struct value *val = allocate_value (enc_type);
1327
1328 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1329 TYPE_LENGTH (enc_type));
1330 val->type = arg->type;
1331 set_value_embedded_offset (val, value_embedded_offset (arg));
1332 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1333 return val;
1334 }
1335 return arg;
1336}
1337
74bcbdf3 1338void
0e03807e
TT
1339set_value_component_location (struct value *component,
1340 const struct value *whole)
74bcbdf3 1341{
0e03807e 1342 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1343 VALUE_LVAL (component) = lval_internalvar_component;
1344 else
0e03807e 1345 VALUE_LVAL (component) = whole->lval;
5f5233d4 1346
74bcbdf3 1347 component->location = whole->location;
0e03807e 1348 if (whole->lval == lval_computed)
5f5233d4
PA
1349 {
1350 struct lval_funcs *funcs = whole->location.computed.funcs;
1351
1352 if (funcs->copy_closure)
1353 component->location.computed.closure = funcs->copy_closure (whole);
1354 }
74bcbdf3
PA
1355}
1356
c906108c
SS
1357\f
1358/* Access to the value history. */
1359
1360/* Record a new value in the value history.
1361 Returns the absolute history index of the entry.
1362 Result of -1 indicates the value was not saved; otherwise it is the
1363 value history index of this new item. */
1364
1365int
f23631e4 1366record_latest_value (struct value *val)
c906108c
SS
1367{
1368 int i;
1369
1370 /* We don't want this value to have anything to do with the inferior anymore.
1371 In particular, "set $1 = 50" should not affect the variable from which
1372 the value was taken, and fast watchpoints should be able to assume that
1373 a value on the value history never changes. */
d69fe07e 1374 if (value_lazy (val))
c906108c
SS
1375 value_fetch_lazy (val);
1376 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1377 from. This is a bit dubious, because then *&$1 does not just return $1
1378 but the current contents of that location. c'est la vie... */
1379 val->modifiable = 0;
1380 release_value (val);
1381
1382 /* Here we treat value_history_count as origin-zero
1383 and applying to the value being stored now. */
1384
1385 i = value_history_count % VALUE_HISTORY_CHUNK;
1386 if (i == 0)
1387 {
f23631e4 1388 struct value_history_chunk *new
a109c7c1
MS
1389 = (struct value_history_chunk *)
1390
c5aa993b 1391 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1392 memset (new->values, 0, sizeof new->values);
1393 new->next = value_history_chain;
1394 value_history_chain = new;
1395 }
1396
1397 value_history_chain->values[i] = val;
1398
1399 /* Now we regard value_history_count as origin-one
1400 and applying to the value just stored. */
1401
1402 return ++value_history_count;
1403}
1404
1405/* Return a copy of the value in the history with sequence number NUM. */
1406
f23631e4 1407struct value *
fba45db2 1408access_value_history (int num)
c906108c 1409{
f23631e4 1410 struct value_history_chunk *chunk;
52f0bd74
AC
1411 int i;
1412 int absnum = num;
c906108c
SS
1413
1414 if (absnum <= 0)
1415 absnum += value_history_count;
1416
1417 if (absnum <= 0)
1418 {
1419 if (num == 0)
8a3fe4f8 1420 error (_("The history is empty."));
c906108c 1421 else if (num == 1)
8a3fe4f8 1422 error (_("There is only one value in the history."));
c906108c 1423 else
8a3fe4f8 1424 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1425 }
1426 if (absnum > value_history_count)
8a3fe4f8 1427 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1428
1429 absnum--;
1430
1431 /* Now absnum is always absolute and origin zero. */
1432
1433 chunk = value_history_chain;
3e43a32a
MS
1434 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1435 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1436 i > 0; i--)
1437 chunk = chunk->next;
1438
1439 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1440}
1441
c906108c 1442static void
fba45db2 1443show_values (char *num_exp, int from_tty)
c906108c 1444{
52f0bd74 1445 int i;
f23631e4 1446 struct value *val;
c906108c
SS
1447 static int num = 1;
1448
1449 if (num_exp)
1450 {
f132ba9d
TJB
1451 /* "show values +" should print from the stored position.
1452 "show values <exp>" should print around value number <exp>. */
c906108c 1453 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1454 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1455 }
1456 else
1457 {
f132ba9d 1458 /* "show values" means print the last 10 values. */
c906108c
SS
1459 num = value_history_count - 9;
1460 }
1461
1462 if (num <= 0)
1463 num = 1;
1464
1465 for (i = num; i < num + 10 && i <= value_history_count; i++)
1466 {
79a45b7d 1467 struct value_print_options opts;
a109c7c1 1468
c906108c 1469 val = access_value_history (i);
a3f17187 1470 printf_filtered (("$%d = "), i);
79a45b7d
TT
1471 get_user_print_options (&opts);
1472 value_print (val, gdb_stdout, &opts);
a3f17187 1473 printf_filtered (("\n"));
c906108c
SS
1474 }
1475
f132ba9d 1476 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1477 num += 10;
1478
1479 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1480 "show values +". If num_exp is null, this is unnecessary, since
1481 "show values +" is not useful after "show values". */
c906108c
SS
1482 if (from_tty && num_exp)
1483 {
1484 num_exp[0] = '+';
1485 num_exp[1] = '\0';
1486 }
1487}
1488\f
1489/* Internal variables. These are variables within the debugger
1490 that hold values assigned by debugger commands.
1491 The user refers to them with a '$' prefix
1492 that does not appear in the variable names stored internally. */
1493
4fa62494
UW
1494struct internalvar
1495{
1496 struct internalvar *next;
1497 char *name;
4fa62494 1498
78267919
UW
1499 /* We support various different kinds of content of an internal variable.
1500 enum internalvar_kind specifies the kind, and union internalvar_data
1501 provides the data associated with this particular kind. */
1502
1503 enum internalvar_kind
1504 {
1505 /* The internal variable is empty. */
1506 INTERNALVAR_VOID,
1507
1508 /* The value of the internal variable is provided directly as
1509 a GDB value object. */
1510 INTERNALVAR_VALUE,
1511
1512 /* A fresh value is computed via a call-back routine on every
1513 access to the internal variable. */
1514 INTERNALVAR_MAKE_VALUE,
4fa62494 1515
78267919
UW
1516 /* The internal variable holds a GDB internal convenience function. */
1517 INTERNALVAR_FUNCTION,
1518
cab0c772
UW
1519 /* The variable holds an integer value. */
1520 INTERNALVAR_INTEGER,
1521
78267919
UW
1522 /* The variable holds a GDB-provided string. */
1523 INTERNALVAR_STRING,
1524
1525 } kind;
4fa62494 1526
4fa62494
UW
1527 union internalvar_data
1528 {
78267919
UW
1529 /* A value object used with INTERNALVAR_VALUE. */
1530 struct value *value;
1531
1532 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1533 internalvar_make_value make_value;
1534
1535 /* The internal function used with INTERNALVAR_FUNCTION. */
1536 struct
1537 {
1538 struct internal_function *function;
1539 /* True if this is the canonical name for the function. */
1540 int canonical;
1541 } fn;
1542
cab0c772 1543 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1544 struct
1545 {
1546 /* If type is non-NULL, it will be used as the type to generate
1547 a value for this internal variable. If type is NULL, a default
1548 integer type for the architecture is used. */
1549 struct type *type;
cab0c772
UW
1550 LONGEST val;
1551 } integer;
1552
78267919
UW
1553 /* A string value used with INTERNALVAR_STRING. */
1554 char *string;
4fa62494
UW
1555 } u;
1556};
1557
c906108c
SS
1558static struct internalvar *internalvars;
1559
3e43a32a
MS
1560/* If the variable does not already exist create it and give it the
1561 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1562static void
1563init_if_undefined_command (char* args, int from_tty)
1564{
1565 struct internalvar* intvar;
1566
1567 /* Parse the expression - this is taken from set_command(). */
1568 struct expression *expr = parse_expression (args);
1569 register struct cleanup *old_chain =
1570 make_cleanup (free_current_contents, &expr);
1571
1572 /* Validate the expression.
1573 Was the expression an assignment?
1574 Or even an expression at all? */
1575 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1576 error (_("Init-if-undefined requires an assignment expression."));
1577
1578 /* Extract the variable from the parsed expression.
1579 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1580 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1581 error (_("The first parameter to init-if-undefined "
1582 "should be a GDB variable."));
53e5f3cf
AS
1583 intvar = expr->elts[2].internalvar;
1584
1585 /* Only evaluate the expression if the lvalue is void.
1586 This may still fail if the expresssion is invalid. */
78267919 1587 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1588 evaluate_expression (expr);
1589
1590 do_cleanups (old_chain);
1591}
1592
1593
c906108c
SS
1594/* Look up an internal variable with name NAME. NAME should not
1595 normally include a dollar sign.
1596
1597 If the specified internal variable does not exist,
c4a3d09a 1598 the return value is NULL. */
c906108c
SS
1599
1600struct internalvar *
bc3b79fd 1601lookup_only_internalvar (const char *name)
c906108c 1602{
52f0bd74 1603 struct internalvar *var;
c906108c
SS
1604
1605 for (var = internalvars; var; var = var->next)
5cb316ef 1606 if (strcmp (var->name, name) == 0)
c906108c
SS
1607 return var;
1608
c4a3d09a
MF
1609 return NULL;
1610}
1611
1612
1613/* Create an internal variable with name NAME and with a void value.
1614 NAME should not normally include a dollar sign. */
1615
1616struct internalvar *
bc3b79fd 1617create_internalvar (const char *name)
c4a3d09a
MF
1618{
1619 struct internalvar *var;
a109c7c1 1620
c906108c 1621 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1622 var->name = concat (name, (char *)NULL);
78267919 1623 var->kind = INTERNALVAR_VOID;
c906108c
SS
1624 var->next = internalvars;
1625 internalvars = var;
1626 return var;
1627}
1628
4aa995e1
PA
1629/* Create an internal variable with name NAME and register FUN as the
1630 function that value_of_internalvar uses to create a value whenever
1631 this variable is referenced. NAME should not normally include a
1632 dollar sign. */
1633
1634struct internalvar *
1635create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1636{
4fa62494 1637 struct internalvar *var = create_internalvar (name);
a109c7c1 1638
78267919
UW
1639 var->kind = INTERNALVAR_MAKE_VALUE;
1640 var->u.make_value = fun;
4aa995e1
PA
1641 return var;
1642}
c4a3d09a
MF
1643
1644/* Look up an internal variable with name NAME. NAME should not
1645 normally include a dollar sign.
1646
1647 If the specified internal variable does not exist,
1648 one is created, with a void value. */
1649
1650struct internalvar *
bc3b79fd 1651lookup_internalvar (const char *name)
c4a3d09a
MF
1652{
1653 struct internalvar *var;
1654
1655 var = lookup_only_internalvar (name);
1656 if (var)
1657 return var;
1658
1659 return create_internalvar (name);
1660}
1661
78267919
UW
1662/* Return current value of internal variable VAR. For variables that
1663 are not inherently typed, use a value type appropriate for GDBARCH. */
1664
f23631e4 1665struct value *
78267919 1666value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1667{
f23631e4 1668 struct value *val;
0914bcdb
SS
1669 struct trace_state_variable *tsv;
1670
1671 /* If there is a trace state variable of the same name, assume that
1672 is what we really want to see. */
1673 tsv = find_trace_state_variable (var->name);
1674 if (tsv)
1675 {
1676 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1677 &(tsv->value));
1678 if (tsv->value_known)
1679 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1680 tsv->value);
1681 else
1682 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1683 return val;
1684 }
c906108c 1685
78267919 1686 switch (var->kind)
5f5233d4 1687 {
78267919
UW
1688 case INTERNALVAR_VOID:
1689 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1690 break;
4fa62494 1691
78267919
UW
1692 case INTERNALVAR_FUNCTION:
1693 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1694 break;
4fa62494 1695
cab0c772
UW
1696 case INTERNALVAR_INTEGER:
1697 if (!var->u.integer.type)
78267919 1698 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1699 var->u.integer.val);
78267919 1700 else
cab0c772
UW
1701 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1702 break;
1703
78267919
UW
1704 case INTERNALVAR_STRING:
1705 val = value_cstring (var->u.string, strlen (var->u.string),
1706 builtin_type (gdbarch)->builtin_char);
1707 break;
4fa62494 1708
78267919
UW
1709 case INTERNALVAR_VALUE:
1710 val = value_copy (var->u.value);
4aa995e1
PA
1711 if (value_lazy (val))
1712 value_fetch_lazy (val);
78267919 1713 break;
4aa995e1 1714
78267919
UW
1715 case INTERNALVAR_MAKE_VALUE:
1716 val = (*var->u.make_value) (gdbarch, var);
1717 break;
1718
1719 default:
9b20d036 1720 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1721 }
1722
1723 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1724 on this value go back to affect the original internal variable.
1725
1726 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1727 no underlying modifyable state in the internal variable.
1728
1729 Likewise, if the variable's value is a computed lvalue, we want
1730 references to it to produce another computed lvalue, where
1731 references and assignments actually operate through the
1732 computed value's functions.
1733
1734 This means that internal variables with computed values
1735 behave a little differently from other internal variables:
1736 assignments to them don't just replace the previous value
1737 altogether. At the moment, this seems like the behavior we
1738 want. */
1739
1740 if (var->kind != INTERNALVAR_MAKE_VALUE
1741 && val->lval != lval_computed)
1742 {
1743 VALUE_LVAL (val) = lval_internalvar;
1744 VALUE_INTERNALVAR (val) = var;
5f5233d4 1745 }
d3c139e9 1746
4fa62494
UW
1747 return val;
1748}
d3c139e9 1749
4fa62494
UW
1750int
1751get_internalvar_integer (struct internalvar *var, LONGEST *result)
1752{
3158c6ed 1753 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1754 {
cab0c772
UW
1755 *result = var->u.integer.val;
1756 return 1;
3158c6ed 1757 }
d3c139e9 1758
3158c6ed
PA
1759 if (var->kind == INTERNALVAR_VALUE)
1760 {
1761 struct type *type = check_typedef (value_type (var->u.value));
1762
1763 if (TYPE_CODE (type) == TYPE_CODE_INT)
1764 {
1765 *result = value_as_long (var->u.value);
1766 return 1;
1767 }
4fa62494 1768 }
3158c6ed
PA
1769
1770 return 0;
4fa62494 1771}
d3c139e9 1772
4fa62494
UW
1773static int
1774get_internalvar_function (struct internalvar *var,
1775 struct internal_function **result)
1776{
78267919 1777 switch (var->kind)
d3c139e9 1778 {
78267919
UW
1779 case INTERNALVAR_FUNCTION:
1780 *result = var->u.fn.function;
4fa62494 1781 return 1;
d3c139e9 1782
4fa62494
UW
1783 default:
1784 return 0;
1785 }
c906108c
SS
1786}
1787
1788void
fba45db2 1789set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1790 int bitsize, struct value *newval)
c906108c 1791{
4fa62494 1792 gdb_byte *addr;
c906108c 1793
78267919 1794 switch (var->kind)
4fa62494 1795 {
78267919
UW
1796 case INTERNALVAR_VALUE:
1797 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1798
1799 if (bitsize)
50810684 1800 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1801 value_as_long (newval), bitpos, bitsize);
1802 else
1803 memcpy (addr + offset, value_contents (newval),
1804 TYPE_LENGTH (value_type (newval)));
1805 break;
78267919
UW
1806
1807 default:
1808 /* We can never get a component of any other kind. */
9b20d036 1809 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1810 }
c906108c
SS
1811}
1812
1813void
f23631e4 1814set_internalvar (struct internalvar *var, struct value *val)
c906108c 1815{
78267919 1816 enum internalvar_kind new_kind;
4fa62494 1817 union internalvar_data new_data = { 0 };
c906108c 1818
78267919 1819 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1820 error (_("Cannot overwrite convenience function %s"), var->name);
1821
4fa62494 1822 /* Prepare new contents. */
78267919 1823 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1824 {
1825 case TYPE_CODE_VOID:
78267919 1826 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1827 break;
1828
1829 case TYPE_CODE_INTERNAL_FUNCTION:
1830 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1831 new_kind = INTERNALVAR_FUNCTION;
1832 get_internalvar_function (VALUE_INTERNALVAR (val),
1833 &new_data.fn.function);
1834 /* Copies created here are never canonical. */
4fa62494
UW
1835 break;
1836
4fa62494 1837 default:
78267919
UW
1838 new_kind = INTERNALVAR_VALUE;
1839 new_data.value = value_copy (val);
1840 new_data.value->modifiable = 1;
4fa62494
UW
1841
1842 /* Force the value to be fetched from the target now, to avoid problems
1843 later when this internalvar is referenced and the target is gone or
1844 has changed. */
78267919
UW
1845 if (value_lazy (new_data.value))
1846 value_fetch_lazy (new_data.value);
4fa62494
UW
1847
1848 /* Release the value from the value chain to prevent it from being
1849 deleted by free_all_values. From here on this function should not
1850 call error () until new_data is installed into the var->u to avoid
1851 leaking memory. */
78267919 1852 release_value (new_data.value);
4fa62494
UW
1853 break;
1854 }
1855
1856 /* Clean up old contents. */
1857 clear_internalvar (var);
1858
1859 /* Switch over. */
78267919 1860 var->kind = new_kind;
4fa62494 1861 var->u = new_data;
c906108c
SS
1862 /* End code which must not call error(). */
1863}
1864
4fa62494
UW
1865void
1866set_internalvar_integer (struct internalvar *var, LONGEST l)
1867{
1868 /* Clean up old contents. */
1869 clear_internalvar (var);
1870
cab0c772
UW
1871 var->kind = INTERNALVAR_INTEGER;
1872 var->u.integer.type = NULL;
1873 var->u.integer.val = l;
78267919
UW
1874}
1875
1876void
1877set_internalvar_string (struct internalvar *var, const char *string)
1878{
1879 /* Clean up old contents. */
1880 clear_internalvar (var);
1881
1882 var->kind = INTERNALVAR_STRING;
1883 var->u.string = xstrdup (string);
4fa62494
UW
1884}
1885
1886static void
1887set_internalvar_function (struct internalvar *var, struct internal_function *f)
1888{
1889 /* Clean up old contents. */
1890 clear_internalvar (var);
1891
78267919
UW
1892 var->kind = INTERNALVAR_FUNCTION;
1893 var->u.fn.function = f;
1894 var->u.fn.canonical = 1;
1895 /* Variables installed here are always the canonical version. */
4fa62494
UW
1896}
1897
1898void
1899clear_internalvar (struct internalvar *var)
1900{
1901 /* Clean up old contents. */
78267919 1902 switch (var->kind)
4fa62494 1903 {
78267919
UW
1904 case INTERNALVAR_VALUE:
1905 value_free (var->u.value);
1906 break;
1907
1908 case INTERNALVAR_STRING:
1909 xfree (var->u.string);
4fa62494
UW
1910 break;
1911
1912 default:
4fa62494
UW
1913 break;
1914 }
1915
78267919
UW
1916 /* Reset to void kind. */
1917 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1918}
1919
c906108c 1920char *
fba45db2 1921internalvar_name (struct internalvar *var)
c906108c
SS
1922{
1923 return var->name;
1924}
1925
4fa62494
UW
1926static struct internal_function *
1927create_internal_function (const char *name,
1928 internal_function_fn handler, void *cookie)
bc3b79fd 1929{
bc3b79fd 1930 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1931
bc3b79fd
TJB
1932 ifn->name = xstrdup (name);
1933 ifn->handler = handler;
1934 ifn->cookie = cookie;
4fa62494 1935 return ifn;
bc3b79fd
TJB
1936}
1937
1938char *
1939value_internal_function_name (struct value *val)
1940{
4fa62494
UW
1941 struct internal_function *ifn;
1942 int result;
1943
1944 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1945 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1946 gdb_assert (result);
1947
bc3b79fd
TJB
1948 return ifn->name;
1949}
1950
1951struct value *
d452c4bc
UW
1952call_internal_function (struct gdbarch *gdbarch,
1953 const struct language_defn *language,
1954 struct value *func, int argc, struct value **argv)
bc3b79fd 1955{
4fa62494
UW
1956 struct internal_function *ifn;
1957 int result;
1958
1959 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1960 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1961 gdb_assert (result);
1962
d452c4bc 1963 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1964}
1965
1966/* The 'function' command. This does nothing -- it is just a
1967 placeholder to let "help function NAME" work. This is also used as
1968 the implementation of the sub-command that is created when
1969 registering an internal function. */
1970static void
1971function_command (char *command, int from_tty)
1972{
1973 /* Do nothing. */
1974}
1975
1976/* Clean up if an internal function's command is destroyed. */
1977static void
1978function_destroyer (struct cmd_list_element *self, void *ignore)
1979{
1980 xfree (self->name);
1981 xfree (self->doc);
1982}
1983
1984/* Add a new internal function. NAME is the name of the function; DOC
1985 is a documentation string describing the function. HANDLER is
1986 called when the function is invoked. COOKIE is an arbitrary
1987 pointer which is passed to HANDLER and is intended for "user
1988 data". */
1989void
1990add_internal_function (const char *name, const char *doc,
1991 internal_function_fn handler, void *cookie)
1992{
1993 struct cmd_list_element *cmd;
4fa62494 1994 struct internal_function *ifn;
bc3b79fd 1995 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1996
1997 ifn = create_internal_function (name, handler, cookie);
1998 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1999
2000 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2001 &functionlist);
2002 cmd->destroyer = function_destroyer;
2003}
2004
ae5a43e0
DJ
2005/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2006 prevent cycles / duplicates. */
2007
4e7a5ef5 2008void
ae5a43e0
DJ
2009preserve_one_value (struct value *value, struct objfile *objfile,
2010 htab_t copied_types)
2011{
2012 if (TYPE_OBJFILE (value->type) == objfile)
2013 value->type = copy_type_recursive (objfile, value->type, copied_types);
2014
2015 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2016 value->enclosing_type = copy_type_recursive (objfile,
2017 value->enclosing_type,
2018 copied_types);
2019}
2020
78267919
UW
2021/* Likewise for internal variable VAR. */
2022
2023static void
2024preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2025 htab_t copied_types)
2026{
2027 switch (var->kind)
2028 {
cab0c772
UW
2029 case INTERNALVAR_INTEGER:
2030 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2031 var->u.integer.type
2032 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2033 break;
2034
78267919
UW
2035 case INTERNALVAR_VALUE:
2036 preserve_one_value (var->u.value, objfile, copied_types);
2037 break;
2038 }
2039}
2040
ae5a43e0
DJ
2041/* Update the internal variables and value history when OBJFILE is
2042 discarded; we must copy the types out of the objfile. New global types
2043 will be created for every convenience variable which currently points to
2044 this objfile's types, and the convenience variables will be adjusted to
2045 use the new global types. */
c906108c
SS
2046
2047void
ae5a43e0 2048preserve_values (struct objfile *objfile)
c906108c 2049{
ae5a43e0
DJ
2050 htab_t copied_types;
2051 struct value_history_chunk *cur;
52f0bd74 2052 struct internalvar *var;
ae5a43e0 2053 int i;
c906108c 2054
ae5a43e0
DJ
2055 /* Create the hash table. We allocate on the objfile's obstack, since
2056 it is soon to be deleted. */
2057 copied_types = create_copied_types_hash (objfile);
2058
2059 for (cur = value_history_chain; cur; cur = cur->next)
2060 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2061 if (cur->values[i])
2062 preserve_one_value (cur->values[i], objfile, copied_types);
2063
2064 for (var = internalvars; var; var = var->next)
78267919 2065 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2066
4e7a5ef5 2067 preserve_python_values (objfile, copied_types);
a08702d6 2068
ae5a43e0 2069 htab_delete (copied_types);
c906108c
SS
2070}
2071
2072static void
fba45db2 2073show_convenience (char *ignore, int from_tty)
c906108c 2074{
e17c207e 2075 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2076 struct internalvar *var;
c906108c 2077 int varseen = 0;
79a45b7d 2078 struct value_print_options opts;
c906108c 2079
79a45b7d 2080 get_user_print_options (&opts);
c906108c
SS
2081 for (var = internalvars; var; var = var->next)
2082 {
c906108c
SS
2083 if (!varseen)
2084 {
2085 varseen = 1;
2086 }
a3f17187 2087 printf_filtered (("$%s = "), var->name);
78267919 2088 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 2089 &opts);
a3f17187 2090 printf_filtered (("\n"));
c906108c
SS
2091 }
2092 if (!varseen)
3e43a32a
MS
2093 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2094 "Convenience variables have "
2095 "names starting with \"$\";\n"
2096 "use \"set\" as in \"set "
2097 "$foo = 5\" to define them.\n"));
c906108c
SS
2098}
2099\f
2100/* Extract a value as a C number (either long or double).
2101 Knows how to convert fixed values to double, or
2102 floating values to long.
2103 Does not deallocate the value. */
2104
2105LONGEST
f23631e4 2106value_as_long (struct value *val)
c906108c
SS
2107{
2108 /* This coerces arrays and functions, which is necessary (e.g.
2109 in disassemble_command). It also dereferences references, which
2110 I suspect is the most logical thing to do. */
994b9211 2111 val = coerce_array (val);
0fd88904 2112 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2113}
2114
2115DOUBLEST
f23631e4 2116value_as_double (struct value *val)
c906108c
SS
2117{
2118 DOUBLEST foo;
2119 int inv;
c5aa993b 2120
0fd88904 2121 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2122 if (inv)
8a3fe4f8 2123 error (_("Invalid floating value found in program."));
c906108c
SS
2124 return foo;
2125}
4ef30785 2126
581e13c1 2127/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2128 Note that val's type may not actually be a pointer; value_as_long
2129 handles all the cases. */
c906108c 2130CORE_ADDR
f23631e4 2131value_as_address (struct value *val)
c906108c 2132{
50810684
UW
2133 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2134
c906108c
SS
2135 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2136 whether we want this to be true eventually. */
2137#if 0
bf6ae464 2138 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2139 non-address (e.g. argument to "signal", "info break", etc.), or
2140 for pointers to char, in which the low bits *are* significant. */
50810684 2141 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2142#else
f312f057
JB
2143
2144 /* There are several targets (IA-64, PowerPC, and others) which
2145 don't represent pointers to functions as simply the address of
2146 the function's entry point. For example, on the IA-64, a
2147 function pointer points to a two-word descriptor, generated by
2148 the linker, which contains the function's entry point, and the
2149 value the IA-64 "global pointer" register should have --- to
2150 support position-independent code. The linker generates
2151 descriptors only for those functions whose addresses are taken.
2152
2153 On such targets, it's difficult for GDB to convert an arbitrary
2154 function address into a function pointer; it has to either find
2155 an existing descriptor for that function, or call malloc and
2156 build its own. On some targets, it is impossible for GDB to
2157 build a descriptor at all: the descriptor must contain a jump
2158 instruction; data memory cannot be executed; and code memory
2159 cannot be modified.
2160
2161 Upon entry to this function, if VAL is a value of type `function'
2162 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2163 value_address (val) is the address of the function. This is what
f312f057
JB
2164 you'll get if you evaluate an expression like `main'. The call
2165 to COERCE_ARRAY below actually does all the usual unary
2166 conversions, which includes converting values of type `function'
2167 to `pointer to function'. This is the challenging conversion
2168 discussed above. Then, `unpack_long' will convert that pointer
2169 back into an address.
2170
2171 So, suppose the user types `disassemble foo' on an architecture
2172 with a strange function pointer representation, on which GDB
2173 cannot build its own descriptors, and suppose further that `foo'
2174 has no linker-built descriptor. The address->pointer conversion
2175 will signal an error and prevent the command from running, even
2176 though the next step would have been to convert the pointer
2177 directly back into the same address.
2178
2179 The following shortcut avoids this whole mess. If VAL is a
2180 function, just return its address directly. */
df407dfe
AC
2181 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2182 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2183 return value_address (val);
f312f057 2184
994b9211 2185 val = coerce_array (val);
fc0c74b1
AC
2186
2187 /* Some architectures (e.g. Harvard), map instruction and data
2188 addresses onto a single large unified address space. For
2189 instance: An architecture may consider a large integer in the
2190 range 0x10000000 .. 0x1000ffff to already represent a data
2191 addresses (hence not need a pointer to address conversion) while
2192 a small integer would still need to be converted integer to
2193 pointer to address. Just assume such architectures handle all
2194 integer conversions in a single function. */
2195
2196 /* JimB writes:
2197
2198 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2199 must admonish GDB hackers to make sure its behavior matches the
2200 compiler's, whenever possible.
2201
2202 In general, I think GDB should evaluate expressions the same way
2203 the compiler does. When the user copies an expression out of
2204 their source code and hands it to a `print' command, they should
2205 get the same value the compiler would have computed. Any
2206 deviation from this rule can cause major confusion and annoyance,
2207 and needs to be justified carefully. In other words, GDB doesn't
2208 really have the freedom to do these conversions in clever and
2209 useful ways.
2210
2211 AndrewC pointed out that users aren't complaining about how GDB
2212 casts integers to pointers; they are complaining that they can't
2213 take an address from a disassembly listing and give it to `x/i'.
2214 This is certainly important.
2215
79dd2d24 2216 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2217 makes it possible for GDB to "get it right" in all circumstances
2218 --- the target has complete control over how things get done, so
2219 people can Do The Right Thing for their target without breaking
2220 anyone else. The standard doesn't specify how integers get
2221 converted to pointers; usually, the ABI doesn't either, but
2222 ABI-specific code is a more reasonable place to handle it. */
2223
df407dfe
AC
2224 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2225 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2226 && gdbarch_integer_to_address_p (gdbarch))
2227 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2228 value_contents (val));
fc0c74b1 2229
0fd88904 2230 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2231#endif
2232}
2233\f
2234/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2235 as a long, or as a double, assuming the raw data is described
2236 by type TYPE. Knows how to convert different sizes of values
2237 and can convert between fixed and floating point. We don't assume
2238 any alignment for the raw data. Return value is in host byte order.
2239
2240 If you want functions and arrays to be coerced to pointers, and
2241 references to be dereferenced, call value_as_long() instead.
2242
2243 C++: It is assumed that the front-end has taken care of
2244 all matters concerning pointers to members. A pointer
2245 to member which reaches here is considered to be equivalent
2246 to an INT (or some size). After all, it is only an offset. */
2247
2248LONGEST
fc1a4b47 2249unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2250{
e17a4113 2251 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2252 enum type_code code = TYPE_CODE (type);
2253 int len = TYPE_LENGTH (type);
2254 int nosign = TYPE_UNSIGNED (type);
c906108c 2255
c906108c
SS
2256 switch (code)
2257 {
2258 case TYPE_CODE_TYPEDEF:
2259 return unpack_long (check_typedef (type), valaddr);
2260 case TYPE_CODE_ENUM:
4f2aea11 2261 case TYPE_CODE_FLAGS:
c906108c
SS
2262 case TYPE_CODE_BOOL:
2263 case TYPE_CODE_INT:
2264 case TYPE_CODE_CHAR:
2265 case TYPE_CODE_RANGE:
0d5de010 2266 case TYPE_CODE_MEMBERPTR:
c906108c 2267 if (nosign)
e17a4113 2268 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2269 else
e17a4113 2270 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2271
2272 case TYPE_CODE_FLT:
96d2f608 2273 return extract_typed_floating (valaddr, type);
c906108c 2274
4ef30785
TJB
2275 case TYPE_CODE_DECFLOAT:
2276 /* libdecnumber has a function to convert from decimal to integer, but
2277 it doesn't work when the decimal number has a fractional part. */
e17a4113 2278 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2279
c906108c
SS
2280 case TYPE_CODE_PTR:
2281 case TYPE_CODE_REF:
2282 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2283 whether we want this to be true eventually. */
4478b372 2284 return extract_typed_address (valaddr, type);
c906108c 2285
c906108c 2286 default:
8a3fe4f8 2287 error (_("Value can't be converted to integer."));
c906108c 2288 }
c5aa993b 2289 return 0; /* Placate lint. */
c906108c
SS
2290}
2291
2292/* Return a double value from the specified type and address.
2293 INVP points to an int which is set to 0 for valid value,
2294 1 for invalid value (bad float format). In either case,
2295 the returned double is OK to use. Argument is in target
2296 format, result is in host format. */
2297
2298DOUBLEST
fc1a4b47 2299unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2300{
e17a4113 2301 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2302 enum type_code code;
2303 int len;
2304 int nosign;
2305
581e13c1 2306 *invp = 0; /* Assume valid. */
c906108c
SS
2307 CHECK_TYPEDEF (type);
2308 code = TYPE_CODE (type);
2309 len = TYPE_LENGTH (type);
2310 nosign = TYPE_UNSIGNED (type);
2311 if (code == TYPE_CODE_FLT)
2312 {
75bc7ddf
AC
2313 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2314 floating-point value was valid (using the macro
2315 INVALID_FLOAT). That test/macro have been removed.
2316
2317 It turns out that only the VAX defined this macro and then
2318 only in a non-portable way. Fixing the portability problem
2319 wouldn't help since the VAX floating-point code is also badly
2320 bit-rotten. The target needs to add definitions for the
ea06eb3d 2321 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2322 exactly describe the target floating-point format. The
2323 problem here is that the corresponding floatformat_vax_f and
2324 floatformat_vax_d values these methods should be set to are
2325 also not defined either. Oops!
2326
2327 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2328 definitions and the new cases for floatformat_is_valid (). */
2329
2330 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2331 {
2332 *invp = 1;
2333 return 0.0;
2334 }
2335
96d2f608 2336 return extract_typed_floating (valaddr, type);
c906108c 2337 }
4ef30785 2338 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2339 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2340 else if (nosign)
2341 {
2342 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2343 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2344 }
2345 else
2346 {
2347 /* Signed -- we are OK with unpack_long. */
2348 return unpack_long (type, valaddr);
2349 }
2350}
2351
2352/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2353 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2354 We don't assume any alignment for the raw data. Return value is in
2355 host byte order.
2356
2357 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2358 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2359
2360 C++: It is assumed that the front-end has taken care of
2361 all matters concerning pointers to members. A pointer
2362 to member which reaches here is considered to be equivalent
2363 to an INT (or some size). After all, it is only an offset. */
2364
2365CORE_ADDR
fc1a4b47 2366unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2367{
2368 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2369 whether we want this to be true eventually. */
2370 return unpack_long (type, valaddr);
2371}
4478b372 2372
c906108c 2373\f
1596cb5d 2374/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2375 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2376 optimized out. */
c906108c 2377
f23631e4 2378struct value *
fba45db2 2379value_static_field (struct type *type, int fieldno)
c906108c 2380{
948e66d9
DJ
2381 struct value *retval;
2382
1596cb5d 2383 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2384 {
1596cb5d 2385 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2386 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2387 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2388 break;
2389 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
2390 {
2391 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2392 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2393 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2394
948e66d9 2395 if (sym == NULL)
c906108c 2396 {
a109c7c1 2397 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2398 reported as non-debuggable symbols. */
a109c7c1
MS
2399 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2400 NULL, NULL);
2401
c906108c
SS
2402 if (!msym)
2403 return NULL;
2404 else
c5aa993b 2405 {
52e9fde8
SS
2406 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2407 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2408 }
2409 }
2410 else
515ed532 2411 retval = value_of_variable (sym, NULL);
1596cb5d 2412 break;
c906108c 2413 }
1596cb5d 2414 default:
f3574227 2415 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2416 }
2417
948e66d9 2418 return retval;
c906108c
SS
2419}
2420
4dfea560
DE
2421/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2422 You have to be careful here, since the size of the data area for the value
2423 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2424 than the old enclosing type, you have to allocate more space for the
2425 data. */
2b127877 2426
4dfea560
DE
2427void
2428set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2429{
3e3d7139
JG
2430 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2431 val->contents =
2432 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2433
2434 val->enclosing_type = new_encl_type;
2b127877
DB
2435}
2436
c906108c
SS
2437/* Given a value ARG1 (offset by OFFSET bytes)
2438 of a struct or union type ARG_TYPE,
2439 extract and return the value of one of its (non-static) fields.
581e13c1 2440 FIELDNO says which field. */
c906108c 2441
f23631e4
AC
2442struct value *
2443value_primitive_field (struct value *arg1, int offset,
aa1ee363 2444 int fieldno, struct type *arg_type)
c906108c 2445{
f23631e4 2446 struct value *v;
52f0bd74 2447 struct type *type;
c906108c
SS
2448
2449 CHECK_TYPEDEF (arg_type);
2450 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2451
2452 /* Call check_typedef on our type to make sure that, if TYPE
2453 is a TYPE_CODE_TYPEDEF, its length is set to the length
2454 of the target type instead of zero. However, we do not
2455 replace the typedef type by the target type, because we want
2456 to keep the typedef in order to be able to print the type
2457 description correctly. */
2458 check_typedef (type);
c906108c
SS
2459
2460 /* Handle packed fields */
2461
2462 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2463 {
4ea48cc1
DJ
2464 /* Create a new value for the bitfield, with bitpos and bitsize
2465 set. If possible, arrange offset and bitpos so that we can
2466 do a single aligned read of the size of the containing type.
2467 Otherwise, adjust offset to the byte containing the first
2468 bit. Assume that the address, offset, and embedded offset
2469 are sufficiently aligned. */
2470 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2471 int container_bitsize = TYPE_LENGTH (type) * 8;
2472
2473 v = allocate_value_lazy (type);
df407dfe 2474 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2475 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2476 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2477 v->bitpos = bitpos % container_bitsize;
2478 else
2479 v->bitpos = bitpos % 8;
38f12cfc
TT
2480 v->offset = (value_embedded_offset (arg1)
2481 + offset
2482 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2483 v->parent = arg1;
2484 value_incref (v->parent);
2485 if (!value_lazy (arg1))
2486 value_fetch_lazy (v);
c906108c
SS
2487 }
2488 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2489 {
2490 /* This field is actually a base subobject, so preserve the
39d37385
PA
2491 entire object's contents for later references to virtual
2492 bases, etc. */
a4e2ee12
DJ
2493
2494 /* Lazy register values with offsets are not supported. */
2495 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2496 value_fetch_lazy (arg1);
2497
2498 if (value_lazy (arg1))
3e3d7139 2499 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2500 else
3e3d7139
JG
2501 {
2502 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2503 value_contents_copy_raw (v, 0, arg1, 0,
2504 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2505 }
2506 v->type = type;
df407dfe 2507 v->offset = value_offset (arg1);
13c3b5f5
AC
2508 v->embedded_offset = (offset + value_embedded_offset (arg1)
2509 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2510 }
2511 else
2512 {
2513 /* Plain old data member */
2514 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2515
2516 /* Lazy register values with offsets are not supported. */
2517 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2518 value_fetch_lazy (arg1);
2519
2520 if (value_lazy (arg1))
3e3d7139 2521 v = allocate_value_lazy (type);
c906108c 2522 else
3e3d7139
JG
2523 {
2524 v = allocate_value (type);
39d37385
PA
2525 value_contents_copy_raw (v, value_embedded_offset (v),
2526 arg1, value_embedded_offset (arg1) + offset,
2527 TYPE_LENGTH (type));
3e3d7139 2528 }
df407dfe 2529 v->offset = (value_offset (arg1) + offset
13c3b5f5 2530 + value_embedded_offset (arg1));
c906108c 2531 }
74bcbdf3 2532 set_value_component_location (v, arg1);
9ee8fc9d 2533 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2534 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2535 return v;
2536}
2537
2538/* Given a value ARG1 of a struct or union type,
2539 extract and return the value of one of its (non-static) fields.
581e13c1 2540 FIELDNO says which field. */
c906108c 2541
f23631e4 2542struct value *
aa1ee363 2543value_field (struct value *arg1, int fieldno)
c906108c 2544{
df407dfe 2545 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2546}
2547
2548/* Return a non-virtual function as a value.
2549 F is the list of member functions which contains the desired method.
0478d61c
FF
2550 J is an index into F which provides the desired method.
2551
2552 We only use the symbol for its address, so be happy with either a
581e13c1 2553 full symbol or a minimal symbol. */
c906108c 2554
f23631e4 2555struct value *
3e43a32a
MS
2556value_fn_field (struct value **arg1p, struct fn_field *f,
2557 int j, struct type *type,
fba45db2 2558 int offset)
c906108c 2559{
f23631e4 2560 struct value *v;
52f0bd74 2561 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2562 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2563 struct symbol *sym;
0478d61c 2564 struct minimal_symbol *msym;
c906108c 2565
2570f2b7 2566 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2567 if (sym != NULL)
0478d61c 2568 {
5ae326fa
AC
2569 msym = NULL;
2570 }
2571 else
2572 {
2573 gdb_assert (sym == NULL);
0478d61c 2574 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2575 if (msym == NULL)
2576 return NULL;
0478d61c
FF
2577 }
2578
c906108c 2579 v = allocate_value (ftype);
0478d61c
FF
2580 if (sym)
2581 {
42ae5230 2582 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2583 }
2584 else
2585 {
bccdca4a
UW
2586 /* The minimal symbol might point to a function descriptor;
2587 resolve it to the actual code address instead. */
2588 struct objfile *objfile = msymbol_objfile (msym);
2589 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2590
42ae5230
TT
2591 set_value_address (v,
2592 gdbarch_convert_from_func_ptr_addr
2593 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2594 }
c906108c
SS
2595
2596 if (arg1p)
c5aa993b 2597 {
df407dfe 2598 if (type != value_type (*arg1p))
c5aa993b
JM
2599 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2600 value_addr (*arg1p)));
2601
070ad9f0 2602 /* Move the `this' pointer according to the offset.
581e13c1 2603 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2604 }
2605
2606 return v;
2607}
2608
c906108c 2609\f
c906108c 2610
5467c6c8
PA
2611/* Helper function for both unpack_value_bits_as_long and
2612 unpack_bits_as_long. See those functions for more details on the
2613 interface; the only difference is that this function accepts either
2614 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2615
5467c6c8
PA
2616static int
2617unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2618 int embedded_offset, int bitpos, int bitsize,
2619 const struct value *original_value,
2620 LONGEST *result)
c906108c 2621{
4ea48cc1 2622 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2623 ULONGEST val;
2624 ULONGEST valmask;
c906108c 2625 int lsbcount;
4a76eae5 2626 int bytes_read;
5467c6c8 2627 int read_offset;
c906108c 2628
4a76eae5
DJ
2629 /* Read the minimum number of bytes required; there may not be
2630 enough bytes to read an entire ULONGEST. */
c906108c 2631 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2632 if (bitsize)
2633 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2634 else
2635 bytes_read = TYPE_LENGTH (field_type);
2636
5467c6c8
PA
2637 read_offset = bitpos / 8;
2638
2639 if (original_value != NULL
2640 && !value_bytes_available (original_value, embedded_offset + read_offset,
2641 bytes_read))
2642 return 0;
2643
2644 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2645 bytes_read, byte_order);
c906108c 2646
581e13c1 2647 /* Extract bits. See comment above. */
c906108c 2648
4ea48cc1 2649 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2650 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2651 else
2652 lsbcount = (bitpos % 8);
2653 val >>= lsbcount;
2654
2655 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2656 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2657
2658 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2659 {
2660 valmask = (((ULONGEST) 1) << bitsize) - 1;
2661 val &= valmask;
2662 if (!TYPE_UNSIGNED (field_type))
2663 {
2664 if (val & (valmask ^ (valmask >> 1)))
2665 {
2666 val |= ~valmask;
2667 }
2668 }
2669 }
5467c6c8
PA
2670
2671 *result = val;
2672 return 1;
c906108c
SS
2673}
2674
5467c6c8
PA
2675/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2676 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2677 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2678 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2679 bits.
4ea48cc1 2680
5467c6c8
PA
2681 Returns false if the value contents are unavailable, otherwise
2682 returns true, indicating a valid value has been stored in *RESULT.
2683
2684 Extracting bits depends on endianness of the machine. Compute the
2685 number of least significant bits to discard. For big endian machines,
2686 we compute the total number of bits in the anonymous object, subtract
2687 off the bit count from the MSB of the object to the MSB of the
2688 bitfield, then the size of the bitfield, which leaves the LSB discard
2689 count. For little endian machines, the discard count is simply the
2690 number of bits from the LSB of the anonymous object to the LSB of the
2691 bitfield.
2692
2693 If the field is signed, we also do sign extension. */
2694
2695int
2696unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2697 int embedded_offset, int bitpos, int bitsize,
2698 const struct value *original_value,
2699 LONGEST *result)
2700{
2701 gdb_assert (original_value != NULL);
2702
2703 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2704 bitpos, bitsize, original_value, result);
2705
2706}
2707
2708/* Unpack a field FIELDNO of the specified TYPE, from the object at
2709 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2710 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2711 details. */
2712
2713static int
2714unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2715 int embedded_offset, int fieldno,
2716 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2717{
2718 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2719 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2720 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2721
5467c6c8
PA
2722 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2723 bitpos, bitsize, val,
2724 result);
2725}
2726
2727/* Unpack a field FIELDNO of the specified TYPE, from the object at
2728 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2729 ORIGINAL_VALUE, which must not be NULL. See
2730 unpack_value_bits_as_long for more details. */
2731
2732int
2733unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2734 int embedded_offset, int fieldno,
2735 const struct value *val, LONGEST *result)
2736{
2737 gdb_assert (val != NULL);
2738
2739 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2740 fieldno, val, result);
2741}
2742
2743/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2744 object at VALADDR. See unpack_value_bits_as_long for more details.
2745 This function differs from unpack_value_field_as_long in that it
2746 operates without a struct value object. */
2747
2748LONGEST
2749unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2750{
2751 LONGEST result;
2752
2753 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2754 return result;
2755}
2756
2757/* Return a new value with type TYPE, which is FIELDNO field of the
2758 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2759 of VAL. If the VAL's contents required to extract the bitfield
2760 from are unavailable, the new value is correspondingly marked as
2761 unavailable. */
2762
2763struct value *
2764value_field_bitfield (struct type *type, int fieldno,
2765 const gdb_byte *valaddr,
2766 int embedded_offset, const struct value *val)
2767{
2768 LONGEST l;
2769
2770 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2771 val, &l))
2772 {
2773 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2774 struct value *retval = allocate_value (field_type);
2775 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2776 return retval;
2777 }
2778 else
2779 {
2780 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2781 }
4ea48cc1
DJ
2782}
2783
c906108c
SS
2784/* Modify the value of a bitfield. ADDR points to a block of memory in
2785 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2786 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2787 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2788 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2789 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2790
2791void
50810684
UW
2792modify_field (struct type *type, gdb_byte *addr,
2793 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2794{
e17a4113 2795 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2796 ULONGEST oword;
2797 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2798 int bytesize;
2799
2800 /* Normalize BITPOS. */
2801 addr += bitpos / 8;
2802 bitpos %= 8;
c906108c
SS
2803
2804 /* If a negative fieldval fits in the field in question, chop
2805 off the sign extension bits. */
f4e88c8e
PH
2806 if ((~fieldval & ~(mask >> 1)) == 0)
2807 fieldval &= mask;
c906108c
SS
2808
2809 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2810 if (0 != (fieldval & ~mask))
c906108c
SS
2811 {
2812 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2813 we don't have a sprintf_longest. */
8a3fe4f8 2814 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2815
2816 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2817 fieldval &= mask;
c906108c
SS
2818 }
2819
19f220c3
JK
2820 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2821 false valgrind reports. */
2822
2823 bytesize = (bitpos + bitsize + 7) / 8;
2824 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
2825
2826 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2827 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 2828 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 2829
f4e88c8e 2830 oword &= ~(mask << bitpos);
c906108c
SS
2831 oword |= fieldval << bitpos;
2832
19f220c3 2833 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
2834}
2835\f
14d06750 2836/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2837
14d06750
DJ
2838void
2839pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2840{
e17a4113 2841 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2842 int len;
14d06750
DJ
2843
2844 type = check_typedef (type);
c906108c
SS
2845 len = TYPE_LENGTH (type);
2846
14d06750 2847 switch (TYPE_CODE (type))
c906108c 2848 {
c906108c
SS
2849 case TYPE_CODE_INT:
2850 case TYPE_CODE_CHAR:
2851 case TYPE_CODE_ENUM:
4f2aea11 2852 case TYPE_CODE_FLAGS:
c906108c
SS
2853 case TYPE_CODE_BOOL:
2854 case TYPE_CODE_RANGE:
0d5de010 2855 case TYPE_CODE_MEMBERPTR:
e17a4113 2856 store_signed_integer (buf, len, byte_order, num);
c906108c 2857 break;
c5aa993b 2858
c906108c
SS
2859 case TYPE_CODE_REF:
2860 case TYPE_CODE_PTR:
14d06750 2861 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2862 break;
c5aa993b 2863
c906108c 2864 default:
14d06750
DJ
2865 error (_("Unexpected type (%d) encountered for integer constant."),
2866 TYPE_CODE (type));
c906108c 2867 }
14d06750
DJ
2868}
2869
2870
595939de
PM
2871/* Pack NUM into BUF using a target format of TYPE. */
2872
2873void
2874pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2875{
2876 int len;
2877 enum bfd_endian byte_order;
2878
2879 type = check_typedef (type);
2880 len = TYPE_LENGTH (type);
2881 byte_order = gdbarch_byte_order (get_type_arch (type));
2882
2883 switch (TYPE_CODE (type))
2884 {
2885 case TYPE_CODE_INT:
2886 case TYPE_CODE_CHAR:
2887 case TYPE_CODE_ENUM:
2888 case TYPE_CODE_FLAGS:
2889 case TYPE_CODE_BOOL:
2890 case TYPE_CODE_RANGE:
2891 case TYPE_CODE_MEMBERPTR:
2892 store_unsigned_integer (buf, len, byte_order, num);
2893 break;
2894
2895 case TYPE_CODE_REF:
2896 case TYPE_CODE_PTR:
2897 store_typed_address (buf, type, (CORE_ADDR) num);
2898 break;
2899
2900 default:
3e43a32a
MS
2901 error (_("Unexpected type (%d) encountered "
2902 "for unsigned integer constant."),
595939de
PM
2903 TYPE_CODE (type));
2904 }
2905}
2906
2907
14d06750
DJ
2908/* Convert C numbers into newly allocated values. */
2909
2910struct value *
2911value_from_longest (struct type *type, LONGEST num)
2912{
2913 struct value *val = allocate_value (type);
2914
2915 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2916 return val;
2917}
2918
4478b372 2919
595939de
PM
2920/* Convert C unsigned numbers into newly allocated values. */
2921
2922struct value *
2923value_from_ulongest (struct type *type, ULONGEST num)
2924{
2925 struct value *val = allocate_value (type);
2926
2927 pack_unsigned_long (value_contents_raw (val), type, num);
2928
2929 return val;
2930}
2931
2932
4478b372
JB
2933/* Create a value representing a pointer of type TYPE to the address
2934 ADDR. */
f23631e4 2935struct value *
4478b372
JB
2936value_from_pointer (struct type *type, CORE_ADDR addr)
2937{
f23631e4 2938 struct value *val = allocate_value (type);
a109c7c1 2939
cab0c772 2940 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2941 return val;
2942}
2943
2944
8acb6b92
TT
2945/* Create a value of type TYPE whose contents come from VALADDR, if it
2946 is non-null, and whose memory address (in the inferior) is
2947 ADDRESS. */
2948
2949struct value *
2950value_from_contents_and_address (struct type *type,
2951 const gdb_byte *valaddr,
2952 CORE_ADDR address)
2953{
41e8491f 2954 struct value *v;
a109c7c1 2955
8acb6b92 2956 if (valaddr == NULL)
41e8491f 2957 v = allocate_value_lazy (type);
8acb6b92 2958 else
41e8491f
JK
2959 {
2960 v = allocate_value (type);
2961 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2962 }
42ae5230 2963 set_value_address (v, address);
33d502b4 2964 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2965 return v;
2966}
2967
8a9b8146
TT
2968/* Create a value of type TYPE holding the contents CONTENTS.
2969 The new value is `not_lval'. */
2970
2971struct value *
2972value_from_contents (struct type *type, const gdb_byte *contents)
2973{
2974 struct value *result;
2975
2976 result = allocate_value (type);
2977 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
2978 return result;
2979}
2980
f23631e4 2981struct value *
fba45db2 2982value_from_double (struct type *type, DOUBLEST num)
c906108c 2983{
f23631e4 2984 struct value *val = allocate_value (type);
c906108c 2985 struct type *base_type = check_typedef (type);
52f0bd74 2986 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2987
2988 if (code == TYPE_CODE_FLT)
2989 {
990a07ab 2990 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2991 }
2992 else
8a3fe4f8 2993 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2994
2995 return val;
2996}
994b9211 2997
27bc4d80 2998struct value *
4ef30785 2999value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3000{
3001 struct value *val = allocate_value (type);
27bc4d80 3002
4ef30785 3003 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3004 return val;
3005}
3006
3bd0f5ef
MS
3007/* Extract a value from the history file. Input will be of the form
3008 $digits or $$digits. See block comment above 'write_dollar_variable'
3009 for details. */
3010
3011struct value *
3012value_from_history_ref (char *h, char **endp)
3013{
3014 int index, len;
3015
3016 if (h[0] == '$')
3017 len = 1;
3018 else
3019 return NULL;
3020
3021 if (h[1] == '$')
3022 len = 2;
3023
3024 /* Find length of numeral string. */
3025 for (; isdigit (h[len]); len++)
3026 ;
3027
3028 /* Make sure numeral string is not part of an identifier. */
3029 if (h[len] == '_' || isalpha (h[len]))
3030 return NULL;
3031
3032 /* Now collect the index value. */
3033 if (h[1] == '$')
3034 {
3035 if (len == 2)
3036 {
3037 /* For some bizarre reason, "$$" is equivalent to "$$1",
3038 rather than to "$$0" as it ought to be! */
3039 index = -1;
3040 *endp += len;
3041 }
3042 else
3043 index = -strtol (&h[2], endp, 10);
3044 }
3045 else
3046 {
3047 if (len == 1)
3048 {
3049 /* "$" is equivalent to "$0". */
3050 index = 0;
3051 *endp += len;
3052 }
3053 else
3054 index = strtol (&h[1], endp, 10);
3055 }
3056
3057 return access_value_history (index);
3058}
3059
994b9211
AC
3060struct value *
3061coerce_ref (struct value *arg)
3062{
df407dfe 3063 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 3064
994b9211
AC
3065 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
3066 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 3067 unpack_pointer (value_type (arg),
0fd88904 3068 value_contents (arg)));
994b9211
AC
3069 return arg;
3070}
3071
3072struct value *
3073coerce_array (struct value *arg)
3074{
f3134b88
TT
3075 struct type *type;
3076
994b9211 3077 arg = coerce_ref (arg);
f3134b88
TT
3078 type = check_typedef (value_type (arg));
3079
3080 switch (TYPE_CODE (type))
3081 {
3082 case TYPE_CODE_ARRAY:
7346b668 3083 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3084 arg = value_coerce_array (arg);
3085 break;
3086 case TYPE_CODE_FUNC:
3087 arg = value_coerce_function (arg);
3088 break;
3089 }
994b9211
AC
3090 return arg;
3091}
c906108c 3092\f
c906108c 3093
48436ce6
AC
3094/* Return true if the function returning the specified type is using
3095 the convention of returning structures in memory (passing in the
82585c72 3096 address as a hidden first parameter). */
c906108c
SS
3097
3098int
d80b854b
UW
3099using_struct_return (struct gdbarch *gdbarch,
3100 struct type *func_type, struct type *value_type)
c906108c 3101{
52f0bd74 3102 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
3103
3104 if (code == TYPE_CODE_ERROR)
8a3fe4f8 3105 error (_("Function return type unknown."));
c906108c 3106
667e784f
AC
3107 if (code == TYPE_CODE_VOID)
3108 /* A void return value is never in memory. See also corresponding
44e5158b 3109 code in "print_return_value". */
667e784f
AC
3110 return 0;
3111
92ad9cd9 3112 /* Probe the architecture for the return-value convention. */
d80b854b 3113 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 3114 NULL, NULL, NULL)
31db7b6c 3115 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3116}
3117
42be36b3
CT
3118/* Set the initialized field in a value struct. */
3119
3120void
3121set_value_initialized (struct value *val, int status)
3122{
3123 val->initialized = status;
3124}
3125
3126/* Return the initialized field in a value struct. */
3127
3128int
3129value_initialized (struct value *val)
3130{
3131 return val->initialized;
3132}
3133
c906108c 3134void
fba45db2 3135_initialize_values (void)
c906108c 3136{
1a966eab
AC
3137 add_cmd ("convenience", no_class, show_convenience, _("\
3138Debugger convenience (\"$foo\") variables.\n\
c906108c 3139These variables are created when you assign them values;\n\
1a966eab
AC
3140thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3141\n\
c906108c
SS
3142A few convenience variables are given values automatically:\n\
3143\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 3144\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
3145 &showlist);
3146
db5f229b 3147 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3148Elements of value history around item number IDX (or last ten)."),
c906108c 3149 &showlist);
53e5f3cf
AS
3150
3151 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3152Initialize a convenience variable if necessary.\n\
3153init-if-undefined VARIABLE = EXPRESSION\n\
3154Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3155exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3156VARIABLE is already initialized."));
bc3b79fd
TJB
3157
3158 add_prefix_cmd ("function", no_class, function_command, _("\
3159Placeholder command for showing help on convenience functions."),
3160 &functionlist, "function ", 0, &cmdlist);
c906108c 3161}
This page took 1.341759 seconds and 4 git commands to generate.