Remove cmd_cfunc_ftype
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f
PA
69};
70
71typedef struct range range_s;
72
73DEF_VEC_O(range_s);
74
75/* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78static int
6b850546
DT
79ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
4e07d55f
PA
81{
82 ULONGEST h, l;
83
325fac50
PA
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
86 return (l < h);
87}
88
89/* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94static int
95range_lessthan (const range_s *r1, const range_s *r2)
96{
97 return r1->offset < r2->offset;
98}
99
100/* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103static int
6b850546 104ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
105{
106 range_s what;
6b850546 107 LONGEST i;
4e07d55f
PA
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162}
163
bc3b79fd
TJB
164static struct cmd_list_element *functionlist;
165
87784a47
TT
166/* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
91294c83
AC
169struct value
170{
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
87784a47
TT
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
91294c83 200
e848a8a5
TT
201 /* If the value has been released. */
202 unsigned int released : 1;
203
91294c83
AC
204 /* Location of value (if lval). */
205 union
206 {
7dc54575 207 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
208 CORE_ADDR address;
209
7dc54575
YQ
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
91294c83
AC
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4 223
e81e7f5e
SC
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
5f5233d4
PA
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
c8f2448a
JK
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
5f5233d4 237 } computed;
91294c83
AC
238 } location;
239
3723fda8 240 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
241 addressable memory units. Note also the member embedded_offset
242 below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
91294c83
AC
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
91294c83
AC
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
6b850546
DT
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
91294c83
AC
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
a08702d6
TJB
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
91294c83
AC
316 struct value *next;
317
3e3d7139
JG
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
828d3400 321
4e07d55f
PA
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
9a0dc9e3
PA
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
4e07d55f 328 VEC(range_s) *unavailable;
9a0dc9e3
PA
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
91294c83
AC
338};
339
e512cdbd
SM
340/* See value.h. */
341
342struct gdbarch *
343get_value_arch (const struct value *value)
344{
345 return get_type_arch (value_type (value));
346}
347
4e07d55f 348int
6b850546 349value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
350{
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354}
355
bdf22206 356int
6b850546
DT
357value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
bdf22206
AB
359{
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363}
364
9a0dc9e3
PA
365int
366value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367{
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371}
372
ec0a52e1
PA
373int
374value_entirely_available (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384}
385
9a0dc9e3
PA
386/* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390static int
391value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
6211c335 393{
9a0dc9e3
PA
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
6211c335
YQ
396 if (value->lazy)
397 value_fetch_lazy (value);
398
9a0dc9e3 399 if (VEC_length (range_s, *ranges) == 1)
6211c335 400 {
9a0dc9e3 401 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
402
403 if (t->offset == 0
64c46ce4
JB
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
406 return 1;
407 }
408
409 return 0;
410}
411
9a0dc9e3
PA
412int
413value_entirely_unavailable (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416}
417
418int
419value_entirely_optimized_out (struct value *value)
420{
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422}
423
424/* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427static void
6b850546
DT
428insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
4e07d55f
PA
430{
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
9a0dc9e3 520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
521 if (i > 0)
522 {
9a0dc9e3 523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
325fac50
PA
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546 }
547 else
548 {
549 /* #4 */
9a0dc9e3 550 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
9a0dc9e3 555 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
9a0dc9e3 563 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
564 removed = 0;
565
566 i = next;
9a0dc9e3 567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
325fac50
PA
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
9a0dc9e3 589 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
590 }
591}
592
9a0dc9e3 593void
6b850546
DT
594mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
9a0dc9e3
PA
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206 600void
6b850546
DT
601mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
bdf22206
AB
603{
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607}
608
c8c1c22f
PA
609/* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614static int
615find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 616 LONGEST offset, LONGEST length)
c8c1c22f
PA
617{
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626}
627
bdf22206
AB
628/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640static int
641memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644{
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727}
728
9a0dc9e3
PA
729/* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
bdf22206 732
9a0dc9e3
PA
733struct ranges_and_idx
734{
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741};
742
743/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
748
749static int
9a0dc9e3
PA
750find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
6b850546
DT
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 754{
9a0dc9e3
PA
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
c8c1c22f 759
9a0dc9e3
PA
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
c8c1c22f
PA
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
9a0dc9e3
PA
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
325fac50
PA
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 782
325fac50
PA
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
9a0dc9e3 794 /* Different ranges, no match. */
c8c1c22f
PA
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
9a0dc9e3
PA
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802}
803
804/* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811static int
812value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815{
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
000339af 838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return 0;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
bdf22206 861 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 862 val2->contents, offset2, l) != 0)
c8c1c22f
PA
863 return 0;
864
9a0dc9e3
PA
865 length -= h;
866 offset1 += h;
867 offset2 += h;
c8c1c22f
PA
868 }
869
870 return 1;
871}
872
bdf22206 873int
6b850546
DT
874value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
bdf22206 877{
9a0dc9e3
PA
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
bdf22206
AB
881}
882
c906108c
SS
883
884/* The value-history records all the values printed
885 by print commands during this session. Each chunk
886 records 60 consecutive values. The first chunk on
887 the chain records the most recent values.
888 The total number of values is in value_history_count. */
889
890#define VALUE_HISTORY_CHUNK 60
891
892struct value_history_chunk
c5aa993b
JM
893 {
894 struct value_history_chunk *next;
f23631e4 895 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 896 };
c906108c
SS
897
898/* Chain of chunks now in use. */
899
900static struct value_history_chunk *value_history_chain;
901
581e13c1 902static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 903
c906108c
SS
904\f
905/* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
908
f23631e4 909static struct value *all_values;
c906108c 910
3e3d7139
JG
911/* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
c906108c 914
f23631e4 915struct value *
3e3d7139 916allocate_value_lazy (struct type *type)
c906108c 917{
f23631e4 918 struct value *val;
c54eabfa
JK
919
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
c906108c 927
8d749320 928 val = XCNEW (struct value);
3e3d7139 929 val->contents = NULL;
df407dfe 930 val->next = all_values;
c906108c 931 all_values = val;
df407dfe 932 val->type = type;
4754a64e 933 val->enclosing_type = type;
c906108c 934 VALUE_LVAL (val) = not_lval;
42ae5230 935 val->location.address = 0;
df407dfe
AC
936 val->offset = 0;
937 val->bitpos = 0;
938 val->bitsize = 0;
3e3d7139 939 val->lazy = 1;
13c3b5f5 940 val->embedded_offset = 0;
b44d461b 941 val->pointed_to_offset = 0;
c906108c 942 val->modifiable = 1;
42be36b3 943 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
c906108c
SS
948 return val;
949}
950
5fdf6324
AB
951/* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
954
955static int max_value_size = 65536; /* 64k bytes */
956
957/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
961
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
965
966#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
968
969/* Implement the "set max-value-size" command. */
970
971static void
972set_max_value_size (char *args, int from_tty,
973 struct cmd_list_element *c)
974{
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
976
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
978 {
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
981 max_value_size);
982 }
983}
984
985/* Implement the "show max-value-size" command. */
986
987static void
988show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
990{
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
993 else
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
995 max_value_size);
996}
997
998/* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1003
1004static void
1005check_type_length_before_alloc (const struct type *type)
1006{
1007 unsigned int length = TYPE_LENGTH (type);
1008
1009 if (max_value_size > -1 && length > max_value_size)
1010 {
1011 if (TYPE_NAME (type) != NULL)
1012 error (_("value of type `%s' requires %u bytes, which is more "
1013 "than max-value-size"), TYPE_NAME (type), length);
1014 else
1015 error (_("value requires %u bytes, which is more than "
1016 "max-value-size"), length);
1017 }
1018}
1019
3e3d7139
JG
1020/* Allocate the contents of VAL if it has not been allocated yet. */
1021
548b762d 1022static void
3e3d7139
JG
1023allocate_value_contents (struct value *val)
1024{
1025 if (!val->contents)
5fdf6324
AB
1026 {
1027 check_type_length_before_alloc (val->enclosing_type);
1028 val->contents
1029 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1030 }
3e3d7139
JG
1031}
1032
1033/* Allocate a value and its contents for type TYPE. */
1034
1035struct value *
1036allocate_value (struct type *type)
1037{
1038 struct value *val = allocate_value_lazy (type);
a109c7c1 1039
3e3d7139
JG
1040 allocate_value_contents (val);
1041 val->lazy = 0;
1042 return val;
1043}
1044
c906108c 1045/* Allocate a value that has the correct length
938f5214 1046 for COUNT repetitions of type TYPE. */
c906108c 1047
f23631e4 1048struct value *
fba45db2 1049allocate_repeat_value (struct type *type, int count)
c906108c 1050{
c5aa993b 1051 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1052 /* FIXME-type-allocation: need a way to free this type when we are
1053 done with it. */
e3506a9f
UW
1054 struct type *array_type
1055 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1056
e3506a9f 1057 return allocate_value (array_type);
c906108c
SS
1058}
1059
5f5233d4
PA
1060struct value *
1061allocate_computed_value (struct type *type,
c8f2448a 1062 const struct lval_funcs *funcs,
5f5233d4
PA
1063 void *closure)
1064{
41e8491f 1065 struct value *v = allocate_value_lazy (type);
a109c7c1 1066
5f5233d4
PA
1067 VALUE_LVAL (v) = lval_computed;
1068 v->location.computed.funcs = funcs;
1069 v->location.computed.closure = closure;
5f5233d4
PA
1070
1071 return v;
1072}
1073
a7035dbb
JK
1074/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1075
1076struct value *
1077allocate_optimized_out_value (struct type *type)
1078{
1079 struct value *retval = allocate_value_lazy (type);
1080
9a0dc9e3
PA
1081 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1082 set_value_lazy (retval, 0);
a7035dbb
JK
1083 return retval;
1084}
1085
df407dfe
AC
1086/* Accessor methods. */
1087
17cf0ecd 1088struct value *
4bf7b526 1089value_next (const struct value *value)
17cf0ecd
AC
1090{
1091 return value->next;
1092}
1093
df407dfe 1094struct type *
0e03807e 1095value_type (const struct value *value)
df407dfe
AC
1096{
1097 return value->type;
1098}
04624583
AC
1099void
1100deprecated_set_value_type (struct value *value, struct type *type)
1101{
1102 value->type = type;
1103}
df407dfe 1104
6b850546 1105LONGEST
0e03807e 1106value_offset (const struct value *value)
df407dfe
AC
1107{
1108 return value->offset;
1109}
f5cf64a7 1110void
6b850546 1111set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1112{
1113 value->offset = offset;
1114}
df407dfe 1115
6b850546 1116LONGEST
0e03807e 1117value_bitpos (const struct value *value)
df407dfe
AC
1118{
1119 return value->bitpos;
1120}
9bbda503 1121void
6b850546 1122set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1123{
1124 value->bitpos = bit;
1125}
df407dfe 1126
6b850546 1127LONGEST
0e03807e 1128value_bitsize (const struct value *value)
df407dfe
AC
1129{
1130 return value->bitsize;
1131}
9bbda503 1132void
6b850546 1133set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1134{
1135 value->bitsize = bit;
1136}
df407dfe 1137
4ea48cc1 1138struct value *
4bf7b526 1139value_parent (const struct value *value)
4ea48cc1
DJ
1140{
1141 return value->parent;
1142}
1143
53ba8333
JB
1144/* See value.h. */
1145
1146void
1147set_value_parent (struct value *value, struct value *parent)
1148{
40501e00
TT
1149 struct value *old = value->parent;
1150
53ba8333 1151 value->parent = parent;
40501e00
TT
1152 if (parent != NULL)
1153 value_incref (parent);
1154 value_free (old);
53ba8333
JB
1155}
1156
fc1a4b47 1157gdb_byte *
990a07ab
AC
1158value_contents_raw (struct value *value)
1159{
3ae385af
SM
1160 struct gdbarch *arch = get_value_arch (value);
1161 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1162
3e3d7139 1163 allocate_value_contents (value);
3ae385af 1164 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1165}
1166
fc1a4b47 1167gdb_byte *
990a07ab
AC
1168value_contents_all_raw (struct value *value)
1169{
3e3d7139
JG
1170 allocate_value_contents (value);
1171 return value->contents;
990a07ab
AC
1172}
1173
4754a64e 1174struct type *
4bf7b526 1175value_enclosing_type (const struct value *value)
4754a64e
AC
1176{
1177 return value->enclosing_type;
1178}
1179
8264ba82
AG
1180/* Look at value.h for description. */
1181
1182struct type *
1183value_actual_type (struct value *value, int resolve_simple_types,
1184 int *real_type_found)
1185{
1186 struct value_print_options opts;
8264ba82
AG
1187 struct type *result;
1188
1189 get_user_print_options (&opts);
1190
1191 if (real_type_found)
1192 *real_type_found = 0;
1193 result = value_type (value);
1194 if (opts.objectprint)
1195 {
5e34c6c3
LM
1196 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1197 fetch its rtti type. */
aa006118 1198 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1199 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1200 == TYPE_CODE_STRUCT
1201 && !value_optimized_out (value))
8264ba82
AG
1202 {
1203 struct type *real_type;
1204
1205 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1206 if (real_type)
1207 {
1208 if (real_type_found)
1209 *real_type_found = 1;
1210 result = real_type;
1211 }
1212 }
1213 else if (resolve_simple_types)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = value_enclosing_type (value);
1218 }
1219 }
1220
1221 return result;
1222}
1223
901461f8
PA
1224void
1225error_value_optimized_out (void)
1226{
1227 error (_("value has been optimized out"));
1228}
1229
0e03807e 1230static void
4e07d55f 1231require_not_optimized_out (const struct value *value)
0e03807e 1232{
9a0dc9e3 1233 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1234 {
1235 if (value->lval == lval_register)
1236 error (_("register has not been saved in frame"));
1237 else
1238 error_value_optimized_out ();
1239 }
0e03807e
TT
1240}
1241
4e07d55f
PA
1242static void
1243require_available (const struct value *value)
1244{
1245 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1246 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1247}
1248
fc1a4b47 1249const gdb_byte *
0e03807e 1250value_contents_for_printing (struct value *value)
46615f07
AC
1251{
1252 if (value->lazy)
1253 value_fetch_lazy (value);
3e3d7139 1254 return value->contents;
46615f07
AC
1255}
1256
de4127a3
PA
1257const gdb_byte *
1258value_contents_for_printing_const (const struct value *value)
1259{
1260 gdb_assert (!value->lazy);
1261 return value->contents;
1262}
1263
0e03807e
TT
1264const gdb_byte *
1265value_contents_all (struct value *value)
1266{
1267 const gdb_byte *result = value_contents_for_printing (value);
1268 require_not_optimized_out (value);
4e07d55f 1269 require_available (value);
0e03807e
TT
1270 return result;
1271}
1272
9a0dc9e3
PA
1273/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1274 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1275
1276static void
1277ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1278 VEC (range_s) *src_range, int src_bit_offset,
1279 int bit_length)
1280{
1281 range_s *r;
1282 int i;
1283
1284 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1285 {
1286 ULONGEST h, l;
1287
325fac50
PA
1288 l = std::max (r->offset, (LONGEST) src_bit_offset);
1289 h = std::min (r->offset + r->length,
1290 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1291
1292 if (l < h)
1293 insert_into_bit_range_vector (dst_range,
1294 dst_bit_offset + (l - src_bit_offset),
1295 h - l);
1296 }
1297}
1298
4875ffdb
PA
1299/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1300 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1301
1302static void
1303value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1304 const struct value *src, int src_bit_offset,
1305 int bit_length)
1306{
1307 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1308 src->unavailable, src_bit_offset,
1309 bit_length);
1310 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1311 src->optimized_out, src_bit_offset,
1312 bit_length);
1313}
1314
3ae385af 1315/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1316 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1317 contents, starting at DST_OFFSET. If unavailable contents are
1318 being copied from SRC, the corresponding DST contents are marked
1319 unavailable accordingly. Neither DST nor SRC may be lazy
1320 values.
1321
1322 It is assumed the contents of DST in the [DST_OFFSET,
1323 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1324
1325void
6b850546
DT
1326value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1327 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1328{
6b850546 1329 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1330 struct gdbarch *arch = get_value_arch (src);
1331 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1332
1333 /* A lazy DST would make that this copy operation useless, since as
1334 soon as DST's contents were un-lazied (by a later value_contents
1335 call, say), the contents would be overwritten. A lazy SRC would
1336 mean we'd be copying garbage. */
1337 gdb_assert (!dst->lazy && !src->lazy);
1338
29976f3f
PA
1339 /* The overwritten DST range gets unavailability ORed in, not
1340 replaced. Make sure to remember to implement replacing if it
1341 turns out actually necessary. */
1342 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1343 gdb_assert (!value_bits_any_optimized_out (dst,
1344 TARGET_CHAR_BIT * dst_offset,
1345 TARGET_CHAR_BIT * length));
29976f3f 1346
39d37385 1347 /* Copy the data. */
3ae385af
SM
1348 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1349 value_contents_all_raw (src) + src_offset * unit_size,
1350 length * unit_size);
39d37385
PA
1351
1352 /* Copy the meta-data, adjusted. */
3ae385af
SM
1353 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1354 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1355 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1356
4875ffdb
PA
1357 value_ranges_copy_adjusted (dst, dst_bit_offset,
1358 src, src_bit_offset,
1359 bit_length);
39d37385
PA
1360}
1361
29976f3f
PA
1362/* Copy LENGTH bytes of SRC value's (all) contents
1363 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1364 (all) contents, starting at DST_OFFSET. If unavailable contents
1365 are being copied from SRC, the corresponding DST contents are
1366 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1367 lazy, it will be fetched now.
29976f3f
PA
1368
1369 It is assumed the contents of DST in the [DST_OFFSET,
1370 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1371
1372void
6b850546
DT
1373value_contents_copy (struct value *dst, LONGEST dst_offset,
1374 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1375{
39d37385
PA
1376 if (src->lazy)
1377 value_fetch_lazy (src);
1378
1379 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1380}
1381
d69fe07e 1382int
4bf7b526 1383value_lazy (const struct value *value)
d69fe07e
AC
1384{
1385 return value->lazy;
1386}
1387
dfa52d88
AC
1388void
1389set_value_lazy (struct value *value, int val)
1390{
1391 value->lazy = val;
1392}
1393
4e5d721f 1394int
4bf7b526 1395value_stack (const struct value *value)
4e5d721f
DE
1396{
1397 return value->stack;
1398}
1399
1400void
1401set_value_stack (struct value *value, int val)
1402{
1403 value->stack = val;
1404}
1405
fc1a4b47 1406const gdb_byte *
0fd88904
AC
1407value_contents (struct value *value)
1408{
0e03807e
TT
1409 const gdb_byte *result = value_contents_writeable (value);
1410 require_not_optimized_out (value);
4e07d55f 1411 require_available (value);
0e03807e 1412 return result;
0fd88904
AC
1413}
1414
fc1a4b47 1415gdb_byte *
0fd88904
AC
1416value_contents_writeable (struct value *value)
1417{
1418 if (value->lazy)
1419 value_fetch_lazy (value);
fc0c53a0 1420 return value_contents_raw (value);
0fd88904
AC
1421}
1422
feb13ab0
AC
1423int
1424value_optimized_out (struct value *value)
1425{
691a26f5
AB
1426 /* We can only know if a value is optimized out once we have tried to
1427 fetch it. */
9a0dc9e3 1428 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1429 {
1430 TRY
1431 {
1432 value_fetch_lazy (value);
1433 }
1434 CATCH (ex, RETURN_MASK_ERROR)
1435 {
1436 /* Fall back to checking value->optimized_out. */
1437 }
1438 END_CATCH
1439 }
691a26f5 1440
9a0dc9e3 1441 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1442}
1443
9a0dc9e3
PA
1444/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1445 the following LENGTH bytes. */
eca07816 1446
feb13ab0 1447void
9a0dc9e3 1448mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1449{
9a0dc9e3
PA
1450 mark_value_bits_optimized_out (value,
1451 offset * TARGET_CHAR_BIT,
1452 length * TARGET_CHAR_BIT);
feb13ab0 1453}
13c3b5f5 1454
9a0dc9e3 1455/* See value.h. */
0e03807e 1456
9a0dc9e3 1457void
6b850546
DT
1458mark_value_bits_optimized_out (struct value *value,
1459 LONGEST offset, LONGEST length)
0e03807e 1460{
9a0dc9e3 1461 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1462}
1463
8cf6f0b1
TT
1464int
1465value_bits_synthetic_pointer (const struct value *value,
6b850546 1466 LONGEST offset, LONGEST length)
8cf6f0b1 1467{
e7303042 1468 if (value->lval != lval_computed
8cf6f0b1
TT
1469 || !value->location.computed.funcs->check_synthetic_pointer)
1470 return 0;
1471 return value->location.computed.funcs->check_synthetic_pointer (value,
1472 offset,
1473 length);
1474}
1475
6b850546 1476LONGEST
4bf7b526 1477value_embedded_offset (const struct value *value)
13c3b5f5
AC
1478{
1479 return value->embedded_offset;
1480}
1481
1482void
6b850546 1483set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1484{
1485 value->embedded_offset = val;
1486}
b44d461b 1487
6b850546 1488LONGEST
4bf7b526 1489value_pointed_to_offset (const struct value *value)
b44d461b
AC
1490{
1491 return value->pointed_to_offset;
1492}
1493
1494void
6b850546 1495set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1496{
1497 value->pointed_to_offset = val;
1498}
13bb5560 1499
c8f2448a 1500const struct lval_funcs *
a471c594 1501value_computed_funcs (const struct value *v)
5f5233d4 1502{
a471c594 1503 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1504
1505 return v->location.computed.funcs;
1506}
1507
1508void *
0e03807e 1509value_computed_closure (const struct value *v)
5f5233d4 1510{
0e03807e 1511 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1512
1513 return v->location.computed.closure;
1514}
1515
13bb5560
AC
1516enum lval_type *
1517deprecated_value_lval_hack (struct value *value)
1518{
1519 return &value->lval;
1520}
1521
a471c594
JK
1522enum lval_type
1523value_lval_const (const struct value *value)
1524{
1525 return value->lval;
1526}
1527
42ae5230 1528CORE_ADDR
de4127a3 1529value_address (const struct value *value)
42ae5230 1530{
1a088441 1531 if (value->lval != lval_memory)
42ae5230 1532 return 0;
53ba8333
JB
1533 if (value->parent != NULL)
1534 return value_address (value->parent) + value->offset;
9920b434
BH
1535 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1536 {
1537 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1538 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1539 }
1540
1541 return value->location.address + value->offset;
42ae5230
TT
1542}
1543
1544CORE_ADDR
4bf7b526 1545value_raw_address (const struct value *value)
42ae5230 1546{
1a088441 1547 if (value->lval != lval_memory)
42ae5230
TT
1548 return 0;
1549 return value->location.address;
1550}
1551
1552void
1553set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1554{
1a088441 1555 gdb_assert (value->lval == lval_memory);
42ae5230 1556 value->location.address = addr;
13bb5560
AC
1557}
1558
1559struct internalvar **
1560deprecated_value_internalvar_hack (struct value *value)
1561{
1562 return &value->location.internalvar;
1563}
1564
1565struct frame_id *
41b56feb 1566deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1567{
7c2ba67e 1568 gdb_assert (value->lval == lval_register);
7dc54575 1569 return &value->location.reg.next_frame_id;
13bb5560
AC
1570}
1571
7dc54575 1572int *
13bb5560
AC
1573deprecated_value_regnum_hack (struct value *value)
1574{
7c2ba67e 1575 gdb_assert (value->lval == lval_register);
7dc54575 1576 return &value->location.reg.regnum;
13bb5560 1577}
88e3b34b
AC
1578
1579int
4bf7b526 1580deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1581{
1582 return value->modifiable;
1583}
990a07ab 1584\f
c906108c
SS
1585/* Return a mark in the value chain. All values allocated after the
1586 mark is obtained (except for those released) are subject to being freed
1587 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1588struct value *
fba45db2 1589value_mark (void)
c906108c
SS
1590{
1591 return all_values;
1592}
1593
828d3400
DJ
1594/* Take a reference to VAL. VAL will not be deallocated until all
1595 references are released. */
1596
1597void
1598value_incref (struct value *val)
1599{
1600 val->reference_count++;
1601}
1602
1603/* Release a reference to VAL, which was acquired with value_incref.
1604 This function is also called to deallocate values from the value
1605 chain. */
1606
3e3d7139
JG
1607void
1608value_free (struct value *val)
1609{
1610 if (val)
5f5233d4 1611 {
828d3400
DJ
1612 gdb_assert (val->reference_count > 0);
1613 val->reference_count--;
1614 if (val->reference_count > 0)
1615 return;
1616
4ea48cc1
DJ
1617 /* If there's an associated parent value, drop our reference to
1618 it. */
1619 if (val->parent != NULL)
1620 value_free (val->parent);
1621
5f5233d4
PA
1622 if (VALUE_LVAL (val) == lval_computed)
1623 {
c8f2448a 1624 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1625
1626 if (funcs->free_closure)
1627 funcs->free_closure (val);
1628 }
e81e7f5e
SC
1629 else if (VALUE_LVAL (val) == lval_xcallable)
1630 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1631
1632 xfree (val->contents);
4e07d55f 1633 VEC_free (range_s, val->unavailable);
5f5233d4 1634 }
3e3d7139
JG
1635 xfree (val);
1636}
1637
c906108c
SS
1638/* Free all values allocated since MARK was obtained by value_mark
1639 (except for those released). */
1640void
4bf7b526 1641value_free_to_mark (const struct value *mark)
c906108c 1642{
f23631e4
AC
1643 struct value *val;
1644 struct value *next;
c906108c
SS
1645
1646 for (val = all_values; val && val != mark; val = next)
1647 {
df407dfe 1648 next = val->next;
e848a8a5 1649 val->released = 1;
c906108c
SS
1650 value_free (val);
1651 }
1652 all_values = val;
1653}
1654
1655/* Free all the values that have been allocated (except for those released).
725e88af
DE
1656 Call after each command, successful or not.
1657 In practice this is called before each command, which is sufficient. */
c906108c
SS
1658
1659void
fba45db2 1660free_all_values (void)
c906108c 1661{
f23631e4
AC
1662 struct value *val;
1663 struct value *next;
c906108c
SS
1664
1665 for (val = all_values; val; val = next)
1666 {
df407dfe 1667 next = val->next;
e848a8a5 1668 val->released = 1;
c906108c
SS
1669 value_free (val);
1670 }
1671
1672 all_values = 0;
1673}
1674
0cf6dd15
TJB
1675/* Frees all the elements in a chain of values. */
1676
1677void
1678free_value_chain (struct value *v)
1679{
1680 struct value *next;
1681
1682 for (; v; v = next)
1683 {
1684 next = value_next (v);
1685 value_free (v);
1686 }
1687}
1688
c906108c
SS
1689/* Remove VAL from the chain all_values
1690 so it will not be freed automatically. */
1691
1692void
f23631e4 1693release_value (struct value *val)
c906108c 1694{
f23631e4 1695 struct value *v;
c906108c
SS
1696
1697 if (all_values == val)
1698 {
1699 all_values = val->next;
06a64a0b 1700 val->next = NULL;
e848a8a5 1701 val->released = 1;
c906108c
SS
1702 return;
1703 }
1704
1705 for (v = all_values; v; v = v->next)
1706 {
1707 if (v->next == val)
1708 {
1709 v->next = val->next;
06a64a0b 1710 val->next = NULL;
e848a8a5 1711 val->released = 1;
c906108c
SS
1712 break;
1713 }
1714 }
1715}
1716
e848a8a5
TT
1717/* If the value is not already released, release it.
1718 If the value is already released, increment its reference count.
1719 That is, this function ensures that the value is released from the
1720 value chain and that the caller owns a reference to it. */
1721
1722void
1723release_value_or_incref (struct value *val)
1724{
1725 if (val->released)
1726 value_incref (val);
1727 else
1728 release_value (val);
1729}
1730
c906108c 1731/* Release all values up to mark */
f23631e4 1732struct value *
4bf7b526 1733value_release_to_mark (const struct value *mark)
c906108c 1734{
f23631e4
AC
1735 struct value *val;
1736 struct value *next;
c906108c 1737
df407dfe 1738 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1739 {
1740 if (next->next == mark)
1741 {
1742 all_values = next->next;
1743 next->next = NULL;
1744 return val;
1745 }
1746 next->released = 1;
1747 }
c906108c
SS
1748 all_values = 0;
1749 return val;
1750}
1751
1752/* Return a copy of the value ARG.
1753 It contains the same contents, for same memory address,
1754 but it's a different block of storage. */
1755
f23631e4
AC
1756struct value *
1757value_copy (struct value *arg)
c906108c 1758{
4754a64e 1759 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1760 struct value *val;
1761
1762 if (value_lazy (arg))
1763 val = allocate_value_lazy (encl_type);
1764 else
1765 val = allocate_value (encl_type);
df407dfe 1766 val->type = arg->type;
c906108c 1767 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1768 val->location = arg->location;
df407dfe
AC
1769 val->offset = arg->offset;
1770 val->bitpos = arg->bitpos;
1771 val->bitsize = arg->bitsize;
d69fe07e 1772 val->lazy = arg->lazy;
13c3b5f5 1773 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1774 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1775 val->modifiable = arg->modifiable;
d69fe07e 1776 if (!value_lazy (val))
c906108c 1777 {
990a07ab 1778 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1779 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1780
1781 }
4e07d55f 1782 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1783 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1784 set_value_parent (val, arg->parent);
5f5233d4
PA
1785 if (VALUE_LVAL (val) == lval_computed)
1786 {
c8f2448a 1787 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1788
1789 if (funcs->copy_closure)
1790 val->location.computed.closure = funcs->copy_closure (val);
1791 }
c906108c
SS
1792 return val;
1793}
74bcbdf3 1794
4c082a81
SC
1795/* Return a "const" and/or "volatile" qualified version of the value V.
1796 If CNST is true, then the returned value will be qualified with
1797 "const".
1798 if VOLTL is true, then the returned value will be qualified with
1799 "volatile". */
1800
1801struct value *
1802make_cv_value (int cnst, int voltl, struct value *v)
1803{
1804 struct type *val_type = value_type (v);
1805 struct type *enclosing_type = value_enclosing_type (v);
1806 struct value *cv_val = value_copy (v);
1807
1808 deprecated_set_value_type (cv_val,
1809 make_cv_type (cnst, voltl, val_type, NULL));
1810 set_value_enclosing_type (cv_val,
1811 make_cv_type (cnst, voltl, enclosing_type, NULL));
1812
1813 return cv_val;
1814}
1815
c37f7098
KW
1816/* Return a version of ARG that is non-lvalue. */
1817
1818struct value *
1819value_non_lval (struct value *arg)
1820{
1821 if (VALUE_LVAL (arg) != not_lval)
1822 {
1823 struct type *enc_type = value_enclosing_type (arg);
1824 struct value *val = allocate_value (enc_type);
1825
1826 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1827 TYPE_LENGTH (enc_type));
1828 val->type = arg->type;
1829 set_value_embedded_offset (val, value_embedded_offset (arg));
1830 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1831 return val;
1832 }
1833 return arg;
1834}
1835
6c659fc2
SC
1836/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1837
1838void
1839value_force_lval (struct value *v, CORE_ADDR addr)
1840{
1841 gdb_assert (VALUE_LVAL (v) == not_lval);
1842
1843 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1844 v->lval = lval_memory;
1845 v->location.address = addr;
1846}
1847
74bcbdf3 1848void
0e03807e
TT
1849set_value_component_location (struct value *component,
1850 const struct value *whole)
74bcbdf3 1851{
9920b434
BH
1852 struct type *type;
1853
e81e7f5e
SC
1854 gdb_assert (whole->lval != lval_xcallable);
1855
0e03807e 1856 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1857 VALUE_LVAL (component) = lval_internalvar_component;
1858 else
0e03807e 1859 VALUE_LVAL (component) = whole->lval;
5f5233d4 1860
74bcbdf3 1861 component->location = whole->location;
0e03807e 1862 if (whole->lval == lval_computed)
5f5233d4 1863 {
c8f2448a 1864 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1865
1866 if (funcs->copy_closure)
1867 component->location.computed.closure = funcs->copy_closure (whole);
1868 }
9920b434
BH
1869
1870 /* If type has a dynamic resolved location property
1871 update it's value address. */
1872 type = value_type (whole);
1873 if (NULL != TYPE_DATA_LOCATION (type)
1874 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1875 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1876}
1877
c906108c
SS
1878/* Access to the value history. */
1879
1880/* Record a new value in the value history.
eddf0bae 1881 Returns the absolute history index of the entry. */
c906108c
SS
1882
1883int
f23631e4 1884record_latest_value (struct value *val)
c906108c
SS
1885{
1886 int i;
1887
1888 /* We don't want this value to have anything to do with the inferior anymore.
1889 In particular, "set $1 = 50" should not affect the variable from which
1890 the value was taken, and fast watchpoints should be able to assume that
1891 a value on the value history never changes. */
d69fe07e 1892 if (value_lazy (val))
c906108c
SS
1893 value_fetch_lazy (val);
1894 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1895 from. This is a bit dubious, because then *&$1 does not just return $1
1896 but the current contents of that location. c'est la vie... */
1897 val->modifiable = 0;
350e1a76
DE
1898
1899 /* The value may have already been released, in which case we're adding a
1900 new reference for its entry in the history. That is why we call
1901 release_value_or_incref here instead of release_value. */
1902 release_value_or_incref (val);
c906108c
SS
1903
1904 /* Here we treat value_history_count as origin-zero
1905 and applying to the value being stored now. */
1906
1907 i = value_history_count % VALUE_HISTORY_CHUNK;
1908 if (i == 0)
1909 {
8d749320 1910 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1911
fe978cb0
PA
1912 newobj->next = value_history_chain;
1913 value_history_chain = newobj;
c906108c
SS
1914 }
1915
1916 value_history_chain->values[i] = val;
1917
1918 /* Now we regard value_history_count as origin-one
1919 and applying to the value just stored. */
1920
1921 return ++value_history_count;
1922}
1923
1924/* Return a copy of the value in the history with sequence number NUM. */
1925
f23631e4 1926struct value *
fba45db2 1927access_value_history (int num)
c906108c 1928{
f23631e4 1929 struct value_history_chunk *chunk;
52f0bd74
AC
1930 int i;
1931 int absnum = num;
c906108c
SS
1932
1933 if (absnum <= 0)
1934 absnum += value_history_count;
1935
1936 if (absnum <= 0)
1937 {
1938 if (num == 0)
8a3fe4f8 1939 error (_("The history is empty."));
c906108c 1940 else if (num == 1)
8a3fe4f8 1941 error (_("There is only one value in the history."));
c906108c 1942 else
8a3fe4f8 1943 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1944 }
1945 if (absnum > value_history_count)
8a3fe4f8 1946 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1947
1948 absnum--;
1949
1950 /* Now absnum is always absolute and origin zero. */
1951
1952 chunk = value_history_chain;
3e43a32a
MS
1953 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1954 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1955 i > 0; i--)
1956 chunk = chunk->next;
1957
1958 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1959}
1960
c906108c 1961static void
5fed81ff 1962show_values (const char *num_exp, int from_tty)
c906108c 1963{
52f0bd74 1964 int i;
f23631e4 1965 struct value *val;
c906108c
SS
1966 static int num = 1;
1967
1968 if (num_exp)
1969 {
f132ba9d
TJB
1970 /* "show values +" should print from the stored position.
1971 "show values <exp>" should print around value number <exp>. */
c906108c 1972 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1973 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1974 }
1975 else
1976 {
f132ba9d 1977 /* "show values" means print the last 10 values. */
c906108c
SS
1978 num = value_history_count - 9;
1979 }
1980
1981 if (num <= 0)
1982 num = 1;
1983
1984 for (i = num; i < num + 10 && i <= value_history_count; i++)
1985 {
79a45b7d 1986 struct value_print_options opts;
a109c7c1 1987
c906108c 1988 val = access_value_history (i);
a3f17187 1989 printf_filtered (("$%d = "), i);
79a45b7d
TT
1990 get_user_print_options (&opts);
1991 value_print (val, gdb_stdout, &opts);
a3f17187 1992 printf_filtered (("\n"));
c906108c
SS
1993 }
1994
f132ba9d 1995 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1996 num += 10;
1997
1998 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1999 "show values +". If num_exp is null, this is unnecessary, since
2000 "show values +" is not useful after "show values". */
c906108c 2001 if (from_tty && num_exp)
85c4be7c 2002 set_repeat_arguments ("+");
c906108c
SS
2003}
2004\f
52059ffd
TT
2005enum internalvar_kind
2006{
2007 /* The internal variable is empty. */
2008 INTERNALVAR_VOID,
2009
2010 /* The value of the internal variable is provided directly as
2011 a GDB value object. */
2012 INTERNALVAR_VALUE,
2013
2014 /* A fresh value is computed via a call-back routine on every
2015 access to the internal variable. */
2016 INTERNALVAR_MAKE_VALUE,
2017
2018 /* The internal variable holds a GDB internal convenience function. */
2019 INTERNALVAR_FUNCTION,
2020
2021 /* The variable holds an integer value. */
2022 INTERNALVAR_INTEGER,
2023
2024 /* The variable holds a GDB-provided string. */
2025 INTERNALVAR_STRING,
2026};
2027
2028union internalvar_data
2029{
2030 /* A value object used with INTERNALVAR_VALUE. */
2031 struct value *value;
2032
2033 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2034 struct
2035 {
2036 /* The functions to call. */
2037 const struct internalvar_funcs *functions;
2038
2039 /* The function's user-data. */
2040 void *data;
2041 } make_value;
2042
2043 /* The internal function used with INTERNALVAR_FUNCTION. */
2044 struct
2045 {
2046 struct internal_function *function;
2047 /* True if this is the canonical name for the function. */
2048 int canonical;
2049 } fn;
2050
2051 /* An integer value used with INTERNALVAR_INTEGER. */
2052 struct
2053 {
2054 /* If type is non-NULL, it will be used as the type to generate
2055 a value for this internal variable. If type is NULL, a default
2056 integer type for the architecture is used. */
2057 struct type *type;
2058 LONGEST val;
2059 } integer;
2060
2061 /* A string value used with INTERNALVAR_STRING. */
2062 char *string;
2063};
2064
c906108c
SS
2065/* Internal variables. These are variables within the debugger
2066 that hold values assigned by debugger commands.
2067 The user refers to them with a '$' prefix
2068 that does not appear in the variable names stored internally. */
2069
4fa62494
UW
2070struct internalvar
2071{
2072 struct internalvar *next;
2073 char *name;
4fa62494 2074
78267919
UW
2075 /* We support various different kinds of content of an internal variable.
2076 enum internalvar_kind specifies the kind, and union internalvar_data
2077 provides the data associated with this particular kind. */
2078
52059ffd 2079 enum internalvar_kind kind;
4fa62494 2080
52059ffd 2081 union internalvar_data u;
4fa62494
UW
2082};
2083
c906108c
SS
2084static struct internalvar *internalvars;
2085
3e43a32a
MS
2086/* If the variable does not already exist create it and give it the
2087 value given. If no value is given then the default is zero. */
53e5f3cf 2088static void
0b39b52e 2089init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
2090{
2091 struct internalvar* intvar;
2092
2093 /* Parse the expression - this is taken from set_command(). */
4d01a485 2094 expression_up expr = parse_expression (args);
53e5f3cf
AS
2095
2096 /* Validate the expression.
2097 Was the expression an assignment?
2098 Or even an expression at all? */
2099 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2100 error (_("Init-if-undefined requires an assignment expression."));
2101
2102 /* Extract the variable from the parsed expression.
2103 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2104 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2105 error (_("The first parameter to init-if-undefined "
2106 "should be a GDB variable."));
53e5f3cf
AS
2107 intvar = expr->elts[2].internalvar;
2108
2109 /* Only evaluate the expression if the lvalue is void.
2110 This may still fail if the expresssion is invalid. */
78267919 2111 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2112 evaluate_expression (expr.get ());
53e5f3cf
AS
2113}
2114
2115
c906108c
SS
2116/* Look up an internal variable with name NAME. NAME should not
2117 normally include a dollar sign.
2118
2119 If the specified internal variable does not exist,
c4a3d09a 2120 the return value is NULL. */
c906108c
SS
2121
2122struct internalvar *
bc3b79fd 2123lookup_only_internalvar (const char *name)
c906108c 2124{
52f0bd74 2125 struct internalvar *var;
c906108c
SS
2126
2127 for (var = internalvars; var; var = var->next)
5cb316ef 2128 if (strcmp (var->name, name) == 0)
c906108c
SS
2129 return var;
2130
c4a3d09a
MF
2131 return NULL;
2132}
2133
eb3ff9a5
PA
2134/* Complete NAME by comparing it to the names of internal
2135 variables. */
d55637df 2136
eb3ff9a5
PA
2137void
2138complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2139{
d55637df
TT
2140 struct internalvar *var;
2141 int len;
2142
2143 len = strlen (name);
2144
2145 for (var = internalvars; var; var = var->next)
2146 if (strncmp (var->name, name, len) == 0)
2147 {
eb3ff9a5 2148 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2149
eb3ff9a5 2150 tracker.add_completion (std::move (copy));
d55637df 2151 }
d55637df 2152}
c4a3d09a
MF
2153
2154/* Create an internal variable with name NAME and with a void value.
2155 NAME should not normally include a dollar sign. */
2156
2157struct internalvar *
bc3b79fd 2158create_internalvar (const char *name)
c4a3d09a 2159{
8d749320 2160 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2161
1754f103 2162 var->name = concat (name, (char *)NULL);
78267919 2163 var->kind = INTERNALVAR_VOID;
c906108c
SS
2164 var->next = internalvars;
2165 internalvars = var;
2166 return var;
2167}
2168
4aa995e1
PA
2169/* Create an internal variable with name NAME and register FUN as the
2170 function that value_of_internalvar uses to create a value whenever
2171 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2172 dollar sign. DATA is passed uninterpreted to FUN when it is
2173 called. CLEANUP, if not NULL, is called when the internal variable
2174 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2175
2176struct internalvar *
22d2b532
SDJ
2177create_internalvar_type_lazy (const char *name,
2178 const struct internalvar_funcs *funcs,
2179 void *data)
4aa995e1 2180{
4fa62494 2181 struct internalvar *var = create_internalvar (name);
a109c7c1 2182
78267919 2183 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2184 var->u.make_value.functions = funcs;
2185 var->u.make_value.data = data;
4aa995e1
PA
2186 return var;
2187}
c4a3d09a 2188
22d2b532
SDJ
2189/* See documentation in value.h. */
2190
2191int
2192compile_internalvar_to_ax (struct internalvar *var,
2193 struct agent_expr *expr,
2194 struct axs_value *value)
2195{
2196 if (var->kind != INTERNALVAR_MAKE_VALUE
2197 || var->u.make_value.functions->compile_to_ax == NULL)
2198 return 0;
2199
2200 var->u.make_value.functions->compile_to_ax (var, expr, value,
2201 var->u.make_value.data);
2202 return 1;
2203}
2204
c4a3d09a
MF
2205/* Look up an internal variable with name NAME. NAME should not
2206 normally include a dollar sign.
2207
2208 If the specified internal variable does not exist,
2209 one is created, with a void value. */
2210
2211struct internalvar *
bc3b79fd 2212lookup_internalvar (const char *name)
c4a3d09a
MF
2213{
2214 struct internalvar *var;
2215
2216 var = lookup_only_internalvar (name);
2217 if (var)
2218 return var;
2219
2220 return create_internalvar (name);
2221}
2222
78267919
UW
2223/* Return current value of internal variable VAR. For variables that
2224 are not inherently typed, use a value type appropriate for GDBARCH. */
2225
f23631e4 2226struct value *
78267919 2227value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2228{
f23631e4 2229 struct value *val;
0914bcdb
SS
2230 struct trace_state_variable *tsv;
2231
2232 /* If there is a trace state variable of the same name, assume that
2233 is what we really want to see. */
2234 tsv = find_trace_state_variable (var->name);
2235 if (tsv)
2236 {
2237 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2238 &(tsv->value));
2239 if (tsv->value_known)
2240 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2241 tsv->value);
2242 else
2243 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2244 return val;
2245 }
c906108c 2246
78267919 2247 switch (var->kind)
5f5233d4 2248 {
78267919
UW
2249 case INTERNALVAR_VOID:
2250 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2251 break;
4fa62494 2252
78267919
UW
2253 case INTERNALVAR_FUNCTION:
2254 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2255 break;
4fa62494 2256
cab0c772
UW
2257 case INTERNALVAR_INTEGER:
2258 if (!var->u.integer.type)
78267919 2259 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2260 var->u.integer.val);
78267919 2261 else
cab0c772
UW
2262 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2263 break;
2264
78267919
UW
2265 case INTERNALVAR_STRING:
2266 val = value_cstring (var->u.string, strlen (var->u.string),
2267 builtin_type (gdbarch)->builtin_char);
2268 break;
4fa62494 2269
78267919
UW
2270 case INTERNALVAR_VALUE:
2271 val = value_copy (var->u.value);
4aa995e1
PA
2272 if (value_lazy (val))
2273 value_fetch_lazy (val);
78267919 2274 break;
4aa995e1 2275
78267919 2276 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2277 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2278 var->u.make_value.data);
78267919
UW
2279 break;
2280
2281 default:
9b20d036 2282 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2283 }
2284
2285 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2286 on this value go back to affect the original internal variable.
2287
2288 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2289 no underlying modifyable state in the internal variable.
2290
2291 Likewise, if the variable's value is a computed lvalue, we want
2292 references to it to produce another computed lvalue, where
2293 references and assignments actually operate through the
2294 computed value's functions.
2295
2296 This means that internal variables with computed values
2297 behave a little differently from other internal variables:
2298 assignments to them don't just replace the previous value
2299 altogether. At the moment, this seems like the behavior we
2300 want. */
2301
2302 if (var->kind != INTERNALVAR_MAKE_VALUE
2303 && val->lval != lval_computed)
2304 {
2305 VALUE_LVAL (val) = lval_internalvar;
2306 VALUE_INTERNALVAR (val) = var;
5f5233d4 2307 }
d3c139e9 2308
4fa62494
UW
2309 return val;
2310}
d3c139e9 2311
4fa62494
UW
2312int
2313get_internalvar_integer (struct internalvar *var, LONGEST *result)
2314{
3158c6ed 2315 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2316 {
cab0c772
UW
2317 *result = var->u.integer.val;
2318 return 1;
3158c6ed 2319 }
d3c139e9 2320
3158c6ed
PA
2321 if (var->kind == INTERNALVAR_VALUE)
2322 {
2323 struct type *type = check_typedef (value_type (var->u.value));
2324
2325 if (TYPE_CODE (type) == TYPE_CODE_INT)
2326 {
2327 *result = value_as_long (var->u.value);
2328 return 1;
2329 }
4fa62494 2330 }
3158c6ed
PA
2331
2332 return 0;
4fa62494 2333}
d3c139e9 2334
4fa62494
UW
2335static int
2336get_internalvar_function (struct internalvar *var,
2337 struct internal_function **result)
2338{
78267919 2339 switch (var->kind)
d3c139e9 2340 {
78267919
UW
2341 case INTERNALVAR_FUNCTION:
2342 *result = var->u.fn.function;
4fa62494 2343 return 1;
d3c139e9 2344
4fa62494
UW
2345 default:
2346 return 0;
2347 }
c906108c
SS
2348}
2349
2350void
6b850546
DT
2351set_internalvar_component (struct internalvar *var,
2352 LONGEST offset, LONGEST bitpos,
2353 LONGEST bitsize, struct value *newval)
c906108c 2354{
4fa62494 2355 gdb_byte *addr;
3ae385af
SM
2356 struct gdbarch *arch;
2357 int unit_size;
c906108c 2358
78267919 2359 switch (var->kind)
4fa62494 2360 {
78267919
UW
2361 case INTERNALVAR_VALUE:
2362 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2363 arch = get_value_arch (var->u.value);
2364 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2365
2366 if (bitsize)
50810684 2367 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2368 value_as_long (newval), bitpos, bitsize);
2369 else
3ae385af 2370 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2371 TYPE_LENGTH (value_type (newval)));
2372 break;
78267919
UW
2373
2374 default:
2375 /* We can never get a component of any other kind. */
9b20d036 2376 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2377 }
c906108c
SS
2378}
2379
2380void
f23631e4 2381set_internalvar (struct internalvar *var, struct value *val)
c906108c 2382{
78267919 2383 enum internalvar_kind new_kind;
4fa62494 2384 union internalvar_data new_data = { 0 };
c906108c 2385
78267919 2386 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2387 error (_("Cannot overwrite convenience function %s"), var->name);
2388
4fa62494 2389 /* Prepare new contents. */
78267919 2390 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2391 {
2392 case TYPE_CODE_VOID:
78267919 2393 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2394 break;
2395
2396 case TYPE_CODE_INTERNAL_FUNCTION:
2397 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2398 new_kind = INTERNALVAR_FUNCTION;
2399 get_internalvar_function (VALUE_INTERNALVAR (val),
2400 &new_data.fn.function);
2401 /* Copies created here are never canonical. */
4fa62494
UW
2402 break;
2403
4fa62494 2404 default:
78267919
UW
2405 new_kind = INTERNALVAR_VALUE;
2406 new_data.value = value_copy (val);
2407 new_data.value->modifiable = 1;
4fa62494
UW
2408
2409 /* Force the value to be fetched from the target now, to avoid problems
2410 later when this internalvar is referenced and the target is gone or
2411 has changed. */
78267919
UW
2412 if (value_lazy (new_data.value))
2413 value_fetch_lazy (new_data.value);
4fa62494
UW
2414
2415 /* Release the value from the value chain to prevent it from being
2416 deleted by free_all_values. From here on this function should not
2417 call error () until new_data is installed into the var->u to avoid
2418 leaking memory. */
78267919 2419 release_value (new_data.value);
9920b434
BH
2420
2421 /* Internal variables which are created from values with a dynamic
2422 location don't need the location property of the origin anymore.
2423 The resolved dynamic location is used prior then any other address
2424 when accessing the value.
2425 If we keep it, we would still refer to the origin value.
2426 Remove the location property in case it exist. */
2427 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2428
4fa62494
UW
2429 break;
2430 }
2431
2432 /* Clean up old contents. */
2433 clear_internalvar (var);
2434
2435 /* Switch over. */
78267919 2436 var->kind = new_kind;
4fa62494 2437 var->u = new_data;
c906108c
SS
2438 /* End code which must not call error(). */
2439}
2440
4fa62494
UW
2441void
2442set_internalvar_integer (struct internalvar *var, LONGEST l)
2443{
2444 /* Clean up old contents. */
2445 clear_internalvar (var);
2446
cab0c772
UW
2447 var->kind = INTERNALVAR_INTEGER;
2448 var->u.integer.type = NULL;
2449 var->u.integer.val = l;
78267919
UW
2450}
2451
2452void
2453set_internalvar_string (struct internalvar *var, const char *string)
2454{
2455 /* Clean up old contents. */
2456 clear_internalvar (var);
2457
2458 var->kind = INTERNALVAR_STRING;
2459 var->u.string = xstrdup (string);
4fa62494
UW
2460}
2461
2462static void
2463set_internalvar_function (struct internalvar *var, struct internal_function *f)
2464{
2465 /* Clean up old contents. */
2466 clear_internalvar (var);
2467
78267919
UW
2468 var->kind = INTERNALVAR_FUNCTION;
2469 var->u.fn.function = f;
2470 var->u.fn.canonical = 1;
2471 /* Variables installed here are always the canonical version. */
4fa62494
UW
2472}
2473
2474void
2475clear_internalvar (struct internalvar *var)
2476{
2477 /* Clean up old contents. */
78267919 2478 switch (var->kind)
4fa62494 2479 {
78267919
UW
2480 case INTERNALVAR_VALUE:
2481 value_free (var->u.value);
2482 break;
2483
2484 case INTERNALVAR_STRING:
2485 xfree (var->u.string);
4fa62494
UW
2486 break;
2487
22d2b532
SDJ
2488 case INTERNALVAR_MAKE_VALUE:
2489 if (var->u.make_value.functions->destroy != NULL)
2490 var->u.make_value.functions->destroy (var->u.make_value.data);
2491 break;
2492
4fa62494 2493 default:
4fa62494
UW
2494 break;
2495 }
2496
78267919
UW
2497 /* Reset to void kind. */
2498 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2499}
2500
c906108c 2501char *
4bf7b526 2502internalvar_name (const struct internalvar *var)
c906108c
SS
2503{
2504 return var->name;
2505}
2506
4fa62494
UW
2507static struct internal_function *
2508create_internal_function (const char *name,
2509 internal_function_fn handler, void *cookie)
bc3b79fd 2510{
bc3b79fd 2511 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2512
bc3b79fd
TJB
2513 ifn->name = xstrdup (name);
2514 ifn->handler = handler;
2515 ifn->cookie = cookie;
4fa62494 2516 return ifn;
bc3b79fd
TJB
2517}
2518
2519char *
2520value_internal_function_name (struct value *val)
2521{
4fa62494
UW
2522 struct internal_function *ifn;
2523 int result;
2524
2525 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2526 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2527 gdb_assert (result);
2528
bc3b79fd
TJB
2529 return ifn->name;
2530}
2531
2532struct value *
d452c4bc
UW
2533call_internal_function (struct gdbarch *gdbarch,
2534 const struct language_defn *language,
2535 struct value *func, int argc, struct value **argv)
bc3b79fd 2536{
4fa62494
UW
2537 struct internal_function *ifn;
2538 int result;
2539
2540 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2541 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2542 gdb_assert (result);
2543
d452c4bc 2544 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2545}
2546
2547/* The 'function' command. This does nothing -- it is just a
2548 placeholder to let "help function NAME" work. This is also used as
2549 the implementation of the sub-command that is created when
2550 registering an internal function. */
2551static void
981a3fb3 2552function_command (const char *command, int from_tty)
bc3b79fd
TJB
2553{
2554 /* Do nothing. */
2555}
2556
2557/* Clean up if an internal function's command is destroyed. */
2558static void
2559function_destroyer (struct cmd_list_element *self, void *ignore)
2560{
6f937416 2561 xfree ((char *) self->name);
1947513d 2562 xfree ((char *) self->doc);
bc3b79fd
TJB
2563}
2564
2565/* Add a new internal function. NAME is the name of the function; DOC
2566 is a documentation string describing the function. HANDLER is
2567 called when the function is invoked. COOKIE is an arbitrary
2568 pointer which is passed to HANDLER and is intended for "user
2569 data". */
2570void
2571add_internal_function (const char *name, const char *doc,
2572 internal_function_fn handler, void *cookie)
2573{
2574 struct cmd_list_element *cmd;
4fa62494 2575 struct internal_function *ifn;
bc3b79fd 2576 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2577
2578 ifn = create_internal_function (name, handler, cookie);
2579 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2580
2581 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2582 &functionlist);
2583 cmd->destroyer = function_destroyer;
2584}
2585
ae5a43e0
DJ
2586/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2587 prevent cycles / duplicates. */
2588
4e7a5ef5 2589void
ae5a43e0
DJ
2590preserve_one_value (struct value *value, struct objfile *objfile,
2591 htab_t copied_types)
2592{
2593 if (TYPE_OBJFILE (value->type) == objfile)
2594 value->type = copy_type_recursive (objfile, value->type, copied_types);
2595
2596 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2597 value->enclosing_type = copy_type_recursive (objfile,
2598 value->enclosing_type,
2599 copied_types);
2600}
2601
78267919
UW
2602/* Likewise for internal variable VAR. */
2603
2604static void
2605preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2606 htab_t copied_types)
2607{
2608 switch (var->kind)
2609 {
cab0c772
UW
2610 case INTERNALVAR_INTEGER:
2611 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2612 var->u.integer.type
2613 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2614 break;
2615
78267919
UW
2616 case INTERNALVAR_VALUE:
2617 preserve_one_value (var->u.value, objfile, copied_types);
2618 break;
2619 }
2620}
2621
ae5a43e0
DJ
2622/* Update the internal variables and value history when OBJFILE is
2623 discarded; we must copy the types out of the objfile. New global types
2624 will be created for every convenience variable which currently points to
2625 this objfile's types, and the convenience variables will be adjusted to
2626 use the new global types. */
c906108c
SS
2627
2628void
ae5a43e0 2629preserve_values (struct objfile *objfile)
c906108c 2630{
ae5a43e0
DJ
2631 htab_t copied_types;
2632 struct value_history_chunk *cur;
52f0bd74 2633 struct internalvar *var;
ae5a43e0 2634 int i;
c906108c 2635
ae5a43e0
DJ
2636 /* Create the hash table. We allocate on the objfile's obstack, since
2637 it is soon to be deleted. */
2638 copied_types = create_copied_types_hash (objfile);
2639
2640 for (cur = value_history_chain; cur; cur = cur->next)
2641 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2642 if (cur->values[i])
2643 preserve_one_value (cur->values[i], objfile, copied_types);
2644
2645 for (var = internalvars; var; var = var->next)
78267919 2646 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2647
6dddc817 2648 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2649
ae5a43e0 2650 htab_delete (copied_types);
c906108c
SS
2651}
2652
2653static void
ad25e423 2654show_convenience (const char *ignore, int from_tty)
c906108c 2655{
e17c207e 2656 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2657 struct internalvar *var;
c906108c 2658 int varseen = 0;
79a45b7d 2659 struct value_print_options opts;
c906108c 2660
79a45b7d 2661 get_user_print_options (&opts);
c906108c
SS
2662 for (var = internalvars; var; var = var->next)
2663 {
c709acd1 2664
c906108c
SS
2665 if (!varseen)
2666 {
2667 varseen = 1;
2668 }
a3f17187 2669 printf_filtered (("$%s = "), var->name);
c709acd1 2670
492d29ea 2671 TRY
c709acd1
PA
2672 {
2673 struct value *val;
2674
2675 val = value_of_internalvar (gdbarch, var);
2676 value_print (val, gdb_stdout, &opts);
2677 }
492d29ea
PA
2678 CATCH (ex, RETURN_MASK_ERROR)
2679 {
2680 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2681 }
2682 END_CATCH
2683
a3f17187 2684 printf_filtered (("\n"));
c906108c
SS
2685 }
2686 if (!varseen)
f47f77df
DE
2687 {
2688 /* This text does not mention convenience functions on purpose.
2689 The user can't create them except via Python, and if Python support
2690 is installed this message will never be printed ($_streq will
2691 exist). */
2692 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2693 "Convenience variables have "
2694 "names starting with \"$\";\n"
2695 "use \"set\" as in \"set "
2696 "$foo = 5\" to define them.\n"));
2697 }
c906108c
SS
2698}
2699\f
e81e7f5e
SC
2700/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2701
2702struct value *
2703value_of_xmethod (struct xmethod_worker *worker)
2704{
2705 if (worker->value == NULL)
2706 {
2707 struct value *v;
2708
2709 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2710 v->lval = lval_xcallable;
2711 v->location.xm_worker = worker;
2712 v->modifiable = 0;
2713 worker->value = v;
2714 }
2715
2716 return worker->value;
2717}
2718
2ce1cdbf
DE
2719/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2720
2721struct type *
2722result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2723{
2724 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2725 && method->lval == lval_xcallable && argc > 0);
2726
2727 return get_xmethod_result_type (method->location.xm_worker,
2728 argv[0], argv + 1, argc - 1);
2729}
2730
e81e7f5e
SC
2731/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2732
2733struct value *
2734call_xmethod (struct value *method, int argc, struct value **argv)
2735{
2736 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2737 && method->lval == lval_xcallable && argc > 0);
2738
2739 return invoke_xmethod (method->location.xm_worker,
2740 argv[0], argv + 1, argc - 1);
2741}
2742\f
c906108c
SS
2743/* Extract a value as a C number (either long or double).
2744 Knows how to convert fixed values to double, or
2745 floating values to long.
2746 Does not deallocate the value. */
2747
2748LONGEST
f23631e4 2749value_as_long (struct value *val)
c906108c
SS
2750{
2751 /* This coerces arrays and functions, which is necessary (e.g.
2752 in disassemble_command). It also dereferences references, which
2753 I suspect is the most logical thing to do. */
994b9211 2754 val = coerce_array (val);
0fd88904 2755 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2756}
2757
581e13c1 2758/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2759 Note that val's type may not actually be a pointer; value_as_long
2760 handles all the cases. */
c906108c 2761CORE_ADDR
f23631e4 2762value_as_address (struct value *val)
c906108c 2763{
50810684
UW
2764 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2765
c906108c
SS
2766 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2767 whether we want this to be true eventually. */
2768#if 0
bf6ae464 2769 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2770 non-address (e.g. argument to "signal", "info break", etc.), or
2771 for pointers to char, in which the low bits *are* significant. */
50810684 2772 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2773#else
f312f057
JB
2774
2775 /* There are several targets (IA-64, PowerPC, and others) which
2776 don't represent pointers to functions as simply the address of
2777 the function's entry point. For example, on the IA-64, a
2778 function pointer points to a two-word descriptor, generated by
2779 the linker, which contains the function's entry point, and the
2780 value the IA-64 "global pointer" register should have --- to
2781 support position-independent code. The linker generates
2782 descriptors only for those functions whose addresses are taken.
2783
2784 On such targets, it's difficult for GDB to convert an arbitrary
2785 function address into a function pointer; it has to either find
2786 an existing descriptor for that function, or call malloc and
2787 build its own. On some targets, it is impossible for GDB to
2788 build a descriptor at all: the descriptor must contain a jump
2789 instruction; data memory cannot be executed; and code memory
2790 cannot be modified.
2791
2792 Upon entry to this function, if VAL is a value of type `function'
2793 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2794 value_address (val) is the address of the function. This is what
f312f057
JB
2795 you'll get if you evaluate an expression like `main'. The call
2796 to COERCE_ARRAY below actually does all the usual unary
2797 conversions, which includes converting values of type `function'
2798 to `pointer to function'. This is the challenging conversion
2799 discussed above. Then, `unpack_long' will convert that pointer
2800 back into an address.
2801
2802 So, suppose the user types `disassemble foo' on an architecture
2803 with a strange function pointer representation, on which GDB
2804 cannot build its own descriptors, and suppose further that `foo'
2805 has no linker-built descriptor. The address->pointer conversion
2806 will signal an error and prevent the command from running, even
2807 though the next step would have been to convert the pointer
2808 directly back into the same address.
2809
2810 The following shortcut avoids this whole mess. If VAL is a
2811 function, just return its address directly. */
df407dfe
AC
2812 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2813 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2814 return value_address (val);
f312f057 2815
994b9211 2816 val = coerce_array (val);
fc0c74b1
AC
2817
2818 /* Some architectures (e.g. Harvard), map instruction and data
2819 addresses onto a single large unified address space. For
2820 instance: An architecture may consider a large integer in the
2821 range 0x10000000 .. 0x1000ffff to already represent a data
2822 addresses (hence not need a pointer to address conversion) while
2823 a small integer would still need to be converted integer to
2824 pointer to address. Just assume such architectures handle all
2825 integer conversions in a single function. */
2826
2827 /* JimB writes:
2828
2829 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2830 must admonish GDB hackers to make sure its behavior matches the
2831 compiler's, whenever possible.
2832
2833 In general, I think GDB should evaluate expressions the same way
2834 the compiler does. When the user copies an expression out of
2835 their source code and hands it to a `print' command, they should
2836 get the same value the compiler would have computed. Any
2837 deviation from this rule can cause major confusion and annoyance,
2838 and needs to be justified carefully. In other words, GDB doesn't
2839 really have the freedom to do these conversions in clever and
2840 useful ways.
2841
2842 AndrewC pointed out that users aren't complaining about how GDB
2843 casts integers to pointers; they are complaining that they can't
2844 take an address from a disassembly listing and give it to `x/i'.
2845 This is certainly important.
2846
79dd2d24 2847 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2848 makes it possible for GDB to "get it right" in all circumstances
2849 --- the target has complete control over how things get done, so
2850 people can Do The Right Thing for their target without breaking
2851 anyone else. The standard doesn't specify how integers get
2852 converted to pointers; usually, the ABI doesn't either, but
2853 ABI-specific code is a more reasonable place to handle it. */
2854
df407dfe 2855 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2856 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2857 && gdbarch_integer_to_address_p (gdbarch))
2858 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2859 value_contents (val));
fc0c74b1 2860
0fd88904 2861 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2862#endif
2863}
2864\f
2865/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2866 as a long, or as a double, assuming the raw data is described
2867 by type TYPE. Knows how to convert different sizes of values
2868 and can convert between fixed and floating point. We don't assume
2869 any alignment for the raw data. Return value is in host byte order.
2870
2871 If you want functions and arrays to be coerced to pointers, and
2872 references to be dereferenced, call value_as_long() instead.
2873
2874 C++: It is assumed that the front-end has taken care of
2875 all matters concerning pointers to members. A pointer
2876 to member which reaches here is considered to be equivalent
2877 to an INT (or some size). After all, it is only an offset. */
2878
2879LONGEST
fc1a4b47 2880unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2881{
e17a4113 2882 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2883 enum type_code code = TYPE_CODE (type);
2884 int len = TYPE_LENGTH (type);
2885 int nosign = TYPE_UNSIGNED (type);
c906108c 2886
c906108c
SS
2887 switch (code)
2888 {
2889 case TYPE_CODE_TYPEDEF:
2890 return unpack_long (check_typedef (type), valaddr);
2891 case TYPE_CODE_ENUM:
4f2aea11 2892 case TYPE_CODE_FLAGS:
c906108c
SS
2893 case TYPE_CODE_BOOL:
2894 case TYPE_CODE_INT:
2895 case TYPE_CODE_CHAR:
2896 case TYPE_CODE_RANGE:
0d5de010 2897 case TYPE_CODE_MEMBERPTR:
c906108c 2898 if (nosign)
e17a4113 2899 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2900 else
e17a4113 2901 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2902
2903 case TYPE_CODE_FLT:
4ef30785 2904 case TYPE_CODE_DECFLOAT:
50637b26 2905 return target_float_to_longest (valaddr, type);
4ef30785 2906
c906108c
SS
2907 case TYPE_CODE_PTR:
2908 case TYPE_CODE_REF:
aa006118 2909 case TYPE_CODE_RVALUE_REF:
c906108c 2910 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2911 whether we want this to be true eventually. */
4478b372 2912 return extract_typed_address (valaddr, type);
c906108c 2913
c906108c 2914 default:
8a3fe4f8 2915 error (_("Value can't be converted to integer."));
c906108c 2916 }
c5aa993b 2917 return 0; /* Placate lint. */
c906108c
SS
2918}
2919
c906108c
SS
2920/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2921 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2922 We don't assume any alignment for the raw data. Return value is in
2923 host byte order.
2924
2925 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2926 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2927
2928 C++: It is assumed that the front-end has taken care of
2929 all matters concerning pointers to members. A pointer
2930 to member which reaches here is considered to be equivalent
2931 to an INT (or some size). After all, it is only an offset. */
2932
2933CORE_ADDR
fc1a4b47 2934unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2935{
2936 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2937 whether we want this to be true eventually. */
2938 return unpack_long (type, valaddr);
2939}
4478b372 2940
70100014
UW
2941bool
2942is_floating_value (struct value *val)
2943{
2944 struct type *type = check_typedef (value_type (val));
2945
2946 if (is_floating_type (type))
2947 {
2948 if (!target_float_is_valid (value_contents (val), type))
2949 error (_("Invalid floating value found in program."));
2950 return true;
2951 }
2952
2953 return false;
2954}
2955
c906108c 2956\f
1596cb5d 2957/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2958 TYPE. */
c906108c 2959
f23631e4 2960struct value *
fba45db2 2961value_static_field (struct type *type, int fieldno)
c906108c 2962{
948e66d9
DJ
2963 struct value *retval;
2964
1596cb5d 2965 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2966 {
1596cb5d 2967 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2968 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2969 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2970 break;
2971 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2972 {
ff355380 2973 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2974 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2975 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2976
d12307c1 2977 if (sym.symbol == NULL)
c906108c 2978 {
a109c7c1 2979 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2980 reported as non-debuggable symbols. */
3b7344d5
TT
2981 struct bound_minimal_symbol msym
2982 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2983
3b7344d5 2984 if (!msym.minsym)
686d4def 2985 return allocate_optimized_out_value (type);
c906108c 2986 else
c5aa993b 2987 {
52e9fde8 2988 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2989 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2990 }
2991 }
2992 else
d12307c1 2993 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2994 break;
c906108c 2995 }
1596cb5d 2996 default:
f3574227 2997 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2998 }
2999
948e66d9 3000 return retval;
c906108c
SS
3001}
3002
4dfea560
DE
3003/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3004 You have to be careful here, since the size of the data area for the value
3005 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3006 than the old enclosing type, you have to allocate more space for the
3007 data. */
2b127877 3008
4dfea560
DE
3009void
3010set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3011{
5fdf6324
AB
3012 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3013 {
3014 check_type_length_before_alloc (new_encl_type);
3015 val->contents
3016 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3017 }
3e3d7139
JG
3018
3019 val->enclosing_type = new_encl_type;
2b127877
DB
3020}
3021
c906108c
SS
3022/* Given a value ARG1 (offset by OFFSET bytes)
3023 of a struct or union type ARG_TYPE,
3024 extract and return the value of one of its (non-static) fields.
581e13c1 3025 FIELDNO says which field. */
c906108c 3026
f23631e4 3027struct value *
6b850546 3028value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3029 int fieldno, struct type *arg_type)
c906108c 3030{
f23631e4 3031 struct value *v;
52f0bd74 3032 struct type *type;
3ae385af
SM
3033 struct gdbarch *arch = get_value_arch (arg1);
3034 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3035
f168693b 3036 arg_type = check_typedef (arg_type);
c906108c 3037 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3038
3039 /* Call check_typedef on our type to make sure that, if TYPE
3040 is a TYPE_CODE_TYPEDEF, its length is set to the length
3041 of the target type instead of zero. However, we do not
3042 replace the typedef type by the target type, because we want
3043 to keep the typedef in order to be able to print the type
3044 description correctly. */
3045 check_typedef (type);
c906108c 3046
691a26f5 3047 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3048 {
22c05d8a
JK
3049 /* Handle packed fields.
3050
3051 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3052 set. If possible, arrange offset and bitpos so that we can
3053 do a single aligned read of the size of the containing type.
3054 Otherwise, adjust offset to the byte containing the first
3055 bit. Assume that the address, offset, and embedded offset
3056 are sufficiently aligned. */
22c05d8a 3057
6b850546
DT
3058 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3059 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3060
9a0dc9e3
PA
3061 v = allocate_value_lazy (type);
3062 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3063 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3064 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3065 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3066 else
9a0dc9e3
PA
3067 v->bitpos = bitpos % 8;
3068 v->offset = (value_embedded_offset (arg1)
3069 + offset
3070 + (bitpos - v->bitpos) / 8);
3071 set_value_parent (v, arg1);
3072 if (!value_lazy (arg1))
3073 value_fetch_lazy (v);
c906108c
SS
3074 }
3075 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3076 {
3077 /* This field is actually a base subobject, so preserve the
39d37385
PA
3078 entire object's contents for later references to virtual
3079 bases, etc. */
6b850546 3080 LONGEST boffset;
a4e2ee12
DJ
3081
3082 /* Lazy register values with offsets are not supported. */
3083 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3084 value_fetch_lazy (arg1);
3085
9a0dc9e3
PA
3086 /* We special case virtual inheritance here because this
3087 requires access to the contents, which we would rather avoid
3088 for references to ordinary fields of unavailable values. */
3089 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3090 boffset = baseclass_offset (arg_type, fieldno,
3091 value_contents (arg1),
3092 value_embedded_offset (arg1),
3093 value_address (arg1),
3094 arg1);
c906108c 3095 else
9a0dc9e3 3096 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3097
9a0dc9e3
PA
3098 if (value_lazy (arg1))
3099 v = allocate_value_lazy (value_enclosing_type (arg1));
3100 else
3101 {
3102 v = allocate_value (value_enclosing_type (arg1));
3103 value_contents_copy_raw (v, 0, arg1, 0,
3104 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3105 }
9a0dc9e3
PA
3106 v->type = type;
3107 v->offset = value_offset (arg1);
3108 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3109 }
9920b434
BH
3110 else if (NULL != TYPE_DATA_LOCATION (type))
3111 {
3112 /* Field is a dynamic data member. */
3113
3114 gdb_assert (0 == offset);
3115 /* We expect an already resolved data location. */
3116 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3117 /* For dynamic data types defer memory allocation
3118 until we actual access the value. */
3119 v = allocate_value_lazy (type);
3120 }
c906108c
SS
3121 else
3122 {
3123 /* Plain old data member */
3ae385af
SM
3124 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3125 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3126
3127 /* Lazy register values with offsets are not supported. */
3128 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3129 value_fetch_lazy (arg1);
3130
9a0dc9e3 3131 if (value_lazy (arg1))
3e3d7139 3132 v = allocate_value_lazy (type);
c906108c 3133 else
3e3d7139
JG
3134 {
3135 v = allocate_value (type);
39d37385
PA
3136 value_contents_copy_raw (v, value_embedded_offset (v),
3137 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3138 type_length_units (type));
3e3d7139 3139 }
df407dfe 3140 v->offset = (value_offset (arg1) + offset
13c3b5f5 3141 + value_embedded_offset (arg1));
c906108c 3142 }
74bcbdf3 3143 set_value_component_location (v, arg1);
c906108c
SS
3144 return v;
3145}
3146
3147/* Given a value ARG1 of a struct or union type,
3148 extract and return the value of one of its (non-static) fields.
581e13c1 3149 FIELDNO says which field. */
c906108c 3150
f23631e4 3151struct value *
aa1ee363 3152value_field (struct value *arg1, int fieldno)
c906108c 3153{
df407dfe 3154 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3155}
3156
3157/* Return a non-virtual function as a value.
3158 F is the list of member functions which contains the desired method.
0478d61c
FF
3159 J is an index into F which provides the desired method.
3160
3161 We only use the symbol for its address, so be happy with either a
581e13c1 3162 full symbol or a minimal symbol. */
c906108c 3163
f23631e4 3164struct value *
3e43a32a
MS
3165value_fn_field (struct value **arg1p, struct fn_field *f,
3166 int j, struct type *type,
6b850546 3167 LONGEST offset)
c906108c 3168{
f23631e4 3169 struct value *v;
52f0bd74 3170 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3171 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3172 struct symbol *sym;
7c7b6655 3173 struct bound_minimal_symbol msym;
c906108c 3174
d12307c1 3175 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3176 if (sym != NULL)
0478d61c 3177 {
7c7b6655 3178 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3179 }
3180 else
3181 {
3182 gdb_assert (sym == NULL);
7c7b6655
TT
3183 msym = lookup_bound_minimal_symbol (physname);
3184 if (msym.minsym == NULL)
5ae326fa 3185 return NULL;
0478d61c
FF
3186 }
3187
c906108c 3188 v = allocate_value (ftype);
1a088441 3189 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3190 if (sym)
3191 {
42ae5230 3192 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3193 }
3194 else
3195 {
bccdca4a
UW
3196 /* The minimal symbol might point to a function descriptor;
3197 resolve it to the actual code address instead. */
7c7b6655 3198 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3200
42ae5230
TT
3201 set_value_address (v,
3202 gdbarch_convert_from_func_ptr_addr
77e371c0 3203 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3204 }
c906108c
SS
3205
3206 if (arg1p)
c5aa993b 3207 {
df407dfe 3208 if (type != value_type (*arg1p))
c5aa993b
JM
3209 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3210 value_addr (*arg1p)));
3211
070ad9f0 3212 /* Move the `this' pointer according to the offset.
581e13c1 3213 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3214 }
3215
3216 return v;
3217}
3218
c906108c 3219\f
c906108c 3220
4875ffdb
PA
3221/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3222 VALADDR, and store the result in *RESULT.
3223 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3224
4875ffdb
PA
3225 Extracting bits depends on endianness of the machine. Compute the
3226 number of least significant bits to discard. For big endian machines,
3227 we compute the total number of bits in the anonymous object, subtract
3228 off the bit count from the MSB of the object to the MSB of the
3229 bitfield, then the size of the bitfield, which leaves the LSB discard
3230 count. For little endian machines, the discard count is simply the
3231 number of bits from the LSB of the anonymous object to the LSB of the
3232 bitfield.
3233
3234 If the field is signed, we also do sign extension. */
3235
3236static LONGEST
3237unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3238 LONGEST bitpos, LONGEST bitsize)
c906108c 3239{
4ea48cc1 3240 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3241 ULONGEST val;
3242 ULONGEST valmask;
c906108c 3243 int lsbcount;
6b850546
DT
3244 LONGEST bytes_read;
3245 LONGEST read_offset;
c906108c 3246
4a76eae5
DJ
3247 /* Read the minimum number of bytes required; there may not be
3248 enough bytes to read an entire ULONGEST. */
f168693b 3249 field_type = check_typedef (field_type);
4a76eae5
DJ
3250 if (bitsize)
3251 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3252 else
3253 bytes_read = TYPE_LENGTH (field_type);
3254
5467c6c8
PA
3255 read_offset = bitpos / 8;
3256
4875ffdb 3257 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3258 bytes_read, byte_order);
c906108c 3259
581e13c1 3260 /* Extract bits. See comment above. */
c906108c 3261
4ea48cc1 3262 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3263 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3264 else
3265 lsbcount = (bitpos % 8);
3266 val >>= lsbcount;
3267
3268 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3269 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3270
3271 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3272 {
3273 valmask = (((ULONGEST) 1) << bitsize) - 1;
3274 val &= valmask;
3275 if (!TYPE_UNSIGNED (field_type))
3276 {
3277 if (val & (valmask ^ (valmask >> 1)))
3278 {
3279 val |= ~valmask;
3280 }
3281 }
3282 }
5467c6c8 3283
4875ffdb 3284 return val;
5467c6c8
PA
3285}
3286
3287/* Unpack a field FIELDNO of the specified TYPE, from the object at
3288 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3289 ORIGINAL_VALUE, which must not be NULL. See
3290 unpack_value_bits_as_long for more details. */
3291
3292int
3293unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3294 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3295 const struct value *val, LONGEST *result)
3296{
4875ffdb
PA
3297 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3298 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3299 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3300 int bit_offset;
3301
5467c6c8
PA
3302 gdb_assert (val != NULL);
3303
4875ffdb
PA
3304 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3305 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3306 || !value_bits_available (val, bit_offset, bitsize))
3307 return 0;
3308
3309 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3310 bitpos, bitsize);
3311 return 1;
5467c6c8
PA
3312}
3313
3314/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3315 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3316
3317LONGEST
3318unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3319{
4875ffdb
PA
3320 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3321 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3322 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3323
4875ffdb
PA
3324 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3325}
3326
3327/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3328 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3329 the contents in DEST_VAL, zero or sign extending if the type of
3330 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3331 VAL. If the VAL's contents required to extract the bitfield from
3332 are unavailable/optimized out, DEST_VAL is correspondingly
3333 marked unavailable/optimized out. */
3334
bb9d5f81 3335void
4875ffdb 3336unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3337 LONGEST bitpos, LONGEST bitsize,
3338 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3339 const struct value *val)
3340{
3341 enum bfd_endian byte_order;
3342 int src_bit_offset;
3343 int dst_bit_offset;
4875ffdb
PA
3344 struct type *field_type = value_type (dest_val);
3345
4875ffdb 3346 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3347
3348 /* First, unpack and sign extend the bitfield as if it was wholly
3349 valid. Optimized out/unavailable bits are read as zero, but
3350 that's OK, as they'll end up marked below. If the VAL is
3351 wholly-invalid we may have skipped allocating its contents,
3352 though. See allocate_optimized_out_value. */
3353 if (valaddr != NULL)
3354 {
3355 LONGEST num;
3356
3357 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3358 bitpos, bitsize);
3359 store_signed_integer (value_contents_raw (dest_val),
3360 TYPE_LENGTH (field_type), byte_order, num);
3361 }
4875ffdb
PA
3362
3363 /* Now copy the optimized out / unavailability ranges to the right
3364 bits. */
3365 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3366 if (byte_order == BFD_ENDIAN_BIG)
3367 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3368 else
3369 dst_bit_offset = 0;
3370 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3371 val, src_bit_offset, bitsize);
5467c6c8
PA
3372}
3373
3374/* Return a new value with type TYPE, which is FIELDNO field of the
3375 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3376 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3377 from are unavailable/optimized out, the new value is
3378 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3379
3380struct value *
3381value_field_bitfield (struct type *type, int fieldno,
3382 const gdb_byte *valaddr,
6b850546 3383 LONGEST embedded_offset, const struct value *val)
5467c6c8 3384{
4875ffdb
PA
3385 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3386 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3387 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3388
4875ffdb
PA
3389 unpack_value_bitfield (res_val, bitpos, bitsize,
3390 valaddr, embedded_offset, val);
3391
3392 return res_val;
4ea48cc1
DJ
3393}
3394
c906108c
SS
3395/* Modify the value of a bitfield. ADDR points to a block of memory in
3396 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3397 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3398 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3399 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3400 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3401
3402void
50810684 3403modify_field (struct type *type, gdb_byte *addr,
6b850546 3404 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3405{
e17a4113 3406 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3407 ULONGEST oword;
3408 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3409 LONGEST bytesize;
19f220c3
JK
3410
3411 /* Normalize BITPOS. */
3412 addr += bitpos / 8;
3413 bitpos %= 8;
c906108c
SS
3414
3415 /* If a negative fieldval fits in the field in question, chop
3416 off the sign extension bits. */
f4e88c8e
PH
3417 if ((~fieldval & ~(mask >> 1)) == 0)
3418 fieldval &= mask;
c906108c
SS
3419
3420 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3421 if (0 != (fieldval & ~mask))
c906108c
SS
3422 {
3423 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3424 we don't have a sprintf_longest. */
6b850546 3425 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3426
3427 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3428 fieldval &= mask;
c906108c
SS
3429 }
3430
19f220c3
JK
3431 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3432 false valgrind reports. */
3433
3434 bytesize = (bitpos + bitsize + 7) / 8;
3435 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3436
3437 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3438 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3439 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3440
f4e88c8e 3441 oword &= ~(mask << bitpos);
c906108c
SS
3442 oword |= fieldval << bitpos;
3443
19f220c3 3444 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3445}
3446\f
14d06750 3447/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3448
14d06750
DJ
3449void
3450pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3451{
e17a4113 3452 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3453 LONGEST len;
14d06750
DJ
3454
3455 type = check_typedef (type);
c906108c
SS
3456 len = TYPE_LENGTH (type);
3457
14d06750 3458 switch (TYPE_CODE (type))
c906108c 3459 {
c906108c
SS
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_CHAR:
3462 case TYPE_CODE_ENUM:
4f2aea11 3463 case TYPE_CODE_FLAGS:
c906108c
SS
3464 case TYPE_CODE_BOOL:
3465 case TYPE_CODE_RANGE:
0d5de010 3466 case TYPE_CODE_MEMBERPTR:
e17a4113 3467 store_signed_integer (buf, len, byte_order, num);
c906108c 3468 break;
c5aa993b 3469
c906108c 3470 case TYPE_CODE_REF:
aa006118 3471 case TYPE_CODE_RVALUE_REF:
c906108c 3472 case TYPE_CODE_PTR:
14d06750 3473 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3474 break;
c5aa993b 3475
50637b26
UW
3476 case TYPE_CODE_FLT:
3477 case TYPE_CODE_DECFLOAT:
3478 target_float_from_longest (buf, type, num);
3479 break;
3480
c906108c 3481 default:
14d06750
DJ
3482 error (_("Unexpected type (%d) encountered for integer constant."),
3483 TYPE_CODE (type));
c906108c 3484 }
14d06750
DJ
3485}
3486
3487
595939de
PM
3488/* Pack NUM into BUF using a target format of TYPE. */
3489
70221824 3490static void
595939de
PM
3491pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3492{
6b850546 3493 LONGEST len;
595939de
PM
3494 enum bfd_endian byte_order;
3495
3496 type = check_typedef (type);
3497 len = TYPE_LENGTH (type);
3498 byte_order = gdbarch_byte_order (get_type_arch (type));
3499
3500 switch (TYPE_CODE (type))
3501 {
3502 case TYPE_CODE_INT:
3503 case TYPE_CODE_CHAR:
3504 case TYPE_CODE_ENUM:
3505 case TYPE_CODE_FLAGS:
3506 case TYPE_CODE_BOOL:
3507 case TYPE_CODE_RANGE:
3508 case TYPE_CODE_MEMBERPTR:
3509 store_unsigned_integer (buf, len, byte_order, num);
3510 break;
3511
3512 case TYPE_CODE_REF:
aa006118 3513 case TYPE_CODE_RVALUE_REF:
595939de
PM
3514 case TYPE_CODE_PTR:
3515 store_typed_address (buf, type, (CORE_ADDR) num);
3516 break;
3517
50637b26
UW
3518 case TYPE_CODE_FLT:
3519 case TYPE_CODE_DECFLOAT:
3520 target_float_from_ulongest (buf, type, num);
3521 break;
3522
595939de 3523 default:
3e43a32a
MS
3524 error (_("Unexpected type (%d) encountered "
3525 "for unsigned integer constant."),
595939de
PM
3526 TYPE_CODE (type));
3527 }
3528}
3529
3530
14d06750
DJ
3531/* Convert C numbers into newly allocated values. */
3532
3533struct value *
3534value_from_longest (struct type *type, LONGEST num)
3535{
3536 struct value *val = allocate_value (type);
3537
3538 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3539 return val;
3540}
3541
4478b372 3542
595939de
PM
3543/* Convert C unsigned numbers into newly allocated values. */
3544
3545struct value *
3546value_from_ulongest (struct type *type, ULONGEST num)
3547{
3548 struct value *val = allocate_value (type);
3549
3550 pack_unsigned_long (value_contents_raw (val), type, num);
3551
3552 return val;
3553}
3554
3555
4478b372 3556/* Create a value representing a pointer of type TYPE to the address
cb417230 3557 ADDR. */
80180f79 3558
f23631e4 3559struct value *
4478b372
JB
3560value_from_pointer (struct type *type, CORE_ADDR addr)
3561{
cb417230 3562 struct value *val = allocate_value (type);
a109c7c1 3563
80180f79 3564 store_typed_address (value_contents_raw (val),
cb417230 3565 check_typedef (type), addr);
4478b372
JB
3566 return val;
3567}
3568
3569
012370f6
TT
3570/* Create a value of type TYPE whose contents come from VALADDR, if it
3571 is non-null, and whose memory address (in the inferior) is
3572 ADDRESS. The type of the created value may differ from the passed
3573 type TYPE. Make sure to retrieve values new type after this call.
3574 Note that TYPE is not passed through resolve_dynamic_type; this is
3575 a special API intended for use only by Ada. */
3576
3577struct value *
3578value_from_contents_and_address_unresolved (struct type *type,
3579 const gdb_byte *valaddr,
3580 CORE_ADDR address)
3581{
3582 struct value *v;
3583
3584 if (valaddr == NULL)
3585 v = allocate_value_lazy (type);
3586 else
3587 v = value_from_contents (type, valaddr);
012370f6 3588 VALUE_LVAL (v) = lval_memory;
1a088441 3589 set_value_address (v, address);
012370f6
TT
3590 return v;
3591}
3592
8acb6b92
TT
3593/* Create a value of type TYPE whose contents come from VALADDR, if it
3594 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3595 ADDRESS. The type of the created value may differ from the passed
3596 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3597
3598struct value *
3599value_from_contents_and_address (struct type *type,
3600 const gdb_byte *valaddr,
3601 CORE_ADDR address)
3602{
c3345124 3603 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3604 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3605 struct value *v;
a109c7c1 3606
8acb6b92 3607 if (valaddr == NULL)
80180f79 3608 v = allocate_value_lazy (resolved_type);
8acb6b92 3609 else
80180f79 3610 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3611 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3612 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3613 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3614 VALUE_LVAL (v) = lval_memory;
1a088441 3615 set_value_address (v, address);
8acb6b92
TT
3616 return v;
3617}
3618
8a9b8146
TT
3619/* Create a value of type TYPE holding the contents CONTENTS.
3620 The new value is `not_lval'. */
3621
3622struct value *
3623value_from_contents (struct type *type, const gdb_byte *contents)
3624{
3625 struct value *result;
3626
3627 result = allocate_value (type);
3628 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3629 return result;
3630}
3631
3bd0f5ef
MS
3632/* Extract a value from the history file. Input will be of the form
3633 $digits or $$digits. See block comment above 'write_dollar_variable'
3634 for details. */
3635
3636struct value *
e799154c 3637value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3638{
3639 int index, len;
3640
3641 if (h[0] == '$')
3642 len = 1;
3643 else
3644 return NULL;
3645
3646 if (h[1] == '$')
3647 len = 2;
3648
3649 /* Find length of numeral string. */
3650 for (; isdigit (h[len]); len++)
3651 ;
3652
3653 /* Make sure numeral string is not part of an identifier. */
3654 if (h[len] == '_' || isalpha (h[len]))
3655 return NULL;
3656
3657 /* Now collect the index value. */
3658 if (h[1] == '$')
3659 {
3660 if (len == 2)
3661 {
3662 /* For some bizarre reason, "$$" is equivalent to "$$1",
3663 rather than to "$$0" as it ought to be! */
3664 index = -1;
3665 *endp += len;
3666 }
3667 else
e799154c
TT
3668 {
3669 char *local_end;
3670
3671 index = -strtol (&h[2], &local_end, 10);
3672 *endp = local_end;
3673 }
3bd0f5ef
MS
3674 }
3675 else
3676 {
3677 if (len == 1)
3678 {
3679 /* "$" is equivalent to "$0". */
3680 index = 0;
3681 *endp += len;
3682 }
3683 else
e799154c
TT
3684 {
3685 char *local_end;
3686
3687 index = strtol (&h[1], &local_end, 10);
3688 *endp = local_end;
3689 }
3bd0f5ef
MS
3690 }
3691
3692 return access_value_history (index);
3693}
3694
3fff9862
YQ
3695/* Get the component value (offset by OFFSET bytes) of a struct or
3696 union WHOLE. Component's type is TYPE. */
3697
3698struct value *
3699value_from_component (struct value *whole, struct type *type, LONGEST offset)
3700{
3701 struct value *v;
3702
3703 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3704 v = allocate_value_lazy (type);
3705 else
3706 {
3707 v = allocate_value (type);
3708 value_contents_copy (v, value_embedded_offset (v),
3709 whole, value_embedded_offset (whole) + offset,
3710 type_length_units (type));
3711 }
3712 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3713 set_value_component_location (v, whole);
3fff9862
YQ
3714
3715 return v;
3716}
3717
a471c594
JK
3718struct value *
3719coerce_ref_if_computed (const struct value *arg)
3720{
3721 const struct lval_funcs *funcs;
3722
aa006118 3723 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3724 return NULL;
3725
3726 if (value_lval_const (arg) != lval_computed)
3727 return NULL;
3728
3729 funcs = value_computed_funcs (arg);
3730 if (funcs->coerce_ref == NULL)
3731 return NULL;
3732
3733 return funcs->coerce_ref (arg);
3734}
3735
dfcee124
AG
3736/* Look at value.h for description. */
3737
3738struct value *
3739readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3740 const struct type *original_type,
3741 const struct value *original_value)
dfcee124
AG
3742{
3743 /* Re-adjust type. */
3744 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3745
3746 /* Add embedding info. */
3747 set_value_enclosing_type (value, enc_type);
3748 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3749
3750 /* We may be pointing to an object of some derived type. */
3751 return value_full_object (value, NULL, 0, 0, 0);
3752}
3753
994b9211
AC
3754struct value *
3755coerce_ref (struct value *arg)
3756{
df407dfe 3757 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3758 struct value *retval;
dfcee124 3759 struct type *enc_type;
a109c7c1 3760
a471c594
JK
3761 retval = coerce_ref_if_computed (arg);
3762 if (retval)
3763 return retval;
3764
aa006118 3765 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3766 return arg;
3767
dfcee124
AG
3768 enc_type = check_typedef (value_enclosing_type (arg));
3769 enc_type = TYPE_TARGET_TYPE (enc_type);
3770
3771 retval = value_at_lazy (enc_type,
3772 unpack_pointer (value_type (arg),
3773 value_contents (arg)));
9f1f738a 3774 enc_type = value_type (retval);
dfcee124
AG
3775 return readjust_indirect_value_type (retval, enc_type,
3776 value_type_arg_tmp, arg);
994b9211
AC
3777}
3778
3779struct value *
3780coerce_array (struct value *arg)
3781{
f3134b88
TT
3782 struct type *type;
3783
994b9211 3784 arg = coerce_ref (arg);
f3134b88
TT
3785 type = check_typedef (value_type (arg));
3786
3787 switch (TYPE_CODE (type))
3788 {
3789 case TYPE_CODE_ARRAY:
7346b668 3790 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3791 arg = value_coerce_array (arg);
3792 break;
3793 case TYPE_CODE_FUNC:
3794 arg = value_coerce_function (arg);
3795 break;
3796 }
994b9211
AC
3797 return arg;
3798}
c906108c 3799\f
c906108c 3800
bbfdfe1c
DM
3801/* Return the return value convention that will be used for the
3802 specified type. */
3803
3804enum return_value_convention
3805struct_return_convention (struct gdbarch *gdbarch,
3806 struct value *function, struct type *value_type)
3807{
3808 enum type_code code = TYPE_CODE (value_type);
3809
3810 if (code == TYPE_CODE_ERROR)
3811 error (_("Function return type unknown."));
3812
3813 /* Probe the architecture for the return-value convention. */
3814 return gdbarch_return_value (gdbarch, function, value_type,
3815 NULL, NULL, NULL);
3816}
3817
48436ce6
AC
3818/* Return true if the function returning the specified type is using
3819 the convention of returning structures in memory (passing in the
82585c72 3820 address as a hidden first parameter). */
c906108c
SS
3821
3822int
d80b854b 3823using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3824 struct value *function, struct type *value_type)
c906108c 3825{
bbfdfe1c 3826 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3827 /* A void return value is never in memory. See also corresponding
44e5158b 3828 code in "print_return_value". */
667e784f
AC
3829 return 0;
3830
bbfdfe1c 3831 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3832 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3833}
3834
42be36b3
CT
3835/* Set the initialized field in a value struct. */
3836
3837void
3838set_value_initialized (struct value *val, int status)
3839{
3840 val->initialized = status;
3841}
3842
3843/* Return the initialized field in a value struct. */
3844
3845int
4bf7b526 3846value_initialized (const struct value *val)
42be36b3
CT
3847{
3848 return val->initialized;
3849}
3850
a844296a
SM
3851/* Load the actual content of a lazy value. Fetch the data from the
3852 user's process and clear the lazy flag to indicate that the data in
3853 the buffer is valid.
a58e2656
AB
3854
3855 If the value is zero-length, we avoid calling read_memory, which
3856 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3857 it. */
a58e2656 3858
a844296a 3859void
a58e2656
AB
3860value_fetch_lazy (struct value *val)
3861{
3862 gdb_assert (value_lazy (val));
3863 allocate_value_contents (val);
9a0dc9e3
PA
3864 /* A value is either lazy, or fully fetched. The
3865 availability/validity is only established as we try to fetch a
3866 value. */
3867 gdb_assert (VEC_empty (range_s, val->optimized_out));
3868 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3869 if (value_bitsize (val))
3870 {
3871 /* To read a lazy bitfield, read the entire enclosing value. This
3872 prevents reading the same block of (possibly volatile) memory once
3873 per bitfield. It would be even better to read only the containing
3874 word, but we have no way to record that just specific bits of a
3875 value have been fetched. */
3876 struct type *type = check_typedef (value_type (val));
a58e2656 3877 struct value *parent = value_parent (val);
a58e2656 3878
b0c54aa5
AB
3879 if (value_lazy (parent))
3880 value_fetch_lazy (parent);
3881
4875ffdb
PA
3882 unpack_value_bitfield (val,
3883 value_bitpos (val), value_bitsize (val),
3884 value_contents_for_printing (parent),
3885 value_offset (val), parent);
a58e2656
AB
3886 }
3887 else if (VALUE_LVAL (val) == lval_memory)
3888 {
3889 CORE_ADDR addr = value_address (val);
3890 struct type *type = check_typedef (value_enclosing_type (val));
3891
3892 if (TYPE_LENGTH (type))
3893 read_value_memory (val, 0, value_stack (val),
3894 addr, value_contents_all_raw (val),
3ae385af 3895 type_length_units (type));
a58e2656
AB
3896 }
3897 else if (VALUE_LVAL (val) == lval_register)
3898 {
41b56feb 3899 struct frame_info *next_frame;
a58e2656
AB
3900 int regnum;
3901 struct type *type = check_typedef (value_type (val));
3902 struct value *new_val = val, *mark = value_mark ();
3903
3904 /* Offsets are not supported here; lazy register values must
3905 refer to the entire register. */
3906 gdb_assert (value_offset (val) == 0);
3907
3908 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3909 {
41b56feb 3910 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3911
41b56feb 3912 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3913 regnum = VALUE_REGNUM (new_val);
3914
41b56feb 3915 gdb_assert (next_frame != NULL);
a58e2656
AB
3916
3917 /* Convertible register routines are used for multi-register
3918 values and for interpretation in different types
3919 (e.g. float or int from a double register). Lazy
3920 register values should have the register's natural type,
3921 so they do not apply. */
41b56feb 3922 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3923 regnum, type));
3924
41b56feb
KB
3925 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3926 Since a "->next" operation was performed when setting
3927 this field, we do not need to perform a "next" operation
3928 again when unwinding the register. That's why
3929 frame_unwind_register_value() is called here instead of
3930 get_frame_register_value(). */
3931 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3932
3933 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3934 register is found by reading it from NEXT_FRAME's next frame.
3935 frame_unwind_register_value should never return a value with
3936 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3937 either have two consecutive frames with the same frame id
3938 in the frame chain, or some code is trying to unwind
3939 behind get_prev_frame's back (e.g., a frame unwind
3940 sniffer trying to unwind), bypassing its validations. In
3941 any case, it should always be an internal error to end up
3942 in this situation. */
3943 if (VALUE_LVAL (new_val) == lval_register
3944 && value_lazy (new_val)
41b56feb 3945 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3946 internal_error (__FILE__, __LINE__,
3947 _("infinite loop while fetching a register"));
a58e2656
AB
3948 }
3949
3950 /* If it's still lazy (for instance, a saved register on the
3951 stack), fetch it. */
3952 if (value_lazy (new_val))
3953 value_fetch_lazy (new_val);
3954
9a0dc9e3
PA
3955 /* Copy the contents and the unavailability/optimized-out
3956 meta-data from NEW_VAL to VAL. */
3957 set_value_lazy (val, 0);
3958 value_contents_copy (val, value_embedded_offset (val),
3959 new_val, value_embedded_offset (new_val),
3ae385af 3960 type_length_units (type));
a58e2656
AB
3961
3962 if (frame_debug)
3963 {
3964 struct gdbarch *gdbarch;
41b56feb
KB
3965 struct frame_info *frame;
3966 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3967 so that the frame level will be shown correctly. */
a58e2656
AB
3968 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3969 regnum = VALUE_REGNUM (val);
3970 gdbarch = get_frame_arch (frame);
3971
3972 fprintf_unfiltered (gdb_stdlog,
3973 "{ value_fetch_lazy "
3974 "(frame=%d,regnum=%d(%s),...) ",
3975 frame_relative_level (frame), regnum,
3976 user_reg_map_regnum_to_name (gdbarch, regnum));
3977
3978 fprintf_unfiltered (gdb_stdlog, "->");
3979 if (value_optimized_out (new_val))
f6c01fc5
AB
3980 {
3981 fprintf_unfiltered (gdb_stdlog, " ");
3982 val_print_optimized_out (new_val, gdb_stdlog);
3983 }
a58e2656
AB
3984 else
3985 {
3986 int i;
3987 const gdb_byte *buf = value_contents (new_val);
3988
3989 if (VALUE_LVAL (new_val) == lval_register)
3990 fprintf_unfiltered (gdb_stdlog, " register=%d",
3991 VALUE_REGNUM (new_val));
3992 else if (VALUE_LVAL (new_val) == lval_memory)
3993 fprintf_unfiltered (gdb_stdlog, " address=%s",
3994 paddress (gdbarch,
3995 value_address (new_val)));
3996 else
3997 fprintf_unfiltered (gdb_stdlog, " computed");
3998
3999 fprintf_unfiltered (gdb_stdlog, " bytes=");
4000 fprintf_unfiltered (gdb_stdlog, "[");
4001 for (i = 0; i < register_size (gdbarch, regnum); i++)
4002 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4003 fprintf_unfiltered (gdb_stdlog, "]");
4004 }
4005
4006 fprintf_unfiltered (gdb_stdlog, " }\n");
4007 }
4008
4009 /* Dispose of the intermediate values. This prevents
4010 watchpoints from trying to watch the saved frame pointer. */
4011 value_free_to_mark (mark);
4012 }
4013 else if (VALUE_LVAL (val) == lval_computed
4014 && value_computed_funcs (val)->read != NULL)
4015 value_computed_funcs (val)->read (val);
a58e2656
AB
4016 else
4017 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4018
4019 set_value_lazy (val, 0);
a58e2656
AB
4020}
4021
a280dbd1
SDJ
4022/* Implementation of the convenience function $_isvoid. */
4023
4024static struct value *
4025isvoid_internal_fn (struct gdbarch *gdbarch,
4026 const struct language_defn *language,
4027 void *cookie, int argc, struct value **argv)
4028{
4029 int ret;
4030
4031 if (argc != 1)
6bc305f5 4032 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4033
4034 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4035
4036 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4037}
4038
c906108c 4039void
fba45db2 4040_initialize_values (void)
c906108c 4041{
1a966eab 4042 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4043Debugger convenience (\"$foo\") variables and functions.\n\
4044Convenience variables are created when you assign them values;\n\
4045thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4046\n\
c906108c
SS
4047A few convenience variables are given values automatically:\n\
4048\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4049\"$__\" holds the contents of the last address examined with \"x\"."
4050#ifdef HAVE_PYTHON
4051"\n\n\
4052Convenience functions are defined via the Python API."
4053#endif
4054 ), &showlist);
7e20dfcd 4055 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4056
db5f229b 4057 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4058Elements of value history around item number IDX (or last ten)."),
c906108c 4059 &showlist);
53e5f3cf
AS
4060
4061 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4062Initialize a convenience variable if necessary.\n\
4063init-if-undefined VARIABLE = EXPRESSION\n\
4064Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4065exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4066VARIABLE is already initialized."));
bc3b79fd
TJB
4067
4068 add_prefix_cmd ("function", no_class, function_command, _("\
4069Placeholder command for showing help on convenience functions."),
4070 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4071
4072 add_internal_function ("_isvoid", _("\
4073Check whether an expression is void.\n\
4074Usage: $_isvoid (expression)\n\
4075Return 1 if the expression is void, zero otherwise."),
4076 isvoid_internal_fn, NULL);
5fdf6324
AB
4077
4078 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4079 class_support, &max_value_size, _("\
4080Set maximum sized value gdb will load from the inferior."), _("\
4081Show maximum sized value gdb will load from the inferior."), _("\
4082Use this to control the maximum size, in bytes, of a value that gdb\n\
4083will load from the inferior. Setting this value to 'unlimited'\n\
4084disables checking.\n\
4085Setting this does not invalidate already allocated values, it only\n\
4086prevents future values, larger than this size, from being allocated."),
4087 set_max_value_size,
4088 show_max_value_size,
4089 &setlist, &showlist);
c906108c 4090}
This page took 2.7976 seconds and 4 git commands to generate.