Add set_repeat_arguments function
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f
PA
69};
70
71typedef struct range range_s;
72
73DEF_VEC_O(range_s);
74
75/* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78static int
6b850546
DT
79ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
4e07d55f
PA
81{
82 ULONGEST h, l;
83
325fac50
PA
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
86 return (l < h);
87}
88
89/* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94static int
95range_lessthan (const range_s *r1, const range_s *r2)
96{
97 return r1->offset < r2->offset;
98}
99
100/* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103static int
6b850546 104ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
105{
106 range_s what;
6b850546 107 LONGEST i;
4e07d55f
PA
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162}
163
bc3b79fd
TJB
164static struct cmd_list_element *functionlist;
165
87784a47
TT
166/* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
91294c83
AC
169struct value
170{
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
87784a47
TT
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
91294c83 200
e848a8a5
TT
201 /* If the value has been released. */
202 unsigned int released : 1;
203
91294c83
AC
204 /* Location of value (if lval). */
205 union
206 {
7dc54575 207 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
208 CORE_ADDR address;
209
7dc54575
YQ
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
91294c83
AC
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4 223
e81e7f5e
SC
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
5f5233d4
PA
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
c8f2448a
JK
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
5f5233d4 237 } computed;
91294c83
AC
238 } location;
239
3723fda8 240 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
241 addressable memory units. Note also the member embedded_offset
242 below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
91294c83
AC
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
91294c83
AC
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
6b850546
DT
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
91294c83
AC
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
a08702d6
TJB
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
91294c83
AC
316 struct value *next;
317
3e3d7139
JG
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
828d3400 321
4e07d55f
PA
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
9a0dc9e3
PA
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
4e07d55f 328 VEC(range_s) *unavailable;
9a0dc9e3
PA
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
91294c83
AC
338};
339
e512cdbd
SM
340/* See value.h. */
341
342struct gdbarch *
343get_value_arch (const struct value *value)
344{
345 return get_type_arch (value_type (value));
346}
347
4e07d55f 348int
6b850546 349value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
350{
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354}
355
bdf22206 356int
6b850546
DT
357value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
bdf22206
AB
359{
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363}
364
9a0dc9e3
PA
365int
366value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367{
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371}
372
ec0a52e1
PA
373int
374value_entirely_available (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384}
385
9a0dc9e3
PA
386/* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390static int
391value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
6211c335 393{
9a0dc9e3
PA
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
6211c335
YQ
396 if (value->lazy)
397 value_fetch_lazy (value);
398
9a0dc9e3 399 if (VEC_length (range_s, *ranges) == 1)
6211c335 400 {
9a0dc9e3 401 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
402
403 if (t->offset == 0
64c46ce4
JB
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
406 return 1;
407 }
408
409 return 0;
410}
411
9a0dc9e3
PA
412int
413value_entirely_unavailable (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416}
417
418int
419value_entirely_optimized_out (struct value *value)
420{
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422}
423
424/* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427static void
6b850546
DT
428insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
4e07d55f
PA
430{
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
9a0dc9e3 520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
521 if (i > 0)
522 {
9a0dc9e3 523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
325fac50
PA
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546 }
547 else
548 {
549 /* #4 */
9a0dc9e3 550 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
9a0dc9e3 555 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
9a0dc9e3 563 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
564 removed = 0;
565
566 i = next;
9a0dc9e3 567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
325fac50
PA
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
9a0dc9e3 589 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
590 }
591}
592
9a0dc9e3 593void
6b850546
DT
594mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
9a0dc9e3
PA
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206 600void
6b850546
DT
601mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
bdf22206
AB
603{
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607}
608
c8c1c22f
PA
609/* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614static int
615find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 616 LONGEST offset, LONGEST length)
c8c1c22f
PA
617{
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626}
627
bdf22206
AB
628/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640static int
641memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644{
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727}
728
9a0dc9e3
PA
729/* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
bdf22206 732
9a0dc9e3
PA
733struct ranges_and_idx
734{
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741};
742
743/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
748
749static int
9a0dc9e3
PA
750find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
6b850546
DT
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 754{
9a0dc9e3
PA
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
c8c1c22f 759
9a0dc9e3
PA
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
c8c1c22f
PA
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
9a0dc9e3
PA
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
325fac50
PA
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 782
325fac50
PA
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
9a0dc9e3 794 /* Different ranges, no match. */
c8c1c22f
PA
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
9a0dc9e3
PA
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802}
803
804/* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811static int
812value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815{
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
000339af 838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return 0;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
bdf22206 861 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 862 val2->contents, offset2, l) != 0)
c8c1c22f
PA
863 return 0;
864
9a0dc9e3
PA
865 length -= h;
866 offset1 += h;
867 offset2 += h;
c8c1c22f
PA
868 }
869
870 return 1;
871}
872
bdf22206 873int
6b850546
DT
874value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
bdf22206 877{
9a0dc9e3
PA
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
bdf22206
AB
881}
882
581e13c1 883/* Prototypes for local functions. */
c906108c 884
a14ed312 885static void show_values (char *, int);
c906108c 886
c906108c
SS
887
888/* The value-history records all the values printed
889 by print commands during this session. Each chunk
890 records 60 consecutive values. The first chunk on
891 the chain records the most recent values.
892 The total number of values is in value_history_count. */
893
894#define VALUE_HISTORY_CHUNK 60
895
896struct value_history_chunk
c5aa993b
JM
897 {
898 struct value_history_chunk *next;
f23631e4 899 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 900 };
c906108c
SS
901
902/* Chain of chunks now in use. */
903
904static struct value_history_chunk *value_history_chain;
905
581e13c1 906static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 907
c906108c
SS
908\f
909/* List of all value objects currently allocated
910 (except for those released by calls to release_value)
911 This is so they can be freed after each command. */
912
f23631e4 913static struct value *all_values;
c906108c 914
3e3d7139
JG
915/* Allocate a lazy value for type TYPE. Its actual content is
916 "lazily" allocated too: the content field of the return value is
917 NULL; it will be allocated when it is fetched from the target. */
c906108c 918
f23631e4 919struct value *
3e3d7139 920allocate_value_lazy (struct type *type)
c906108c 921{
f23631e4 922 struct value *val;
c54eabfa
JK
923
924 /* Call check_typedef on our type to make sure that, if TYPE
925 is a TYPE_CODE_TYPEDEF, its length is set to the length
926 of the target type instead of zero. However, we do not
927 replace the typedef type by the target type, because we want
928 to keep the typedef in order to be able to set the VAL's type
929 description correctly. */
930 check_typedef (type);
c906108c 931
8d749320 932 val = XCNEW (struct value);
3e3d7139 933 val->contents = NULL;
df407dfe 934 val->next = all_values;
c906108c 935 all_values = val;
df407dfe 936 val->type = type;
4754a64e 937 val->enclosing_type = type;
c906108c 938 VALUE_LVAL (val) = not_lval;
42ae5230 939 val->location.address = 0;
df407dfe
AC
940 val->offset = 0;
941 val->bitpos = 0;
942 val->bitsize = 0;
3e3d7139 943 val->lazy = 1;
13c3b5f5 944 val->embedded_offset = 0;
b44d461b 945 val->pointed_to_offset = 0;
c906108c 946 val->modifiable = 1;
42be36b3 947 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
948
949 /* Values start out on the all_values chain. */
950 val->reference_count = 1;
951
c906108c
SS
952 return val;
953}
954
5fdf6324
AB
955/* The maximum size, in bytes, that GDB will try to allocate for a value.
956 The initial value of 64k was not selected for any specific reason, it is
957 just a reasonable starting point. */
958
959static int max_value_size = 65536; /* 64k bytes */
960
961/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
962 LONGEST, otherwise GDB will not be able to parse integer values from the
963 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
964 be unable to parse "set max-value-size 2".
965
966 As we want a consistent GDB experience across hosts with different sizes
967 of LONGEST, this arbitrary minimum value was selected, so long as this
968 is bigger than LONGEST on all GDB supported hosts we're fine. */
969
970#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
971gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
972
973/* Implement the "set max-value-size" command. */
974
975static void
976set_max_value_size (char *args, int from_tty,
977 struct cmd_list_element *c)
978{
979 gdb_assert (max_value_size == -1 || max_value_size >= 0);
980
981 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
982 {
983 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
984 error (_("max-value-size set too low, increasing to %d bytes"),
985 max_value_size);
986 }
987}
988
989/* Implement the "show max-value-size" command. */
990
991static void
992show_max_value_size (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c, const char *value)
994{
995 if (max_value_size == -1)
996 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
997 else
998 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
999 max_value_size);
1000}
1001
1002/* Called before we attempt to allocate or reallocate a buffer for the
1003 contents of a value. TYPE is the type of the value for which we are
1004 allocating the buffer. If the buffer is too large (based on the user
1005 controllable setting) then throw an error. If this function returns
1006 then we should attempt to allocate the buffer. */
1007
1008static void
1009check_type_length_before_alloc (const struct type *type)
1010{
1011 unsigned int length = TYPE_LENGTH (type);
1012
1013 if (max_value_size > -1 && length > max_value_size)
1014 {
1015 if (TYPE_NAME (type) != NULL)
1016 error (_("value of type `%s' requires %u bytes, which is more "
1017 "than max-value-size"), TYPE_NAME (type), length);
1018 else
1019 error (_("value requires %u bytes, which is more than "
1020 "max-value-size"), length);
1021 }
1022}
1023
3e3d7139
JG
1024/* Allocate the contents of VAL if it has not been allocated yet. */
1025
548b762d 1026static void
3e3d7139
JG
1027allocate_value_contents (struct value *val)
1028{
1029 if (!val->contents)
5fdf6324
AB
1030 {
1031 check_type_length_before_alloc (val->enclosing_type);
1032 val->contents
1033 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1034 }
3e3d7139
JG
1035}
1036
1037/* Allocate a value and its contents for type TYPE. */
1038
1039struct value *
1040allocate_value (struct type *type)
1041{
1042 struct value *val = allocate_value_lazy (type);
a109c7c1 1043
3e3d7139
JG
1044 allocate_value_contents (val);
1045 val->lazy = 0;
1046 return val;
1047}
1048
c906108c 1049/* Allocate a value that has the correct length
938f5214 1050 for COUNT repetitions of type TYPE. */
c906108c 1051
f23631e4 1052struct value *
fba45db2 1053allocate_repeat_value (struct type *type, int count)
c906108c 1054{
c5aa993b 1055 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1056 /* FIXME-type-allocation: need a way to free this type when we are
1057 done with it. */
e3506a9f
UW
1058 struct type *array_type
1059 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1060
e3506a9f 1061 return allocate_value (array_type);
c906108c
SS
1062}
1063
5f5233d4
PA
1064struct value *
1065allocate_computed_value (struct type *type,
c8f2448a 1066 const struct lval_funcs *funcs,
5f5233d4
PA
1067 void *closure)
1068{
41e8491f 1069 struct value *v = allocate_value_lazy (type);
a109c7c1 1070
5f5233d4
PA
1071 VALUE_LVAL (v) = lval_computed;
1072 v->location.computed.funcs = funcs;
1073 v->location.computed.closure = closure;
5f5233d4
PA
1074
1075 return v;
1076}
1077
a7035dbb
JK
1078/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1079
1080struct value *
1081allocate_optimized_out_value (struct type *type)
1082{
1083 struct value *retval = allocate_value_lazy (type);
1084
9a0dc9e3
PA
1085 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1086 set_value_lazy (retval, 0);
a7035dbb
JK
1087 return retval;
1088}
1089
df407dfe
AC
1090/* Accessor methods. */
1091
17cf0ecd 1092struct value *
4bf7b526 1093value_next (const struct value *value)
17cf0ecd
AC
1094{
1095 return value->next;
1096}
1097
df407dfe 1098struct type *
0e03807e 1099value_type (const struct value *value)
df407dfe
AC
1100{
1101 return value->type;
1102}
04624583
AC
1103void
1104deprecated_set_value_type (struct value *value, struct type *type)
1105{
1106 value->type = type;
1107}
df407dfe 1108
6b850546 1109LONGEST
0e03807e 1110value_offset (const struct value *value)
df407dfe
AC
1111{
1112 return value->offset;
1113}
f5cf64a7 1114void
6b850546 1115set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1116{
1117 value->offset = offset;
1118}
df407dfe 1119
6b850546 1120LONGEST
0e03807e 1121value_bitpos (const struct value *value)
df407dfe
AC
1122{
1123 return value->bitpos;
1124}
9bbda503 1125void
6b850546 1126set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1127{
1128 value->bitpos = bit;
1129}
df407dfe 1130
6b850546 1131LONGEST
0e03807e 1132value_bitsize (const struct value *value)
df407dfe
AC
1133{
1134 return value->bitsize;
1135}
9bbda503 1136void
6b850546 1137set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1138{
1139 value->bitsize = bit;
1140}
df407dfe 1141
4ea48cc1 1142struct value *
4bf7b526 1143value_parent (const struct value *value)
4ea48cc1
DJ
1144{
1145 return value->parent;
1146}
1147
53ba8333
JB
1148/* See value.h. */
1149
1150void
1151set_value_parent (struct value *value, struct value *parent)
1152{
40501e00
TT
1153 struct value *old = value->parent;
1154
53ba8333 1155 value->parent = parent;
40501e00
TT
1156 if (parent != NULL)
1157 value_incref (parent);
1158 value_free (old);
53ba8333
JB
1159}
1160
fc1a4b47 1161gdb_byte *
990a07ab
AC
1162value_contents_raw (struct value *value)
1163{
3ae385af
SM
1164 struct gdbarch *arch = get_value_arch (value);
1165 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1166
3e3d7139 1167 allocate_value_contents (value);
3ae385af 1168 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1169}
1170
fc1a4b47 1171gdb_byte *
990a07ab
AC
1172value_contents_all_raw (struct value *value)
1173{
3e3d7139
JG
1174 allocate_value_contents (value);
1175 return value->contents;
990a07ab
AC
1176}
1177
4754a64e 1178struct type *
4bf7b526 1179value_enclosing_type (const struct value *value)
4754a64e
AC
1180{
1181 return value->enclosing_type;
1182}
1183
8264ba82
AG
1184/* Look at value.h for description. */
1185
1186struct type *
1187value_actual_type (struct value *value, int resolve_simple_types,
1188 int *real_type_found)
1189{
1190 struct value_print_options opts;
8264ba82
AG
1191 struct type *result;
1192
1193 get_user_print_options (&opts);
1194
1195 if (real_type_found)
1196 *real_type_found = 0;
1197 result = value_type (value);
1198 if (opts.objectprint)
1199 {
5e34c6c3
LM
1200 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1201 fetch its rtti type. */
aa006118 1202 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1203 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1204 == TYPE_CODE_STRUCT
1205 && !value_optimized_out (value))
8264ba82
AG
1206 {
1207 struct type *real_type;
1208
1209 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1210 if (real_type)
1211 {
1212 if (real_type_found)
1213 *real_type_found = 1;
1214 result = real_type;
1215 }
1216 }
1217 else if (resolve_simple_types)
1218 {
1219 if (real_type_found)
1220 *real_type_found = 1;
1221 result = value_enclosing_type (value);
1222 }
1223 }
1224
1225 return result;
1226}
1227
901461f8
PA
1228void
1229error_value_optimized_out (void)
1230{
1231 error (_("value has been optimized out"));
1232}
1233
0e03807e 1234static void
4e07d55f 1235require_not_optimized_out (const struct value *value)
0e03807e 1236{
9a0dc9e3 1237 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1238 {
1239 if (value->lval == lval_register)
1240 error (_("register has not been saved in frame"));
1241 else
1242 error_value_optimized_out ();
1243 }
0e03807e
TT
1244}
1245
4e07d55f
PA
1246static void
1247require_available (const struct value *value)
1248{
1249 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1250 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1251}
1252
fc1a4b47 1253const gdb_byte *
0e03807e 1254value_contents_for_printing (struct value *value)
46615f07
AC
1255{
1256 if (value->lazy)
1257 value_fetch_lazy (value);
3e3d7139 1258 return value->contents;
46615f07
AC
1259}
1260
de4127a3
PA
1261const gdb_byte *
1262value_contents_for_printing_const (const struct value *value)
1263{
1264 gdb_assert (!value->lazy);
1265 return value->contents;
1266}
1267
0e03807e
TT
1268const gdb_byte *
1269value_contents_all (struct value *value)
1270{
1271 const gdb_byte *result = value_contents_for_printing (value);
1272 require_not_optimized_out (value);
4e07d55f 1273 require_available (value);
0e03807e
TT
1274 return result;
1275}
1276
9a0dc9e3
PA
1277/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1279
1280static void
1281ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1282 VEC (range_s) *src_range, int src_bit_offset,
1283 int bit_length)
1284{
1285 range_s *r;
1286 int i;
1287
1288 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1289 {
1290 ULONGEST h, l;
1291
325fac50
PA
1292 l = std::max (r->offset, (LONGEST) src_bit_offset);
1293 h = std::min (r->offset + r->length,
1294 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1295
1296 if (l < h)
1297 insert_into_bit_range_vector (dst_range,
1298 dst_bit_offset + (l - src_bit_offset),
1299 h - l);
1300 }
1301}
1302
4875ffdb
PA
1303/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1304 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1305
1306static void
1307value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1308 const struct value *src, int src_bit_offset,
1309 int bit_length)
1310{
1311 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1312 src->unavailable, src_bit_offset,
1313 bit_length);
1314 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1315 src->optimized_out, src_bit_offset,
1316 bit_length);
1317}
1318
3ae385af 1319/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1320 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1321 contents, starting at DST_OFFSET. If unavailable contents are
1322 being copied from SRC, the corresponding DST contents are marked
1323 unavailable accordingly. Neither DST nor SRC may be lazy
1324 values.
1325
1326 It is assumed the contents of DST in the [DST_OFFSET,
1327 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1328
1329void
6b850546
DT
1330value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1331 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1332{
6b850546 1333 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1334 struct gdbarch *arch = get_value_arch (src);
1335 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1336
1337 /* A lazy DST would make that this copy operation useless, since as
1338 soon as DST's contents were un-lazied (by a later value_contents
1339 call, say), the contents would be overwritten. A lazy SRC would
1340 mean we'd be copying garbage. */
1341 gdb_assert (!dst->lazy && !src->lazy);
1342
29976f3f
PA
1343 /* The overwritten DST range gets unavailability ORed in, not
1344 replaced. Make sure to remember to implement replacing if it
1345 turns out actually necessary. */
1346 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1347 gdb_assert (!value_bits_any_optimized_out (dst,
1348 TARGET_CHAR_BIT * dst_offset,
1349 TARGET_CHAR_BIT * length));
29976f3f 1350
39d37385 1351 /* Copy the data. */
3ae385af
SM
1352 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1353 value_contents_all_raw (src) + src_offset * unit_size,
1354 length * unit_size);
39d37385
PA
1355
1356 /* Copy the meta-data, adjusted. */
3ae385af
SM
1357 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1358 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1359 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1360
4875ffdb
PA
1361 value_ranges_copy_adjusted (dst, dst_bit_offset,
1362 src, src_bit_offset,
1363 bit_length);
39d37385
PA
1364}
1365
29976f3f
PA
1366/* Copy LENGTH bytes of SRC value's (all) contents
1367 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1368 (all) contents, starting at DST_OFFSET. If unavailable contents
1369 are being copied from SRC, the corresponding DST contents are
1370 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1371 lazy, it will be fetched now.
29976f3f
PA
1372
1373 It is assumed the contents of DST in the [DST_OFFSET,
1374 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1375
1376void
6b850546
DT
1377value_contents_copy (struct value *dst, LONGEST dst_offset,
1378 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1379{
39d37385
PA
1380 if (src->lazy)
1381 value_fetch_lazy (src);
1382
1383 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1384}
1385
d69fe07e 1386int
4bf7b526 1387value_lazy (const struct value *value)
d69fe07e
AC
1388{
1389 return value->lazy;
1390}
1391
dfa52d88
AC
1392void
1393set_value_lazy (struct value *value, int val)
1394{
1395 value->lazy = val;
1396}
1397
4e5d721f 1398int
4bf7b526 1399value_stack (const struct value *value)
4e5d721f
DE
1400{
1401 return value->stack;
1402}
1403
1404void
1405set_value_stack (struct value *value, int val)
1406{
1407 value->stack = val;
1408}
1409
fc1a4b47 1410const gdb_byte *
0fd88904
AC
1411value_contents (struct value *value)
1412{
0e03807e
TT
1413 const gdb_byte *result = value_contents_writeable (value);
1414 require_not_optimized_out (value);
4e07d55f 1415 require_available (value);
0e03807e 1416 return result;
0fd88904
AC
1417}
1418
fc1a4b47 1419gdb_byte *
0fd88904
AC
1420value_contents_writeable (struct value *value)
1421{
1422 if (value->lazy)
1423 value_fetch_lazy (value);
fc0c53a0 1424 return value_contents_raw (value);
0fd88904
AC
1425}
1426
feb13ab0
AC
1427int
1428value_optimized_out (struct value *value)
1429{
691a26f5
AB
1430 /* We can only know if a value is optimized out once we have tried to
1431 fetch it. */
9a0dc9e3 1432 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1433 {
1434 TRY
1435 {
1436 value_fetch_lazy (value);
1437 }
1438 CATCH (ex, RETURN_MASK_ERROR)
1439 {
1440 /* Fall back to checking value->optimized_out. */
1441 }
1442 END_CATCH
1443 }
691a26f5 1444
9a0dc9e3 1445 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1446}
1447
9a0dc9e3
PA
1448/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1449 the following LENGTH bytes. */
eca07816 1450
feb13ab0 1451void
9a0dc9e3 1452mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1453{
9a0dc9e3
PA
1454 mark_value_bits_optimized_out (value,
1455 offset * TARGET_CHAR_BIT,
1456 length * TARGET_CHAR_BIT);
feb13ab0 1457}
13c3b5f5 1458
9a0dc9e3 1459/* See value.h. */
0e03807e 1460
9a0dc9e3 1461void
6b850546
DT
1462mark_value_bits_optimized_out (struct value *value,
1463 LONGEST offset, LONGEST length)
0e03807e 1464{
9a0dc9e3 1465 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1466}
1467
8cf6f0b1
TT
1468int
1469value_bits_synthetic_pointer (const struct value *value,
6b850546 1470 LONGEST offset, LONGEST length)
8cf6f0b1 1471{
e7303042 1472 if (value->lval != lval_computed
8cf6f0b1
TT
1473 || !value->location.computed.funcs->check_synthetic_pointer)
1474 return 0;
1475 return value->location.computed.funcs->check_synthetic_pointer (value,
1476 offset,
1477 length);
1478}
1479
6b850546 1480LONGEST
4bf7b526 1481value_embedded_offset (const struct value *value)
13c3b5f5
AC
1482{
1483 return value->embedded_offset;
1484}
1485
1486void
6b850546 1487set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1488{
1489 value->embedded_offset = val;
1490}
b44d461b 1491
6b850546 1492LONGEST
4bf7b526 1493value_pointed_to_offset (const struct value *value)
b44d461b
AC
1494{
1495 return value->pointed_to_offset;
1496}
1497
1498void
6b850546 1499set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1500{
1501 value->pointed_to_offset = val;
1502}
13bb5560 1503
c8f2448a 1504const struct lval_funcs *
a471c594 1505value_computed_funcs (const struct value *v)
5f5233d4 1506{
a471c594 1507 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1508
1509 return v->location.computed.funcs;
1510}
1511
1512void *
0e03807e 1513value_computed_closure (const struct value *v)
5f5233d4 1514{
0e03807e 1515 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1516
1517 return v->location.computed.closure;
1518}
1519
13bb5560
AC
1520enum lval_type *
1521deprecated_value_lval_hack (struct value *value)
1522{
1523 return &value->lval;
1524}
1525
a471c594
JK
1526enum lval_type
1527value_lval_const (const struct value *value)
1528{
1529 return value->lval;
1530}
1531
42ae5230 1532CORE_ADDR
de4127a3 1533value_address (const struct value *value)
42ae5230 1534{
1a088441 1535 if (value->lval != lval_memory)
42ae5230 1536 return 0;
53ba8333
JB
1537 if (value->parent != NULL)
1538 return value_address (value->parent) + value->offset;
9920b434
BH
1539 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1540 {
1541 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1542 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1543 }
1544
1545 return value->location.address + value->offset;
42ae5230
TT
1546}
1547
1548CORE_ADDR
4bf7b526 1549value_raw_address (const struct value *value)
42ae5230 1550{
1a088441 1551 if (value->lval != lval_memory)
42ae5230
TT
1552 return 0;
1553 return value->location.address;
1554}
1555
1556void
1557set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1558{
1a088441 1559 gdb_assert (value->lval == lval_memory);
42ae5230 1560 value->location.address = addr;
13bb5560
AC
1561}
1562
1563struct internalvar **
1564deprecated_value_internalvar_hack (struct value *value)
1565{
1566 return &value->location.internalvar;
1567}
1568
1569struct frame_id *
41b56feb 1570deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1571{
7c2ba67e 1572 gdb_assert (value->lval == lval_register);
7dc54575 1573 return &value->location.reg.next_frame_id;
13bb5560
AC
1574}
1575
7dc54575 1576int *
13bb5560
AC
1577deprecated_value_regnum_hack (struct value *value)
1578{
7c2ba67e 1579 gdb_assert (value->lval == lval_register);
7dc54575 1580 return &value->location.reg.regnum;
13bb5560 1581}
88e3b34b
AC
1582
1583int
4bf7b526 1584deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1585{
1586 return value->modifiable;
1587}
990a07ab 1588\f
c906108c
SS
1589/* Return a mark in the value chain. All values allocated after the
1590 mark is obtained (except for those released) are subject to being freed
1591 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1592struct value *
fba45db2 1593value_mark (void)
c906108c
SS
1594{
1595 return all_values;
1596}
1597
828d3400
DJ
1598/* Take a reference to VAL. VAL will not be deallocated until all
1599 references are released. */
1600
1601void
1602value_incref (struct value *val)
1603{
1604 val->reference_count++;
1605}
1606
1607/* Release a reference to VAL, which was acquired with value_incref.
1608 This function is also called to deallocate values from the value
1609 chain. */
1610
3e3d7139
JG
1611void
1612value_free (struct value *val)
1613{
1614 if (val)
5f5233d4 1615 {
828d3400
DJ
1616 gdb_assert (val->reference_count > 0);
1617 val->reference_count--;
1618 if (val->reference_count > 0)
1619 return;
1620
4ea48cc1
DJ
1621 /* If there's an associated parent value, drop our reference to
1622 it. */
1623 if (val->parent != NULL)
1624 value_free (val->parent);
1625
5f5233d4
PA
1626 if (VALUE_LVAL (val) == lval_computed)
1627 {
c8f2448a 1628 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1629
1630 if (funcs->free_closure)
1631 funcs->free_closure (val);
1632 }
e81e7f5e
SC
1633 else if (VALUE_LVAL (val) == lval_xcallable)
1634 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1635
1636 xfree (val->contents);
4e07d55f 1637 VEC_free (range_s, val->unavailable);
5f5233d4 1638 }
3e3d7139
JG
1639 xfree (val);
1640}
1641
c906108c
SS
1642/* Free all values allocated since MARK was obtained by value_mark
1643 (except for those released). */
1644void
4bf7b526 1645value_free_to_mark (const struct value *mark)
c906108c 1646{
f23631e4
AC
1647 struct value *val;
1648 struct value *next;
c906108c
SS
1649
1650 for (val = all_values; val && val != mark; val = next)
1651 {
df407dfe 1652 next = val->next;
e848a8a5 1653 val->released = 1;
c906108c
SS
1654 value_free (val);
1655 }
1656 all_values = val;
1657}
1658
1659/* Free all the values that have been allocated (except for those released).
725e88af
DE
1660 Call after each command, successful or not.
1661 In practice this is called before each command, which is sufficient. */
c906108c
SS
1662
1663void
fba45db2 1664free_all_values (void)
c906108c 1665{
f23631e4
AC
1666 struct value *val;
1667 struct value *next;
c906108c
SS
1668
1669 for (val = all_values; val; val = next)
1670 {
df407dfe 1671 next = val->next;
e848a8a5 1672 val->released = 1;
c906108c
SS
1673 value_free (val);
1674 }
1675
1676 all_values = 0;
1677}
1678
0cf6dd15
TJB
1679/* Frees all the elements in a chain of values. */
1680
1681void
1682free_value_chain (struct value *v)
1683{
1684 struct value *next;
1685
1686 for (; v; v = next)
1687 {
1688 next = value_next (v);
1689 value_free (v);
1690 }
1691}
1692
c906108c
SS
1693/* Remove VAL from the chain all_values
1694 so it will not be freed automatically. */
1695
1696void
f23631e4 1697release_value (struct value *val)
c906108c 1698{
f23631e4 1699 struct value *v;
c906108c
SS
1700
1701 if (all_values == val)
1702 {
1703 all_values = val->next;
06a64a0b 1704 val->next = NULL;
e848a8a5 1705 val->released = 1;
c906108c
SS
1706 return;
1707 }
1708
1709 for (v = all_values; v; v = v->next)
1710 {
1711 if (v->next == val)
1712 {
1713 v->next = val->next;
06a64a0b 1714 val->next = NULL;
e848a8a5 1715 val->released = 1;
c906108c
SS
1716 break;
1717 }
1718 }
1719}
1720
e848a8a5
TT
1721/* If the value is not already released, release it.
1722 If the value is already released, increment its reference count.
1723 That is, this function ensures that the value is released from the
1724 value chain and that the caller owns a reference to it. */
1725
1726void
1727release_value_or_incref (struct value *val)
1728{
1729 if (val->released)
1730 value_incref (val);
1731 else
1732 release_value (val);
1733}
1734
c906108c 1735/* Release all values up to mark */
f23631e4 1736struct value *
4bf7b526 1737value_release_to_mark (const struct value *mark)
c906108c 1738{
f23631e4
AC
1739 struct value *val;
1740 struct value *next;
c906108c 1741
df407dfe 1742 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1743 {
1744 if (next->next == mark)
1745 {
1746 all_values = next->next;
1747 next->next = NULL;
1748 return val;
1749 }
1750 next->released = 1;
1751 }
c906108c
SS
1752 all_values = 0;
1753 return val;
1754}
1755
1756/* Return a copy of the value ARG.
1757 It contains the same contents, for same memory address,
1758 but it's a different block of storage. */
1759
f23631e4
AC
1760struct value *
1761value_copy (struct value *arg)
c906108c 1762{
4754a64e 1763 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1764 struct value *val;
1765
1766 if (value_lazy (arg))
1767 val = allocate_value_lazy (encl_type);
1768 else
1769 val = allocate_value (encl_type);
df407dfe 1770 val->type = arg->type;
c906108c 1771 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1772 val->location = arg->location;
df407dfe
AC
1773 val->offset = arg->offset;
1774 val->bitpos = arg->bitpos;
1775 val->bitsize = arg->bitsize;
d69fe07e 1776 val->lazy = arg->lazy;
13c3b5f5 1777 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1778 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1779 val->modifiable = arg->modifiable;
d69fe07e 1780 if (!value_lazy (val))
c906108c 1781 {
990a07ab 1782 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1783 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1784
1785 }
4e07d55f 1786 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1787 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1788 set_value_parent (val, arg->parent);
5f5233d4
PA
1789 if (VALUE_LVAL (val) == lval_computed)
1790 {
c8f2448a 1791 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1792
1793 if (funcs->copy_closure)
1794 val->location.computed.closure = funcs->copy_closure (val);
1795 }
c906108c
SS
1796 return val;
1797}
74bcbdf3 1798
4c082a81
SC
1799/* Return a "const" and/or "volatile" qualified version of the value V.
1800 If CNST is true, then the returned value will be qualified with
1801 "const".
1802 if VOLTL is true, then the returned value will be qualified with
1803 "volatile". */
1804
1805struct value *
1806make_cv_value (int cnst, int voltl, struct value *v)
1807{
1808 struct type *val_type = value_type (v);
1809 struct type *enclosing_type = value_enclosing_type (v);
1810 struct value *cv_val = value_copy (v);
1811
1812 deprecated_set_value_type (cv_val,
1813 make_cv_type (cnst, voltl, val_type, NULL));
1814 set_value_enclosing_type (cv_val,
1815 make_cv_type (cnst, voltl, enclosing_type, NULL));
1816
1817 return cv_val;
1818}
1819
c37f7098
KW
1820/* Return a version of ARG that is non-lvalue. */
1821
1822struct value *
1823value_non_lval (struct value *arg)
1824{
1825 if (VALUE_LVAL (arg) != not_lval)
1826 {
1827 struct type *enc_type = value_enclosing_type (arg);
1828 struct value *val = allocate_value (enc_type);
1829
1830 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1831 TYPE_LENGTH (enc_type));
1832 val->type = arg->type;
1833 set_value_embedded_offset (val, value_embedded_offset (arg));
1834 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1835 return val;
1836 }
1837 return arg;
1838}
1839
6c659fc2
SC
1840/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1841
1842void
1843value_force_lval (struct value *v, CORE_ADDR addr)
1844{
1845 gdb_assert (VALUE_LVAL (v) == not_lval);
1846
1847 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1848 v->lval = lval_memory;
1849 v->location.address = addr;
1850}
1851
74bcbdf3 1852void
0e03807e
TT
1853set_value_component_location (struct value *component,
1854 const struct value *whole)
74bcbdf3 1855{
9920b434
BH
1856 struct type *type;
1857
e81e7f5e
SC
1858 gdb_assert (whole->lval != lval_xcallable);
1859
0e03807e 1860 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1861 VALUE_LVAL (component) = lval_internalvar_component;
1862 else
0e03807e 1863 VALUE_LVAL (component) = whole->lval;
5f5233d4 1864
74bcbdf3 1865 component->location = whole->location;
0e03807e 1866 if (whole->lval == lval_computed)
5f5233d4 1867 {
c8f2448a 1868 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1869
1870 if (funcs->copy_closure)
1871 component->location.computed.closure = funcs->copy_closure (whole);
1872 }
9920b434
BH
1873
1874 /* If type has a dynamic resolved location property
1875 update it's value address. */
1876 type = value_type (whole);
1877 if (NULL != TYPE_DATA_LOCATION (type)
1878 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1879 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1880}
1881
c906108c
SS
1882/* Access to the value history. */
1883
1884/* Record a new value in the value history.
eddf0bae 1885 Returns the absolute history index of the entry. */
c906108c
SS
1886
1887int
f23631e4 1888record_latest_value (struct value *val)
c906108c
SS
1889{
1890 int i;
1891
1892 /* We don't want this value to have anything to do with the inferior anymore.
1893 In particular, "set $1 = 50" should not affect the variable from which
1894 the value was taken, and fast watchpoints should be able to assume that
1895 a value on the value history never changes. */
d69fe07e 1896 if (value_lazy (val))
c906108c
SS
1897 value_fetch_lazy (val);
1898 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1899 from. This is a bit dubious, because then *&$1 does not just return $1
1900 but the current contents of that location. c'est la vie... */
1901 val->modifiable = 0;
350e1a76
DE
1902
1903 /* The value may have already been released, in which case we're adding a
1904 new reference for its entry in the history. That is why we call
1905 release_value_or_incref here instead of release_value. */
1906 release_value_or_incref (val);
c906108c
SS
1907
1908 /* Here we treat value_history_count as origin-zero
1909 and applying to the value being stored now. */
1910
1911 i = value_history_count % VALUE_HISTORY_CHUNK;
1912 if (i == 0)
1913 {
8d749320 1914 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1915
fe978cb0
PA
1916 newobj->next = value_history_chain;
1917 value_history_chain = newobj;
c906108c
SS
1918 }
1919
1920 value_history_chain->values[i] = val;
1921
1922 /* Now we regard value_history_count as origin-one
1923 and applying to the value just stored. */
1924
1925 return ++value_history_count;
1926}
1927
1928/* Return a copy of the value in the history with sequence number NUM. */
1929
f23631e4 1930struct value *
fba45db2 1931access_value_history (int num)
c906108c 1932{
f23631e4 1933 struct value_history_chunk *chunk;
52f0bd74
AC
1934 int i;
1935 int absnum = num;
c906108c
SS
1936
1937 if (absnum <= 0)
1938 absnum += value_history_count;
1939
1940 if (absnum <= 0)
1941 {
1942 if (num == 0)
8a3fe4f8 1943 error (_("The history is empty."));
c906108c 1944 else if (num == 1)
8a3fe4f8 1945 error (_("There is only one value in the history."));
c906108c 1946 else
8a3fe4f8 1947 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1948 }
1949 if (absnum > value_history_count)
8a3fe4f8 1950 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1951
1952 absnum--;
1953
1954 /* Now absnum is always absolute and origin zero. */
1955
1956 chunk = value_history_chain;
3e43a32a
MS
1957 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1958 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1959 i > 0; i--)
1960 chunk = chunk->next;
1961
1962 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1963}
1964
c906108c 1965static void
fba45db2 1966show_values (char *num_exp, int from_tty)
c906108c 1967{
52f0bd74 1968 int i;
f23631e4 1969 struct value *val;
c906108c
SS
1970 static int num = 1;
1971
1972 if (num_exp)
1973 {
f132ba9d
TJB
1974 /* "show values +" should print from the stored position.
1975 "show values <exp>" should print around value number <exp>. */
c906108c 1976 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1977 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1978 }
1979 else
1980 {
f132ba9d 1981 /* "show values" means print the last 10 values. */
c906108c
SS
1982 num = value_history_count - 9;
1983 }
1984
1985 if (num <= 0)
1986 num = 1;
1987
1988 for (i = num; i < num + 10 && i <= value_history_count; i++)
1989 {
79a45b7d 1990 struct value_print_options opts;
a109c7c1 1991
c906108c 1992 val = access_value_history (i);
a3f17187 1993 printf_filtered (("$%d = "), i);
79a45b7d
TT
1994 get_user_print_options (&opts);
1995 value_print (val, gdb_stdout, &opts);
a3f17187 1996 printf_filtered (("\n"));
c906108c
SS
1997 }
1998
f132ba9d 1999 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2000 num += 10;
2001
2002 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2003 "show values +". If num_exp is null, this is unnecessary, since
2004 "show values +" is not useful after "show values". */
c906108c 2005 if (from_tty && num_exp)
85c4be7c 2006 set_repeat_arguments ("+");
c906108c
SS
2007}
2008\f
52059ffd
TT
2009enum internalvar_kind
2010{
2011 /* The internal variable is empty. */
2012 INTERNALVAR_VOID,
2013
2014 /* The value of the internal variable is provided directly as
2015 a GDB value object. */
2016 INTERNALVAR_VALUE,
2017
2018 /* A fresh value is computed via a call-back routine on every
2019 access to the internal variable. */
2020 INTERNALVAR_MAKE_VALUE,
2021
2022 /* The internal variable holds a GDB internal convenience function. */
2023 INTERNALVAR_FUNCTION,
2024
2025 /* The variable holds an integer value. */
2026 INTERNALVAR_INTEGER,
2027
2028 /* The variable holds a GDB-provided string. */
2029 INTERNALVAR_STRING,
2030};
2031
2032union internalvar_data
2033{
2034 /* A value object used with INTERNALVAR_VALUE. */
2035 struct value *value;
2036
2037 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2038 struct
2039 {
2040 /* The functions to call. */
2041 const struct internalvar_funcs *functions;
2042
2043 /* The function's user-data. */
2044 void *data;
2045 } make_value;
2046
2047 /* The internal function used with INTERNALVAR_FUNCTION. */
2048 struct
2049 {
2050 struct internal_function *function;
2051 /* True if this is the canonical name for the function. */
2052 int canonical;
2053 } fn;
2054
2055 /* An integer value used with INTERNALVAR_INTEGER. */
2056 struct
2057 {
2058 /* If type is non-NULL, it will be used as the type to generate
2059 a value for this internal variable. If type is NULL, a default
2060 integer type for the architecture is used. */
2061 struct type *type;
2062 LONGEST val;
2063 } integer;
2064
2065 /* A string value used with INTERNALVAR_STRING. */
2066 char *string;
2067};
2068
c906108c
SS
2069/* Internal variables. These are variables within the debugger
2070 that hold values assigned by debugger commands.
2071 The user refers to them with a '$' prefix
2072 that does not appear in the variable names stored internally. */
2073
4fa62494
UW
2074struct internalvar
2075{
2076 struct internalvar *next;
2077 char *name;
4fa62494 2078
78267919
UW
2079 /* We support various different kinds of content of an internal variable.
2080 enum internalvar_kind specifies the kind, and union internalvar_data
2081 provides the data associated with this particular kind. */
2082
52059ffd 2083 enum internalvar_kind kind;
4fa62494 2084
52059ffd 2085 union internalvar_data u;
4fa62494
UW
2086};
2087
c906108c
SS
2088static struct internalvar *internalvars;
2089
3e43a32a
MS
2090/* If the variable does not already exist create it and give it the
2091 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2092static void
2093init_if_undefined_command (char* args, int from_tty)
2094{
2095 struct internalvar* intvar;
2096
2097 /* Parse the expression - this is taken from set_command(). */
4d01a485 2098 expression_up expr = parse_expression (args);
53e5f3cf
AS
2099
2100 /* Validate the expression.
2101 Was the expression an assignment?
2102 Or even an expression at all? */
2103 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2104 error (_("Init-if-undefined requires an assignment expression."));
2105
2106 /* Extract the variable from the parsed expression.
2107 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2108 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2109 error (_("The first parameter to init-if-undefined "
2110 "should be a GDB variable."));
53e5f3cf
AS
2111 intvar = expr->elts[2].internalvar;
2112
2113 /* Only evaluate the expression if the lvalue is void.
2114 This may still fail if the expresssion is invalid. */
78267919 2115 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2116 evaluate_expression (expr.get ());
53e5f3cf
AS
2117}
2118
2119
c906108c
SS
2120/* Look up an internal variable with name NAME. NAME should not
2121 normally include a dollar sign.
2122
2123 If the specified internal variable does not exist,
c4a3d09a 2124 the return value is NULL. */
c906108c
SS
2125
2126struct internalvar *
bc3b79fd 2127lookup_only_internalvar (const char *name)
c906108c 2128{
52f0bd74 2129 struct internalvar *var;
c906108c
SS
2130
2131 for (var = internalvars; var; var = var->next)
5cb316ef 2132 if (strcmp (var->name, name) == 0)
c906108c
SS
2133 return var;
2134
c4a3d09a
MF
2135 return NULL;
2136}
2137
eb3ff9a5
PA
2138/* Complete NAME by comparing it to the names of internal
2139 variables. */
d55637df 2140
eb3ff9a5
PA
2141void
2142complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2143{
d55637df
TT
2144 struct internalvar *var;
2145 int len;
2146
2147 len = strlen (name);
2148
2149 for (var = internalvars; var; var = var->next)
2150 if (strncmp (var->name, name, len) == 0)
2151 {
eb3ff9a5 2152 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2153
eb3ff9a5 2154 tracker.add_completion (std::move (copy));
d55637df 2155 }
d55637df 2156}
c4a3d09a
MF
2157
2158/* Create an internal variable with name NAME and with a void value.
2159 NAME should not normally include a dollar sign. */
2160
2161struct internalvar *
bc3b79fd 2162create_internalvar (const char *name)
c4a3d09a 2163{
8d749320 2164 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2165
1754f103 2166 var->name = concat (name, (char *)NULL);
78267919 2167 var->kind = INTERNALVAR_VOID;
c906108c
SS
2168 var->next = internalvars;
2169 internalvars = var;
2170 return var;
2171}
2172
4aa995e1
PA
2173/* Create an internal variable with name NAME and register FUN as the
2174 function that value_of_internalvar uses to create a value whenever
2175 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2176 dollar sign. DATA is passed uninterpreted to FUN when it is
2177 called. CLEANUP, if not NULL, is called when the internal variable
2178 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2179
2180struct internalvar *
22d2b532
SDJ
2181create_internalvar_type_lazy (const char *name,
2182 const struct internalvar_funcs *funcs,
2183 void *data)
4aa995e1 2184{
4fa62494 2185 struct internalvar *var = create_internalvar (name);
a109c7c1 2186
78267919 2187 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2188 var->u.make_value.functions = funcs;
2189 var->u.make_value.data = data;
4aa995e1
PA
2190 return var;
2191}
c4a3d09a 2192
22d2b532
SDJ
2193/* See documentation in value.h. */
2194
2195int
2196compile_internalvar_to_ax (struct internalvar *var,
2197 struct agent_expr *expr,
2198 struct axs_value *value)
2199{
2200 if (var->kind != INTERNALVAR_MAKE_VALUE
2201 || var->u.make_value.functions->compile_to_ax == NULL)
2202 return 0;
2203
2204 var->u.make_value.functions->compile_to_ax (var, expr, value,
2205 var->u.make_value.data);
2206 return 1;
2207}
2208
c4a3d09a
MF
2209/* Look up an internal variable with name NAME. NAME should not
2210 normally include a dollar sign.
2211
2212 If the specified internal variable does not exist,
2213 one is created, with a void value. */
2214
2215struct internalvar *
bc3b79fd 2216lookup_internalvar (const char *name)
c4a3d09a
MF
2217{
2218 struct internalvar *var;
2219
2220 var = lookup_only_internalvar (name);
2221 if (var)
2222 return var;
2223
2224 return create_internalvar (name);
2225}
2226
78267919
UW
2227/* Return current value of internal variable VAR. For variables that
2228 are not inherently typed, use a value type appropriate for GDBARCH. */
2229
f23631e4 2230struct value *
78267919 2231value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2232{
f23631e4 2233 struct value *val;
0914bcdb
SS
2234 struct trace_state_variable *tsv;
2235
2236 /* If there is a trace state variable of the same name, assume that
2237 is what we really want to see. */
2238 tsv = find_trace_state_variable (var->name);
2239 if (tsv)
2240 {
2241 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2242 &(tsv->value));
2243 if (tsv->value_known)
2244 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2245 tsv->value);
2246 else
2247 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2248 return val;
2249 }
c906108c 2250
78267919 2251 switch (var->kind)
5f5233d4 2252 {
78267919
UW
2253 case INTERNALVAR_VOID:
2254 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2255 break;
4fa62494 2256
78267919
UW
2257 case INTERNALVAR_FUNCTION:
2258 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2259 break;
4fa62494 2260
cab0c772
UW
2261 case INTERNALVAR_INTEGER:
2262 if (!var->u.integer.type)
78267919 2263 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2264 var->u.integer.val);
78267919 2265 else
cab0c772
UW
2266 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2267 break;
2268
78267919
UW
2269 case INTERNALVAR_STRING:
2270 val = value_cstring (var->u.string, strlen (var->u.string),
2271 builtin_type (gdbarch)->builtin_char);
2272 break;
4fa62494 2273
78267919
UW
2274 case INTERNALVAR_VALUE:
2275 val = value_copy (var->u.value);
4aa995e1
PA
2276 if (value_lazy (val))
2277 value_fetch_lazy (val);
78267919 2278 break;
4aa995e1 2279
78267919 2280 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2281 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2282 var->u.make_value.data);
78267919
UW
2283 break;
2284
2285 default:
9b20d036 2286 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2287 }
2288
2289 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2290 on this value go back to affect the original internal variable.
2291
2292 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2293 no underlying modifyable state in the internal variable.
2294
2295 Likewise, if the variable's value is a computed lvalue, we want
2296 references to it to produce another computed lvalue, where
2297 references and assignments actually operate through the
2298 computed value's functions.
2299
2300 This means that internal variables with computed values
2301 behave a little differently from other internal variables:
2302 assignments to them don't just replace the previous value
2303 altogether. At the moment, this seems like the behavior we
2304 want. */
2305
2306 if (var->kind != INTERNALVAR_MAKE_VALUE
2307 && val->lval != lval_computed)
2308 {
2309 VALUE_LVAL (val) = lval_internalvar;
2310 VALUE_INTERNALVAR (val) = var;
5f5233d4 2311 }
d3c139e9 2312
4fa62494
UW
2313 return val;
2314}
d3c139e9 2315
4fa62494
UW
2316int
2317get_internalvar_integer (struct internalvar *var, LONGEST *result)
2318{
3158c6ed 2319 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2320 {
cab0c772
UW
2321 *result = var->u.integer.val;
2322 return 1;
3158c6ed 2323 }
d3c139e9 2324
3158c6ed
PA
2325 if (var->kind == INTERNALVAR_VALUE)
2326 {
2327 struct type *type = check_typedef (value_type (var->u.value));
2328
2329 if (TYPE_CODE (type) == TYPE_CODE_INT)
2330 {
2331 *result = value_as_long (var->u.value);
2332 return 1;
2333 }
4fa62494 2334 }
3158c6ed
PA
2335
2336 return 0;
4fa62494 2337}
d3c139e9 2338
4fa62494
UW
2339static int
2340get_internalvar_function (struct internalvar *var,
2341 struct internal_function **result)
2342{
78267919 2343 switch (var->kind)
d3c139e9 2344 {
78267919
UW
2345 case INTERNALVAR_FUNCTION:
2346 *result = var->u.fn.function;
4fa62494 2347 return 1;
d3c139e9 2348
4fa62494
UW
2349 default:
2350 return 0;
2351 }
c906108c
SS
2352}
2353
2354void
6b850546
DT
2355set_internalvar_component (struct internalvar *var,
2356 LONGEST offset, LONGEST bitpos,
2357 LONGEST bitsize, struct value *newval)
c906108c 2358{
4fa62494 2359 gdb_byte *addr;
3ae385af
SM
2360 struct gdbarch *arch;
2361 int unit_size;
c906108c 2362
78267919 2363 switch (var->kind)
4fa62494 2364 {
78267919
UW
2365 case INTERNALVAR_VALUE:
2366 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2367 arch = get_value_arch (var->u.value);
2368 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2369
2370 if (bitsize)
50810684 2371 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2372 value_as_long (newval), bitpos, bitsize);
2373 else
3ae385af 2374 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2375 TYPE_LENGTH (value_type (newval)));
2376 break;
78267919
UW
2377
2378 default:
2379 /* We can never get a component of any other kind. */
9b20d036 2380 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2381 }
c906108c
SS
2382}
2383
2384void
f23631e4 2385set_internalvar (struct internalvar *var, struct value *val)
c906108c 2386{
78267919 2387 enum internalvar_kind new_kind;
4fa62494 2388 union internalvar_data new_data = { 0 };
c906108c 2389
78267919 2390 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2391 error (_("Cannot overwrite convenience function %s"), var->name);
2392
4fa62494 2393 /* Prepare new contents. */
78267919 2394 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2395 {
2396 case TYPE_CODE_VOID:
78267919 2397 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2398 break;
2399
2400 case TYPE_CODE_INTERNAL_FUNCTION:
2401 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2402 new_kind = INTERNALVAR_FUNCTION;
2403 get_internalvar_function (VALUE_INTERNALVAR (val),
2404 &new_data.fn.function);
2405 /* Copies created here are never canonical. */
4fa62494
UW
2406 break;
2407
4fa62494 2408 default:
78267919
UW
2409 new_kind = INTERNALVAR_VALUE;
2410 new_data.value = value_copy (val);
2411 new_data.value->modifiable = 1;
4fa62494
UW
2412
2413 /* Force the value to be fetched from the target now, to avoid problems
2414 later when this internalvar is referenced and the target is gone or
2415 has changed. */
78267919
UW
2416 if (value_lazy (new_data.value))
2417 value_fetch_lazy (new_data.value);
4fa62494
UW
2418
2419 /* Release the value from the value chain to prevent it from being
2420 deleted by free_all_values. From here on this function should not
2421 call error () until new_data is installed into the var->u to avoid
2422 leaking memory. */
78267919 2423 release_value (new_data.value);
9920b434
BH
2424
2425 /* Internal variables which are created from values with a dynamic
2426 location don't need the location property of the origin anymore.
2427 The resolved dynamic location is used prior then any other address
2428 when accessing the value.
2429 If we keep it, we would still refer to the origin value.
2430 Remove the location property in case it exist. */
2431 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2432
4fa62494
UW
2433 break;
2434 }
2435
2436 /* Clean up old contents. */
2437 clear_internalvar (var);
2438
2439 /* Switch over. */
78267919 2440 var->kind = new_kind;
4fa62494 2441 var->u = new_data;
c906108c
SS
2442 /* End code which must not call error(). */
2443}
2444
4fa62494
UW
2445void
2446set_internalvar_integer (struct internalvar *var, LONGEST l)
2447{
2448 /* Clean up old contents. */
2449 clear_internalvar (var);
2450
cab0c772
UW
2451 var->kind = INTERNALVAR_INTEGER;
2452 var->u.integer.type = NULL;
2453 var->u.integer.val = l;
78267919
UW
2454}
2455
2456void
2457set_internalvar_string (struct internalvar *var, const char *string)
2458{
2459 /* Clean up old contents. */
2460 clear_internalvar (var);
2461
2462 var->kind = INTERNALVAR_STRING;
2463 var->u.string = xstrdup (string);
4fa62494
UW
2464}
2465
2466static void
2467set_internalvar_function (struct internalvar *var, struct internal_function *f)
2468{
2469 /* Clean up old contents. */
2470 clear_internalvar (var);
2471
78267919
UW
2472 var->kind = INTERNALVAR_FUNCTION;
2473 var->u.fn.function = f;
2474 var->u.fn.canonical = 1;
2475 /* Variables installed here are always the canonical version. */
4fa62494
UW
2476}
2477
2478void
2479clear_internalvar (struct internalvar *var)
2480{
2481 /* Clean up old contents. */
78267919 2482 switch (var->kind)
4fa62494 2483 {
78267919
UW
2484 case INTERNALVAR_VALUE:
2485 value_free (var->u.value);
2486 break;
2487
2488 case INTERNALVAR_STRING:
2489 xfree (var->u.string);
4fa62494
UW
2490 break;
2491
22d2b532
SDJ
2492 case INTERNALVAR_MAKE_VALUE:
2493 if (var->u.make_value.functions->destroy != NULL)
2494 var->u.make_value.functions->destroy (var->u.make_value.data);
2495 break;
2496
4fa62494 2497 default:
4fa62494
UW
2498 break;
2499 }
2500
78267919
UW
2501 /* Reset to void kind. */
2502 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2503}
2504
c906108c 2505char *
4bf7b526 2506internalvar_name (const struct internalvar *var)
c906108c
SS
2507{
2508 return var->name;
2509}
2510
4fa62494
UW
2511static struct internal_function *
2512create_internal_function (const char *name,
2513 internal_function_fn handler, void *cookie)
bc3b79fd 2514{
bc3b79fd 2515 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2516
bc3b79fd
TJB
2517 ifn->name = xstrdup (name);
2518 ifn->handler = handler;
2519 ifn->cookie = cookie;
4fa62494 2520 return ifn;
bc3b79fd
TJB
2521}
2522
2523char *
2524value_internal_function_name (struct value *val)
2525{
4fa62494
UW
2526 struct internal_function *ifn;
2527 int result;
2528
2529 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2530 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2531 gdb_assert (result);
2532
bc3b79fd
TJB
2533 return ifn->name;
2534}
2535
2536struct value *
d452c4bc
UW
2537call_internal_function (struct gdbarch *gdbarch,
2538 const struct language_defn *language,
2539 struct value *func, int argc, struct value **argv)
bc3b79fd 2540{
4fa62494
UW
2541 struct internal_function *ifn;
2542 int result;
2543
2544 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2545 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2546 gdb_assert (result);
2547
d452c4bc 2548 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2549}
2550
2551/* The 'function' command. This does nothing -- it is just a
2552 placeholder to let "help function NAME" work. This is also used as
2553 the implementation of the sub-command that is created when
2554 registering an internal function. */
2555static void
981a3fb3 2556function_command (const char *command, int from_tty)
bc3b79fd
TJB
2557{
2558 /* Do nothing. */
2559}
2560
2561/* Clean up if an internal function's command is destroyed. */
2562static void
2563function_destroyer (struct cmd_list_element *self, void *ignore)
2564{
6f937416 2565 xfree ((char *) self->name);
1947513d 2566 xfree ((char *) self->doc);
bc3b79fd
TJB
2567}
2568
2569/* Add a new internal function. NAME is the name of the function; DOC
2570 is a documentation string describing the function. HANDLER is
2571 called when the function is invoked. COOKIE is an arbitrary
2572 pointer which is passed to HANDLER and is intended for "user
2573 data". */
2574void
2575add_internal_function (const char *name, const char *doc,
2576 internal_function_fn handler, void *cookie)
2577{
2578 struct cmd_list_element *cmd;
4fa62494 2579 struct internal_function *ifn;
bc3b79fd 2580 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2581
2582 ifn = create_internal_function (name, handler, cookie);
2583 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2584
2585 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2586 &functionlist);
2587 cmd->destroyer = function_destroyer;
2588}
2589
ae5a43e0
DJ
2590/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2591 prevent cycles / duplicates. */
2592
4e7a5ef5 2593void
ae5a43e0
DJ
2594preserve_one_value (struct value *value, struct objfile *objfile,
2595 htab_t copied_types)
2596{
2597 if (TYPE_OBJFILE (value->type) == objfile)
2598 value->type = copy_type_recursive (objfile, value->type, copied_types);
2599
2600 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2601 value->enclosing_type = copy_type_recursive (objfile,
2602 value->enclosing_type,
2603 copied_types);
2604}
2605
78267919
UW
2606/* Likewise for internal variable VAR. */
2607
2608static void
2609preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2610 htab_t copied_types)
2611{
2612 switch (var->kind)
2613 {
cab0c772
UW
2614 case INTERNALVAR_INTEGER:
2615 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2616 var->u.integer.type
2617 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2618 break;
2619
78267919
UW
2620 case INTERNALVAR_VALUE:
2621 preserve_one_value (var->u.value, objfile, copied_types);
2622 break;
2623 }
2624}
2625
ae5a43e0
DJ
2626/* Update the internal variables and value history when OBJFILE is
2627 discarded; we must copy the types out of the objfile. New global types
2628 will be created for every convenience variable which currently points to
2629 this objfile's types, and the convenience variables will be adjusted to
2630 use the new global types. */
c906108c
SS
2631
2632void
ae5a43e0 2633preserve_values (struct objfile *objfile)
c906108c 2634{
ae5a43e0
DJ
2635 htab_t copied_types;
2636 struct value_history_chunk *cur;
52f0bd74 2637 struct internalvar *var;
ae5a43e0 2638 int i;
c906108c 2639
ae5a43e0
DJ
2640 /* Create the hash table. We allocate on the objfile's obstack, since
2641 it is soon to be deleted. */
2642 copied_types = create_copied_types_hash (objfile);
2643
2644 for (cur = value_history_chain; cur; cur = cur->next)
2645 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2646 if (cur->values[i])
2647 preserve_one_value (cur->values[i], objfile, copied_types);
2648
2649 for (var = internalvars; var; var = var->next)
78267919 2650 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2651
6dddc817 2652 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2653
ae5a43e0 2654 htab_delete (copied_types);
c906108c
SS
2655}
2656
2657static void
ad25e423 2658show_convenience (const char *ignore, int from_tty)
c906108c 2659{
e17c207e 2660 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2661 struct internalvar *var;
c906108c 2662 int varseen = 0;
79a45b7d 2663 struct value_print_options opts;
c906108c 2664
79a45b7d 2665 get_user_print_options (&opts);
c906108c
SS
2666 for (var = internalvars; var; var = var->next)
2667 {
c709acd1 2668
c906108c
SS
2669 if (!varseen)
2670 {
2671 varseen = 1;
2672 }
a3f17187 2673 printf_filtered (("$%s = "), var->name);
c709acd1 2674
492d29ea 2675 TRY
c709acd1
PA
2676 {
2677 struct value *val;
2678
2679 val = value_of_internalvar (gdbarch, var);
2680 value_print (val, gdb_stdout, &opts);
2681 }
492d29ea
PA
2682 CATCH (ex, RETURN_MASK_ERROR)
2683 {
2684 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2685 }
2686 END_CATCH
2687
a3f17187 2688 printf_filtered (("\n"));
c906108c
SS
2689 }
2690 if (!varseen)
f47f77df
DE
2691 {
2692 /* This text does not mention convenience functions on purpose.
2693 The user can't create them except via Python, and if Python support
2694 is installed this message will never be printed ($_streq will
2695 exist). */
2696 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2697 "Convenience variables have "
2698 "names starting with \"$\";\n"
2699 "use \"set\" as in \"set "
2700 "$foo = 5\" to define them.\n"));
2701 }
c906108c
SS
2702}
2703\f
e81e7f5e
SC
2704/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2705
2706struct value *
2707value_of_xmethod (struct xmethod_worker *worker)
2708{
2709 if (worker->value == NULL)
2710 {
2711 struct value *v;
2712
2713 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2714 v->lval = lval_xcallable;
2715 v->location.xm_worker = worker;
2716 v->modifiable = 0;
2717 worker->value = v;
2718 }
2719
2720 return worker->value;
2721}
2722
2ce1cdbf
DE
2723/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2724
2725struct type *
2726result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2727{
2728 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2729 && method->lval == lval_xcallable && argc > 0);
2730
2731 return get_xmethod_result_type (method->location.xm_worker,
2732 argv[0], argv + 1, argc - 1);
2733}
2734
e81e7f5e
SC
2735/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2736
2737struct value *
2738call_xmethod (struct value *method, int argc, struct value **argv)
2739{
2740 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2741 && method->lval == lval_xcallable && argc > 0);
2742
2743 return invoke_xmethod (method->location.xm_worker,
2744 argv[0], argv + 1, argc - 1);
2745}
2746\f
c906108c
SS
2747/* Extract a value as a C number (either long or double).
2748 Knows how to convert fixed values to double, or
2749 floating values to long.
2750 Does not deallocate the value. */
2751
2752LONGEST
f23631e4 2753value_as_long (struct value *val)
c906108c
SS
2754{
2755 /* This coerces arrays and functions, which is necessary (e.g.
2756 in disassemble_command). It also dereferences references, which
2757 I suspect is the most logical thing to do. */
994b9211 2758 val = coerce_array (val);
0fd88904 2759 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2760}
2761
581e13c1 2762/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2763 Note that val's type may not actually be a pointer; value_as_long
2764 handles all the cases. */
c906108c 2765CORE_ADDR
f23631e4 2766value_as_address (struct value *val)
c906108c 2767{
50810684
UW
2768 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2769
c906108c
SS
2770 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2771 whether we want this to be true eventually. */
2772#if 0
bf6ae464 2773 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2774 non-address (e.g. argument to "signal", "info break", etc.), or
2775 for pointers to char, in which the low bits *are* significant. */
50810684 2776 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2777#else
f312f057
JB
2778
2779 /* There are several targets (IA-64, PowerPC, and others) which
2780 don't represent pointers to functions as simply the address of
2781 the function's entry point. For example, on the IA-64, a
2782 function pointer points to a two-word descriptor, generated by
2783 the linker, which contains the function's entry point, and the
2784 value the IA-64 "global pointer" register should have --- to
2785 support position-independent code. The linker generates
2786 descriptors only for those functions whose addresses are taken.
2787
2788 On such targets, it's difficult for GDB to convert an arbitrary
2789 function address into a function pointer; it has to either find
2790 an existing descriptor for that function, or call malloc and
2791 build its own. On some targets, it is impossible for GDB to
2792 build a descriptor at all: the descriptor must contain a jump
2793 instruction; data memory cannot be executed; and code memory
2794 cannot be modified.
2795
2796 Upon entry to this function, if VAL is a value of type `function'
2797 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2798 value_address (val) is the address of the function. This is what
f312f057
JB
2799 you'll get if you evaluate an expression like `main'. The call
2800 to COERCE_ARRAY below actually does all the usual unary
2801 conversions, which includes converting values of type `function'
2802 to `pointer to function'. This is the challenging conversion
2803 discussed above. Then, `unpack_long' will convert that pointer
2804 back into an address.
2805
2806 So, suppose the user types `disassemble foo' on an architecture
2807 with a strange function pointer representation, on which GDB
2808 cannot build its own descriptors, and suppose further that `foo'
2809 has no linker-built descriptor. The address->pointer conversion
2810 will signal an error and prevent the command from running, even
2811 though the next step would have been to convert the pointer
2812 directly back into the same address.
2813
2814 The following shortcut avoids this whole mess. If VAL is a
2815 function, just return its address directly. */
df407dfe
AC
2816 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2817 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2818 return value_address (val);
f312f057 2819
994b9211 2820 val = coerce_array (val);
fc0c74b1
AC
2821
2822 /* Some architectures (e.g. Harvard), map instruction and data
2823 addresses onto a single large unified address space. For
2824 instance: An architecture may consider a large integer in the
2825 range 0x10000000 .. 0x1000ffff to already represent a data
2826 addresses (hence not need a pointer to address conversion) while
2827 a small integer would still need to be converted integer to
2828 pointer to address. Just assume such architectures handle all
2829 integer conversions in a single function. */
2830
2831 /* JimB writes:
2832
2833 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2834 must admonish GDB hackers to make sure its behavior matches the
2835 compiler's, whenever possible.
2836
2837 In general, I think GDB should evaluate expressions the same way
2838 the compiler does. When the user copies an expression out of
2839 their source code and hands it to a `print' command, they should
2840 get the same value the compiler would have computed. Any
2841 deviation from this rule can cause major confusion and annoyance,
2842 and needs to be justified carefully. In other words, GDB doesn't
2843 really have the freedom to do these conversions in clever and
2844 useful ways.
2845
2846 AndrewC pointed out that users aren't complaining about how GDB
2847 casts integers to pointers; they are complaining that they can't
2848 take an address from a disassembly listing and give it to `x/i'.
2849 This is certainly important.
2850
79dd2d24 2851 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2852 makes it possible for GDB to "get it right" in all circumstances
2853 --- the target has complete control over how things get done, so
2854 people can Do The Right Thing for their target without breaking
2855 anyone else. The standard doesn't specify how integers get
2856 converted to pointers; usually, the ABI doesn't either, but
2857 ABI-specific code is a more reasonable place to handle it. */
2858
df407dfe 2859 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2860 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2861 && gdbarch_integer_to_address_p (gdbarch))
2862 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2863 value_contents (val));
fc0c74b1 2864
0fd88904 2865 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2866#endif
2867}
2868\f
2869/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2870 as a long, or as a double, assuming the raw data is described
2871 by type TYPE. Knows how to convert different sizes of values
2872 and can convert between fixed and floating point. We don't assume
2873 any alignment for the raw data. Return value is in host byte order.
2874
2875 If you want functions and arrays to be coerced to pointers, and
2876 references to be dereferenced, call value_as_long() instead.
2877
2878 C++: It is assumed that the front-end has taken care of
2879 all matters concerning pointers to members. A pointer
2880 to member which reaches here is considered to be equivalent
2881 to an INT (or some size). After all, it is only an offset. */
2882
2883LONGEST
fc1a4b47 2884unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2885{
e17a4113 2886 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2887 enum type_code code = TYPE_CODE (type);
2888 int len = TYPE_LENGTH (type);
2889 int nosign = TYPE_UNSIGNED (type);
c906108c 2890
c906108c
SS
2891 switch (code)
2892 {
2893 case TYPE_CODE_TYPEDEF:
2894 return unpack_long (check_typedef (type), valaddr);
2895 case TYPE_CODE_ENUM:
4f2aea11 2896 case TYPE_CODE_FLAGS:
c906108c
SS
2897 case TYPE_CODE_BOOL:
2898 case TYPE_CODE_INT:
2899 case TYPE_CODE_CHAR:
2900 case TYPE_CODE_RANGE:
0d5de010 2901 case TYPE_CODE_MEMBERPTR:
c906108c 2902 if (nosign)
e17a4113 2903 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2904 else
e17a4113 2905 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2906
2907 case TYPE_CODE_FLT:
4ef30785 2908 case TYPE_CODE_DECFLOAT:
50637b26 2909 return target_float_to_longest (valaddr, type);
4ef30785 2910
c906108c
SS
2911 case TYPE_CODE_PTR:
2912 case TYPE_CODE_REF:
aa006118 2913 case TYPE_CODE_RVALUE_REF:
c906108c 2914 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2915 whether we want this to be true eventually. */
4478b372 2916 return extract_typed_address (valaddr, type);
c906108c 2917
c906108c 2918 default:
8a3fe4f8 2919 error (_("Value can't be converted to integer."));
c906108c 2920 }
c5aa993b 2921 return 0; /* Placate lint. */
c906108c
SS
2922}
2923
c906108c
SS
2924/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2925 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2926 We don't assume any alignment for the raw data. Return value is in
2927 host byte order.
2928
2929 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2930 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2931
2932 C++: It is assumed that the front-end has taken care of
2933 all matters concerning pointers to members. A pointer
2934 to member which reaches here is considered to be equivalent
2935 to an INT (or some size). After all, it is only an offset. */
2936
2937CORE_ADDR
fc1a4b47 2938unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2939{
2940 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2941 whether we want this to be true eventually. */
2942 return unpack_long (type, valaddr);
2943}
4478b372 2944
70100014
UW
2945bool
2946is_floating_value (struct value *val)
2947{
2948 struct type *type = check_typedef (value_type (val));
2949
2950 if (is_floating_type (type))
2951 {
2952 if (!target_float_is_valid (value_contents (val), type))
2953 error (_("Invalid floating value found in program."));
2954 return true;
2955 }
2956
2957 return false;
2958}
2959
c906108c 2960\f
1596cb5d 2961/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2962 TYPE. */
c906108c 2963
f23631e4 2964struct value *
fba45db2 2965value_static_field (struct type *type, int fieldno)
c906108c 2966{
948e66d9
DJ
2967 struct value *retval;
2968
1596cb5d 2969 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2970 {
1596cb5d 2971 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2972 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2973 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2974 break;
2975 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2976 {
ff355380 2977 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2978 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2979 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2980
d12307c1 2981 if (sym.symbol == NULL)
c906108c 2982 {
a109c7c1 2983 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2984 reported as non-debuggable symbols. */
3b7344d5
TT
2985 struct bound_minimal_symbol msym
2986 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2987
3b7344d5 2988 if (!msym.minsym)
686d4def 2989 return allocate_optimized_out_value (type);
c906108c 2990 else
c5aa993b 2991 {
52e9fde8 2992 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2993 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2994 }
2995 }
2996 else
d12307c1 2997 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2998 break;
c906108c 2999 }
1596cb5d 3000 default:
f3574227 3001 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3002 }
3003
948e66d9 3004 return retval;
c906108c
SS
3005}
3006
4dfea560
DE
3007/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3008 You have to be careful here, since the size of the data area for the value
3009 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3010 than the old enclosing type, you have to allocate more space for the
3011 data. */
2b127877 3012
4dfea560
DE
3013void
3014set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3015{
5fdf6324
AB
3016 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3017 {
3018 check_type_length_before_alloc (new_encl_type);
3019 val->contents
3020 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3021 }
3e3d7139
JG
3022
3023 val->enclosing_type = new_encl_type;
2b127877
DB
3024}
3025
c906108c
SS
3026/* Given a value ARG1 (offset by OFFSET bytes)
3027 of a struct or union type ARG_TYPE,
3028 extract and return the value of one of its (non-static) fields.
581e13c1 3029 FIELDNO says which field. */
c906108c 3030
f23631e4 3031struct value *
6b850546 3032value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3033 int fieldno, struct type *arg_type)
c906108c 3034{
f23631e4 3035 struct value *v;
52f0bd74 3036 struct type *type;
3ae385af
SM
3037 struct gdbarch *arch = get_value_arch (arg1);
3038 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3039
f168693b 3040 arg_type = check_typedef (arg_type);
c906108c 3041 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3042
3043 /* Call check_typedef on our type to make sure that, if TYPE
3044 is a TYPE_CODE_TYPEDEF, its length is set to the length
3045 of the target type instead of zero. However, we do not
3046 replace the typedef type by the target type, because we want
3047 to keep the typedef in order to be able to print the type
3048 description correctly. */
3049 check_typedef (type);
c906108c 3050
691a26f5 3051 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3052 {
22c05d8a
JK
3053 /* Handle packed fields.
3054
3055 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3056 set. If possible, arrange offset and bitpos so that we can
3057 do a single aligned read of the size of the containing type.
3058 Otherwise, adjust offset to the byte containing the first
3059 bit. Assume that the address, offset, and embedded offset
3060 are sufficiently aligned. */
22c05d8a 3061
6b850546
DT
3062 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3063 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3064
9a0dc9e3
PA
3065 v = allocate_value_lazy (type);
3066 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3067 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3068 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3069 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3070 else
9a0dc9e3
PA
3071 v->bitpos = bitpos % 8;
3072 v->offset = (value_embedded_offset (arg1)
3073 + offset
3074 + (bitpos - v->bitpos) / 8);
3075 set_value_parent (v, arg1);
3076 if (!value_lazy (arg1))
3077 value_fetch_lazy (v);
c906108c
SS
3078 }
3079 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3080 {
3081 /* This field is actually a base subobject, so preserve the
39d37385
PA
3082 entire object's contents for later references to virtual
3083 bases, etc. */
6b850546 3084 LONGEST boffset;
a4e2ee12
DJ
3085
3086 /* Lazy register values with offsets are not supported. */
3087 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3088 value_fetch_lazy (arg1);
3089
9a0dc9e3
PA
3090 /* We special case virtual inheritance here because this
3091 requires access to the contents, which we would rather avoid
3092 for references to ordinary fields of unavailable values. */
3093 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3094 boffset = baseclass_offset (arg_type, fieldno,
3095 value_contents (arg1),
3096 value_embedded_offset (arg1),
3097 value_address (arg1),
3098 arg1);
c906108c 3099 else
9a0dc9e3 3100 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3101
9a0dc9e3
PA
3102 if (value_lazy (arg1))
3103 v = allocate_value_lazy (value_enclosing_type (arg1));
3104 else
3105 {
3106 v = allocate_value (value_enclosing_type (arg1));
3107 value_contents_copy_raw (v, 0, arg1, 0,
3108 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3109 }
9a0dc9e3
PA
3110 v->type = type;
3111 v->offset = value_offset (arg1);
3112 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3113 }
9920b434
BH
3114 else if (NULL != TYPE_DATA_LOCATION (type))
3115 {
3116 /* Field is a dynamic data member. */
3117
3118 gdb_assert (0 == offset);
3119 /* We expect an already resolved data location. */
3120 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3121 /* For dynamic data types defer memory allocation
3122 until we actual access the value. */
3123 v = allocate_value_lazy (type);
3124 }
c906108c
SS
3125 else
3126 {
3127 /* Plain old data member */
3ae385af
SM
3128 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3129 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3130
3131 /* Lazy register values with offsets are not supported. */
3132 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3133 value_fetch_lazy (arg1);
3134
9a0dc9e3 3135 if (value_lazy (arg1))
3e3d7139 3136 v = allocate_value_lazy (type);
c906108c 3137 else
3e3d7139
JG
3138 {
3139 v = allocate_value (type);
39d37385
PA
3140 value_contents_copy_raw (v, value_embedded_offset (v),
3141 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3142 type_length_units (type));
3e3d7139 3143 }
df407dfe 3144 v->offset = (value_offset (arg1) + offset
13c3b5f5 3145 + value_embedded_offset (arg1));
c906108c 3146 }
74bcbdf3 3147 set_value_component_location (v, arg1);
c906108c
SS
3148 return v;
3149}
3150
3151/* Given a value ARG1 of a struct or union type,
3152 extract and return the value of one of its (non-static) fields.
581e13c1 3153 FIELDNO says which field. */
c906108c 3154
f23631e4 3155struct value *
aa1ee363 3156value_field (struct value *arg1, int fieldno)
c906108c 3157{
df407dfe 3158 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3159}
3160
3161/* Return a non-virtual function as a value.
3162 F is the list of member functions which contains the desired method.
0478d61c
FF
3163 J is an index into F which provides the desired method.
3164
3165 We only use the symbol for its address, so be happy with either a
581e13c1 3166 full symbol or a minimal symbol. */
c906108c 3167
f23631e4 3168struct value *
3e43a32a
MS
3169value_fn_field (struct value **arg1p, struct fn_field *f,
3170 int j, struct type *type,
6b850546 3171 LONGEST offset)
c906108c 3172{
f23631e4 3173 struct value *v;
52f0bd74 3174 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3175 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3176 struct symbol *sym;
7c7b6655 3177 struct bound_minimal_symbol msym;
c906108c 3178
d12307c1 3179 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3180 if (sym != NULL)
0478d61c 3181 {
7c7b6655 3182 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3183 }
3184 else
3185 {
3186 gdb_assert (sym == NULL);
7c7b6655
TT
3187 msym = lookup_bound_minimal_symbol (physname);
3188 if (msym.minsym == NULL)
5ae326fa 3189 return NULL;
0478d61c
FF
3190 }
3191
c906108c 3192 v = allocate_value (ftype);
1a088441 3193 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3194 if (sym)
3195 {
42ae5230 3196 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3197 }
3198 else
3199 {
bccdca4a
UW
3200 /* The minimal symbol might point to a function descriptor;
3201 resolve it to the actual code address instead. */
7c7b6655 3202 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3204
42ae5230
TT
3205 set_value_address (v,
3206 gdbarch_convert_from_func_ptr_addr
77e371c0 3207 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3208 }
c906108c
SS
3209
3210 if (arg1p)
c5aa993b 3211 {
df407dfe 3212 if (type != value_type (*arg1p))
c5aa993b
JM
3213 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3214 value_addr (*arg1p)));
3215
070ad9f0 3216 /* Move the `this' pointer according to the offset.
581e13c1 3217 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3218 }
3219
3220 return v;
3221}
3222
c906108c 3223\f
c906108c 3224
4875ffdb
PA
3225/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3226 VALADDR, and store the result in *RESULT.
3227 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3228
4875ffdb
PA
3229 Extracting bits depends on endianness of the machine. Compute the
3230 number of least significant bits to discard. For big endian machines,
3231 we compute the total number of bits in the anonymous object, subtract
3232 off the bit count from the MSB of the object to the MSB of the
3233 bitfield, then the size of the bitfield, which leaves the LSB discard
3234 count. For little endian machines, the discard count is simply the
3235 number of bits from the LSB of the anonymous object to the LSB of the
3236 bitfield.
3237
3238 If the field is signed, we also do sign extension. */
3239
3240static LONGEST
3241unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3242 LONGEST bitpos, LONGEST bitsize)
c906108c 3243{
4ea48cc1 3244 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3245 ULONGEST val;
3246 ULONGEST valmask;
c906108c 3247 int lsbcount;
6b850546
DT
3248 LONGEST bytes_read;
3249 LONGEST read_offset;
c906108c 3250
4a76eae5
DJ
3251 /* Read the minimum number of bytes required; there may not be
3252 enough bytes to read an entire ULONGEST. */
f168693b 3253 field_type = check_typedef (field_type);
4a76eae5
DJ
3254 if (bitsize)
3255 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3256 else
3257 bytes_read = TYPE_LENGTH (field_type);
3258
5467c6c8
PA
3259 read_offset = bitpos / 8;
3260
4875ffdb 3261 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3262 bytes_read, byte_order);
c906108c 3263
581e13c1 3264 /* Extract bits. See comment above. */
c906108c 3265
4ea48cc1 3266 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3267 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3268 else
3269 lsbcount = (bitpos % 8);
3270 val >>= lsbcount;
3271
3272 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3273 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3274
3275 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3276 {
3277 valmask = (((ULONGEST) 1) << bitsize) - 1;
3278 val &= valmask;
3279 if (!TYPE_UNSIGNED (field_type))
3280 {
3281 if (val & (valmask ^ (valmask >> 1)))
3282 {
3283 val |= ~valmask;
3284 }
3285 }
3286 }
5467c6c8 3287
4875ffdb 3288 return val;
5467c6c8
PA
3289}
3290
3291/* Unpack a field FIELDNO of the specified TYPE, from the object at
3292 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3293 ORIGINAL_VALUE, which must not be NULL. See
3294 unpack_value_bits_as_long for more details. */
3295
3296int
3297unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3298 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3299 const struct value *val, LONGEST *result)
3300{
4875ffdb
PA
3301 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3302 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3303 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3304 int bit_offset;
3305
5467c6c8
PA
3306 gdb_assert (val != NULL);
3307
4875ffdb
PA
3308 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3309 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3310 || !value_bits_available (val, bit_offset, bitsize))
3311 return 0;
3312
3313 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3314 bitpos, bitsize);
3315 return 1;
5467c6c8
PA
3316}
3317
3318/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3319 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3320
3321LONGEST
3322unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3323{
4875ffdb
PA
3324 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3325 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3326 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3327
4875ffdb
PA
3328 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3329}
3330
3331/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3332 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3333 the contents in DEST_VAL, zero or sign extending if the type of
3334 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3335 VAL. If the VAL's contents required to extract the bitfield from
3336 are unavailable/optimized out, DEST_VAL is correspondingly
3337 marked unavailable/optimized out. */
3338
bb9d5f81 3339void
4875ffdb 3340unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3341 LONGEST bitpos, LONGEST bitsize,
3342 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3343 const struct value *val)
3344{
3345 enum bfd_endian byte_order;
3346 int src_bit_offset;
3347 int dst_bit_offset;
4875ffdb
PA
3348 struct type *field_type = value_type (dest_val);
3349
4875ffdb 3350 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3351
3352 /* First, unpack and sign extend the bitfield as if it was wholly
3353 valid. Optimized out/unavailable bits are read as zero, but
3354 that's OK, as they'll end up marked below. If the VAL is
3355 wholly-invalid we may have skipped allocating its contents,
3356 though. See allocate_optimized_out_value. */
3357 if (valaddr != NULL)
3358 {
3359 LONGEST num;
3360
3361 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3362 bitpos, bitsize);
3363 store_signed_integer (value_contents_raw (dest_val),
3364 TYPE_LENGTH (field_type), byte_order, num);
3365 }
4875ffdb
PA
3366
3367 /* Now copy the optimized out / unavailability ranges to the right
3368 bits. */
3369 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3370 if (byte_order == BFD_ENDIAN_BIG)
3371 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3372 else
3373 dst_bit_offset = 0;
3374 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3375 val, src_bit_offset, bitsize);
5467c6c8
PA
3376}
3377
3378/* Return a new value with type TYPE, which is FIELDNO field of the
3379 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3380 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3381 from are unavailable/optimized out, the new value is
3382 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3383
3384struct value *
3385value_field_bitfield (struct type *type, int fieldno,
3386 const gdb_byte *valaddr,
6b850546 3387 LONGEST embedded_offset, const struct value *val)
5467c6c8 3388{
4875ffdb
PA
3389 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3390 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3391 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3392
4875ffdb
PA
3393 unpack_value_bitfield (res_val, bitpos, bitsize,
3394 valaddr, embedded_offset, val);
3395
3396 return res_val;
4ea48cc1
DJ
3397}
3398
c906108c
SS
3399/* Modify the value of a bitfield. ADDR points to a block of memory in
3400 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3401 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3402 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3403 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3404 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3405
3406void
50810684 3407modify_field (struct type *type, gdb_byte *addr,
6b850546 3408 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3409{
e17a4113 3410 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3411 ULONGEST oword;
3412 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3413 LONGEST bytesize;
19f220c3
JK
3414
3415 /* Normalize BITPOS. */
3416 addr += bitpos / 8;
3417 bitpos %= 8;
c906108c
SS
3418
3419 /* If a negative fieldval fits in the field in question, chop
3420 off the sign extension bits. */
f4e88c8e
PH
3421 if ((~fieldval & ~(mask >> 1)) == 0)
3422 fieldval &= mask;
c906108c
SS
3423
3424 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3425 if (0 != (fieldval & ~mask))
c906108c
SS
3426 {
3427 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3428 we don't have a sprintf_longest. */
6b850546 3429 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3430
3431 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3432 fieldval &= mask;
c906108c
SS
3433 }
3434
19f220c3
JK
3435 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3436 false valgrind reports. */
3437
3438 bytesize = (bitpos + bitsize + 7) / 8;
3439 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3440
3441 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3442 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3443 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3444
f4e88c8e 3445 oword &= ~(mask << bitpos);
c906108c
SS
3446 oword |= fieldval << bitpos;
3447
19f220c3 3448 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3449}
3450\f
14d06750 3451/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3452
14d06750
DJ
3453void
3454pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3455{
e17a4113 3456 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3457 LONGEST len;
14d06750
DJ
3458
3459 type = check_typedef (type);
c906108c
SS
3460 len = TYPE_LENGTH (type);
3461
14d06750 3462 switch (TYPE_CODE (type))
c906108c 3463 {
c906108c
SS
3464 case TYPE_CODE_INT:
3465 case TYPE_CODE_CHAR:
3466 case TYPE_CODE_ENUM:
4f2aea11 3467 case TYPE_CODE_FLAGS:
c906108c
SS
3468 case TYPE_CODE_BOOL:
3469 case TYPE_CODE_RANGE:
0d5de010 3470 case TYPE_CODE_MEMBERPTR:
e17a4113 3471 store_signed_integer (buf, len, byte_order, num);
c906108c 3472 break;
c5aa993b 3473
c906108c 3474 case TYPE_CODE_REF:
aa006118 3475 case TYPE_CODE_RVALUE_REF:
c906108c 3476 case TYPE_CODE_PTR:
14d06750 3477 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3478 break;
c5aa993b 3479
50637b26
UW
3480 case TYPE_CODE_FLT:
3481 case TYPE_CODE_DECFLOAT:
3482 target_float_from_longest (buf, type, num);
3483 break;
3484
c906108c 3485 default:
14d06750
DJ
3486 error (_("Unexpected type (%d) encountered for integer constant."),
3487 TYPE_CODE (type));
c906108c 3488 }
14d06750
DJ
3489}
3490
3491
595939de
PM
3492/* Pack NUM into BUF using a target format of TYPE. */
3493
70221824 3494static void
595939de
PM
3495pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3496{
6b850546 3497 LONGEST len;
595939de
PM
3498 enum bfd_endian byte_order;
3499
3500 type = check_typedef (type);
3501 len = TYPE_LENGTH (type);
3502 byte_order = gdbarch_byte_order (get_type_arch (type));
3503
3504 switch (TYPE_CODE (type))
3505 {
3506 case TYPE_CODE_INT:
3507 case TYPE_CODE_CHAR:
3508 case TYPE_CODE_ENUM:
3509 case TYPE_CODE_FLAGS:
3510 case TYPE_CODE_BOOL:
3511 case TYPE_CODE_RANGE:
3512 case TYPE_CODE_MEMBERPTR:
3513 store_unsigned_integer (buf, len, byte_order, num);
3514 break;
3515
3516 case TYPE_CODE_REF:
aa006118 3517 case TYPE_CODE_RVALUE_REF:
595939de
PM
3518 case TYPE_CODE_PTR:
3519 store_typed_address (buf, type, (CORE_ADDR) num);
3520 break;
3521
50637b26
UW
3522 case TYPE_CODE_FLT:
3523 case TYPE_CODE_DECFLOAT:
3524 target_float_from_ulongest (buf, type, num);
3525 break;
3526
595939de 3527 default:
3e43a32a
MS
3528 error (_("Unexpected type (%d) encountered "
3529 "for unsigned integer constant."),
595939de
PM
3530 TYPE_CODE (type));
3531 }
3532}
3533
3534
14d06750
DJ
3535/* Convert C numbers into newly allocated values. */
3536
3537struct value *
3538value_from_longest (struct type *type, LONGEST num)
3539{
3540 struct value *val = allocate_value (type);
3541
3542 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3543 return val;
3544}
3545
4478b372 3546
595939de
PM
3547/* Convert C unsigned numbers into newly allocated values. */
3548
3549struct value *
3550value_from_ulongest (struct type *type, ULONGEST num)
3551{
3552 struct value *val = allocate_value (type);
3553
3554 pack_unsigned_long (value_contents_raw (val), type, num);
3555
3556 return val;
3557}
3558
3559
4478b372 3560/* Create a value representing a pointer of type TYPE to the address
cb417230 3561 ADDR. */
80180f79 3562
f23631e4 3563struct value *
4478b372
JB
3564value_from_pointer (struct type *type, CORE_ADDR addr)
3565{
cb417230 3566 struct value *val = allocate_value (type);
a109c7c1 3567
80180f79 3568 store_typed_address (value_contents_raw (val),
cb417230 3569 check_typedef (type), addr);
4478b372
JB
3570 return val;
3571}
3572
3573
012370f6
TT
3574/* Create a value of type TYPE whose contents come from VALADDR, if it
3575 is non-null, and whose memory address (in the inferior) is
3576 ADDRESS. The type of the created value may differ from the passed
3577 type TYPE. Make sure to retrieve values new type after this call.
3578 Note that TYPE is not passed through resolve_dynamic_type; this is
3579 a special API intended for use only by Ada. */
3580
3581struct value *
3582value_from_contents_and_address_unresolved (struct type *type,
3583 const gdb_byte *valaddr,
3584 CORE_ADDR address)
3585{
3586 struct value *v;
3587
3588 if (valaddr == NULL)
3589 v = allocate_value_lazy (type);
3590 else
3591 v = value_from_contents (type, valaddr);
012370f6 3592 VALUE_LVAL (v) = lval_memory;
1a088441 3593 set_value_address (v, address);
012370f6
TT
3594 return v;
3595}
3596
8acb6b92
TT
3597/* Create a value of type TYPE whose contents come from VALADDR, if it
3598 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3599 ADDRESS. The type of the created value may differ from the passed
3600 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3601
3602struct value *
3603value_from_contents_and_address (struct type *type,
3604 const gdb_byte *valaddr,
3605 CORE_ADDR address)
3606{
c3345124 3607 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3608 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3609 struct value *v;
a109c7c1 3610
8acb6b92 3611 if (valaddr == NULL)
80180f79 3612 v = allocate_value_lazy (resolved_type);
8acb6b92 3613 else
80180f79 3614 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3615 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3616 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3617 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3618 VALUE_LVAL (v) = lval_memory;
1a088441 3619 set_value_address (v, address);
8acb6b92
TT
3620 return v;
3621}
3622
8a9b8146
TT
3623/* Create a value of type TYPE holding the contents CONTENTS.
3624 The new value is `not_lval'. */
3625
3626struct value *
3627value_from_contents (struct type *type, const gdb_byte *contents)
3628{
3629 struct value *result;
3630
3631 result = allocate_value (type);
3632 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3633 return result;
3634}
3635
3bd0f5ef
MS
3636/* Extract a value from the history file. Input will be of the form
3637 $digits or $$digits. See block comment above 'write_dollar_variable'
3638 for details. */
3639
3640struct value *
e799154c 3641value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3642{
3643 int index, len;
3644
3645 if (h[0] == '$')
3646 len = 1;
3647 else
3648 return NULL;
3649
3650 if (h[1] == '$')
3651 len = 2;
3652
3653 /* Find length of numeral string. */
3654 for (; isdigit (h[len]); len++)
3655 ;
3656
3657 /* Make sure numeral string is not part of an identifier. */
3658 if (h[len] == '_' || isalpha (h[len]))
3659 return NULL;
3660
3661 /* Now collect the index value. */
3662 if (h[1] == '$')
3663 {
3664 if (len == 2)
3665 {
3666 /* For some bizarre reason, "$$" is equivalent to "$$1",
3667 rather than to "$$0" as it ought to be! */
3668 index = -1;
3669 *endp += len;
3670 }
3671 else
e799154c
TT
3672 {
3673 char *local_end;
3674
3675 index = -strtol (&h[2], &local_end, 10);
3676 *endp = local_end;
3677 }
3bd0f5ef
MS
3678 }
3679 else
3680 {
3681 if (len == 1)
3682 {
3683 /* "$" is equivalent to "$0". */
3684 index = 0;
3685 *endp += len;
3686 }
3687 else
e799154c
TT
3688 {
3689 char *local_end;
3690
3691 index = strtol (&h[1], &local_end, 10);
3692 *endp = local_end;
3693 }
3bd0f5ef
MS
3694 }
3695
3696 return access_value_history (index);
3697}
3698
3fff9862
YQ
3699/* Get the component value (offset by OFFSET bytes) of a struct or
3700 union WHOLE. Component's type is TYPE. */
3701
3702struct value *
3703value_from_component (struct value *whole, struct type *type, LONGEST offset)
3704{
3705 struct value *v;
3706
3707 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3708 v = allocate_value_lazy (type);
3709 else
3710 {
3711 v = allocate_value (type);
3712 value_contents_copy (v, value_embedded_offset (v),
3713 whole, value_embedded_offset (whole) + offset,
3714 type_length_units (type));
3715 }
3716 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3717 set_value_component_location (v, whole);
3fff9862
YQ
3718
3719 return v;
3720}
3721
a471c594
JK
3722struct value *
3723coerce_ref_if_computed (const struct value *arg)
3724{
3725 const struct lval_funcs *funcs;
3726
aa006118 3727 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3728 return NULL;
3729
3730 if (value_lval_const (arg) != lval_computed)
3731 return NULL;
3732
3733 funcs = value_computed_funcs (arg);
3734 if (funcs->coerce_ref == NULL)
3735 return NULL;
3736
3737 return funcs->coerce_ref (arg);
3738}
3739
dfcee124
AG
3740/* Look at value.h for description. */
3741
3742struct value *
3743readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3744 const struct type *original_type,
3745 const struct value *original_value)
dfcee124
AG
3746{
3747 /* Re-adjust type. */
3748 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3749
3750 /* Add embedding info. */
3751 set_value_enclosing_type (value, enc_type);
3752 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3753
3754 /* We may be pointing to an object of some derived type. */
3755 return value_full_object (value, NULL, 0, 0, 0);
3756}
3757
994b9211
AC
3758struct value *
3759coerce_ref (struct value *arg)
3760{
df407dfe 3761 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3762 struct value *retval;
dfcee124 3763 struct type *enc_type;
a109c7c1 3764
a471c594
JK
3765 retval = coerce_ref_if_computed (arg);
3766 if (retval)
3767 return retval;
3768
aa006118 3769 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3770 return arg;
3771
dfcee124
AG
3772 enc_type = check_typedef (value_enclosing_type (arg));
3773 enc_type = TYPE_TARGET_TYPE (enc_type);
3774
3775 retval = value_at_lazy (enc_type,
3776 unpack_pointer (value_type (arg),
3777 value_contents (arg)));
9f1f738a 3778 enc_type = value_type (retval);
dfcee124
AG
3779 return readjust_indirect_value_type (retval, enc_type,
3780 value_type_arg_tmp, arg);
994b9211
AC
3781}
3782
3783struct value *
3784coerce_array (struct value *arg)
3785{
f3134b88
TT
3786 struct type *type;
3787
994b9211 3788 arg = coerce_ref (arg);
f3134b88
TT
3789 type = check_typedef (value_type (arg));
3790
3791 switch (TYPE_CODE (type))
3792 {
3793 case TYPE_CODE_ARRAY:
7346b668 3794 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3795 arg = value_coerce_array (arg);
3796 break;
3797 case TYPE_CODE_FUNC:
3798 arg = value_coerce_function (arg);
3799 break;
3800 }
994b9211
AC
3801 return arg;
3802}
c906108c 3803\f
c906108c 3804
bbfdfe1c
DM
3805/* Return the return value convention that will be used for the
3806 specified type. */
3807
3808enum return_value_convention
3809struct_return_convention (struct gdbarch *gdbarch,
3810 struct value *function, struct type *value_type)
3811{
3812 enum type_code code = TYPE_CODE (value_type);
3813
3814 if (code == TYPE_CODE_ERROR)
3815 error (_("Function return type unknown."));
3816
3817 /* Probe the architecture for the return-value convention. */
3818 return gdbarch_return_value (gdbarch, function, value_type,
3819 NULL, NULL, NULL);
3820}
3821
48436ce6
AC
3822/* Return true if the function returning the specified type is using
3823 the convention of returning structures in memory (passing in the
82585c72 3824 address as a hidden first parameter). */
c906108c
SS
3825
3826int
d80b854b 3827using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3828 struct value *function, struct type *value_type)
c906108c 3829{
bbfdfe1c 3830 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3831 /* A void return value is never in memory. See also corresponding
44e5158b 3832 code in "print_return_value". */
667e784f
AC
3833 return 0;
3834
bbfdfe1c 3835 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3836 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3837}
3838
42be36b3
CT
3839/* Set the initialized field in a value struct. */
3840
3841void
3842set_value_initialized (struct value *val, int status)
3843{
3844 val->initialized = status;
3845}
3846
3847/* Return the initialized field in a value struct. */
3848
3849int
4bf7b526 3850value_initialized (const struct value *val)
42be36b3
CT
3851{
3852 return val->initialized;
3853}
3854
a844296a
SM
3855/* Load the actual content of a lazy value. Fetch the data from the
3856 user's process and clear the lazy flag to indicate that the data in
3857 the buffer is valid.
a58e2656
AB
3858
3859 If the value is zero-length, we avoid calling read_memory, which
3860 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3861 it. */
a58e2656 3862
a844296a 3863void
a58e2656
AB
3864value_fetch_lazy (struct value *val)
3865{
3866 gdb_assert (value_lazy (val));
3867 allocate_value_contents (val);
9a0dc9e3
PA
3868 /* A value is either lazy, or fully fetched. The
3869 availability/validity is only established as we try to fetch a
3870 value. */
3871 gdb_assert (VEC_empty (range_s, val->optimized_out));
3872 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3873 if (value_bitsize (val))
3874 {
3875 /* To read a lazy bitfield, read the entire enclosing value. This
3876 prevents reading the same block of (possibly volatile) memory once
3877 per bitfield. It would be even better to read only the containing
3878 word, but we have no way to record that just specific bits of a
3879 value have been fetched. */
3880 struct type *type = check_typedef (value_type (val));
a58e2656 3881 struct value *parent = value_parent (val);
a58e2656 3882
b0c54aa5
AB
3883 if (value_lazy (parent))
3884 value_fetch_lazy (parent);
3885
4875ffdb
PA
3886 unpack_value_bitfield (val,
3887 value_bitpos (val), value_bitsize (val),
3888 value_contents_for_printing (parent),
3889 value_offset (val), parent);
a58e2656
AB
3890 }
3891 else if (VALUE_LVAL (val) == lval_memory)
3892 {
3893 CORE_ADDR addr = value_address (val);
3894 struct type *type = check_typedef (value_enclosing_type (val));
3895
3896 if (TYPE_LENGTH (type))
3897 read_value_memory (val, 0, value_stack (val),
3898 addr, value_contents_all_raw (val),
3ae385af 3899 type_length_units (type));
a58e2656
AB
3900 }
3901 else if (VALUE_LVAL (val) == lval_register)
3902 {
41b56feb 3903 struct frame_info *next_frame;
a58e2656
AB
3904 int regnum;
3905 struct type *type = check_typedef (value_type (val));
3906 struct value *new_val = val, *mark = value_mark ();
3907
3908 /* Offsets are not supported here; lazy register values must
3909 refer to the entire register. */
3910 gdb_assert (value_offset (val) == 0);
3911
3912 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3913 {
41b56feb 3914 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3915
41b56feb 3916 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3917 regnum = VALUE_REGNUM (new_val);
3918
41b56feb 3919 gdb_assert (next_frame != NULL);
a58e2656
AB
3920
3921 /* Convertible register routines are used for multi-register
3922 values and for interpretation in different types
3923 (e.g. float or int from a double register). Lazy
3924 register values should have the register's natural type,
3925 so they do not apply. */
41b56feb 3926 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3927 regnum, type));
3928
41b56feb
KB
3929 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3930 Since a "->next" operation was performed when setting
3931 this field, we do not need to perform a "next" operation
3932 again when unwinding the register. That's why
3933 frame_unwind_register_value() is called here instead of
3934 get_frame_register_value(). */
3935 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3936
3937 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3938 register is found by reading it from NEXT_FRAME's next frame.
3939 frame_unwind_register_value should never return a value with
3940 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3941 either have two consecutive frames with the same frame id
3942 in the frame chain, or some code is trying to unwind
3943 behind get_prev_frame's back (e.g., a frame unwind
3944 sniffer trying to unwind), bypassing its validations. In
3945 any case, it should always be an internal error to end up
3946 in this situation. */
3947 if (VALUE_LVAL (new_val) == lval_register
3948 && value_lazy (new_val)
41b56feb 3949 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3950 internal_error (__FILE__, __LINE__,
3951 _("infinite loop while fetching a register"));
a58e2656
AB
3952 }
3953
3954 /* If it's still lazy (for instance, a saved register on the
3955 stack), fetch it. */
3956 if (value_lazy (new_val))
3957 value_fetch_lazy (new_val);
3958
9a0dc9e3
PA
3959 /* Copy the contents and the unavailability/optimized-out
3960 meta-data from NEW_VAL to VAL. */
3961 set_value_lazy (val, 0);
3962 value_contents_copy (val, value_embedded_offset (val),
3963 new_val, value_embedded_offset (new_val),
3ae385af 3964 type_length_units (type));
a58e2656
AB
3965
3966 if (frame_debug)
3967 {
3968 struct gdbarch *gdbarch;
41b56feb
KB
3969 struct frame_info *frame;
3970 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3971 so that the frame level will be shown correctly. */
a58e2656
AB
3972 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3973 regnum = VALUE_REGNUM (val);
3974 gdbarch = get_frame_arch (frame);
3975
3976 fprintf_unfiltered (gdb_stdlog,
3977 "{ value_fetch_lazy "
3978 "(frame=%d,regnum=%d(%s),...) ",
3979 frame_relative_level (frame), regnum,
3980 user_reg_map_regnum_to_name (gdbarch, regnum));
3981
3982 fprintf_unfiltered (gdb_stdlog, "->");
3983 if (value_optimized_out (new_val))
f6c01fc5
AB
3984 {
3985 fprintf_unfiltered (gdb_stdlog, " ");
3986 val_print_optimized_out (new_val, gdb_stdlog);
3987 }
a58e2656
AB
3988 else
3989 {
3990 int i;
3991 const gdb_byte *buf = value_contents (new_val);
3992
3993 if (VALUE_LVAL (new_val) == lval_register)
3994 fprintf_unfiltered (gdb_stdlog, " register=%d",
3995 VALUE_REGNUM (new_val));
3996 else if (VALUE_LVAL (new_val) == lval_memory)
3997 fprintf_unfiltered (gdb_stdlog, " address=%s",
3998 paddress (gdbarch,
3999 value_address (new_val)));
4000 else
4001 fprintf_unfiltered (gdb_stdlog, " computed");
4002
4003 fprintf_unfiltered (gdb_stdlog, " bytes=");
4004 fprintf_unfiltered (gdb_stdlog, "[");
4005 for (i = 0; i < register_size (gdbarch, regnum); i++)
4006 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4007 fprintf_unfiltered (gdb_stdlog, "]");
4008 }
4009
4010 fprintf_unfiltered (gdb_stdlog, " }\n");
4011 }
4012
4013 /* Dispose of the intermediate values. This prevents
4014 watchpoints from trying to watch the saved frame pointer. */
4015 value_free_to_mark (mark);
4016 }
4017 else if (VALUE_LVAL (val) == lval_computed
4018 && value_computed_funcs (val)->read != NULL)
4019 value_computed_funcs (val)->read (val);
a58e2656
AB
4020 else
4021 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4022
4023 set_value_lazy (val, 0);
a58e2656
AB
4024}
4025
a280dbd1
SDJ
4026/* Implementation of the convenience function $_isvoid. */
4027
4028static struct value *
4029isvoid_internal_fn (struct gdbarch *gdbarch,
4030 const struct language_defn *language,
4031 void *cookie, int argc, struct value **argv)
4032{
4033 int ret;
4034
4035 if (argc != 1)
6bc305f5 4036 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4037
4038 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4039
4040 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4041}
4042
c906108c 4043void
fba45db2 4044_initialize_values (void)
c906108c 4045{
1a966eab 4046 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4047Debugger convenience (\"$foo\") variables and functions.\n\
4048Convenience variables are created when you assign them values;\n\
4049thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4050\n\
c906108c
SS
4051A few convenience variables are given values automatically:\n\
4052\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4053\"$__\" holds the contents of the last address examined with \"x\"."
4054#ifdef HAVE_PYTHON
4055"\n\n\
4056Convenience functions are defined via the Python API."
4057#endif
4058 ), &showlist);
7e20dfcd 4059 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4060
db5f229b 4061 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4062Elements of value history around item number IDX (or last ten)."),
c906108c 4063 &showlist);
53e5f3cf
AS
4064
4065 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4066Initialize a convenience variable if necessary.\n\
4067init-if-undefined VARIABLE = EXPRESSION\n\
4068Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4069exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4070VARIABLE is already initialized."));
bc3b79fd
TJB
4071
4072 add_prefix_cmd ("function", no_class, function_command, _("\
4073Placeholder command for showing help on convenience functions."),
4074 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4075
4076 add_internal_function ("_isvoid", _("\
4077Check whether an expression is void.\n\
4078Usage: $_isvoid (expression)\n\
4079Return 1 if the expression is void, zero otherwise."),
4080 isvoid_internal_fn, NULL);
5fdf6324
AB
4081
4082 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4083 class_support, &max_value_size, _("\
4084Set maximum sized value gdb will load from the inferior."), _("\
4085Show maximum sized value gdb will load from the inferior."), _("\
4086Use this to control the maximum size, in bytes, of a value that gdb\n\
4087will load from the inferior. Setting this value to 'unlimited'\n\
4088disables checking.\n\
4089Setting this does not invalidate already allocated values, it only\n\
4090prevents future values, larger than this size, from being allocated."),
4091 set_max_value_size,
4092 show_max_value_size,
4093 &setlist, &showlist);
c906108c 4094}
This page took 2.706574 seconds and 4 git commands to generate.