gdb/
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
a109c7c1 307
3e3d7139
JG
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311}
312
c906108c 313/* Allocate a value that has the correct length
938f5214 314 for COUNT repetitions of type TYPE. */
c906108c 315
f23631e4 316struct value *
fba45db2 317allocate_repeat_value (struct type *type, int count)
c906108c 318{
c5aa993b 319 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
e3506a9f
UW
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 324
e3506a9f 325 return allocate_value (array_type);
c906108c
SS
326}
327
5f5233d4
PA
328struct value *
329allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332{
333 struct value *v = allocate_value (type);
a109c7c1 334
5f5233d4
PA
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341}
342
df407dfe
AC
343/* Accessor methods. */
344
17cf0ecd
AC
345struct value *
346value_next (struct value *value)
347{
348 return value->next;
349}
350
df407dfe 351struct type *
0e03807e 352value_type (const struct value *value)
df407dfe
AC
353{
354 return value->type;
355}
04624583
AC
356void
357deprecated_set_value_type (struct value *value, struct type *type)
358{
359 value->type = type;
360}
df407dfe
AC
361
362int
0e03807e 363value_offset (const struct value *value)
df407dfe
AC
364{
365 return value->offset;
366}
f5cf64a7
AC
367void
368set_value_offset (struct value *value, int offset)
369{
370 value->offset = offset;
371}
df407dfe
AC
372
373int
0e03807e 374value_bitpos (const struct value *value)
df407dfe
AC
375{
376 return value->bitpos;
377}
9bbda503
AC
378void
379set_value_bitpos (struct value *value, int bit)
380{
381 value->bitpos = bit;
382}
df407dfe
AC
383
384int
0e03807e 385value_bitsize (const struct value *value)
df407dfe
AC
386{
387 return value->bitsize;
388}
9bbda503
AC
389void
390set_value_bitsize (struct value *value, int bit)
391{
392 value->bitsize = bit;
393}
df407dfe 394
4ea48cc1
DJ
395struct value *
396value_parent (struct value *value)
397{
398 return value->parent;
399}
400
fc1a4b47 401gdb_byte *
990a07ab
AC
402value_contents_raw (struct value *value)
403{
3e3d7139
JG
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
990a07ab
AC
406}
407
fc1a4b47 408gdb_byte *
990a07ab
AC
409value_contents_all_raw (struct value *value)
410{
3e3d7139
JG
411 allocate_value_contents (value);
412 return value->contents;
990a07ab
AC
413}
414
4754a64e
AC
415struct type *
416value_enclosing_type (struct value *value)
417{
418 return value->enclosing_type;
419}
420
0e03807e
TT
421static void
422require_not_optimized_out (struct value *value)
423{
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426}
427
fc1a4b47 428const gdb_byte *
0e03807e 429value_contents_for_printing (struct value *value)
46615f07
AC
430{
431 if (value->lazy)
432 value_fetch_lazy (value);
3e3d7139 433 return value->contents;
46615f07
AC
434}
435
0e03807e
TT
436const gdb_byte *
437value_contents_all (struct value *value)
438{
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442}
443
d69fe07e
AC
444int
445value_lazy (struct value *value)
446{
447 return value->lazy;
448}
449
dfa52d88
AC
450void
451set_value_lazy (struct value *value, int val)
452{
453 value->lazy = val;
454}
455
4e5d721f
DE
456int
457value_stack (struct value *value)
458{
459 return value->stack;
460}
461
462void
463set_value_stack (struct value *value, int val)
464{
465 value->stack = val;
466}
467
fc1a4b47 468const gdb_byte *
0fd88904
AC
469value_contents (struct value *value)
470{
0e03807e
TT
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
0fd88904
AC
474}
475
fc1a4b47 476gdb_byte *
0fd88904
AC
477value_contents_writeable (struct value *value)
478{
479 if (value->lazy)
480 value_fetch_lazy (value);
fc0c53a0 481 return value_contents_raw (value);
0fd88904
AC
482}
483
a6c442d8
MK
484/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488int
489value_contents_equal (struct value *val1, struct value *val2)
490{
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502}
503
feb13ab0
AC
504int
505value_optimized_out (struct value *value)
506{
507 return value->optimized_out;
508}
509
510void
511set_value_optimized_out (struct value *value, int val)
512{
513 value->optimized_out = val;
514}
13c3b5f5 515
0e03807e
TT
516int
517value_entirely_optimized_out (const struct value *value)
518{
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
b65c7efe 524 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
525}
526
527int
528value_bits_valid (const struct value *value, int offset, int length)
529{
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537}
538
13c3b5f5
AC
539int
540value_embedded_offset (struct value *value)
541{
542 return value->embedded_offset;
543}
544
545void
546set_value_embedded_offset (struct value *value, int val)
547{
548 value->embedded_offset = val;
549}
b44d461b
AC
550
551int
552value_pointed_to_offset (struct value *value)
553{
554 return value->pointed_to_offset;
555}
556
557void
558set_value_pointed_to_offset (struct value *value, int val)
559{
560 value->pointed_to_offset = val;
561}
13bb5560 562
5f5233d4
PA
563struct lval_funcs *
564value_computed_funcs (struct value *v)
565{
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569}
570
571void *
0e03807e 572value_computed_closure (const struct value *v)
5f5233d4 573{
0e03807e 574 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
575
576 return v->location.computed.closure;
577}
578
13bb5560
AC
579enum lval_type *
580deprecated_value_lval_hack (struct value *value)
581{
582 return &value->lval;
583}
584
42ae5230
TT
585CORE_ADDR
586value_address (struct value *value)
587{
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592}
593
594CORE_ADDR
595value_raw_address (struct value *value)
596{
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601}
602
603void
604set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 605{
42ae5230
TT
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
13bb5560
AC
609}
610
611struct internalvar **
612deprecated_value_internalvar_hack (struct value *value)
613{
614 return &value->location.internalvar;
615}
616
617struct frame_id *
618deprecated_value_frame_id_hack (struct value *value)
619{
620 return &value->frame_id;
621}
622
623short *
624deprecated_value_regnum_hack (struct value *value)
625{
626 return &value->regnum;
627}
88e3b34b
AC
628
629int
630deprecated_value_modifiable (struct value *value)
631{
632 return value->modifiable;
633}
634void
635deprecated_set_value_modifiable (struct value *value, int modifiable)
636{
637 value->modifiable = modifiable;
638}
990a07ab 639\f
c906108c
SS
640/* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 643struct value *
fba45db2 644value_mark (void)
c906108c
SS
645{
646 return all_values;
647}
648
828d3400
DJ
649/* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652void
653value_incref (struct value *val)
654{
655 val->reference_count++;
656}
657
658/* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
3e3d7139
JG
662void
663value_free (struct value *val)
664{
665 if (val)
5f5233d4 666 {
828d3400
DJ
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
4ea48cc1
DJ
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
5f5233d4
PA
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
3e3d7139
JG
687 xfree (val);
688}
689
c906108c
SS
690/* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692void
f23631e4 693value_free_to_mark (struct value *mark)
c906108c 694{
f23631e4
AC
695 struct value *val;
696 struct value *next;
c906108c
SS
697
698 for (val = all_values; val && val != mark; val = next)
699 {
df407dfe 700 next = val->next;
c906108c
SS
701 value_free (val);
702 }
703 all_values = val;
704}
705
706/* Free all the values that have been allocated (except for those released).
725e88af
DE
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
c906108c
SS
709
710void
fba45db2 711free_all_values (void)
c906108c 712{
f23631e4
AC
713 struct value *val;
714 struct value *next;
c906108c
SS
715
716 for (val = all_values; val; val = next)
717 {
df407dfe 718 next = val->next;
c906108c
SS
719 value_free (val);
720 }
721
722 all_values = 0;
723}
724
0cf6dd15
TJB
725/* Frees all the elements in a chain of values. */
726
727void
728free_value_chain (struct value *v)
729{
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737}
738
c906108c
SS
739/* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742void
f23631e4 743release_value (struct value *val)
c906108c 744{
f23631e4 745 struct value *v;
c906108c
SS
746
747 if (all_values == val)
748 {
749 all_values = val->next;
06a64a0b 750 val->next = NULL;
c906108c
SS
751 return;
752 }
753
754 for (v = all_values; v; v = v->next)
755 {
756 if (v->next == val)
757 {
758 v->next = val->next;
06a64a0b 759 val->next = NULL;
c906108c
SS
760 break;
761 }
762 }
763}
764
765/* Release all values up to mark */
f23631e4
AC
766struct value *
767value_release_to_mark (struct value *mark)
c906108c 768{
f23631e4
AC
769 struct value *val;
770 struct value *next;
c906108c 771
df407dfe
AC
772 for (val = next = all_values; next; next = next->next)
773 if (next->next == mark)
c906108c 774 {
df407dfe
AC
775 all_values = next->next;
776 next->next = NULL;
c906108c
SS
777 return val;
778 }
779 all_values = 0;
780 return val;
781}
782
783/* Return a copy of the value ARG.
784 It contains the same contents, for same memory address,
785 but it's a different block of storage. */
786
f23631e4
AC
787struct value *
788value_copy (struct value *arg)
c906108c 789{
4754a64e 790 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
791 struct value *val;
792
793 if (value_lazy (arg))
794 val = allocate_value_lazy (encl_type);
795 else
796 val = allocate_value (encl_type);
df407dfe 797 val->type = arg->type;
c906108c 798 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 799 val->location = arg->location;
df407dfe
AC
800 val->offset = arg->offset;
801 val->bitpos = arg->bitpos;
802 val->bitsize = arg->bitsize;
1df6926e 803 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 804 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 805 val->lazy = arg->lazy;
feb13ab0 806 val->optimized_out = arg->optimized_out;
13c3b5f5 807 val->embedded_offset = value_embedded_offset (arg);
b44d461b 808 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 809 val->modifiable = arg->modifiable;
d69fe07e 810 if (!value_lazy (val))
c906108c 811 {
990a07ab 812 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 813 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
814
815 }
4ea48cc1
DJ
816 val->parent = arg->parent;
817 if (val->parent)
818 value_incref (val->parent);
5f5233d4
PA
819 if (VALUE_LVAL (val) == lval_computed)
820 {
821 struct lval_funcs *funcs = val->location.computed.funcs;
822
823 if (funcs->copy_closure)
824 val->location.computed.closure = funcs->copy_closure (val);
825 }
c906108c
SS
826 return val;
827}
74bcbdf3 828
c37f7098
KW
829/* Return a version of ARG that is non-lvalue. */
830
831struct value *
832value_non_lval (struct value *arg)
833{
834 if (VALUE_LVAL (arg) != not_lval)
835 {
836 struct type *enc_type = value_enclosing_type (arg);
837 struct value *val = allocate_value (enc_type);
838
839 memcpy (value_contents_all_raw (val), value_contents_all (arg),
840 TYPE_LENGTH (enc_type));
841 val->type = arg->type;
842 set_value_embedded_offset (val, value_embedded_offset (arg));
843 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
844 return val;
845 }
846 return arg;
847}
848
74bcbdf3 849void
0e03807e
TT
850set_value_component_location (struct value *component,
851 const struct value *whole)
74bcbdf3 852{
0e03807e 853 if (whole->lval == lval_internalvar)
74bcbdf3
PA
854 VALUE_LVAL (component) = lval_internalvar_component;
855 else
0e03807e 856 VALUE_LVAL (component) = whole->lval;
5f5233d4 857
74bcbdf3 858 component->location = whole->location;
0e03807e 859 if (whole->lval == lval_computed)
5f5233d4
PA
860 {
861 struct lval_funcs *funcs = whole->location.computed.funcs;
862
863 if (funcs->copy_closure)
864 component->location.computed.closure = funcs->copy_closure (whole);
865 }
74bcbdf3
PA
866}
867
c906108c
SS
868\f
869/* Access to the value history. */
870
871/* Record a new value in the value history.
872 Returns the absolute history index of the entry.
873 Result of -1 indicates the value was not saved; otherwise it is the
874 value history index of this new item. */
875
876int
f23631e4 877record_latest_value (struct value *val)
c906108c
SS
878{
879 int i;
880
881 /* We don't want this value to have anything to do with the inferior anymore.
882 In particular, "set $1 = 50" should not affect the variable from which
883 the value was taken, and fast watchpoints should be able to assume that
884 a value on the value history never changes. */
d69fe07e 885 if (value_lazy (val))
c906108c
SS
886 value_fetch_lazy (val);
887 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
888 from. This is a bit dubious, because then *&$1 does not just return $1
889 but the current contents of that location. c'est la vie... */
890 val->modifiable = 0;
891 release_value (val);
892
893 /* Here we treat value_history_count as origin-zero
894 and applying to the value being stored now. */
895
896 i = value_history_count % VALUE_HISTORY_CHUNK;
897 if (i == 0)
898 {
f23631e4 899 struct value_history_chunk *new
a109c7c1
MS
900 = (struct value_history_chunk *)
901
c5aa993b 902 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
903 memset (new->values, 0, sizeof new->values);
904 new->next = value_history_chain;
905 value_history_chain = new;
906 }
907
908 value_history_chain->values[i] = val;
909
910 /* Now we regard value_history_count as origin-one
911 and applying to the value just stored. */
912
913 return ++value_history_count;
914}
915
916/* Return a copy of the value in the history with sequence number NUM. */
917
f23631e4 918struct value *
fba45db2 919access_value_history (int num)
c906108c 920{
f23631e4 921 struct value_history_chunk *chunk;
52f0bd74
AC
922 int i;
923 int absnum = num;
c906108c
SS
924
925 if (absnum <= 0)
926 absnum += value_history_count;
927
928 if (absnum <= 0)
929 {
930 if (num == 0)
8a3fe4f8 931 error (_("The history is empty."));
c906108c 932 else if (num == 1)
8a3fe4f8 933 error (_("There is only one value in the history."));
c906108c 934 else
8a3fe4f8 935 error (_("History does not go back to $$%d."), -num);
c906108c
SS
936 }
937 if (absnum > value_history_count)
8a3fe4f8 938 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
939
940 absnum--;
941
942 /* Now absnum is always absolute and origin zero. */
943
944 chunk = value_history_chain;
945 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
946 i > 0; i--)
947 chunk = chunk->next;
948
949 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
950}
951
c906108c 952static void
fba45db2 953show_values (char *num_exp, int from_tty)
c906108c 954{
52f0bd74 955 int i;
f23631e4 956 struct value *val;
c906108c
SS
957 static int num = 1;
958
959 if (num_exp)
960 {
f132ba9d
TJB
961 /* "show values +" should print from the stored position.
962 "show values <exp>" should print around value number <exp>. */
c906108c 963 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 964 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
965 }
966 else
967 {
f132ba9d 968 /* "show values" means print the last 10 values. */
c906108c
SS
969 num = value_history_count - 9;
970 }
971
972 if (num <= 0)
973 num = 1;
974
975 for (i = num; i < num + 10 && i <= value_history_count; i++)
976 {
79a45b7d 977 struct value_print_options opts;
a109c7c1 978
c906108c 979 val = access_value_history (i);
a3f17187 980 printf_filtered (("$%d = "), i);
79a45b7d
TT
981 get_user_print_options (&opts);
982 value_print (val, gdb_stdout, &opts);
a3f17187 983 printf_filtered (("\n"));
c906108c
SS
984 }
985
f132ba9d 986 /* The next "show values +" should start after what we just printed. */
c906108c
SS
987 num += 10;
988
989 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
990 "show values +". If num_exp is null, this is unnecessary, since
991 "show values +" is not useful after "show values". */
c906108c
SS
992 if (from_tty && num_exp)
993 {
994 num_exp[0] = '+';
995 num_exp[1] = '\0';
996 }
997}
998\f
999/* Internal variables. These are variables within the debugger
1000 that hold values assigned by debugger commands.
1001 The user refers to them with a '$' prefix
1002 that does not appear in the variable names stored internally. */
1003
4fa62494
UW
1004struct internalvar
1005{
1006 struct internalvar *next;
1007 char *name;
4fa62494 1008
78267919
UW
1009 /* We support various different kinds of content of an internal variable.
1010 enum internalvar_kind specifies the kind, and union internalvar_data
1011 provides the data associated with this particular kind. */
1012
1013 enum internalvar_kind
1014 {
1015 /* The internal variable is empty. */
1016 INTERNALVAR_VOID,
1017
1018 /* The value of the internal variable is provided directly as
1019 a GDB value object. */
1020 INTERNALVAR_VALUE,
1021
1022 /* A fresh value is computed via a call-back routine on every
1023 access to the internal variable. */
1024 INTERNALVAR_MAKE_VALUE,
4fa62494 1025
78267919
UW
1026 /* The internal variable holds a GDB internal convenience function. */
1027 INTERNALVAR_FUNCTION,
1028
cab0c772
UW
1029 /* The variable holds an integer value. */
1030 INTERNALVAR_INTEGER,
1031
1032 /* The variable holds a pointer value. */
1033 INTERNALVAR_POINTER,
78267919
UW
1034
1035 /* The variable holds a GDB-provided string. */
1036 INTERNALVAR_STRING,
1037
1038 } kind;
4fa62494 1039
4fa62494
UW
1040 union internalvar_data
1041 {
78267919
UW
1042 /* A value object used with INTERNALVAR_VALUE. */
1043 struct value *value;
1044
1045 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1046 internalvar_make_value make_value;
1047
1048 /* The internal function used with INTERNALVAR_FUNCTION. */
1049 struct
1050 {
1051 struct internal_function *function;
1052 /* True if this is the canonical name for the function. */
1053 int canonical;
1054 } fn;
1055
cab0c772 1056 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1057 struct
1058 {
1059 /* If type is non-NULL, it will be used as the type to generate
1060 a value for this internal variable. If type is NULL, a default
1061 integer type for the architecture is used. */
1062 struct type *type;
cab0c772
UW
1063 LONGEST val;
1064 } integer;
1065
1066 /* A pointer value used with INTERNALVAR_POINTER. */
1067 struct
1068 {
1069 struct type *type;
1070 CORE_ADDR val;
1071 } pointer;
78267919
UW
1072
1073 /* A string value used with INTERNALVAR_STRING. */
1074 char *string;
4fa62494
UW
1075 } u;
1076};
1077
c906108c
SS
1078static struct internalvar *internalvars;
1079
53e5f3cf
AS
1080/* If the variable does not already exist create it and give it the value given.
1081 If no value is given then the default is zero. */
1082static void
1083init_if_undefined_command (char* args, int from_tty)
1084{
1085 struct internalvar* intvar;
1086
1087 /* Parse the expression - this is taken from set_command(). */
1088 struct expression *expr = parse_expression (args);
1089 register struct cleanup *old_chain =
1090 make_cleanup (free_current_contents, &expr);
1091
1092 /* Validate the expression.
1093 Was the expression an assignment?
1094 Or even an expression at all? */
1095 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1096 error (_("Init-if-undefined requires an assignment expression."));
1097
1098 /* Extract the variable from the parsed expression.
1099 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1100 if (expr->elts[1].opcode != OP_INTERNALVAR)
1101 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1102 intvar = expr->elts[2].internalvar;
1103
1104 /* Only evaluate the expression if the lvalue is void.
1105 This may still fail if the expresssion is invalid. */
78267919 1106 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1107 evaluate_expression (expr);
1108
1109 do_cleanups (old_chain);
1110}
1111
1112
c906108c
SS
1113/* Look up an internal variable with name NAME. NAME should not
1114 normally include a dollar sign.
1115
1116 If the specified internal variable does not exist,
c4a3d09a 1117 the return value is NULL. */
c906108c
SS
1118
1119struct internalvar *
bc3b79fd 1120lookup_only_internalvar (const char *name)
c906108c 1121{
52f0bd74 1122 struct internalvar *var;
c906108c
SS
1123
1124 for (var = internalvars; var; var = var->next)
5cb316ef 1125 if (strcmp (var->name, name) == 0)
c906108c
SS
1126 return var;
1127
c4a3d09a
MF
1128 return NULL;
1129}
1130
1131
1132/* Create an internal variable with name NAME and with a void value.
1133 NAME should not normally include a dollar sign. */
1134
1135struct internalvar *
bc3b79fd 1136create_internalvar (const char *name)
c4a3d09a
MF
1137{
1138 struct internalvar *var;
a109c7c1 1139
c906108c 1140 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1141 var->name = concat (name, (char *)NULL);
78267919 1142 var->kind = INTERNALVAR_VOID;
c906108c
SS
1143 var->next = internalvars;
1144 internalvars = var;
1145 return var;
1146}
1147
4aa995e1
PA
1148/* Create an internal variable with name NAME and register FUN as the
1149 function that value_of_internalvar uses to create a value whenever
1150 this variable is referenced. NAME should not normally include a
1151 dollar sign. */
1152
1153struct internalvar *
1154create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1155{
4fa62494 1156 struct internalvar *var = create_internalvar (name);
a109c7c1 1157
78267919
UW
1158 var->kind = INTERNALVAR_MAKE_VALUE;
1159 var->u.make_value = fun;
4aa995e1
PA
1160 return var;
1161}
c4a3d09a
MF
1162
1163/* Look up an internal variable with name NAME. NAME should not
1164 normally include a dollar sign.
1165
1166 If the specified internal variable does not exist,
1167 one is created, with a void value. */
1168
1169struct internalvar *
bc3b79fd 1170lookup_internalvar (const char *name)
c4a3d09a
MF
1171{
1172 struct internalvar *var;
1173
1174 var = lookup_only_internalvar (name);
1175 if (var)
1176 return var;
1177
1178 return create_internalvar (name);
1179}
1180
78267919
UW
1181/* Return current value of internal variable VAR. For variables that
1182 are not inherently typed, use a value type appropriate for GDBARCH. */
1183
f23631e4 1184struct value *
78267919 1185value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1186{
f23631e4 1187 struct value *val;
c906108c 1188
78267919 1189 switch (var->kind)
5f5233d4 1190 {
78267919
UW
1191 case INTERNALVAR_VOID:
1192 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1193 break;
4fa62494 1194
78267919
UW
1195 case INTERNALVAR_FUNCTION:
1196 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1197 break;
4fa62494 1198
cab0c772
UW
1199 case INTERNALVAR_INTEGER:
1200 if (!var->u.integer.type)
78267919 1201 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1202 var->u.integer.val);
78267919 1203 else
cab0c772
UW
1204 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1205 break;
1206
1207 case INTERNALVAR_POINTER:
1208 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1209 break;
4fa62494 1210
78267919
UW
1211 case INTERNALVAR_STRING:
1212 val = value_cstring (var->u.string, strlen (var->u.string),
1213 builtin_type (gdbarch)->builtin_char);
1214 break;
4fa62494 1215
78267919
UW
1216 case INTERNALVAR_VALUE:
1217 val = value_copy (var->u.value);
4aa995e1
PA
1218 if (value_lazy (val))
1219 value_fetch_lazy (val);
78267919 1220 break;
4aa995e1 1221
78267919
UW
1222 case INTERNALVAR_MAKE_VALUE:
1223 val = (*var->u.make_value) (gdbarch, var);
1224 break;
1225
1226 default:
1227 internal_error (__FILE__, __LINE__, "bad kind");
1228 }
1229
1230 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1231 on this value go back to affect the original internal variable.
1232
1233 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1234 no underlying modifyable state in the internal variable.
1235
1236 Likewise, if the variable's value is a computed lvalue, we want
1237 references to it to produce another computed lvalue, where
1238 references and assignments actually operate through the
1239 computed value's functions.
1240
1241 This means that internal variables with computed values
1242 behave a little differently from other internal variables:
1243 assignments to them don't just replace the previous value
1244 altogether. At the moment, this seems like the behavior we
1245 want. */
1246
1247 if (var->kind != INTERNALVAR_MAKE_VALUE
1248 && val->lval != lval_computed)
1249 {
1250 VALUE_LVAL (val) = lval_internalvar;
1251 VALUE_INTERNALVAR (val) = var;
5f5233d4 1252 }
d3c139e9 1253
4fa62494
UW
1254 return val;
1255}
d3c139e9 1256
4fa62494
UW
1257int
1258get_internalvar_integer (struct internalvar *var, LONGEST *result)
1259{
78267919 1260 switch (var->kind)
4fa62494 1261 {
cab0c772
UW
1262 case INTERNALVAR_INTEGER:
1263 *result = var->u.integer.val;
1264 return 1;
d3c139e9 1265
4fa62494
UW
1266 default:
1267 return 0;
1268 }
1269}
d3c139e9 1270
4fa62494
UW
1271static int
1272get_internalvar_function (struct internalvar *var,
1273 struct internal_function **result)
1274{
78267919 1275 switch (var->kind)
d3c139e9 1276 {
78267919
UW
1277 case INTERNALVAR_FUNCTION:
1278 *result = var->u.fn.function;
4fa62494 1279 return 1;
d3c139e9 1280
4fa62494
UW
1281 default:
1282 return 0;
1283 }
c906108c
SS
1284}
1285
1286void
fba45db2 1287set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1288 int bitsize, struct value *newval)
c906108c 1289{
4fa62494 1290 gdb_byte *addr;
c906108c 1291
78267919 1292 switch (var->kind)
4fa62494 1293 {
78267919
UW
1294 case INTERNALVAR_VALUE:
1295 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1296
1297 if (bitsize)
50810684 1298 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1299 value_as_long (newval), bitpos, bitsize);
1300 else
1301 memcpy (addr + offset, value_contents (newval),
1302 TYPE_LENGTH (value_type (newval)));
1303 break;
78267919
UW
1304
1305 default:
1306 /* We can never get a component of any other kind. */
1307 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1308 }
c906108c
SS
1309}
1310
1311void
f23631e4 1312set_internalvar (struct internalvar *var, struct value *val)
c906108c 1313{
78267919 1314 enum internalvar_kind new_kind;
4fa62494 1315 union internalvar_data new_data = { 0 };
c906108c 1316
78267919 1317 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1318 error (_("Cannot overwrite convenience function %s"), var->name);
1319
4fa62494 1320 /* Prepare new contents. */
78267919 1321 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1322 {
1323 case TYPE_CODE_VOID:
78267919 1324 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1325 break;
1326
1327 case TYPE_CODE_INTERNAL_FUNCTION:
1328 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1329 new_kind = INTERNALVAR_FUNCTION;
1330 get_internalvar_function (VALUE_INTERNALVAR (val),
1331 &new_data.fn.function);
1332 /* Copies created here are never canonical. */
4fa62494
UW
1333 break;
1334
1335 case TYPE_CODE_INT:
cab0c772
UW
1336 new_kind = INTERNALVAR_INTEGER;
1337 new_data.integer.type = value_type (val);
1338 new_data.integer.val = value_as_long (val);
4fa62494
UW
1339 break;
1340
1341 case TYPE_CODE_PTR:
cab0c772
UW
1342 new_kind = INTERNALVAR_POINTER;
1343 new_data.pointer.type = value_type (val);
1344 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1345 break;
1346
1347 default:
78267919
UW
1348 new_kind = INTERNALVAR_VALUE;
1349 new_data.value = value_copy (val);
1350 new_data.value->modifiable = 1;
4fa62494
UW
1351
1352 /* Force the value to be fetched from the target now, to avoid problems
1353 later when this internalvar is referenced and the target is gone or
1354 has changed. */
78267919
UW
1355 if (value_lazy (new_data.value))
1356 value_fetch_lazy (new_data.value);
4fa62494
UW
1357
1358 /* Release the value from the value chain to prevent it from being
1359 deleted by free_all_values. From here on this function should not
1360 call error () until new_data is installed into the var->u to avoid
1361 leaking memory. */
78267919 1362 release_value (new_data.value);
4fa62494
UW
1363 break;
1364 }
1365
1366 /* Clean up old contents. */
1367 clear_internalvar (var);
1368
1369 /* Switch over. */
78267919 1370 var->kind = new_kind;
4fa62494 1371 var->u = new_data;
c906108c
SS
1372 /* End code which must not call error(). */
1373}
1374
4fa62494
UW
1375void
1376set_internalvar_integer (struct internalvar *var, LONGEST l)
1377{
1378 /* Clean up old contents. */
1379 clear_internalvar (var);
1380
cab0c772
UW
1381 var->kind = INTERNALVAR_INTEGER;
1382 var->u.integer.type = NULL;
1383 var->u.integer.val = l;
78267919
UW
1384}
1385
1386void
1387set_internalvar_string (struct internalvar *var, const char *string)
1388{
1389 /* Clean up old contents. */
1390 clear_internalvar (var);
1391
1392 var->kind = INTERNALVAR_STRING;
1393 var->u.string = xstrdup (string);
4fa62494
UW
1394}
1395
1396static void
1397set_internalvar_function (struct internalvar *var, struct internal_function *f)
1398{
1399 /* Clean up old contents. */
1400 clear_internalvar (var);
1401
78267919
UW
1402 var->kind = INTERNALVAR_FUNCTION;
1403 var->u.fn.function = f;
1404 var->u.fn.canonical = 1;
1405 /* Variables installed here are always the canonical version. */
4fa62494
UW
1406}
1407
1408void
1409clear_internalvar (struct internalvar *var)
1410{
1411 /* Clean up old contents. */
78267919 1412 switch (var->kind)
4fa62494 1413 {
78267919
UW
1414 case INTERNALVAR_VALUE:
1415 value_free (var->u.value);
1416 break;
1417
1418 case INTERNALVAR_STRING:
1419 xfree (var->u.string);
4fa62494
UW
1420 break;
1421
1422 default:
4fa62494
UW
1423 break;
1424 }
1425
78267919
UW
1426 /* Reset to void kind. */
1427 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1428}
1429
c906108c 1430char *
fba45db2 1431internalvar_name (struct internalvar *var)
c906108c
SS
1432{
1433 return var->name;
1434}
1435
4fa62494
UW
1436static struct internal_function *
1437create_internal_function (const char *name,
1438 internal_function_fn handler, void *cookie)
bc3b79fd 1439{
bc3b79fd 1440 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1441
bc3b79fd
TJB
1442 ifn->name = xstrdup (name);
1443 ifn->handler = handler;
1444 ifn->cookie = cookie;
4fa62494 1445 return ifn;
bc3b79fd
TJB
1446}
1447
1448char *
1449value_internal_function_name (struct value *val)
1450{
4fa62494
UW
1451 struct internal_function *ifn;
1452 int result;
1453
1454 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1455 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1456 gdb_assert (result);
1457
bc3b79fd
TJB
1458 return ifn->name;
1459}
1460
1461struct value *
d452c4bc
UW
1462call_internal_function (struct gdbarch *gdbarch,
1463 const struct language_defn *language,
1464 struct value *func, int argc, struct value **argv)
bc3b79fd 1465{
4fa62494
UW
1466 struct internal_function *ifn;
1467 int result;
1468
1469 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1470 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1471 gdb_assert (result);
1472
d452c4bc 1473 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1474}
1475
1476/* The 'function' command. This does nothing -- it is just a
1477 placeholder to let "help function NAME" work. This is also used as
1478 the implementation of the sub-command that is created when
1479 registering an internal function. */
1480static void
1481function_command (char *command, int from_tty)
1482{
1483 /* Do nothing. */
1484}
1485
1486/* Clean up if an internal function's command is destroyed. */
1487static void
1488function_destroyer (struct cmd_list_element *self, void *ignore)
1489{
1490 xfree (self->name);
1491 xfree (self->doc);
1492}
1493
1494/* Add a new internal function. NAME is the name of the function; DOC
1495 is a documentation string describing the function. HANDLER is
1496 called when the function is invoked. COOKIE is an arbitrary
1497 pointer which is passed to HANDLER and is intended for "user
1498 data". */
1499void
1500add_internal_function (const char *name, const char *doc,
1501 internal_function_fn handler, void *cookie)
1502{
1503 struct cmd_list_element *cmd;
4fa62494 1504 struct internal_function *ifn;
bc3b79fd 1505 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1506
1507 ifn = create_internal_function (name, handler, cookie);
1508 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1509
1510 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1511 &functionlist);
1512 cmd->destroyer = function_destroyer;
1513}
1514
ae5a43e0
DJ
1515/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1516 prevent cycles / duplicates. */
1517
4e7a5ef5 1518void
ae5a43e0
DJ
1519preserve_one_value (struct value *value, struct objfile *objfile,
1520 htab_t copied_types)
1521{
1522 if (TYPE_OBJFILE (value->type) == objfile)
1523 value->type = copy_type_recursive (objfile, value->type, copied_types);
1524
1525 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1526 value->enclosing_type = copy_type_recursive (objfile,
1527 value->enclosing_type,
1528 copied_types);
1529}
1530
78267919
UW
1531/* Likewise for internal variable VAR. */
1532
1533static void
1534preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1535 htab_t copied_types)
1536{
1537 switch (var->kind)
1538 {
cab0c772
UW
1539 case INTERNALVAR_INTEGER:
1540 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1541 var->u.integer.type
1542 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1543 break;
1544
1545 case INTERNALVAR_POINTER:
1546 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1547 var->u.pointer.type
1548 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1549 break;
1550
1551 case INTERNALVAR_VALUE:
1552 preserve_one_value (var->u.value, objfile, copied_types);
1553 break;
1554 }
1555}
1556
ae5a43e0
DJ
1557/* Update the internal variables and value history when OBJFILE is
1558 discarded; we must copy the types out of the objfile. New global types
1559 will be created for every convenience variable which currently points to
1560 this objfile's types, and the convenience variables will be adjusted to
1561 use the new global types. */
c906108c
SS
1562
1563void
ae5a43e0 1564preserve_values (struct objfile *objfile)
c906108c 1565{
ae5a43e0
DJ
1566 htab_t copied_types;
1567 struct value_history_chunk *cur;
52f0bd74 1568 struct internalvar *var;
ae5a43e0 1569 int i;
c906108c 1570
ae5a43e0
DJ
1571 /* Create the hash table. We allocate on the objfile's obstack, since
1572 it is soon to be deleted. */
1573 copied_types = create_copied_types_hash (objfile);
1574
1575 for (cur = value_history_chain; cur; cur = cur->next)
1576 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1577 if (cur->values[i])
1578 preserve_one_value (cur->values[i], objfile, copied_types);
1579
1580 for (var = internalvars; var; var = var->next)
78267919 1581 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1582
4e7a5ef5 1583 preserve_python_values (objfile, copied_types);
a08702d6 1584
ae5a43e0 1585 htab_delete (copied_types);
c906108c
SS
1586}
1587
1588static void
fba45db2 1589show_convenience (char *ignore, int from_tty)
c906108c 1590{
e17c207e 1591 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1592 struct internalvar *var;
c906108c 1593 int varseen = 0;
79a45b7d 1594 struct value_print_options opts;
c906108c 1595
79a45b7d 1596 get_user_print_options (&opts);
c906108c
SS
1597 for (var = internalvars; var; var = var->next)
1598 {
c906108c
SS
1599 if (!varseen)
1600 {
1601 varseen = 1;
1602 }
a3f17187 1603 printf_filtered (("$%s = "), var->name);
78267919 1604 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1605 &opts);
a3f17187 1606 printf_filtered (("\n"));
c906108c
SS
1607 }
1608 if (!varseen)
a3f17187
AC
1609 printf_unfiltered (_("\
1610No debugger convenience variables now defined.\n\
c906108c 1611Convenience variables have names starting with \"$\";\n\
a3f17187 1612use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1613}
1614\f
1615/* Extract a value as a C number (either long or double).
1616 Knows how to convert fixed values to double, or
1617 floating values to long.
1618 Does not deallocate the value. */
1619
1620LONGEST
f23631e4 1621value_as_long (struct value *val)
c906108c
SS
1622{
1623 /* This coerces arrays and functions, which is necessary (e.g.
1624 in disassemble_command). It also dereferences references, which
1625 I suspect is the most logical thing to do. */
994b9211 1626 val = coerce_array (val);
0fd88904 1627 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1628}
1629
1630DOUBLEST
f23631e4 1631value_as_double (struct value *val)
c906108c
SS
1632{
1633 DOUBLEST foo;
1634 int inv;
c5aa993b 1635
0fd88904 1636 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1637 if (inv)
8a3fe4f8 1638 error (_("Invalid floating value found in program."));
c906108c
SS
1639 return foo;
1640}
4ef30785 1641
4478b372
JB
1642/* Extract a value as a C pointer. Does not deallocate the value.
1643 Note that val's type may not actually be a pointer; value_as_long
1644 handles all the cases. */
c906108c 1645CORE_ADDR
f23631e4 1646value_as_address (struct value *val)
c906108c 1647{
50810684
UW
1648 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1649
c906108c
SS
1650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1651 whether we want this to be true eventually. */
1652#if 0
bf6ae464 1653 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1654 non-address (e.g. argument to "signal", "info break", etc.), or
1655 for pointers to char, in which the low bits *are* significant. */
50810684 1656 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1657#else
f312f057
JB
1658
1659 /* There are several targets (IA-64, PowerPC, and others) which
1660 don't represent pointers to functions as simply the address of
1661 the function's entry point. For example, on the IA-64, a
1662 function pointer points to a two-word descriptor, generated by
1663 the linker, which contains the function's entry point, and the
1664 value the IA-64 "global pointer" register should have --- to
1665 support position-independent code. The linker generates
1666 descriptors only for those functions whose addresses are taken.
1667
1668 On such targets, it's difficult for GDB to convert an arbitrary
1669 function address into a function pointer; it has to either find
1670 an existing descriptor for that function, or call malloc and
1671 build its own. On some targets, it is impossible for GDB to
1672 build a descriptor at all: the descriptor must contain a jump
1673 instruction; data memory cannot be executed; and code memory
1674 cannot be modified.
1675
1676 Upon entry to this function, if VAL is a value of type `function'
1677 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1678 value_address (val) is the address of the function. This is what
f312f057
JB
1679 you'll get if you evaluate an expression like `main'. The call
1680 to COERCE_ARRAY below actually does all the usual unary
1681 conversions, which includes converting values of type `function'
1682 to `pointer to function'. This is the challenging conversion
1683 discussed above. Then, `unpack_long' will convert that pointer
1684 back into an address.
1685
1686 So, suppose the user types `disassemble foo' on an architecture
1687 with a strange function pointer representation, on which GDB
1688 cannot build its own descriptors, and suppose further that `foo'
1689 has no linker-built descriptor. The address->pointer conversion
1690 will signal an error and prevent the command from running, even
1691 though the next step would have been to convert the pointer
1692 directly back into the same address.
1693
1694 The following shortcut avoids this whole mess. If VAL is a
1695 function, just return its address directly. */
df407dfe
AC
1696 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1697 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1698 return value_address (val);
f312f057 1699
994b9211 1700 val = coerce_array (val);
fc0c74b1
AC
1701
1702 /* Some architectures (e.g. Harvard), map instruction and data
1703 addresses onto a single large unified address space. For
1704 instance: An architecture may consider a large integer in the
1705 range 0x10000000 .. 0x1000ffff to already represent a data
1706 addresses (hence not need a pointer to address conversion) while
1707 a small integer would still need to be converted integer to
1708 pointer to address. Just assume such architectures handle all
1709 integer conversions in a single function. */
1710
1711 /* JimB writes:
1712
1713 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1714 must admonish GDB hackers to make sure its behavior matches the
1715 compiler's, whenever possible.
1716
1717 In general, I think GDB should evaluate expressions the same way
1718 the compiler does. When the user copies an expression out of
1719 their source code and hands it to a `print' command, they should
1720 get the same value the compiler would have computed. Any
1721 deviation from this rule can cause major confusion and annoyance,
1722 and needs to be justified carefully. In other words, GDB doesn't
1723 really have the freedom to do these conversions in clever and
1724 useful ways.
1725
1726 AndrewC pointed out that users aren't complaining about how GDB
1727 casts integers to pointers; they are complaining that they can't
1728 take an address from a disassembly listing and give it to `x/i'.
1729 This is certainly important.
1730
79dd2d24 1731 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1732 makes it possible for GDB to "get it right" in all circumstances
1733 --- the target has complete control over how things get done, so
1734 people can Do The Right Thing for their target without breaking
1735 anyone else. The standard doesn't specify how integers get
1736 converted to pointers; usually, the ABI doesn't either, but
1737 ABI-specific code is a more reasonable place to handle it. */
1738
df407dfe
AC
1739 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1740 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1741 && gdbarch_integer_to_address_p (gdbarch))
1742 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1743 value_contents (val));
fc0c74b1 1744
0fd88904 1745 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1746#endif
1747}
1748\f
1749/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1750 as a long, or as a double, assuming the raw data is described
1751 by type TYPE. Knows how to convert different sizes of values
1752 and can convert between fixed and floating point. We don't assume
1753 any alignment for the raw data. Return value is in host byte order.
1754
1755 If you want functions and arrays to be coerced to pointers, and
1756 references to be dereferenced, call value_as_long() instead.
1757
1758 C++: It is assumed that the front-end has taken care of
1759 all matters concerning pointers to members. A pointer
1760 to member which reaches here is considered to be equivalent
1761 to an INT (or some size). After all, it is only an offset. */
1762
1763LONGEST
fc1a4b47 1764unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1765{
e17a4113 1766 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1767 enum type_code code = TYPE_CODE (type);
1768 int len = TYPE_LENGTH (type);
1769 int nosign = TYPE_UNSIGNED (type);
c906108c 1770
c906108c
SS
1771 switch (code)
1772 {
1773 case TYPE_CODE_TYPEDEF:
1774 return unpack_long (check_typedef (type), valaddr);
1775 case TYPE_CODE_ENUM:
4f2aea11 1776 case TYPE_CODE_FLAGS:
c906108c
SS
1777 case TYPE_CODE_BOOL:
1778 case TYPE_CODE_INT:
1779 case TYPE_CODE_CHAR:
1780 case TYPE_CODE_RANGE:
0d5de010 1781 case TYPE_CODE_MEMBERPTR:
c906108c 1782 if (nosign)
e17a4113 1783 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1784 else
e17a4113 1785 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1786
1787 case TYPE_CODE_FLT:
96d2f608 1788 return extract_typed_floating (valaddr, type);
c906108c 1789
4ef30785
TJB
1790 case TYPE_CODE_DECFLOAT:
1791 /* libdecnumber has a function to convert from decimal to integer, but
1792 it doesn't work when the decimal number has a fractional part. */
e17a4113 1793 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1794
c906108c
SS
1795 case TYPE_CODE_PTR:
1796 case TYPE_CODE_REF:
1797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1798 whether we want this to be true eventually. */
4478b372 1799 return extract_typed_address (valaddr, type);
c906108c 1800
c906108c 1801 default:
8a3fe4f8 1802 error (_("Value can't be converted to integer."));
c906108c 1803 }
c5aa993b 1804 return 0; /* Placate lint. */
c906108c
SS
1805}
1806
1807/* Return a double value from the specified type and address.
1808 INVP points to an int which is set to 0 for valid value,
1809 1 for invalid value (bad float format). In either case,
1810 the returned double is OK to use. Argument is in target
1811 format, result is in host format. */
1812
1813DOUBLEST
fc1a4b47 1814unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1815{
e17a4113 1816 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1817 enum type_code code;
1818 int len;
1819 int nosign;
1820
1821 *invp = 0; /* Assume valid. */
1822 CHECK_TYPEDEF (type);
1823 code = TYPE_CODE (type);
1824 len = TYPE_LENGTH (type);
1825 nosign = TYPE_UNSIGNED (type);
1826 if (code == TYPE_CODE_FLT)
1827 {
75bc7ddf
AC
1828 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1829 floating-point value was valid (using the macro
1830 INVALID_FLOAT). That test/macro have been removed.
1831
1832 It turns out that only the VAX defined this macro and then
1833 only in a non-portable way. Fixing the portability problem
1834 wouldn't help since the VAX floating-point code is also badly
1835 bit-rotten. The target needs to add definitions for the
ea06eb3d 1836 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1837 exactly describe the target floating-point format. The
1838 problem here is that the corresponding floatformat_vax_f and
1839 floatformat_vax_d values these methods should be set to are
1840 also not defined either. Oops!
1841
1842 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1843 definitions and the new cases for floatformat_is_valid (). */
1844
1845 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1846 {
1847 *invp = 1;
1848 return 0.0;
1849 }
1850
96d2f608 1851 return extract_typed_floating (valaddr, type);
c906108c 1852 }
4ef30785 1853 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1854 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1855 else if (nosign)
1856 {
1857 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1858 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1859 }
1860 else
1861 {
1862 /* Signed -- we are OK with unpack_long. */
1863 return unpack_long (type, valaddr);
1864 }
1865}
1866
1867/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1868 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1869 We don't assume any alignment for the raw data. Return value is in
1870 host byte order.
1871
1872 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1873 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1874
1875 C++: It is assumed that the front-end has taken care of
1876 all matters concerning pointers to members. A pointer
1877 to member which reaches here is considered to be equivalent
1878 to an INT (or some size). After all, it is only an offset. */
1879
1880CORE_ADDR
fc1a4b47 1881unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1882{
1883 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1884 whether we want this to be true eventually. */
1885 return unpack_long (type, valaddr);
1886}
4478b372 1887
c906108c 1888\f
1596cb5d 1889/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0
DC
1890 TYPE. Return NULL if the field doesn't exist or has been
1891 optimized out. */
c906108c 1892
f23631e4 1893struct value *
fba45db2 1894value_static_field (struct type *type, int fieldno)
c906108c 1895{
948e66d9
DJ
1896 struct value *retval;
1897
1596cb5d 1898 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 1899 {
1596cb5d 1900 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
1901 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1902 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
1903 break;
1904 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
1905 {
1906 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
a109c7c1 1907 /*TYPE_FIELD_NAME (type, fieldno);*/
2570f2b7 1908 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1909
948e66d9 1910 if (sym == NULL)
c906108c 1911 {
a109c7c1
MS
1912 /* With some compilers, e.g. HP aCC, static data members are
1913 reported as non-debuggable symbols */
1914 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1915 NULL, NULL);
1916
c906108c
SS
1917 if (!msym)
1918 return NULL;
1919 else
c5aa993b 1920 {
52e9fde8
SS
1921 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1922 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1923 }
1924 }
1925 else
515ed532 1926 retval = value_of_variable (sym, NULL);
1596cb5d 1927 break;
c906108c 1928 }
1596cb5d 1929 default:
f3574227 1930 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
1931 }
1932
948e66d9 1933 return retval;
c906108c
SS
1934}
1935
4dfea560
DE
1936/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1937 You have to be careful here, since the size of the data area for the value
1938 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1939 than the old enclosing type, you have to allocate more space for the
1940 data. */
2b127877 1941
4dfea560
DE
1942void
1943set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1944{
3e3d7139
JG
1945 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1946 val->contents =
1947 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1948
1949 val->enclosing_type = new_encl_type;
2b127877
DB
1950}
1951
c906108c
SS
1952/* Given a value ARG1 (offset by OFFSET bytes)
1953 of a struct or union type ARG_TYPE,
1954 extract and return the value of one of its (non-static) fields.
1955 FIELDNO says which field. */
1956
f23631e4
AC
1957struct value *
1958value_primitive_field (struct value *arg1, int offset,
aa1ee363 1959 int fieldno, struct type *arg_type)
c906108c 1960{
f23631e4 1961 struct value *v;
52f0bd74 1962 struct type *type;
c906108c
SS
1963
1964 CHECK_TYPEDEF (arg_type);
1965 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1966
1967 /* Call check_typedef on our type to make sure that, if TYPE
1968 is a TYPE_CODE_TYPEDEF, its length is set to the length
1969 of the target type instead of zero. However, we do not
1970 replace the typedef type by the target type, because we want
1971 to keep the typedef in order to be able to print the type
1972 description correctly. */
1973 check_typedef (type);
c906108c
SS
1974
1975 /* Handle packed fields */
1976
1977 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1978 {
4ea48cc1
DJ
1979 /* Create a new value for the bitfield, with bitpos and bitsize
1980 set. If possible, arrange offset and bitpos so that we can
1981 do a single aligned read of the size of the containing type.
1982 Otherwise, adjust offset to the byte containing the first
1983 bit. Assume that the address, offset, and embedded offset
1984 are sufficiently aligned. */
1985 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1986 int container_bitsize = TYPE_LENGTH (type) * 8;
1987
1988 v = allocate_value_lazy (type);
df407dfe 1989 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1990 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1991 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1992 v->bitpos = bitpos % container_bitsize;
1993 else
1994 v->bitpos = bitpos % 8;
38f12cfc
TT
1995 v->offset = (value_embedded_offset (arg1)
1996 + offset
1997 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
1998 v->parent = arg1;
1999 value_incref (v->parent);
2000 if (!value_lazy (arg1))
2001 value_fetch_lazy (v);
c906108c
SS
2002 }
2003 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2004 {
2005 /* This field is actually a base subobject, so preserve the
2006 entire object's contents for later references to virtual
2007 bases, etc. */
a4e2ee12
DJ
2008
2009 /* Lazy register values with offsets are not supported. */
2010 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2011 value_fetch_lazy (arg1);
2012
2013 if (value_lazy (arg1))
3e3d7139 2014 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2015 else
3e3d7139
JG
2016 {
2017 v = allocate_value (value_enclosing_type (arg1));
2018 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2019 TYPE_LENGTH (value_enclosing_type (arg1)));
2020 }
2021 v->type = type;
df407dfe 2022 v->offset = value_offset (arg1);
13c3b5f5
AC
2023 v->embedded_offset = (offset + value_embedded_offset (arg1)
2024 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2025 }
2026 else
2027 {
2028 /* Plain old data member */
2029 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2030
2031 /* Lazy register values with offsets are not supported. */
2032 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2033 value_fetch_lazy (arg1);
2034
2035 if (value_lazy (arg1))
3e3d7139 2036 v = allocate_value_lazy (type);
c906108c 2037 else
3e3d7139
JG
2038 {
2039 v = allocate_value (type);
2040 memcpy (value_contents_raw (v),
2041 value_contents_raw (arg1) + offset,
2042 TYPE_LENGTH (type));
2043 }
df407dfe 2044 v->offset = (value_offset (arg1) + offset
13c3b5f5 2045 + value_embedded_offset (arg1));
c906108c 2046 }
74bcbdf3 2047 set_value_component_location (v, arg1);
9ee8fc9d 2048 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2049 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2050 return v;
2051}
2052
2053/* Given a value ARG1 of a struct or union type,
2054 extract and return the value of one of its (non-static) fields.
2055 FIELDNO says which field. */
2056
f23631e4 2057struct value *
aa1ee363 2058value_field (struct value *arg1, int fieldno)
c906108c 2059{
df407dfe 2060 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2061}
2062
2063/* Return a non-virtual function as a value.
2064 F is the list of member functions which contains the desired method.
0478d61c
FF
2065 J is an index into F which provides the desired method.
2066
2067 We only use the symbol for its address, so be happy with either a
2068 full symbol or a minimal symbol.
2069 */
c906108c 2070
f23631e4
AC
2071struct value *
2072value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 2073 int offset)
c906108c 2074{
f23631e4 2075 struct value *v;
52f0bd74 2076 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2077 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2078 struct symbol *sym;
0478d61c 2079 struct minimal_symbol *msym;
c906108c 2080
2570f2b7 2081 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2082 if (sym != NULL)
0478d61c 2083 {
5ae326fa
AC
2084 msym = NULL;
2085 }
2086 else
2087 {
2088 gdb_assert (sym == NULL);
0478d61c 2089 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2090 if (msym == NULL)
2091 return NULL;
0478d61c
FF
2092 }
2093
c906108c 2094 v = allocate_value (ftype);
0478d61c
FF
2095 if (sym)
2096 {
42ae5230 2097 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2098 }
2099 else
2100 {
bccdca4a
UW
2101 /* The minimal symbol might point to a function descriptor;
2102 resolve it to the actual code address instead. */
2103 struct objfile *objfile = msymbol_objfile (msym);
2104 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2105
42ae5230
TT
2106 set_value_address (v,
2107 gdbarch_convert_from_func_ptr_addr
2108 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2109 }
c906108c
SS
2110
2111 if (arg1p)
c5aa993b 2112 {
df407dfe 2113 if (type != value_type (*arg1p))
c5aa993b
JM
2114 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2115 value_addr (*arg1p)));
2116
070ad9f0 2117 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2118 VALUE_OFFSET (*arg1p) += offset;
2119 */
c906108c
SS
2120 }
2121
2122 return v;
2123}
2124
c906108c 2125\f
4ea48cc1
DJ
2126/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2127 object at VALADDR. The bitfield starts at BITPOS bits and contains
2128 BITSIZE bits.
c906108c
SS
2129
2130 Extracting bits depends on endianness of the machine. Compute the
2131 number of least significant bits to discard. For big endian machines,
2132 we compute the total number of bits in the anonymous object, subtract
2133 off the bit count from the MSB of the object to the MSB of the
2134 bitfield, then the size of the bitfield, which leaves the LSB discard
2135 count. For little endian machines, the discard count is simply the
2136 number of bits from the LSB of the anonymous object to the LSB of the
2137 bitfield.
2138
2139 If the field is signed, we also do sign extension. */
2140
2141LONGEST
4ea48cc1
DJ
2142unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2143 int bitpos, int bitsize)
c906108c 2144{
4ea48cc1 2145 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2146 ULONGEST val;
2147 ULONGEST valmask;
c906108c 2148 int lsbcount;
4a76eae5 2149 int bytes_read;
c906108c 2150
4a76eae5
DJ
2151 /* Read the minimum number of bytes required; there may not be
2152 enough bytes to read an entire ULONGEST. */
c906108c 2153 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2154 if (bitsize)
2155 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2156 else
2157 bytes_read = TYPE_LENGTH (field_type);
2158
2159 val = extract_unsigned_integer (valaddr + bitpos / 8,
2160 bytes_read, byte_order);
c906108c
SS
2161
2162 /* Extract bits. See comment above. */
2163
4ea48cc1 2164 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2165 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2166 else
2167 lsbcount = (bitpos % 8);
2168 val >>= lsbcount;
2169
2170 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2171 If the field is signed, and is negative, then sign extend. */
2172
2173 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2174 {
2175 valmask = (((ULONGEST) 1) << bitsize) - 1;
2176 val &= valmask;
2177 if (!TYPE_UNSIGNED (field_type))
2178 {
2179 if (val & (valmask ^ (valmask >> 1)))
2180 {
2181 val |= ~valmask;
2182 }
2183 }
2184 }
2185 return (val);
2186}
2187
4ea48cc1
DJ
2188/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2189 VALADDR. See unpack_bits_as_long for more details. */
2190
2191LONGEST
2192unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2193{
2194 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2195 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2196 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2197
2198 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2199}
2200
c906108c
SS
2201/* Modify the value of a bitfield. ADDR points to a block of memory in
2202 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2203 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2204 indicate which bits (in target bit order) comprise the bitfield.
2205 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2206 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2207
2208void
50810684
UW
2209modify_field (struct type *type, gdb_byte *addr,
2210 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2211{
e17a4113 2212 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2213 ULONGEST oword;
2214 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2215
2216 /* If a negative fieldval fits in the field in question, chop
2217 off the sign extension bits. */
f4e88c8e
PH
2218 if ((~fieldval & ~(mask >> 1)) == 0)
2219 fieldval &= mask;
c906108c
SS
2220
2221 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2222 if (0 != (fieldval & ~mask))
c906108c
SS
2223 {
2224 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2225 we don't have a sprintf_longest. */
8a3fe4f8 2226 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2227
2228 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2229 fieldval &= mask;
c906108c
SS
2230 }
2231
e17a4113 2232 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2233
2234 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2235 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2236 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2237
f4e88c8e 2238 oword &= ~(mask << bitpos);
c906108c
SS
2239 oword |= fieldval << bitpos;
2240
e17a4113 2241 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2242}
2243\f
14d06750 2244/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2245
14d06750
DJ
2246void
2247pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2248{
e17a4113 2249 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2250 int len;
14d06750
DJ
2251
2252 type = check_typedef (type);
c906108c
SS
2253 len = TYPE_LENGTH (type);
2254
14d06750 2255 switch (TYPE_CODE (type))
c906108c 2256 {
c906108c
SS
2257 case TYPE_CODE_INT:
2258 case TYPE_CODE_CHAR:
2259 case TYPE_CODE_ENUM:
4f2aea11 2260 case TYPE_CODE_FLAGS:
c906108c
SS
2261 case TYPE_CODE_BOOL:
2262 case TYPE_CODE_RANGE:
0d5de010 2263 case TYPE_CODE_MEMBERPTR:
e17a4113 2264 store_signed_integer (buf, len, byte_order, num);
c906108c 2265 break;
c5aa993b 2266
c906108c
SS
2267 case TYPE_CODE_REF:
2268 case TYPE_CODE_PTR:
14d06750 2269 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2270 break;
c5aa993b 2271
c906108c 2272 default:
14d06750
DJ
2273 error (_("Unexpected type (%d) encountered for integer constant."),
2274 TYPE_CODE (type));
c906108c 2275 }
14d06750
DJ
2276}
2277
2278
595939de
PM
2279/* Pack NUM into BUF using a target format of TYPE. */
2280
2281void
2282pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2283{
2284 int len;
2285 enum bfd_endian byte_order;
2286
2287 type = check_typedef (type);
2288 len = TYPE_LENGTH (type);
2289 byte_order = gdbarch_byte_order (get_type_arch (type));
2290
2291 switch (TYPE_CODE (type))
2292 {
2293 case TYPE_CODE_INT:
2294 case TYPE_CODE_CHAR:
2295 case TYPE_CODE_ENUM:
2296 case TYPE_CODE_FLAGS:
2297 case TYPE_CODE_BOOL:
2298 case TYPE_CODE_RANGE:
2299 case TYPE_CODE_MEMBERPTR:
2300 store_unsigned_integer (buf, len, byte_order, num);
2301 break;
2302
2303 case TYPE_CODE_REF:
2304 case TYPE_CODE_PTR:
2305 store_typed_address (buf, type, (CORE_ADDR) num);
2306 break;
2307
2308 default:
2309 error (_("\
2310Unexpected type (%d) encountered for unsigned integer constant."),
2311 TYPE_CODE (type));
2312 }
2313}
2314
2315
14d06750
DJ
2316/* Convert C numbers into newly allocated values. */
2317
2318struct value *
2319value_from_longest (struct type *type, LONGEST num)
2320{
2321 struct value *val = allocate_value (type);
2322
2323 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2324 return val;
2325}
2326
4478b372 2327
595939de
PM
2328/* Convert C unsigned numbers into newly allocated values. */
2329
2330struct value *
2331value_from_ulongest (struct type *type, ULONGEST num)
2332{
2333 struct value *val = allocate_value (type);
2334
2335 pack_unsigned_long (value_contents_raw (val), type, num);
2336
2337 return val;
2338}
2339
2340
4478b372
JB
2341/* Create a value representing a pointer of type TYPE to the address
2342 ADDR. */
f23631e4 2343struct value *
4478b372
JB
2344value_from_pointer (struct type *type, CORE_ADDR addr)
2345{
f23631e4 2346 struct value *val = allocate_value (type);
a109c7c1 2347
cab0c772 2348 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2349 return val;
2350}
2351
2352
8acb6b92
TT
2353/* Create a value of type TYPE whose contents come from VALADDR, if it
2354 is non-null, and whose memory address (in the inferior) is
2355 ADDRESS. */
2356
2357struct value *
2358value_from_contents_and_address (struct type *type,
2359 const gdb_byte *valaddr,
2360 CORE_ADDR address)
2361{
2362 struct value *v = allocate_value (type);
a109c7c1 2363
8acb6b92
TT
2364 if (valaddr == NULL)
2365 set_value_lazy (v, 1);
2366 else
2367 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2368 set_value_address (v, address);
33d502b4 2369 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2370 return v;
2371}
2372
f23631e4 2373struct value *
fba45db2 2374value_from_double (struct type *type, DOUBLEST num)
c906108c 2375{
f23631e4 2376 struct value *val = allocate_value (type);
c906108c 2377 struct type *base_type = check_typedef (type);
52f0bd74 2378 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2379
2380 if (code == TYPE_CODE_FLT)
2381 {
990a07ab 2382 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2383 }
2384 else
8a3fe4f8 2385 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2386
2387 return val;
2388}
994b9211 2389
27bc4d80 2390struct value *
4ef30785 2391value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2392{
2393 struct value *val = allocate_value (type);
27bc4d80 2394
4ef30785 2395 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2396 return val;
2397}
2398
994b9211
AC
2399struct value *
2400coerce_ref (struct value *arg)
2401{
df407dfe 2402 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2403
994b9211
AC
2404 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2405 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2406 unpack_pointer (value_type (arg),
0fd88904 2407 value_contents (arg)));
994b9211
AC
2408 return arg;
2409}
2410
2411struct value *
2412coerce_array (struct value *arg)
2413{
f3134b88
TT
2414 struct type *type;
2415
994b9211 2416 arg = coerce_ref (arg);
f3134b88
TT
2417 type = check_typedef (value_type (arg));
2418
2419 switch (TYPE_CODE (type))
2420 {
2421 case TYPE_CODE_ARRAY:
7346b668 2422 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
2423 arg = value_coerce_array (arg);
2424 break;
2425 case TYPE_CODE_FUNC:
2426 arg = value_coerce_function (arg);
2427 break;
2428 }
994b9211
AC
2429 return arg;
2430}
c906108c 2431\f
c906108c 2432
48436ce6
AC
2433/* Return true if the function returning the specified type is using
2434 the convention of returning structures in memory (passing in the
82585c72 2435 address as a hidden first parameter). */
c906108c
SS
2436
2437int
d80b854b
UW
2438using_struct_return (struct gdbarch *gdbarch,
2439 struct type *func_type, struct type *value_type)
c906108c 2440{
52f0bd74 2441 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2442
2443 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2444 error (_("Function return type unknown."));
c906108c 2445
667e784f
AC
2446 if (code == TYPE_CODE_VOID)
2447 /* A void return value is never in memory. See also corresponding
44e5158b 2448 code in "print_return_value". */
667e784f
AC
2449 return 0;
2450
92ad9cd9 2451 /* Probe the architecture for the return-value convention. */
d80b854b 2452 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2453 NULL, NULL, NULL)
31db7b6c 2454 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2455}
2456
42be36b3
CT
2457/* Set the initialized field in a value struct. */
2458
2459void
2460set_value_initialized (struct value *val, int status)
2461{
2462 val->initialized = status;
2463}
2464
2465/* Return the initialized field in a value struct. */
2466
2467int
2468value_initialized (struct value *val)
2469{
2470 return val->initialized;
2471}
2472
c906108c 2473void
fba45db2 2474_initialize_values (void)
c906108c 2475{
1a966eab
AC
2476 add_cmd ("convenience", no_class, show_convenience, _("\
2477Debugger convenience (\"$foo\") variables.\n\
c906108c 2478These variables are created when you assign them values;\n\
1a966eab
AC
2479thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2480\n\
c906108c
SS
2481A few convenience variables are given values automatically:\n\
2482\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2483\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2484 &showlist);
2485
2486 add_cmd ("values", no_class, show_values,
1a966eab 2487 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2488 &showlist);
53e5f3cf
AS
2489
2490 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2491Initialize a convenience variable if necessary.\n\
2492init-if-undefined VARIABLE = EXPRESSION\n\
2493Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2494exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2495VARIABLE is already initialized."));
bc3b79fd
TJB
2496
2497 add_prefix_cmd ("function", no_class, function_command, _("\
2498Placeholder command for showing help on convenience functions."),
2499 &functionlist, "function ", 0, &cmdlist);
c906108c 2500}
This page took 1.223074 seconds and 4 git commands to generate.