Make the new aarch64 bignum test endian agnostic.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
6dddc817 41#include "extension.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
901461f8
PA
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
87784a47
TT
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
91294c83 215
e848a8a5
TT
216 /* If the value has been released. */
217 unsigned int released : 1;
218
98b1cfdc
TT
219 /* Register number if the value is from a register. */
220 short regnum;
221
91294c83
AC
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
5f5233d4
PA
232
233 /* If lval == lval_computed, this is a set of function pointers
234 to use to access and describe the value, and a closure pointer
235 for them to use. */
236 struct
237 {
c8f2448a
JK
238 /* Functions to call. */
239 const struct lval_funcs *funcs;
240
241 /* Closure for those functions to use. */
242 void *closure;
5f5233d4 243 } computed;
91294c83
AC
244 } location;
245
246 /* Describes offset of a value within lval of a structure in bytes.
247 If lval == lval_memory, this is an offset to the address. If
248 lval == lval_register, this is a further offset from
249 location.address within the registers structure. Note also the
250 member embedded_offset below. */
251 int offset;
252
253 /* Only used for bitfields; number of bits contained in them. */
254 int bitsize;
255
256 /* Only used for bitfields; position of start of field. For
32c9a795 257 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 258 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
259 int bitpos;
260
87784a47
TT
261 /* The number of references to this value. When a value is created,
262 the value chain holds a reference, so REFERENCE_COUNT is 1. If
263 release_value is called, this value is removed from the chain but
264 the caller of release_value now has a reference to this value.
265 The caller must arrange for a call to value_free later. */
266 int reference_count;
267
4ea48cc1
DJ
268 /* Only used for bitfields; the containing value. This allows a
269 single read from the target when displaying multiple
270 bitfields. */
271 struct value *parent;
272
91294c83
AC
273 /* Frame register value is relative to. This will be described in
274 the lval enum above as "lval_register". */
275 struct frame_id frame_id;
276
277 /* Type of the value. */
278 struct type *type;
279
280 /* If a value represents a C++ object, then the `type' field gives
281 the object's compile-time type. If the object actually belongs
282 to some class derived from `type', perhaps with other base
283 classes and additional members, then `type' is just a subobject
284 of the real thing, and the full object is probably larger than
285 `type' would suggest.
286
287 If `type' is a dynamic class (i.e. one with a vtable), then GDB
288 can actually determine the object's run-time type by looking at
289 the run-time type information in the vtable. When this
290 information is available, we may elect to read in the entire
291 object, for several reasons:
292
293 - When printing the value, the user would probably rather see the
294 full object, not just the limited portion apparent from the
295 compile-time type.
296
297 - If `type' has virtual base classes, then even printing `type'
298 alone may require reaching outside the `type' portion of the
299 object to wherever the virtual base class has been stored.
300
301 When we store the entire object, `enclosing_type' is the run-time
302 type -- the complete object -- and `embedded_offset' is the
303 offset of `type' within that larger type, in bytes. The
304 value_contents() macro takes `embedded_offset' into account, so
305 most GDB code continues to see the `type' portion of the value,
306 just as the inferior would.
307
308 If `type' is a pointer to an object, then `enclosing_type' is a
309 pointer to the object's run-time type, and `pointed_to_offset' is
310 the offset in bytes from the full object to the pointed-to object
311 -- that is, the value `embedded_offset' would have if we followed
312 the pointer and fetched the complete object. (I don't really see
313 the point. Why not just determine the run-time type when you
314 indirect, and avoid the special case? The contents don't matter
315 until you indirect anyway.)
316
317 If we're not doing anything fancy, `enclosing_type' is equal to
318 `type', and `embedded_offset' is zero, so everything works
319 normally. */
320 struct type *enclosing_type;
321 int embedded_offset;
322 int pointed_to_offset;
323
324 /* Values are stored in a chain, so that they can be deleted easily
325 over calls to the inferior. Values assigned to internal
a08702d6
TJB
326 variables, put into the value history or exposed to Python are
327 taken off this list. */
91294c83
AC
328 struct value *next;
329
3e3d7139
JG
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
332 gdb_byte *contents;
828d3400 333
4e07d55f
PA
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
bdf22206
AB
336 value to be available. This is filled in at value read time. The
337 unavailable ranges are tracked in bits. */
4e07d55f 338 VEC(range_s) *unavailable;
91294c83
AC
339};
340
4e07d55f 341int
bdf22206 342value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
343{
344 gdb_assert (!value->lazy);
345
346 return !ranges_contain (value->unavailable, offset, length);
347}
348
bdf22206
AB
349int
350value_bytes_available (const struct value *value, int offset, int length)
351{
352 return value_bits_available (value,
353 offset * TARGET_CHAR_BIT,
354 length * TARGET_CHAR_BIT);
355}
356
ec0a52e1
PA
357int
358value_entirely_available (struct value *value)
359{
360 /* We can only tell whether the whole value is available when we try
361 to read it. */
362 if (value->lazy)
363 value_fetch_lazy (value);
364
365 if (VEC_empty (range_s, value->unavailable))
366 return 1;
367 return 0;
368}
369
6211c335
YQ
370int
371value_entirely_unavailable (struct value *value)
372{
373 /* We can only tell whether the whole value is available when we try
374 to read it. */
375 if (value->lazy)
376 value_fetch_lazy (value);
377
378 if (VEC_length (range_s, value->unavailable) == 1)
379 {
380 struct range *t = VEC_index (range_s, value->unavailable, 0);
381
382 if (t->offset == 0
64c46ce4
JB
383 && t->length == (TARGET_CHAR_BIT
384 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
385 return 1;
386 }
387
388 return 0;
389}
390
4e07d55f 391void
bdf22206 392mark_value_bits_unavailable (struct value *value, int offset, int length)
4e07d55f
PA
393{
394 range_s newr;
395 int i;
396
397 /* Insert the range sorted. If there's overlap or the new range
398 would be contiguous with an existing range, merge. */
399
400 newr.offset = offset;
401 newr.length = length;
402
403 /* Do a binary search for the position the given range would be
404 inserted if we only considered the starting OFFSET of ranges.
405 Call that position I. Since we also have LENGTH to care for
406 (this is a range afterall), we need to check if the _previous_
407 range overlaps the I range. E.g., calling R the new range:
408
409 #1 - overlaps with previous
410
411 R
412 |-...-|
413 |---| |---| |------| ... |--|
414 0 1 2 N
415
416 I=1
417
418 In the case #1 above, the binary search would return `I=1',
419 meaning, this OFFSET should be inserted at position 1, and the
420 current position 1 should be pushed further (and become 2). But,
421 note that `0' overlaps with R, so we want to merge them.
422
423 A similar consideration needs to be taken if the new range would
424 be contiguous with the previous range:
425
426 #2 - contiguous with previous
427
428 R
429 |-...-|
430 |--| |---| |------| ... |--|
431 0 1 2 N
432
433 I=1
434
435 If there's no overlap with the previous range, as in:
436
437 #3 - not overlapping and not contiguous
438
439 R
440 |-...-|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 or if I is 0:
447
448 #4 - R is the range with lowest offset
449
450 R
451 |-...-|
452 |--| |---| |------| ... |--|
453 0 1 2 N
454
455 I=0
456
457 ... we just push the new range to I.
458
459 All the 4 cases above need to consider that the new range may
460 also overlap several of the ranges that follow, or that R may be
461 contiguous with the following range, and merge. E.g.,
462
463 #5 - overlapping following ranges
464
465 R
466 |------------------------|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=0
471
472 or:
473
474 R
475 |-------|
476 |--| |---| |------| ... |--|
477 0 1 2 N
478
479 I=1
480
481 */
482
483 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
484 if (i > 0)
485 {
6bfc80c7 486 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
487
488 if (ranges_overlap (bef->offset, bef->length, offset, length))
489 {
490 /* #1 */
491 ULONGEST l = min (bef->offset, offset);
492 ULONGEST h = max (bef->offset + bef->length, offset + length);
493
494 bef->offset = l;
495 bef->length = h - l;
496 i--;
497 }
498 else if (offset == bef->offset + bef->length)
499 {
500 /* #2 */
501 bef->length += length;
502 i--;
503 }
504 else
505 {
506 /* #3 */
507 VEC_safe_insert (range_s, value->unavailable, i, &newr);
508 }
509 }
510 else
511 {
512 /* #4 */
513 VEC_safe_insert (range_s, value->unavailable, i, &newr);
514 }
515
516 /* Check whether the ranges following the one we've just added or
517 touched can be folded in (#5 above). */
518 if (i + 1 < VEC_length (range_s, value->unavailable))
519 {
520 struct range *t;
521 struct range *r;
522 int removed = 0;
523 int next = i + 1;
524
525 /* Get the range we just touched. */
526 t = VEC_index (range_s, value->unavailable, i);
527 removed = 0;
528
529 i = next;
530 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
531 if (r->offset <= t->offset + t->length)
532 {
533 ULONGEST l, h;
534
535 l = min (t->offset, r->offset);
536 h = max (t->offset + t->length, r->offset + r->length);
537
538 t->offset = l;
539 t->length = h - l;
540
541 removed++;
542 }
543 else
544 {
545 /* If we couldn't merge this one, we won't be able to
546 merge following ones either, since the ranges are
547 always sorted by OFFSET. */
548 break;
549 }
550
551 if (removed != 0)
552 VEC_block_remove (range_s, value->unavailable, next, removed);
553 }
554}
555
bdf22206
AB
556void
557mark_value_bytes_unavailable (struct value *value, int offset, int length)
558{
559 mark_value_bits_unavailable (value,
560 offset * TARGET_CHAR_BIT,
561 length * TARGET_CHAR_BIT);
562}
563
c8c1c22f
PA
564/* Find the first range in RANGES that overlaps the range defined by
565 OFFSET and LENGTH, starting at element POS in the RANGES vector,
566 Returns the index into RANGES where such overlapping range was
567 found, or -1 if none was found. */
568
569static int
570find_first_range_overlap (VEC(range_s) *ranges, int pos,
571 int offset, int length)
572{
573 range_s *r;
574 int i;
575
576 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
577 if (ranges_overlap (r->offset, r->length, offset, length))
578 return i;
579
580 return -1;
581}
582
bdf22206
AB
583/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
584 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
585 return non-zero.
586
587 It must always be the case that:
588 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
589
590 It is assumed that memory can be accessed from:
591 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
592 to:
593 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
594 / TARGET_CHAR_BIT) */
595static int
596memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
597 const gdb_byte *ptr2, size_t offset2_bits,
598 size_t length_bits)
599{
600 gdb_assert (offset1_bits % TARGET_CHAR_BIT
601 == offset2_bits % TARGET_CHAR_BIT);
602
603 if (offset1_bits % TARGET_CHAR_BIT != 0)
604 {
605 size_t bits;
606 gdb_byte mask, b1, b2;
607
608 /* The offset from the base pointers PTR1 and PTR2 is not a complete
609 number of bytes. A number of bits up to either the next exact
610 byte boundary, or LENGTH_BITS (which ever is sooner) will be
611 compared. */
612 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
613 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
614 mask = (1 << bits) - 1;
615
616 if (length_bits < bits)
617 {
618 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
619 bits = length_bits;
620 }
621
622 /* Now load the two bytes and mask off the bits we care about. */
623 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
624 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
625
626 if (b1 != b2)
627 return 1;
628
629 /* Now update the length and offsets to take account of the bits
630 we've just compared. */
631 length_bits -= bits;
632 offset1_bits += bits;
633 offset2_bits += bits;
634 }
635
636 if (length_bits % TARGET_CHAR_BIT != 0)
637 {
638 size_t bits;
639 size_t o1, o2;
640 gdb_byte mask, b1, b2;
641
642 /* The length is not an exact number of bytes. After the previous
643 IF.. block then the offsets are byte aligned, or the
644 length is zero (in which case this code is not reached). Compare
645 a number of bits at the end of the region, starting from an exact
646 byte boundary. */
647 bits = length_bits % TARGET_CHAR_BIT;
648 o1 = offset1_bits + length_bits - bits;
649 o2 = offset2_bits + length_bits - bits;
650
651 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
652 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
653
654 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
655 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
656
657 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
658 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
659
660 if (b1 != b2)
661 return 1;
662
663 length_bits -= bits;
664 }
665
666 if (length_bits > 0)
667 {
668 /* We've now taken care of any stray "bits" at the start, or end of
669 the region to compare, the remainder can be covered with a simple
670 memcmp. */
671 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
672 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
673 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
674
675 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
676 ptr2 + offset2_bits / TARGET_CHAR_BIT,
677 length_bits / TARGET_CHAR_BIT);
678 }
679
680 /* Length is zero, regions match. */
681 return 0;
682}
683
684/* Helper function for value_available_contents_eq. The only difference is
685 that this function is bit rather than byte based.
686
687 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
688 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
689 if the available bits match. */
690
691static int
692value_available_contents_bits_eq (const struct value *val1, int offset1,
693 const struct value *val2, int offset2,
694 int length)
c8c1c22f 695{
c8c1c22f 696 int idx1 = 0, idx2 = 0;
c8c1c22f 697
4eb59108 698 /* See function description in value.h. */
c8c1c22f
PA
699 gdb_assert (!val1->lazy && !val2->lazy);
700
c8c1c22f
PA
701 while (length > 0)
702 {
703 range_s *r1, *r2;
704 ULONGEST l1, h1;
705 ULONGEST l2, h2;
706
707 idx1 = find_first_range_overlap (val1->unavailable, idx1,
708 offset1, length);
709 idx2 = find_first_range_overlap (val2->unavailable, idx2,
710 offset2, length);
711
712 /* The usual case is for both values to be completely available. */
713 if (idx1 == -1 && idx2 == -1)
bdf22206
AB
714 return (memcmp_with_bit_offsets (val1->contents, offset1,
715 val2->contents, offset2,
716 length) == 0);
c8c1c22f
PA
717 /* The contents only match equal if the available set matches as
718 well. */
719 else if (idx1 == -1 || idx2 == -1)
720 return 0;
721
722 gdb_assert (idx1 != -1 && idx2 != -1);
723
724 r1 = VEC_index (range_s, val1->unavailable, idx1);
725 r2 = VEC_index (range_s, val2->unavailable, idx2);
726
727 /* Get the unavailable windows intersected by the incoming
728 ranges. The first and last ranges that overlap the argument
729 range may be wider than said incoming arguments ranges. */
730 l1 = max (offset1, r1->offset);
731 h1 = min (offset1 + length, r1->offset + r1->length);
732
733 l2 = max (offset2, r2->offset);
734 h2 = min (offset2 + length, r2->offset + r2->length);
735
736 /* Make them relative to the respective start offsets, so we can
737 compare them for equality. */
738 l1 -= offset1;
739 h1 -= offset1;
740
741 l2 -= offset2;
742 h2 -= offset2;
743
744 /* Different availability, no match. */
745 if (l1 != l2 || h1 != h2)
746 return 0;
747
748 /* Compare the _available_ contents. */
bdf22206
AB
749 if (memcmp_with_bit_offsets (val1->contents, offset1,
750 val2->contents, offset2, l1) != 0)
c8c1c22f
PA
751 return 0;
752
c8c1c22f
PA
753 length -= h1;
754 offset1 += h1;
755 offset2 += h1;
756 }
757
758 return 1;
759}
760
bdf22206
AB
761int
762value_available_contents_eq (const struct value *val1, int offset1,
763 const struct value *val2, int offset2,
764 int length)
765{
766 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
767 val2, offset2 * TARGET_CHAR_BIT,
768 length * TARGET_CHAR_BIT);
769}
770
581e13c1 771/* Prototypes for local functions. */
c906108c 772
a14ed312 773static void show_values (char *, int);
c906108c 774
a14ed312 775static void show_convenience (char *, int);
c906108c 776
c906108c
SS
777
778/* The value-history records all the values printed
779 by print commands during this session. Each chunk
780 records 60 consecutive values. The first chunk on
781 the chain records the most recent values.
782 The total number of values is in value_history_count. */
783
784#define VALUE_HISTORY_CHUNK 60
785
786struct value_history_chunk
c5aa993b
JM
787 {
788 struct value_history_chunk *next;
f23631e4 789 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 790 };
c906108c
SS
791
792/* Chain of chunks now in use. */
793
794static struct value_history_chunk *value_history_chain;
795
581e13c1 796static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 797
c906108c
SS
798\f
799/* List of all value objects currently allocated
800 (except for those released by calls to release_value)
801 This is so they can be freed after each command. */
802
f23631e4 803static struct value *all_values;
c906108c 804
3e3d7139
JG
805/* Allocate a lazy value for type TYPE. Its actual content is
806 "lazily" allocated too: the content field of the return value is
807 NULL; it will be allocated when it is fetched from the target. */
c906108c 808
f23631e4 809struct value *
3e3d7139 810allocate_value_lazy (struct type *type)
c906108c 811{
f23631e4 812 struct value *val;
c54eabfa
JK
813
814 /* Call check_typedef on our type to make sure that, if TYPE
815 is a TYPE_CODE_TYPEDEF, its length is set to the length
816 of the target type instead of zero. However, we do not
817 replace the typedef type by the target type, because we want
818 to keep the typedef in order to be able to set the VAL's type
819 description correctly. */
820 check_typedef (type);
c906108c 821
3e3d7139
JG
822 val = (struct value *) xzalloc (sizeof (struct value));
823 val->contents = NULL;
df407dfe 824 val->next = all_values;
c906108c 825 all_values = val;
df407dfe 826 val->type = type;
4754a64e 827 val->enclosing_type = type;
c906108c 828 VALUE_LVAL (val) = not_lval;
42ae5230 829 val->location.address = 0;
1df6926e 830 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
831 val->offset = 0;
832 val->bitpos = 0;
833 val->bitsize = 0;
9ee8fc9d 834 VALUE_REGNUM (val) = -1;
3e3d7139 835 val->lazy = 1;
feb13ab0 836 val->optimized_out = 0;
13c3b5f5 837 val->embedded_offset = 0;
b44d461b 838 val->pointed_to_offset = 0;
c906108c 839 val->modifiable = 1;
42be36b3 840 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
841
842 /* Values start out on the all_values chain. */
843 val->reference_count = 1;
844
c906108c
SS
845 return val;
846}
847
3e3d7139
JG
848/* Allocate the contents of VAL if it has not been allocated yet. */
849
548b762d 850static void
3e3d7139
JG
851allocate_value_contents (struct value *val)
852{
853 if (!val->contents)
854 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
855}
856
857/* Allocate a value and its contents for type TYPE. */
858
859struct value *
860allocate_value (struct type *type)
861{
862 struct value *val = allocate_value_lazy (type);
a109c7c1 863
3e3d7139
JG
864 allocate_value_contents (val);
865 val->lazy = 0;
866 return val;
867}
868
c906108c 869/* Allocate a value that has the correct length
938f5214 870 for COUNT repetitions of type TYPE. */
c906108c 871
f23631e4 872struct value *
fba45db2 873allocate_repeat_value (struct type *type, int count)
c906108c 874{
c5aa993b 875 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
876 /* FIXME-type-allocation: need a way to free this type when we are
877 done with it. */
e3506a9f
UW
878 struct type *array_type
879 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 880
e3506a9f 881 return allocate_value (array_type);
c906108c
SS
882}
883
5f5233d4
PA
884struct value *
885allocate_computed_value (struct type *type,
c8f2448a 886 const struct lval_funcs *funcs,
5f5233d4
PA
887 void *closure)
888{
41e8491f 889 struct value *v = allocate_value_lazy (type);
a109c7c1 890
5f5233d4
PA
891 VALUE_LVAL (v) = lval_computed;
892 v->location.computed.funcs = funcs;
893 v->location.computed.closure = closure;
5f5233d4
PA
894
895 return v;
896}
897
a7035dbb
JK
898/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
899
900struct value *
901allocate_optimized_out_value (struct type *type)
902{
903 struct value *retval = allocate_value_lazy (type);
904
905 set_value_optimized_out (retval, 1);
4f14910f 906 set_value_lazy (retval, 0);
a7035dbb
JK
907 return retval;
908}
909
df407dfe
AC
910/* Accessor methods. */
911
17cf0ecd
AC
912struct value *
913value_next (struct value *value)
914{
915 return value->next;
916}
917
df407dfe 918struct type *
0e03807e 919value_type (const struct value *value)
df407dfe
AC
920{
921 return value->type;
922}
04624583
AC
923void
924deprecated_set_value_type (struct value *value, struct type *type)
925{
926 value->type = type;
927}
df407dfe
AC
928
929int
0e03807e 930value_offset (const struct value *value)
df407dfe
AC
931{
932 return value->offset;
933}
f5cf64a7
AC
934void
935set_value_offset (struct value *value, int offset)
936{
937 value->offset = offset;
938}
df407dfe
AC
939
940int
0e03807e 941value_bitpos (const struct value *value)
df407dfe
AC
942{
943 return value->bitpos;
944}
9bbda503
AC
945void
946set_value_bitpos (struct value *value, int bit)
947{
948 value->bitpos = bit;
949}
df407dfe
AC
950
951int
0e03807e 952value_bitsize (const struct value *value)
df407dfe
AC
953{
954 return value->bitsize;
955}
9bbda503
AC
956void
957set_value_bitsize (struct value *value, int bit)
958{
959 value->bitsize = bit;
960}
df407dfe 961
4ea48cc1
DJ
962struct value *
963value_parent (struct value *value)
964{
965 return value->parent;
966}
967
53ba8333
JB
968/* See value.h. */
969
970void
971set_value_parent (struct value *value, struct value *parent)
972{
40501e00
TT
973 struct value *old = value->parent;
974
53ba8333 975 value->parent = parent;
40501e00
TT
976 if (parent != NULL)
977 value_incref (parent);
978 value_free (old);
53ba8333
JB
979}
980
fc1a4b47 981gdb_byte *
990a07ab
AC
982value_contents_raw (struct value *value)
983{
3e3d7139
JG
984 allocate_value_contents (value);
985 return value->contents + value->embedded_offset;
990a07ab
AC
986}
987
fc1a4b47 988gdb_byte *
990a07ab
AC
989value_contents_all_raw (struct value *value)
990{
3e3d7139
JG
991 allocate_value_contents (value);
992 return value->contents;
990a07ab
AC
993}
994
4754a64e
AC
995struct type *
996value_enclosing_type (struct value *value)
997{
998 return value->enclosing_type;
999}
1000
8264ba82
AG
1001/* Look at value.h for description. */
1002
1003struct type *
1004value_actual_type (struct value *value, int resolve_simple_types,
1005 int *real_type_found)
1006{
1007 struct value_print_options opts;
8264ba82
AG
1008 struct type *result;
1009
1010 get_user_print_options (&opts);
1011
1012 if (real_type_found)
1013 *real_type_found = 0;
1014 result = value_type (value);
1015 if (opts.objectprint)
1016 {
5e34c6c3
LM
1017 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1018 fetch its rtti type. */
1019 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1020 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1021 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1022 == TYPE_CODE_STRUCT)
8264ba82
AG
1023 {
1024 struct type *real_type;
1025
1026 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1027 if (real_type)
1028 {
1029 if (real_type_found)
1030 *real_type_found = 1;
1031 result = real_type;
1032 }
1033 }
1034 else if (resolve_simple_types)
1035 {
1036 if (real_type_found)
1037 *real_type_found = 1;
1038 result = value_enclosing_type (value);
1039 }
1040 }
1041
1042 return result;
1043}
1044
901461f8
PA
1045void
1046error_value_optimized_out (void)
1047{
1048 error (_("value has been optimized out"));
1049}
1050
0e03807e 1051static void
4e07d55f 1052require_not_optimized_out (const struct value *value)
0e03807e
TT
1053{
1054 if (value->optimized_out)
901461f8
PA
1055 {
1056 if (value->lval == lval_register)
1057 error (_("register has not been saved in frame"));
1058 else
1059 error_value_optimized_out ();
1060 }
0e03807e
TT
1061}
1062
4e07d55f
PA
1063static void
1064require_available (const struct value *value)
1065{
1066 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1067 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1068}
1069
fc1a4b47 1070const gdb_byte *
0e03807e 1071value_contents_for_printing (struct value *value)
46615f07
AC
1072{
1073 if (value->lazy)
1074 value_fetch_lazy (value);
3e3d7139 1075 return value->contents;
46615f07
AC
1076}
1077
de4127a3
PA
1078const gdb_byte *
1079value_contents_for_printing_const (const struct value *value)
1080{
1081 gdb_assert (!value->lazy);
1082 return value->contents;
1083}
1084
0e03807e
TT
1085const gdb_byte *
1086value_contents_all (struct value *value)
1087{
1088 const gdb_byte *result = value_contents_for_printing (value);
1089 require_not_optimized_out (value);
4e07d55f 1090 require_available (value);
0e03807e
TT
1091 return result;
1092}
1093
29976f3f
PA
1094/* Copy LENGTH bytes of SRC value's (all) contents
1095 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1096 contents, starting at DST_OFFSET. If unavailable contents are
1097 being copied from SRC, the corresponding DST contents are marked
1098 unavailable accordingly. Neither DST nor SRC may be lazy
1099 values.
1100
1101 It is assumed the contents of DST in the [DST_OFFSET,
1102 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1103
1104void
1105value_contents_copy_raw (struct value *dst, int dst_offset,
1106 struct value *src, int src_offset, int length)
1107{
1108 range_s *r;
1109 int i;
bdf22206 1110 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1111
1112 /* A lazy DST would make that this copy operation useless, since as
1113 soon as DST's contents were un-lazied (by a later value_contents
1114 call, say), the contents would be overwritten. A lazy SRC would
1115 mean we'd be copying garbage. */
1116 gdb_assert (!dst->lazy && !src->lazy);
1117
29976f3f
PA
1118 /* The overwritten DST range gets unavailability ORed in, not
1119 replaced. Make sure to remember to implement replacing if it
1120 turns out actually necessary. */
1121 gdb_assert (value_bytes_available (dst, dst_offset, length));
1122
39d37385
PA
1123 /* Copy the data. */
1124 memcpy (value_contents_all_raw (dst) + dst_offset,
1125 value_contents_all_raw (src) + src_offset,
1126 length);
1127
1128 /* Copy the meta-data, adjusted. */
bdf22206
AB
1129 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1130 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1131 bit_length = length * TARGET_CHAR_BIT;
39d37385
PA
1132 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1133 {
1134 ULONGEST h, l;
1135
bdf22206
AB
1136 l = max (r->offset, src_bit_offset);
1137 h = min (r->offset + r->length, src_bit_offset + bit_length);
39d37385
PA
1138
1139 if (l < h)
bdf22206
AB
1140 mark_value_bits_unavailable (dst,
1141 dst_bit_offset + (l - src_bit_offset),
1142 h - l);
39d37385
PA
1143 }
1144}
1145
29976f3f
PA
1146/* Copy LENGTH bytes of SRC value's (all) contents
1147 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1148 (all) contents, starting at DST_OFFSET. If unavailable contents
1149 are being copied from SRC, the corresponding DST contents are
1150 marked unavailable accordingly. DST must not be lazy. If SRC is
1151 lazy, it will be fetched now. If SRC is not valid (is optimized
1152 out), an error is thrown.
1153
1154 It is assumed the contents of DST in the [DST_OFFSET,
1155 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1156
1157void
1158value_contents_copy (struct value *dst, int dst_offset,
1159 struct value *src, int src_offset, int length)
1160{
1161 require_not_optimized_out (src);
1162
1163 if (src->lazy)
1164 value_fetch_lazy (src);
1165
1166 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1167}
1168
d69fe07e
AC
1169int
1170value_lazy (struct value *value)
1171{
1172 return value->lazy;
1173}
1174
dfa52d88
AC
1175void
1176set_value_lazy (struct value *value, int val)
1177{
1178 value->lazy = val;
1179}
1180
4e5d721f
DE
1181int
1182value_stack (struct value *value)
1183{
1184 return value->stack;
1185}
1186
1187void
1188set_value_stack (struct value *value, int val)
1189{
1190 value->stack = val;
1191}
1192
fc1a4b47 1193const gdb_byte *
0fd88904
AC
1194value_contents (struct value *value)
1195{
0e03807e
TT
1196 const gdb_byte *result = value_contents_writeable (value);
1197 require_not_optimized_out (value);
4e07d55f 1198 require_available (value);
0e03807e 1199 return result;
0fd88904
AC
1200}
1201
fc1a4b47 1202gdb_byte *
0fd88904
AC
1203value_contents_writeable (struct value *value)
1204{
1205 if (value->lazy)
1206 value_fetch_lazy (value);
fc0c53a0 1207 return value_contents_raw (value);
0fd88904
AC
1208}
1209
a6c442d8
MK
1210/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1211 this function is different from value_equal; in C the operator ==
1212 can return 0 even if the two values being compared are equal. */
1213
1214int
1215value_contents_equal (struct value *val1, struct value *val2)
1216{
1217 struct type *type1;
1218 struct type *type2;
a6c442d8
MK
1219
1220 type1 = check_typedef (value_type (val1));
1221 type2 = check_typedef (value_type (val2));
744a8059 1222 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1223 return 0;
1224
744a8059
SP
1225 return (memcmp (value_contents (val1), value_contents (val2),
1226 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1227}
1228
feb13ab0
AC
1229int
1230value_optimized_out (struct value *value)
1231{
691a26f5
AB
1232 /* We can only know if a value is optimized out once we have tried to
1233 fetch it. */
1234 if (!value->optimized_out && value->lazy)
1235 value_fetch_lazy (value);
1236
feb13ab0
AC
1237 return value->optimized_out;
1238}
1239
eca07816
JB
1240int
1241value_optimized_out_const (const struct value *value)
1242{
1243 return value->optimized_out;
1244}
1245
feb13ab0
AC
1246void
1247set_value_optimized_out (struct value *value, int val)
1248{
1249 value->optimized_out = val;
1250}
13c3b5f5 1251
0e03807e
TT
1252int
1253value_entirely_optimized_out (const struct value *value)
1254{
1255 if (!value->optimized_out)
1256 return 0;
1257 if (value->lval != lval_computed
ba19bb4d 1258 || !value->location.computed.funcs->check_any_valid)
0e03807e 1259 return 1;
b65c7efe 1260 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1261}
1262
1263int
1264value_bits_valid (const struct value *value, int offset, int length)
1265{
466c1fca
AB
1266 if (!value->optimized_out)
1267 return 1;
0e03807e
TT
1268 if (value->lval != lval_computed
1269 || !value->location.computed.funcs->check_validity)
466c1fca
AB
1270 return 0;
1271 return value->location.computed.funcs->check_validity (value, offset,
1272 length);
0e03807e
TT
1273}
1274
8cf6f0b1
TT
1275int
1276value_bits_synthetic_pointer (const struct value *value,
1277 int offset, int length)
1278{
e7303042 1279 if (value->lval != lval_computed
8cf6f0b1
TT
1280 || !value->location.computed.funcs->check_synthetic_pointer)
1281 return 0;
1282 return value->location.computed.funcs->check_synthetic_pointer (value,
1283 offset,
1284 length);
1285}
1286
13c3b5f5
AC
1287int
1288value_embedded_offset (struct value *value)
1289{
1290 return value->embedded_offset;
1291}
1292
1293void
1294set_value_embedded_offset (struct value *value, int val)
1295{
1296 value->embedded_offset = val;
1297}
b44d461b
AC
1298
1299int
1300value_pointed_to_offset (struct value *value)
1301{
1302 return value->pointed_to_offset;
1303}
1304
1305void
1306set_value_pointed_to_offset (struct value *value, int val)
1307{
1308 value->pointed_to_offset = val;
1309}
13bb5560 1310
c8f2448a 1311const struct lval_funcs *
a471c594 1312value_computed_funcs (const struct value *v)
5f5233d4 1313{
a471c594 1314 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1315
1316 return v->location.computed.funcs;
1317}
1318
1319void *
0e03807e 1320value_computed_closure (const struct value *v)
5f5233d4 1321{
0e03807e 1322 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1323
1324 return v->location.computed.closure;
1325}
1326
13bb5560
AC
1327enum lval_type *
1328deprecated_value_lval_hack (struct value *value)
1329{
1330 return &value->lval;
1331}
1332
a471c594
JK
1333enum lval_type
1334value_lval_const (const struct value *value)
1335{
1336 return value->lval;
1337}
1338
42ae5230 1339CORE_ADDR
de4127a3 1340value_address (const struct value *value)
42ae5230
TT
1341{
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component)
1344 return 0;
53ba8333
JB
1345 if (value->parent != NULL)
1346 return value_address (value->parent) + value->offset;
1347 else
1348 return value->location.address + value->offset;
42ae5230
TT
1349}
1350
1351CORE_ADDR
1352value_raw_address (struct value *value)
1353{
1354 if (value->lval == lval_internalvar
1355 || value->lval == lval_internalvar_component)
1356 return 0;
1357 return value->location.address;
1358}
1359
1360void
1361set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1362{
42ae5230
TT
1363 gdb_assert (value->lval != lval_internalvar
1364 && value->lval != lval_internalvar_component);
1365 value->location.address = addr;
13bb5560
AC
1366}
1367
1368struct internalvar **
1369deprecated_value_internalvar_hack (struct value *value)
1370{
1371 return &value->location.internalvar;
1372}
1373
1374struct frame_id *
1375deprecated_value_frame_id_hack (struct value *value)
1376{
1377 return &value->frame_id;
1378}
1379
1380short *
1381deprecated_value_regnum_hack (struct value *value)
1382{
1383 return &value->regnum;
1384}
88e3b34b
AC
1385
1386int
1387deprecated_value_modifiable (struct value *value)
1388{
1389 return value->modifiable;
1390}
990a07ab 1391\f
c906108c
SS
1392/* Return a mark in the value chain. All values allocated after the
1393 mark is obtained (except for those released) are subject to being freed
1394 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1395struct value *
fba45db2 1396value_mark (void)
c906108c
SS
1397{
1398 return all_values;
1399}
1400
828d3400
DJ
1401/* Take a reference to VAL. VAL will not be deallocated until all
1402 references are released. */
1403
1404void
1405value_incref (struct value *val)
1406{
1407 val->reference_count++;
1408}
1409
1410/* Release a reference to VAL, which was acquired with value_incref.
1411 This function is also called to deallocate values from the value
1412 chain. */
1413
3e3d7139
JG
1414void
1415value_free (struct value *val)
1416{
1417 if (val)
5f5233d4 1418 {
828d3400
DJ
1419 gdb_assert (val->reference_count > 0);
1420 val->reference_count--;
1421 if (val->reference_count > 0)
1422 return;
1423
4ea48cc1
DJ
1424 /* If there's an associated parent value, drop our reference to
1425 it. */
1426 if (val->parent != NULL)
1427 value_free (val->parent);
1428
5f5233d4
PA
1429 if (VALUE_LVAL (val) == lval_computed)
1430 {
c8f2448a 1431 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1432
1433 if (funcs->free_closure)
1434 funcs->free_closure (val);
1435 }
1436
1437 xfree (val->contents);
4e07d55f 1438 VEC_free (range_s, val->unavailable);
5f5233d4 1439 }
3e3d7139
JG
1440 xfree (val);
1441}
1442
c906108c
SS
1443/* Free all values allocated since MARK was obtained by value_mark
1444 (except for those released). */
1445void
f23631e4 1446value_free_to_mark (struct value *mark)
c906108c 1447{
f23631e4
AC
1448 struct value *val;
1449 struct value *next;
c906108c
SS
1450
1451 for (val = all_values; val && val != mark; val = next)
1452 {
df407dfe 1453 next = val->next;
e848a8a5 1454 val->released = 1;
c906108c
SS
1455 value_free (val);
1456 }
1457 all_values = val;
1458}
1459
1460/* Free all the values that have been allocated (except for those released).
725e88af
DE
1461 Call after each command, successful or not.
1462 In practice this is called before each command, which is sufficient. */
c906108c
SS
1463
1464void
fba45db2 1465free_all_values (void)
c906108c 1466{
f23631e4
AC
1467 struct value *val;
1468 struct value *next;
c906108c
SS
1469
1470 for (val = all_values; val; val = next)
1471 {
df407dfe 1472 next = val->next;
e848a8a5 1473 val->released = 1;
c906108c
SS
1474 value_free (val);
1475 }
1476
1477 all_values = 0;
1478}
1479
0cf6dd15
TJB
1480/* Frees all the elements in a chain of values. */
1481
1482void
1483free_value_chain (struct value *v)
1484{
1485 struct value *next;
1486
1487 for (; v; v = next)
1488 {
1489 next = value_next (v);
1490 value_free (v);
1491 }
1492}
1493
c906108c
SS
1494/* Remove VAL from the chain all_values
1495 so it will not be freed automatically. */
1496
1497void
f23631e4 1498release_value (struct value *val)
c906108c 1499{
f23631e4 1500 struct value *v;
c906108c
SS
1501
1502 if (all_values == val)
1503 {
1504 all_values = val->next;
06a64a0b 1505 val->next = NULL;
e848a8a5 1506 val->released = 1;
c906108c
SS
1507 return;
1508 }
1509
1510 for (v = all_values; v; v = v->next)
1511 {
1512 if (v->next == val)
1513 {
1514 v->next = val->next;
06a64a0b 1515 val->next = NULL;
e848a8a5 1516 val->released = 1;
c906108c
SS
1517 break;
1518 }
1519 }
1520}
1521
e848a8a5
TT
1522/* If the value is not already released, release it.
1523 If the value is already released, increment its reference count.
1524 That is, this function ensures that the value is released from the
1525 value chain and that the caller owns a reference to it. */
1526
1527void
1528release_value_or_incref (struct value *val)
1529{
1530 if (val->released)
1531 value_incref (val);
1532 else
1533 release_value (val);
1534}
1535
c906108c 1536/* Release all values up to mark */
f23631e4
AC
1537struct value *
1538value_release_to_mark (struct value *mark)
c906108c 1539{
f23631e4
AC
1540 struct value *val;
1541 struct value *next;
c906108c 1542
df407dfe 1543 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1544 {
1545 if (next->next == mark)
1546 {
1547 all_values = next->next;
1548 next->next = NULL;
1549 return val;
1550 }
1551 next->released = 1;
1552 }
c906108c
SS
1553 all_values = 0;
1554 return val;
1555}
1556
1557/* Return a copy of the value ARG.
1558 It contains the same contents, for same memory address,
1559 but it's a different block of storage. */
1560
f23631e4
AC
1561struct value *
1562value_copy (struct value *arg)
c906108c 1563{
4754a64e 1564 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1565 struct value *val;
1566
1567 if (value_lazy (arg))
1568 val = allocate_value_lazy (encl_type);
1569 else
1570 val = allocate_value (encl_type);
df407dfe 1571 val->type = arg->type;
c906108c 1572 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1573 val->location = arg->location;
df407dfe
AC
1574 val->offset = arg->offset;
1575 val->bitpos = arg->bitpos;
1576 val->bitsize = arg->bitsize;
1df6926e 1577 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1578 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1579 val->lazy = arg->lazy;
feb13ab0 1580 val->optimized_out = arg->optimized_out;
13c3b5f5 1581 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1582 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1583 val->modifiable = arg->modifiable;
d69fe07e 1584 if (!value_lazy (val))
c906108c 1585 {
990a07ab 1586 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1587 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1588
1589 }
4e07d55f 1590 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1591 set_value_parent (val, arg->parent);
5f5233d4
PA
1592 if (VALUE_LVAL (val) == lval_computed)
1593 {
c8f2448a 1594 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1595
1596 if (funcs->copy_closure)
1597 val->location.computed.closure = funcs->copy_closure (val);
1598 }
c906108c
SS
1599 return val;
1600}
74bcbdf3 1601
c37f7098
KW
1602/* Return a version of ARG that is non-lvalue. */
1603
1604struct value *
1605value_non_lval (struct value *arg)
1606{
1607 if (VALUE_LVAL (arg) != not_lval)
1608 {
1609 struct type *enc_type = value_enclosing_type (arg);
1610 struct value *val = allocate_value (enc_type);
1611
1612 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1613 TYPE_LENGTH (enc_type));
1614 val->type = arg->type;
1615 set_value_embedded_offset (val, value_embedded_offset (arg));
1616 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1617 return val;
1618 }
1619 return arg;
1620}
1621
74bcbdf3 1622void
0e03807e
TT
1623set_value_component_location (struct value *component,
1624 const struct value *whole)
74bcbdf3 1625{
0e03807e 1626 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1627 VALUE_LVAL (component) = lval_internalvar_component;
1628 else
0e03807e 1629 VALUE_LVAL (component) = whole->lval;
5f5233d4 1630
74bcbdf3 1631 component->location = whole->location;
0e03807e 1632 if (whole->lval == lval_computed)
5f5233d4 1633 {
c8f2448a 1634 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1635
1636 if (funcs->copy_closure)
1637 component->location.computed.closure = funcs->copy_closure (whole);
1638 }
74bcbdf3
PA
1639}
1640
c906108c
SS
1641\f
1642/* Access to the value history. */
1643
1644/* Record a new value in the value history.
eddf0bae 1645 Returns the absolute history index of the entry. */
c906108c
SS
1646
1647int
f23631e4 1648record_latest_value (struct value *val)
c906108c
SS
1649{
1650 int i;
1651
1652 /* We don't want this value to have anything to do with the inferior anymore.
1653 In particular, "set $1 = 50" should not affect the variable from which
1654 the value was taken, and fast watchpoints should be able to assume that
1655 a value on the value history never changes. */
d69fe07e 1656 if (value_lazy (val))
c906108c
SS
1657 value_fetch_lazy (val);
1658 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1659 from. This is a bit dubious, because then *&$1 does not just return $1
1660 but the current contents of that location. c'est la vie... */
1661 val->modifiable = 0;
1662 release_value (val);
1663
1664 /* Here we treat value_history_count as origin-zero
1665 and applying to the value being stored now. */
1666
1667 i = value_history_count % VALUE_HISTORY_CHUNK;
1668 if (i == 0)
1669 {
f23631e4 1670 struct value_history_chunk *new
a109c7c1
MS
1671 = (struct value_history_chunk *)
1672
c5aa993b 1673 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1674 memset (new->values, 0, sizeof new->values);
1675 new->next = value_history_chain;
1676 value_history_chain = new;
1677 }
1678
1679 value_history_chain->values[i] = val;
1680
1681 /* Now we regard value_history_count as origin-one
1682 and applying to the value just stored. */
1683
1684 return ++value_history_count;
1685}
1686
1687/* Return a copy of the value in the history with sequence number NUM. */
1688
f23631e4 1689struct value *
fba45db2 1690access_value_history (int num)
c906108c 1691{
f23631e4 1692 struct value_history_chunk *chunk;
52f0bd74
AC
1693 int i;
1694 int absnum = num;
c906108c
SS
1695
1696 if (absnum <= 0)
1697 absnum += value_history_count;
1698
1699 if (absnum <= 0)
1700 {
1701 if (num == 0)
8a3fe4f8 1702 error (_("The history is empty."));
c906108c 1703 else if (num == 1)
8a3fe4f8 1704 error (_("There is only one value in the history."));
c906108c 1705 else
8a3fe4f8 1706 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1707 }
1708 if (absnum > value_history_count)
8a3fe4f8 1709 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1710
1711 absnum--;
1712
1713 /* Now absnum is always absolute and origin zero. */
1714
1715 chunk = value_history_chain;
3e43a32a
MS
1716 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1717 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1718 i > 0; i--)
1719 chunk = chunk->next;
1720
1721 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1722}
1723
c906108c 1724static void
fba45db2 1725show_values (char *num_exp, int from_tty)
c906108c 1726{
52f0bd74 1727 int i;
f23631e4 1728 struct value *val;
c906108c
SS
1729 static int num = 1;
1730
1731 if (num_exp)
1732 {
f132ba9d
TJB
1733 /* "show values +" should print from the stored position.
1734 "show values <exp>" should print around value number <exp>. */
c906108c 1735 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1736 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1737 }
1738 else
1739 {
f132ba9d 1740 /* "show values" means print the last 10 values. */
c906108c
SS
1741 num = value_history_count - 9;
1742 }
1743
1744 if (num <= 0)
1745 num = 1;
1746
1747 for (i = num; i < num + 10 && i <= value_history_count; i++)
1748 {
79a45b7d 1749 struct value_print_options opts;
a109c7c1 1750
c906108c 1751 val = access_value_history (i);
a3f17187 1752 printf_filtered (("$%d = "), i);
79a45b7d
TT
1753 get_user_print_options (&opts);
1754 value_print (val, gdb_stdout, &opts);
a3f17187 1755 printf_filtered (("\n"));
c906108c
SS
1756 }
1757
f132ba9d 1758 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1759 num += 10;
1760
1761 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1762 "show values +". If num_exp is null, this is unnecessary, since
1763 "show values +" is not useful after "show values". */
c906108c
SS
1764 if (from_tty && num_exp)
1765 {
1766 num_exp[0] = '+';
1767 num_exp[1] = '\0';
1768 }
1769}
1770\f
1771/* Internal variables. These are variables within the debugger
1772 that hold values assigned by debugger commands.
1773 The user refers to them with a '$' prefix
1774 that does not appear in the variable names stored internally. */
1775
4fa62494
UW
1776struct internalvar
1777{
1778 struct internalvar *next;
1779 char *name;
4fa62494 1780
78267919
UW
1781 /* We support various different kinds of content of an internal variable.
1782 enum internalvar_kind specifies the kind, and union internalvar_data
1783 provides the data associated with this particular kind. */
1784
1785 enum internalvar_kind
1786 {
1787 /* The internal variable is empty. */
1788 INTERNALVAR_VOID,
1789
1790 /* The value of the internal variable is provided directly as
1791 a GDB value object. */
1792 INTERNALVAR_VALUE,
1793
1794 /* A fresh value is computed via a call-back routine on every
1795 access to the internal variable. */
1796 INTERNALVAR_MAKE_VALUE,
4fa62494 1797
78267919
UW
1798 /* The internal variable holds a GDB internal convenience function. */
1799 INTERNALVAR_FUNCTION,
1800
cab0c772
UW
1801 /* The variable holds an integer value. */
1802 INTERNALVAR_INTEGER,
1803
78267919
UW
1804 /* The variable holds a GDB-provided string. */
1805 INTERNALVAR_STRING,
1806
1807 } kind;
4fa62494 1808
4fa62494
UW
1809 union internalvar_data
1810 {
78267919
UW
1811 /* A value object used with INTERNALVAR_VALUE. */
1812 struct value *value;
1813
1814 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1815 struct
1816 {
1817 /* The functions to call. */
1818 const struct internalvar_funcs *functions;
1819
1820 /* The function's user-data. */
1821 void *data;
1822 } make_value;
78267919
UW
1823
1824 /* The internal function used with INTERNALVAR_FUNCTION. */
1825 struct
1826 {
1827 struct internal_function *function;
1828 /* True if this is the canonical name for the function. */
1829 int canonical;
1830 } fn;
1831
cab0c772 1832 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1833 struct
1834 {
1835 /* If type is non-NULL, it will be used as the type to generate
1836 a value for this internal variable. If type is NULL, a default
1837 integer type for the architecture is used. */
1838 struct type *type;
cab0c772
UW
1839 LONGEST val;
1840 } integer;
1841
78267919
UW
1842 /* A string value used with INTERNALVAR_STRING. */
1843 char *string;
4fa62494
UW
1844 } u;
1845};
1846
c906108c
SS
1847static struct internalvar *internalvars;
1848
3e43a32a
MS
1849/* If the variable does not already exist create it and give it the
1850 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1851static void
1852init_if_undefined_command (char* args, int from_tty)
1853{
1854 struct internalvar* intvar;
1855
1856 /* Parse the expression - this is taken from set_command(). */
1857 struct expression *expr = parse_expression (args);
1858 register struct cleanup *old_chain =
1859 make_cleanup (free_current_contents, &expr);
1860
1861 /* Validate the expression.
1862 Was the expression an assignment?
1863 Or even an expression at all? */
1864 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1865 error (_("Init-if-undefined requires an assignment expression."));
1866
1867 /* Extract the variable from the parsed expression.
1868 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1869 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1870 error (_("The first parameter to init-if-undefined "
1871 "should be a GDB variable."));
53e5f3cf
AS
1872 intvar = expr->elts[2].internalvar;
1873
1874 /* Only evaluate the expression if the lvalue is void.
1875 This may still fail if the expresssion is invalid. */
78267919 1876 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1877 evaluate_expression (expr);
1878
1879 do_cleanups (old_chain);
1880}
1881
1882
c906108c
SS
1883/* Look up an internal variable with name NAME. NAME should not
1884 normally include a dollar sign.
1885
1886 If the specified internal variable does not exist,
c4a3d09a 1887 the return value is NULL. */
c906108c
SS
1888
1889struct internalvar *
bc3b79fd 1890lookup_only_internalvar (const char *name)
c906108c 1891{
52f0bd74 1892 struct internalvar *var;
c906108c
SS
1893
1894 for (var = internalvars; var; var = var->next)
5cb316ef 1895 if (strcmp (var->name, name) == 0)
c906108c
SS
1896 return var;
1897
c4a3d09a
MF
1898 return NULL;
1899}
1900
d55637df
TT
1901/* Complete NAME by comparing it to the names of internal variables.
1902 Returns a vector of newly allocated strings, or NULL if no matches
1903 were found. */
1904
1905VEC (char_ptr) *
1906complete_internalvar (const char *name)
1907{
1908 VEC (char_ptr) *result = NULL;
1909 struct internalvar *var;
1910 int len;
1911
1912 len = strlen (name);
1913
1914 for (var = internalvars; var; var = var->next)
1915 if (strncmp (var->name, name, len) == 0)
1916 {
1917 char *r = xstrdup (var->name);
1918
1919 VEC_safe_push (char_ptr, result, r);
1920 }
1921
1922 return result;
1923}
c4a3d09a
MF
1924
1925/* Create an internal variable with name NAME and with a void value.
1926 NAME should not normally include a dollar sign. */
1927
1928struct internalvar *
bc3b79fd 1929create_internalvar (const char *name)
c4a3d09a
MF
1930{
1931 struct internalvar *var;
a109c7c1 1932
c906108c 1933 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1934 var->name = concat (name, (char *)NULL);
78267919 1935 var->kind = INTERNALVAR_VOID;
c906108c
SS
1936 var->next = internalvars;
1937 internalvars = var;
1938 return var;
1939}
1940
4aa995e1
PA
1941/* Create an internal variable with name NAME and register FUN as the
1942 function that value_of_internalvar uses to create a value whenever
1943 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1944 dollar sign. DATA is passed uninterpreted to FUN when it is
1945 called. CLEANUP, if not NULL, is called when the internal variable
1946 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1947
1948struct internalvar *
22d2b532
SDJ
1949create_internalvar_type_lazy (const char *name,
1950 const struct internalvar_funcs *funcs,
1951 void *data)
4aa995e1 1952{
4fa62494 1953 struct internalvar *var = create_internalvar (name);
a109c7c1 1954
78267919 1955 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1956 var->u.make_value.functions = funcs;
1957 var->u.make_value.data = data;
4aa995e1
PA
1958 return var;
1959}
c4a3d09a 1960
22d2b532
SDJ
1961/* See documentation in value.h. */
1962
1963int
1964compile_internalvar_to_ax (struct internalvar *var,
1965 struct agent_expr *expr,
1966 struct axs_value *value)
1967{
1968 if (var->kind != INTERNALVAR_MAKE_VALUE
1969 || var->u.make_value.functions->compile_to_ax == NULL)
1970 return 0;
1971
1972 var->u.make_value.functions->compile_to_ax (var, expr, value,
1973 var->u.make_value.data);
1974 return 1;
1975}
1976
c4a3d09a
MF
1977/* Look up an internal variable with name NAME. NAME should not
1978 normally include a dollar sign.
1979
1980 If the specified internal variable does not exist,
1981 one is created, with a void value. */
1982
1983struct internalvar *
bc3b79fd 1984lookup_internalvar (const char *name)
c4a3d09a
MF
1985{
1986 struct internalvar *var;
1987
1988 var = lookup_only_internalvar (name);
1989 if (var)
1990 return var;
1991
1992 return create_internalvar (name);
1993}
1994
78267919
UW
1995/* Return current value of internal variable VAR. For variables that
1996 are not inherently typed, use a value type appropriate for GDBARCH. */
1997
f23631e4 1998struct value *
78267919 1999value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2000{
f23631e4 2001 struct value *val;
0914bcdb
SS
2002 struct trace_state_variable *tsv;
2003
2004 /* If there is a trace state variable of the same name, assume that
2005 is what we really want to see. */
2006 tsv = find_trace_state_variable (var->name);
2007 if (tsv)
2008 {
2009 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2010 &(tsv->value));
2011 if (tsv->value_known)
2012 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2013 tsv->value);
2014 else
2015 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2016 return val;
2017 }
c906108c 2018
78267919 2019 switch (var->kind)
5f5233d4 2020 {
78267919
UW
2021 case INTERNALVAR_VOID:
2022 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2023 break;
4fa62494 2024
78267919
UW
2025 case INTERNALVAR_FUNCTION:
2026 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2027 break;
4fa62494 2028
cab0c772
UW
2029 case INTERNALVAR_INTEGER:
2030 if (!var->u.integer.type)
78267919 2031 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2032 var->u.integer.val);
78267919 2033 else
cab0c772
UW
2034 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2035 break;
2036
78267919
UW
2037 case INTERNALVAR_STRING:
2038 val = value_cstring (var->u.string, strlen (var->u.string),
2039 builtin_type (gdbarch)->builtin_char);
2040 break;
4fa62494 2041
78267919
UW
2042 case INTERNALVAR_VALUE:
2043 val = value_copy (var->u.value);
4aa995e1
PA
2044 if (value_lazy (val))
2045 value_fetch_lazy (val);
78267919 2046 break;
4aa995e1 2047
78267919 2048 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2049 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2050 var->u.make_value.data);
78267919
UW
2051 break;
2052
2053 default:
9b20d036 2054 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2055 }
2056
2057 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2058 on this value go back to affect the original internal variable.
2059
2060 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2061 no underlying modifyable state in the internal variable.
2062
2063 Likewise, if the variable's value is a computed lvalue, we want
2064 references to it to produce another computed lvalue, where
2065 references and assignments actually operate through the
2066 computed value's functions.
2067
2068 This means that internal variables with computed values
2069 behave a little differently from other internal variables:
2070 assignments to them don't just replace the previous value
2071 altogether. At the moment, this seems like the behavior we
2072 want. */
2073
2074 if (var->kind != INTERNALVAR_MAKE_VALUE
2075 && val->lval != lval_computed)
2076 {
2077 VALUE_LVAL (val) = lval_internalvar;
2078 VALUE_INTERNALVAR (val) = var;
5f5233d4 2079 }
d3c139e9 2080
4fa62494
UW
2081 return val;
2082}
d3c139e9 2083
4fa62494
UW
2084int
2085get_internalvar_integer (struct internalvar *var, LONGEST *result)
2086{
3158c6ed 2087 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2088 {
cab0c772
UW
2089 *result = var->u.integer.val;
2090 return 1;
3158c6ed 2091 }
d3c139e9 2092
3158c6ed
PA
2093 if (var->kind == INTERNALVAR_VALUE)
2094 {
2095 struct type *type = check_typedef (value_type (var->u.value));
2096
2097 if (TYPE_CODE (type) == TYPE_CODE_INT)
2098 {
2099 *result = value_as_long (var->u.value);
2100 return 1;
2101 }
4fa62494 2102 }
3158c6ed
PA
2103
2104 return 0;
4fa62494 2105}
d3c139e9 2106
4fa62494
UW
2107static int
2108get_internalvar_function (struct internalvar *var,
2109 struct internal_function **result)
2110{
78267919 2111 switch (var->kind)
d3c139e9 2112 {
78267919
UW
2113 case INTERNALVAR_FUNCTION:
2114 *result = var->u.fn.function;
4fa62494 2115 return 1;
d3c139e9 2116
4fa62494
UW
2117 default:
2118 return 0;
2119 }
c906108c
SS
2120}
2121
2122void
fba45db2 2123set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2124 int bitsize, struct value *newval)
c906108c 2125{
4fa62494 2126 gdb_byte *addr;
c906108c 2127
78267919 2128 switch (var->kind)
4fa62494 2129 {
78267919
UW
2130 case INTERNALVAR_VALUE:
2131 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2132
2133 if (bitsize)
50810684 2134 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2135 value_as_long (newval), bitpos, bitsize);
2136 else
2137 memcpy (addr + offset, value_contents (newval),
2138 TYPE_LENGTH (value_type (newval)));
2139 break;
78267919
UW
2140
2141 default:
2142 /* We can never get a component of any other kind. */
9b20d036 2143 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2144 }
c906108c
SS
2145}
2146
2147void
f23631e4 2148set_internalvar (struct internalvar *var, struct value *val)
c906108c 2149{
78267919 2150 enum internalvar_kind new_kind;
4fa62494 2151 union internalvar_data new_data = { 0 };
c906108c 2152
78267919 2153 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2154 error (_("Cannot overwrite convenience function %s"), var->name);
2155
4fa62494 2156 /* Prepare new contents. */
78267919 2157 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2158 {
2159 case TYPE_CODE_VOID:
78267919 2160 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2161 break;
2162
2163 case TYPE_CODE_INTERNAL_FUNCTION:
2164 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2165 new_kind = INTERNALVAR_FUNCTION;
2166 get_internalvar_function (VALUE_INTERNALVAR (val),
2167 &new_data.fn.function);
2168 /* Copies created here are never canonical. */
4fa62494
UW
2169 break;
2170
4fa62494 2171 default:
78267919
UW
2172 new_kind = INTERNALVAR_VALUE;
2173 new_data.value = value_copy (val);
2174 new_data.value->modifiable = 1;
4fa62494
UW
2175
2176 /* Force the value to be fetched from the target now, to avoid problems
2177 later when this internalvar is referenced and the target is gone or
2178 has changed. */
78267919
UW
2179 if (value_lazy (new_data.value))
2180 value_fetch_lazy (new_data.value);
4fa62494
UW
2181
2182 /* Release the value from the value chain to prevent it from being
2183 deleted by free_all_values. From here on this function should not
2184 call error () until new_data is installed into the var->u to avoid
2185 leaking memory. */
78267919 2186 release_value (new_data.value);
4fa62494
UW
2187 break;
2188 }
2189
2190 /* Clean up old contents. */
2191 clear_internalvar (var);
2192
2193 /* Switch over. */
78267919 2194 var->kind = new_kind;
4fa62494 2195 var->u = new_data;
c906108c
SS
2196 /* End code which must not call error(). */
2197}
2198
4fa62494
UW
2199void
2200set_internalvar_integer (struct internalvar *var, LONGEST l)
2201{
2202 /* Clean up old contents. */
2203 clear_internalvar (var);
2204
cab0c772
UW
2205 var->kind = INTERNALVAR_INTEGER;
2206 var->u.integer.type = NULL;
2207 var->u.integer.val = l;
78267919
UW
2208}
2209
2210void
2211set_internalvar_string (struct internalvar *var, const char *string)
2212{
2213 /* Clean up old contents. */
2214 clear_internalvar (var);
2215
2216 var->kind = INTERNALVAR_STRING;
2217 var->u.string = xstrdup (string);
4fa62494
UW
2218}
2219
2220static void
2221set_internalvar_function (struct internalvar *var, struct internal_function *f)
2222{
2223 /* Clean up old contents. */
2224 clear_internalvar (var);
2225
78267919
UW
2226 var->kind = INTERNALVAR_FUNCTION;
2227 var->u.fn.function = f;
2228 var->u.fn.canonical = 1;
2229 /* Variables installed here are always the canonical version. */
4fa62494
UW
2230}
2231
2232void
2233clear_internalvar (struct internalvar *var)
2234{
2235 /* Clean up old contents. */
78267919 2236 switch (var->kind)
4fa62494 2237 {
78267919
UW
2238 case INTERNALVAR_VALUE:
2239 value_free (var->u.value);
2240 break;
2241
2242 case INTERNALVAR_STRING:
2243 xfree (var->u.string);
4fa62494
UW
2244 break;
2245
22d2b532
SDJ
2246 case INTERNALVAR_MAKE_VALUE:
2247 if (var->u.make_value.functions->destroy != NULL)
2248 var->u.make_value.functions->destroy (var->u.make_value.data);
2249 break;
2250
4fa62494 2251 default:
4fa62494
UW
2252 break;
2253 }
2254
78267919
UW
2255 /* Reset to void kind. */
2256 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2257}
2258
c906108c 2259char *
fba45db2 2260internalvar_name (struct internalvar *var)
c906108c
SS
2261{
2262 return var->name;
2263}
2264
4fa62494
UW
2265static struct internal_function *
2266create_internal_function (const char *name,
2267 internal_function_fn handler, void *cookie)
bc3b79fd 2268{
bc3b79fd 2269 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2270
bc3b79fd
TJB
2271 ifn->name = xstrdup (name);
2272 ifn->handler = handler;
2273 ifn->cookie = cookie;
4fa62494 2274 return ifn;
bc3b79fd
TJB
2275}
2276
2277char *
2278value_internal_function_name (struct value *val)
2279{
4fa62494
UW
2280 struct internal_function *ifn;
2281 int result;
2282
2283 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2284 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2285 gdb_assert (result);
2286
bc3b79fd
TJB
2287 return ifn->name;
2288}
2289
2290struct value *
d452c4bc
UW
2291call_internal_function (struct gdbarch *gdbarch,
2292 const struct language_defn *language,
2293 struct value *func, int argc, struct value **argv)
bc3b79fd 2294{
4fa62494
UW
2295 struct internal_function *ifn;
2296 int result;
2297
2298 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2299 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2300 gdb_assert (result);
2301
d452c4bc 2302 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2303}
2304
2305/* The 'function' command. This does nothing -- it is just a
2306 placeholder to let "help function NAME" work. This is also used as
2307 the implementation of the sub-command that is created when
2308 registering an internal function. */
2309static void
2310function_command (char *command, int from_tty)
2311{
2312 /* Do nothing. */
2313}
2314
2315/* Clean up if an internal function's command is destroyed. */
2316static void
2317function_destroyer (struct cmd_list_element *self, void *ignore)
2318{
6f937416 2319 xfree ((char *) self->name);
bc3b79fd
TJB
2320 xfree (self->doc);
2321}
2322
2323/* Add a new internal function. NAME is the name of the function; DOC
2324 is a documentation string describing the function. HANDLER is
2325 called when the function is invoked. COOKIE is an arbitrary
2326 pointer which is passed to HANDLER and is intended for "user
2327 data". */
2328void
2329add_internal_function (const char *name, const char *doc,
2330 internal_function_fn handler, void *cookie)
2331{
2332 struct cmd_list_element *cmd;
4fa62494 2333 struct internal_function *ifn;
bc3b79fd 2334 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2335
2336 ifn = create_internal_function (name, handler, cookie);
2337 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2338
2339 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2340 &functionlist);
2341 cmd->destroyer = function_destroyer;
2342}
2343
ae5a43e0
DJ
2344/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2345 prevent cycles / duplicates. */
2346
4e7a5ef5 2347void
ae5a43e0
DJ
2348preserve_one_value (struct value *value, struct objfile *objfile,
2349 htab_t copied_types)
2350{
2351 if (TYPE_OBJFILE (value->type) == objfile)
2352 value->type = copy_type_recursive (objfile, value->type, copied_types);
2353
2354 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2355 value->enclosing_type = copy_type_recursive (objfile,
2356 value->enclosing_type,
2357 copied_types);
2358}
2359
78267919
UW
2360/* Likewise for internal variable VAR. */
2361
2362static void
2363preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2364 htab_t copied_types)
2365{
2366 switch (var->kind)
2367 {
cab0c772
UW
2368 case INTERNALVAR_INTEGER:
2369 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2370 var->u.integer.type
2371 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2372 break;
2373
78267919
UW
2374 case INTERNALVAR_VALUE:
2375 preserve_one_value (var->u.value, objfile, copied_types);
2376 break;
2377 }
2378}
2379
ae5a43e0
DJ
2380/* Update the internal variables and value history when OBJFILE is
2381 discarded; we must copy the types out of the objfile. New global types
2382 will be created for every convenience variable which currently points to
2383 this objfile's types, and the convenience variables will be adjusted to
2384 use the new global types. */
c906108c
SS
2385
2386void
ae5a43e0 2387preserve_values (struct objfile *objfile)
c906108c 2388{
ae5a43e0
DJ
2389 htab_t copied_types;
2390 struct value_history_chunk *cur;
52f0bd74 2391 struct internalvar *var;
ae5a43e0 2392 int i;
c906108c 2393
ae5a43e0
DJ
2394 /* Create the hash table. We allocate on the objfile's obstack, since
2395 it is soon to be deleted. */
2396 copied_types = create_copied_types_hash (objfile);
2397
2398 for (cur = value_history_chain; cur; cur = cur->next)
2399 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2400 if (cur->values[i])
2401 preserve_one_value (cur->values[i], objfile, copied_types);
2402
2403 for (var = internalvars; var; var = var->next)
78267919 2404 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2405
6dddc817 2406 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2407
ae5a43e0 2408 htab_delete (copied_types);
c906108c
SS
2409}
2410
2411static void
fba45db2 2412show_convenience (char *ignore, int from_tty)
c906108c 2413{
e17c207e 2414 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2415 struct internalvar *var;
c906108c 2416 int varseen = 0;
79a45b7d 2417 struct value_print_options opts;
c906108c 2418
79a45b7d 2419 get_user_print_options (&opts);
c906108c
SS
2420 for (var = internalvars; var; var = var->next)
2421 {
c709acd1
PA
2422 volatile struct gdb_exception ex;
2423
c906108c
SS
2424 if (!varseen)
2425 {
2426 varseen = 1;
2427 }
a3f17187 2428 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2429
2430 TRY_CATCH (ex, RETURN_MASK_ERROR)
2431 {
2432 struct value *val;
2433
2434 val = value_of_internalvar (gdbarch, var);
2435 value_print (val, gdb_stdout, &opts);
2436 }
2437 if (ex.reason < 0)
2438 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2439 printf_filtered (("\n"));
c906108c
SS
2440 }
2441 if (!varseen)
f47f77df
DE
2442 {
2443 /* This text does not mention convenience functions on purpose.
2444 The user can't create them except via Python, and if Python support
2445 is installed this message will never be printed ($_streq will
2446 exist). */
2447 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2448 "Convenience variables have "
2449 "names starting with \"$\";\n"
2450 "use \"set\" as in \"set "
2451 "$foo = 5\" to define them.\n"));
2452 }
c906108c
SS
2453}
2454\f
2455/* Extract a value as a C number (either long or double).
2456 Knows how to convert fixed values to double, or
2457 floating values to long.
2458 Does not deallocate the value. */
2459
2460LONGEST
f23631e4 2461value_as_long (struct value *val)
c906108c
SS
2462{
2463 /* This coerces arrays and functions, which is necessary (e.g.
2464 in disassemble_command). It also dereferences references, which
2465 I suspect is the most logical thing to do. */
994b9211 2466 val = coerce_array (val);
0fd88904 2467 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2468}
2469
2470DOUBLEST
f23631e4 2471value_as_double (struct value *val)
c906108c
SS
2472{
2473 DOUBLEST foo;
2474 int inv;
c5aa993b 2475
0fd88904 2476 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2477 if (inv)
8a3fe4f8 2478 error (_("Invalid floating value found in program."));
c906108c
SS
2479 return foo;
2480}
4ef30785 2481
581e13c1 2482/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2483 Note that val's type may not actually be a pointer; value_as_long
2484 handles all the cases. */
c906108c 2485CORE_ADDR
f23631e4 2486value_as_address (struct value *val)
c906108c 2487{
50810684
UW
2488 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2489
c906108c
SS
2490 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2491 whether we want this to be true eventually. */
2492#if 0
bf6ae464 2493 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2494 non-address (e.g. argument to "signal", "info break", etc.), or
2495 for pointers to char, in which the low bits *are* significant. */
50810684 2496 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2497#else
f312f057
JB
2498
2499 /* There are several targets (IA-64, PowerPC, and others) which
2500 don't represent pointers to functions as simply the address of
2501 the function's entry point. For example, on the IA-64, a
2502 function pointer points to a two-word descriptor, generated by
2503 the linker, which contains the function's entry point, and the
2504 value the IA-64 "global pointer" register should have --- to
2505 support position-independent code. The linker generates
2506 descriptors only for those functions whose addresses are taken.
2507
2508 On such targets, it's difficult for GDB to convert an arbitrary
2509 function address into a function pointer; it has to either find
2510 an existing descriptor for that function, or call malloc and
2511 build its own. On some targets, it is impossible for GDB to
2512 build a descriptor at all: the descriptor must contain a jump
2513 instruction; data memory cannot be executed; and code memory
2514 cannot be modified.
2515
2516 Upon entry to this function, if VAL is a value of type `function'
2517 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2518 value_address (val) is the address of the function. This is what
f312f057
JB
2519 you'll get if you evaluate an expression like `main'. The call
2520 to COERCE_ARRAY below actually does all the usual unary
2521 conversions, which includes converting values of type `function'
2522 to `pointer to function'. This is the challenging conversion
2523 discussed above. Then, `unpack_long' will convert that pointer
2524 back into an address.
2525
2526 So, suppose the user types `disassemble foo' on an architecture
2527 with a strange function pointer representation, on which GDB
2528 cannot build its own descriptors, and suppose further that `foo'
2529 has no linker-built descriptor. The address->pointer conversion
2530 will signal an error and prevent the command from running, even
2531 though the next step would have been to convert the pointer
2532 directly back into the same address.
2533
2534 The following shortcut avoids this whole mess. If VAL is a
2535 function, just return its address directly. */
df407dfe
AC
2536 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2537 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2538 return value_address (val);
f312f057 2539
994b9211 2540 val = coerce_array (val);
fc0c74b1
AC
2541
2542 /* Some architectures (e.g. Harvard), map instruction and data
2543 addresses onto a single large unified address space. For
2544 instance: An architecture may consider a large integer in the
2545 range 0x10000000 .. 0x1000ffff to already represent a data
2546 addresses (hence not need a pointer to address conversion) while
2547 a small integer would still need to be converted integer to
2548 pointer to address. Just assume such architectures handle all
2549 integer conversions in a single function. */
2550
2551 /* JimB writes:
2552
2553 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2554 must admonish GDB hackers to make sure its behavior matches the
2555 compiler's, whenever possible.
2556
2557 In general, I think GDB should evaluate expressions the same way
2558 the compiler does. When the user copies an expression out of
2559 their source code and hands it to a `print' command, they should
2560 get the same value the compiler would have computed. Any
2561 deviation from this rule can cause major confusion and annoyance,
2562 and needs to be justified carefully. In other words, GDB doesn't
2563 really have the freedom to do these conversions in clever and
2564 useful ways.
2565
2566 AndrewC pointed out that users aren't complaining about how GDB
2567 casts integers to pointers; they are complaining that they can't
2568 take an address from a disassembly listing and give it to `x/i'.
2569 This is certainly important.
2570
79dd2d24 2571 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2572 makes it possible for GDB to "get it right" in all circumstances
2573 --- the target has complete control over how things get done, so
2574 people can Do The Right Thing for their target without breaking
2575 anyone else. The standard doesn't specify how integers get
2576 converted to pointers; usually, the ABI doesn't either, but
2577 ABI-specific code is a more reasonable place to handle it. */
2578
df407dfe
AC
2579 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2580 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2581 && gdbarch_integer_to_address_p (gdbarch))
2582 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2583 value_contents (val));
fc0c74b1 2584
0fd88904 2585 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2586#endif
2587}
2588\f
2589/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2590 as a long, or as a double, assuming the raw data is described
2591 by type TYPE. Knows how to convert different sizes of values
2592 and can convert between fixed and floating point. We don't assume
2593 any alignment for the raw data. Return value is in host byte order.
2594
2595 If you want functions and arrays to be coerced to pointers, and
2596 references to be dereferenced, call value_as_long() instead.
2597
2598 C++: It is assumed that the front-end has taken care of
2599 all matters concerning pointers to members. A pointer
2600 to member which reaches here is considered to be equivalent
2601 to an INT (or some size). After all, it is only an offset. */
2602
2603LONGEST
fc1a4b47 2604unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2605{
e17a4113 2606 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2607 enum type_code code = TYPE_CODE (type);
2608 int len = TYPE_LENGTH (type);
2609 int nosign = TYPE_UNSIGNED (type);
c906108c 2610
c906108c
SS
2611 switch (code)
2612 {
2613 case TYPE_CODE_TYPEDEF:
2614 return unpack_long (check_typedef (type), valaddr);
2615 case TYPE_CODE_ENUM:
4f2aea11 2616 case TYPE_CODE_FLAGS:
c906108c
SS
2617 case TYPE_CODE_BOOL:
2618 case TYPE_CODE_INT:
2619 case TYPE_CODE_CHAR:
2620 case TYPE_CODE_RANGE:
0d5de010 2621 case TYPE_CODE_MEMBERPTR:
c906108c 2622 if (nosign)
e17a4113 2623 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2624 else
e17a4113 2625 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2626
2627 case TYPE_CODE_FLT:
96d2f608 2628 return extract_typed_floating (valaddr, type);
c906108c 2629
4ef30785
TJB
2630 case TYPE_CODE_DECFLOAT:
2631 /* libdecnumber has a function to convert from decimal to integer, but
2632 it doesn't work when the decimal number has a fractional part. */
e17a4113 2633 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2634
c906108c
SS
2635 case TYPE_CODE_PTR:
2636 case TYPE_CODE_REF:
2637 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2638 whether we want this to be true eventually. */
4478b372 2639 return extract_typed_address (valaddr, type);
c906108c 2640
c906108c 2641 default:
8a3fe4f8 2642 error (_("Value can't be converted to integer."));
c906108c 2643 }
c5aa993b 2644 return 0; /* Placate lint. */
c906108c
SS
2645}
2646
2647/* Return a double value from the specified type and address.
2648 INVP points to an int which is set to 0 for valid value,
2649 1 for invalid value (bad float format). In either case,
2650 the returned double is OK to use. Argument is in target
2651 format, result is in host format. */
2652
2653DOUBLEST
fc1a4b47 2654unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2655{
e17a4113 2656 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2657 enum type_code code;
2658 int len;
2659 int nosign;
2660
581e13c1 2661 *invp = 0; /* Assume valid. */
c906108c
SS
2662 CHECK_TYPEDEF (type);
2663 code = TYPE_CODE (type);
2664 len = TYPE_LENGTH (type);
2665 nosign = TYPE_UNSIGNED (type);
2666 if (code == TYPE_CODE_FLT)
2667 {
75bc7ddf
AC
2668 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2669 floating-point value was valid (using the macro
2670 INVALID_FLOAT). That test/macro have been removed.
2671
2672 It turns out that only the VAX defined this macro and then
2673 only in a non-portable way. Fixing the portability problem
2674 wouldn't help since the VAX floating-point code is also badly
2675 bit-rotten. The target needs to add definitions for the
ea06eb3d 2676 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2677 exactly describe the target floating-point format. The
2678 problem here is that the corresponding floatformat_vax_f and
2679 floatformat_vax_d values these methods should be set to are
2680 also not defined either. Oops!
2681
2682 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2683 definitions and the new cases for floatformat_is_valid (). */
2684
2685 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2686 {
2687 *invp = 1;
2688 return 0.0;
2689 }
2690
96d2f608 2691 return extract_typed_floating (valaddr, type);
c906108c 2692 }
4ef30785 2693 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2694 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2695 else if (nosign)
2696 {
2697 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2698 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2699 }
2700 else
2701 {
2702 /* Signed -- we are OK with unpack_long. */
2703 return unpack_long (type, valaddr);
2704 }
2705}
2706
2707/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2708 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2709 We don't assume any alignment for the raw data. Return value is in
2710 host byte order.
2711
2712 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2713 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2714
2715 C++: It is assumed that the front-end has taken care of
2716 all matters concerning pointers to members. A pointer
2717 to member which reaches here is considered to be equivalent
2718 to an INT (or some size). After all, it is only an offset. */
2719
2720CORE_ADDR
fc1a4b47 2721unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2722{
2723 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2724 whether we want this to be true eventually. */
2725 return unpack_long (type, valaddr);
2726}
4478b372 2727
c906108c 2728\f
1596cb5d 2729/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2730 TYPE. */
c906108c 2731
f23631e4 2732struct value *
fba45db2 2733value_static_field (struct type *type, int fieldno)
c906108c 2734{
948e66d9
DJ
2735 struct value *retval;
2736
1596cb5d 2737 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2738 {
1596cb5d 2739 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2740 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2741 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2742 break;
2743 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2744 {
ff355380 2745 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2746 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2747 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2748
948e66d9 2749 if (sym == NULL)
c906108c 2750 {
a109c7c1 2751 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2752 reported as non-debuggable symbols. */
3b7344d5
TT
2753 struct bound_minimal_symbol msym
2754 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2755
3b7344d5 2756 if (!msym.minsym)
686d4def 2757 return allocate_optimized_out_value (type);
c906108c 2758 else
c5aa993b 2759 {
52e9fde8 2760 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2761 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2762 }
2763 }
2764 else
515ed532 2765 retval = value_of_variable (sym, NULL);
1596cb5d 2766 break;
c906108c 2767 }
1596cb5d 2768 default:
f3574227 2769 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2770 }
2771
948e66d9 2772 return retval;
c906108c
SS
2773}
2774
4dfea560
DE
2775/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2776 You have to be careful here, since the size of the data area for the value
2777 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2778 than the old enclosing type, you have to allocate more space for the
2779 data. */
2b127877 2780
4dfea560
DE
2781void
2782set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2783{
3e3d7139
JG
2784 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2785 val->contents =
2786 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2787
2788 val->enclosing_type = new_encl_type;
2b127877
DB
2789}
2790
c906108c
SS
2791/* Given a value ARG1 (offset by OFFSET bytes)
2792 of a struct or union type ARG_TYPE,
2793 extract and return the value of one of its (non-static) fields.
581e13c1 2794 FIELDNO says which field. */
c906108c 2795
f23631e4
AC
2796struct value *
2797value_primitive_field (struct value *arg1, int offset,
aa1ee363 2798 int fieldno, struct type *arg_type)
c906108c 2799{
f23631e4 2800 struct value *v;
52f0bd74 2801 struct type *type;
c906108c
SS
2802
2803 CHECK_TYPEDEF (arg_type);
2804 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2805
2806 /* Call check_typedef on our type to make sure that, if TYPE
2807 is a TYPE_CODE_TYPEDEF, its length is set to the length
2808 of the target type instead of zero. However, we do not
2809 replace the typedef type by the target type, because we want
2810 to keep the typedef in order to be able to print the type
2811 description correctly. */
2812 check_typedef (type);
c906108c 2813
691a26f5 2814 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2815 {
22c05d8a
JK
2816 /* Handle packed fields.
2817
2818 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2819 set. If possible, arrange offset and bitpos so that we can
2820 do a single aligned read of the size of the containing type.
2821 Otherwise, adjust offset to the byte containing the first
2822 bit. Assume that the address, offset, and embedded offset
2823 are sufficiently aligned. */
22c05d8a 2824
4ea48cc1
DJ
2825 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2826 int container_bitsize = TYPE_LENGTH (type) * 8;
2827
691a26f5
AB
2828 if (arg1->optimized_out)
2829 v = allocate_optimized_out_value (type);
4ea48cc1 2830 else
691a26f5
AB
2831 {
2832 v = allocate_value_lazy (type);
2833 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2834 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2835 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2836 v->bitpos = bitpos % container_bitsize;
2837 else
2838 v->bitpos = bitpos % 8;
2839 v->offset = (value_embedded_offset (arg1)
2840 + offset
2841 + (bitpos - v->bitpos) / 8);
2842 set_value_parent (v, arg1);
2843 if (!value_lazy (arg1))
2844 value_fetch_lazy (v);
2845 }
c906108c
SS
2846 }
2847 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2848 {
2849 /* This field is actually a base subobject, so preserve the
39d37385
PA
2850 entire object's contents for later references to virtual
2851 bases, etc. */
be335936 2852 int boffset;
a4e2ee12
DJ
2853
2854 /* Lazy register values with offsets are not supported. */
2855 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2856 value_fetch_lazy (arg1);
2857
691a26f5
AB
2858 /* The optimized_out flag is only set correctly once a lazy value is
2859 loaded, having just loaded some lazy values we should check the
2860 optimized out case now. */
2861 if (arg1->optimized_out)
2862 v = allocate_optimized_out_value (type);
c906108c 2863 else
3e3d7139 2864 {
691a26f5
AB
2865 /* We special case virtual inheritance here because this
2866 requires access to the contents, which we would rather avoid
2867 for references to ordinary fields of unavailable values. */
2868 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2869 boffset = baseclass_offset (arg_type, fieldno,
2870 value_contents (arg1),
2871 value_embedded_offset (arg1),
2872 value_address (arg1),
2873 arg1);
2874 else
2875 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2876
2877 if (value_lazy (arg1))
2878 v = allocate_value_lazy (value_enclosing_type (arg1));
2879 else
2880 {
2881 v = allocate_value (value_enclosing_type (arg1));
2882 value_contents_copy_raw (v, 0, arg1, 0,
2883 TYPE_LENGTH (value_enclosing_type (arg1)));
2884 }
2885 v->type = type;
2886 v->offset = value_offset (arg1);
2887 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2888 }
c906108c
SS
2889 }
2890 else
2891 {
2892 /* Plain old data member */
2893 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2894
2895 /* Lazy register values with offsets are not supported. */
2896 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2897 value_fetch_lazy (arg1);
2898
691a26f5
AB
2899 /* The optimized_out flag is only set correctly once a lazy value is
2900 loaded, having just loaded some lazy values we should check for
2901 the optimized out case now. */
2902 if (arg1->optimized_out)
2903 v = allocate_optimized_out_value (type);
2904 else if (value_lazy (arg1))
3e3d7139 2905 v = allocate_value_lazy (type);
c906108c 2906 else
3e3d7139
JG
2907 {
2908 v = allocate_value (type);
39d37385
PA
2909 value_contents_copy_raw (v, value_embedded_offset (v),
2910 arg1, value_embedded_offset (arg1) + offset,
2911 TYPE_LENGTH (type));
3e3d7139 2912 }
df407dfe 2913 v->offset = (value_offset (arg1) + offset
13c3b5f5 2914 + value_embedded_offset (arg1));
c906108c 2915 }
74bcbdf3 2916 set_value_component_location (v, arg1);
9ee8fc9d 2917 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2918 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2919 return v;
2920}
2921
2922/* Given a value ARG1 of a struct or union type,
2923 extract and return the value of one of its (non-static) fields.
581e13c1 2924 FIELDNO says which field. */
c906108c 2925
f23631e4 2926struct value *
aa1ee363 2927value_field (struct value *arg1, int fieldno)
c906108c 2928{
df407dfe 2929 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2930}
2931
2932/* Return a non-virtual function as a value.
2933 F is the list of member functions which contains the desired method.
0478d61c
FF
2934 J is an index into F which provides the desired method.
2935
2936 We only use the symbol for its address, so be happy with either a
581e13c1 2937 full symbol or a minimal symbol. */
c906108c 2938
f23631e4 2939struct value *
3e43a32a
MS
2940value_fn_field (struct value **arg1p, struct fn_field *f,
2941 int j, struct type *type,
fba45db2 2942 int offset)
c906108c 2943{
f23631e4 2944 struct value *v;
52f0bd74 2945 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2946 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2947 struct symbol *sym;
7c7b6655 2948 struct bound_minimal_symbol msym;
c906108c 2949
2570f2b7 2950 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2951 if (sym != NULL)
0478d61c 2952 {
7c7b6655 2953 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
2954 }
2955 else
2956 {
2957 gdb_assert (sym == NULL);
7c7b6655
TT
2958 msym = lookup_bound_minimal_symbol (physname);
2959 if (msym.minsym == NULL)
5ae326fa 2960 return NULL;
0478d61c
FF
2961 }
2962
c906108c 2963 v = allocate_value (ftype);
0478d61c
FF
2964 if (sym)
2965 {
42ae5230 2966 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2967 }
2968 else
2969 {
bccdca4a
UW
2970 /* The minimal symbol might point to a function descriptor;
2971 resolve it to the actual code address instead. */
7c7b6655 2972 struct objfile *objfile = msym.objfile;
bccdca4a
UW
2973 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2974
42ae5230
TT
2975 set_value_address (v,
2976 gdbarch_convert_from_func_ptr_addr
77e371c0 2977 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2978 }
c906108c
SS
2979
2980 if (arg1p)
c5aa993b 2981 {
df407dfe 2982 if (type != value_type (*arg1p))
c5aa993b
JM
2983 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2984 value_addr (*arg1p)));
2985
070ad9f0 2986 /* Move the `this' pointer according to the offset.
581e13c1 2987 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2988 }
2989
2990 return v;
2991}
2992
c906108c 2993\f
c906108c 2994
5467c6c8
PA
2995/* Helper function for both unpack_value_bits_as_long and
2996 unpack_bits_as_long. See those functions for more details on the
2997 interface; the only difference is that this function accepts either
2998 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2999
5467c6c8
PA
3000static int
3001unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3002 int embedded_offset, int bitpos, int bitsize,
3003 const struct value *original_value,
3004 LONGEST *result)
c906108c 3005{
4ea48cc1 3006 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3007 ULONGEST val;
3008 ULONGEST valmask;
c906108c 3009 int lsbcount;
4a76eae5 3010 int bytes_read;
5467c6c8 3011 int read_offset;
c906108c 3012
4a76eae5
DJ
3013 /* Read the minimum number of bytes required; there may not be
3014 enough bytes to read an entire ULONGEST. */
c906108c 3015 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3016 if (bitsize)
3017 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3018 else
3019 bytes_read = TYPE_LENGTH (field_type);
3020
5467c6c8
PA
3021 read_offset = bitpos / 8;
3022
3023 if (original_value != NULL
bdf22206
AB
3024 && !value_bits_available (original_value, embedded_offset + bitpos,
3025 bitsize))
5467c6c8
PA
3026 return 0;
3027
3028 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 3029 bytes_read, byte_order);
c906108c 3030
581e13c1 3031 /* Extract bits. See comment above. */
c906108c 3032
4ea48cc1 3033 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3034 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3035 else
3036 lsbcount = (bitpos % 8);
3037 val >>= lsbcount;
3038
3039 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3040 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3041
3042 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3043 {
3044 valmask = (((ULONGEST) 1) << bitsize) - 1;
3045 val &= valmask;
3046 if (!TYPE_UNSIGNED (field_type))
3047 {
3048 if (val & (valmask ^ (valmask >> 1)))
3049 {
3050 val |= ~valmask;
3051 }
3052 }
3053 }
5467c6c8
PA
3054
3055 *result = val;
3056 return 1;
c906108c
SS
3057}
3058
5467c6c8
PA
3059/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3060 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3061 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3062 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3063 bits.
4ea48cc1 3064
5467c6c8
PA
3065 Returns false if the value contents are unavailable, otherwise
3066 returns true, indicating a valid value has been stored in *RESULT.
3067
3068 Extracting bits depends on endianness of the machine. Compute the
3069 number of least significant bits to discard. For big endian machines,
3070 we compute the total number of bits in the anonymous object, subtract
3071 off the bit count from the MSB of the object to the MSB of the
3072 bitfield, then the size of the bitfield, which leaves the LSB discard
3073 count. For little endian machines, the discard count is simply the
3074 number of bits from the LSB of the anonymous object to the LSB of the
3075 bitfield.
3076
3077 If the field is signed, we also do sign extension. */
3078
3079int
3080unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3081 int embedded_offset, int bitpos, int bitsize,
3082 const struct value *original_value,
3083 LONGEST *result)
3084{
3085 gdb_assert (original_value != NULL);
3086
3087 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3088 bitpos, bitsize, original_value, result);
3089
3090}
3091
3092/* Unpack a field FIELDNO of the specified TYPE, from the object at
3093 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3094 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3095 details. */
3096
3097static int
3098unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3099 int embedded_offset, int fieldno,
3100 const struct value *val, LONGEST *result)
4ea48cc1
DJ
3101{
3102 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3103 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3104 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3105
5467c6c8
PA
3106 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3107 bitpos, bitsize, val,
3108 result);
3109}
3110
3111/* Unpack a field FIELDNO of the specified TYPE, from the object at
3112 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3113 ORIGINAL_VALUE, which must not be NULL. See
3114 unpack_value_bits_as_long for more details. */
3115
3116int
3117unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3118 int embedded_offset, int fieldno,
3119 const struct value *val, LONGEST *result)
3120{
3121 gdb_assert (val != NULL);
3122
3123 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3124 fieldno, val, result);
3125}
3126
3127/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3128 object at VALADDR. See unpack_value_bits_as_long for more details.
3129 This function differs from unpack_value_field_as_long in that it
3130 operates without a struct value object. */
3131
3132LONGEST
3133unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3134{
3135 LONGEST result;
3136
3137 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3138 return result;
3139}
3140
3141/* Return a new value with type TYPE, which is FIELDNO field of the
3142 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3143 of VAL. If the VAL's contents required to extract the bitfield
3144 from are unavailable, the new value is correspondingly marked as
3145 unavailable. */
3146
3147struct value *
3148value_field_bitfield (struct type *type, int fieldno,
3149 const gdb_byte *valaddr,
3150 int embedded_offset, const struct value *val)
3151{
3152 LONGEST l;
3153
3154 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3155 val, &l))
3156 {
3157 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3158 struct value *retval = allocate_value (field_type);
3159 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3160 return retval;
3161 }
3162 else
3163 {
3164 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3165 }
4ea48cc1
DJ
3166}
3167
c906108c
SS
3168/* Modify the value of a bitfield. ADDR points to a block of memory in
3169 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3170 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3171 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3172 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3173 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3174
3175void
50810684
UW
3176modify_field (struct type *type, gdb_byte *addr,
3177 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3178{
e17a4113 3179 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3180 ULONGEST oword;
3181 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3182 int bytesize;
3183
3184 /* Normalize BITPOS. */
3185 addr += bitpos / 8;
3186 bitpos %= 8;
c906108c
SS
3187
3188 /* If a negative fieldval fits in the field in question, chop
3189 off the sign extension bits. */
f4e88c8e
PH
3190 if ((~fieldval & ~(mask >> 1)) == 0)
3191 fieldval &= mask;
c906108c
SS
3192
3193 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3194 if (0 != (fieldval & ~mask))
c906108c
SS
3195 {
3196 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3197 we don't have a sprintf_longest. */
8a3fe4f8 3198 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3199
3200 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3201 fieldval &= mask;
c906108c
SS
3202 }
3203
19f220c3
JK
3204 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3205 false valgrind reports. */
3206
3207 bytesize = (bitpos + bitsize + 7) / 8;
3208 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3209
3210 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3211 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3212 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3213
f4e88c8e 3214 oword &= ~(mask << bitpos);
c906108c
SS
3215 oword |= fieldval << bitpos;
3216
19f220c3 3217 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3218}
3219\f
14d06750 3220/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3221
14d06750
DJ
3222void
3223pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3224{
e17a4113 3225 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3226 int len;
14d06750
DJ
3227
3228 type = check_typedef (type);
c906108c
SS
3229 len = TYPE_LENGTH (type);
3230
14d06750 3231 switch (TYPE_CODE (type))
c906108c 3232 {
c906108c
SS
3233 case TYPE_CODE_INT:
3234 case TYPE_CODE_CHAR:
3235 case TYPE_CODE_ENUM:
4f2aea11 3236 case TYPE_CODE_FLAGS:
c906108c
SS
3237 case TYPE_CODE_BOOL:
3238 case TYPE_CODE_RANGE:
0d5de010 3239 case TYPE_CODE_MEMBERPTR:
e17a4113 3240 store_signed_integer (buf, len, byte_order, num);
c906108c 3241 break;
c5aa993b 3242
c906108c
SS
3243 case TYPE_CODE_REF:
3244 case TYPE_CODE_PTR:
14d06750 3245 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3246 break;
c5aa993b 3247
c906108c 3248 default:
14d06750
DJ
3249 error (_("Unexpected type (%d) encountered for integer constant."),
3250 TYPE_CODE (type));
c906108c 3251 }
14d06750
DJ
3252}
3253
3254
595939de
PM
3255/* Pack NUM into BUF using a target format of TYPE. */
3256
70221824 3257static void
595939de
PM
3258pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3259{
3260 int len;
3261 enum bfd_endian byte_order;
3262
3263 type = check_typedef (type);
3264 len = TYPE_LENGTH (type);
3265 byte_order = gdbarch_byte_order (get_type_arch (type));
3266
3267 switch (TYPE_CODE (type))
3268 {
3269 case TYPE_CODE_INT:
3270 case TYPE_CODE_CHAR:
3271 case TYPE_CODE_ENUM:
3272 case TYPE_CODE_FLAGS:
3273 case TYPE_CODE_BOOL:
3274 case TYPE_CODE_RANGE:
3275 case TYPE_CODE_MEMBERPTR:
3276 store_unsigned_integer (buf, len, byte_order, num);
3277 break;
3278
3279 case TYPE_CODE_REF:
3280 case TYPE_CODE_PTR:
3281 store_typed_address (buf, type, (CORE_ADDR) num);
3282 break;
3283
3284 default:
3e43a32a
MS
3285 error (_("Unexpected type (%d) encountered "
3286 "for unsigned integer constant."),
595939de
PM
3287 TYPE_CODE (type));
3288 }
3289}
3290
3291
14d06750
DJ
3292/* Convert C numbers into newly allocated values. */
3293
3294struct value *
3295value_from_longest (struct type *type, LONGEST num)
3296{
3297 struct value *val = allocate_value (type);
3298
3299 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3300 return val;
3301}
3302
4478b372 3303
595939de
PM
3304/* Convert C unsigned numbers into newly allocated values. */
3305
3306struct value *
3307value_from_ulongest (struct type *type, ULONGEST num)
3308{
3309 struct value *val = allocate_value (type);
3310
3311 pack_unsigned_long (value_contents_raw (val), type, num);
3312
3313 return val;
3314}
3315
3316
4478b372
JB
3317/* Create a value representing a pointer of type TYPE to the address
3318 ADDR. */
f23631e4 3319struct value *
4478b372
JB
3320value_from_pointer (struct type *type, CORE_ADDR addr)
3321{
f23631e4 3322 struct value *val = allocate_value (type);
a109c7c1 3323
cab0c772 3324 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3325 return val;
3326}
3327
3328
8acb6b92
TT
3329/* Create a value of type TYPE whose contents come from VALADDR, if it
3330 is non-null, and whose memory address (in the inferior) is
3331 ADDRESS. */
3332
3333struct value *
3334value_from_contents_and_address (struct type *type,
3335 const gdb_byte *valaddr,
3336 CORE_ADDR address)
3337{
41e8491f 3338 struct value *v;
a109c7c1 3339
8acb6b92 3340 if (valaddr == NULL)
41e8491f 3341 v = allocate_value_lazy (type);
8acb6b92 3342 else
314c7de9 3343 v = value_from_contents (type, valaddr);
42ae5230 3344 set_value_address (v, address);
33d502b4 3345 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3346 return v;
3347}
3348
8a9b8146
TT
3349/* Create a value of type TYPE holding the contents CONTENTS.
3350 The new value is `not_lval'. */
3351
3352struct value *
3353value_from_contents (struct type *type, const gdb_byte *contents)
3354{
3355 struct value *result;
3356
3357 result = allocate_value (type);
3358 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3359 return result;
3360}
3361
f23631e4 3362struct value *
fba45db2 3363value_from_double (struct type *type, DOUBLEST num)
c906108c 3364{
f23631e4 3365 struct value *val = allocate_value (type);
c906108c 3366 struct type *base_type = check_typedef (type);
52f0bd74 3367 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3368
3369 if (code == TYPE_CODE_FLT)
3370 {
990a07ab 3371 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3372 }
3373 else
8a3fe4f8 3374 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3375
3376 return val;
3377}
994b9211 3378
27bc4d80 3379struct value *
4ef30785 3380value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3381{
3382 struct value *val = allocate_value (type);
27bc4d80 3383
4ef30785 3384 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3385 return val;
3386}
3387
3bd0f5ef
MS
3388/* Extract a value from the history file. Input will be of the form
3389 $digits or $$digits. See block comment above 'write_dollar_variable'
3390 for details. */
3391
3392struct value *
3393value_from_history_ref (char *h, char **endp)
3394{
3395 int index, len;
3396
3397 if (h[0] == '$')
3398 len = 1;
3399 else
3400 return NULL;
3401
3402 if (h[1] == '$')
3403 len = 2;
3404
3405 /* Find length of numeral string. */
3406 for (; isdigit (h[len]); len++)
3407 ;
3408
3409 /* Make sure numeral string is not part of an identifier. */
3410 if (h[len] == '_' || isalpha (h[len]))
3411 return NULL;
3412
3413 /* Now collect the index value. */
3414 if (h[1] == '$')
3415 {
3416 if (len == 2)
3417 {
3418 /* For some bizarre reason, "$$" is equivalent to "$$1",
3419 rather than to "$$0" as it ought to be! */
3420 index = -1;
3421 *endp += len;
3422 }
3423 else
3424 index = -strtol (&h[2], endp, 10);
3425 }
3426 else
3427 {
3428 if (len == 1)
3429 {
3430 /* "$" is equivalent to "$0". */
3431 index = 0;
3432 *endp += len;
3433 }
3434 else
3435 index = strtol (&h[1], endp, 10);
3436 }
3437
3438 return access_value_history (index);
3439}
3440
a471c594
JK
3441struct value *
3442coerce_ref_if_computed (const struct value *arg)
3443{
3444 const struct lval_funcs *funcs;
3445
3446 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3447 return NULL;
3448
3449 if (value_lval_const (arg) != lval_computed)
3450 return NULL;
3451
3452 funcs = value_computed_funcs (arg);
3453 if (funcs->coerce_ref == NULL)
3454 return NULL;
3455
3456 return funcs->coerce_ref (arg);
3457}
3458
dfcee124
AG
3459/* Look at value.h for description. */
3460
3461struct value *
3462readjust_indirect_value_type (struct value *value, struct type *enc_type,
3463 struct type *original_type,
3464 struct value *original_value)
3465{
3466 /* Re-adjust type. */
3467 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3468
3469 /* Add embedding info. */
3470 set_value_enclosing_type (value, enc_type);
3471 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3472
3473 /* We may be pointing to an object of some derived type. */
3474 return value_full_object (value, NULL, 0, 0, 0);
3475}
3476
994b9211
AC
3477struct value *
3478coerce_ref (struct value *arg)
3479{
df407dfe 3480 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3481 struct value *retval;
dfcee124 3482 struct type *enc_type;
a109c7c1 3483
a471c594
JK
3484 retval = coerce_ref_if_computed (arg);
3485 if (retval)
3486 return retval;
3487
3488 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3489 return arg;
3490
dfcee124
AG
3491 enc_type = check_typedef (value_enclosing_type (arg));
3492 enc_type = TYPE_TARGET_TYPE (enc_type);
3493
3494 retval = value_at_lazy (enc_type,
3495 unpack_pointer (value_type (arg),
3496 value_contents (arg)));
3497 return readjust_indirect_value_type (retval, enc_type,
3498 value_type_arg_tmp, arg);
994b9211
AC
3499}
3500
3501struct value *
3502coerce_array (struct value *arg)
3503{
f3134b88
TT
3504 struct type *type;
3505
994b9211 3506 arg = coerce_ref (arg);
f3134b88
TT
3507 type = check_typedef (value_type (arg));
3508
3509 switch (TYPE_CODE (type))
3510 {
3511 case TYPE_CODE_ARRAY:
7346b668 3512 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3513 arg = value_coerce_array (arg);
3514 break;
3515 case TYPE_CODE_FUNC:
3516 arg = value_coerce_function (arg);
3517 break;
3518 }
994b9211
AC
3519 return arg;
3520}
c906108c 3521\f
c906108c 3522
bbfdfe1c
DM
3523/* Return the return value convention that will be used for the
3524 specified type. */
3525
3526enum return_value_convention
3527struct_return_convention (struct gdbarch *gdbarch,
3528 struct value *function, struct type *value_type)
3529{
3530 enum type_code code = TYPE_CODE (value_type);
3531
3532 if (code == TYPE_CODE_ERROR)
3533 error (_("Function return type unknown."));
3534
3535 /* Probe the architecture for the return-value convention. */
3536 return gdbarch_return_value (gdbarch, function, value_type,
3537 NULL, NULL, NULL);
3538}
3539
48436ce6
AC
3540/* Return true if the function returning the specified type is using
3541 the convention of returning structures in memory (passing in the
82585c72 3542 address as a hidden first parameter). */
c906108c
SS
3543
3544int
d80b854b 3545using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3546 struct value *function, struct type *value_type)
c906108c 3547{
bbfdfe1c 3548 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3549 /* A void return value is never in memory. See also corresponding
44e5158b 3550 code in "print_return_value". */
667e784f
AC
3551 return 0;
3552
bbfdfe1c 3553 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3554 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3555}
3556
42be36b3
CT
3557/* Set the initialized field in a value struct. */
3558
3559void
3560set_value_initialized (struct value *val, int status)
3561{
3562 val->initialized = status;
3563}
3564
3565/* Return the initialized field in a value struct. */
3566
3567int
3568value_initialized (struct value *val)
3569{
3570 return val->initialized;
3571}
3572
a58e2656
AB
3573/* Called only from the value_contents and value_contents_all()
3574 macros, if the current data for a variable needs to be loaded into
3575 value_contents(VAL). Fetches the data from the user's process, and
3576 clears the lazy flag to indicate that the data in the buffer is
3577 valid.
3578
3579 If the value is zero-length, we avoid calling read_memory, which
3580 would abort. We mark the value as fetched anyway -- all 0 bytes of
3581 it.
3582
3583 This function returns a value because it is used in the
3584 value_contents macro as part of an expression, where a void would
3585 not work. The value is ignored. */
3586
3587int
3588value_fetch_lazy (struct value *val)
3589{
3590 gdb_assert (value_lazy (val));
3591 allocate_value_contents (val);
3592 if (value_bitsize (val))
3593 {
3594 /* To read a lazy bitfield, read the entire enclosing value. This
3595 prevents reading the same block of (possibly volatile) memory once
3596 per bitfield. It would be even better to read only the containing
3597 word, but we have no way to record that just specific bits of a
3598 value have been fetched. */
3599 struct type *type = check_typedef (value_type (val));
3600 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3601 struct value *parent = value_parent (val);
3602 LONGEST offset = value_offset (val);
3603 LONGEST num;
3604
b0c54aa5
AB
3605 if (value_lazy (parent))
3606 value_fetch_lazy (parent);
3607
3608 if (!value_bits_valid (parent,
a58e2656
AB
3609 TARGET_CHAR_BIT * offset + value_bitpos (val),
3610 value_bitsize (val)))
11b4b7cc
AB
3611 set_value_optimized_out (val, 1);
3612 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3613 value_contents_for_printing (parent),
3614 offset,
3615 value_bitpos (val),
3616 value_bitsize (val), parent, &num))
3617 mark_value_bytes_unavailable (val,
3618 value_embedded_offset (val),
3619 TYPE_LENGTH (type));
3620 else
3621 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3622 byte_order, num);
3623 }
3624 else if (VALUE_LVAL (val) == lval_memory)
3625 {
3626 CORE_ADDR addr = value_address (val);
3627 struct type *type = check_typedef (value_enclosing_type (val));
3628
3629 if (TYPE_LENGTH (type))
3630 read_value_memory (val, 0, value_stack (val),
3631 addr, value_contents_all_raw (val),
3632 TYPE_LENGTH (type));
3633 }
3634 else if (VALUE_LVAL (val) == lval_register)
3635 {
3636 struct frame_info *frame;
3637 int regnum;
3638 struct type *type = check_typedef (value_type (val));
3639 struct value *new_val = val, *mark = value_mark ();
3640
3641 /* Offsets are not supported here; lazy register values must
3642 refer to the entire register. */
3643 gdb_assert (value_offset (val) == 0);
3644
3645 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3646 {
6eeee81c
TT
3647 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3648
3649 frame = frame_find_by_id (frame_id);
a58e2656
AB
3650 regnum = VALUE_REGNUM (new_val);
3651
3652 gdb_assert (frame != NULL);
3653
3654 /* Convertible register routines are used for multi-register
3655 values and for interpretation in different types
3656 (e.g. float or int from a double register). Lazy
3657 register values should have the register's natural type,
3658 so they do not apply. */
3659 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3660 regnum, type));
3661
3662 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3663
3664 /* If we get another lazy lval_register value, it means the
3665 register is found by reading it from the next frame.
3666 get_frame_register_value should never return a value with
3667 the frame id pointing to FRAME. If it does, it means we
3668 either have two consecutive frames with the same frame id
3669 in the frame chain, or some code is trying to unwind
3670 behind get_prev_frame's back (e.g., a frame unwind
3671 sniffer trying to unwind), bypassing its validations. In
3672 any case, it should always be an internal error to end up
3673 in this situation. */
3674 if (VALUE_LVAL (new_val) == lval_register
3675 && value_lazy (new_val)
3676 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3677 internal_error (__FILE__, __LINE__,
3678 _("infinite loop while fetching a register"));
a58e2656
AB
3679 }
3680
3681 /* If it's still lazy (for instance, a saved register on the
3682 stack), fetch it. */
3683 if (value_lazy (new_val))
3684 value_fetch_lazy (new_val);
3685
3686 /* If the register was not saved, mark it optimized out. */
3687 if (value_optimized_out (new_val))
3688 set_value_optimized_out (val, 1);
3689 else
3690 {
3691 set_value_lazy (val, 0);
3692 value_contents_copy (val, value_embedded_offset (val),
3693 new_val, value_embedded_offset (new_val),
3694 TYPE_LENGTH (type));
3695 }
3696
3697 if (frame_debug)
3698 {
3699 struct gdbarch *gdbarch;
3700 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3701 regnum = VALUE_REGNUM (val);
3702 gdbarch = get_frame_arch (frame);
3703
3704 fprintf_unfiltered (gdb_stdlog,
3705 "{ value_fetch_lazy "
3706 "(frame=%d,regnum=%d(%s),...) ",
3707 frame_relative_level (frame), regnum,
3708 user_reg_map_regnum_to_name (gdbarch, regnum));
3709
3710 fprintf_unfiltered (gdb_stdlog, "->");
3711 if (value_optimized_out (new_val))
f6c01fc5
AB
3712 {
3713 fprintf_unfiltered (gdb_stdlog, " ");
3714 val_print_optimized_out (new_val, gdb_stdlog);
3715 }
a58e2656
AB
3716 else
3717 {
3718 int i;
3719 const gdb_byte *buf = value_contents (new_val);
3720
3721 if (VALUE_LVAL (new_val) == lval_register)
3722 fprintf_unfiltered (gdb_stdlog, " register=%d",
3723 VALUE_REGNUM (new_val));
3724 else if (VALUE_LVAL (new_val) == lval_memory)
3725 fprintf_unfiltered (gdb_stdlog, " address=%s",
3726 paddress (gdbarch,
3727 value_address (new_val)));
3728 else
3729 fprintf_unfiltered (gdb_stdlog, " computed");
3730
3731 fprintf_unfiltered (gdb_stdlog, " bytes=");
3732 fprintf_unfiltered (gdb_stdlog, "[");
3733 for (i = 0; i < register_size (gdbarch, regnum); i++)
3734 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3735 fprintf_unfiltered (gdb_stdlog, "]");
3736 }
3737
3738 fprintf_unfiltered (gdb_stdlog, " }\n");
3739 }
3740
3741 /* Dispose of the intermediate values. This prevents
3742 watchpoints from trying to watch the saved frame pointer. */
3743 value_free_to_mark (mark);
3744 }
3745 else if (VALUE_LVAL (val) == lval_computed
3746 && value_computed_funcs (val)->read != NULL)
3747 value_computed_funcs (val)->read (val);
691a26f5
AB
3748 /* Don't call value_optimized_out on val, doing so would result in a
3749 recursive call back to value_fetch_lazy, instead check the
3750 optimized_out flag directly. */
3751 else if (val->optimized_out)
a58e2656
AB
3752 /* Keep it optimized out. */;
3753 else
3754 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3755
3756 set_value_lazy (val, 0);
3757 return 0;
3758}
3759
a280dbd1
SDJ
3760/* Implementation of the convenience function $_isvoid. */
3761
3762static struct value *
3763isvoid_internal_fn (struct gdbarch *gdbarch,
3764 const struct language_defn *language,
3765 void *cookie, int argc, struct value **argv)
3766{
3767 int ret;
3768
3769 if (argc != 1)
6bc305f5 3770 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3771
3772 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3773
3774 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3775}
3776
c906108c 3777void
fba45db2 3778_initialize_values (void)
c906108c 3779{
1a966eab 3780 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3781Debugger convenience (\"$foo\") variables and functions.\n\
3782Convenience variables are created when you assign them values;\n\
3783thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3784\n\
c906108c
SS
3785A few convenience variables are given values automatically:\n\
3786\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3787\"$__\" holds the contents of the last address examined with \"x\"."
3788#ifdef HAVE_PYTHON
3789"\n\n\
3790Convenience functions are defined via the Python API."
3791#endif
3792 ), &showlist);
7e20dfcd 3793 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3794
db5f229b 3795 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3796Elements of value history around item number IDX (or last ten)."),
c906108c 3797 &showlist);
53e5f3cf
AS
3798
3799 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3800Initialize a convenience variable if necessary.\n\
3801init-if-undefined VARIABLE = EXPRESSION\n\
3802Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3803exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3804VARIABLE is already initialized."));
bc3b79fd
TJB
3805
3806 add_prefix_cmd ("function", no_class, function_command, _("\
3807Placeholder command for showing help on convenience functions."),
3808 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3809
3810 add_internal_function ("_isvoid", _("\
3811Check whether an expression is void.\n\
3812Usage: $_isvoid (expression)\n\
3813Return 1 if the expression is void, zero otherwise."),
3814 isvoid_internal_fn, NULL);
c906108c 3815}
This page took 1.722278 seconds and 4 git commands to generate.