2010-06-11 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
a109c7c1 307
3e3d7139
JG
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311}
312
c906108c 313/* Allocate a value that has the correct length
938f5214 314 for COUNT repetitions of type TYPE. */
c906108c 315
f23631e4 316struct value *
fba45db2 317allocate_repeat_value (struct type *type, int count)
c906108c 318{
c5aa993b 319 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
e3506a9f
UW
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 324
e3506a9f 325 return allocate_value (array_type);
c906108c
SS
326}
327
5f5233d4
PA
328struct value *
329allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332{
333 struct value *v = allocate_value (type);
a109c7c1 334
5f5233d4
PA
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341}
342
df407dfe
AC
343/* Accessor methods. */
344
17cf0ecd
AC
345struct value *
346value_next (struct value *value)
347{
348 return value->next;
349}
350
df407dfe
AC
351struct type *
352value_type (struct value *value)
353{
354 return value->type;
355}
04624583
AC
356void
357deprecated_set_value_type (struct value *value, struct type *type)
358{
359 value->type = type;
360}
df407dfe
AC
361
362int
363value_offset (struct value *value)
364{
365 return value->offset;
366}
f5cf64a7
AC
367void
368set_value_offset (struct value *value, int offset)
369{
370 value->offset = offset;
371}
df407dfe
AC
372
373int
374value_bitpos (struct value *value)
375{
376 return value->bitpos;
377}
9bbda503
AC
378void
379set_value_bitpos (struct value *value, int bit)
380{
381 value->bitpos = bit;
382}
df407dfe
AC
383
384int
385value_bitsize (struct value *value)
386{
387 return value->bitsize;
388}
9bbda503
AC
389void
390set_value_bitsize (struct value *value, int bit)
391{
392 value->bitsize = bit;
393}
df407dfe 394
4ea48cc1
DJ
395struct value *
396value_parent (struct value *value)
397{
398 return value->parent;
399}
400
fc1a4b47 401gdb_byte *
990a07ab
AC
402value_contents_raw (struct value *value)
403{
3e3d7139
JG
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
990a07ab
AC
406}
407
fc1a4b47 408gdb_byte *
990a07ab
AC
409value_contents_all_raw (struct value *value)
410{
3e3d7139
JG
411 allocate_value_contents (value);
412 return value->contents;
990a07ab
AC
413}
414
4754a64e
AC
415struct type *
416value_enclosing_type (struct value *value)
417{
418 return value->enclosing_type;
419}
420
fc1a4b47 421const gdb_byte *
46615f07
AC
422value_contents_all (struct value *value)
423{
424 if (value->lazy)
425 value_fetch_lazy (value);
3e3d7139 426 return value->contents;
46615f07
AC
427}
428
d69fe07e
AC
429int
430value_lazy (struct value *value)
431{
432 return value->lazy;
433}
434
dfa52d88
AC
435void
436set_value_lazy (struct value *value, int val)
437{
438 value->lazy = val;
439}
440
4e5d721f
DE
441int
442value_stack (struct value *value)
443{
444 return value->stack;
445}
446
447void
448set_value_stack (struct value *value, int val)
449{
450 value->stack = val;
451}
452
fc1a4b47 453const gdb_byte *
0fd88904
AC
454value_contents (struct value *value)
455{
456 return value_contents_writeable (value);
457}
458
fc1a4b47 459gdb_byte *
0fd88904
AC
460value_contents_writeable (struct value *value)
461{
462 if (value->lazy)
463 value_fetch_lazy (value);
fc0c53a0 464 return value_contents_raw (value);
0fd88904
AC
465}
466
a6c442d8
MK
467/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
468 this function is different from value_equal; in C the operator ==
469 can return 0 even if the two values being compared are equal. */
470
471int
472value_contents_equal (struct value *val1, struct value *val2)
473{
474 struct type *type1;
475 struct type *type2;
476 int len;
477
478 type1 = check_typedef (value_type (val1));
479 type2 = check_typedef (value_type (val2));
480 len = TYPE_LENGTH (type1);
481 if (len != TYPE_LENGTH (type2))
482 return 0;
483
484 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
485}
486
feb13ab0
AC
487int
488value_optimized_out (struct value *value)
489{
490 return value->optimized_out;
491}
492
493void
494set_value_optimized_out (struct value *value, int val)
495{
496 value->optimized_out = val;
497}
13c3b5f5
AC
498
499int
500value_embedded_offset (struct value *value)
501{
502 return value->embedded_offset;
503}
504
505void
506set_value_embedded_offset (struct value *value, int val)
507{
508 value->embedded_offset = val;
509}
b44d461b
AC
510
511int
512value_pointed_to_offset (struct value *value)
513{
514 return value->pointed_to_offset;
515}
516
517void
518set_value_pointed_to_offset (struct value *value, int val)
519{
520 value->pointed_to_offset = val;
521}
13bb5560 522
5f5233d4
PA
523struct lval_funcs *
524value_computed_funcs (struct value *v)
525{
526 gdb_assert (VALUE_LVAL (v) == lval_computed);
527
528 return v->location.computed.funcs;
529}
530
531void *
532value_computed_closure (struct value *v)
533{
534 gdb_assert (VALUE_LVAL (v) == lval_computed);
535
536 return v->location.computed.closure;
537}
538
13bb5560
AC
539enum lval_type *
540deprecated_value_lval_hack (struct value *value)
541{
542 return &value->lval;
543}
544
42ae5230
TT
545CORE_ADDR
546value_address (struct value *value)
547{
548 if (value->lval == lval_internalvar
549 || value->lval == lval_internalvar_component)
550 return 0;
551 return value->location.address + value->offset;
552}
553
554CORE_ADDR
555value_raw_address (struct value *value)
556{
557 if (value->lval == lval_internalvar
558 || value->lval == lval_internalvar_component)
559 return 0;
560 return value->location.address;
561}
562
563void
564set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 565{
42ae5230
TT
566 gdb_assert (value->lval != lval_internalvar
567 && value->lval != lval_internalvar_component);
568 value->location.address = addr;
13bb5560
AC
569}
570
571struct internalvar **
572deprecated_value_internalvar_hack (struct value *value)
573{
574 return &value->location.internalvar;
575}
576
577struct frame_id *
578deprecated_value_frame_id_hack (struct value *value)
579{
580 return &value->frame_id;
581}
582
583short *
584deprecated_value_regnum_hack (struct value *value)
585{
586 return &value->regnum;
587}
88e3b34b
AC
588
589int
590deprecated_value_modifiable (struct value *value)
591{
592 return value->modifiable;
593}
594void
595deprecated_set_value_modifiable (struct value *value, int modifiable)
596{
597 value->modifiable = modifiable;
598}
990a07ab 599\f
c906108c
SS
600/* Return a mark in the value chain. All values allocated after the
601 mark is obtained (except for those released) are subject to being freed
602 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 603struct value *
fba45db2 604value_mark (void)
c906108c
SS
605{
606 return all_values;
607}
608
828d3400
DJ
609/* Take a reference to VAL. VAL will not be deallocated until all
610 references are released. */
611
612void
613value_incref (struct value *val)
614{
615 val->reference_count++;
616}
617
618/* Release a reference to VAL, which was acquired with value_incref.
619 This function is also called to deallocate values from the value
620 chain. */
621
3e3d7139
JG
622void
623value_free (struct value *val)
624{
625 if (val)
5f5233d4 626 {
828d3400
DJ
627 gdb_assert (val->reference_count > 0);
628 val->reference_count--;
629 if (val->reference_count > 0)
630 return;
631
4ea48cc1
DJ
632 /* If there's an associated parent value, drop our reference to
633 it. */
634 if (val->parent != NULL)
635 value_free (val->parent);
636
5f5233d4
PA
637 if (VALUE_LVAL (val) == lval_computed)
638 {
639 struct lval_funcs *funcs = val->location.computed.funcs;
640
641 if (funcs->free_closure)
642 funcs->free_closure (val);
643 }
644
645 xfree (val->contents);
646 }
3e3d7139
JG
647 xfree (val);
648}
649
c906108c
SS
650/* Free all values allocated since MARK was obtained by value_mark
651 (except for those released). */
652void
f23631e4 653value_free_to_mark (struct value *mark)
c906108c 654{
f23631e4
AC
655 struct value *val;
656 struct value *next;
c906108c
SS
657
658 for (val = all_values; val && val != mark; val = next)
659 {
df407dfe 660 next = val->next;
c906108c
SS
661 value_free (val);
662 }
663 all_values = val;
664}
665
666/* Free all the values that have been allocated (except for those released).
725e88af
DE
667 Call after each command, successful or not.
668 In practice this is called before each command, which is sufficient. */
c906108c
SS
669
670void
fba45db2 671free_all_values (void)
c906108c 672{
f23631e4
AC
673 struct value *val;
674 struct value *next;
c906108c
SS
675
676 for (val = all_values; val; val = next)
677 {
df407dfe 678 next = val->next;
c906108c
SS
679 value_free (val);
680 }
681
682 all_values = 0;
683}
684
685/* Remove VAL from the chain all_values
686 so it will not be freed automatically. */
687
688void
f23631e4 689release_value (struct value *val)
c906108c 690{
f23631e4 691 struct value *v;
c906108c
SS
692
693 if (all_values == val)
694 {
695 all_values = val->next;
696 return;
697 }
698
699 for (v = all_values; v; v = v->next)
700 {
701 if (v->next == val)
702 {
703 v->next = val->next;
704 break;
705 }
706 }
707}
708
709/* Release all values up to mark */
f23631e4
AC
710struct value *
711value_release_to_mark (struct value *mark)
c906108c 712{
f23631e4
AC
713 struct value *val;
714 struct value *next;
c906108c 715
df407dfe
AC
716 for (val = next = all_values; next; next = next->next)
717 if (next->next == mark)
c906108c 718 {
df407dfe
AC
719 all_values = next->next;
720 next->next = NULL;
c906108c
SS
721 return val;
722 }
723 all_values = 0;
724 return val;
725}
726
727/* Return a copy of the value ARG.
728 It contains the same contents, for same memory address,
729 but it's a different block of storage. */
730
f23631e4
AC
731struct value *
732value_copy (struct value *arg)
c906108c 733{
4754a64e 734 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
735 struct value *val;
736
737 if (value_lazy (arg))
738 val = allocate_value_lazy (encl_type);
739 else
740 val = allocate_value (encl_type);
df407dfe 741 val->type = arg->type;
c906108c 742 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 743 val->location = arg->location;
df407dfe
AC
744 val->offset = arg->offset;
745 val->bitpos = arg->bitpos;
746 val->bitsize = arg->bitsize;
1df6926e 747 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 748 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 749 val->lazy = arg->lazy;
feb13ab0 750 val->optimized_out = arg->optimized_out;
13c3b5f5 751 val->embedded_offset = value_embedded_offset (arg);
b44d461b 752 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 753 val->modifiable = arg->modifiable;
d69fe07e 754 if (!value_lazy (val))
c906108c 755 {
990a07ab 756 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 757 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
758
759 }
4ea48cc1
DJ
760 val->parent = arg->parent;
761 if (val->parent)
762 value_incref (val->parent);
5f5233d4
PA
763 if (VALUE_LVAL (val) == lval_computed)
764 {
765 struct lval_funcs *funcs = val->location.computed.funcs;
766
767 if (funcs->copy_closure)
768 val->location.computed.closure = funcs->copy_closure (val);
769 }
c906108c
SS
770 return val;
771}
74bcbdf3
PA
772
773void
774set_value_component_location (struct value *component, struct value *whole)
775{
776 if (VALUE_LVAL (whole) == lval_internalvar)
777 VALUE_LVAL (component) = lval_internalvar_component;
778 else
779 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 780
74bcbdf3 781 component->location = whole->location;
5f5233d4
PA
782 if (VALUE_LVAL (whole) == lval_computed)
783 {
784 struct lval_funcs *funcs = whole->location.computed.funcs;
785
786 if (funcs->copy_closure)
787 component->location.computed.closure = funcs->copy_closure (whole);
788 }
74bcbdf3
PA
789}
790
c906108c
SS
791\f
792/* Access to the value history. */
793
794/* Record a new value in the value history.
795 Returns the absolute history index of the entry.
796 Result of -1 indicates the value was not saved; otherwise it is the
797 value history index of this new item. */
798
799int
f23631e4 800record_latest_value (struct value *val)
c906108c
SS
801{
802 int i;
803
804 /* We don't want this value to have anything to do with the inferior anymore.
805 In particular, "set $1 = 50" should not affect the variable from which
806 the value was taken, and fast watchpoints should be able to assume that
807 a value on the value history never changes. */
d69fe07e 808 if (value_lazy (val))
c906108c
SS
809 value_fetch_lazy (val);
810 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
811 from. This is a bit dubious, because then *&$1 does not just return $1
812 but the current contents of that location. c'est la vie... */
813 val->modifiable = 0;
814 release_value (val);
815
816 /* Here we treat value_history_count as origin-zero
817 and applying to the value being stored now. */
818
819 i = value_history_count % VALUE_HISTORY_CHUNK;
820 if (i == 0)
821 {
f23631e4 822 struct value_history_chunk *new
a109c7c1
MS
823 = (struct value_history_chunk *)
824
c5aa993b 825 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
826 memset (new->values, 0, sizeof new->values);
827 new->next = value_history_chain;
828 value_history_chain = new;
829 }
830
831 value_history_chain->values[i] = val;
832
833 /* Now we regard value_history_count as origin-one
834 and applying to the value just stored. */
835
836 return ++value_history_count;
837}
838
839/* Return a copy of the value in the history with sequence number NUM. */
840
f23631e4 841struct value *
fba45db2 842access_value_history (int num)
c906108c 843{
f23631e4 844 struct value_history_chunk *chunk;
52f0bd74
AC
845 int i;
846 int absnum = num;
c906108c
SS
847
848 if (absnum <= 0)
849 absnum += value_history_count;
850
851 if (absnum <= 0)
852 {
853 if (num == 0)
8a3fe4f8 854 error (_("The history is empty."));
c906108c 855 else if (num == 1)
8a3fe4f8 856 error (_("There is only one value in the history."));
c906108c 857 else
8a3fe4f8 858 error (_("History does not go back to $$%d."), -num);
c906108c
SS
859 }
860 if (absnum > value_history_count)
8a3fe4f8 861 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
862
863 absnum--;
864
865 /* Now absnum is always absolute and origin zero. */
866
867 chunk = value_history_chain;
868 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
869 i > 0; i--)
870 chunk = chunk->next;
871
872 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
873}
874
c906108c 875static void
fba45db2 876show_values (char *num_exp, int from_tty)
c906108c 877{
52f0bd74 878 int i;
f23631e4 879 struct value *val;
c906108c
SS
880 static int num = 1;
881
882 if (num_exp)
883 {
f132ba9d
TJB
884 /* "show values +" should print from the stored position.
885 "show values <exp>" should print around value number <exp>. */
c906108c 886 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 887 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
888 }
889 else
890 {
f132ba9d 891 /* "show values" means print the last 10 values. */
c906108c
SS
892 num = value_history_count - 9;
893 }
894
895 if (num <= 0)
896 num = 1;
897
898 for (i = num; i < num + 10 && i <= value_history_count; i++)
899 {
79a45b7d 900 struct value_print_options opts;
a109c7c1 901
c906108c 902 val = access_value_history (i);
a3f17187 903 printf_filtered (("$%d = "), i);
79a45b7d
TT
904 get_user_print_options (&opts);
905 value_print (val, gdb_stdout, &opts);
a3f17187 906 printf_filtered (("\n"));
c906108c
SS
907 }
908
f132ba9d 909 /* The next "show values +" should start after what we just printed. */
c906108c
SS
910 num += 10;
911
912 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
913 "show values +". If num_exp is null, this is unnecessary, since
914 "show values +" is not useful after "show values". */
c906108c
SS
915 if (from_tty && num_exp)
916 {
917 num_exp[0] = '+';
918 num_exp[1] = '\0';
919 }
920}
921\f
922/* Internal variables. These are variables within the debugger
923 that hold values assigned by debugger commands.
924 The user refers to them with a '$' prefix
925 that does not appear in the variable names stored internally. */
926
4fa62494
UW
927struct internalvar
928{
929 struct internalvar *next;
930 char *name;
4fa62494 931
78267919
UW
932 /* We support various different kinds of content of an internal variable.
933 enum internalvar_kind specifies the kind, and union internalvar_data
934 provides the data associated with this particular kind. */
935
936 enum internalvar_kind
937 {
938 /* The internal variable is empty. */
939 INTERNALVAR_VOID,
940
941 /* The value of the internal variable is provided directly as
942 a GDB value object. */
943 INTERNALVAR_VALUE,
944
945 /* A fresh value is computed via a call-back routine on every
946 access to the internal variable. */
947 INTERNALVAR_MAKE_VALUE,
4fa62494 948
78267919
UW
949 /* The internal variable holds a GDB internal convenience function. */
950 INTERNALVAR_FUNCTION,
951
cab0c772
UW
952 /* The variable holds an integer value. */
953 INTERNALVAR_INTEGER,
954
955 /* The variable holds a pointer value. */
956 INTERNALVAR_POINTER,
78267919
UW
957
958 /* The variable holds a GDB-provided string. */
959 INTERNALVAR_STRING,
960
961 } kind;
4fa62494 962
4fa62494
UW
963 union internalvar_data
964 {
78267919
UW
965 /* A value object used with INTERNALVAR_VALUE. */
966 struct value *value;
967
968 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
969 internalvar_make_value make_value;
970
971 /* The internal function used with INTERNALVAR_FUNCTION. */
972 struct
973 {
974 struct internal_function *function;
975 /* True if this is the canonical name for the function. */
976 int canonical;
977 } fn;
978
cab0c772 979 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
980 struct
981 {
982 /* If type is non-NULL, it will be used as the type to generate
983 a value for this internal variable. If type is NULL, a default
984 integer type for the architecture is used. */
985 struct type *type;
cab0c772
UW
986 LONGEST val;
987 } integer;
988
989 /* A pointer value used with INTERNALVAR_POINTER. */
990 struct
991 {
992 struct type *type;
993 CORE_ADDR val;
994 } pointer;
78267919
UW
995
996 /* A string value used with INTERNALVAR_STRING. */
997 char *string;
4fa62494
UW
998 } u;
999};
1000
c906108c
SS
1001static struct internalvar *internalvars;
1002
53e5f3cf
AS
1003/* If the variable does not already exist create it and give it the value given.
1004 If no value is given then the default is zero. */
1005static void
1006init_if_undefined_command (char* args, int from_tty)
1007{
1008 struct internalvar* intvar;
1009
1010 /* Parse the expression - this is taken from set_command(). */
1011 struct expression *expr = parse_expression (args);
1012 register struct cleanup *old_chain =
1013 make_cleanup (free_current_contents, &expr);
1014
1015 /* Validate the expression.
1016 Was the expression an assignment?
1017 Or even an expression at all? */
1018 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1019 error (_("Init-if-undefined requires an assignment expression."));
1020
1021 /* Extract the variable from the parsed expression.
1022 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1023 if (expr->elts[1].opcode != OP_INTERNALVAR)
1024 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1025 intvar = expr->elts[2].internalvar;
1026
1027 /* Only evaluate the expression if the lvalue is void.
1028 This may still fail if the expresssion is invalid. */
78267919 1029 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1030 evaluate_expression (expr);
1031
1032 do_cleanups (old_chain);
1033}
1034
1035
c906108c
SS
1036/* Look up an internal variable with name NAME. NAME should not
1037 normally include a dollar sign.
1038
1039 If the specified internal variable does not exist,
c4a3d09a 1040 the return value is NULL. */
c906108c
SS
1041
1042struct internalvar *
bc3b79fd 1043lookup_only_internalvar (const char *name)
c906108c 1044{
52f0bd74 1045 struct internalvar *var;
c906108c
SS
1046
1047 for (var = internalvars; var; var = var->next)
5cb316ef 1048 if (strcmp (var->name, name) == 0)
c906108c
SS
1049 return var;
1050
c4a3d09a
MF
1051 return NULL;
1052}
1053
1054
1055/* Create an internal variable with name NAME and with a void value.
1056 NAME should not normally include a dollar sign. */
1057
1058struct internalvar *
bc3b79fd 1059create_internalvar (const char *name)
c4a3d09a
MF
1060{
1061 struct internalvar *var;
a109c7c1 1062
c906108c 1063 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1064 var->name = concat (name, (char *)NULL);
78267919 1065 var->kind = INTERNALVAR_VOID;
c906108c
SS
1066 var->next = internalvars;
1067 internalvars = var;
1068 return var;
1069}
1070
4aa995e1
PA
1071/* Create an internal variable with name NAME and register FUN as the
1072 function that value_of_internalvar uses to create a value whenever
1073 this variable is referenced. NAME should not normally include a
1074 dollar sign. */
1075
1076struct internalvar *
1077create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1078{
4fa62494 1079 struct internalvar *var = create_internalvar (name);
a109c7c1 1080
78267919
UW
1081 var->kind = INTERNALVAR_MAKE_VALUE;
1082 var->u.make_value = fun;
4aa995e1
PA
1083 return var;
1084}
c4a3d09a
MF
1085
1086/* Look up an internal variable with name NAME. NAME should not
1087 normally include a dollar sign.
1088
1089 If the specified internal variable does not exist,
1090 one is created, with a void value. */
1091
1092struct internalvar *
bc3b79fd 1093lookup_internalvar (const char *name)
c4a3d09a
MF
1094{
1095 struct internalvar *var;
1096
1097 var = lookup_only_internalvar (name);
1098 if (var)
1099 return var;
1100
1101 return create_internalvar (name);
1102}
1103
78267919
UW
1104/* Return current value of internal variable VAR. For variables that
1105 are not inherently typed, use a value type appropriate for GDBARCH. */
1106
f23631e4 1107struct value *
78267919 1108value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1109{
f23631e4 1110 struct value *val;
c906108c 1111
78267919 1112 switch (var->kind)
5f5233d4 1113 {
78267919
UW
1114 case INTERNALVAR_VOID:
1115 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1116 break;
4fa62494 1117
78267919
UW
1118 case INTERNALVAR_FUNCTION:
1119 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1120 break;
4fa62494 1121
cab0c772
UW
1122 case INTERNALVAR_INTEGER:
1123 if (!var->u.integer.type)
78267919 1124 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1125 var->u.integer.val);
78267919 1126 else
cab0c772
UW
1127 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1128 break;
1129
1130 case INTERNALVAR_POINTER:
1131 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1132 break;
4fa62494 1133
78267919
UW
1134 case INTERNALVAR_STRING:
1135 val = value_cstring (var->u.string, strlen (var->u.string),
1136 builtin_type (gdbarch)->builtin_char);
1137 break;
4fa62494 1138
78267919
UW
1139 case INTERNALVAR_VALUE:
1140 val = value_copy (var->u.value);
4aa995e1
PA
1141 if (value_lazy (val))
1142 value_fetch_lazy (val);
78267919 1143 break;
4aa995e1 1144
78267919
UW
1145 case INTERNALVAR_MAKE_VALUE:
1146 val = (*var->u.make_value) (gdbarch, var);
1147 break;
1148
1149 default:
1150 internal_error (__FILE__, __LINE__, "bad kind");
1151 }
1152
1153 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1154 on this value go back to affect the original internal variable.
1155
1156 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1157 no underlying modifyable state in the internal variable.
1158
1159 Likewise, if the variable's value is a computed lvalue, we want
1160 references to it to produce another computed lvalue, where
1161 references and assignments actually operate through the
1162 computed value's functions.
1163
1164 This means that internal variables with computed values
1165 behave a little differently from other internal variables:
1166 assignments to them don't just replace the previous value
1167 altogether. At the moment, this seems like the behavior we
1168 want. */
1169
1170 if (var->kind != INTERNALVAR_MAKE_VALUE
1171 && val->lval != lval_computed)
1172 {
1173 VALUE_LVAL (val) = lval_internalvar;
1174 VALUE_INTERNALVAR (val) = var;
5f5233d4 1175 }
d3c139e9 1176
4fa62494
UW
1177 return val;
1178}
d3c139e9 1179
4fa62494
UW
1180int
1181get_internalvar_integer (struct internalvar *var, LONGEST *result)
1182{
78267919 1183 switch (var->kind)
4fa62494 1184 {
cab0c772
UW
1185 case INTERNALVAR_INTEGER:
1186 *result = var->u.integer.val;
1187 return 1;
d3c139e9 1188
4fa62494
UW
1189 default:
1190 return 0;
1191 }
1192}
d3c139e9 1193
4fa62494
UW
1194static int
1195get_internalvar_function (struct internalvar *var,
1196 struct internal_function **result)
1197{
78267919 1198 switch (var->kind)
d3c139e9 1199 {
78267919
UW
1200 case INTERNALVAR_FUNCTION:
1201 *result = var->u.fn.function;
4fa62494 1202 return 1;
d3c139e9 1203
4fa62494
UW
1204 default:
1205 return 0;
1206 }
c906108c
SS
1207}
1208
1209void
fba45db2 1210set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1211 int bitsize, struct value *newval)
c906108c 1212{
4fa62494 1213 gdb_byte *addr;
c906108c 1214
78267919 1215 switch (var->kind)
4fa62494 1216 {
78267919
UW
1217 case INTERNALVAR_VALUE:
1218 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1219
1220 if (bitsize)
50810684 1221 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1222 value_as_long (newval), bitpos, bitsize);
1223 else
1224 memcpy (addr + offset, value_contents (newval),
1225 TYPE_LENGTH (value_type (newval)));
1226 break;
78267919
UW
1227
1228 default:
1229 /* We can never get a component of any other kind. */
1230 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1231 }
c906108c
SS
1232}
1233
1234void
f23631e4 1235set_internalvar (struct internalvar *var, struct value *val)
c906108c 1236{
78267919 1237 enum internalvar_kind new_kind;
4fa62494 1238 union internalvar_data new_data = { 0 };
c906108c 1239
78267919 1240 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1241 error (_("Cannot overwrite convenience function %s"), var->name);
1242
4fa62494 1243 /* Prepare new contents. */
78267919 1244 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1245 {
1246 case TYPE_CODE_VOID:
78267919 1247 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1248 break;
1249
1250 case TYPE_CODE_INTERNAL_FUNCTION:
1251 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1252 new_kind = INTERNALVAR_FUNCTION;
1253 get_internalvar_function (VALUE_INTERNALVAR (val),
1254 &new_data.fn.function);
1255 /* Copies created here are never canonical. */
4fa62494
UW
1256 break;
1257
1258 case TYPE_CODE_INT:
cab0c772
UW
1259 new_kind = INTERNALVAR_INTEGER;
1260 new_data.integer.type = value_type (val);
1261 new_data.integer.val = value_as_long (val);
4fa62494
UW
1262 break;
1263
1264 case TYPE_CODE_PTR:
cab0c772
UW
1265 new_kind = INTERNALVAR_POINTER;
1266 new_data.pointer.type = value_type (val);
1267 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1268 break;
1269
1270 default:
78267919
UW
1271 new_kind = INTERNALVAR_VALUE;
1272 new_data.value = value_copy (val);
1273 new_data.value->modifiable = 1;
4fa62494
UW
1274
1275 /* Force the value to be fetched from the target now, to avoid problems
1276 later when this internalvar is referenced and the target is gone or
1277 has changed. */
78267919
UW
1278 if (value_lazy (new_data.value))
1279 value_fetch_lazy (new_data.value);
4fa62494
UW
1280
1281 /* Release the value from the value chain to prevent it from being
1282 deleted by free_all_values. From here on this function should not
1283 call error () until new_data is installed into the var->u to avoid
1284 leaking memory. */
78267919 1285 release_value (new_data.value);
4fa62494
UW
1286 break;
1287 }
1288
1289 /* Clean up old contents. */
1290 clear_internalvar (var);
1291
1292 /* Switch over. */
78267919 1293 var->kind = new_kind;
4fa62494 1294 var->u = new_data;
c906108c
SS
1295 /* End code which must not call error(). */
1296}
1297
4fa62494
UW
1298void
1299set_internalvar_integer (struct internalvar *var, LONGEST l)
1300{
1301 /* Clean up old contents. */
1302 clear_internalvar (var);
1303
cab0c772
UW
1304 var->kind = INTERNALVAR_INTEGER;
1305 var->u.integer.type = NULL;
1306 var->u.integer.val = l;
78267919
UW
1307}
1308
1309void
1310set_internalvar_string (struct internalvar *var, const char *string)
1311{
1312 /* Clean up old contents. */
1313 clear_internalvar (var);
1314
1315 var->kind = INTERNALVAR_STRING;
1316 var->u.string = xstrdup (string);
4fa62494
UW
1317}
1318
1319static void
1320set_internalvar_function (struct internalvar *var, struct internal_function *f)
1321{
1322 /* Clean up old contents. */
1323 clear_internalvar (var);
1324
78267919
UW
1325 var->kind = INTERNALVAR_FUNCTION;
1326 var->u.fn.function = f;
1327 var->u.fn.canonical = 1;
1328 /* Variables installed here are always the canonical version. */
4fa62494
UW
1329}
1330
1331void
1332clear_internalvar (struct internalvar *var)
1333{
1334 /* Clean up old contents. */
78267919 1335 switch (var->kind)
4fa62494 1336 {
78267919
UW
1337 case INTERNALVAR_VALUE:
1338 value_free (var->u.value);
1339 break;
1340
1341 case INTERNALVAR_STRING:
1342 xfree (var->u.string);
4fa62494
UW
1343 break;
1344
1345 default:
4fa62494
UW
1346 break;
1347 }
1348
78267919
UW
1349 /* Reset to void kind. */
1350 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1351}
1352
c906108c 1353char *
fba45db2 1354internalvar_name (struct internalvar *var)
c906108c
SS
1355{
1356 return var->name;
1357}
1358
4fa62494
UW
1359static struct internal_function *
1360create_internal_function (const char *name,
1361 internal_function_fn handler, void *cookie)
bc3b79fd 1362{
bc3b79fd 1363 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1364
bc3b79fd
TJB
1365 ifn->name = xstrdup (name);
1366 ifn->handler = handler;
1367 ifn->cookie = cookie;
4fa62494 1368 return ifn;
bc3b79fd
TJB
1369}
1370
1371char *
1372value_internal_function_name (struct value *val)
1373{
4fa62494
UW
1374 struct internal_function *ifn;
1375 int result;
1376
1377 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1378 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1379 gdb_assert (result);
1380
bc3b79fd
TJB
1381 return ifn->name;
1382}
1383
1384struct value *
d452c4bc
UW
1385call_internal_function (struct gdbarch *gdbarch,
1386 const struct language_defn *language,
1387 struct value *func, int argc, struct value **argv)
bc3b79fd 1388{
4fa62494
UW
1389 struct internal_function *ifn;
1390 int result;
1391
1392 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1393 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1394 gdb_assert (result);
1395
d452c4bc 1396 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1397}
1398
1399/* The 'function' command. This does nothing -- it is just a
1400 placeholder to let "help function NAME" work. This is also used as
1401 the implementation of the sub-command that is created when
1402 registering an internal function. */
1403static void
1404function_command (char *command, int from_tty)
1405{
1406 /* Do nothing. */
1407}
1408
1409/* Clean up if an internal function's command is destroyed. */
1410static void
1411function_destroyer (struct cmd_list_element *self, void *ignore)
1412{
1413 xfree (self->name);
1414 xfree (self->doc);
1415}
1416
1417/* Add a new internal function. NAME is the name of the function; DOC
1418 is a documentation string describing the function. HANDLER is
1419 called when the function is invoked. COOKIE is an arbitrary
1420 pointer which is passed to HANDLER and is intended for "user
1421 data". */
1422void
1423add_internal_function (const char *name, const char *doc,
1424 internal_function_fn handler, void *cookie)
1425{
1426 struct cmd_list_element *cmd;
4fa62494 1427 struct internal_function *ifn;
bc3b79fd 1428 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1429
1430 ifn = create_internal_function (name, handler, cookie);
1431 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1432
1433 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1434 &functionlist);
1435 cmd->destroyer = function_destroyer;
1436}
1437
ae5a43e0
DJ
1438/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1439 prevent cycles / duplicates. */
1440
4e7a5ef5 1441void
ae5a43e0
DJ
1442preserve_one_value (struct value *value, struct objfile *objfile,
1443 htab_t copied_types)
1444{
1445 if (TYPE_OBJFILE (value->type) == objfile)
1446 value->type = copy_type_recursive (objfile, value->type, copied_types);
1447
1448 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1449 value->enclosing_type = copy_type_recursive (objfile,
1450 value->enclosing_type,
1451 copied_types);
1452}
1453
78267919
UW
1454/* Likewise for internal variable VAR. */
1455
1456static void
1457preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1458 htab_t copied_types)
1459{
1460 switch (var->kind)
1461 {
cab0c772
UW
1462 case INTERNALVAR_INTEGER:
1463 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1464 var->u.integer.type
1465 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1466 break;
1467
1468 case INTERNALVAR_POINTER:
1469 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1470 var->u.pointer.type
1471 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1472 break;
1473
1474 case INTERNALVAR_VALUE:
1475 preserve_one_value (var->u.value, objfile, copied_types);
1476 break;
1477 }
1478}
1479
ae5a43e0
DJ
1480/* Update the internal variables and value history when OBJFILE is
1481 discarded; we must copy the types out of the objfile. New global types
1482 will be created for every convenience variable which currently points to
1483 this objfile's types, and the convenience variables will be adjusted to
1484 use the new global types. */
c906108c
SS
1485
1486void
ae5a43e0 1487preserve_values (struct objfile *objfile)
c906108c 1488{
ae5a43e0
DJ
1489 htab_t copied_types;
1490 struct value_history_chunk *cur;
52f0bd74 1491 struct internalvar *var;
ae5a43e0 1492 int i;
c906108c 1493
ae5a43e0
DJ
1494 /* Create the hash table. We allocate on the objfile's obstack, since
1495 it is soon to be deleted. */
1496 copied_types = create_copied_types_hash (objfile);
1497
1498 for (cur = value_history_chain; cur; cur = cur->next)
1499 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1500 if (cur->values[i])
1501 preserve_one_value (cur->values[i], objfile, copied_types);
1502
1503 for (var = internalvars; var; var = var->next)
78267919 1504 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1505
4e7a5ef5 1506 preserve_python_values (objfile, copied_types);
a08702d6 1507
ae5a43e0 1508 htab_delete (copied_types);
c906108c
SS
1509}
1510
1511static void
fba45db2 1512show_convenience (char *ignore, int from_tty)
c906108c 1513{
e17c207e 1514 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1515 struct internalvar *var;
c906108c 1516 int varseen = 0;
79a45b7d 1517 struct value_print_options opts;
c906108c 1518
79a45b7d 1519 get_user_print_options (&opts);
c906108c
SS
1520 for (var = internalvars; var; var = var->next)
1521 {
c906108c
SS
1522 if (!varseen)
1523 {
1524 varseen = 1;
1525 }
a3f17187 1526 printf_filtered (("$%s = "), var->name);
78267919 1527 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1528 &opts);
a3f17187 1529 printf_filtered (("\n"));
c906108c
SS
1530 }
1531 if (!varseen)
a3f17187
AC
1532 printf_unfiltered (_("\
1533No debugger convenience variables now defined.\n\
c906108c 1534Convenience variables have names starting with \"$\";\n\
a3f17187 1535use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1536}
1537\f
1538/* Extract a value as a C number (either long or double).
1539 Knows how to convert fixed values to double, or
1540 floating values to long.
1541 Does not deallocate the value. */
1542
1543LONGEST
f23631e4 1544value_as_long (struct value *val)
c906108c
SS
1545{
1546 /* This coerces arrays and functions, which is necessary (e.g.
1547 in disassemble_command). It also dereferences references, which
1548 I suspect is the most logical thing to do. */
994b9211 1549 val = coerce_array (val);
0fd88904 1550 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1551}
1552
1553DOUBLEST
f23631e4 1554value_as_double (struct value *val)
c906108c
SS
1555{
1556 DOUBLEST foo;
1557 int inv;
c5aa993b 1558
0fd88904 1559 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1560 if (inv)
8a3fe4f8 1561 error (_("Invalid floating value found in program."));
c906108c
SS
1562 return foo;
1563}
4ef30785 1564
4478b372
JB
1565/* Extract a value as a C pointer. Does not deallocate the value.
1566 Note that val's type may not actually be a pointer; value_as_long
1567 handles all the cases. */
c906108c 1568CORE_ADDR
f23631e4 1569value_as_address (struct value *val)
c906108c 1570{
50810684
UW
1571 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1572
c906108c
SS
1573 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1574 whether we want this to be true eventually. */
1575#if 0
bf6ae464 1576 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1577 non-address (e.g. argument to "signal", "info break", etc.), or
1578 for pointers to char, in which the low bits *are* significant. */
50810684 1579 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1580#else
f312f057
JB
1581
1582 /* There are several targets (IA-64, PowerPC, and others) which
1583 don't represent pointers to functions as simply the address of
1584 the function's entry point. For example, on the IA-64, a
1585 function pointer points to a two-word descriptor, generated by
1586 the linker, which contains the function's entry point, and the
1587 value the IA-64 "global pointer" register should have --- to
1588 support position-independent code. The linker generates
1589 descriptors only for those functions whose addresses are taken.
1590
1591 On such targets, it's difficult for GDB to convert an arbitrary
1592 function address into a function pointer; it has to either find
1593 an existing descriptor for that function, or call malloc and
1594 build its own. On some targets, it is impossible for GDB to
1595 build a descriptor at all: the descriptor must contain a jump
1596 instruction; data memory cannot be executed; and code memory
1597 cannot be modified.
1598
1599 Upon entry to this function, if VAL is a value of type `function'
1600 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1601 value_address (val) is the address of the function. This is what
f312f057
JB
1602 you'll get if you evaluate an expression like `main'. The call
1603 to COERCE_ARRAY below actually does all the usual unary
1604 conversions, which includes converting values of type `function'
1605 to `pointer to function'. This is the challenging conversion
1606 discussed above. Then, `unpack_long' will convert that pointer
1607 back into an address.
1608
1609 So, suppose the user types `disassemble foo' on an architecture
1610 with a strange function pointer representation, on which GDB
1611 cannot build its own descriptors, and suppose further that `foo'
1612 has no linker-built descriptor. The address->pointer conversion
1613 will signal an error and prevent the command from running, even
1614 though the next step would have been to convert the pointer
1615 directly back into the same address.
1616
1617 The following shortcut avoids this whole mess. If VAL is a
1618 function, just return its address directly. */
df407dfe
AC
1619 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1620 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1621 return value_address (val);
f312f057 1622
994b9211 1623 val = coerce_array (val);
fc0c74b1
AC
1624
1625 /* Some architectures (e.g. Harvard), map instruction and data
1626 addresses onto a single large unified address space. For
1627 instance: An architecture may consider a large integer in the
1628 range 0x10000000 .. 0x1000ffff to already represent a data
1629 addresses (hence not need a pointer to address conversion) while
1630 a small integer would still need to be converted integer to
1631 pointer to address. Just assume such architectures handle all
1632 integer conversions in a single function. */
1633
1634 /* JimB writes:
1635
1636 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1637 must admonish GDB hackers to make sure its behavior matches the
1638 compiler's, whenever possible.
1639
1640 In general, I think GDB should evaluate expressions the same way
1641 the compiler does. When the user copies an expression out of
1642 their source code and hands it to a `print' command, they should
1643 get the same value the compiler would have computed. Any
1644 deviation from this rule can cause major confusion and annoyance,
1645 and needs to be justified carefully. In other words, GDB doesn't
1646 really have the freedom to do these conversions in clever and
1647 useful ways.
1648
1649 AndrewC pointed out that users aren't complaining about how GDB
1650 casts integers to pointers; they are complaining that they can't
1651 take an address from a disassembly listing and give it to `x/i'.
1652 This is certainly important.
1653
79dd2d24 1654 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1655 makes it possible for GDB to "get it right" in all circumstances
1656 --- the target has complete control over how things get done, so
1657 people can Do The Right Thing for their target without breaking
1658 anyone else. The standard doesn't specify how integers get
1659 converted to pointers; usually, the ABI doesn't either, but
1660 ABI-specific code is a more reasonable place to handle it. */
1661
df407dfe
AC
1662 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1663 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1664 && gdbarch_integer_to_address_p (gdbarch))
1665 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1666 value_contents (val));
fc0c74b1 1667
0fd88904 1668 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1669#endif
1670}
1671\f
1672/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1673 as a long, or as a double, assuming the raw data is described
1674 by type TYPE. Knows how to convert different sizes of values
1675 and can convert between fixed and floating point. We don't assume
1676 any alignment for the raw data. Return value is in host byte order.
1677
1678 If you want functions and arrays to be coerced to pointers, and
1679 references to be dereferenced, call value_as_long() instead.
1680
1681 C++: It is assumed that the front-end has taken care of
1682 all matters concerning pointers to members. A pointer
1683 to member which reaches here is considered to be equivalent
1684 to an INT (or some size). After all, it is only an offset. */
1685
1686LONGEST
fc1a4b47 1687unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1688{
e17a4113 1689 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1690 enum type_code code = TYPE_CODE (type);
1691 int len = TYPE_LENGTH (type);
1692 int nosign = TYPE_UNSIGNED (type);
c906108c 1693
c906108c
SS
1694 switch (code)
1695 {
1696 case TYPE_CODE_TYPEDEF:
1697 return unpack_long (check_typedef (type), valaddr);
1698 case TYPE_CODE_ENUM:
4f2aea11 1699 case TYPE_CODE_FLAGS:
c906108c
SS
1700 case TYPE_CODE_BOOL:
1701 case TYPE_CODE_INT:
1702 case TYPE_CODE_CHAR:
1703 case TYPE_CODE_RANGE:
0d5de010 1704 case TYPE_CODE_MEMBERPTR:
c906108c 1705 if (nosign)
e17a4113 1706 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1707 else
e17a4113 1708 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1709
1710 case TYPE_CODE_FLT:
96d2f608 1711 return extract_typed_floating (valaddr, type);
c906108c 1712
4ef30785
TJB
1713 case TYPE_CODE_DECFLOAT:
1714 /* libdecnumber has a function to convert from decimal to integer, but
1715 it doesn't work when the decimal number has a fractional part. */
e17a4113 1716 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1717
c906108c
SS
1718 case TYPE_CODE_PTR:
1719 case TYPE_CODE_REF:
1720 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1721 whether we want this to be true eventually. */
4478b372 1722 return extract_typed_address (valaddr, type);
c906108c 1723
c906108c 1724 default:
8a3fe4f8 1725 error (_("Value can't be converted to integer."));
c906108c 1726 }
c5aa993b 1727 return 0; /* Placate lint. */
c906108c
SS
1728}
1729
1730/* Return a double value from the specified type and address.
1731 INVP points to an int which is set to 0 for valid value,
1732 1 for invalid value (bad float format). In either case,
1733 the returned double is OK to use. Argument is in target
1734 format, result is in host format. */
1735
1736DOUBLEST
fc1a4b47 1737unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1738{
e17a4113 1739 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1740 enum type_code code;
1741 int len;
1742 int nosign;
1743
1744 *invp = 0; /* Assume valid. */
1745 CHECK_TYPEDEF (type);
1746 code = TYPE_CODE (type);
1747 len = TYPE_LENGTH (type);
1748 nosign = TYPE_UNSIGNED (type);
1749 if (code == TYPE_CODE_FLT)
1750 {
75bc7ddf
AC
1751 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1752 floating-point value was valid (using the macro
1753 INVALID_FLOAT). That test/macro have been removed.
1754
1755 It turns out that only the VAX defined this macro and then
1756 only in a non-portable way. Fixing the portability problem
1757 wouldn't help since the VAX floating-point code is also badly
1758 bit-rotten. The target needs to add definitions for the
ea06eb3d 1759 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1760 exactly describe the target floating-point format. The
1761 problem here is that the corresponding floatformat_vax_f and
1762 floatformat_vax_d values these methods should be set to are
1763 also not defined either. Oops!
1764
1765 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1766 definitions and the new cases for floatformat_is_valid (). */
1767
1768 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1769 {
1770 *invp = 1;
1771 return 0.0;
1772 }
1773
96d2f608 1774 return extract_typed_floating (valaddr, type);
c906108c 1775 }
4ef30785 1776 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1777 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1778 else if (nosign)
1779 {
1780 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1781 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1782 }
1783 else
1784 {
1785 /* Signed -- we are OK with unpack_long. */
1786 return unpack_long (type, valaddr);
1787 }
1788}
1789
1790/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1791 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1792 We don't assume any alignment for the raw data. Return value is in
1793 host byte order.
1794
1795 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1796 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1797
1798 C++: It is assumed that the front-end has taken care of
1799 all matters concerning pointers to members. A pointer
1800 to member which reaches here is considered to be equivalent
1801 to an INT (or some size). After all, it is only an offset. */
1802
1803CORE_ADDR
fc1a4b47 1804unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1805{
1806 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1807 whether we want this to be true eventually. */
1808 return unpack_long (type, valaddr);
1809}
4478b372 1810
c906108c 1811\f
2c2738a0
DC
1812/* Get the value of the FIELDN'th field (which must be static) of
1813 TYPE. Return NULL if the field doesn't exist or has been
1814 optimized out. */
c906108c 1815
f23631e4 1816struct value *
fba45db2 1817value_static_field (struct type *type, int fieldno)
c906108c 1818{
948e66d9
DJ
1819 struct value *retval;
1820
d6a843b5 1821 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1822 {
52e9fde8
SS
1823 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1824 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1825 }
1826 else
1827 {
1828 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
a109c7c1 1829 /*TYPE_FIELD_NAME (type, fieldno);*/
2570f2b7 1830 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1831
948e66d9 1832 if (sym == NULL)
c906108c 1833 {
a109c7c1
MS
1834 /* With some compilers, e.g. HP aCC, static data members are
1835 reported as non-debuggable symbols */
1836 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1837 NULL, NULL);
1838
c906108c
SS
1839 if (!msym)
1840 return NULL;
1841 else
c5aa993b 1842 {
52e9fde8
SS
1843 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1844 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1845 }
1846 }
1847 else
1848 {
948e66d9
DJ
1849 /* SYM should never have a SYMBOL_CLASS which will require
1850 read_var_value to use the FRAME parameter. */
1851 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1852 warning (_("static field's value depends on the current "
1853 "frame - bad debug info?"));
948e66d9 1854 retval = read_var_value (sym, NULL);
2b127877 1855 }
948e66d9
DJ
1856 if (retval && VALUE_LVAL (retval) == lval_memory)
1857 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1858 value_address (retval));
c906108c 1859 }
948e66d9 1860 return retval;
c906108c
SS
1861}
1862
2b127877
DB
1863/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1864 You have to be careful here, since the size of the data area for the value
1865 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1866 than the old enclosing type, you have to allocate more space for the data.
1867 The return value is a pointer to the new version of this value structure. */
1868
f23631e4
AC
1869struct value *
1870value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1871{
3e3d7139
JG
1872 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1873 val->contents =
1874 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1875
1876 val->enclosing_type = new_encl_type;
1877 return val;
2b127877
DB
1878}
1879
c906108c
SS
1880/* Given a value ARG1 (offset by OFFSET bytes)
1881 of a struct or union type ARG_TYPE,
1882 extract and return the value of one of its (non-static) fields.
1883 FIELDNO says which field. */
1884
f23631e4
AC
1885struct value *
1886value_primitive_field (struct value *arg1, int offset,
aa1ee363 1887 int fieldno, struct type *arg_type)
c906108c 1888{
f23631e4 1889 struct value *v;
52f0bd74 1890 struct type *type;
c906108c
SS
1891
1892 CHECK_TYPEDEF (arg_type);
1893 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1894
1895 /* Call check_typedef on our type to make sure that, if TYPE
1896 is a TYPE_CODE_TYPEDEF, its length is set to the length
1897 of the target type instead of zero. However, we do not
1898 replace the typedef type by the target type, because we want
1899 to keep the typedef in order to be able to print the type
1900 description correctly. */
1901 check_typedef (type);
c906108c
SS
1902
1903 /* Handle packed fields */
1904
1905 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1906 {
4ea48cc1
DJ
1907 /* Create a new value for the bitfield, with bitpos and bitsize
1908 set. If possible, arrange offset and bitpos so that we can
1909 do a single aligned read of the size of the containing type.
1910 Otherwise, adjust offset to the byte containing the first
1911 bit. Assume that the address, offset, and embedded offset
1912 are sufficiently aligned. */
1913 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1914 int container_bitsize = TYPE_LENGTH (type) * 8;
1915
1916 v = allocate_value_lazy (type);
df407dfe 1917 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1918 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1919 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1920 v->bitpos = bitpos % container_bitsize;
1921 else
1922 v->bitpos = bitpos % 8;
4a76eae5 1923 v->offset = value_embedded_offset (arg1)
4ea48cc1
DJ
1924 + (bitpos - v->bitpos) / 8;
1925 v->parent = arg1;
1926 value_incref (v->parent);
1927 if (!value_lazy (arg1))
1928 value_fetch_lazy (v);
c906108c
SS
1929 }
1930 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1931 {
1932 /* This field is actually a base subobject, so preserve the
1933 entire object's contents for later references to virtual
1934 bases, etc. */
a4e2ee12
DJ
1935
1936 /* Lazy register values with offsets are not supported. */
1937 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1938 value_fetch_lazy (arg1);
1939
1940 if (value_lazy (arg1))
3e3d7139 1941 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1942 else
3e3d7139
JG
1943 {
1944 v = allocate_value (value_enclosing_type (arg1));
1945 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1946 TYPE_LENGTH (value_enclosing_type (arg1)));
1947 }
1948 v->type = type;
df407dfe 1949 v->offset = value_offset (arg1);
13c3b5f5
AC
1950 v->embedded_offset = (offset + value_embedded_offset (arg1)
1951 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1952 }
1953 else
1954 {
1955 /* Plain old data member */
1956 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1957
1958 /* Lazy register values with offsets are not supported. */
1959 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1960 value_fetch_lazy (arg1);
1961
1962 if (value_lazy (arg1))
3e3d7139 1963 v = allocate_value_lazy (type);
c906108c 1964 else
3e3d7139
JG
1965 {
1966 v = allocate_value (type);
1967 memcpy (value_contents_raw (v),
1968 value_contents_raw (arg1) + offset,
1969 TYPE_LENGTH (type));
1970 }
df407dfe 1971 v->offset = (value_offset (arg1) + offset
13c3b5f5 1972 + value_embedded_offset (arg1));
c906108c 1973 }
74bcbdf3 1974 set_value_component_location (v, arg1);
9ee8fc9d 1975 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1976 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1977 return v;
1978}
1979
1980/* Given a value ARG1 of a struct or union type,
1981 extract and return the value of one of its (non-static) fields.
1982 FIELDNO says which field. */
1983
f23631e4 1984struct value *
aa1ee363 1985value_field (struct value *arg1, int fieldno)
c906108c 1986{
df407dfe 1987 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1988}
1989
1990/* Return a non-virtual function as a value.
1991 F is the list of member functions which contains the desired method.
0478d61c
FF
1992 J is an index into F which provides the desired method.
1993
1994 We only use the symbol for its address, so be happy with either a
1995 full symbol or a minimal symbol.
1996 */
c906108c 1997
f23631e4
AC
1998struct value *
1999value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 2000 int offset)
c906108c 2001{
f23631e4 2002 struct value *v;
52f0bd74 2003 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2004 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2005 struct symbol *sym;
0478d61c 2006 struct minimal_symbol *msym;
c906108c 2007
2570f2b7 2008 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2009 if (sym != NULL)
0478d61c 2010 {
5ae326fa
AC
2011 msym = NULL;
2012 }
2013 else
2014 {
2015 gdb_assert (sym == NULL);
0478d61c 2016 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2017 if (msym == NULL)
2018 return NULL;
0478d61c
FF
2019 }
2020
c906108c 2021 v = allocate_value (ftype);
0478d61c
FF
2022 if (sym)
2023 {
42ae5230 2024 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2025 }
2026 else
2027 {
bccdca4a
UW
2028 /* The minimal symbol might point to a function descriptor;
2029 resolve it to the actual code address instead. */
2030 struct objfile *objfile = msymbol_objfile (msym);
2031 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2032
42ae5230
TT
2033 set_value_address (v,
2034 gdbarch_convert_from_func_ptr_addr
2035 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2036 }
c906108c
SS
2037
2038 if (arg1p)
c5aa993b 2039 {
df407dfe 2040 if (type != value_type (*arg1p))
c5aa993b
JM
2041 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2042 value_addr (*arg1p)));
2043
070ad9f0 2044 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2045 VALUE_OFFSET (*arg1p) += offset;
2046 */
c906108c
SS
2047 }
2048
2049 return v;
2050}
2051
c906108c 2052\f
4ea48cc1
DJ
2053/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2054 object at VALADDR. The bitfield starts at BITPOS bits and contains
2055 BITSIZE bits.
c906108c
SS
2056
2057 Extracting bits depends on endianness of the machine. Compute the
2058 number of least significant bits to discard. For big endian machines,
2059 we compute the total number of bits in the anonymous object, subtract
2060 off the bit count from the MSB of the object to the MSB of the
2061 bitfield, then the size of the bitfield, which leaves the LSB discard
2062 count. For little endian machines, the discard count is simply the
2063 number of bits from the LSB of the anonymous object to the LSB of the
2064 bitfield.
2065
2066 If the field is signed, we also do sign extension. */
2067
2068LONGEST
4ea48cc1
DJ
2069unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2070 int bitpos, int bitsize)
c906108c 2071{
4ea48cc1 2072 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2073 ULONGEST val;
2074 ULONGEST valmask;
c906108c 2075 int lsbcount;
4a76eae5 2076 int bytes_read;
c906108c 2077
4a76eae5
DJ
2078 /* Read the minimum number of bytes required; there may not be
2079 enough bytes to read an entire ULONGEST. */
c906108c 2080 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2081 if (bitsize)
2082 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2083 else
2084 bytes_read = TYPE_LENGTH (field_type);
2085
2086 val = extract_unsigned_integer (valaddr + bitpos / 8,
2087 bytes_read, byte_order);
c906108c
SS
2088
2089 /* Extract bits. See comment above. */
2090
4ea48cc1 2091 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2092 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2093 else
2094 lsbcount = (bitpos % 8);
2095 val >>= lsbcount;
2096
2097 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2098 If the field is signed, and is negative, then sign extend. */
2099
2100 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2101 {
2102 valmask = (((ULONGEST) 1) << bitsize) - 1;
2103 val &= valmask;
2104 if (!TYPE_UNSIGNED (field_type))
2105 {
2106 if (val & (valmask ^ (valmask >> 1)))
2107 {
2108 val |= ~valmask;
2109 }
2110 }
2111 }
2112 return (val);
2113}
2114
4ea48cc1
DJ
2115/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2116 VALADDR. See unpack_bits_as_long for more details. */
2117
2118LONGEST
2119unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2120{
2121 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2122 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2123 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2124
2125 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2126}
2127
c906108c
SS
2128/* Modify the value of a bitfield. ADDR points to a block of memory in
2129 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2130 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2131 indicate which bits (in target bit order) comprise the bitfield.
2132 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2133 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2134
2135void
50810684
UW
2136modify_field (struct type *type, gdb_byte *addr,
2137 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2138{
e17a4113 2139 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2140 ULONGEST oword;
2141 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2142
2143 /* If a negative fieldval fits in the field in question, chop
2144 off the sign extension bits. */
f4e88c8e
PH
2145 if ((~fieldval & ~(mask >> 1)) == 0)
2146 fieldval &= mask;
c906108c
SS
2147
2148 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2149 if (0 != (fieldval & ~mask))
c906108c
SS
2150 {
2151 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2152 we don't have a sprintf_longest. */
8a3fe4f8 2153 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2154
2155 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2156 fieldval &= mask;
c906108c
SS
2157 }
2158
e17a4113 2159 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2160
2161 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2162 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2163 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2164
f4e88c8e 2165 oword &= ~(mask << bitpos);
c906108c
SS
2166 oword |= fieldval << bitpos;
2167
e17a4113 2168 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2169}
2170\f
14d06750 2171/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2172
14d06750
DJ
2173void
2174pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2175{
e17a4113 2176 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2177 int len;
14d06750
DJ
2178
2179 type = check_typedef (type);
c906108c
SS
2180 len = TYPE_LENGTH (type);
2181
14d06750 2182 switch (TYPE_CODE (type))
c906108c 2183 {
c906108c
SS
2184 case TYPE_CODE_INT:
2185 case TYPE_CODE_CHAR:
2186 case TYPE_CODE_ENUM:
4f2aea11 2187 case TYPE_CODE_FLAGS:
c906108c
SS
2188 case TYPE_CODE_BOOL:
2189 case TYPE_CODE_RANGE:
0d5de010 2190 case TYPE_CODE_MEMBERPTR:
e17a4113 2191 store_signed_integer (buf, len, byte_order, num);
c906108c 2192 break;
c5aa993b 2193
c906108c
SS
2194 case TYPE_CODE_REF:
2195 case TYPE_CODE_PTR:
14d06750 2196 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2197 break;
c5aa993b 2198
c906108c 2199 default:
14d06750
DJ
2200 error (_("Unexpected type (%d) encountered for integer constant."),
2201 TYPE_CODE (type));
c906108c 2202 }
14d06750
DJ
2203}
2204
2205
2206/* Convert C numbers into newly allocated values. */
2207
2208struct value *
2209value_from_longest (struct type *type, LONGEST num)
2210{
2211 struct value *val = allocate_value (type);
2212
2213 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2214 return val;
2215}
2216
4478b372
JB
2217
2218/* Create a value representing a pointer of type TYPE to the address
2219 ADDR. */
f23631e4 2220struct value *
4478b372
JB
2221value_from_pointer (struct type *type, CORE_ADDR addr)
2222{
f23631e4 2223 struct value *val = allocate_value (type);
a109c7c1 2224
cab0c772 2225 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2226 return val;
2227}
2228
2229
8acb6b92
TT
2230/* Create a value of type TYPE whose contents come from VALADDR, if it
2231 is non-null, and whose memory address (in the inferior) is
2232 ADDRESS. */
2233
2234struct value *
2235value_from_contents_and_address (struct type *type,
2236 const gdb_byte *valaddr,
2237 CORE_ADDR address)
2238{
2239 struct value *v = allocate_value (type);
a109c7c1 2240
8acb6b92
TT
2241 if (valaddr == NULL)
2242 set_value_lazy (v, 1);
2243 else
2244 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2245 set_value_address (v, address);
33d502b4 2246 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2247 return v;
2248}
2249
f23631e4 2250struct value *
fba45db2 2251value_from_double (struct type *type, DOUBLEST num)
c906108c 2252{
f23631e4 2253 struct value *val = allocate_value (type);
c906108c 2254 struct type *base_type = check_typedef (type);
52f0bd74 2255 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2256
2257 if (code == TYPE_CODE_FLT)
2258 {
990a07ab 2259 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2260 }
2261 else
8a3fe4f8 2262 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2263
2264 return val;
2265}
994b9211 2266
27bc4d80 2267struct value *
4ef30785 2268value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2269{
2270 struct value *val = allocate_value (type);
27bc4d80 2271
4ef30785 2272 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2273 return val;
2274}
2275
994b9211
AC
2276struct value *
2277coerce_ref (struct value *arg)
2278{
df407dfe 2279 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2280
994b9211
AC
2281 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2282 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2283 unpack_pointer (value_type (arg),
0fd88904 2284 value_contents (arg)));
994b9211
AC
2285 return arg;
2286}
2287
2288struct value *
2289coerce_array (struct value *arg)
2290{
f3134b88
TT
2291 struct type *type;
2292
994b9211 2293 arg = coerce_ref (arg);
f3134b88
TT
2294 type = check_typedef (value_type (arg));
2295
2296 switch (TYPE_CODE (type))
2297 {
2298 case TYPE_CODE_ARRAY:
2299 if (current_language->c_style_arrays)
2300 arg = value_coerce_array (arg);
2301 break;
2302 case TYPE_CODE_FUNC:
2303 arg = value_coerce_function (arg);
2304 break;
2305 }
994b9211
AC
2306 return arg;
2307}
c906108c 2308\f
c906108c 2309
48436ce6
AC
2310/* Return true if the function returning the specified type is using
2311 the convention of returning structures in memory (passing in the
82585c72 2312 address as a hidden first parameter). */
c906108c
SS
2313
2314int
d80b854b
UW
2315using_struct_return (struct gdbarch *gdbarch,
2316 struct type *func_type, struct type *value_type)
c906108c 2317{
52f0bd74 2318 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2319
2320 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2321 error (_("Function return type unknown."));
c906108c 2322
667e784f
AC
2323 if (code == TYPE_CODE_VOID)
2324 /* A void return value is never in memory. See also corresponding
44e5158b 2325 code in "print_return_value". */
667e784f
AC
2326 return 0;
2327
92ad9cd9 2328 /* Probe the architecture for the return-value convention. */
d80b854b 2329 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2330 NULL, NULL, NULL)
31db7b6c 2331 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2332}
2333
42be36b3
CT
2334/* Set the initialized field in a value struct. */
2335
2336void
2337set_value_initialized (struct value *val, int status)
2338{
2339 val->initialized = status;
2340}
2341
2342/* Return the initialized field in a value struct. */
2343
2344int
2345value_initialized (struct value *val)
2346{
2347 return val->initialized;
2348}
2349
c906108c 2350void
fba45db2 2351_initialize_values (void)
c906108c 2352{
1a966eab
AC
2353 add_cmd ("convenience", no_class, show_convenience, _("\
2354Debugger convenience (\"$foo\") variables.\n\
c906108c 2355These variables are created when you assign them values;\n\
1a966eab
AC
2356thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2357\n\
c906108c
SS
2358A few convenience variables are given values automatically:\n\
2359\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2360\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2361 &showlist);
2362
2363 add_cmd ("values", no_class, show_values,
1a966eab 2364 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2365 &showlist);
53e5f3cf
AS
2366
2367 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2368Initialize a convenience variable if necessary.\n\
2369init-if-undefined VARIABLE = EXPRESSION\n\
2370Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2371exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2372VARIABLE is already initialized."));
bc3b79fd
TJB
2373
2374 add_prefix_cmd ("function", no_class, function_command, _("\
2375Placeholder command for showing help on convenience functions."),
2376 &functionlist, "function ", 0, &cmdlist);
c906108c 2377}
This page took 1.169952 seconds and 4 git commands to generate.