* buildsym.c (record_line): Remove call to gdbarch_addr_bits_remove.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
bc3b79fd 40#include "cli/cli-decode.h"
c906108c 41
a08702d6
TJB
42#include "python/python.h"
43
c906108c
SS
44/* Prototypes for exported functions. */
45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
63static struct cmd_list_element *functionlist;
64
91294c83
AC
65struct value
66{
67 /* Type of value; either not an lval, or one of the various
68 different possible kinds of lval. */
69 enum lval_type lval;
70
71 /* Is it modifiable? Only relevant if lval != not_lval. */
72 int modifiable;
73
74 /* Location of value (if lval). */
75 union
76 {
77 /* If lval == lval_memory, this is the address in the inferior.
78 If lval == lval_register, this is the byte offset into the
79 registers structure. */
80 CORE_ADDR address;
81
82 /* Pointer to internal variable. */
83 struct internalvar *internalvar;
5f5233d4
PA
84
85 /* If lval == lval_computed, this is a set of function pointers
86 to use to access and describe the value, and a closure pointer
87 for them to use. */
88 struct
89 {
90 struct lval_funcs *funcs; /* Functions to call. */
91 void *closure; /* Closure for those functions to use. */
92 } computed;
91294c83
AC
93 } location;
94
95 /* Describes offset of a value within lval of a structure in bytes.
96 If lval == lval_memory, this is an offset to the address. If
97 lval == lval_register, this is a further offset from
98 location.address within the registers structure. Note also the
99 member embedded_offset below. */
100 int offset;
101
102 /* Only used for bitfields; number of bits contained in them. */
103 int bitsize;
104
105 /* Only used for bitfields; position of start of field. For
32c9a795
MD
106 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
107 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
108 int bitpos;
109
110 /* Frame register value is relative to. This will be described in
111 the lval enum above as "lval_register". */
112 struct frame_id frame_id;
113
114 /* Type of the value. */
115 struct type *type;
116
117 /* If a value represents a C++ object, then the `type' field gives
118 the object's compile-time type. If the object actually belongs
119 to some class derived from `type', perhaps with other base
120 classes and additional members, then `type' is just a subobject
121 of the real thing, and the full object is probably larger than
122 `type' would suggest.
123
124 If `type' is a dynamic class (i.e. one with a vtable), then GDB
125 can actually determine the object's run-time type by looking at
126 the run-time type information in the vtable. When this
127 information is available, we may elect to read in the entire
128 object, for several reasons:
129
130 - When printing the value, the user would probably rather see the
131 full object, not just the limited portion apparent from the
132 compile-time type.
133
134 - If `type' has virtual base classes, then even printing `type'
135 alone may require reaching outside the `type' portion of the
136 object to wherever the virtual base class has been stored.
137
138 When we store the entire object, `enclosing_type' is the run-time
139 type -- the complete object -- and `embedded_offset' is the
140 offset of `type' within that larger type, in bytes. The
141 value_contents() macro takes `embedded_offset' into account, so
142 most GDB code continues to see the `type' portion of the value,
143 just as the inferior would.
144
145 If `type' is a pointer to an object, then `enclosing_type' is a
146 pointer to the object's run-time type, and `pointed_to_offset' is
147 the offset in bytes from the full object to the pointed-to object
148 -- that is, the value `embedded_offset' would have if we followed
149 the pointer and fetched the complete object. (I don't really see
150 the point. Why not just determine the run-time type when you
151 indirect, and avoid the special case? The contents don't matter
152 until you indirect anyway.)
153
154 If we're not doing anything fancy, `enclosing_type' is equal to
155 `type', and `embedded_offset' is zero, so everything works
156 normally. */
157 struct type *enclosing_type;
158 int embedded_offset;
159 int pointed_to_offset;
160
161 /* Values are stored in a chain, so that they can be deleted easily
162 over calls to the inferior. Values assigned to internal
a08702d6
TJB
163 variables, put into the value history or exposed to Python are
164 taken off this list. */
91294c83
AC
165 struct value *next;
166
167 /* Register number if the value is from a register. */
168 short regnum;
169
170 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
171 nonzero, contents are in inferior. If the lval field is lval_memory,
172 the contents are in inferior memory at location.address plus offset.
173 The lval field may also be lval_register.
91294c83
AC
174
175 WARNING: This field is used by the code which handles watchpoints
176 (see breakpoint.c) to decide whether a particular value can be
177 watched by hardware watchpoints. If the lazy flag is set for
178 some member of a value chain, it is assumed that this member of
179 the chain doesn't need to be watched as part of watching the
180 value itself. This is how GDB avoids watching the entire struct
181 or array when the user wants to watch a single struct member or
182 array element. If you ever change the way lazy flag is set and
183 reset, be sure to consider this use as well! */
184 char lazy;
185
186 /* If nonzero, this is the value of a variable which does not
187 actually exist in the program. */
188 char optimized_out;
189
42be36b3
CT
190 /* If value is a variable, is it initialized or not. */
191 int initialized;
192
3e3d7139
JG
193 /* Actual contents of the value. Target byte-order. NULL or not
194 valid if lazy is nonzero. */
195 gdb_byte *contents;
91294c83
AC
196};
197
c906108c
SS
198/* Prototypes for local functions. */
199
a14ed312 200static void show_values (char *, int);
c906108c 201
a14ed312 202static void show_convenience (char *, int);
c906108c 203
c906108c
SS
204
205/* The value-history records all the values printed
206 by print commands during this session. Each chunk
207 records 60 consecutive values. The first chunk on
208 the chain records the most recent values.
209 The total number of values is in value_history_count. */
210
211#define VALUE_HISTORY_CHUNK 60
212
213struct value_history_chunk
c5aa993b
JM
214 {
215 struct value_history_chunk *next;
f23631e4 216 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 217 };
c906108c
SS
218
219/* Chain of chunks now in use. */
220
221static struct value_history_chunk *value_history_chain;
222
223static int value_history_count; /* Abs number of last entry stored */
bc3b79fd
TJB
224
225/* The type of internal functions. */
226
227static struct type *internal_fn_type;
c906108c
SS
228\f
229/* List of all value objects currently allocated
230 (except for those released by calls to release_value)
231 This is so they can be freed after each command. */
232
f23631e4 233static struct value *all_values;
c906108c 234
3e3d7139
JG
235/* Allocate a lazy value for type TYPE. Its actual content is
236 "lazily" allocated too: the content field of the return value is
237 NULL; it will be allocated when it is fetched from the target. */
c906108c 238
f23631e4 239struct value *
3e3d7139 240allocate_value_lazy (struct type *type)
c906108c 241{
f23631e4 242 struct value *val;
c906108c
SS
243 struct type *atype = check_typedef (type);
244
3e3d7139
JG
245 val = (struct value *) xzalloc (sizeof (struct value));
246 val->contents = NULL;
df407dfe 247 val->next = all_values;
c906108c 248 all_values = val;
df407dfe 249 val->type = type;
4754a64e 250 val->enclosing_type = type;
c906108c 251 VALUE_LVAL (val) = not_lval;
42ae5230 252 val->location.address = 0;
1df6926e 253 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
254 val->offset = 0;
255 val->bitpos = 0;
256 val->bitsize = 0;
9ee8fc9d 257 VALUE_REGNUM (val) = -1;
3e3d7139 258 val->lazy = 1;
feb13ab0 259 val->optimized_out = 0;
13c3b5f5 260 val->embedded_offset = 0;
b44d461b 261 val->pointed_to_offset = 0;
c906108c 262 val->modifiable = 1;
42be36b3 263 val->initialized = 1; /* Default to initialized. */
c906108c
SS
264 return val;
265}
266
3e3d7139
JG
267/* Allocate the contents of VAL if it has not been allocated yet. */
268
269void
270allocate_value_contents (struct value *val)
271{
272 if (!val->contents)
273 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
274}
275
276/* Allocate a value and its contents for type TYPE. */
277
278struct value *
279allocate_value (struct type *type)
280{
281 struct value *val = allocate_value_lazy (type);
282 allocate_value_contents (val);
283 val->lazy = 0;
284 return val;
285}
286
c906108c 287/* Allocate a value that has the correct length
938f5214 288 for COUNT repetitions of type TYPE. */
c906108c 289
f23631e4 290struct value *
fba45db2 291allocate_repeat_value (struct type *type, int count)
c906108c 292{
c5aa993b 293 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
294 /* FIXME-type-allocation: need a way to free this type when we are
295 done with it. */
296 struct type *range_type
6d84d3d8 297 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 298 low_bound, count + low_bound - 1);
c906108c
SS
299 /* FIXME-type-allocation: need a way to free this type when we are
300 done with it. */
301 return allocate_value (create_array_type ((struct type *) NULL,
302 type, range_type));
303}
304
a08702d6
TJB
305/* Needed if another module needs to maintain its on list of values. */
306void
307value_prepend_to_list (struct value **head, struct value *val)
308{
309 val->next = *head;
310 *head = val;
311}
312
313/* Needed if another module needs to maintain its on list of values. */
314void
315value_remove_from_list (struct value **head, struct value *val)
316{
317 struct value *prev;
318
319 if (*head == val)
320 *head = (*head)->next;
321 else
322 for (prev = *head; prev->next; prev = prev->next)
323 if (prev->next == val)
324 {
325 prev->next = val->next;
326 break;
327 }
328}
329
5f5233d4
PA
330struct value *
331allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334{
335 struct value *v = allocate_value (type);
336 VALUE_LVAL (v) = lval_computed;
337 v->location.computed.funcs = funcs;
338 v->location.computed.closure = closure;
339 set_value_lazy (v, 1);
340
341 return v;
342}
343
df407dfe
AC
344/* Accessor methods. */
345
17cf0ecd
AC
346struct value *
347value_next (struct value *value)
348{
349 return value->next;
350}
351
df407dfe
AC
352struct type *
353value_type (struct value *value)
354{
355 return value->type;
356}
04624583
AC
357void
358deprecated_set_value_type (struct value *value, struct type *type)
359{
360 value->type = type;
361}
df407dfe
AC
362
363int
364value_offset (struct value *value)
365{
366 return value->offset;
367}
f5cf64a7
AC
368void
369set_value_offset (struct value *value, int offset)
370{
371 value->offset = offset;
372}
df407dfe
AC
373
374int
375value_bitpos (struct value *value)
376{
377 return value->bitpos;
378}
9bbda503
AC
379void
380set_value_bitpos (struct value *value, int bit)
381{
382 value->bitpos = bit;
383}
df407dfe
AC
384
385int
386value_bitsize (struct value *value)
387{
388 return value->bitsize;
389}
9bbda503
AC
390void
391set_value_bitsize (struct value *value, int bit)
392{
393 value->bitsize = bit;
394}
df407dfe 395
fc1a4b47 396gdb_byte *
990a07ab
AC
397value_contents_raw (struct value *value)
398{
3e3d7139
JG
399 allocate_value_contents (value);
400 return value->contents + value->embedded_offset;
990a07ab
AC
401}
402
fc1a4b47 403gdb_byte *
990a07ab
AC
404value_contents_all_raw (struct value *value)
405{
3e3d7139
JG
406 allocate_value_contents (value);
407 return value->contents;
990a07ab
AC
408}
409
4754a64e
AC
410struct type *
411value_enclosing_type (struct value *value)
412{
413 return value->enclosing_type;
414}
415
fc1a4b47 416const gdb_byte *
46615f07
AC
417value_contents_all (struct value *value)
418{
419 if (value->lazy)
420 value_fetch_lazy (value);
3e3d7139 421 return value->contents;
46615f07
AC
422}
423
d69fe07e
AC
424int
425value_lazy (struct value *value)
426{
427 return value->lazy;
428}
429
dfa52d88
AC
430void
431set_value_lazy (struct value *value, int val)
432{
433 value->lazy = val;
434}
435
fc1a4b47 436const gdb_byte *
0fd88904
AC
437value_contents (struct value *value)
438{
439 return value_contents_writeable (value);
440}
441
fc1a4b47 442gdb_byte *
0fd88904
AC
443value_contents_writeable (struct value *value)
444{
445 if (value->lazy)
446 value_fetch_lazy (value);
fc0c53a0 447 return value_contents_raw (value);
0fd88904
AC
448}
449
a6c442d8
MK
450/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
451 this function is different from value_equal; in C the operator ==
452 can return 0 even if the two values being compared are equal. */
453
454int
455value_contents_equal (struct value *val1, struct value *val2)
456{
457 struct type *type1;
458 struct type *type2;
459 int len;
460
461 type1 = check_typedef (value_type (val1));
462 type2 = check_typedef (value_type (val2));
463 len = TYPE_LENGTH (type1);
464 if (len != TYPE_LENGTH (type2))
465 return 0;
466
467 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
468}
469
feb13ab0
AC
470int
471value_optimized_out (struct value *value)
472{
473 return value->optimized_out;
474}
475
476void
477set_value_optimized_out (struct value *value, int val)
478{
479 value->optimized_out = val;
480}
13c3b5f5
AC
481
482int
483value_embedded_offset (struct value *value)
484{
485 return value->embedded_offset;
486}
487
488void
489set_value_embedded_offset (struct value *value, int val)
490{
491 value->embedded_offset = val;
492}
b44d461b
AC
493
494int
495value_pointed_to_offset (struct value *value)
496{
497 return value->pointed_to_offset;
498}
499
500void
501set_value_pointed_to_offset (struct value *value, int val)
502{
503 value->pointed_to_offset = val;
504}
13bb5560 505
5f5233d4
PA
506struct lval_funcs *
507value_computed_funcs (struct value *v)
508{
509 gdb_assert (VALUE_LVAL (v) == lval_computed);
510
511 return v->location.computed.funcs;
512}
513
514void *
515value_computed_closure (struct value *v)
516{
517 gdb_assert (VALUE_LVAL (v) == lval_computed);
518
519 return v->location.computed.closure;
520}
521
13bb5560
AC
522enum lval_type *
523deprecated_value_lval_hack (struct value *value)
524{
525 return &value->lval;
526}
527
42ae5230
TT
528CORE_ADDR
529value_address (struct value *value)
530{
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address + value->offset;
535}
536
537CORE_ADDR
538value_raw_address (struct value *value)
539{
540 if (value->lval == lval_internalvar
541 || value->lval == lval_internalvar_component)
542 return 0;
543 return value->location.address;
544}
545
546void
547set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 548{
42ae5230
TT
549 gdb_assert (value->lval != lval_internalvar
550 && value->lval != lval_internalvar_component);
551 value->location.address = addr;
13bb5560
AC
552}
553
554struct internalvar **
555deprecated_value_internalvar_hack (struct value *value)
556{
557 return &value->location.internalvar;
558}
559
560struct frame_id *
561deprecated_value_frame_id_hack (struct value *value)
562{
563 return &value->frame_id;
564}
565
566short *
567deprecated_value_regnum_hack (struct value *value)
568{
569 return &value->regnum;
570}
88e3b34b
AC
571
572int
573deprecated_value_modifiable (struct value *value)
574{
575 return value->modifiable;
576}
577void
578deprecated_set_value_modifiable (struct value *value, int modifiable)
579{
580 value->modifiable = modifiable;
581}
990a07ab 582\f
c906108c
SS
583/* Return a mark in the value chain. All values allocated after the
584 mark is obtained (except for those released) are subject to being freed
585 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 586struct value *
fba45db2 587value_mark (void)
c906108c
SS
588{
589 return all_values;
590}
591
3e3d7139
JG
592void
593value_free (struct value *val)
594{
595 if (val)
5f5233d4
PA
596 {
597 if (VALUE_LVAL (val) == lval_computed)
598 {
599 struct lval_funcs *funcs = val->location.computed.funcs;
600
601 if (funcs->free_closure)
602 funcs->free_closure (val);
603 }
604
605 xfree (val->contents);
606 }
3e3d7139
JG
607 xfree (val);
608}
609
c906108c
SS
610/* Free all values allocated since MARK was obtained by value_mark
611 (except for those released). */
612void
f23631e4 613value_free_to_mark (struct value *mark)
c906108c 614{
f23631e4
AC
615 struct value *val;
616 struct value *next;
c906108c
SS
617
618 for (val = all_values; val && val != mark; val = next)
619 {
df407dfe 620 next = val->next;
c906108c
SS
621 value_free (val);
622 }
623 all_values = val;
624}
625
626/* Free all the values that have been allocated (except for those released).
627 Called after each command, successful or not. */
628
629void
fba45db2 630free_all_values (void)
c906108c 631{
f23631e4
AC
632 struct value *val;
633 struct value *next;
c906108c
SS
634
635 for (val = all_values; val; val = next)
636 {
df407dfe 637 next = val->next;
c906108c
SS
638 value_free (val);
639 }
640
641 all_values = 0;
642}
643
644/* Remove VAL from the chain all_values
645 so it will not be freed automatically. */
646
647void
f23631e4 648release_value (struct value *val)
c906108c 649{
f23631e4 650 struct value *v;
c906108c
SS
651
652 if (all_values == val)
653 {
654 all_values = val->next;
655 return;
656 }
657
658 for (v = all_values; v; v = v->next)
659 {
660 if (v->next == val)
661 {
662 v->next = val->next;
663 break;
664 }
665 }
666}
667
668/* Release all values up to mark */
f23631e4
AC
669struct value *
670value_release_to_mark (struct value *mark)
c906108c 671{
f23631e4
AC
672 struct value *val;
673 struct value *next;
c906108c 674
df407dfe
AC
675 for (val = next = all_values; next; next = next->next)
676 if (next->next == mark)
c906108c 677 {
df407dfe
AC
678 all_values = next->next;
679 next->next = NULL;
c906108c
SS
680 return val;
681 }
682 all_values = 0;
683 return val;
684}
685
686/* Return a copy of the value ARG.
687 It contains the same contents, for same memory address,
688 but it's a different block of storage. */
689
f23631e4
AC
690struct value *
691value_copy (struct value *arg)
c906108c 692{
4754a64e 693 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
694 struct value *val;
695
696 if (value_lazy (arg))
697 val = allocate_value_lazy (encl_type);
698 else
699 val = allocate_value (encl_type);
df407dfe 700 val->type = arg->type;
c906108c 701 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 702 val->location = arg->location;
df407dfe
AC
703 val->offset = arg->offset;
704 val->bitpos = arg->bitpos;
705 val->bitsize = arg->bitsize;
1df6926e 706 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 707 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 708 val->lazy = arg->lazy;
feb13ab0 709 val->optimized_out = arg->optimized_out;
13c3b5f5 710 val->embedded_offset = value_embedded_offset (arg);
b44d461b 711 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 712 val->modifiable = arg->modifiable;
d69fe07e 713 if (!value_lazy (val))
c906108c 714 {
990a07ab 715 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 716 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
717
718 }
5f5233d4
PA
719 if (VALUE_LVAL (val) == lval_computed)
720 {
721 struct lval_funcs *funcs = val->location.computed.funcs;
722
723 if (funcs->copy_closure)
724 val->location.computed.closure = funcs->copy_closure (val);
725 }
c906108c
SS
726 return val;
727}
74bcbdf3
PA
728
729void
730set_value_component_location (struct value *component, struct value *whole)
731{
732 if (VALUE_LVAL (whole) == lval_internalvar)
733 VALUE_LVAL (component) = lval_internalvar_component;
734 else
735 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 736
74bcbdf3 737 component->location = whole->location;
5f5233d4
PA
738 if (VALUE_LVAL (whole) == lval_computed)
739 {
740 struct lval_funcs *funcs = whole->location.computed.funcs;
741
742 if (funcs->copy_closure)
743 component->location.computed.closure = funcs->copy_closure (whole);
744 }
74bcbdf3
PA
745}
746
c906108c
SS
747\f
748/* Access to the value history. */
749
750/* Record a new value in the value history.
751 Returns the absolute history index of the entry.
752 Result of -1 indicates the value was not saved; otherwise it is the
753 value history index of this new item. */
754
755int
f23631e4 756record_latest_value (struct value *val)
c906108c
SS
757{
758 int i;
759
760 /* We don't want this value to have anything to do with the inferior anymore.
761 In particular, "set $1 = 50" should not affect the variable from which
762 the value was taken, and fast watchpoints should be able to assume that
763 a value on the value history never changes. */
d69fe07e 764 if (value_lazy (val))
c906108c
SS
765 value_fetch_lazy (val);
766 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
767 from. This is a bit dubious, because then *&$1 does not just return $1
768 but the current contents of that location. c'est la vie... */
769 val->modifiable = 0;
770 release_value (val);
771
772 /* Here we treat value_history_count as origin-zero
773 and applying to the value being stored now. */
774
775 i = value_history_count % VALUE_HISTORY_CHUNK;
776 if (i == 0)
777 {
f23631e4 778 struct value_history_chunk *new
c5aa993b
JM
779 = (struct value_history_chunk *)
780 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
781 memset (new->values, 0, sizeof new->values);
782 new->next = value_history_chain;
783 value_history_chain = new;
784 }
785
786 value_history_chain->values[i] = val;
787
788 /* Now we regard value_history_count as origin-one
789 and applying to the value just stored. */
790
791 return ++value_history_count;
792}
793
794/* Return a copy of the value in the history with sequence number NUM. */
795
f23631e4 796struct value *
fba45db2 797access_value_history (int num)
c906108c 798{
f23631e4 799 struct value_history_chunk *chunk;
52f0bd74
AC
800 int i;
801 int absnum = num;
c906108c
SS
802
803 if (absnum <= 0)
804 absnum += value_history_count;
805
806 if (absnum <= 0)
807 {
808 if (num == 0)
8a3fe4f8 809 error (_("The history is empty."));
c906108c 810 else if (num == 1)
8a3fe4f8 811 error (_("There is only one value in the history."));
c906108c 812 else
8a3fe4f8 813 error (_("History does not go back to $$%d."), -num);
c906108c
SS
814 }
815 if (absnum > value_history_count)
8a3fe4f8 816 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
817
818 absnum--;
819
820 /* Now absnum is always absolute and origin zero. */
821
822 chunk = value_history_chain;
823 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
824 i > 0; i--)
825 chunk = chunk->next;
826
827 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
828}
829
c906108c 830static void
fba45db2 831show_values (char *num_exp, int from_tty)
c906108c 832{
52f0bd74 833 int i;
f23631e4 834 struct value *val;
c906108c
SS
835 static int num = 1;
836
837 if (num_exp)
838 {
f132ba9d
TJB
839 /* "show values +" should print from the stored position.
840 "show values <exp>" should print around value number <exp>. */
c906108c 841 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 842 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
843 }
844 else
845 {
f132ba9d 846 /* "show values" means print the last 10 values. */
c906108c
SS
847 num = value_history_count - 9;
848 }
849
850 if (num <= 0)
851 num = 1;
852
853 for (i = num; i < num + 10 && i <= value_history_count; i++)
854 {
79a45b7d 855 struct value_print_options opts;
c906108c 856 val = access_value_history (i);
a3f17187 857 printf_filtered (("$%d = "), i);
79a45b7d
TT
858 get_user_print_options (&opts);
859 value_print (val, gdb_stdout, &opts);
a3f17187 860 printf_filtered (("\n"));
c906108c
SS
861 }
862
f132ba9d 863 /* The next "show values +" should start after what we just printed. */
c906108c
SS
864 num += 10;
865
866 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
867 "show values +". If num_exp is null, this is unnecessary, since
868 "show values +" is not useful after "show values". */
c906108c
SS
869 if (from_tty && num_exp)
870 {
871 num_exp[0] = '+';
872 num_exp[1] = '\0';
873 }
874}
875\f
876/* Internal variables. These are variables within the debugger
877 that hold values assigned by debugger commands.
878 The user refers to them with a '$' prefix
879 that does not appear in the variable names stored internally. */
880
4fa62494
UW
881struct internalvar
882{
883 struct internalvar *next;
884 char *name;
885 struct type *type;
886
887 /* True if this internalvar is the canonical name for a convenience
888 function. */
889 int canonical;
890
891 /* If this function is non-NULL, it is used to compute a fresh value
892 on every access to the internalvar. */
893 internalvar_make_value make_value;
894
895 /* To reduce dependencies on target properties (like byte order) that
896 may change during the lifetime of an internal variable, we store
897 simple scalar values as host objects. */
898 union internalvar_data
899 {
900 struct value *v;
901 struct internal_function *f;
902 LONGEST l;
903 CORE_ADDR a;
904 } u;
905};
906
c906108c
SS
907static struct internalvar *internalvars;
908
53e5f3cf
AS
909/* If the variable does not already exist create it and give it the value given.
910 If no value is given then the default is zero. */
911static void
912init_if_undefined_command (char* args, int from_tty)
913{
914 struct internalvar* intvar;
915
916 /* Parse the expression - this is taken from set_command(). */
917 struct expression *expr = parse_expression (args);
918 register struct cleanup *old_chain =
919 make_cleanup (free_current_contents, &expr);
920
921 /* Validate the expression.
922 Was the expression an assignment?
923 Or even an expression at all? */
924 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
925 error (_("Init-if-undefined requires an assignment expression."));
926
927 /* Extract the variable from the parsed expression.
928 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
929 if (expr->elts[1].opcode != OP_INTERNALVAR)
930 error (_("The first parameter to init-if-undefined should be a GDB variable."));
931 intvar = expr->elts[2].internalvar;
932
933 /* Only evaluate the expression if the lvalue is void.
934 This may still fail if the expresssion is invalid. */
4fa62494 935 if (TYPE_CODE (intvar->type) == TYPE_CODE_VOID)
53e5f3cf
AS
936 evaluate_expression (expr);
937
938 do_cleanups (old_chain);
939}
940
941
c906108c
SS
942/* Look up an internal variable with name NAME. NAME should not
943 normally include a dollar sign.
944
945 If the specified internal variable does not exist,
c4a3d09a 946 the return value is NULL. */
c906108c
SS
947
948struct internalvar *
bc3b79fd 949lookup_only_internalvar (const char *name)
c906108c 950{
52f0bd74 951 struct internalvar *var;
c906108c
SS
952
953 for (var = internalvars; var; var = var->next)
5cb316ef 954 if (strcmp (var->name, name) == 0)
c906108c
SS
955 return var;
956
c4a3d09a
MF
957 return NULL;
958}
959
960
961/* Create an internal variable with name NAME and with a void value.
962 NAME should not normally include a dollar sign. */
963
964struct internalvar *
bc3b79fd 965create_internalvar (const char *name)
c4a3d09a
MF
966{
967 struct internalvar *var;
c906108c 968 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 969 var->name = concat (name, (char *)NULL);
4fa62494 970 var->type = builtin_type_void;
4aa995e1 971 var->make_value = NULL;
bc3b79fd 972 var->canonical = 0;
c906108c
SS
973 var->next = internalvars;
974 internalvars = var;
975 return var;
976}
977
4aa995e1
PA
978/* Create an internal variable with name NAME and register FUN as the
979 function that value_of_internalvar uses to create a value whenever
980 this variable is referenced. NAME should not normally include a
981 dollar sign. */
982
983struct internalvar *
984create_internalvar_type_lazy (char *name, internalvar_make_value fun)
985{
4fa62494 986 struct internalvar *var = create_internalvar (name);
4aa995e1 987 var->make_value = fun;
4aa995e1
PA
988 return var;
989}
c4a3d09a
MF
990
991/* Look up an internal variable with name NAME. NAME should not
992 normally include a dollar sign.
993
994 If the specified internal variable does not exist,
995 one is created, with a void value. */
996
997struct internalvar *
bc3b79fd 998lookup_internalvar (const char *name)
c4a3d09a
MF
999{
1000 struct internalvar *var;
1001
1002 var = lookup_only_internalvar (name);
1003 if (var)
1004 return var;
1005
1006 return create_internalvar (name);
1007}
1008
f23631e4 1009struct value *
fba45db2 1010value_of_internalvar (struct internalvar *var)
c906108c 1011{
f23631e4 1012 struct value *val;
c906108c 1013
4aa995e1
PA
1014 if (var->make_value != NULL)
1015 val = (*var->make_value) (var);
5f5233d4
PA
1016 else
1017 {
4fa62494
UW
1018 switch (TYPE_CODE (var->type))
1019 {
1020 case TYPE_CODE_VOID:
1021 case TYPE_CODE_INTERNAL_FUNCTION:
1022 val = allocate_value (var->type);
1023 break;
1024
1025 case TYPE_CODE_INT:
1026 val = value_from_longest (var->type, var->u.l);
1027 break;
1028
1029 case TYPE_CODE_PTR:
1030 val = value_from_pointer (var->type, var->u.a);
1031 break;
1032
1033 default:
1034 val = value_copy (var->u.v);
1035 break;
1036 }
1037
4aa995e1
PA
1038 if (value_lazy (val))
1039 value_fetch_lazy (val);
1040
1041 /* If the variable's value is a computed lvalue, we want
1042 references to it to produce another computed lvalue, where
1043 referencces and assignments actually operate through the
1044 computed value's functions.
1045
1046 This means that internal variables with computed values
1047 behave a little differently from other internal variables:
1048 assignments to them don't just replace the previous value
1049 altogether. At the moment, this seems like the behavior we
1050 want. */
4fa62494 1051 if (val->lval != lval_computed)
4aa995e1
PA
1052 {
1053 VALUE_LVAL (val) = lval_internalvar;
1054 VALUE_INTERNALVAR (val) = var;
1055 }
5f5233d4 1056 }
d3c139e9 1057
4fa62494
UW
1058 return val;
1059}
d3c139e9 1060
4fa62494
UW
1061int
1062get_internalvar_integer (struct internalvar *var, LONGEST *result)
1063{
1064 switch (TYPE_CODE (var->type))
1065 {
1066 case TYPE_CODE_INT:
1067 *result = var->u.l;
1068 return 1;
d3c139e9 1069
4fa62494
UW
1070 default:
1071 return 0;
1072 }
1073}
d3c139e9 1074
4fa62494
UW
1075static int
1076get_internalvar_function (struct internalvar *var,
1077 struct internal_function **result)
1078{
1079 switch (TYPE_CODE (var->type))
d3c139e9 1080 {
4fa62494
UW
1081 case TYPE_CODE_INTERNAL_FUNCTION:
1082 *result = var->u.f;
1083 return 1;
d3c139e9 1084
4fa62494
UW
1085 default:
1086 return 0;
1087 }
c906108c
SS
1088}
1089
1090void
fba45db2 1091set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1092 int bitsize, struct value *newval)
c906108c 1093{
4fa62494 1094 gdb_byte *addr;
c906108c 1095
4fa62494
UW
1096 switch (TYPE_CODE (var->type))
1097 {
1098 case TYPE_CODE_VOID:
1099 case TYPE_CODE_INTERNAL_FUNCTION:
1100 case TYPE_CODE_INT:
1101 case TYPE_CODE_PTR:
1102 /* We can never get a component of a basic type. */
1103 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1104
1105 default:
1106 addr = value_contents_writeable (var->u.v);
1107
1108 if (bitsize)
1109 modify_field (addr + offset,
1110 value_as_long (newval), bitpos, bitsize);
1111 else
1112 memcpy (addr + offset, value_contents (newval),
1113 TYPE_LENGTH (value_type (newval)));
1114 break;
1115 }
c906108c
SS
1116}
1117
1118void
f23631e4 1119set_internalvar (struct internalvar *var, struct value *val)
c906108c 1120{
4fa62494
UW
1121 struct type *new_type = check_typedef (value_type (val));
1122 union internalvar_data new_data = { 0 };
c906108c 1123
bc3b79fd
TJB
1124 if (var->canonical)
1125 error (_("Cannot overwrite convenience function %s"), var->name);
1126
4fa62494
UW
1127 /* Prepare new contents. */
1128 switch (TYPE_CODE (new_type))
1129 {
1130 case TYPE_CODE_VOID:
1131 break;
1132
1133 case TYPE_CODE_INTERNAL_FUNCTION:
1134 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1135 get_internalvar_function (VALUE_INTERNALVAR (val), &new_data.f);
1136 break;
1137
1138 case TYPE_CODE_INT:
1139 new_data.l = value_as_long (val);
1140 break;
1141
1142 case TYPE_CODE_PTR:
1143 new_data.a = value_as_address (val);
1144 break;
1145
1146 default:
1147 new_data.v = value_copy (val);
1148 new_data.v->modifiable = 1;
1149
1150 /* Force the value to be fetched from the target now, to avoid problems
1151 later when this internalvar is referenced and the target is gone or
1152 has changed. */
1153 if (value_lazy (new_data.v))
1154 value_fetch_lazy (new_data.v);
1155
1156 /* Release the value from the value chain to prevent it from being
1157 deleted by free_all_values. From here on this function should not
1158 call error () until new_data is installed into the var->u to avoid
1159 leaking memory. */
1160 release_value (new_data.v);
1161 break;
1162 }
1163
1164 /* Clean up old contents. */
1165 clear_internalvar (var);
1166
1167 /* Switch over. */
1168 var->type = new_type;
1169 var->u = new_data;
c906108c
SS
1170 /* End code which must not call error(). */
1171}
1172
4fa62494
UW
1173void
1174set_internalvar_integer (struct internalvar *var, LONGEST l)
1175{
1176 /* Clean up old contents. */
1177 clear_internalvar (var);
1178
1179 /* Use a platform-independent 32-bit integer type. */
1180 var->type = builtin_type_int32;
1181 var->u.l = l;
1182}
1183
1184static void
1185set_internalvar_function (struct internalvar *var, struct internal_function *f)
1186{
1187 /* Clean up old contents. */
1188 clear_internalvar (var);
1189
1190 var->type = internal_fn_type;
1191 var->u.f = f;
1192}
1193
1194void
1195clear_internalvar (struct internalvar *var)
1196{
1197 /* Clean up old contents. */
1198 switch (TYPE_CODE (var->type))
1199 {
1200 case TYPE_CODE_VOID:
1201 case TYPE_CODE_INTERNAL_FUNCTION:
1202 case TYPE_CODE_INT:
1203 case TYPE_CODE_PTR:
1204 break;
1205
1206 default:
1207 value_free (var->u.v);
1208 break;
1209 }
1210
1211 /* Set to void type. */
1212 var->type = builtin_type_void;
1213}
1214
c906108c 1215char *
fba45db2 1216internalvar_name (struct internalvar *var)
c906108c
SS
1217{
1218 return var->name;
1219}
1220
4fa62494
UW
1221static struct internal_function *
1222create_internal_function (const char *name,
1223 internal_function_fn handler, void *cookie)
bc3b79fd 1224{
bc3b79fd
TJB
1225 struct internal_function *ifn = XNEW (struct internal_function);
1226 ifn->name = xstrdup (name);
1227 ifn->handler = handler;
1228 ifn->cookie = cookie;
4fa62494 1229 return ifn;
bc3b79fd
TJB
1230}
1231
1232char *
1233value_internal_function_name (struct value *val)
1234{
4fa62494
UW
1235 struct internal_function *ifn;
1236 int result;
1237
1238 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1239 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1240 gdb_assert (result);
1241
bc3b79fd
TJB
1242 return ifn->name;
1243}
1244
1245struct value *
1246call_internal_function (struct value *func, int argc, struct value **argv)
1247{
4fa62494
UW
1248 struct internal_function *ifn;
1249 int result;
1250
1251 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1252 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1253 gdb_assert (result);
1254
bc3b79fd
TJB
1255 return (*ifn->handler) (ifn->cookie, argc, argv);
1256}
1257
1258/* The 'function' command. This does nothing -- it is just a
1259 placeholder to let "help function NAME" work. This is also used as
1260 the implementation of the sub-command that is created when
1261 registering an internal function. */
1262static void
1263function_command (char *command, int from_tty)
1264{
1265 /* Do nothing. */
1266}
1267
1268/* Clean up if an internal function's command is destroyed. */
1269static void
1270function_destroyer (struct cmd_list_element *self, void *ignore)
1271{
1272 xfree (self->name);
1273 xfree (self->doc);
1274}
1275
1276/* Add a new internal function. NAME is the name of the function; DOC
1277 is a documentation string describing the function. HANDLER is
1278 called when the function is invoked. COOKIE is an arbitrary
1279 pointer which is passed to HANDLER and is intended for "user
1280 data". */
1281void
1282add_internal_function (const char *name, const char *doc,
1283 internal_function_fn handler, void *cookie)
1284{
1285 struct cmd_list_element *cmd;
4fa62494 1286 struct internal_function *ifn;
bc3b79fd 1287 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1288
1289 ifn = create_internal_function (name, handler, cookie);
1290 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1291 var->canonical = 1;
1292
1293 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1294 &functionlist);
1295 cmd->destroyer = function_destroyer;
1296}
1297
ae5a43e0
DJ
1298/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1299 prevent cycles / duplicates. */
1300
1301static void
1302preserve_one_value (struct value *value, struct objfile *objfile,
1303 htab_t copied_types)
1304{
1305 if (TYPE_OBJFILE (value->type) == objfile)
1306 value->type = copy_type_recursive (objfile, value->type, copied_types);
1307
1308 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1309 value->enclosing_type = copy_type_recursive (objfile,
1310 value->enclosing_type,
1311 copied_types);
1312}
1313
1314/* Update the internal variables and value history when OBJFILE is
1315 discarded; we must copy the types out of the objfile. New global types
1316 will be created for every convenience variable which currently points to
1317 this objfile's types, and the convenience variables will be adjusted to
1318 use the new global types. */
c906108c
SS
1319
1320void
ae5a43e0 1321preserve_values (struct objfile *objfile)
c906108c 1322{
ae5a43e0
DJ
1323 htab_t copied_types;
1324 struct value_history_chunk *cur;
52f0bd74 1325 struct internalvar *var;
a08702d6 1326 struct value *val;
ae5a43e0 1327 int i;
c906108c 1328
ae5a43e0
DJ
1329 /* Create the hash table. We allocate on the objfile's obstack, since
1330 it is soon to be deleted. */
1331 copied_types = create_copied_types_hash (objfile);
1332
1333 for (cur = value_history_chain; cur; cur = cur->next)
1334 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1335 if (cur->values[i])
1336 preserve_one_value (cur->values[i], objfile, copied_types);
1337
1338 for (var = internalvars; var; var = var->next)
4fa62494
UW
1339 {
1340 if (TYPE_OBJFILE (var->type) == objfile)
1341 var->type = copy_type_recursive (objfile, var->type, copied_types);
1342
1343 switch (TYPE_CODE (var->type))
1344 {
1345 case TYPE_CODE_VOID:
1346 case TYPE_CODE_INTERNAL_FUNCTION:
1347 case TYPE_CODE_INT:
1348 case TYPE_CODE_PTR:
1349 break;
1350
1351 default:
1352 preserve_one_value (var->u.v, objfile, copied_types);
1353 break;
1354 }
1355 }
ae5a43e0 1356
a08702d6
TJB
1357 for (val = values_in_python; val; val = val->next)
1358 preserve_one_value (val, objfile, copied_types);
1359
ae5a43e0 1360 htab_delete (copied_types);
c906108c
SS
1361}
1362
1363static void
fba45db2 1364show_convenience (char *ignore, int from_tty)
c906108c 1365{
52f0bd74 1366 struct internalvar *var;
c906108c 1367 int varseen = 0;
79a45b7d 1368 struct value_print_options opts;
c906108c 1369
79a45b7d 1370 get_user_print_options (&opts);
c906108c
SS
1371 for (var = internalvars; var; var = var->next)
1372 {
c906108c
SS
1373 if (!varseen)
1374 {
1375 varseen = 1;
1376 }
a3f17187 1377 printf_filtered (("$%s = "), var->name);
d3c139e9 1378 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 1379 &opts);
a3f17187 1380 printf_filtered (("\n"));
c906108c
SS
1381 }
1382 if (!varseen)
a3f17187
AC
1383 printf_unfiltered (_("\
1384No debugger convenience variables now defined.\n\
c906108c 1385Convenience variables have names starting with \"$\";\n\
a3f17187 1386use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1387}
1388\f
1389/* Extract a value as a C number (either long or double).
1390 Knows how to convert fixed values to double, or
1391 floating values to long.
1392 Does not deallocate the value. */
1393
1394LONGEST
f23631e4 1395value_as_long (struct value *val)
c906108c
SS
1396{
1397 /* This coerces arrays and functions, which is necessary (e.g.
1398 in disassemble_command). It also dereferences references, which
1399 I suspect is the most logical thing to do. */
994b9211 1400 val = coerce_array (val);
0fd88904 1401 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1402}
1403
1404DOUBLEST
f23631e4 1405value_as_double (struct value *val)
c906108c
SS
1406{
1407 DOUBLEST foo;
1408 int inv;
c5aa993b 1409
0fd88904 1410 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1411 if (inv)
8a3fe4f8 1412 error (_("Invalid floating value found in program."));
c906108c
SS
1413 return foo;
1414}
4ef30785 1415
4478b372
JB
1416/* Extract a value as a C pointer. Does not deallocate the value.
1417 Note that val's type may not actually be a pointer; value_as_long
1418 handles all the cases. */
c906108c 1419CORE_ADDR
f23631e4 1420value_as_address (struct value *val)
c906108c
SS
1421{
1422 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1423 whether we want this to be true eventually. */
1424#if 0
bf6ae464 1425 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1426 non-address (e.g. argument to "signal", "info break", etc.), or
1427 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1428 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1429#else
f312f057
JB
1430
1431 /* There are several targets (IA-64, PowerPC, and others) which
1432 don't represent pointers to functions as simply the address of
1433 the function's entry point. For example, on the IA-64, a
1434 function pointer points to a two-word descriptor, generated by
1435 the linker, which contains the function's entry point, and the
1436 value the IA-64 "global pointer" register should have --- to
1437 support position-independent code. The linker generates
1438 descriptors only for those functions whose addresses are taken.
1439
1440 On such targets, it's difficult for GDB to convert an arbitrary
1441 function address into a function pointer; it has to either find
1442 an existing descriptor for that function, or call malloc and
1443 build its own. On some targets, it is impossible for GDB to
1444 build a descriptor at all: the descriptor must contain a jump
1445 instruction; data memory cannot be executed; and code memory
1446 cannot be modified.
1447
1448 Upon entry to this function, if VAL is a value of type `function'
1449 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1450 value_address (val) is the address of the function. This is what
f312f057
JB
1451 you'll get if you evaluate an expression like `main'. The call
1452 to COERCE_ARRAY below actually does all the usual unary
1453 conversions, which includes converting values of type `function'
1454 to `pointer to function'. This is the challenging conversion
1455 discussed above. Then, `unpack_long' will convert that pointer
1456 back into an address.
1457
1458 So, suppose the user types `disassemble foo' on an architecture
1459 with a strange function pointer representation, on which GDB
1460 cannot build its own descriptors, and suppose further that `foo'
1461 has no linker-built descriptor. The address->pointer conversion
1462 will signal an error and prevent the command from running, even
1463 though the next step would have been to convert the pointer
1464 directly back into the same address.
1465
1466 The following shortcut avoids this whole mess. If VAL is a
1467 function, just return its address directly. */
df407dfe
AC
1468 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1469 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1470 return value_address (val);
f312f057 1471
994b9211 1472 val = coerce_array (val);
fc0c74b1
AC
1473
1474 /* Some architectures (e.g. Harvard), map instruction and data
1475 addresses onto a single large unified address space. For
1476 instance: An architecture may consider a large integer in the
1477 range 0x10000000 .. 0x1000ffff to already represent a data
1478 addresses (hence not need a pointer to address conversion) while
1479 a small integer would still need to be converted integer to
1480 pointer to address. Just assume such architectures handle all
1481 integer conversions in a single function. */
1482
1483 /* JimB writes:
1484
1485 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1486 must admonish GDB hackers to make sure its behavior matches the
1487 compiler's, whenever possible.
1488
1489 In general, I think GDB should evaluate expressions the same way
1490 the compiler does. When the user copies an expression out of
1491 their source code and hands it to a `print' command, they should
1492 get the same value the compiler would have computed. Any
1493 deviation from this rule can cause major confusion and annoyance,
1494 and needs to be justified carefully. In other words, GDB doesn't
1495 really have the freedom to do these conversions in clever and
1496 useful ways.
1497
1498 AndrewC pointed out that users aren't complaining about how GDB
1499 casts integers to pointers; they are complaining that they can't
1500 take an address from a disassembly listing and give it to `x/i'.
1501 This is certainly important.
1502
79dd2d24 1503 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1504 makes it possible for GDB to "get it right" in all circumstances
1505 --- the target has complete control over how things get done, so
1506 people can Do The Right Thing for their target without breaking
1507 anyone else. The standard doesn't specify how integers get
1508 converted to pointers; usually, the ABI doesn't either, but
1509 ABI-specific code is a more reasonable place to handle it. */
1510
df407dfe
AC
1511 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1512 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1513 && gdbarch_integer_to_address_p (current_gdbarch))
1514 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1515 value_contents (val));
fc0c74b1 1516
0fd88904 1517 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1518#endif
1519}
1520\f
1521/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1522 as a long, or as a double, assuming the raw data is described
1523 by type TYPE. Knows how to convert different sizes of values
1524 and can convert between fixed and floating point. We don't assume
1525 any alignment for the raw data. Return value is in host byte order.
1526
1527 If you want functions and arrays to be coerced to pointers, and
1528 references to be dereferenced, call value_as_long() instead.
1529
1530 C++: It is assumed that the front-end has taken care of
1531 all matters concerning pointers to members. A pointer
1532 to member which reaches here is considered to be equivalent
1533 to an INT (or some size). After all, it is only an offset. */
1534
1535LONGEST
fc1a4b47 1536unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1537{
52f0bd74
AC
1538 enum type_code code = TYPE_CODE (type);
1539 int len = TYPE_LENGTH (type);
1540 int nosign = TYPE_UNSIGNED (type);
c906108c 1541
c906108c
SS
1542 switch (code)
1543 {
1544 case TYPE_CODE_TYPEDEF:
1545 return unpack_long (check_typedef (type), valaddr);
1546 case TYPE_CODE_ENUM:
4f2aea11 1547 case TYPE_CODE_FLAGS:
c906108c
SS
1548 case TYPE_CODE_BOOL:
1549 case TYPE_CODE_INT:
1550 case TYPE_CODE_CHAR:
1551 case TYPE_CODE_RANGE:
0d5de010 1552 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1553 if (nosign)
1554 return extract_unsigned_integer (valaddr, len);
1555 else
1556 return extract_signed_integer (valaddr, len);
1557
1558 case TYPE_CODE_FLT:
96d2f608 1559 return extract_typed_floating (valaddr, type);
c906108c 1560
4ef30785
TJB
1561 case TYPE_CODE_DECFLOAT:
1562 /* libdecnumber has a function to convert from decimal to integer, but
1563 it doesn't work when the decimal number has a fractional part. */
ba759613 1564 return decimal_to_doublest (valaddr, len);
4ef30785 1565
c906108c
SS
1566 case TYPE_CODE_PTR:
1567 case TYPE_CODE_REF:
1568 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1569 whether we want this to be true eventually. */
4478b372 1570 return extract_typed_address (valaddr, type);
c906108c 1571
c906108c 1572 default:
8a3fe4f8 1573 error (_("Value can't be converted to integer."));
c906108c 1574 }
c5aa993b 1575 return 0; /* Placate lint. */
c906108c
SS
1576}
1577
1578/* Return a double value from the specified type and address.
1579 INVP points to an int which is set to 0 for valid value,
1580 1 for invalid value (bad float format). In either case,
1581 the returned double is OK to use. Argument is in target
1582 format, result is in host format. */
1583
1584DOUBLEST
fc1a4b47 1585unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1586{
1587 enum type_code code;
1588 int len;
1589 int nosign;
1590
1591 *invp = 0; /* Assume valid. */
1592 CHECK_TYPEDEF (type);
1593 code = TYPE_CODE (type);
1594 len = TYPE_LENGTH (type);
1595 nosign = TYPE_UNSIGNED (type);
1596 if (code == TYPE_CODE_FLT)
1597 {
75bc7ddf
AC
1598 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1599 floating-point value was valid (using the macro
1600 INVALID_FLOAT). That test/macro have been removed.
1601
1602 It turns out that only the VAX defined this macro and then
1603 only in a non-portable way. Fixing the portability problem
1604 wouldn't help since the VAX floating-point code is also badly
1605 bit-rotten. The target needs to add definitions for the
ea06eb3d 1606 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1607 exactly describe the target floating-point format. The
1608 problem here is that the corresponding floatformat_vax_f and
1609 floatformat_vax_d values these methods should be set to are
1610 also not defined either. Oops!
1611
1612 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1613 definitions and the new cases for floatformat_is_valid (). */
1614
1615 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1616 {
1617 *invp = 1;
1618 return 0.0;
1619 }
1620
96d2f608 1621 return extract_typed_floating (valaddr, type);
c906108c 1622 }
4ef30785 1623 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1624 return decimal_to_doublest (valaddr, len);
c906108c
SS
1625 else if (nosign)
1626 {
1627 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1628 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1629 }
1630 else
1631 {
1632 /* Signed -- we are OK with unpack_long. */
1633 return unpack_long (type, valaddr);
1634 }
1635}
1636
1637/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1638 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1639 We don't assume any alignment for the raw data. Return value is in
1640 host byte order.
1641
1642 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1643 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1644
1645 C++: It is assumed that the front-end has taken care of
1646 all matters concerning pointers to members. A pointer
1647 to member which reaches here is considered to be equivalent
1648 to an INT (or some size). After all, it is only an offset. */
1649
1650CORE_ADDR
fc1a4b47 1651unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1652{
1653 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1654 whether we want this to be true eventually. */
1655 return unpack_long (type, valaddr);
1656}
4478b372 1657
c906108c 1658\f
2c2738a0
DC
1659/* Get the value of the FIELDN'th field (which must be static) of
1660 TYPE. Return NULL if the field doesn't exist or has been
1661 optimized out. */
c906108c 1662
f23631e4 1663struct value *
fba45db2 1664value_static_field (struct type *type, int fieldno)
c906108c 1665{
948e66d9
DJ
1666 struct value *retval;
1667
d6a843b5 1668 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1669 {
948e66d9 1670 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1671 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1672 }
1673 else
1674 {
1675 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1676 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1677 if (sym == NULL)
c906108c
SS
1678 {
1679 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1680 as non-debuggable symbols */
1681 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1682 if (!msym)
1683 return NULL;
1684 else
c5aa993b 1685 {
948e66d9 1686 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1687 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1688 }
1689 }
1690 else
1691 {
948e66d9
DJ
1692 /* SYM should never have a SYMBOL_CLASS which will require
1693 read_var_value to use the FRAME parameter. */
1694 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1695 warning (_("static field's value depends on the current "
1696 "frame - bad debug info?"));
948e66d9 1697 retval = read_var_value (sym, NULL);
2b127877 1698 }
948e66d9
DJ
1699 if (retval && VALUE_LVAL (retval) == lval_memory)
1700 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1701 value_address (retval));
c906108c 1702 }
948e66d9 1703 return retval;
c906108c
SS
1704}
1705
2b127877
DB
1706/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1707 You have to be careful here, since the size of the data area for the value
1708 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1709 than the old enclosing type, you have to allocate more space for the data.
1710 The return value is a pointer to the new version of this value structure. */
1711
f23631e4
AC
1712struct value *
1713value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1714{
3e3d7139
JG
1715 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1716 val->contents =
1717 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1718
1719 val->enclosing_type = new_encl_type;
1720 return val;
2b127877
DB
1721}
1722
c906108c
SS
1723/* Given a value ARG1 (offset by OFFSET bytes)
1724 of a struct or union type ARG_TYPE,
1725 extract and return the value of one of its (non-static) fields.
1726 FIELDNO says which field. */
1727
f23631e4
AC
1728struct value *
1729value_primitive_field (struct value *arg1, int offset,
aa1ee363 1730 int fieldno, struct type *arg_type)
c906108c 1731{
f23631e4 1732 struct value *v;
52f0bd74 1733 struct type *type;
c906108c
SS
1734
1735 CHECK_TYPEDEF (arg_type);
1736 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1737
1738 /* Handle packed fields */
1739
1740 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1741 {
1742 v = value_from_longest (type,
1743 unpack_field_as_long (arg_type,
0fd88904 1744 value_contents (arg1)
c5aa993b 1745 + offset,
c906108c 1746 fieldno));
df407dfe
AC
1747 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1748 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1749 v->offset = value_offset (arg1) + offset
2e70b7b9 1750 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1751 }
1752 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1753 {
1754 /* This field is actually a base subobject, so preserve the
1755 entire object's contents for later references to virtual
1756 bases, etc. */
a4e2ee12
DJ
1757
1758 /* Lazy register values with offsets are not supported. */
1759 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1760 value_fetch_lazy (arg1);
1761
1762 if (value_lazy (arg1))
3e3d7139 1763 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1764 else
3e3d7139
JG
1765 {
1766 v = allocate_value (value_enclosing_type (arg1));
1767 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1768 TYPE_LENGTH (value_enclosing_type (arg1)));
1769 }
1770 v->type = type;
df407dfe 1771 v->offset = value_offset (arg1);
13c3b5f5
AC
1772 v->embedded_offset = (offset + value_embedded_offset (arg1)
1773 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1774 }
1775 else
1776 {
1777 /* Plain old data member */
1778 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1779
1780 /* Lazy register values with offsets are not supported. */
1781 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1782 value_fetch_lazy (arg1);
1783
1784 if (value_lazy (arg1))
3e3d7139 1785 v = allocate_value_lazy (type);
c906108c 1786 else
3e3d7139
JG
1787 {
1788 v = allocate_value (type);
1789 memcpy (value_contents_raw (v),
1790 value_contents_raw (arg1) + offset,
1791 TYPE_LENGTH (type));
1792 }
df407dfe 1793 v->offset = (value_offset (arg1) + offset
13c3b5f5 1794 + value_embedded_offset (arg1));
c906108c 1795 }
74bcbdf3 1796 set_value_component_location (v, arg1);
9ee8fc9d 1797 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1798 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1799 return v;
1800}
1801
1802/* Given a value ARG1 of a struct or union type,
1803 extract and return the value of one of its (non-static) fields.
1804 FIELDNO says which field. */
1805
f23631e4 1806struct value *
aa1ee363 1807value_field (struct value *arg1, int fieldno)
c906108c 1808{
df407dfe 1809 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1810}
1811
1812/* Return a non-virtual function as a value.
1813 F is the list of member functions which contains the desired method.
0478d61c
FF
1814 J is an index into F which provides the desired method.
1815
1816 We only use the symbol for its address, so be happy with either a
1817 full symbol or a minimal symbol.
1818 */
c906108c 1819
f23631e4
AC
1820struct value *
1821value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1822 int offset)
c906108c 1823{
f23631e4 1824 struct value *v;
52f0bd74 1825 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1826 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1827 struct symbol *sym;
0478d61c 1828 struct minimal_symbol *msym;
c906108c 1829
2570f2b7 1830 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1831 if (sym != NULL)
0478d61c 1832 {
5ae326fa
AC
1833 msym = NULL;
1834 }
1835 else
1836 {
1837 gdb_assert (sym == NULL);
0478d61c 1838 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1839 if (msym == NULL)
1840 return NULL;
0478d61c
FF
1841 }
1842
c906108c 1843 v = allocate_value (ftype);
0478d61c
FF
1844 if (sym)
1845 {
42ae5230 1846 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
1847 }
1848 else
1849 {
bccdca4a
UW
1850 /* The minimal symbol might point to a function descriptor;
1851 resolve it to the actual code address instead. */
1852 struct objfile *objfile = msymbol_objfile (msym);
1853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1854
42ae5230
TT
1855 set_value_address (v,
1856 gdbarch_convert_from_func_ptr_addr
1857 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 1858 }
c906108c
SS
1859
1860 if (arg1p)
c5aa993b 1861 {
df407dfe 1862 if (type != value_type (*arg1p))
c5aa993b
JM
1863 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1864 value_addr (*arg1p)));
1865
070ad9f0 1866 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1867 VALUE_OFFSET (*arg1p) += offset;
1868 */
c906108c
SS
1869 }
1870
1871 return v;
1872}
1873
c906108c
SS
1874\f
1875/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1876 VALADDR.
1877
1878 Extracting bits depends on endianness of the machine. Compute the
1879 number of least significant bits to discard. For big endian machines,
1880 we compute the total number of bits in the anonymous object, subtract
1881 off the bit count from the MSB of the object to the MSB of the
1882 bitfield, then the size of the bitfield, which leaves the LSB discard
1883 count. For little endian machines, the discard count is simply the
1884 number of bits from the LSB of the anonymous object to the LSB of the
1885 bitfield.
1886
1887 If the field is signed, we also do sign extension. */
1888
1889LONGEST
fc1a4b47 1890unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1891{
1892 ULONGEST val;
1893 ULONGEST valmask;
1894 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1895 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1896 int lsbcount;
1897 struct type *field_type;
1898
1899 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1900 field_type = TYPE_FIELD_TYPE (type, fieldno);
1901 CHECK_TYPEDEF (field_type);
1902
1903 /* Extract bits. See comment above. */
1904
32c9a795 1905 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1906 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1907 else
1908 lsbcount = (bitpos % 8);
1909 val >>= lsbcount;
1910
1911 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1912 If the field is signed, and is negative, then sign extend. */
1913
1914 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1915 {
1916 valmask = (((ULONGEST) 1) << bitsize) - 1;
1917 val &= valmask;
1918 if (!TYPE_UNSIGNED (field_type))
1919 {
1920 if (val & (valmask ^ (valmask >> 1)))
1921 {
1922 val |= ~valmask;
1923 }
1924 }
1925 }
1926 return (val);
1927}
1928
1929/* Modify the value of a bitfield. ADDR points to a block of memory in
1930 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1931 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1932 indicate which bits (in target bit order) comprise the bitfield.
1933 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1934 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1935
1936void
fc1a4b47 1937modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1938{
f4e88c8e
PH
1939 ULONGEST oword;
1940 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1941
1942 /* If a negative fieldval fits in the field in question, chop
1943 off the sign extension bits. */
f4e88c8e
PH
1944 if ((~fieldval & ~(mask >> 1)) == 0)
1945 fieldval &= mask;
c906108c
SS
1946
1947 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1948 if (0 != (fieldval & ~mask))
c906108c
SS
1949 {
1950 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1951 we don't have a sprintf_longest. */
8a3fe4f8 1952 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1953
1954 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1955 fieldval &= mask;
c906108c
SS
1956 }
1957
f4e88c8e 1958 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1959
1960 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1961 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1962 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1963
f4e88c8e 1964 oword &= ~(mask << bitpos);
c906108c
SS
1965 oword |= fieldval << bitpos;
1966
f4e88c8e 1967 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1968}
1969\f
14d06750 1970/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1971
14d06750
DJ
1972void
1973pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1974{
52f0bd74 1975 int len;
14d06750
DJ
1976
1977 type = check_typedef (type);
c906108c
SS
1978 len = TYPE_LENGTH (type);
1979
14d06750 1980 switch (TYPE_CODE (type))
c906108c 1981 {
c906108c
SS
1982 case TYPE_CODE_INT:
1983 case TYPE_CODE_CHAR:
1984 case TYPE_CODE_ENUM:
4f2aea11 1985 case TYPE_CODE_FLAGS:
c906108c
SS
1986 case TYPE_CODE_BOOL:
1987 case TYPE_CODE_RANGE:
0d5de010 1988 case TYPE_CODE_MEMBERPTR:
14d06750 1989 store_signed_integer (buf, len, num);
c906108c 1990 break;
c5aa993b 1991
c906108c
SS
1992 case TYPE_CODE_REF:
1993 case TYPE_CODE_PTR:
14d06750 1994 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1995 break;
c5aa993b 1996
c906108c 1997 default:
14d06750
DJ
1998 error (_("Unexpected type (%d) encountered for integer constant."),
1999 TYPE_CODE (type));
c906108c 2000 }
14d06750
DJ
2001}
2002
2003
2004/* Convert C numbers into newly allocated values. */
2005
2006struct value *
2007value_from_longest (struct type *type, LONGEST num)
2008{
2009 struct value *val = allocate_value (type);
2010
2011 pack_long (value_contents_raw (val), type, num);
2012
c906108c
SS
2013 return val;
2014}
2015
4478b372
JB
2016
2017/* Create a value representing a pointer of type TYPE to the address
2018 ADDR. */
f23631e4 2019struct value *
4478b372
JB
2020value_from_pointer (struct type *type, CORE_ADDR addr)
2021{
f23631e4 2022 struct value *val = allocate_value (type);
990a07ab 2023 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
2024 return val;
2025}
2026
2027
0f71a2f6 2028/* Create a value for a string constant to be stored locally
070ad9f0 2029 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
2030 This is analogous to value_from_longest, which also does not
2031 use inferior memory. String shall NOT contain embedded nulls. */
2032
f23631e4 2033struct value *
fba45db2 2034value_from_string (char *ptr)
0f71a2f6 2035{
f23631e4 2036 struct value *val;
c5aa993b 2037 int len = strlen (ptr);
0f71a2f6 2038 int lowbound = current_language->string_lower_bound;
f290d38e
AC
2039 struct type *string_char_type;
2040 struct type *rangetype;
2041 struct type *stringtype;
2042
2043 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 2044 builtin_type_int32,
f290d38e
AC
2045 lowbound, len + lowbound - 1);
2046 string_char_type = language_string_char_type (current_language,
2047 current_gdbarch);
2048 stringtype = create_array_type ((struct type *) NULL,
2049 string_char_type,
2050 rangetype);
0f71a2f6 2051 val = allocate_value (stringtype);
990a07ab 2052 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
2053 return val;
2054}
2055
8acb6b92
TT
2056/* Create a value of type TYPE whose contents come from VALADDR, if it
2057 is non-null, and whose memory address (in the inferior) is
2058 ADDRESS. */
2059
2060struct value *
2061value_from_contents_and_address (struct type *type,
2062 const gdb_byte *valaddr,
2063 CORE_ADDR address)
2064{
2065 struct value *v = allocate_value (type);
2066 if (valaddr == NULL)
2067 set_value_lazy (v, 1);
2068 else
2069 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2070 set_value_address (v, address);
33d502b4 2071 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2072 return v;
2073}
2074
f23631e4 2075struct value *
fba45db2 2076value_from_double (struct type *type, DOUBLEST num)
c906108c 2077{
f23631e4 2078 struct value *val = allocate_value (type);
c906108c 2079 struct type *base_type = check_typedef (type);
52f0bd74
AC
2080 enum type_code code = TYPE_CODE (base_type);
2081 int len = TYPE_LENGTH (base_type);
c906108c
SS
2082
2083 if (code == TYPE_CODE_FLT)
2084 {
990a07ab 2085 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2086 }
2087 else
8a3fe4f8 2088 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2089
2090 return val;
2091}
994b9211 2092
27bc4d80 2093struct value *
4ef30785 2094value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2095{
2096 struct value *val = allocate_value (type);
27bc4d80 2097
4ef30785 2098 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2099
27bc4d80
TJB
2100 return val;
2101}
2102
994b9211
AC
2103struct value *
2104coerce_ref (struct value *arg)
2105{
df407dfe 2106 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2107 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2108 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2109 unpack_pointer (value_type (arg),
0fd88904 2110 value_contents (arg)));
994b9211
AC
2111 return arg;
2112}
2113
2114struct value *
2115coerce_array (struct value *arg)
2116{
f3134b88
TT
2117 struct type *type;
2118
994b9211 2119 arg = coerce_ref (arg);
f3134b88
TT
2120 type = check_typedef (value_type (arg));
2121
2122 switch (TYPE_CODE (type))
2123 {
2124 case TYPE_CODE_ARRAY:
2125 if (current_language->c_style_arrays)
2126 arg = value_coerce_array (arg);
2127 break;
2128 case TYPE_CODE_FUNC:
2129 arg = value_coerce_function (arg);
2130 break;
2131 }
994b9211
AC
2132 return arg;
2133}
c906108c 2134\f
c906108c 2135
48436ce6
AC
2136/* Return true if the function returning the specified type is using
2137 the convention of returning structures in memory (passing in the
82585c72 2138 address as a hidden first parameter). */
c906108c
SS
2139
2140int
c055b101 2141using_struct_return (struct type *func_type, struct type *value_type)
c906108c 2142{
52f0bd74 2143 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2144
2145 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2146 error (_("Function return type unknown."));
c906108c 2147
667e784f
AC
2148 if (code == TYPE_CODE_VOID)
2149 /* A void return value is never in memory. See also corresponding
44e5158b 2150 code in "print_return_value". */
667e784f
AC
2151 return 0;
2152
92ad9cd9 2153 /* Probe the architecture for the return-value convention. */
c055b101 2154 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 2155 NULL, NULL, NULL)
31db7b6c 2156 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2157}
2158
42be36b3
CT
2159/* Set the initialized field in a value struct. */
2160
2161void
2162set_value_initialized (struct value *val, int status)
2163{
2164 val->initialized = status;
2165}
2166
2167/* Return the initialized field in a value struct. */
2168
2169int
2170value_initialized (struct value *val)
2171{
2172 return val->initialized;
2173}
2174
c906108c 2175void
fba45db2 2176_initialize_values (void)
c906108c 2177{
1a966eab
AC
2178 add_cmd ("convenience", no_class, show_convenience, _("\
2179Debugger convenience (\"$foo\") variables.\n\
c906108c 2180These variables are created when you assign them values;\n\
1a966eab
AC
2181thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2182\n\
c906108c
SS
2183A few convenience variables are given values automatically:\n\
2184\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2185\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2186 &showlist);
2187
2188 add_cmd ("values", no_class, show_values,
1a966eab 2189 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2190 &showlist);
53e5f3cf
AS
2191
2192 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2193Initialize a convenience variable if necessary.\n\
2194init-if-undefined VARIABLE = EXPRESSION\n\
2195Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2196exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2197VARIABLE is already initialized."));
bc3b79fd
TJB
2198
2199 add_prefix_cmd ("function", no_class, function_command, _("\
2200Placeholder command for showing help on convenience functions."),
2201 &functionlist, "function ", 0, &cmdlist);
2202
2203 internal_fn_type = alloc_type (NULL);
2204 TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION;
bc3b79fd 2205 TYPE_NAME (internal_fn_type) = "<internal function>";
c906108c 2206}
This page took 1.210278 seconds and 4 git commands to generate.