C++ keyword cleanliness, mostly auto-generated
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
4e07d55f 343int
bdf22206 344value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
345{
346 gdb_assert (!value->lazy);
347
348 return !ranges_contain (value->unavailable, offset, length);
349}
350
bdf22206
AB
351int
352value_bytes_available (const struct value *value, int offset, int length)
353{
354 return value_bits_available (value,
355 offset * TARGET_CHAR_BIT,
356 length * TARGET_CHAR_BIT);
357}
358
9a0dc9e3
PA
359int
360value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
361{
362 gdb_assert (!value->lazy);
363
364 return ranges_contain (value->optimized_out, bit_offset, bit_length);
365}
366
ec0a52e1
PA
367int
368value_entirely_available (struct value *value)
369{
370 /* We can only tell whether the whole value is available when we try
371 to read it. */
372 if (value->lazy)
373 value_fetch_lazy (value);
374
375 if (VEC_empty (range_s, value->unavailable))
376 return 1;
377 return 0;
378}
379
9a0dc9e3
PA
380/* Returns true if VALUE is entirely covered by RANGES. If the value
381 is lazy, it'll be read now. Note that RANGE is a pointer to
382 pointer because reading the value might change *RANGE. */
383
384static int
385value_entirely_covered_by_range_vector (struct value *value,
386 VEC(range_s) **ranges)
6211c335 387{
9a0dc9e3
PA
388 /* We can only tell whether the whole value is optimized out /
389 unavailable when we try to read it. */
6211c335
YQ
390 if (value->lazy)
391 value_fetch_lazy (value);
392
9a0dc9e3 393 if (VEC_length (range_s, *ranges) == 1)
6211c335 394 {
9a0dc9e3 395 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
396
397 if (t->offset == 0
64c46ce4
JB
398 && t->length == (TARGET_CHAR_BIT
399 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
400 return 1;
401 }
402
403 return 0;
404}
405
9a0dc9e3
PA
406int
407value_entirely_unavailable (struct value *value)
408{
409 return value_entirely_covered_by_range_vector (value, &value->unavailable);
410}
411
412int
413value_entirely_optimized_out (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
416}
417
418/* Insert into the vector pointed to by VECTORP the bit range starting of
419 OFFSET bits, and extending for the next LENGTH bits. */
420
421static void
422insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
423{
424 range_s newr;
425 int i;
426
427 /* Insert the range sorted. If there's overlap or the new range
428 would be contiguous with an existing range, merge. */
429
430 newr.offset = offset;
431 newr.length = length;
432
433 /* Do a binary search for the position the given range would be
434 inserted if we only considered the starting OFFSET of ranges.
435 Call that position I. Since we also have LENGTH to care for
436 (this is a range afterall), we need to check if the _previous_
437 range overlaps the I range. E.g., calling R the new range:
438
439 #1 - overlaps with previous
440
441 R
442 |-...-|
443 |---| |---| |------| ... |--|
444 0 1 2 N
445
446 I=1
447
448 In the case #1 above, the binary search would return `I=1',
449 meaning, this OFFSET should be inserted at position 1, and the
450 current position 1 should be pushed further (and become 2). But,
451 note that `0' overlaps with R, so we want to merge them.
452
453 A similar consideration needs to be taken if the new range would
454 be contiguous with the previous range:
455
456 #2 - contiguous with previous
457
458 R
459 |-...-|
460 |--| |---| |------| ... |--|
461 0 1 2 N
462
463 I=1
464
465 If there's no overlap with the previous range, as in:
466
467 #3 - not overlapping and not contiguous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 or if I is 0:
477
478 #4 - R is the range with lowest offset
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=0
486
487 ... we just push the new range to I.
488
489 All the 4 cases above need to consider that the new range may
490 also overlap several of the ranges that follow, or that R may be
491 contiguous with the following range, and merge. E.g.,
492
493 #5 - overlapping following ranges
494
495 R
496 |------------------------|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=0
501
502 or:
503
504 R
505 |-------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=1
510
511 */
512
9a0dc9e3 513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
514 if (i > 0)
515 {
9a0dc9e3 516 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
517
518 if (ranges_overlap (bef->offset, bef->length, offset, length))
519 {
520 /* #1 */
521 ULONGEST l = min (bef->offset, offset);
522 ULONGEST h = max (bef->offset + bef->length, offset + length);
523
524 bef->offset = l;
525 bef->length = h - l;
526 i--;
527 }
528 else if (offset == bef->offset + bef->length)
529 {
530 /* #2 */
531 bef->length += length;
532 i--;
533 }
534 else
535 {
536 /* #3 */
9a0dc9e3 537 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
538 }
539 }
540 else
541 {
542 /* #4 */
9a0dc9e3 543 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
544 }
545
546 /* Check whether the ranges following the one we've just added or
547 touched can be folded in (#5 above). */
9a0dc9e3 548 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
549 {
550 struct range *t;
551 struct range *r;
552 int removed = 0;
553 int next = i + 1;
554
555 /* Get the range we just touched. */
9a0dc9e3 556 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
557 removed = 0;
558
559 i = next;
9a0dc9e3 560 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
561 if (r->offset <= t->offset + t->length)
562 {
563 ULONGEST l, h;
564
565 l = min (t->offset, r->offset);
566 h = max (t->offset + t->length, r->offset + r->length);
567
568 t->offset = l;
569 t->length = h - l;
570
571 removed++;
572 }
573 else
574 {
575 /* If we couldn't merge this one, we won't be able to
576 merge following ones either, since the ranges are
577 always sorted by OFFSET. */
578 break;
579 }
580
581 if (removed != 0)
9a0dc9e3 582 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
583 }
584}
585
9a0dc9e3
PA
586void
587mark_value_bits_unavailable (struct value *value, int offset, int length)
588{
589 insert_into_bit_range_vector (&value->unavailable, offset, length);
590}
591
bdf22206
AB
592void
593mark_value_bytes_unavailable (struct value *value, int offset, int length)
594{
595 mark_value_bits_unavailable (value,
596 offset * TARGET_CHAR_BIT,
597 length * TARGET_CHAR_BIT);
598}
599
c8c1c22f
PA
600/* Find the first range in RANGES that overlaps the range defined by
601 OFFSET and LENGTH, starting at element POS in the RANGES vector,
602 Returns the index into RANGES where such overlapping range was
603 found, or -1 if none was found. */
604
605static int
606find_first_range_overlap (VEC(range_s) *ranges, int pos,
607 int offset, int length)
608{
609 range_s *r;
610 int i;
611
612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
613 if (ranges_overlap (r->offset, r->length, offset, length))
614 return i;
615
616 return -1;
617}
618
bdf22206
AB
619/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
621 return non-zero.
622
623 It must always be the case that:
624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
625
626 It is assumed that memory can be accessed from:
627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
628 to:
629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
630 / TARGET_CHAR_BIT) */
631static int
632memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
633 const gdb_byte *ptr2, size_t offset2_bits,
634 size_t length_bits)
635{
636 gdb_assert (offset1_bits % TARGET_CHAR_BIT
637 == offset2_bits % TARGET_CHAR_BIT);
638
639 if (offset1_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 gdb_byte mask, b1, b2;
643
644 /* The offset from the base pointers PTR1 and PTR2 is not a complete
645 number of bytes. A number of bits up to either the next exact
646 byte boundary, or LENGTH_BITS (which ever is sooner) will be
647 compared. */
648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
650 mask = (1 << bits) - 1;
651
652 if (length_bits < bits)
653 {
654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
655 bits = length_bits;
656 }
657
658 /* Now load the two bytes and mask off the bits we care about. */
659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
661
662 if (b1 != b2)
663 return 1;
664
665 /* Now update the length and offsets to take account of the bits
666 we've just compared. */
667 length_bits -= bits;
668 offset1_bits += bits;
669 offset2_bits += bits;
670 }
671
672 if (length_bits % TARGET_CHAR_BIT != 0)
673 {
674 size_t bits;
675 size_t o1, o2;
676 gdb_byte mask, b1, b2;
677
678 /* The length is not an exact number of bytes. After the previous
679 IF.. block then the offsets are byte aligned, or the
680 length is zero (in which case this code is not reached). Compare
681 a number of bits at the end of the region, starting from an exact
682 byte boundary. */
683 bits = length_bits % TARGET_CHAR_BIT;
684 o1 = offset1_bits + length_bits - bits;
685 o2 = offset2_bits + length_bits - bits;
686
687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
689
690 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
691 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
692
693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 length_bits -= bits;
700 }
701
702 if (length_bits > 0)
703 {
704 /* We've now taken care of any stray "bits" at the start, or end of
705 the region to compare, the remainder can be covered with a simple
706 memcmp. */
707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
710
711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
712 ptr2 + offset2_bits / TARGET_CHAR_BIT,
713 length_bits / TARGET_CHAR_BIT);
714 }
715
716 /* Length is zero, regions match. */
717 return 0;
718}
719
9a0dc9e3
PA
720/* Helper struct for find_first_range_overlap_and_match and
721 value_contents_bits_eq. Keep track of which slot of a given ranges
722 vector have we last looked at. */
bdf22206 723
9a0dc9e3
PA
724struct ranges_and_idx
725{
726 /* The ranges. */
727 VEC(range_s) *ranges;
728
729 /* The range we've last found in RANGES. Given ranges are sorted,
730 we can start the next lookup here. */
731 int idx;
732};
733
734/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
736 ranges starting at OFFSET2 bits. Return true if the ranges match
737 and fill in *L and *H with the overlapping window relative to
738 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
739
740static int
9a0dc9e3
PA
741find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
742 struct ranges_and_idx *rp2,
743 int offset1, int offset2,
744 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 745{
9a0dc9e3
PA
746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
747 offset1, length);
748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
749 offset2, length);
c8c1c22f 750
9a0dc9e3
PA
751 if (rp1->idx == -1 && rp2->idx == -1)
752 {
753 *l = length;
754 *h = length;
755 return 1;
756 }
757 else if (rp1->idx == -1 || rp2->idx == -1)
758 return 0;
759 else
c8c1c22f
PA
760 {
761 range_s *r1, *r2;
762 ULONGEST l1, h1;
763 ULONGEST l2, h2;
764
9a0dc9e3
PA
765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
767
768 /* Get the unavailable windows intersected by the incoming
769 ranges. The first and last ranges that overlap the argument
770 range may be wider than said incoming arguments ranges. */
771 l1 = max (offset1, r1->offset);
772 h1 = min (offset1 + length, r1->offset + r1->length);
773
774 l2 = max (offset2, r2->offset);
9a0dc9e3 775 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
776
777 /* Make them relative to the respective start offsets, so we can
778 compare them for equality. */
779 l1 -= offset1;
780 h1 -= offset1;
781
782 l2 -= offset2;
783 h2 -= offset2;
784
9a0dc9e3 785 /* Different ranges, no match. */
c8c1c22f
PA
786 if (l1 != l2 || h1 != h2)
787 return 0;
788
9a0dc9e3
PA
789 *h = h1;
790 *l = l1;
791 return 1;
792 }
793}
794
795/* Helper function for value_contents_eq. The only difference is that
796 this function is bit rather than byte based.
797
798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
800 Return true if the available bits match. */
801
802static int
803value_contents_bits_eq (const struct value *val1, int offset1,
804 const struct value *val2, int offset2,
805 int length)
806{
807 /* Each array element corresponds to a ranges source (unavailable,
808 optimized out). '1' is for VAL1, '2' for VAL2. */
809 struct ranges_and_idx rp1[2], rp2[2];
810
811 /* See function description in value.h. */
812 gdb_assert (!val1->lazy && !val2->lazy);
813
814 /* We shouldn't be trying to compare past the end of the values. */
815 gdb_assert (offset1 + length
816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
817 gdb_assert (offset2 + length
818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
819
820 memset (&rp1, 0, sizeof (rp1));
821 memset (&rp2, 0, sizeof (rp2));
822 rp1[0].ranges = val1->unavailable;
823 rp2[0].ranges = val2->unavailable;
824 rp1[1].ranges = val1->optimized_out;
825 rp2[1].ranges = val2->optimized_out;
826
827 while (length > 0)
828 {
000339af 829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
830 int i;
831
832 for (i = 0; i < 2; i++)
833 {
834 ULONGEST l_tmp, h_tmp;
835
836 /* The contents only match equal if the invalid/unavailable
837 contents ranges match as well. */
838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
839 offset1, offset2, length,
840 &l_tmp, &h_tmp))
841 return 0;
842
843 /* We're interested in the lowest/first range found. */
844 if (i == 0 || l_tmp < l)
845 {
846 l = l_tmp;
847 h = h_tmp;
848 }
849 }
850
851 /* Compare the available/valid contents. */
bdf22206 852 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 853 val2->contents, offset2, l) != 0)
c8c1c22f
PA
854 return 0;
855
9a0dc9e3
PA
856 length -= h;
857 offset1 += h;
858 offset2 += h;
c8c1c22f
PA
859 }
860
861 return 1;
862}
863
bdf22206 864int
9a0dc9e3
PA
865value_contents_eq (const struct value *val1, int offset1,
866 const struct value *val2, int offset2,
867 int length)
bdf22206 868{
9a0dc9e3
PA
869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
870 val2, offset2 * TARGET_CHAR_BIT,
871 length * TARGET_CHAR_BIT);
bdf22206
AB
872}
873
581e13c1 874/* Prototypes for local functions. */
c906108c 875
a14ed312 876static void show_values (char *, int);
c906108c 877
a14ed312 878static void show_convenience (char *, int);
c906108c 879
c906108c
SS
880
881/* The value-history records all the values printed
882 by print commands during this session. Each chunk
883 records 60 consecutive values. The first chunk on
884 the chain records the most recent values.
885 The total number of values is in value_history_count. */
886
887#define VALUE_HISTORY_CHUNK 60
888
889struct value_history_chunk
c5aa993b
JM
890 {
891 struct value_history_chunk *next;
f23631e4 892 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 893 };
c906108c
SS
894
895/* Chain of chunks now in use. */
896
897static struct value_history_chunk *value_history_chain;
898
581e13c1 899static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 900
c906108c
SS
901\f
902/* List of all value objects currently allocated
903 (except for those released by calls to release_value)
904 This is so they can be freed after each command. */
905
f23631e4 906static struct value *all_values;
c906108c 907
3e3d7139
JG
908/* Allocate a lazy value for type TYPE. Its actual content is
909 "lazily" allocated too: the content field of the return value is
910 NULL; it will be allocated when it is fetched from the target. */
c906108c 911
f23631e4 912struct value *
3e3d7139 913allocate_value_lazy (struct type *type)
c906108c 914{
f23631e4 915 struct value *val;
c54eabfa
JK
916
917 /* Call check_typedef on our type to make sure that, if TYPE
918 is a TYPE_CODE_TYPEDEF, its length is set to the length
919 of the target type instead of zero. However, we do not
920 replace the typedef type by the target type, because we want
921 to keep the typedef in order to be able to set the VAL's type
922 description correctly. */
923 check_typedef (type);
c906108c 924
3e3d7139
JG
925 val = (struct value *) xzalloc (sizeof (struct value));
926 val->contents = NULL;
df407dfe 927 val->next = all_values;
c906108c 928 all_values = val;
df407dfe 929 val->type = type;
4754a64e 930 val->enclosing_type = type;
c906108c 931 VALUE_LVAL (val) = not_lval;
42ae5230 932 val->location.address = 0;
1df6926e 933 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
934 val->offset = 0;
935 val->bitpos = 0;
936 val->bitsize = 0;
9ee8fc9d 937 VALUE_REGNUM (val) = -1;
3e3d7139 938 val->lazy = 1;
13c3b5f5 939 val->embedded_offset = 0;
b44d461b 940 val->pointed_to_offset = 0;
c906108c 941 val->modifiable = 1;
42be36b3 942 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
943
944 /* Values start out on the all_values chain. */
945 val->reference_count = 1;
946
c906108c
SS
947 return val;
948}
949
3e3d7139
JG
950/* Allocate the contents of VAL if it has not been allocated yet. */
951
548b762d 952static void
3e3d7139
JG
953allocate_value_contents (struct value *val)
954{
955 if (!val->contents)
956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
957}
958
959/* Allocate a value and its contents for type TYPE. */
960
961struct value *
962allocate_value (struct type *type)
963{
964 struct value *val = allocate_value_lazy (type);
a109c7c1 965
3e3d7139
JG
966 allocate_value_contents (val);
967 val->lazy = 0;
968 return val;
969}
970
c906108c 971/* Allocate a value that has the correct length
938f5214 972 for COUNT repetitions of type TYPE. */
c906108c 973
f23631e4 974struct value *
fba45db2 975allocate_repeat_value (struct type *type, int count)
c906108c 976{
c5aa993b 977 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
e3506a9f
UW
980 struct type *array_type
981 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 982
e3506a9f 983 return allocate_value (array_type);
c906108c
SS
984}
985
5f5233d4
PA
986struct value *
987allocate_computed_value (struct type *type,
c8f2448a 988 const struct lval_funcs *funcs,
5f5233d4
PA
989 void *closure)
990{
41e8491f 991 struct value *v = allocate_value_lazy (type);
a109c7c1 992
5f5233d4
PA
993 VALUE_LVAL (v) = lval_computed;
994 v->location.computed.funcs = funcs;
995 v->location.computed.closure = closure;
5f5233d4
PA
996
997 return v;
998}
999
a7035dbb
JK
1000/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1001
1002struct value *
1003allocate_optimized_out_value (struct type *type)
1004{
1005 struct value *retval = allocate_value_lazy (type);
1006
9a0dc9e3
PA
1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1008 set_value_lazy (retval, 0);
a7035dbb
JK
1009 return retval;
1010}
1011
df407dfe
AC
1012/* Accessor methods. */
1013
17cf0ecd
AC
1014struct value *
1015value_next (struct value *value)
1016{
1017 return value->next;
1018}
1019
df407dfe 1020struct type *
0e03807e 1021value_type (const struct value *value)
df407dfe
AC
1022{
1023 return value->type;
1024}
04624583
AC
1025void
1026deprecated_set_value_type (struct value *value, struct type *type)
1027{
1028 value->type = type;
1029}
df407dfe
AC
1030
1031int
0e03807e 1032value_offset (const struct value *value)
df407dfe
AC
1033{
1034 return value->offset;
1035}
f5cf64a7
AC
1036void
1037set_value_offset (struct value *value, int offset)
1038{
1039 value->offset = offset;
1040}
df407dfe
AC
1041
1042int
0e03807e 1043value_bitpos (const struct value *value)
df407dfe
AC
1044{
1045 return value->bitpos;
1046}
9bbda503
AC
1047void
1048set_value_bitpos (struct value *value, int bit)
1049{
1050 value->bitpos = bit;
1051}
df407dfe
AC
1052
1053int
0e03807e 1054value_bitsize (const struct value *value)
df407dfe
AC
1055{
1056 return value->bitsize;
1057}
9bbda503
AC
1058void
1059set_value_bitsize (struct value *value, int bit)
1060{
1061 value->bitsize = bit;
1062}
df407dfe 1063
4ea48cc1
DJ
1064struct value *
1065value_parent (struct value *value)
1066{
1067 return value->parent;
1068}
1069
53ba8333
JB
1070/* See value.h. */
1071
1072void
1073set_value_parent (struct value *value, struct value *parent)
1074{
40501e00
TT
1075 struct value *old = value->parent;
1076
53ba8333 1077 value->parent = parent;
40501e00
TT
1078 if (parent != NULL)
1079 value_incref (parent);
1080 value_free (old);
53ba8333
JB
1081}
1082
fc1a4b47 1083gdb_byte *
990a07ab
AC
1084value_contents_raw (struct value *value)
1085{
3e3d7139
JG
1086 allocate_value_contents (value);
1087 return value->contents + value->embedded_offset;
990a07ab
AC
1088}
1089
fc1a4b47 1090gdb_byte *
990a07ab
AC
1091value_contents_all_raw (struct value *value)
1092{
3e3d7139
JG
1093 allocate_value_contents (value);
1094 return value->contents;
990a07ab
AC
1095}
1096
4754a64e
AC
1097struct type *
1098value_enclosing_type (struct value *value)
1099{
1100 return value->enclosing_type;
1101}
1102
8264ba82
AG
1103/* Look at value.h for description. */
1104
1105struct type *
1106value_actual_type (struct value *value, int resolve_simple_types,
1107 int *real_type_found)
1108{
1109 struct value_print_options opts;
8264ba82
AG
1110 struct type *result;
1111
1112 get_user_print_options (&opts);
1113
1114 if (real_type_found)
1115 *real_type_found = 0;
1116 result = value_type (value);
1117 if (opts.objectprint)
1118 {
5e34c6c3
LM
1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1120 fetch its rtti type. */
1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1122 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1124 == TYPE_CODE_STRUCT)
8264ba82
AG
1125 {
1126 struct type *real_type;
1127
1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1129 if (real_type)
1130 {
1131 if (real_type_found)
1132 *real_type_found = 1;
1133 result = real_type;
1134 }
1135 }
1136 else if (resolve_simple_types)
1137 {
1138 if (real_type_found)
1139 *real_type_found = 1;
1140 result = value_enclosing_type (value);
1141 }
1142 }
1143
1144 return result;
1145}
1146
901461f8
PA
1147void
1148error_value_optimized_out (void)
1149{
1150 error (_("value has been optimized out"));
1151}
1152
0e03807e 1153static void
4e07d55f 1154require_not_optimized_out (const struct value *value)
0e03807e 1155{
9a0dc9e3 1156 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1157 {
1158 if (value->lval == lval_register)
1159 error (_("register has not been saved in frame"));
1160 else
1161 error_value_optimized_out ();
1162 }
0e03807e
TT
1163}
1164
4e07d55f
PA
1165static void
1166require_available (const struct value *value)
1167{
1168 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1170}
1171
fc1a4b47 1172const gdb_byte *
0e03807e 1173value_contents_for_printing (struct value *value)
46615f07
AC
1174{
1175 if (value->lazy)
1176 value_fetch_lazy (value);
3e3d7139 1177 return value->contents;
46615f07
AC
1178}
1179
de4127a3
PA
1180const gdb_byte *
1181value_contents_for_printing_const (const struct value *value)
1182{
1183 gdb_assert (!value->lazy);
1184 return value->contents;
1185}
1186
0e03807e
TT
1187const gdb_byte *
1188value_contents_all (struct value *value)
1189{
1190 const gdb_byte *result = value_contents_for_printing (value);
1191 require_not_optimized_out (value);
4e07d55f 1192 require_available (value);
0e03807e
TT
1193 return result;
1194}
1195
9a0dc9e3
PA
1196/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1198
1199static void
1200ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1201 VEC (range_s) *src_range, int src_bit_offset,
1202 int bit_length)
1203{
1204 range_s *r;
1205 int i;
1206
1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1208 {
1209 ULONGEST h, l;
1210
1211 l = max (r->offset, src_bit_offset);
1212 h = min (r->offset + r->length, src_bit_offset + bit_length);
1213
1214 if (l < h)
1215 insert_into_bit_range_vector (dst_range,
1216 dst_bit_offset + (l - src_bit_offset),
1217 h - l);
1218 }
1219}
1220
4875ffdb
PA
1221/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1223
1224static void
1225value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1226 const struct value *src, int src_bit_offset,
1227 int bit_length)
1228{
1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1230 src->unavailable, src_bit_offset,
1231 bit_length);
1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1233 src->optimized_out, src_bit_offset,
1234 bit_length);
1235}
1236
29976f3f
PA
1237/* Copy LENGTH bytes of SRC value's (all) contents
1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1239 contents, starting at DST_OFFSET. If unavailable contents are
1240 being copied from SRC, the corresponding DST contents are marked
1241 unavailable accordingly. Neither DST nor SRC may be lazy
1242 values.
1243
1244 It is assumed the contents of DST in the [DST_OFFSET,
1245 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1246
1247void
1248value_contents_copy_raw (struct value *dst, int dst_offset,
1249 struct value *src, int src_offset, int length)
1250{
1251 range_s *r;
1252 int i;
bdf22206 1253 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1254
1255 /* A lazy DST would make that this copy operation useless, since as
1256 soon as DST's contents were un-lazied (by a later value_contents
1257 call, say), the contents would be overwritten. A lazy SRC would
1258 mean we'd be copying garbage. */
1259 gdb_assert (!dst->lazy && !src->lazy);
1260
29976f3f
PA
1261 /* The overwritten DST range gets unavailability ORed in, not
1262 replaced. Make sure to remember to implement replacing if it
1263 turns out actually necessary. */
1264 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1265 gdb_assert (!value_bits_any_optimized_out (dst,
1266 TARGET_CHAR_BIT * dst_offset,
1267 TARGET_CHAR_BIT * length));
29976f3f 1268
39d37385
PA
1269 /* Copy the data. */
1270 memcpy (value_contents_all_raw (dst) + dst_offset,
1271 value_contents_all_raw (src) + src_offset,
1272 length);
1273
1274 /* Copy the meta-data, adjusted. */
bdf22206
AB
1275 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1277 bit_length = length * TARGET_CHAR_BIT;
39d37385 1278
4875ffdb
PA
1279 value_ranges_copy_adjusted (dst, dst_bit_offset,
1280 src, src_bit_offset,
1281 bit_length);
39d37385
PA
1282}
1283
29976f3f
PA
1284/* Copy LENGTH bytes of SRC value's (all) contents
1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1286 (all) contents, starting at DST_OFFSET. If unavailable contents
1287 are being copied from SRC, the corresponding DST contents are
1288 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1289 lazy, it will be fetched now.
29976f3f
PA
1290
1291 It is assumed the contents of DST in the [DST_OFFSET,
1292 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1293
1294void
1295value_contents_copy (struct value *dst, int dst_offset,
1296 struct value *src, int src_offset, int length)
1297{
39d37385
PA
1298 if (src->lazy)
1299 value_fetch_lazy (src);
1300
1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1302}
1303
d69fe07e
AC
1304int
1305value_lazy (struct value *value)
1306{
1307 return value->lazy;
1308}
1309
dfa52d88
AC
1310void
1311set_value_lazy (struct value *value, int val)
1312{
1313 value->lazy = val;
1314}
1315
4e5d721f
DE
1316int
1317value_stack (struct value *value)
1318{
1319 return value->stack;
1320}
1321
1322void
1323set_value_stack (struct value *value, int val)
1324{
1325 value->stack = val;
1326}
1327
fc1a4b47 1328const gdb_byte *
0fd88904
AC
1329value_contents (struct value *value)
1330{
0e03807e
TT
1331 const gdb_byte *result = value_contents_writeable (value);
1332 require_not_optimized_out (value);
4e07d55f 1333 require_available (value);
0e03807e 1334 return result;
0fd88904
AC
1335}
1336
fc1a4b47 1337gdb_byte *
0fd88904
AC
1338value_contents_writeable (struct value *value)
1339{
1340 if (value->lazy)
1341 value_fetch_lazy (value);
fc0c53a0 1342 return value_contents_raw (value);
0fd88904
AC
1343}
1344
feb13ab0
AC
1345int
1346value_optimized_out (struct value *value)
1347{
691a26f5
AB
1348 /* We can only know if a value is optimized out once we have tried to
1349 fetch it. */
9a0dc9e3 1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1351 value_fetch_lazy (value);
1352
9a0dc9e3 1353 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1354}
1355
9a0dc9e3
PA
1356/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1357 the following LENGTH bytes. */
eca07816 1358
feb13ab0 1359void
9a0dc9e3 1360mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1361{
9a0dc9e3
PA
1362 mark_value_bits_optimized_out (value,
1363 offset * TARGET_CHAR_BIT,
1364 length * TARGET_CHAR_BIT);
feb13ab0 1365}
13c3b5f5 1366
9a0dc9e3 1367/* See value.h. */
0e03807e 1368
9a0dc9e3
PA
1369void
1370mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1371{
9a0dc9e3 1372 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1373}
1374
8cf6f0b1
TT
1375int
1376value_bits_synthetic_pointer (const struct value *value,
1377 int offset, int length)
1378{
e7303042 1379 if (value->lval != lval_computed
8cf6f0b1
TT
1380 || !value->location.computed.funcs->check_synthetic_pointer)
1381 return 0;
1382 return value->location.computed.funcs->check_synthetic_pointer (value,
1383 offset,
1384 length);
1385}
1386
13c3b5f5
AC
1387int
1388value_embedded_offset (struct value *value)
1389{
1390 return value->embedded_offset;
1391}
1392
1393void
1394set_value_embedded_offset (struct value *value, int val)
1395{
1396 value->embedded_offset = val;
1397}
b44d461b
AC
1398
1399int
1400value_pointed_to_offset (struct value *value)
1401{
1402 return value->pointed_to_offset;
1403}
1404
1405void
1406set_value_pointed_to_offset (struct value *value, int val)
1407{
1408 value->pointed_to_offset = val;
1409}
13bb5560 1410
c8f2448a 1411const struct lval_funcs *
a471c594 1412value_computed_funcs (const struct value *v)
5f5233d4 1413{
a471c594 1414 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1415
1416 return v->location.computed.funcs;
1417}
1418
1419void *
0e03807e 1420value_computed_closure (const struct value *v)
5f5233d4 1421{
0e03807e 1422 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1423
1424 return v->location.computed.closure;
1425}
1426
13bb5560
AC
1427enum lval_type *
1428deprecated_value_lval_hack (struct value *value)
1429{
1430 return &value->lval;
1431}
1432
a471c594
JK
1433enum lval_type
1434value_lval_const (const struct value *value)
1435{
1436 return value->lval;
1437}
1438
42ae5230 1439CORE_ADDR
de4127a3 1440value_address (const struct value *value)
42ae5230
TT
1441{
1442 if (value->lval == lval_internalvar
e81e7f5e
SC
1443 || value->lval == lval_internalvar_component
1444 || value->lval == lval_xcallable)
42ae5230 1445 return 0;
53ba8333
JB
1446 if (value->parent != NULL)
1447 return value_address (value->parent) + value->offset;
1448 else
1449 return value->location.address + value->offset;
42ae5230
TT
1450}
1451
1452CORE_ADDR
1453value_raw_address (struct value *value)
1454{
1455 if (value->lval == lval_internalvar
e81e7f5e
SC
1456 || value->lval == lval_internalvar_component
1457 || value->lval == lval_xcallable)
42ae5230
TT
1458 return 0;
1459 return value->location.address;
1460}
1461
1462void
1463set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1464{
42ae5230 1465 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1466 && value->lval != lval_internalvar_component
1467 && value->lval != lval_xcallable);
42ae5230 1468 value->location.address = addr;
13bb5560
AC
1469}
1470
1471struct internalvar **
1472deprecated_value_internalvar_hack (struct value *value)
1473{
1474 return &value->location.internalvar;
1475}
1476
1477struct frame_id *
1478deprecated_value_frame_id_hack (struct value *value)
1479{
1480 return &value->frame_id;
1481}
1482
1483short *
1484deprecated_value_regnum_hack (struct value *value)
1485{
1486 return &value->regnum;
1487}
88e3b34b
AC
1488
1489int
1490deprecated_value_modifiable (struct value *value)
1491{
1492 return value->modifiable;
1493}
990a07ab 1494\f
c906108c
SS
1495/* Return a mark in the value chain. All values allocated after the
1496 mark is obtained (except for those released) are subject to being freed
1497 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1498struct value *
fba45db2 1499value_mark (void)
c906108c
SS
1500{
1501 return all_values;
1502}
1503
828d3400
DJ
1504/* Take a reference to VAL. VAL will not be deallocated until all
1505 references are released. */
1506
1507void
1508value_incref (struct value *val)
1509{
1510 val->reference_count++;
1511}
1512
1513/* Release a reference to VAL, which was acquired with value_incref.
1514 This function is also called to deallocate values from the value
1515 chain. */
1516
3e3d7139
JG
1517void
1518value_free (struct value *val)
1519{
1520 if (val)
5f5233d4 1521 {
828d3400
DJ
1522 gdb_assert (val->reference_count > 0);
1523 val->reference_count--;
1524 if (val->reference_count > 0)
1525 return;
1526
4ea48cc1
DJ
1527 /* If there's an associated parent value, drop our reference to
1528 it. */
1529 if (val->parent != NULL)
1530 value_free (val->parent);
1531
5f5233d4
PA
1532 if (VALUE_LVAL (val) == lval_computed)
1533 {
c8f2448a 1534 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1535
1536 if (funcs->free_closure)
1537 funcs->free_closure (val);
1538 }
e81e7f5e
SC
1539 else if (VALUE_LVAL (val) == lval_xcallable)
1540 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1541
1542 xfree (val->contents);
4e07d55f 1543 VEC_free (range_s, val->unavailable);
5f5233d4 1544 }
3e3d7139
JG
1545 xfree (val);
1546}
1547
c906108c
SS
1548/* Free all values allocated since MARK was obtained by value_mark
1549 (except for those released). */
1550void
f23631e4 1551value_free_to_mark (struct value *mark)
c906108c 1552{
f23631e4
AC
1553 struct value *val;
1554 struct value *next;
c906108c
SS
1555
1556 for (val = all_values; val && val != mark; val = next)
1557 {
df407dfe 1558 next = val->next;
e848a8a5 1559 val->released = 1;
c906108c
SS
1560 value_free (val);
1561 }
1562 all_values = val;
1563}
1564
1565/* Free all the values that have been allocated (except for those released).
725e88af
DE
1566 Call after each command, successful or not.
1567 In practice this is called before each command, which is sufficient. */
c906108c
SS
1568
1569void
fba45db2 1570free_all_values (void)
c906108c 1571{
f23631e4
AC
1572 struct value *val;
1573 struct value *next;
c906108c
SS
1574
1575 for (val = all_values; val; val = next)
1576 {
df407dfe 1577 next = val->next;
e848a8a5 1578 val->released = 1;
c906108c
SS
1579 value_free (val);
1580 }
1581
1582 all_values = 0;
1583}
1584
0cf6dd15
TJB
1585/* Frees all the elements in a chain of values. */
1586
1587void
1588free_value_chain (struct value *v)
1589{
1590 struct value *next;
1591
1592 for (; v; v = next)
1593 {
1594 next = value_next (v);
1595 value_free (v);
1596 }
1597}
1598
c906108c
SS
1599/* Remove VAL from the chain all_values
1600 so it will not be freed automatically. */
1601
1602void
f23631e4 1603release_value (struct value *val)
c906108c 1604{
f23631e4 1605 struct value *v;
c906108c
SS
1606
1607 if (all_values == val)
1608 {
1609 all_values = val->next;
06a64a0b 1610 val->next = NULL;
e848a8a5 1611 val->released = 1;
c906108c
SS
1612 return;
1613 }
1614
1615 for (v = all_values; v; v = v->next)
1616 {
1617 if (v->next == val)
1618 {
1619 v->next = val->next;
06a64a0b 1620 val->next = NULL;
e848a8a5 1621 val->released = 1;
c906108c
SS
1622 break;
1623 }
1624 }
1625}
1626
e848a8a5
TT
1627/* If the value is not already released, release it.
1628 If the value is already released, increment its reference count.
1629 That is, this function ensures that the value is released from the
1630 value chain and that the caller owns a reference to it. */
1631
1632void
1633release_value_or_incref (struct value *val)
1634{
1635 if (val->released)
1636 value_incref (val);
1637 else
1638 release_value (val);
1639}
1640
c906108c 1641/* Release all values up to mark */
f23631e4
AC
1642struct value *
1643value_release_to_mark (struct value *mark)
c906108c 1644{
f23631e4
AC
1645 struct value *val;
1646 struct value *next;
c906108c 1647
df407dfe 1648 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1649 {
1650 if (next->next == mark)
1651 {
1652 all_values = next->next;
1653 next->next = NULL;
1654 return val;
1655 }
1656 next->released = 1;
1657 }
c906108c
SS
1658 all_values = 0;
1659 return val;
1660}
1661
1662/* Return a copy of the value ARG.
1663 It contains the same contents, for same memory address,
1664 but it's a different block of storage. */
1665
f23631e4
AC
1666struct value *
1667value_copy (struct value *arg)
c906108c 1668{
4754a64e 1669 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1670 struct value *val;
1671
1672 if (value_lazy (arg))
1673 val = allocate_value_lazy (encl_type);
1674 else
1675 val = allocate_value (encl_type);
df407dfe 1676 val->type = arg->type;
c906108c 1677 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1678 val->location = arg->location;
df407dfe
AC
1679 val->offset = arg->offset;
1680 val->bitpos = arg->bitpos;
1681 val->bitsize = arg->bitsize;
1df6926e 1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1684 val->lazy = arg->lazy;
13c3b5f5 1685 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1686 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1687 val->modifiable = arg->modifiable;
d69fe07e 1688 if (!value_lazy (val))
c906108c 1689 {
990a07ab 1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1691 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1692
1693 }
4e07d55f 1694 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1696 set_value_parent (val, arg->parent);
5f5233d4
PA
1697 if (VALUE_LVAL (val) == lval_computed)
1698 {
c8f2448a 1699 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1700
1701 if (funcs->copy_closure)
1702 val->location.computed.closure = funcs->copy_closure (val);
1703 }
c906108c
SS
1704 return val;
1705}
74bcbdf3 1706
c37f7098
KW
1707/* Return a version of ARG that is non-lvalue. */
1708
1709struct value *
1710value_non_lval (struct value *arg)
1711{
1712 if (VALUE_LVAL (arg) != not_lval)
1713 {
1714 struct type *enc_type = value_enclosing_type (arg);
1715 struct value *val = allocate_value (enc_type);
1716
1717 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1718 TYPE_LENGTH (enc_type));
1719 val->type = arg->type;
1720 set_value_embedded_offset (val, value_embedded_offset (arg));
1721 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1722 return val;
1723 }
1724 return arg;
1725}
1726
6c659fc2
SC
1727/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1728
1729void
1730value_force_lval (struct value *v, CORE_ADDR addr)
1731{
1732 gdb_assert (VALUE_LVAL (v) == not_lval);
1733
1734 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1735 v->lval = lval_memory;
1736 v->location.address = addr;
1737}
1738
74bcbdf3 1739void
0e03807e
TT
1740set_value_component_location (struct value *component,
1741 const struct value *whole)
74bcbdf3 1742{
e81e7f5e
SC
1743 gdb_assert (whole->lval != lval_xcallable);
1744
0e03807e 1745 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1746 VALUE_LVAL (component) = lval_internalvar_component;
1747 else
0e03807e 1748 VALUE_LVAL (component) = whole->lval;
5f5233d4 1749
74bcbdf3 1750 component->location = whole->location;
0e03807e 1751 if (whole->lval == lval_computed)
5f5233d4 1752 {
c8f2448a 1753 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1754
1755 if (funcs->copy_closure)
1756 component->location.computed.closure = funcs->copy_closure (whole);
1757 }
74bcbdf3
PA
1758}
1759
c906108c
SS
1760\f
1761/* Access to the value history. */
1762
1763/* Record a new value in the value history.
eddf0bae 1764 Returns the absolute history index of the entry. */
c906108c
SS
1765
1766int
f23631e4 1767record_latest_value (struct value *val)
c906108c
SS
1768{
1769 int i;
1770
1771 /* We don't want this value to have anything to do with the inferior anymore.
1772 In particular, "set $1 = 50" should not affect the variable from which
1773 the value was taken, and fast watchpoints should be able to assume that
1774 a value on the value history never changes. */
d69fe07e 1775 if (value_lazy (val))
c906108c
SS
1776 value_fetch_lazy (val);
1777 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1778 from. This is a bit dubious, because then *&$1 does not just return $1
1779 but the current contents of that location. c'est la vie... */
1780 val->modifiable = 0;
350e1a76
DE
1781
1782 /* The value may have already been released, in which case we're adding a
1783 new reference for its entry in the history. That is why we call
1784 release_value_or_incref here instead of release_value. */
1785 release_value_or_incref (val);
c906108c
SS
1786
1787 /* Here we treat value_history_count as origin-zero
1788 and applying to the value being stored now. */
1789
1790 i = value_history_count % VALUE_HISTORY_CHUNK;
1791 if (i == 0)
1792 {
fe978cb0 1793 struct value_history_chunk *newobj
a109c7c1
MS
1794 = (struct value_history_chunk *)
1795
c5aa993b 1796 xmalloc (sizeof (struct value_history_chunk));
fe978cb0
PA
1797 memset (newobj->values, 0, sizeof newobj->values);
1798 newobj->next = value_history_chain;
1799 value_history_chain = newobj;
c906108c
SS
1800 }
1801
1802 value_history_chain->values[i] = val;
1803
1804 /* Now we regard value_history_count as origin-one
1805 and applying to the value just stored. */
1806
1807 return ++value_history_count;
1808}
1809
1810/* Return a copy of the value in the history with sequence number NUM. */
1811
f23631e4 1812struct value *
fba45db2 1813access_value_history (int num)
c906108c 1814{
f23631e4 1815 struct value_history_chunk *chunk;
52f0bd74
AC
1816 int i;
1817 int absnum = num;
c906108c
SS
1818
1819 if (absnum <= 0)
1820 absnum += value_history_count;
1821
1822 if (absnum <= 0)
1823 {
1824 if (num == 0)
8a3fe4f8 1825 error (_("The history is empty."));
c906108c 1826 else if (num == 1)
8a3fe4f8 1827 error (_("There is only one value in the history."));
c906108c 1828 else
8a3fe4f8 1829 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1830 }
1831 if (absnum > value_history_count)
8a3fe4f8 1832 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1833
1834 absnum--;
1835
1836 /* Now absnum is always absolute and origin zero. */
1837
1838 chunk = value_history_chain;
3e43a32a
MS
1839 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1840 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1841 i > 0; i--)
1842 chunk = chunk->next;
1843
1844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1845}
1846
c906108c 1847static void
fba45db2 1848show_values (char *num_exp, int from_tty)
c906108c 1849{
52f0bd74 1850 int i;
f23631e4 1851 struct value *val;
c906108c
SS
1852 static int num = 1;
1853
1854 if (num_exp)
1855 {
f132ba9d
TJB
1856 /* "show values +" should print from the stored position.
1857 "show values <exp>" should print around value number <exp>. */
c906108c 1858 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1859 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1860 }
1861 else
1862 {
f132ba9d 1863 /* "show values" means print the last 10 values. */
c906108c
SS
1864 num = value_history_count - 9;
1865 }
1866
1867 if (num <= 0)
1868 num = 1;
1869
1870 for (i = num; i < num + 10 && i <= value_history_count; i++)
1871 {
79a45b7d 1872 struct value_print_options opts;
a109c7c1 1873
c906108c 1874 val = access_value_history (i);
a3f17187 1875 printf_filtered (("$%d = "), i);
79a45b7d
TT
1876 get_user_print_options (&opts);
1877 value_print (val, gdb_stdout, &opts);
a3f17187 1878 printf_filtered (("\n"));
c906108c
SS
1879 }
1880
f132ba9d 1881 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1882 num += 10;
1883
1884 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1885 "show values +". If num_exp is null, this is unnecessary, since
1886 "show values +" is not useful after "show values". */
c906108c
SS
1887 if (from_tty && num_exp)
1888 {
1889 num_exp[0] = '+';
1890 num_exp[1] = '\0';
1891 }
1892}
1893\f
1894/* Internal variables. These are variables within the debugger
1895 that hold values assigned by debugger commands.
1896 The user refers to them with a '$' prefix
1897 that does not appear in the variable names stored internally. */
1898
4fa62494
UW
1899struct internalvar
1900{
1901 struct internalvar *next;
1902 char *name;
4fa62494 1903
78267919
UW
1904 /* We support various different kinds of content of an internal variable.
1905 enum internalvar_kind specifies the kind, and union internalvar_data
1906 provides the data associated with this particular kind. */
1907
1908 enum internalvar_kind
1909 {
1910 /* The internal variable is empty. */
1911 INTERNALVAR_VOID,
1912
1913 /* The value of the internal variable is provided directly as
1914 a GDB value object. */
1915 INTERNALVAR_VALUE,
1916
1917 /* A fresh value is computed via a call-back routine on every
1918 access to the internal variable. */
1919 INTERNALVAR_MAKE_VALUE,
4fa62494 1920
78267919
UW
1921 /* The internal variable holds a GDB internal convenience function. */
1922 INTERNALVAR_FUNCTION,
1923
cab0c772
UW
1924 /* The variable holds an integer value. */
1925 INTERNALVAR_INTEGER,
1926
78267919
UW
1927 /* The variable holds a GDB-provided string. */
1928 INTERNALVAR_STRING,
1929
1930 } kind;
4fa62494 1931
4fa62494
UW
1932 union internalvar_data
1933 {
78267919
UW
1934 /* A value object used with INTERNALVAR_VALUE. */
1935 struct value *value;
1936
1937 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1938 struct
1939 {
1940 /* The functions to call. */
1941 const struct internalvar_funcs *functions;
1942
1943 /* The function's user-data. */
1944 void *data;
1945 } make_value;
78267919
UW
1946
1947 /* The internal function used with INTERNALVAR_FUNCTION. */
1948 struct
1949 {
1950 struct internal_function *function;
1951 /* True if this is the canonical name for the function. */
1952 int canonical;
1953 } fn;
1954
cab0c772 1955 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1956 struct
1957 {
1958 /* If type is non-NULL, it will be used as the type to generate
1959 a value for this internal variable. If type is NULL, a default
1960 integer type for the architecture is used. */
1961 struct type *type;
cab0c772
UW
1962 LONGEST val;
1963 } integer;
1964
78267919
UW
1965 /* A string value used with INTERNALVAR_STRING. */
1966 char *string;
4fa62494
UW
1967 } u;
1968};
1969
c906108c
SS
1970static struct internalvar *internalvars;
1971
3e43a32a
MS
1972/* If the variable does not already exist create it and give it the
1973 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1974static void
1975init_if_undefined_command (char* args, int from_tty)
1976{
1977 struct internalvar* intvar;
1978
1979 /* Parse the expression - this is taken from set_command(). */
1980 struct expression *expr = parse_expression (args);
1981 register struct cleanup *old_chain =
1982 make_cleanup (free_current_contents, &expr);
1983
1984 /* Validate the expression.
1985 Was the expression an assignment?
1986 Or even an expression at all? */
1987 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1988 error (_("Init-if-undefined requires an assignment expression."));
1989
1990 /* Extract the variable from the parsed expression.
1991 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1992 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1993 error (_("The first parameter to init-if-undefined "
1994 "should be a GDB variable."));
53e5f3cf
AS
1995 intvar = expr->elts[2].internalvar;
1996
1997 /* Only evaluate the expression if the lvalue is void.
1998 This may still fail if the expresssion is invalid. */
78267919 1999 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2000 evaluate_expression (expr);
2001
2002 do_cleanups (old_chain);
2003}
2004
2005
c906108c
SS
2006/* Look up an internal variable with name NAME. NAME should not
2007 normally include a dollar sign.
2008
2009 If the specified internal variable does not exist,
c4a3d09a 2010 the return value is NULL. */
c906108c
SS
2011
2012struct internalvar *
bc3b79fd 2013lookup_only_internalvar (const char *name)
c906108c 2014{
52f0bd74 2015 struct internalvar *var;
c906108c
SS
2016
2017 for (var = internalvars; var; var = var->next)
5cb316ef 2018 if (strcmp (var->name, name) == 0)
c906108c
SS
2019 return var;
2020
c4a3d09a
MF
2021 return NULL;
2022}
2023
d55637df
TT
2024/* Complete NAME by comparing it to the names of internal variables.
2025 Returns a vector of newly allocated strings, or NULL if no matches
2026 were found. */
2027
2028VEC (char_ptr) *
2029complete_internalvar (const char *name)
2030{
2031 VEC (char_ptr) *result = NULL;
2032 struct internalvar *var;
2033 int len;
2034
2035 len = strlen (name);
2036
2037 for (var = internalvars; var; var = var->next)
2038 if (strncmp (var->name, name, len) == 0)
2039 {
2040 char *r = xstrdup (var->name);
2041
2042 VEC_safe_push (char_ptr, result, r);
2043 }
2044
2045 return result;
2046}
c4a3d09a
MF
2047
2048/* Create an internal variable with name NAME and with a void value.
2049 NAME should not normally include a dollar sign. */
2050
2051struct internalvar *
bc3b79fd 2052create_internalvar (const char *name)
c4a3d09a
MF
2053{
2054 struct internalvar *var;
a109c7c1 2055
c906108c 2056 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 2057 var->name = concat (name, (char *)NULL);
78267919 2058 var->kind = INTERNALVAR_VOID;
c906108c
SS
2059 var->next = internalvars;
2060 internalvars = var;
2061 return var;
2062}
2063
4aa995e1
PA
2064/* Create an internal variable with name NAME and register FUN as the
2065 function that value_of_internalvar uses to create a value whenever
2066 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2067 dollar sign. DATA is passed uninterpreted to FUN when it is
2068 called. CLEANUP, if not NULL, is called when the internal variable
2069 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2070
2071struct internalvar *
22d2b532
SDJ
2072create_internalvar_type_lazy (const char *name,
2073 const struct internalvar_funcs *funcs,
2074 void *data)
4aa995e1 2075{
4fa62494 2076 struct internalvar *var = create_internalvar (name);
a109c7c1 2077
78267919 2078 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2079 var->u.make_value.functions = funcs;
2080 var->u.make_value.data = data;
4aa995e1
PA
2081 return var;
2082}
c4a3d09a 2083
22d2b532
SDJ
2084/* See documentation in value.h. */
2085
2086int
2087compile_internalvar_to_ax (struct internalvar *var,
2088 struct agent_expr *expr,
2089 struct axs_value *value)
2090{
2091 if (var->kind != INTERNALVAR_MAKE_VALUE
2092 || var->u.make_value.functions->compile_to_ax == NULL)
2093 return 0;
2094
2095 var->u.make_value.functions->compile_to_ax (var, expr, value,
2096 var->u.make_value.data);
2097 return 1;
2098}
2099
c4a3d09a
MF
2100/* Look up an internal variable with name NAME. NAME should not
2101 normally include a dollar sign.
2102
2103 If the specified internal variable does not exist,
2104 one is created, with a void value. */
2105
2106struct internalvar *
bc3b79fd 2107lookup_internalvar (const char *name)
c4a3d09a
MF
2108{
2109 struct internalvar *var;
2110
2111 var = lookup_only_internalvar (name);
2112 if (var)
2113 return var;
2114
2115 return create_internalvar (name);
2116}
2117
78267919
UW
2118/* Return current value of internal variable VAR. For variables that
2119 are not inherently typed, use a value type appropriate for GDBARCH. */
2120
f23631e4 2121struct value *
78267919 2122value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2123{
f23631e4 2124 struct value *val;
0914bcdb
SS
2125 struct trace_state_variable *tsv;
2126
2127 /* If there is a trace state variable of the same name, assume that
2128 is what we really want to see. */
2129 tsv = find_trace_state_variable (var->name);
2130 if (tsv)
2131 {
2132 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2133 &(tsv->value));
2134 if (tsv->value_known)
2135 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2136 tsv->value);
2137 else
2138 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2139 return val;
2140 }
c906108c 2141
78267919 2142 switch (var->kind)
5f5233d4 2143 {
78267919
UW
2144 case INTERNALVAR_VOID:
2145 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2146 break;
4fa62494 2147
78267919
UW
2148 case INTERNALVAR_FUNCTION:
2149 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2150 break;
4fa62494 2151
cab0c772
UW
2152 case INTERNALVAR_INTEGER:
2153 if (!var->u.integer.type)
78267919 2154 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2155 var->u.integer.val);
78267919 2156 else
cab0c772
UW
2157 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2158 break;
2159
78267919
UW
2160 case INTERNALVAR_STRING:
2161 val = value_cstring (var->u.string, strlen (var->u.string),
2162 builtin_type (gdbarch)->builtin_char);
2163 break;
4fa62494 2164
78267919
UW
2165 case INTERNALVAR_VALUE:
2166 val = value_copy (var->u.value);
4aa995e1
PA
2167 if (value_lazy (val))
2168 value_fetch_lazy (val);
78267919 2169 break;
4aa995e1 2170
78267919 2171 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2172 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2173 var->u.make_value.data);
78267919
UW
2174 break;
2175
2176 default:
9b20d036 2177 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2178 }
2179
2180 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2181 on this value go back to affect the original internal variable.
2182
2183 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2184 no underlying modifyable state in the internal variable.
2185
2186 Likewise, if the variable's value is a computed lvalue, we want
2187 references to it to produce another computed lvalue, where
2188 references and assignments actually operate through the
2189 computed value's functions.
2190
2191 This means that internal variables with computed values
2192 behave a little differently from other internal variables:
2193 assignments to them don't just replace the previous value
2194 altogether. At the moment, this seems like the behavior we
2195 want. */
2196
2197 if (var->kind != INTERNALVAR_MAKE_VALUE
2198 && val->lval != lval_computed)
2199 {
2200 VALUE_LVAL (val) = lval_internalvar;
2201 VALUE_INTERNALVAR (val) = var;
5f5233d4 2202 }
d3c139e9 2203
4fa62494
UW
2204 return val;
2205}
d3c139e9 2206
4fa62494
UW
2207int
2208get_internalvar_integer (struct internalvar *var, LONGEST *result)
2209{
3158c6ed 2210 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2211 {
cab0c772
UW
2212 *result = var->u.integer.val;
2213 return 1;
3158c6ed 2214 }
d3c139e9 2215
3158c6ed
PA
2216 if (var->kind == INTERNALVAR_VALUE)
2217 {
2218 struct type *type = check_typedef (value_type (var->u.value));
2219
2220 if (TYPE_CODE (type) == TYPE_CODE_INT)
2221 {
2222 *result = value_as_long (var->u.value);
2223 return 1;
2224 }
4fa62494 2225 }
3158c6ed
PA
2226
2227 return 0;
4fa62494 2228}
d3c139e9 2229
4fa62494
UW
2230static int
2231get_internalvar_function (struct internalvar *var,
2232 struct internal_function **result)
2233{
78267919 2234 switch (var->kind)
d3c139e9 2235 {
78267919
UW
2236 case INTERNALVAR_FUNCTION:
2237 *result = var->u.fn.function;
4fa62494 2238 return 1;
d3c139e9 2239
4fa62494
UW
2240 default:
2241 return 0;
2242 }
c906108c
SS
2243}
2244
2245void
fba45db2 2246set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2247 int bitsize, struct value *newval)
c906108c 2248{
4fa62494 2249 gdb_byte *addr;
c906108c 2250
78267919 2251 switch (var->kind)
4fa62494 2252 {
78267919
UW
2253 case INTERNALVAR_VALUE:
2254 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2255
2256 if (bitsize)
50810684 2257 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2258 value_as_long (newval), bitpos, bitsize);
2259 else
2260 memcpy (addr + offset, value_contents (newval),
2261 TYPE_LENGTH (value_type (newval)));
2262 break;
78267919
UW
2263
2264 default:
2265 /* We can never get a component of any other kind. */
9b20d036 2266 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2267 }
c906108c
SS
2268}
2269
2270void
f23631e4 2271set_internalvar (struct internalvar *var, struct value *val)
c906108c 2272{
78267919 2273 enum internalvar_kind new_kind;
4fa62494 2274 union internalvar_data new_data = { 0 };
c906108c 2275
78267919 2276 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2277 error (_("Cannot overwrite convenience function %s"), var->name);
2278
4fa62494 2279 /* Prepare new contents. */
78267919 2280 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2281 {
2282 case TYPE_CODE_VOID:
78267919 2283 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2284 break;
2285
2286 case TYPE_CODE_INTERNAL_FUNCTION:
2287 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2288 new_kind = INTERNALVAR_FUNCTION;
2289 get_internalvar_function (VALUE_INTERNALVAR (val),
2290 &new_data.fn.function);
2291 /* Copies created here are never canonical. */
4fa62494
UW
2292 break;
2293
4fa62494 2294 default:
78267919
UW
2295 new_kind = INTERNALVAR_VALUE;
2296 new_data.value = value_copy (val);
2297 new_data.value->modifiable = 1;
4fa62494
UW
2298
2299 /* Force the value to be fetched from the target now, to avoid problems
2300 later when this internalvar is referenced and the target is gone or
2301 has changed. */
78267919
UW
2302 if (value_lazy (new_data.value))
2303 value_fetch_lazy (new_data.value);
4fa62494
UW
2304
2305 /* Release the value from the value chain to prevent it from being
2306 deleted by free_all_values. From here on this function should not
2307 call error () until new_data is installed into the var->u to avoid
2308 leaking memory. */
78267919 2309 release_value (new_data.value);
4fa62494
UW
2310 break;
2311 }
2312
2313 /* Clean up old contents. */
2314 clear_internalvar (var);
2315
2316 /* Switch over. */
78267919 2317 var->kind = new_kind;
4fa62494 2318 var->u = new_data;
c906108c
SS
2319 /* End code which must not call error(). */
2320}
2321
4fa62494
UW
2322void
2323set_internalvar_integer (struct internalvar *var, LONGEST l)
2324{
2325 /* Clean up old contents. */
2326 clear_internalvar (var);
2327
cab0c772
UW
2328 var->kind = INTERNALVAR_INTEGER;
2329 var->u.integer.type = NULL;
2330 var->u.integer.val = l;
78267919
UW
2331}
2332
2333void
2334set_internalvar_string (struct internalvar *var, const char *string)
2335{
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2338
2339 var->kind = INTERNALVAR_STRING;
2340 var->u.string = xstrdup (string);
4fa62494
UW
2341}
2342
2343static void
2344set_internalvar_function (struct internalvar *var, struct internal_function *f)
2345{
2346 /* Clean up old contents. */
2347 clear_internalvar (var);
2348
78267919
UW
2349 var->kind = INTERNALVAR_FUNCTION;
2350 var->u.fn.function = f;
2351 var->u.fn.canonical = 1;
2352 /* Variables installed here are always the canonical version. */
4fa62494
UW
2353}
2354
2355void
2356clear_internalvar (struct internalvar *var)
2357{
2358 /* Clean up old contents. */
78267919 2359 switch (var->kind)
4fa62494 2360 {
78267919
UW
2361 case INTERNALVAR_VALUE:
2362 value_free (var->u.value);
2363 break;
2364
2365 case INTERNALVAR_STRING:
2366 xfree (var->u.string);
4fa62494
UW
2367 break;
2368
22d2b532
SDJ
2369 case INTERNALVAR_MAKE_VALUE:
2370 if (var->u.make_value.functions->destroy != NULL)
2371 var->u.make_value.functions->destroy (var->u.make_value.data);
2372 break;
2373
4fa62494 2374 default:
4fa62494
UW
2375 break;
2376 }
2377
78267919
UW
2378 /* Reset to void kind. */
2379 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2380}
2381
c906108c 2382char *
fba45db2 2383internalvar_name (struct internalvar *var)
c906108c
SS
2384{
2385 return var->name;
2386}
2387
4fa62494
UW
2388static struct internal_function *
2389create_internal_function (const char *name,
2390 internal_function_fn handler, void *cookie)
bc3b79fd 2391{
bc3b79fd 2392 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2393
bc3b79fd
TJB
2394 ifn->name = xstrdup (name);
2395 ifn->handler = handler;
2396 ifn->cookie = cookie;
4fa62494 2397 return ifn;
bc3b79fd
TJB
2398}
2399
2400char *
2401value_internal_function_name (struct value *val)
2402{
4fa62494
UW
2403 struct internal_function *ifn;
2404 int result;
2405
2406 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2407 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2408 gdb_assert (result);
2409
bc3b79fd
TJB
2410 return ifn->name;
2411}
2412
2413struct value *
d452c4bc
UW
2414call_internal_function (struct gdbarch *gdbarch,
2415 const struct language_defn *language,
2416 struct value *func, int argc, struct value **argv)
bc3b79fd 2417{
4fa62494
UW
2418 struct internal_function *ifn;
2419 int result;
2420
2421 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2422 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2423 gdb_assert (result);
2424
d452c4bc 2425 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2426}
2427
2428/* The 'function' command. This does nothing -- it is just a
2429 placeholder to let "help function NAME" work. This is also used as
2430 the implementation of the sub-command that is created when
2431 registering an internal function. */
2432static void
2433function_command (char *command, int from_tty)
2434{
2435 /* Do nothing. */
2436}
2437
2438/* Clean up if an internal function's command is destroyed. */
2439static void
2440function_destroyer (struct cmd_list_element *self, void *ignore)
2441{
6f937416 2442 xfree ((char *) self->name);
1947513d 2443 xfree ((char *) self->doc);
bc3b79fd
TJB
2444}
2445
2446/* Add a new internal function. NAME is the name of the function; DOC
2447 is a documentation string describing the function. HANDLER is
2448 called when the function is invoked. COOKIE is an arbitrary
2449 pointer which is passed to HANDLER and is intended for "user
2450 data". */
2451void
2452add_internal_function (const char *name, const char *doc,
2453 internal_function_fn handler, void *cookie)
2454{
2455 struct cmd_list_element *cmd;
4fa62494 2456 struct internal_function *ifn;
bc3b79fd 2457 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2458
2459 ifn = create_internal_function (name, handler, cookie);
2460 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2461
2462 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2463 &functionlist);
2464 cmd->destroyer = function_destroyer;
2465}
2466
ae5a43e0
DJ
2467/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2468 prevent cycles / duplicates. */
2469
4e7a5ef5 2470void
ae5a43e0
DJ
2471preserve_one_value (struct value *value, struct objfile *objfile,
2472 htab_t copied_types)
2473{
2474 if (TYPE_OBJFILE (value->type) == objfile)
2475 value->type = copy_type_recursive (objfile, value->type, copied_types);
2476
2477 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2478 value->enclosing_type = copy_type_recursive (objfile,
2479 value->enclosing_type,
2480 copied_types);
2481}
2482
78267919
UW
2483/* Likewise for internal variable VAR. */
2484
2485static void
2486preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2487 htab_t copied_types)
2488{
2489 switch (var->kind)
2490 {
cab0c772
UW
2491 case INTERNALVAR_INTEGER:
2492 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2493 var->u.integer.type
2494 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2495 break;
2496
78267919
UW
2497 case INTERNALVAR_VALUE:
2498 preserve_one_value (var->u.value, objfile, copied_types);
2499 break;
2500 }
2501}
2502
ae5a43e0
DJ
2503/* Update the internal variables and value history when OBJFILE is
2504 discarded; we must copy the types out of the objfile. New global types
2505 will be created for every convenience variable which currently points to
2506 this objfile's types, and the convenience variables will be adjusted to
2507 use the new global types. */
c906108c
SS
2508
2509void
ae5a43e0 2510preserve_values (struct objfile *objfile)
c906108c 2511{
ae5a43e0
DJ
2512 htab_t copied_types;
2513 struct value_history_chunk *cur;
52f0bd74 2514 struct internalvar *var;
ae5a43e0 2515 int i;
c906108c 2516
ae5a43e0
DJ
2517 /* Create the hash table. We allocate on the objfile's obstack, since
2518 it is soon to be deleted. */
2519 copied_types = create_copied_types_hash (objfile);
2520
2521 for (cur = value_history_chain; cur; cur = cur->next)
2522 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2523 if (cur->values[i])
2524 preserve_one_value (cur->values[i], objfile, copied_types);
2525
2526 for (var = internalvars; var; var = var->next)
78267919 2527 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2528
6dddc817 2529 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2530
ae5a43e0 2531 htab_delete (copied_types);
c906108c
SS
2532}
2533
2534static void
fba45db2 2535show_convenience (char *ignore, int from_tty)
c906108c 2536{
e17c207e 2537 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2538 struct internalvar *var;
c906108c 2539 int varseen = 0;
79a45b7d 2540 struct value_print_options opts;
c906108c 2541
79a45b7d 2542 get_user_print_options (&opts);
c906108c
SS
2543 for (var = internalvars; var; var = var->next)
2544 {
c709acd1
PA
2545 volatile struct gdb_exception ex;
2546
c906108c
SS
2547 if (!varseen)
2548 {
2549 varseen = 1;
2550 }
a3f17187 2551 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2552
2553 TRY_CATCH (ex, RETURN_MASK_ERROR)
2554 {
2555 struct value *val;
2556
2557 val = value_of_internalvar (gdbarch, var);
2558 value_print (val, gdb_stdout, &opts);
2559 }
2560 if (ex.reason < 0)
2561 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2562 printf_filtered (("\n"));
c906108c
SS
2563 }
2564 if (!varseen)
f47f77df
DE
2565 {
2566 /* This text does not mention convenience functions on purpose.
2567 The user can't create them except via Python, and if Python support
2568 is installed this message will never be printed ($_streq will
2569 exist). */
2570 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2571 "Convenience variables have "
2572 "names starting with \"$\";\n"
2573 "use \"set\" as in \"set "
2574 "$foo = 5\" to define them.\n"));
2575 }
c906108c
SS
2576}
2577\f
e81e7f5e
SC
2578/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2579
2580struct value *
2581value_of_xmethod (struct xmethod_worker *worker)
2582{
2583 if (worker->value == NULL)
2584 {
2585 struct value *v;
2586
2587 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2588 v->lval = lval_xcallable;
2589 v->location.xm_worker = worker;
2590 v->modifiable = 0;
2591 worker->value = v;
2592 }
2593
2594 return worker->value;
2595}
2596
2597/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2598
2599struct value *
2600call_xmethod (struct value *method, int argc, struct value **argv)
2601{
2602 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2603 && method->lval == lval_xcallable && argc > 0);
2604
2605 return invoke_xmethod (method->location.xm_worker,
2606 argv[0], argv + 1, argc - 1);
2607}
2608\f
c906108c
SS
2609/* Extract a value as a C number (either long or double).
2610 Knows how to convert fixed values to double, or
2611 floating values to long.
2612 Does not deallocate the value. */
2613
2614LONGEST
f23631e4 2615value_as_long (struct value *val)
c906108c
SS
2616{
2617 /* This coerces arrays and functions, which is necessary (e.g.
2618 in disassemble_command). It also dereferences references, which
2619 I suspect is the most logical thing to do. */
994b9211 2620 val = coerce_array (val);
0fd88904 2621 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2622}
2623
2624DOUBLEST
f23631e4 2625value_as_double (struct value *val)
c906108c
SS
2626{
2627 DOUBLEST foo;
2628 int inv;
c5aa993b 2629
0fd88904 2630 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2631 if (inv)
8a3fe4f8 2632 error (_("Invalid floating value found in program."));
c906108c
SS
2633 return foo;
2634}
4ef30785 2635
581e13c1 2636/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2637 Note that val's type may not actually be a pointer; value_as_long
2638 handles all the cases. */
c906108c 2639CORE_ADDR
f23631e4 2640value_as_address (struct value *val)
c906108c 2641{
50810684
UW
2642 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2643
c906108c
SS
2644 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2645 whether we want this to be true eventually. */
2646#if 0
bf6ae464 2647 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2648 non-address (e.g. argument to "signal", "info break", etc.), or
2649 for pointers to char, in which the low bits *are* significant. */
50810684 2650 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2651#else
f312f057
JB
2652
2653 /* There are several targets (IA-64, PowerPC, and others) which
2654 don't represent pointers to functions as simply the address of
2655 the function's entry point. For example, on the IA-64, a
2656 function pointer points to a two-word descriptor, generated by
2657 the linker, which contains the function's entry point, and the
2658 value the IA-64 "global pointer" register should have --- to
2659 support position-independent code. The linker generates
2660 descriptors only for those functions whose addresses are taken.
2661
2662 On such targets, it's difficult for GDB to convert an arbitrary
2663 function address into a function pointer; it has to either find
2664 an existing descriptor for that function, or call malloc and
2665 build its own. On some targets, it is impossible for GDB to
2666 build a descriptor at all: the descriptor must contain a jump
2667 instruction; data memory cannot be executed; and code memory
2668 cannot be modified.
2669
2670 Upon entry to this function, if VAL is a value of type `function'
2671 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2672 value_address (val) is the address of the function. This is what
f312f057
JB
2673 you'll get if you evaluate an expression like `main'. The call
2674 to COERCE_ARRAY below actually does all the usual unary
2675 conversions, which includes converting values of type `function'
2676 to `pointer to function'. This is the challenging conversion
2677 discussed above. Then, `unpack_long' will convert that pointer
2678 back into an address.
2679
2680 So, suppose the user types `disassemble foo' on an architecture
2681 with a strange function pointer representation, on which GDB
2682 cannot build its own descriptors, and suppose further that `foo'
2683 has no linker-built descriptor. The address->pointer conversion
2684 will signal an error and prevent the command from running, even
2685 though the next step would have been to convert the pointer
2686 directly back into the same address.
2687
2688 The following shortcut avoids this whole mess. If VAL is a
2689 function, just return its address directly. */
df407dfe
AC
2690 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2691 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2692 return value_address (val);
f312f057 2693
994b9211 2694 val = coerce_array (val);
fc0c74b1
AC
2695
2696 /* Some architectures (e.g. Harvard), map instruction and data
2697 addresses onto a single large unified address space. For
2698 instance: An architecture may consider a large integer in the
2699 range 0x10000000 .. 0x1000ffff to already represent a data
2700 addresses (hence not need a pointer to address conversion) while
2701 a small integer would still need to be converted integer to
2702 pointer to address. Just assume such architectures handle all
2703 integer conversions in a single function. */
2704
2705 /* JimB writes:
2706
2707 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2708 must admonish GDB hackers to make sure its behavior matches the
2709 compiler's, whenever possible.
2710
2711 In general, I think GDB should evaluate expressions the same way
2712 the compiler does. When the user copies an expression out of
2713 their source code and hands it to a `print' command, they should
2714 get the same value the compiler would have computed. Any
2715 deviation from this rule can cause major confusion and annoyance,
2716 and needs to be justified carefully. In other words, GDB doesn't
2717 really have the freedom to do these conversions in clever and
2718 useful ways.
2719
2720 AndrewC pointed out that users aren't complaining about how GDB
2721 casts integers to pointers; they are complaining that they can't
2722 take an address from a disassembly listing and give it to `x/i'.
2723 This is certainly important.
2724
79dd2d24 2725 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2726 makes it possible for GDB to "get it right" in all circumstances
2727 --- the target has complete control over how things get done, so
2728 people can Do The Right Thing for their target without breaking
2729 anyone else. The standard doesn't specify how integers get
2730 converted to pointers; usually, the ABI doesn't either, but
2731 ABI-specific code is a more reasonable place to handle it. */
2732
df407dfe
AC
2733 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2734 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2735 && gdbarch_integer_to_address_p (gdbarch))
2736 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2737 value_contents (val));
fc0c74b1 2738
0fd88904 2739 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2740#endif
2741}
2742\f
2743/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2744 as a long, or as a double, assuming the raw data is described
2745 by type TYPE. Knows how to convert different sizes of values
2746 and can convert between fixed and floating point. We don't assume
2747 any alignment for the raw data. Return value is in host byte order.
2748
2749 If you want functions and arrays to be coerced to pointers, and
2750 references to be dereferenced, call value_as_long() instead.
2751
2752 C++: It is assumed that the front-end has taken care of
2753 all matters concerning pointers to members. A pointer
2754 to member which reaches here is considered to be equivalent
2755 to an INT (or some size). After all, it is only an offset. */
2756
2757LONGEST
fc1a4b47 2758unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2759{
e17a4113 2760 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2761 enum type_code code = TYPE_CODE (type);
2762 int len = TYPE_LENGTH (type);
2763 int nosign = TYPE_UNSIGNED (type);
c906108c 2764
c906108c
SS
2765 switch (code)
2766 {
2767 case TYPE_CODE_TYPEDEF:
2768 return unpack_long (check_typedef (type), valaddr);
2769 case TYPE_CODE_ENUM:
4f2aea11 2770 case TYPE_CODE_FLAGS:
c906108c
SS
2771 case TYPE_CODE_BOOL:
2772 case TYPE_CODE_INT:
2773 case TYPE_CODE_CHAR:
2774 case TYPE_CODE_RANGE:
0d5de010 2775 case TYPE_CODE_MEMBERPTR:
c906108c 2776 if (nosign)
e17a4113 2777 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2778 else
e17a4113 2779 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2780
2781 case TYPE_CODE_FLT:
96d2f608 2782 return extract_typed_floating (valaddr, type);
c906108c 2783
4ef30785
TJB
2784 case TYPE_CODE_DECFLOAT:
2785 /* libdecnumber has a function to convert from decimal to integer, but
2786 it doesn't work when the decimal number has a fractional part. */
e17a4113 2787 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2788
c906108c
SS
2789 case TYPE_CODE_PTR:
2790 case TYPE_CODE_REF:
2791 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2792 whether we want this to be true eventually. */
4478b372 2793 return extract_typed_address (valaddr, type);
c906108c 2794
c906108c 2795 default:
8a3fe4f8 2796 error (_("Value can't be converted to integer."));
c906108c 2797 }
c5aa993b 2798 return 0; /* Placate lint. */
c906108c
SS
2799}
2800
2801/* Return a double value from the specified type and address.
2802 INVP points to an int which is set to 0 for valid value,
2803 1 for invalid value (bad float format). In either case,
2804 the returned double is OK to use. Argument is in target
2805 format, result is in host format. */
2806
2807DOUBLEST
fc1a4b47 2808unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2809{
e17a4113 2810 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2811 enum type_code code;
2812 int len;
2813 int nosign;
2814
581e13c1 2815 *invp = 0; /* Assume valid. */
c906108c
SS
2816 CHECK_TYPEDEF (type);
2817 code = TYPE_CODE (type);
2818 len = TYPE_LENGTH (type);
2819 nosign = TYPE_UNSIGNED (type);
2820 if (code == TYPE_CODE_FLT)
2821 {
75bc7ddf
AC
2822 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2823 floating-point value was valid (using the macro
2824 INVALID_FLOAT). That test/macro have been removed.
2825
2826 It turns out that only the VAX defined this macro and then
2827 only in a non-portable way. Fixing the portability problem
2828 wouldn't help since the VAX floating-point code is also badly
2829 bit-rotten. The target needs to add definitions for the
ea06eb3d 2830 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2831 exactly describe the target floating-point format. The
2832 problem here is that the corresponding floatformat_vax_f and
2833 floatformat_vax_d values these methods should be set to are
2834 also not defined either. Oops!
2835
2836 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2837 definitions and the new cases for floatformat_is_valid (). */
2838
2839 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2840 {
2841 *invp = 1;
2842 return 0.0;
2843 }
2844
96d2f608 2845 return extract_typed_floating (valaddr, type);
c906108c 2846 }
4ef30785 2847 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2848 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2849 else if (nosign)
2850 {
2851 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2852 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2853 }
2854 else
2855 {
2856 /* Signed -- we are OK with unpack_long. */
2857 return unpack_long (type, valaddr);
2858 }
2859}
2860
2861/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2862 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2863 We don't assume any alignment for the raw data. Return value is in
2864 host byte order.
2865
2866 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2867 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2868
2869 C++: It is assumed that the front-end has taken care of
2870 all matters concerning pointers to members. A pointer
2871 to member which reaches here is considered to be equivalent
2872 to an INT (or some size). After all, it is only an offset. */
2873
2874CORE_ADDR
fc1a4b47 2875unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2876{
2877 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2878 whether we want this to be true eventually. */
2879 return unpack_long (type, valaddr);
2880}
4478b372 2881
c906108c 2882\f
1596cb5d 2883/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2884 TYPE. */
c906108c 2885
f23631e4 2886struct value *
fba45db2 2887value_static_field (struct type *type, int fieldno)
c906108c 2888{
948e66d9
DJ
2889 struct value *retval;
2890
1596cb5d 2891 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2892 {
1596cb5d 2893 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2894 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2895 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2896 break;
2897 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2898 {
ff355380 2899 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2900 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2901 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2902
948e66d9 2903 if (sym == NULL)
c906108c 2904 {
a109c7c1 2905 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2906 reported as non-debuggable symbols. */
3b7344d5
TT
2907 struct bound_minimal_symbol msym
2908 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2909
3b7344d5 2910 if (!msym.minsym)
686d4def 2911 return allocate_optimized_out_value (type);
c906108c 2912 else
c5aa993b 2913 {
52e9fde8 2914 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2915 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2916 }
2917 }
2918 else
515ed532 2919 retval = value_of_variable (sym, NULL);
1596cb5d 2920 break;
c906108c 2921 }
1596cb5d 2922 default:
f3574227 2923 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2924 }
2925
948e66d9 2926 return retval;
c906108c
SS
2927}
2928
4dfea560
DE
2929/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2930 You have to be careful here, since the size of the data area for the value
2931 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2932 than the old enclosing type, you have to allocate more space for the
2933 data. */
2b127877 2934
4dfea560
DE
2935void
2936set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2937{
3e3d7139
JG
2938 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2939 val->contents =
2940 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2941
2942 val->enclosing_type = new_encl_type;
2b127877
DB
2943}
2944
c906108c
SS
2945/* Given a value ARG1 (offset by OFFSET bytes)
2946 of a struct or union type ARG_TYPE,
2947 extract and return the value of one of its (non-static) fields.
581e13c1 2948 FIELDNO says which field. */
c906108c 2949
f23631e4
AC
2950struct value *
2951value_primitive_field (struct value *arg1, int offset,
aa1ee363 2952 int fieldno, struct type *arg_type)
c906108c 2953{
f23631e4 2954 struct value *v;
52f0bd74 2955 struct type *type;
c906108c
SS
2956
2957 CHECK_TYPEDEF (arg_type);
2958 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2959
2960 /* Call check_typedef on our type to make sure that, if TYPE
2961 is a TYPE_CODE_TYPEDEF, its length is set to the length
2962 of the target type instead of zero. However, we do not
2963 replace the typedef type by the target type, because we want
2964 to keep the typedef in order to be able to print the type
2965 description correctly. */
2966 check_typedef (type);
c906108c 2967
691a26f5 2968 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2969 {
22c05d8a
JK
2970 /* Handle packed fields.
2971
2972 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2973 set. If possible, arrange offset and bitpos so that we can
2974 do a single aligned read of the size of the containing type.
2975 Otherwise, adjust offset to the byte containing the first
2976 bit. Assume that the address, offset, and embedded offset
2977 are sufficiently aligned. */
22c05d8a 2978
4ea48cc1
DJ
2979 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2980 int container_bitsize = TYPE_LENGTH (type) * 8;
2981
9a0dc9e3
PA
2982 v = allocate_value_lazy (type);
2983 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2984 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2985 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2986 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2987 else
9a0dc9e3
PA
2988 v->bitpos = bitpos % 8;
2989 v->offset = (value_embedded_offset (arg1)
2990 + offset
2991 + (bitpos - v->bitpos) / 8);
2992 set_value_parent (v, arg1);
2993 if (!value_lazy (arg1))
2994 value_fetch_lazy (v);
c906108c
SS
2995 }
2996 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2997 {
2998 /* This field is actually a base subobject, so preserve the
39d37385
PA
2999 entire object's contents for later references to virtual
3000 bases, etc. */
be335936 3001 int boffset;
a4e2ee12
DJ
3002
3003 /* Lazy register values with offsets are not supported. */
3004 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3005 value_fetch_lazy (arg1);
3006
9a0dc9e3
PA
3007 /* We special case virtual inheritance here because this
3008 requires access to the contents, which we would rather avoid
3009 for references to ordinary fields of unavailable values. */
3010 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3011 boffset = baseclass_offset (arg_type, fieldno,
3012 value_contents (arg1),
3013 value_embedded_offset (arg1),
3014 value_address (arg1),
3015 arg1);
c906108c 3016 else
9a0dc9e3 3017 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3018
9a0dc9e3
PA
3019 if (value_lazy (arg1))
3020 v = allocate_value_lazy (value_enclosing_type (arg1));
3021 else
3022 {
3023 v = allocate_value (value_enclosing_type (arg1));
3024 value_contents_copy_raw (v, 0, arg1, 0,
3025 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3026 }
9a0dc9e3
PA
3027 v->type = type;
3028 v->offset = value_offset (arg1);
3029 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3030 }
3031 else
3032 {
3033 /* Plain old data member */
3034 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
3035
3036 /* Lazy register values with offsets are not supported. */
3037 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3038 value_fetch_lazy (arg1);
3039
9a0dc9e3 3040 if (value_lazy (arg1))
3e3d7139 3041 v = allocate_value_lazy (type);
c906108c 3042 else
3e3d7139
JG
3043 {
3044 v = allocate_value (type);
39d37385
PA
3045 value_contents_copy_raw (v, value_embedded_offset (v),
3046 arg1, value_embedded_offset (arg1) + offset,
3047 TYPE_LENGTH (type));
3e3d7139 3048 }
df407dfe 3049 v->offset = (value_offset (arg1) + offset
13c3b5f5 3050 + value_embedded_offset (arg1));
c906108c 3051 }
74bcbdf3 3052 set_value_component_location (v, arg1);
9ee8fc9d 3053 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3054 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3055 return v;
3056}
3057
3058/* Given a value ARG1 of a struct or union type,
3059 extract and return the value of one of its (non-static) fields.
581e13c1 3060 FIELDNO says which field. */
c906108c 3061
f23631e4 3062struct value *
aa1ee363 3063value_field (struct value *arg1, int fieldno)
c906108c 3064{
df407dfe 3065 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3066}
3067
3068/* Return a non-virtual function as a value.
3069 F is the list of member functions which contains the desired method.
0478d61c
FF
3070 J is an index into F which provides the desired method.
3071
3072 We only use the symbol for its address, so be happy with either a
581e13c1 3073 full symbol or a minimal symbol. */
c906108c 3074
f23631e4 3075struct value *
3e43a32a
MS
3076value_fn_field (struct value **arg1p, struct fn_field *f,
3077 int j, struct type *type,
fba45db2 3078 int offset)
c906108c 3079{
f23631e4 3080 struct value *v;
52f0bd74 3081 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3082 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3083 struct symbol *sym;
7c7b6655 3084 struct bound_minimal_symbol msym;
c906108c 3085
2570f2b7 3086 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 3087 if (sym != NULL)
0478d61c 3088 {
7c7b6655 3089 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3090 }
3091 else
3092 {
3093 gdb_assert (sym == NULL);
7c7b6655
TT
3094 msym = lookup_bound_minimal_symbol (physname);
3095 if (msym.minsym == NULL)
5ae326fa 3096 return NULL;
0478d61c
FF
3097 }
3098
c906108c 3099 v = allocate_value (ftype);
0478d61c
FF
3100 if (sym)
3101 {
42ae5230 3102 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3103 }
3104 else
3105 {
bccdca4a
UW
3106 /* The minimal symbol might point to a function descriptor;
3107 resolve it to the actual code address instead. */
7c7b6655 3108 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3110
42ae5230
TT
3111 set_value_address (v,
3112 gdbarch_convert_from_func_ptr_addr
77e371c0 3113 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3114 }
c906108c
SS
3115
3116 if (arg1p)
c5aa993b 3117 {
df407dfe 3118 if (type != value_type (*arg1p))
c5aa993b
JM
3119 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3120 value_addr (*arg1p)));
3121
070ad9f0 3122 /* Move the `this' pointer according to the offset.
581e13c1 3123 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3124 }
3125
3126 return v;
3127}
3128
c906108c 3129\f
c906108c 3130
4875ffdb
PA
3131/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3132 VALADDR, and store the result in *RESULT.
3133 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3134
4875ffdb
PA
3135 Extracting bits depends on endianness of the machine. Compute the
3136 number of least significant bits to discard. For big endian machines,
3137 we compute the total number of bits in the anonymous object, subtract
3138 off the bit count from the MSB of the object to the MSB of the
3139 bitfield, then the size of the bitfield, which leaves the LSB discard
3140 count. For little endian machines, the discard count is simply the
3141 number of bits from the LSB of the anonymous object to the LSB of the
3142 bitfield.
3143
3144 If the field is signed, we also do sign extension. */
3145
3146static LONGEST
3147unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3148 int bitpos, int bitsize)
c906108c 3149{
4ea48cc1 3150 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3151 ULONGEST val;
3152 ULONGEST valmask;
c906108c 3153 int lsbcount;
4a76eae5 3154 int bytes_read;
5467c6c8 3155 int read_offset;
c906108c 3156
4a76eae5
DJ
3157 /* Read the minimum number of bytes required; there may not be
3158 enough bytes to read an entire ULONGEST. */
c906108c 3159 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3160 if (bitsize)
3161 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3162 else
3163 bytes_read = TYPE_LENGTH (field_type);
3164
5467c6c8
PA
3165 read_offset = bitpos / 8;
3166
4875ffdb 3167 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3168 bytes_read, byte_order);
c906108c 3169
581e13c1 3170 /* Extract bits. See comment above. */
c906108c 3171
4ea48cc1 3172 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3173 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3174 else
3175 lsbcount = (bitpos % 8);
3176 val >>= lsbcount;
3177
3178 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3179 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3180
3181 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3182 {
3183 valmask = (((ULONGEST) 1) << bitsize) - 1;
3184 val &= valmask;
3185 if (!TYPE_UNSIGNED (field_type))
3186 {
3187 if (val & (valmask ^ (valmask >> 1)))
3188 {
3189 val |= ~valmask;
3190 }
3191 }
3192 }
5467c6c8 3193
4875ffdb 3194 return val;
5467c6c8
PA
3195}
3196
3197/* Unpack a field FIELDNO of the specified TYPE, from the object at
3198 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3199 ORIGINAL_VALUE, which must not be NULL. See
3200 unpack_value_bits_as_long for more details. */
3201
3202int
3203unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3204 int embedded_offset, int fieldno,
3205 const struct value *val, LONGEST *result)
3206{
4875ffdb
PA
3207 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3208 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3209 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3210 int bit_offset;
3211
5467c6c8
PA
3212 gdb_assert (val != NULL);
3213
4875ffdb
PA
3214 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3215 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3216 || !value_bits_available (val, bit_offset, bitsize))
3217 return 0;
3218
3219 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3220 bitpos, bitsize);
3221 return 1;
5467c6c8
PA
3222}
3223
3224/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3225 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3226
3227LONGEST
3228unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3229{
4875ffdb
PA
3230 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3231 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3232 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3233
4875ffdb
PA
3234 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3235}
3236
3237/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3238 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3239 the contents in DEST_VAL, zero or sign extending if the type of
3240 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3241 VAL. If the VAL's contents required to extract the bitfield from
3242 are unavailable/optimized out, DEST_VAL is correspondingly
3243 marked unavailable/optimized out. */
3244
bb9d5f81 3245void
4875ffdb
PA
3246unpack_value_bitfield (struct value *dest_val,
3247 int bitpos, int bitsize,
3248 const gdb_byte *valaddr, int embedded_offset,
3249 const struct value *val)
3250{
3251 enum bfd_endian byte_order;
3252 int src_bit_offset;
3253 int dst_bit_offset;
3254 LONGEST num;
3255 struct type *field_type = value_type (dest_val);
3256
3257 /* First, unpack and sign extend the bitfield as if it was wholly
3258 available. Invalid/unavailable bits are read as zero, but that's
3259 OK, as they'll end up marked below. */
3260 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3261 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3262 bitpos, bitsize);
3263 store_signed_integer (value_contents_raw (dest_val),
3264 TYPE_LENGTH (field_type), byte_order, num);
3265
3266 /* Now copy the optimized out / unavailability ranges to the right
3267 bits. */
3268 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3269 if (byte_order == BFD_ENDIAN_BIG)
3270 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3271 else
3272 dst_bit_offset = 0;
3273 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3274 val, src_bit_offset, bitsize);
5467c6c8
PA
3275}
3276
3277/* Return a new value with type TYPE, which is FIELDNO field of the
3278 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3279 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3280 from are unavailable/optimized out, the new value is
3281 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3282
3283struct value *
3284value_field_bitfield (struct type *type, int fieldno,
3285 const gdb_byte *valaddr,
3286 int embedded_offset, const struct value *val)
3287{
4875ffdb
PA
3288 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3289 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3290 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3291
4875ffdb
PA
3292 unpack_value_bitfield (res_val, bitpos, bitsize,
3293 valaddr, embedded_offset, val);
3294
3295 return res_val;
4ea48cc1
DJ
3296}
3297
c906108c
SS
3298/* Modify the value of a bitfield. ADDR points to a block of memory in
3299 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3300 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3301 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3302 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3303 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3304
3305void
50810684
UW
3306modify_field (struct type *type, gdb_byte *addr,
3307 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3308{
e17a4113 3309 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3310 ULONGEST oword;
3311 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3312 int bytesize;
3313
3314 /* Normalize BITPOS. */
3315 addr += bitpos / 8;
3316 bitpos %= 8;
c906108c
SS
3317
3318 /* If a negative fieldval fits in the field in question, chop
3319 off the sign extension bits. */
f4e88c8e
PH
3320 if ((~fieldval & ~(mask >> 1)) == 0)
3321 fieldval &= mask;
c906108c
SS
3322
3323 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3324 if (0 != (fieldval & ~mask))
c906108c
SS
3325 {
3326 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3327 we don't have a sprintf_longest. */
8a3fe4f8 3328 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3329
3330 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3331 fieldval &= mask;
c906108c
SS
3332 }
3333
19f220c3
JK
3334 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3335 false valgrind reports. */
3336
3337 bytesize = (bitpos + bitsize + 7) / 8;
3338 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3339
3340 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3341 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3342 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3343
f4e88c8e 3344 oword &= ~(mask << bitpos);
c906108c
SS
3345 oword |= fieldval << bitpos;
3346
19f220c3 3347 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3348}
3349\f
14d06750 3350/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3351
14d06750
DJ
3352void
3353pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3354{
e17a4113 3355 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3356 int len;
14d06750
DJ
3357
3358 type = check_typedef (type);
c906108c
SS
3359 len = TYPE_LENGTH (type);
3360
14d06750 3361 switch (TYPE_CODE (type))
c906108c 3362 {
c906108c
SS
3363 case TYPE_CODE_INT:
3364 case TYPE_CODE_CHAR:
3365 case TYPE_CODE_ENUM:
4f2aea11 3366 case TYPE_CODE_FLAGS:
c906108c
SS
3367 case TYPE_CODE_BOOL:
3368 case TYPE_CODE_RANGE:
0d5de010 3369 case TYPE_CODE_MEMBERPTR:
e17a4113 3370 store_signed_integer (buf, len, byte_order, num);
c906108c 3371 break;
c5aa993b 3372
c906108c
SS
3373 case TYPE_CODE_REF:
3374 case TYPE_CODE_PTR:
14d06750 3375 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3376 break;
c5aa993b 3377
c906108c 3378 default:
14d06750
DJ
3379 error (_("Unexpected type (%d) encountered for integer constant."),
3380 TYPE_CODE (type));
c906108c 3381 }
14d06750
DJ
3382}
3383
3384
595939de
PM
3385/* Pack NUM into BUF using a target format of TYPE. */
3386
70221824 3387static void
595939de
PM
3388pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3389{
3390 int len;
3391 enum bfd_endian byte_order;
3392
3393 type = check_typedef (type);
3394 len = TYPE_LENGTH (type);
3395 byte_order = gdbarch_byte_order (get_type_arch (type));
3396
3397 switch (TYPE_CODE (type))
3398 {
3399 case TYPE_CODE_INT:
3400 case TYPE_CODE_CHAR:
3401 case TYPE_CODE_ENUM:
3402 case TYPE_CODE_FLAGS:
3403 case TYPE_CODE_BOOL:
3404 case TYPE_CODE_RANGE:
3405 case TYPE_CODE_MEMBERPTR:
3406 store_unsigned_integer (buf, len, byte_order, num);
3407 break;
3408
3409 case TYPE_CODE_REF:
3410 case TYPE_CODE_PTR:
3411 store_typed_address (buf, type, (CORE_ADDR) num);
3412 break;
3413
3414 default:
3e43a32a
MS
3415 error (_("Unexpected type (%d) encountered "
3416 "for unsigned integer constant."),
595939de
PM
3417 TYPE_CODE (type));
3418 }
3419}
3420
3421
14d06750
DJ
3422/* Convert C numbers into newly allocated values. */
3423
3424struct value *
3425value_from_longest (struct type *type, LONGEST num)
3426{
3427 struct value *val = allocate_value (type);
3428
3429 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3430 return val;
3431}
3432
4478b372 3433
595939de
PM
3434/* Convert C unsigned numbers into newly allocated values. */
3435
3436struct value *
3437value_from_ulongest (struct type *type, ULONGEST num)
3438{
3439 struct value *val = allocate_value (type);
3440
3441 pack_unsigned_long (value_contents_raw (val), type, num);
3442
3443 return val;
3444}
3445
3446
4478b372 3447/* Create a value representing a pointer of type TYPE to the address
cb417230 3448 ADDR. */
80180f79 3449
f23631e4 3450struct value *
4478b372
JB
3451value_from_pointer (struct type *type, CORE_ADDR addr)
3452{
cb417230 3453 struct value *val = allocate_value (type);
a109c7c1 3454
80180f79 3455 store_typed_address (value_contents_raw (val),
cb417230 3456 check_typedef (type), addr);
4478b372
JB
3457 return val;
3458}
3459
3460
012370f6
TT
3461/* Create a value of type TYPE whose contents come from VALADDR, if it
3462 is non-null, and whose memory address (in the inferior) is
3463 ADDRESS. The type of the created value may differ from the passed
3464 type TYPE. Make sure to retrieve values new type after this call.
3465 Note that TYPE is not passed through resolve_dynamic_type; this is
3466 a special API intended for use only by Ada. */
3467
3468struct value *
3469value_from_contents_and_address_unresolved (struct type *type,
3470 const gdb_byte *valaddr,
3471 CORE_ADDR address)
3472{
3473 struct value *v;
3474
3475 if (valaddr == NULL)
3476 v = allocate_value_lazy (type);
3477 else
3478 v = value_from_contents (type, valaddr);
3479 set_value_address (v, address);
3480 VALUE_LVAL (v) = lval_memory;
3481 return v;
3482}
3483
8acb6b92
TT
3484/* Create a value of type TYPE whose contents come from VALADDR, if it
3485 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3486 ADDRESS. The type of the created value may differ from the passed
3487 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3488
3489struct value *
3490value_from_contents_and_address (struct type *type,
3491 const gdb_byte *valaddr,
3492 CORE_ADDR address)
3493{
80180f79 3494 struct type *resolved_type = resolve_dynamic_type (type, address);
d36430db 3495 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3496 struct value *v;
a109c7c1 3497
8acb6b92 3498 if (valaddr == NULL)
80180f79 3499 v = allocate_value_lazy (resolved_type);
8acb6b92 3500 else
80180f79 3501 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3502 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3503 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3504 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3505 set_value_address (v, address);
33d502b4 3506 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3507 return v;
3508}
3509
8a9b8146
TT
3510/* Create a value of type TYPE holding the contents CONTENTS.
3511 The new value is `not_lval'. */
3512
3513struct value *
3514value_from_contents (struct type *type, const gdb_byte *contents)
3515{
3516 struct value *result;
3517
3518 result = allocate_value (type);
3519 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3520 return result;
3521}
3522
f23631e4 3523struct value *
fba45db2 3524value_from_double (struct type *type, DOUBLEST num)
c906108c 3525{
f23631e4 3526 struct value *val = allocate_value (type);
c906108c 3527 struct type *base_type = check_typedef (type);
52f0bd74 3528 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3529
3530 if (code == TYPE_CODE_FLT)
3531 {
990a07ab 3532 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3533 }
3534 else
8a3fe4f8 3535 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3536
3537 return val;
3538}
994b9211 3539
27bc4d80 3540struct value *
4ef30785 3541value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3542{
3543 struct value *val = allocate_value (type);
27bc4d80 3544
4ef30785 3545 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3546 return val;
3547}
3548
3bd0f5ef
MS
3549/* Extract a value from the history file. Input will be of the form
3550 $digits or $$digits. See block comment above 'write_dollar_variable'
3551 for details. */
3552
3553struct value *
e799154c 3554value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3555{
3556 int index, len;
3557
3558 if (h[0] == '$')
3559 len = 1;
3560 else
3561 return NULL;
3562
3563 if (h[1] == '$')
3564 len = 2;
3565
3566 /* Find length of numeral string. */
3567 for (; isdigit (h[len]); len++)
3568 ;
3569
3570 /* Make sure numeral string is not part of an identifier. */
3571 if (h[len] == '_' || isalpha (h[len]))
3572 return NULL;
3573
3574 /* Now collect the index value. */
3575 if (h[1] == '$')
3576 {
3577 if (len == 2)
3578 {
3579 /* For some bizarre reason, "$$" is equivalent to "$$1",
3580 rather than to "$$0" as it ought to be! */
3581 index = -1;
3582 *endp += len;
3583 }
3584 else
e799154c
TT
3585 {
3586 char *local_end;
3587
3588 index = -strtol (&h[2], &local_end, 10);
3589 *endp = local_end;
3590 }
3bd0f5ef
MS
3591 }
3592 else
3593 {
3594 if (len == 1)
3595 {
3596 /* "$" is equivalent to "$0". */
3597 index = 0;
3598 *endp += len;
3599 }
3600 else
e799154c
TT
3601 {
3602 char *local_end;
3603
3604 index = strtol (&h[1], &local_end, 10);
3605 *endp = local_end;
3606 }
3bd0f5ef
MS
3607 }
3608
3609 return access_value_history (index);
3610}
3611
a471c594
JK
3612struct value *
3613coerce_ref_if_computed (const struct value *arg)
3614{
3615 const struct lval_funcs *funcs;
3616
3617 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3618 return NULL;
3619
3620 if (value_lval_const (arg) != lval_computed)
3621 return NULL;
3622
3623 funcs = value_computed_funcs (arg);
3624 if (funcs->coerce_ref == NULL)
3625 return NULL;
3626
3627 return funcs->coerce_ref (arg);
3628}
3629
dfcee124
AG
3630/* Look at value.h for description. */
3631
3632struct value *
3633readjust_indirect_value_type (struct value *value, struct type *enc_type,
3634 struct type *original_type,
3635 struct value *original_value)
3636{
3637 /* Re-adjust type. */
3638 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3639
3640 /* Add embedding info. */
3641 set_value_enclosing_type (value, enc_type);
3642 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3643
3644 /* We may be pointing to an object of some derived type. */
3645 return value_full_object (value, NULL, 0, 0, 0);
3646}
3647
994b9211
AC
3648struct value *
3649coerce_ref (struct value *arg)
3650{
df407dfe 3651 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3652 struct value *retval;
dfcee124 3653 struct type *enc_type;
a109c7c1 3654
a471c594
JK
3655 retval = coerce_ref_if_computed (arg);
3656 if (retval)
3657 return retval;
3658
3659 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3660 return arg;
3661
dfcee124
AG
3662 enc_type = check_typedef (value_enclosing_type (arg));
3663 enc_type = TYPE_TARGET_TYPE (enc_type);
3664
3665 retval = value_at_lazy (enc_type,
3666 unpack_pointer (value_type (arg),
3667 value_contents (arg)));
9f1f738a 3668 enc_type = value_type (retval);
dfcee124
AG
3669 return readjust_indirect_value_type (retval, enc_type,
3670 value_type_arg_tmp, arg);
994b9211
AC
3671}
3672
3673struct value *
3674coerce_array (struct value *arg)
3675{
f3134b88
TT
3676 struct type *type;
3677
994b9211 3678 arg = coerce_ref (arg);
f3134b88
TT
3679 type = check_typedef (value_type (arg));
3680
3681 switch (TYPE_CODE (type))
3682 {
3683 case TYPE_CODE_ARRAY:
7346b668 3684 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3685 arg = value_coerce_array (arg);
3686 break;
3687 case TYPE_CODE_FUNC:
3688 arg = value_coerce_function (arg);
3689 break;
3690 }
994b9211
AC
3691 return arg;
3692}
c906108c 3693\f
c906108c 3694
bbfdfe1c
DM
3695/* Return the return value convention that will be used for the
3696 specified type. */
3697
3698enum return_value_convention
3699struct_return_convention (struct gdbarch *gdbarch,
3700 struct value *function, struct type *value_type)
3701{
3702 enum type_code code = TYPE_CODE (value_type);
3703
3704 if (code == TYPE_CODE_ERROR)
3705 error (_("Function return type unknown."));
3706
3707 /* Probe the architecture for the return-value convention. */
3708 return gdbarch_return_value (gdbarch, function, value_type,
3709 NULL, NULL, NULL);
3710}
3711
48436ce6
AC
3712/* Return true if the function returning the specified type is using
3713 the convention of returning structures in memory (passing in the
82585c72 3714 address as a hidden first parameter). */
c906108c
SS
3715
3716int
d80b854b 3717using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3718 struct value *function, struct type *value_type)
c906108c 3719{
bbfdfe1c 3720 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3721 /* A void return value is never in memory. See also corresponding
44e5158b 3722 code in "print_return_value". */
667e784f
AC
3723 return 0;
3724
bbfdfe1c 3725 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3726 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3727}
3728
42be36b3
CT
3729/* Set the initialized field in a value struct. */
3730
3731void
3732set_value_initialized (struct value *val, int status)
3733{
3734 val->initialized = status;
3735}
3736
3737/* Return the initialized field in a value struct. */
3738
3739int
3740value_initialized (struct value *val)
3741{
3742 return val->initialized;
3743}
3744
a58e2656
AB
3745/* Called only from the value_contents and value_contents_all()
3746 macros, if the current data for a variable needs to be loaded into
3747 value_contents(VAL). Fetches the data from the user's process, and
3748 clears the lazy flag to indicate that the data in the buffer is
3749 valid.
3750
3751 If the value is zero-length, we avoid calling read_memory, which
3752 would abort. We mark the value as fetched anyway -- all 0 bytes of
3753 it.
3754
3755 This function returns a value because it is used in the
3756 value_contents macro as part of an expression, where a void would
3757 not work. The value is ignored. */
3758
3759int
3760value_fetch_lazy (struct value *val)
3761{
3762 gdb_assert (value_lazy (val));
3763 allocate_value_contents (val);
9a0dc9e3
PA
3764 /* A value is either lazy, or fully fetched. The
3765 availability/validity is only established as we try to fetch a
3766 value. */
3767 gdb_assert (VEC_empty (range_s, val->optimized_out));
3768 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3769 if (value_bitsize (val))
3770 {
3771 /* To read a lazy bitfield, read the entire enclosing value. This
3772 prevents reading the same block of (possibly volatile) memory once
3773 per bitfield. It would be even better to read only the containing
3774 word, but we have no way to record that just specific bits of a
3775 value have been fetched. */
3776 struct type *type = check_typedef (value_type (val));
a58e2656 3777 struct value *parent = value_parent (val);
a58e2656 3778
b0c54aa5
AB
3779 if (value_lazy (parent))
3780 value_fetch_lazy (parent);
3781
4875ffdb
PA
3782 unpack_value_bitfield (val,
3783 value_bitpos (val), value_bitsize (val),
3784 value_contents_for_printing (parent),
3785 value_offset (val), parent);
a58e2656
AB
3786 }
3787 else if (VALUE_LVAL (val) == lval_memory)
3788 {
3789 CORE_ADDR addr = value_address (val);
3790 struct type *type = check_typedef (value_enclosing_type (val));
3791
3792 if (TYPE_LENGTH (type))
3793 read_value_memory (val, 0, value_stack (val),
3794 addr, value_contents_all_raw (val),
3795 TYPE_LENGTH (type));
3796 }
3797 else if (VALUE_LVAL (val) == lval_register)
3798 {
3799 struct frame_info *frame;
3800 int regnum;
3801 struct type *type = check_typedef (value_type (val));
3802 struct value *new_val = val, *mark = value_mark ();
3803
3804 /* Offsets are not supported here; lazy register values must
3805 refer to the entire register. */
3806 gdb_assert (value_offset (val) == 0);
3807
3808 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3809 {
6eeee81c
TT
3810 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3811
3812 frame = frame_find_by_id (frame_id);
a58e2656
AB
3813 regnum = VALUE_REGNUM (new_val);
3814
3815 gdb_assert (frame != NULL);
3816
3817 /* Convertible register routines are used for multi-register
3818 values and for interpretation in different types
3819 (e.g. float or int from a double register). Lazy
3820 register values should have the register's natural type,
3821 so they do not apply. */
3822 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3823 regnum, type));
3824
3825 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3826
3827 /* If we get another lazy lval_register value, it means the
3828 register is found by reading it from the next frame.
3829 get_frame_register_value should never return a value with
3830 the frame id pointing to FRAME. If it does, it means we
3831 either have two consecutive frames with the same frame id
3832 in the frame chain, or some code is trying to unwind
3833 behind get_prev_frame's back (e.g., a frame unwind
3834 sniffer trying to unwind), bypassing its validations. In
3835 any case, it should always be an internal error to end up
3836 in this situation. */
3837 if (VALUE_LVAL (new_val) == lval_register
3838 && value_lazy (new_val)
3839 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3840 internal_error (__FILE__, __LINE__,
3841 _("infinite loop while fetching a register"));
a58e2656
AB
3842 }
3843
3844 /* If it's still lazy (for instance, a saved register on the
3845 stack), fetch it. */
3846 if (value_lazy (new_val))
3847 value_fetch_lazy (new_val);
3848
9a0dc9e3
PA
3849 /* Copy the contents and the unavailability/optimized-out
3850 meta-data from NEW_VAL to VAL. */
3851 set_value_lazy (val, 0);
3852 value_contents_copy (val, value_embedded_offset (val),
3853 new_val, value_embedded_offset (new_val),
3854 TYPE_LENGTH (type));
a58e2656
AB
3855
3856 if (frame_debug)
3857 {
3858 struct gdbarch *gdbarch;
3859 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3860 regnum = VALUE_REGNUM (val);
3861 gdbarch = get_frame_arch (frame);
3862
3863 fprintf_unfiltered (gdb_stdlog,
3864 "{ value_fetch_lazy "
3865 "(frame=%d,regnum=%d(%s),...) ",
3866 frame_relative_level (frame), regnum,
3867 user_reg_map_regnum_to_name (gdbarch, regnum));
3868
3869 fprintf_unfiltered (gdb_stdlog, "->");
3870 if (value_optimized_out (new_val))
f6c01fc5
AB
3871 {
3872 fprintf_unfiltered (gdb_stdlog, " ");
3873 val_print_optimized_out (new_val, gdb_stdlog);
3874 }
a58e2656
AB
3875 else
3876 {
3877 int i;
3878 const gdb_byte *buf = value_contents (new_val);
3879
3880 if (VALUE_LVAL (new_val) == lval_register)
3881 fprintf_unfiltered (gdb_stdlog, " register=%d",
3882 VALUE_REGNUM (new_val));
3883 else if (VALUE_LVAL (new_val) == lval_memory)
3884 fprintf_unfiltered (gdb_stdlog, " address=%s",
3885 paddress (gdbarch,
3886 value_address (new_val)));
3887 else
3888 fprintf_unfiltered (gdb_stdlog, " computed");
3889
3890 fprintf_unfiltered (gdb_stdlog, " bytes=");
3891 fprintf_unfiltered (gdb_stdlog, "[");
3892 for (i = 0; i < register_size (gdbarch, regnum); i++)
3893 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3894 fprintf_unfiltered (gdb_stdlog, "]");
3895 }
3896
3897 fprintf_unfiltered (gdb_stdlog, " }\n");
3898 }
3899
3900 /* Dispose of the intermediate values. This prevents
3901 watchpoints from trying to watch the saved frame pointer. */
3902 value_free_to_mark (mark);
3903 }
3904 else if (VALUE_LVAL (val) == lval_computed
3905 && value_computed_funcs (val)->read != NULL)
3906 value_computed_funcs (val)->read (val);
a58e2656
AB
3907 else
3908 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3909
3910 set_value_lazy (val, 0);
3911 return 0;
3912}
3913
a280dbd1
SDJ
3914/* Implementation of the convenience function $_isvoid. */
3915
3916static struct value *
3917isvoid_internal_fn (struct gdbarch *gdbarch,
3918 const struct language_defn *language,
3919 void *cookie, int argc, struct value **argv)
3920{
3921 int ret;
3922
3923 if (argc != 1)
6bc305f5 3924 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3925
3926 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3927
3928 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3929}
3930
c906108c 3931void
fba45db2 3932_initialize_values (void)
c906108c 3933{
1a966eab 3934 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3935Debugger convenience (\"$foo\") variables and functions.\n\
3936Convenience variables are created when you assign them values;\n\
3937thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3938\n\
c906108c
SS
3939A few convenience variables are given values automatically:\n\
3940\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3941\"$__\" holds the contents of the last address examined with \"x\"."
3942#ifdef HAVE_PYTHON
3943"\n\n\
3944Convenience functions are defined via the Python API."
3945#endif
3946 ), &showlist);
7e20dfcd 3947 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3948
db5f229b 3949 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3950Elements of value history around item number IDX (or last ten)."),
c906108c 3951 &showlist);
53e5f3cf
AS
3952
3953 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3954Initialize a convenience variable if necessary.\n\
3955init-if-undefined VARIABLE = EXPRESSION\n\
3956Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3957exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3958VARIABLE is already initialized."));
bc3b79fd
TJB
3959
3960 add_prefix_cmd ("function", no_class, function_command, _("\
3961Placeholder command for showing help on convenience functions."),
3962 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3963
3964 add_internal_function ("_isvoid", _("\
3965Check whether an expression is void.\n\
3966Usage: $_isvoid (expression)\n\
3967Return 1 if the expression is void, zero otherwise."),
3968 isvoid_internal_fn, NULL);
c906108c 3969}
This page took 3.705419 seconds and 4 git commands to generate.