2003-01-13 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
f23631e4
AC
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2002.
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
d16aafd8 35#include "doublest.h"
5ae326fa 36#include "gdb_assert.h"
36160dc4 37#include "regcache.h"
c906108c
SS
38
39/* Prototypes for exported functions. */
40
a14ed312 41void _initialize_values (void);
c906108c
SS
42
43/* Prototypes for local functions. */
44
a14ed312 45static void show_values (char *, int);
c906108c 46
a14ed312 47static void show_convenience (char *, int);
c906108c 48
c906108c
SS
49
50/* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56#define VALUE_HISTORY_CHUNK 60
57
58struct value_history_chunk
c5aa993b
JM
59 {
60 struct value_history_chunk *next;
f23631e4 61 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 62 };
c906108c
SS
63
64/* Chain of chunks now in use. */
65
66static struct value_history_chunk *value_history_chain;
67
68static int value_history_count; /* Abs number of last entry stored */
69\f
70/* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
f23631e4 74static struct value *all_values;
c906108c
SS
75
76/* Allocate a value that has the correct length for type TYPE. */
77
f23631e4 78struct value *
fba45db2 79allocate_value (struct type *type)
c906108c 80{
f23631e4 81 struct value *val;
c906108c
SS
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103}
104
105/* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
f23631e4 108struct value *
fba45db2 109allocate_repeat_value (struct type *type, int count)
c906108c 110{
c5aa993b 111 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
c5aa993b
JM
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
c906108c
SS
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121}
122
123/* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 126struct value *
fba45db2 127value_mark (void)
c906108c
SS
128{
129 return all_values;
130}
131
132/* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134void
f23631e4 135value_free_to_mark (struct value *mark)
c906108c 136{
f23631e4
AC
137 struct value *val;
138 struct value *next;
c906108c
SS
139
140 for (val = all_values; val && val != mark; val = next)
141 {
142 next = VALUE_NEXT (val);
143 value_free (val);
144 }
145 all_values = val;
146}
147
148/* Free all the values that have been allocated (except for those released).
149 Called after each command, successful or not. */
150
151void
fba45db2 152free_all_values (void)
c906108c 153{
f23631e4
AC
154 struct value *val;
155 struct value *next;
c906108c
SS
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164}
165
166/* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169void
f23631e4 170release_value (struct value *val)
c906108c 171{
f23631e4 172 struct value *v;
c906108c
SS
173
174 if (all_values == val)
175 {
176 all_values = val->next;
177 return;
178 }
179
180 for (v = all_values; v; v = v->next)
181 {
182 if (v->next == val)
183 {
184 v->next = val->next;
185 break;
186 }
187 }
188}
189
190/* Release all values up to mark */
f23631e4
AC
191struct value *
192value_release_to_mark (struct value *mark)
c906108c 193{
f23631e4
AC
194 struct value *val;
195 struct value *next;
c906108c
SS
196
197 for (val = next = all_values; next; next = VALUE_NEXT (next))
198 if (VALUE_NEXT (next) == mark)
199 {
200 all_values = VALUE_NEXT (next);
201 VALUE_NEXT (next) = 0;
202 return val;
203 }
204 all_values = 0;
205 return val;
206}
207
208/* Return a copy of the value ARG.
209 It contains the same contents, for same memory address,
210 but it's a different block of storage. */
211
f23631e4
AC
212struct value *
213value_copy (struct value *arg)
c906108c
SS
214{
215 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
f23631e4 216 struct value *val = allocate_value (encl_type);
c906108c
SS
217 VALUE_TYPE (val) = VALUE_TYPE (arg);
218 VALUE_LVAL (val) = VALUE_LVAL (arg);
219 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
220 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
221 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
222 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
223 VALUE_FRAME (val) = VALUE_FRAME (arg);
224 VALUE_REGNO (val) = VALUE_REGNO (arg);
225 VALUE_LAZY (val) = VALUE_LAZY (arg);
226 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
227 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
228 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
229 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
230 val->modifiable = arg->modifiable;
231 if (!VALUE_LAZY (val))
232 {
233 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
234 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
235
236 }
237 return val;
238}
239\f
240/* Access to the value history. */
241
242/* Record a new value in the value history.
243 Returns the absolute history index of the entry.
244 Result of -1 indicates the value was not saved; otherwise it is the
245 value history index of this new item. */
246
247int
f23631e4 248record_latest_value (struct value *val)
c906108c
SS
249{
250 int i;
251
252 /* We don't want this value to have anything to do with the inferior anymore.
253 In particular, "set $1 = 50" should not affect the variable from which
254 the value was taken, and fast watchpoints should be able to assume that
255 a value on the value history never changes. */
256 if (VALUE_LAZY (val))
257 value_fetch_lazy (val);
258 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
259 from. This is a bit dubious, because then *&$1 does not just return $1
260 but the current contents of that location. c'est la vie... */
261 val->modifiable = 0;
262 release_value (val);
263
264 /* Here we treat value_history_count as origin-zero
265 and applying to the value being stored now. */
266
267 i = value_history_count % VALUE_HISTORY_CHUNK;
268 if (i == 0)
269 {
f23631e4 270 struct value_history_chunk *new
c5aa993b
JM
271 = (struct value_history_chunk *)
272 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
273 memset (new->values, 0, sizeof new->values);
274 new->next = value_history_chain;
275 value_history_chain = new;
276 }
277
278 value_history_chain->values[i] = val;
279
280 /* Now we regard value_history_count as origin-one
281 and applying to the value just stored. */
282
283 return ++value_history_count;
284}
285
286/* Return a copy of the value in the history with sequence number NUM. */
287
f23631e4 288struct value *
fba45db2 289access_value_history (int num)
c906108c 290{
f23631e4 291 struct value_history_chunk *chunk;
c906108c
SS
292 register int i;
293 register int absnum = num;
294
295 if (absnum <= 0)
296 absnum += value_history_count;
297
298 if (absnum <= 0)
299 {
300 if (num == 0)
301 error ("The history is empty.");
302 else if (num == 1)
303 error ("There is only one value in the history.");
304 else
305 error ("History does not go back to $$%d.", -num);
306 }
307 if (absnum > value_history_count)
308 error ("History has not yet reached $%d.", absnum);
309
310 absnum--;
311
312 /* Now absnum is always absolute and origin zero. */
313
314 chunk = value_history_chain;
315 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 i > 0; i--)
317 chunk = chunk->next;
318
319 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
320}
321
322/* Clear the value history entirely.
323 Must be done when new symbol tables are loaded,
324 because the type pointers become invalid. */
325
326void
fba45db2 327clear_value_history (void)
c906108c 328{
f23631e4 329 struct value_history_chunk *next;
c906108c 330 register int i;
f23631e4 331 struct value *val;
c906108c
SS
332
333 while (value_history_chain)
334 {
335 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
336 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 337 xfree (val);
c906108c 338 next = value_history_chain->next;
b8c9b27d 339 xfree (value_history_chain);
c906108c
SS
340 value_history_chain = next;
341 }
342 value_history_count = 0;
343}
344
345static void
fba45db2 346show_values (char *num_exp, int from_tty)
c906108c
SS
347{
348 register int i;
f23631e4 349 struct value *val;
c906108c
SS
350 static int num = 1;
351
352 if (num_exp)
353 {
c5aa993b
JM
354 /* "info history +" should print from the stored position.
355 "info history <exp>" should print around value number <exp>. */
c906108c 356 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 357 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
358 }
359 else
360 {
361 /* "info history" means print the last 10 values. */
362 num = value_history_count - 9;
363 }
364
365 if (num <= 0)
366 num = 1;
367
368 for (i = num; i < num + 10 && i <= value_history_count; i++)
369 {
370 val = access_value_history (i);
371 printf_filtered ("$%d = ", i);
372 value_print (val, gdb_stdout, 0, Val_pretty_default);
373 printf_filtered ("\n");
374 }
375
376 /* The next "info history +" should start after what we just printed. */
377 num += 10;
378
379 /* Hitting just return after this command should do the same thing as
380 "info history +". If num_exp is null, this is unnecessary, since
381 "info history +" is not useful after "info history". */
382 if (from_tty && num_exp)
383 {
384 num_exp[0] = '+';
385 num_exp[1] = '\0';
386 }
387}
388\f
389/* Internal variables. These are variables within the debugger
390 that hold values assigned by debugger commands.
391 The user refers to them with a '$' prefix
392 that does not appear in the variable names stored internally. */
393
394static struct internalvar *internalvars;
395
396/* Look up an internal variable with name NAME. NAME should not
397 normally include a dollar sign.
398
399 If the specified internal variable does not exist,
400 one is created, with a void value. */
401
402struct internalvar *
fba45db2 403lookup_internalvar (char *name)
c906108c
SS
404{
405 register struct internalvar *var;
406
407 for (var = internalvars; var; var = var->next)
408 if (STREQ (var->name, name))
409 return var;
410
411 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
412 var->name = concat (name, NULL);
413 var->value = allocate_value (builtin_type_void);
414 release_value (var->value);
415 var->next = internalvars;
416 internalvars = var;
417 return var;
418}
419
f23631e4 420struct value *
fba45db2 421value_of_internalvar (struct internalvar *var)
c906108c 422{
f23631e4 423 struct value *val;
c906108c
SS
424
425#ifdef IS_TRAPPED_INTERNALVAR
426 if (IS_TRAPPED_INTERNALVAR (var->name))
427 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 428#endif
c906108c
SS
429
430 val = value_copy (var->value);
431 if (VALUE_LAZY (val))
432 value_fetch_lazy (val);
433 VALUE_LVAL (val) = lval_internalvar;
434 VALUE_INTERNALVAR (val) = var;
435 return val;
436}
437
438void
fba45db2 439set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 440 int bitsize, struct value *newval)
c906108c
SS
441{
442 register char *addr = VALUE_CONTENTS (var->value) + offset;
443
444#ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
447#endif
448
449 if (bitsize)
450 modify_field (addr, value_as_long (newval),
451 bitpos, bitsize);
452 else
453 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
454}
455
456void
f23631e4 457set_internalvar (struct internalvar *var, struct value *val)
c906108c 458{
f23631e4 459 struct value *newval;
c906108c
SS
460
461#ifdef IS_TRAPPED_INTERNALVAR
462 if (IS_TRAPPED_INTERNALVAR (var->name))
463 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
464#endif
465
466 newval = value_copy (val);
467 newval->modifiable = 1;
468
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
b8c9b27d 481 xfree (var->value);
c906108c
SS
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
485}
486
487char *
fba45db2 488internalvar_name (struct internalvar *var)
c906108c
SS
489{
490 return var->name;
491}
492
493/* Free all internalvars. Done when new symtabs are loaded,
494 because that makes the values invalid. */
495
496void
fba45db2 497clear_internalvars (void)
c906108c
SS
498{
499 register struct internalvar *var;
500
501 while (internalvars)
502 {
503 var = internalvars;
504 internalvars = var->next;
b8c9b27d
KB
505 xfree (var->name);
506 xfree (var->value);
507 xfree (var);
c906108c
SS
508 }
509}
510
511static void
fba45db2 512show_convenience (char *ignore, int from_tty)
c906108c
SS
513{
514 register struct internalvar *var;
515 int varseen = 0;
516
517 for (var = internalvars; var; var = var->next)
518 {
519#ifdef IS_TRAPPED_INTERNALVAR
520 if (IS_TRAPPED_INTERNALVAR (var->name))
521 continue;
522#endif
523 if (!varseen)
524 {
525 varseen = 1;
526 }
527 printf_filtered ("$%s = ", var->name);
528 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
529 printf_filtered ("\n");
530 }
531 if (!varseen)
532 printf_unfiltered ("No debugger convenience variables now defined.\n\
533Convenience variables have names starting with \"$\";\n\
534use \"set\" as in \"set $foo = 5\" to define them.\n");
535}
536\f
537/* Extract a value as a C number (either long or double).
538 Knows how to convert fixed values to double, or
539 floating values to long.
540 Does not deallocate the value. */
541
542LONGEST
f23631e4 543value_as_long (struct value *val)
c906108c
SS
544{
545 /* This coerces arrays and functions, which is necessary (e.g.
546 in disassemble_command). It also dereferences references, which
547 I suspect is the most logical thing to do. */
548 COERCE_ARRAY (val);
549 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
550}
551
552DOUBLEST
f23631e4 553value_as_double (struct value *val)
c906108c
SS
554{
555 DOUBLEST foo;
556 int inv;
c5aa993b 557
c906108c
SS
558 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
559 if (inv)
560 error ("Invalid floating value found in program.");
561 return foo;
562}
4478b372
JB
563/* Extract a value as a C pointer. Does not deallocate the value.
564 Note that val's type may not actually be a pointer; value_as_long
565 handles all the cases. */
c906108c 566CORE_ADDR
f23631e4 567value_as_address (struct value *val)
c906108c
SS
568{
569 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
570 whether we want this to be true eventually. */
571#if 0
572 /* ADDR_BITS_REMOVE is wrong if we are being called for a
573 non-address (e.g. argument to "signal", "info break", etc.), or
574 for pointers to char, in which the low bits *are* significant. */
c5aa993b 575 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 576#else
f312f057
JB
577
578 /* There are several targets (IA-64, PowerPC, and others) which
579 don't represent pointers to functions as simply the address of
580 the function's entry point. For example, on the IA-64, a
581 function pointer points to a two-word descriptor, generated by
582 the linker, which contains the function's entry point, and the
583 value the IA-64 "global pointer" register should have --- to
584 support position-independent code. The linker generates
585 descriptors only for those functions whose addresses are taken.
586
587 On such targets, it's difficult for GDB to convert an arbitrary
588 function address into a function pointer; it has to either find
589 an existing descriptor for that function, or call malloc and
590 build its own. On some targets, it is impossible for GDB to
591 build a descriptor at all: the descriptor must contain a jump
592 instruction; data memory cannot be executed; and code memory
593 cannot be modified.
594
595 Upon entry to this function, if VAL is a value of type `function'
596 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
597 VALUE_ADDRESS (val) is the address of the function. This is what
598 you'll get if you evaluate an expression like `main'. The call
599 to COERCE_ARRAY below actually does all the usual unary
600 conversions, which includes converting values of type `function'
601 to `pointer to function'. This is the challenging conversion
602 discussed above. Then, `unpack_long' will convert that pointer
603 back into an address.
604
605 So, suppose the user types `disassemble foo' on an architecture
606 with a strange function pointer representation, on which GDB
607 cannot build its own descriptors, and suppose further that `foo'
608 has no linker-built descriptor. The address->pointer conversion
609 will signal an error and prevent the command from running, even
610 though the next step would have been to convert the pointer
611 directly back into the same address.
612
613 The following shortcut avoids this whole mess. If VAL is a
614 function, just return its address directly. */
615 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
616 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
617 return VALUE_ADDRESS (val);
618
67b2adb2 619 COERCE_ARRAY (val);
fc0c74b1
AC
620
621 /* Some architectures (e.g. Harvard), map instruction and data
622 addresses onto a single large unified address space. For
623 instance: An architecture may consider a large integer in the
624 range 0x10000000 .. 0x1000ffff to already represent a data
625 addresses (hence not need a pointer to address conversion) while
626 a small integer would still need to be converted integer to
627 pointer to address. Just assume such architectures handle all
628 integer conversions in a single function. */
629
630 /* JimB writes:
631
632 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
633 must admonish GDB hackers to make sure its behavior matches the
634 compiler's, whenever possible.
635
636 In general, I think GDB should evaluate expressions the same way
637 the compiler does. When the user copies an expression out of
638 their source code and hands it to a `print' command, they should
639 get the same value the compiler would have computed. Any
640 deviation from this rule can cause major confusion and annoyance,
641 and needs to be justified carefully. In other words, GDB doesn't
642 really have the freedom to do these conversions in clever and
643 useful ways.
644
645 AndrewC pointed out that users aren't complaining about how GDB
646 casts integers to pointers; they are complaining that they can't
647 take an address from a disassembly listing and give it to `x/i'.
648 This is certainly important.
649
650 Adding an architecture method like INTEGER_TO_ADDRESS certainly
651 makes it possible for GDB to "get it right" in all circumstances
652 --- the target has complete control over how things get done, so
653 people can Do The Right Thing for their target without breaking
654 anyone else. The standard doesn't specify how integers get
655 converted to pointers; usually, the ABI doesn't either, but
656 ABI-specific code is a more reasonable place to handle it. */
657
658 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
659 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
660 && INTEGER_TO_ADDRESS_P ())
661 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
662
67b2adb2 663 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
c906108c
SS
664#endif
665}
666\f
667/* Unpack raw data (copied from debugee, target byte order) at VALADDR
668 as a long, or as a double, assuming the raw data is described
669 by type TYPE. Knows how to convert different sizes of values
670 and can convert between fixed and floating point. We don't assume
671 any alignment for the raw data. Return value is in host byte order.
672
673 If you want functions and arrays to be coerced to pointers, and
674 references to be dereferenced, call value_as_long() instead.
675
676 C++: It is assumed that the front-end has taken care of
677 all matters concerning pointers to members. A pointer
678 to member which reaches here is considered to be equivalent
679 to an INT (or some size). After all, it is only an offset. */
680
681LONGEST
66140c26 682unpack_long (struct type *type, const char *valaddr)
c906108c
SS
683{
684 register enum type_code code = TYPE_CODE (type);
685 register int len = TYPE_LENGTH (type);
686 register int nosign = TYPE_UNSIGNED (type);
687
688 if (current_language->la_language == language_scm
689 && is_scmvalue_type (type))
690 return scm_unpack (type, valaddr, TYPE_CODE_INT);
691
692 switch (code)
693 {
694 case TYPE_CODE_TYPEDEF:
695 return unpack_long (check_typedef (type), valaddr);
696 case TYPE_CODE_ENUM:
697 case TYPE_CODE_BOOL:
698 case TYPE_CODE_INT:
699 case TYPE_CODE_CHAR:
700 case TYPE_CODE_RANGE:
701 if (nosign)
702 return extract_unsigned_integer (valaddr, len);
703 else
704 return extract_signed_integer (valaddr, len);
705
706 case TYPE_CODE_FLT:
96d2f608 707 return extract_typed_floating (valaddr, type);
c906108c
SS
708
709 case TYPE_CODE_PTR:
710 case TYPE_CODE_REF:
711 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 712 whether we want this to be true eventually. */
4478b372 713 return extract_typed_address (valaddr, type);
c906108c
SS
714
715 case TYPE_CODE_MEMBER:
716 error ("not implemented: member types in unpack_long");
717
718 default:
719 error ("Value can't be converted to integer.");
720 }
c5aa993b 721 return 0; /* Placate lint. */
c906108c
SS
722}
723
724/* Return a double value from the specified type and address.
725 INVP points to an int which is set to 0 for valid value,
726 1 for invalid value (bad float format). In either case,
727 the returned double is OK to use. Argument is in target
728 format, result is in host format. */
729
730DOUBLEST
66140c26 731unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
732{
733 enum type_code code;
734 int len;
735 int nosign;
736
737 *invp = 0; /* Assume valid. */
738 CHECK_TYPEDEF (type);
739 code = TYPE_CODE (type);
740 len = TYPE_LENGTH (type);
741 nosign = TYPE_UNSIGNED (type);
742 if (code == TYPE_CODE_FLT)
743 {
75bc7ddf
AC
744 /* NOTE: cagney/2002-02-19: There was a test here to see if the
745 floating-point value was valid (using the macro
746 INVALID_FLOAT). That test/macro have been removed.
747
748 It turns out that only the VAX defined this macro and then
749 only in a non-portable way. Fixing the portability problem
750 wouldn't help since the VAX floating-point code is also badly
751 bit-rotten. The target needs to add definitions for the
752 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
753 exactly describe the target floating-point format. The
754 problem here is that the corresponding floatformat_vax_f and
755 floatformat_vax_d values these methods should be set to are
756 also not defined either. Oops!
757
758 Hopefully someone will add both the missing floatformat
759 definitions and floatformat_is_invalid() function. */
96d2f608 760 return extract_typed_floating (valaddr, type);
c906108c
SS
761 }
762 else if (nosign)
763 {
764 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 765 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
766 }
767 else
768 {
769 /* Signed -- we are OK with unpack_long. */
770 return unpack_long (type, valaddr);
771 }
772}
773
774/* Unpack raw data (copied from debugee, target byte order) at VALADDR
775 as a CORE_ADDR, assuming the raw data is described by type TYPE.
776 We don't assume any alignment for the raw data. Return value is in
777 host byte order.
778
779 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 780 references to be dereferenced, call value_as_address() instead.
c906108c
SS
781
782 C++: It is assumed that the front-end has taken care of
783 all matters concerning pointers to members. A pointer
784 to member which reaches here is considered to be equivalent
785 to an INT (or some size). After all, it is only an offset. */
786
787CORE_ADDR
66140c26 788unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
789{
790 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
791 whether we want this to be true eventually. */
792 return unpack_long (type, valaddr);
793}
4478b372 794
c906108c 795\f
2c2738a0
DC
796/* Get the value of the FIELDN'th field (which must be static) of
797 TYPE. Return NULL if the field doesn't exist or has been
798 optimized out. */
c906108c 799
f23631e4 800struct value *
fba45db2 801value_static_field (struct type *type, int fieldno)
c906108c 802{
948e66d9
DJ
803 struct value *retval;
804
c906108c
SS
805 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
806 {
948e66d9
DJ
807 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
808 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno),
809 NULL);
c906108c
SS
810 }
811 else
812 {
813 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
814 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
948e66d9 815 if (sym == NULL)
c906108c
SS
816 {
817 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
818 as non-debuggable symbols */
819 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
820 if (!msym)
821 return NULL;
822 else
c5aa993b 823 {
948e66d9
DJ
824 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
825 SYMBOL_VALUE_ADDRESS (msym),
826 SYMBOL_BFD_SECTION (msym));
c906108c
SS
827 }
828 }
829 else
830 {
948e66d9
DJ
831 /* SYM should never have a SYMBOL_CLASS which will require
832 read_var_value to use the FRAME parameter. */
833 if (symbol_read_needs_frame (sym))
834 warning ("static field's value depends on the current "
835 "frame - bad debug info?");
836 retval = read_var_value (sym, NULL);
2b127877 837 }
948e66d9
DJ
838 if (retval && VALUE_LVAL (retval) == lval_memory)
839 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
840 VALUE_ADDRESS (retval));
c906108c 841 }
948e66d9 842 return retval;
c906108c
SS
843}
844
2b127877
DB
845/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
846 You have to be careful here, since the size of the data area for the value
847 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
848 than the old enclosing type, you have to allocate more space for the data.
849 The return value is a pointer to the new version of this value structure. */
850
f23631e4
AC
851struct value *
852value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877
DB
853{
854 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
855 {
856 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
857 return val;
858 }
859 else
860 {
f23631e4
AC
861 struct value *new_val;
862 struct value *prev;
2b127877 863
f23631e4 864 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028
PM
865
866 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
867
2b127877
DB
868 /* We have to make sure this ends up in the same place in the value
869 chain as the original copy, so it's clean-up behavior is the same.
870 If the value has been released, this is a waste of time, but there
871 is no way to tell that in advance, so... */
872
873 if (val != all_values)
874 {
875 for (prev = all_values; prev != NULL; prev = prev->next)
876 {
877 if (prev->next == val)
878 {
879 prev->next = new_val;
880 break;
881 }
882 }
883 }
884
885 return new_val;
886 }
887}
888
c906108c
SS
889/* Given a value ARG1 (offset by OFFSET bytes)
890 of a struct or union type ARG_TYPE,
891 extract and return the value of one of its (non-static) fields.
892 FIELDNO says which field. */
893
f23631e4
AC
894struct value *
895value_primitive_field (struct value *arg1, int offset,
fba45db2 896 register int fieldno, register struct type *arg_type)
c906108c 897{
f23631e4 898 struct value *v;
c906108c
SS
899 register struct type *type;
900
901 CHECK_TYPEDEF (arg_type);
902 type = TYPE_FIELD_TYPE (arg_type, fieldno);
903
904 /* Handle packed fields */
905
906 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
907 {
908 v = value_from_longest (type,
909 unpack_field_as_long (arg_type,
910 VALUE_CONTENTS (arg1)
c5aa993b 911 + offset,
c906108c
SS
912 fieldno));
913 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
914 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
915 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
916 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
917 }
918 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
919 {
920 /* This field is actually a base subobject, so preserve the
921 entire object's contents for later references to virtual
922 bases, etc. */
923 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
8d65888a 924 VALUE_TYPE (v) = type;
c906108c
SS
925 if (VALUE_LAZY (arg1))
926 VALUE_LAZY (v) = 1;
927 else
928 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
929 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
930 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
931 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
932 = offset +
933 VALUE_EMBEDDED_OFFSET (arg1) +
934 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
935 }
936 else
937 {
938 /* Plain old data member */
939 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
940 v = allocate_value (type);
941 if (VALUE_LAZY (arg1))
942 VALUE_LAZY (v) = 1;
943 else
944 memcpy (VALUE_CONTENTS_RAW (v),
945 VALUE_CONTENTS_RAW (arg1) + offset,
946 TYPE_LENGTH (type));
21cfb3b6
DJ
947 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
948 + VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
949 }
950 VALUE_LVAL (v) = VALUE_LVAL (arg1);
951 if (VALUE_LVAL (arg1) == lval_internalvar)
952 VALUE_LVAL (v) = lval_internalvar_component;
953 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
a88c1392 954 VALUE_REGNO (v) = VALUE_REGNO (arg1);
c906108c 955/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 956 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
957 return v;
958}
959
960/* Given a value ARG1 of a struct or union type,
961 extract and return the value of one of its (non-static) fields.
962 FIELDNO says which field. */
963
f23631e4
AC
964struct value *
965value_field (struct value *arg1, register int fieldno)
c906108c
SS
966{
967 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
968}
969
970/* Return a non-virtual function as a value.
971 F is the list of member functions which contains the desired method.
0478d61c
FF
972 J is an index into F which provides the desired method.
973
974 We only use the symbol for its address, so be happy with either a
975 full symbol or a minimal symbol.
976 */
c906108c 977
f23631e4
AC
978struct value *
979value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 980 int offset)
c906108c 981{
f23631e4 982 struct value *v;
c906108c 983 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 984 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 985 struct symbol *sym;
0478d61c 986 struct minimal_symbol *msym;
c906108c 987
0478d61c 988 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
5ae326fa 989 if (sym != NULL)
0478d61c 990 {
5ae326fa
AC
991 msym = NULL;
992 }
993 else
994 {
995 gdb_assert (sym == NULL);
0478d61c 996 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
997 if (msym == NULL)
998 return NULL;
0478d61c
FF
999 }
1000
c906108c 1001 v = allocate_value (ftype);
0478d61c
FF
1002 if (sym)
1003 {
1004 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1005 }
1006 else
1007 {
1008 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1009 }
c906108c
SS
1010
1011 if (arg1p)
c5aa993b
JM
1012 {
1013 if (type != VALUE_TYPE (*arg1p))
1014 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1015 value_addr (*arg1p)));
1016
070ad9f0 1017 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1018 VALUE_OFFSET (*arg1p) += offset;
1019 */
c906108c
SS
1020 }
1021
1022 return v;
1023}
1024
c906108c
SS
1025\f
1026/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1027 VALADDR.
1028
1029 Extracting bits depends on endianness of the machine. Compute the
1030 number of least significant bits to discard. For big endian machines,
1031 we compute the total number of bits in the anonymous object, subtract
1032 off the bit count from the MSB of the object to the MSB of the
1033 bitfield, then the size of the bitfield, which leaves the LSB discard
1034 count. For little endian machines, the discard count is simply the
1035 number of bits from the LSB of the anonymous object to the LSB of the
1036 bitfield.
1037
1038 If the field is signed, we also do sign extension. */
1039
1040LONGEST
66140c26 1041unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1042{
1043 ULONGEST val;
1044 ULONGEST valmask;
1045 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1046 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1047 int lsbcount;
1048 struct type *field_type;
1049
1050 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1051 field_type = TYPE_FIELD_TYPE (type, fieldno);
1052 CHECK_TYPEDEF (field_type);
1053
1054 /* Extract bits. See comment above. */
1055
1056 if (BITS_BIG_ENDIAN)
1057 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1058 else
1059 lsbcount = (bitpos % 8);
1060 val >>= lsbcount;
1061
1062 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1063 If the field is signed, and is negative, then sign extend. */
1064
1065 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1066 {
1067 valmask = (((ULONGEST) 1) << bitsize) - 1;
1068 val &= valmask;
1069 if (!TYPE_UNSIGNED (field_type))
1070 {
1071 if (val & (valmask ^ (valmask >> 1)))
1072 {
1073 val |= ~valmask;
1074 }
1075 }
1076 }
1077 return (val);
1078}
1079
1080/* Modify the value of a bitfield. ADDR points to a block of memory in
1081 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1082 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1083 indicate which bits (in target bit order) comprise the bitfield. */
1084
1085void
fba45db2 1086modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c
SS
1087{
1088 LONGEST oword;
1089
1090 /* If a negative fieldval fits in the field in question, chop
1091 off the sign extension bits. */
1092 if (bitsize < (8 * (int) sizeof (fieldval))
1093 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1094 fieldval = fieldval & ((1 << bitsize) - 1);
1095
1096 /* Warn if value is too big to fit in the field in question. */
1097 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1098 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1099 {
1100 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1101 we don't have a sprintf_longest. */
c906108c
SS
1102 warning ("Value does not fit in %d bits.", bitsize);
1103
1104 /* Truncate it, otherwise adjoining fields may be corrupted. */
1105 fieldval = fieldval & ((1 << bitsize) - 1);
1106 }
1107
1108 oword = extract_signed_integer (addr, sizeof oword);
1109
1110 /* Shifting for bit field depends on endianness of the target machine. */
1111 if (BITS_BIG_ENDIAN)
1112 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1113
1114 /* Mask out old value, while avoiding shifts >= size of oword */
1115 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1116 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1117 else
c5aa993b 1118 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1119 oword |= fieldval << bitpos;
1120
1121 store_signed_integer (addr, sizeof oword, oword);
1122}
1123\f
1124/* Convert C numbers into newly allocated values */
1125
f23631e4 1126struct value *
fba45db2 1127value_from_longest (struct type *type, register LONGEST num)
c906108c 1128{
f23631e4 1129 struct value *val = allocate_value (type);
c906108c
SS
1130 register enum type_code code;
1131 register int len;
c5aa993b 1132retry:
c906108c
SS
1133 code = TYPE_CODE (type);
1134 len = TYPE_LENGTH (type);
1135
1136 switch (code)
1137 {
1138 case TYPE_CODE_TYPEDEF:
1139 type = check_typedef (type);
1140 goto retry;
1141 case TYPE_CODE_INT:
1142 case TYPE_CODE_CHAR:
1143 case TYPE_CODE_ENUM:
1144 case TYPE_CODE_BOOL:
1145 case TYPE_CODE_RANGE:
1146 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1147 break;
c5aa993b 1148
c906108c
SS
1149 case TYPE_CODE_REF:
1150 case TYPE_CODE_PTR:
4478b372 1151 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1152 break;
c5aa993b 1153
c906108c
SS
1154 default:
1155 error ("Unexpected type (%d) encountered for integer constant.", code);
1156 }
1157 return val;
1158}
1159
4478b372
JB
1160
1161/* Create a value representing a pointer of type TYPE to the address
1162 ADDR. */
f23631e4 1163struct value *
4478b372
JB
1164value_from_pointer (struct type *type, CORE_ADDR addr)
1165{
f23631e4 1166 struct value *val = allocate_value (type);
4478b372
JB
1167 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1168 return val;
1169}
1170
1171
0f71a2f6 1172/* Create a value for a string constant to be stored locally
070ad9f0 1173 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1174 This is analogous to value_from_longest, which also does not
1175 use inferior memory. String shall NOT contain embedded nulls. */
1176
f23631e4 1177struct value *
fba45db2 1178value_from_string (char *ptr)
0f71a2f6 1179{
f23631e4 1180 struct value *val;
c5aa993b 1181 int len = strlen (ptr);
0f71a2f6 1182 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1183 struct type *rangetype =
1184 create_range_type ((struct type *) NULL,
1185 builtin_type_int,
1186 lowbound, len + lowbound - 1);
1187 struct type *stringtype =
1188 create_array_type ((struct type *) NULL,
1189 *current_language->string_char_type,
1190 rangetype);
0f71a2f6
JM
1191
1192 val = allocate_value (stringtype);
1193 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1194 return val;
1195}
1196
f23631e4 1197struct value *
fba45db2 1198value_from_double (struct type *type, DOUBLEST num)
c906108c 1199{
f23631e4 1200 struct value *val = allocate_value (type);
c906108c
SS
1201 struct type *base_type = check_typedef (type);
1202 register enum type_code code = TYPE_CODE (base_type);
1203 register int len = TYPE_LENGTH (base_type);
1204
1205 if (code == TYPE_CODE_FLT)
1206 {
96d2f608 1207 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
c906108c
SS
1208 }
1209 else
1210 error ("Unexpected type encountered for floating constant.");
1211
1212 return val;
1213}
1214\f
1215/* Deal with the value that is "about to be returned". */
1216
1217/* Return the value that a function returning now
1218 would be returning to its caller, assuming its type is VALTYPE.
1219 RETBUF is where we look for what ought to be the contents
1220 of the registers (in raw form). This is because it is often
1221 desirable to restore old values to those registers
1222 after saving the contents of interest, and then call
1223 this function using the saved values.
1224 struct_return is non-zero when the function in question is
1225 using the structure return conventions on the machine in question;
1226 0 when it is using the value returning conventions (this often
1227 means returning pointer to where structure is vs. returning value). */
1228
1669605f 1229/* ARGSUSED */
f23631e4 1230struct value *
049ee0e4 1231value_being_returned (struct type *valtype, struct regcache *retbuf,
36160dc4 1232 int struct_return)
c906108c 1233{
f23631e4 1234 struct value *val;
c906108c
SS
1235 CORE_ADDR addr;
1236
c906108c 1237 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
d6dd581e 1238 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
ac9a91a7
JM
1239 if (struct_return)
1240 {
1241 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1242 if (!addr)
aead120c 1243 error ("Function return value unknown.");
ac9a91a7
JM
1244 return value_at (valtype, addr, NULL);
1245 }
26e9b323
AC
1246
1247 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1248 if (DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1249 if (struct_return)
1250 {
049ee0e4
AC
1251 char *buf = deprecated_grub_regcache_for_registers (retbuf);
1252 addr = DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS (buf);
26e9b323
AC
1253 if (!addr)
1254 error ("Function return value unknown.");
1255 return value_at (valtype, addr, NULL);
1256 }
c906108c
SS
1257
1258 val = allocate_value (valtype);
1259 CHECK_TYPEDEF (valtype);
1260 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1261
1262 return val;
1263}
1264
1265/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1266 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1267 and TYPE is the type (which is known to be struct, union or array).
1268
1269 On most machines, the struct convention is used unless we are
1270 using gcc and the type is of a special size. */
1271/* As of about 31 Mar 93, GCC was changed to be compatible with the
1272 native compiler. GCC 2.3.3 was the last release that did it the
1273 old way. Since gcc2_compiled was not changed, we have no
1274 way to correctly win in all cases, so we just do the right thing
1275 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1276 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1277 would cause more chaos than dealing with some struct returns being
1278 handled wrong. */
1279
1280int
fba45db2 1281generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1282{
c906108c 1283 return !((gcc_p == 1)
c5aa993b
JM
1284 && (TYPE_LENGTH (value_type) == 1
1285 || TYPE_LENGTH (value_type) == 2
1286 || TYPE_LENGTH (value_type) == 4
1287 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1288}
1289
c906108c
SS
1290/* Return true if the function specified is using the structure returning
1291 convention on this machine to return arguments, or 0 if it is using
1292 the value returning convention. FUNCTION is the value representing
1293 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1294 is the type returned by the function. GCC_P is nonzero if compiled
1295 with GCC. */
1296
1669605f 1297/* ARGSUSED */
c906108c 1298int
f23631e4 1299using_struct_return (struct value *function, CORE_ADDR funcaddr,
1669605f 1300 struct type *value_type, int gcc_p)
c906108c
SS
1301{
1302 register enum type_code code = TYPE_CODE (value_type);
1303
1304 if (code == TYPE_CODE_ERROR)
1305 error ("Function return type unknown.");
1306
1307 if (code == TYPE_CODE_STRUCT
1308 || code == TYPE_CODE_UNION
1309 || code == TYPE_CODE_ARRAY
1310 || RETURN_VALUE_ON_STACK (value_type))
1311 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1312
1313 return 0;
1314}
1315
1316/* Store VAL so it will be returned if a function returns now.
1317 Does not verify that VAL's type matches what the current
1318 function wants to return. */
1319
1320void
f23631e4 1321set_return_value (struct value *val)
c906108c
SS
1322{
1323 struct type *type = check_typedef (VALUE_TYPE (val));
1324 register enum type_code code = TYPE_CODE (type);
1325
1326 if (code == TYPE_CODE_ERROR)
1327 error ("Function return type unknown.");
1328
c5aa993b 1329 if (code == TYPE_CODE_STRUCT
c906108c
SS
1330 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1331 error ("GDB does not support specifying a struct or union return value.");
1332
ebba8386 1333 STORE_RETURN_VALUE (type, current_regcache, VALUE_CONTENTS (val));
c906108c
SS
1334}
1335\f
1336void
fba45db2 1337_initialize_values (void)
c906108c
SS
1338{
1339 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1340 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1341These variables are created when you assign them values;\n\
1342thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1343A few convenience variables are given values automatically:\n\
1344\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1345\"$__\" holds the contents of the last address examined with \"x\".",
1346 &showlist);
1347
1348 add_cmd ("values", no_class, show_values,
1349 "Elements of value history around item number IDX (or last ten).",
1350 &showlist);
1351}
This page took 0.716629 seconds and 4 git commands to generate.