Use thread_info and inferior pointers more throughout
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
bde7b3e3 38#include "python/py-ref.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
ae451627
AB
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
492d29ea 317 TRY
8e7b59a5 318 {
1bb9788d 319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
320 }
321
492d29ea 322 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
323 {
324 return NULL;
325 }
492d29ea 326 END_CATCH
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
e707fc44
AB
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
2f408ecb 341 var->name = expression;
02142340 342 /* For a root var, the name and the expr are the same. */
2f408ecb 343 var->path_expr = expression;
8b93c638
JM
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
581e13c1 348 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 349 if (var->root->valid_block)
8b93c638 350 {
4e22772d
JK
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
7a424e99 358 var->root->frame = get_frame_id (fi);
00431a78 359 var->root->thread_id = inferior_thread ()->global_num;
35633fef 360 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 361 select_frame (fi);
8b93c638
JM
362 }
363
340a7723 364 /* We definitely need to catch errors here.
8b93c638 365 If evaluate_expression succeeds we got the value we wanted.
581e13c1 366 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 367 TRY
8e7b59a5 368 {
4d01a485 369 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 370 }
492d29ea 371 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
4d01a485 375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 376
e55dccf0
VP
377 var->type = value_type (type_only_value);
378 }
492d29ea 379 END_CATCH
8264ba82 380
492d29ea
PA
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
acd65feb 389
8b93c638 390 /* Set language info */
ca20d462 391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 392
9e5b9d2b 393 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 394
581e13c1 395 /* Set ourselves as our root. */
9e5b9d2b 396 var->root->rootvar = var.get ();
8b93c638 397
581e13c1 398 /* Reset the selected frame. */
35633fef
JK
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
8b93c638
JM
401 }
402
73a93a32 403 /* If the variable object name is null, that means this
581e13c1 404 is a temporary variable, so don't install it. */
73a93a32
JI
405
406 if ((var != NULL) && (objname != NULL))
8b93c638 407 {
2f408ecb 408 var->obj_name = objname;
8b93c638
JM
409
410 /* If a varobj name is duplicated, the install will fail so
581e13c1 411 we must cleanup. */
9e5b9d2b
SM
412 if (!install_variable (var.get ()))
413 return NULL;
8b93c638
JM
414 }
415
9e5b9d2b 416 return var.release ();
8b93c638
JM
417}
418
581e13c1 419/* Generates an unique name that can be used for a varobj. */
8b93c638 420
2d6960b4 421std::string
8b93c638
JM
422varobj_gen_name (void)
423{
424 static int id = 0;
8b93c638 425
581e13c1 426 /* Generate a name for this object. */
8b93c638 427 id++;
2d6960b4 428 return string_printf ("var%d", id);
8b93c638
JM
429}
430
61d8f275
JK
431/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
8b93c638
JM
433
434struct varobj *
2f408ecb 435varobj_get_handle (const char *objname)
8b93c638
JM
436{
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
2f408ecb 448 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
449 cv = cv->next;
450
451 if (cv == NULL)
8a3fe4f8 452 error (_("Variable object not found"));
8b93c638
JM
453
454 return cv->var;
455}
456
581e13c1 457/* Given the handle, return the name of the object. */
8b93c638 458
2f408ecb 459const char *
b09e2c59 460varobj_get_objname (const struct varobj *var)
8b93c638 461{
2f408ecb 462 return var->obj_name.c_str ();
8b93c638
JM
463}
464
2f408ecb
PA
465/* Given the handle, return the expression represented by the
466 object. */
8b93c638 467
2f408ecb 468std::string
b09e2c59 469varobj_get_expression (const struct varobj *var)
8b93c638
JM
470{
471 return name_of_variable (var);
472}
473
30914ca8 474/* See varobj.h. */
8b93c638
JM
475
476int
4c37490d 477varobj_delete (struct varobj *var, bool only_children)
8b93c638 478{
30914ca8 479 return delete_variable (var, only_children);
8b93c638
JM
480}
481
d8b65138
JK
482#if HAVE_PYTHON
483
b6313243
TT
484/* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486static PyObject *
487instantiate_pretty_printer (PyObject *constructor, struct value *value)
488{
b6313243
TT
489 PyObject *val_obj = NULL;
490 PyObject *printer;
b6313243 491
b6313243 492 val_obj = value_to_value_object (value);
b6313243
TT
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
b6313243
TT
499}
500
d8b65138
JK
501#endif
502
581e13c1 503/* Set/Get variable object display format. */
8b93c638
JM
504
505enum varobj_display_formats
506varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508{
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
1c35a88f 516 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
ae7d22a6 524 if (varobj_value_is_changeable_p (var)
b4d61099 525 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 526 {
b4d61099 527 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 528 var->format, var);
ae7d22a6
VP
529 }
530
8b93c638
JM
531 return var->format;
532}
533
534enum varobj_display_formats
b09e2c59 535varobj_get_display_format (const struct varobj *var)
8b93c638
JM
536{
537 return var->format;
538}
539
9b972014 540gdb::unique_xmalloc_ptr<char>
b09e2c59 541varobj_get_display_hint (const struct varobj *var)
b6313243 542{
9b972014 543 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
544
545#if HAVE_PYTHON
0646da15
TT
546 if (!gdb_python_initialized)
547 return NULL;
548
bde7b3e3 549 gdbpy_enter_varobj enter_py (var);
d452c4bc 550
bb5ce47a
YQ
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
553#endif
554
555 return result;
556}
557
0cc7d26f
TT
558/* Return true if the varobj has items after TO, false otherwise. */
559
4c37490d 560bool
b09e2c59 561varobj_has_more (const struct varobj *var, int to)
0cc7d26f 562{
ddf0ea08 563 if (var->children.size () > to)
4c37490d 564 return true;
ddf0ea08
SM
565
566 return ((to == -1 || var->children.size () == to)
bb5ce47a 567 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
568}
569
c5b48eac
VP
570/* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
581e13c1 573 is always positive. Otherwise, returns -1. */
c5b48eac 574int
b09e2c59 575varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
576{
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581}
582
25d5ea92 583void
4c37490d 584varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
585{
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594}
595
4c37490d 596bool
b09e2c59 597varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
598{
599 return var->frozen;
600}
601
0cc7d26f
TT
602/* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
99ad9427 607void
ddf0ea08
SM
608varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
0cc7d26f 610{
ddf0ea08
SM
611 int len = children.size ();
612
0cc7d26f
TT
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
ddf0ea08 616 *to = len;
0cc7d26f
TT
617 }
618 else
619 {
ddf0ea08
SM
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
0cc7d26f
TT
624 if (*from > *to)
625 *from = *to;
626 }
627}
628
629/* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632static void
633install_dynamic_child (struct varobj *var,
0604393c
SM
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
4c37490d 638 bool *cchanged,
0cc7d26f 639 int index,
5a2e0d6e 640 struct varobj_item *item)
0cc7d26f 641{
ddf0ea08 642 if (var->children.size () < index + 1)
0cc7d26f
TT
643 {
644 /* There's no child yet. */
5a2e0d6e 645 struct varobj *child = varobj_add_child (var, item);
a109c7c1 646
0604393c 647 if (newobj != NULL)
0cc7d26f 648 {
0604393c 649 newobj->push_back (child);
4c37490d 650 *cchanged = true;
0cc7d26f
TT
651 }
652 }
bf8793bb 653 else
0cc7d26f 654 {
ddf0ea08 655 varobj *existing = var->children[index];
4c37490d 656 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 657
8264ba82
AG
658 if (type_updated)
659 {
0604393c
SM
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
8264ba82 662 }
5a2e0d6e 663 if (install_new_value (existing, item->value, 0))
0cc7d26f 664 {
0604393c
SM
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
0cc7d26f 667 }
0604393c
SM
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
0cc7d26f
TT
670 }
671}
672
576ea091
YQ
673#if HAVE_PYTHON
674
4c37490d 675static bool
b09e2c59 676dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 677{
bb5ce47a 678 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 679
0646da15 680 if (!gdb_python_initialized)
4c37490d 681 return false;
0646da15 682
bde7b3e3
TT
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 685}
576ea091 686#endif
0cc7d26f 687
e5250216
YQ
688/* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691static struct varobj_iter *
692varobj_get_iterator (struct varobj *var)
693{
576ea091 694#if HAVE_PYTHON
e5250216
YQ
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 697#endif
e5250216
YQ
698
699 gdb_assert_not_reached (_("\
700requested an iterator from a non-dynamic varobj"));
701}
702
827f100c
YQ
703/* Release and clear VAR's saved item, if any. */
704
705static void
706varobj_clear_saved_item (struct varobj_dynamic *var)
707{
708 if (var->saved_item != NULL)
709 {
22bc8444 710 value_decref (var->saved_item->value);
0a8beaba 711 delete var->saved_item;
827f100c
YQ
712 var->saved_item = NULL;
713 }
714}
0cc7d26f 715
4c37490d 716static bool
b6313243 717update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
4c37490d
SM
722 bool *cchanged,
723 bool update_children,
0cc7d26f
TT
724 int from,
725 int to)
b6313243 726{
b6313243 727 int i;
b6313243 728
4c37490d 729 *cchanged = false;
b6313243 730
bb5ce47a 731 if (update_children || var->dynamic->child_iter == NULL)
b6313243 732 {
e5250216
YQ
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 735
827f100c 736 varobj_clear_saved_item (var->dynamic);
b6313243 737
e5250216 738 i = 0;
b6313243 739
bb5ce47a 740 if (var->dynamic->child_iter == NULL)
4c37490d 741 return false;
b6313243 742 }
0cc7d26f 743 else
ddf0ea08 744 i = var->children.size ();
b6313243 745
0cc7d26f
TT
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
b6313243 749 {
827f100c 750 varobj_item *item;
b6313243 751
0cc7d26f 752 /* See if there was a leftover from last time. */
827f100c 753 if (var->dynamic->saved_item != NULL)
0cc7d26f 754 {
bb5ce47a
YQ
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
0cc7d26f
TT
757 }
758 else
a4c8e806 759 {
e5250216 760 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
22bc8444 764 release_value (item->value).release ();
a4c8e806 765 }
b6313243 766
e5250216
YQ
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
0cc7d26f
TT
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
b6313243 776 {
4c37490d 777 bool can_mention = from < 0 || i >= from;
0cc7d26f 778
0cc7d26f 779 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 780 can_mention ? type_changed : NULL,
fe978cb0 781 can_mention ? newobj : NULL,
0cc7d26f 782 can_mention ? unchanged : NULL,
5e5ac9a5 783 can_mention ? cchanged : NULL, i,
827f100c
YQ
784 item);
785
0a8beaba 786 delete item;
b6313243 787 }
0cc7d26f 788 else
b6313243 789 {
bb5ce47a 790 var->dynamic->saved_item = item;
b6313243 791
0cc7d26f
TT
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
b6313243
TT
796 }
797
ddf0ea08 798 if (i < var->children.size ())
b6313243 799 {
4c37490d 800 *cchanged = true;
ddf0ea08
SM
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
b6313243 805 }
0cc7d26f
TT
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
ddf0ea08 809 if (to >= 0 && var->children.size () < to)
4c37490d 810 *cchanged = true;
0cc7d26f 811
ddf0ea08 812 var->num_children = var->children.size ();
b6313243 813
4c37490d 814 return true;
b6313243 815}
25d5ea92 816
8b93c638
JM
817int
818varobj_get_num_children (struct varobj *var)
819{
820 if (var->num_children == -1)
b6313243 821 {
31f628ae 822 if (varobj_is_dynamic_p (var))
0cc7d26f 823 {
4c37490d 824 bool dummy;
0cc7d26f
TT
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
8264ba82 828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 829 false, 0, 0);
0cc7d26f
TT
830 }
831 else
b6313243
TT
832 var->num_children = number_of_children (var);
833 }
8b93c638 834
0cc7d26f 835 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
836}
837
838/* Creates a list of the immediate children of a variable object;
581e13c1 839 the return code is the number of such children or -1 on error. */
8b93c638 840
ddf0ea08 841const std::vector<varobj *> &
0cc7d26f 842varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 843{
bd046f64 844 var->dynamic->children_requested = true;
b6313243 845
31f628ae 846 if (varobj_is_dynamic_p (var))
0cc7d26f 847 {
4c37490d
SM
848 bool children_changed;
849
b6313243
TT
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
8264ba82 853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 854 &children_changed, false, 0, *to);
99ad9427 855 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
856 return var->children;
857 }
8b93c638 858
8b93c638
JM
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
74a44383
DJ
862 /* If that failed, give up. */
863 if (var->num_children == -1)
d56d46f5 864 return var->children;
74a44383 865
28335dcc
VP
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
ddf0ea08
SM
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
28335dcc 870
ddf0ea08 871 for (int i = 0; i < var->num_children; i++)
8b93c638 872 {
ddf0ea08 873 if (var->children[i] == NULL)
28335dcc
VP
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
2f408ecb 878 std::string name = name_of_child (var, i);
ddf0ea08 879 var->children[i] = create_child (var, i, name);
28335dcc 880 }
8b93c638
JM
881 }
882
99ad9427 883 varobj_restrict_range (var->children, from, to);
d56d46f5 884 return var->children;
8b93c638
JM
885}
886
b6313243 887static struct varobj *
5a2e0d6e 888varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 889{
ddf0ea08
SM
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
a109c7c1 893
b6313243
TT
894 return v;
895}
896
8b93c638 897/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
898 prints on the console. The caller is responsible for freeing the string.
899 */
8b93c638 900
2f408ecb 901std::string
8b93c638
JM
902varobj_get_type (struct varobj *var)
903{
8ab91b96 904 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 908 return std::string ();
8b93c638 909
1a4300e9 910 return type_to_string (var->type);
8b93c638
JM
911}
912
1ecb4ee0
DJ
913/* Obtain the type of an object variable. */
914
915struct type *
b09e2c59 916varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
917{
918 return var->type;
919}
920
85254831
KS
921/* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
4c37490d 924static bool
b09e2c59 925is_path_expr_parent (const struct varobj *var)
85254831 926{
9a9a7608
AB
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929}
85254831 930
9a9a7608
AB
931/* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
85254831 934
4c37490d 935bool
b09e2c59 936varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 937{
4c37490d 938 return true;
85254831
KS
939}
940
941/* Return the path expression parent for VAR. */
942
c1cc6152
SM
943const struct varobj *
944varobj_get_path_expr_parent (const struct varobj *var)
85254831 945{
c1cc6152 946 const struct varobj *parent = var;
85254831
KS
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
951 return parent;
952}
953
02142340
VP
954/* Return a pointer to the full rooted expression of varobj VAR.
955 If it has not been computed yet, compute it. */
2f408ecb
PA
956
957const char *
c1cc6152 958varobj_get_path_expr (const struct varobj *var)
02142340 959{
2f408ecb 960 if (var->path_expr.empty ())
02142340
VP
961 {
962 /* For root varobjs, we initialize path_expr
963 when creating varobj, so here it should be
964 child varobj. */
c1cc6152 965 struct varobj *mutable_var = (struct varobj *) var;
02142340 966 gdb_assert (!is_root_p (var));
2568868e 967
c1cc6152 968 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 969 }
2568868e 970
2f408ecb 971 return var->path_expr.c_str ();
02142340
VP
972}
973
fa4d0c40 974const struct language_defn *
b09e2c59 975varobj_get_language (const struct varobj *var)
8b93c638 976{
fa4d0c40 977 return var->root->exp->language_defn;
8b93c638
JM
978}
979
980int
b09e2c59 981varobj_get_attributes (const struct varobj *var)
8b93c638
JM
982{
983 int attributes = 0;
984
340a7723 985 if (varobj_editable_p (var))
581e13c1 986 /* FIXME: define masks for attributes. */
8b93c638
JM
987 attributes |= 0x00000001; /* Editable */
988
989 return attributes;
990}
991
cde5ef40
YQ
992/* Return true if VAR is a dynamic varobj. */
993
4c37490d 994bool
b09e2c59 995varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 996{
bb5ce47a 997 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
998}
999
2f408ecb 1000std::string
de051565
MK
1001varobj_get_formatted_value (struct varobj *var,
1002 enum varobj_display_formats format)
1003{
1004 return my_value_of_variable (var, format);
1005}
1006
2f408ecb 1007std::string
8b93c638
JM
1008varobj_get_value (struct varobj *var)
1009{
de051565 1010 return my_value_of_variable (var, var->format);
8b93c638
JM
1011}
1012
1013/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1014 value of the given expression. */
1015/* Note: Invokes functions that can call error(). */
8b93c638 1016
4c37490d 1017bool
2f408ecb 1018varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1019{
34365054 1020 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1021 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1022 We need to first construct a legal expression for this -- ugh! */
1023 /* Does this cover all the bases? */
34365054 1024 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1025 int saved_input_radix = input_radix;
bbc13ae3 1026 const char *s = expression;
8b93c638 1027
340a7723 1028 gdb_assert (varobj_editable_p (var));
8b93c638 1029
581e13c1 1030 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1031 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1032 TRY
8e7b59a5 1033 {
4d01a485 1034 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1035 }
1036
492d29ea 1037 CATCH (except, RETURN_MASK_ERROR)
340a7723 1038 {
581e13c1 1039 /* We cannot proceed without a valid expression. */
4c37490d 1040 return false;
8b93c638 1041 }
492d29ea 1042 END_CATCH
8b93c638 1043
340a7723
NR
1044 /* All types that are editable must also be changeable. */
1045 gdb_assert (varobj_value_is_changeable_p (var));
1046
1047 /* The value of a changeable variable object must not be lazy. */
b4d61099 1048 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1049
1050 /* Need to coerce the input. We want to check if the
1051 value of the variable object will be different
1052 after assignment, and the first thing value_assign
1053 does is coerce the input.
1054 For example, if we are assigning an array to a pointer variable we
b021a221 1055 should compare the pointer with the array's address, not with the
340a7723
NR
1056 array's content. */
1057 value = coerce_array (value);
1058
8e7b59a5
KS
1059 /* The new value may be lazy. value_assign, or
1060 rather value_contents, will take care of this. */
492d29ea 1061 TRY
8e7b59a5 1062 {
b4d61099 1063 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1064 }
1065
492d29ea
PA
1066 CATCH (except, RETURN_MASK_ERROR)
1067 {
4c37490d 1068 return false;
492d29ea
PA
1069 }
1070 END_CATCH
8e7b59a5 1071
340a7723
NR
1072 /* If the value has changed, record it, so that next -var-update can
1073 report this change. If a variable had a value of '1', we've set it
1074 to '333' and then set again to '1', when -var-update will report this
1075 variable as changed -- because the first assignment has set the
1076 'updated' flag. There's no need to optimize that, because return value
1077 of -var-update should be considered an approximation. */
4c37490d 1078 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1079 input_radix = saved_input_radix;
4c37490d 1080 return true;
8b93c638
JM
1081}
1082
0cc7d26f
TT
1083#if HAVE_PYTHON
1084
1085/* A helper function to install a constructor function and visualizer
bb5ce47a 1086 in a varobj_dynamic. */
0cc7d26f
TT
1087
1088static void
bb5ce47a 1089install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1090 PyObject *visualizer)
1091{
1092 Py_XDECREF (var->constructor);
1093 var->constructor = constructor;
1094
1095 Py_XDECREF (var->pretty_printer);
1096 var->pretty_printer = visualizer;
1097
e5250216 1098 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1099 var->child_iter = NULL;
1100}
1101
1102/* Install the default visualizer for VAR. */
1103
1104static void
1105install_default_visualizer (struct varobj *var)
1106{
d65aec65
PM
1107 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1108 if (CPLUS_FAKE_CHILD (var))
1109 return;
1110
0cc7d26f
TT
1111 if (pretty_printing)
1112 {
1113 PyObject *pretty_printer = NULL;
1114
b4d61099 1115 if (var->value != nullptr)
0cc7d26f 1116 {
b4d61099 1117 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
0cc7d26f
TT
1118 if (! pretty_printer)
1119 {
1120 gdbpy_print_stack ();
1121 error (_("Cannot instantiate printer for default visualizer"));
1122 }
1123 }
1124
1125 if (pretty_printer == Py_None)
1126 {
1127 Py_DECREF (pretty_printer);
1128 pretty_printer = NULL;
1129 }
1130
bb5ce47a 1131 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1132 }
1133}
1134
1135/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1136 make a new object. */
1137
1138static void
1139construct_visualizer (struct varobj *var, PyObject *constructor)
1140{
1141 PyObject *pretty_printer;
1142
d65aec65
PM
1143 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1144 if (CPLUS_FAKE_CHILD (var))
1145 return;
1146
0cc7d26f
TT
1147 Py_INCREF (constructor);
1148 if (constructor == Py_None)
1149 pretty_printer = NULL;
1150 else
1151 {
b4d61099
TT
1152 pretty_printer = instantiate_pretty_printer (constructor,
1153 var->value.get ());
0cc7d26f
TT
1154 if (! pretty_printer)
1155 {
1156 gdbpy_print_stack ();
1157 Py_DECREF (constructor);
1158 constructor = Py_None;
1159 Py_INCREF (constructor);
1160 }
1161
1162 if (pretty_printer == Py_None)
1163 {
1164 Py_DECREF (pretty_printer);
1165 pretty_printer = NULL;
1166 }
1167 }
1168
bb5ce47a 1169 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1170}
1171
1172#endif /* HAVE_PYTHON */
1173
1174/* A helper function for install_new_value. This creates and installs
1175 a visualizer for VAR, if appropriate. */
1176
1177static void
1178install_new_value_visualizer (struct varobj *var)
1179{
1180#if HAVE_PYTHON
1181 /* If the constructor is None, then we want the raw value. If VAR
1182 does not have a value, just skip this. */
0646da15
TT
1183 if (!gdb_python_initialized)
1184 return;
1185
bb5ce47a 1186 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1187 {
bde7b3e3 1188 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1189
bb5ce47a 1190 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1191 install_default_visualizer (var);
1192 else
bb5ce47a 1193 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1194 }
1195#else
1196 /* Do nothing. */
1197#endif
1198}
1199
8264ba82
AG
1200/* When using RTTI to determine variable type it may be changed in runtime when
1201 the variable value is changed. This function checks whether type of varobj
1202 VAR will change when a new value NEW_VALUE is assigned and if it is so
1203 updates the type of VAR. */
1204
4c37490d 1205static bool
8264ba82
AG
1206update_type_if_necessary (struct varobj *var, struct value *new_value)
1207{
1208 if (new_value)
1209 {
1210 struct value_print_options opts;
1211
1212 get_user_print_options (&opts);
1213 if (opts.objectprint)
1214 {
2f408ecb
PA
1215 struct type *new_type = value_actual_type (new_value, 0, 0);
1216 std::string new_type_str = type_to_string (new_type);
1217 std::string curr_type_str = varobj_get_type (var);
8264ba82 1218
2f408ecb
PA
1219 /* Did the type name change? */
1220 if (curr_type_str != new_type_str)
8264ba82
AG
1221 {
1222 var->type = new_type;
1223
1224 /* This information may be not valid for a new type. */
30914ca8 1225 varobj_delete (var, 1);
ddf0ea08 1226 var->children.clear ();
8264ba82 1227 var->num_children = -1;
4c37490d 1228 return true;
8264ba82
AG
1229 }
1230 }
1231 }
1232
4c37490d 1233 return false;
8264ba82
AG
1234}
1235
4c37490d
SM
1236/* Assign a new value to a variable object. If INITIAL is true,
1237 this is the first assignment after the variable object was just
acd65feb 1238 created, or changed type. In that case, just assign the value
4c37490d
SM
1239 and return false.
1240 Otherwise, assign the new value, and return true if the value is
1241 different from the current one, false otherwise. The comparison is
581e13c1
MS
1242 done on textual representation of value. Therefore, some types
1243 need not be compared. E.g. for structures the reported value is
1244 always "{...}", so no comparison is necessary here. If the old
4c37490d 1245 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1246
1247 The VALUE parameter should not be released -- the function will
1248 take care of releasing it when needed. */
4c37490d
SM
1249static bool
1250install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1251{
4c37490d
SM
1252 bool changeable;
1253 bool need_to_fetch;
1254 bool changed = false;
1255 bool intentionally_not_fetched = false;
acd65feb 1256
acd65feb 1257 /* We need to know the varobj's type to decide if the value should
3e43a32a 1258 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1259 don't have a type. */
acd65feb 1260 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1261 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1262
1263 /* If the type has custom visualizer, we consider it to be always
581e13c1 1264 changeable. FIXME: need to make sure this behaviour will not
b6313243 1265 mess up read-sensitive values. */
bb5ce47a 1266 if (var->dynamic->pretty_printer != NULL)
4c37490d 1267 changeable = true;
b6313243 1268
acd65feb
VP
1269 need_to_fetch = changeable;
1270
b26ed50d
VP
1271 /* We are not interested in the address of references, and given
1272 that in C++ a reference is not rebindable, it cannot
1273 meaningfully change. So, get hold of the real value. */
1274 if (value)
0cc7d26f 1275 value = coerce_ref (value);
b26ed50d 1276
acd65feb
VP
1277 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1278 /* For unions, we need to fetch the value implicitly because
1279 of implementation of union member fetch. When gdb
1280 creates a value for a field and the value of the enclosing
1281 structure is not lazy, it immediately copies the necessary
1282 bytes from the enclosing values. If the enclosing value is
1283 lazy, the call to value_fetch_lazy on the field will read
1284 the data from memory. For unions, that means we'll read the
1285 same memory more than once, which is not desirable. So
1286 fetch now. */
4c37490d 1287 need_to_fetch = true;
acd65feb
VP
1288
1289 /* The new value might be lazy. If the type is changeable,
1290 that is we'll be comparing values of this type, fetch the
1291 value now. Otherwise, on the next update the old value
1292 will be lazy, which means we've lost that old value. */
1293 if (need_to_fetch && value && value_lazy (value))
1294 {
c1cc6152 1295 const struct varobj *parent = var->parent;
4c37490d 1296 bool frozen = var->frozen;
a109c7c1 1297
25d5ea92
VP
1298 for (; !frozen && parent; parent = parent->parent)
1299 frozen |= parent->frozen;
1300
1301 if (frozen && initial)
1302 {
1303 /* For variables that are frozen, or are children of frozen
1304 variables, we don't do fetch on initial assignment.
1305 For non-initial assignemnt we do the fetch, since it means we're
1306 explicitly asked to compare the new value with the old one. */
4c37490d 1307 intentionally_not_fetched = true;
25d5ea92 1308 }
8e7b59a5 1309 else
acd65feb 1310 {
8e7b59a5 1311
492d29ea 1312 TRY
8e7b59a5
KS
1313 {
1314 value_fetch_lazy (value);
1315 }
1316
492d29ea 1317 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1318 {
1319 /* Set the value to NULL, so that for the next -var-update,
1320 we don't try to compare the new value with this value,
1321 that we couldn't even read. */
1322 value = NULL;
1323 }
492d29ea 1324 END_CATCH
acd65feb 1325 }
acd65feb
VP
1326 }
1327
e848a8a5
TT
1328 /* Get a reference now, before possibly passing it to any Python
1329 code that might release it. */
b4d61099 1330 value_ref_ptr value_holder;
e848a8a5 1331 if (value != NULL)
bbfa6f00 1332 value_holder = value_ref_ptr::new_reference (value);
b6313243 1333
7a4d50bf
VP
1334 /* Below, we'll be comparing string rendering of old and new
1335 values. Don't get string rendering if the value is
1336 lazy -- if it is, the code above has decided that the value
1337 should not be fetched. */
2f408ecb 1338 std::string print_value;
bb5ce47a
YQ
1339 if (value != NULL && !value_lazy (value)
1340 && var->dynamic->pretty_printer == NULL)
99ad9427 1341 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1342
acd65feb
VP
1343 /* If the type is changeable, compare the old and the new values.
1344 If this is the initial assignment, we don't have any old value
1345 to compare with. */
7a4d50bf 1346 if (!initial && changeable)
acd65feb 1347 {
3e43a32a
MS
1348 /* If the value of the varobj was changed by -var-set-value,
1349 then the value in the varobj and in the target is the same.
1350 However, that value is different from the value that the
581e13c1 1351 varobj had after the previous -var-update. So need to the
3e43a32a 1352 varobj as changed. */
acd65feb 1353 if (var->updated)
4c37490d 1354 changed = true;
bb5ce47a 1355 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1356 {
1357 /* Try to compare the values. That requires that both
1358 values are non-lazy. */
b4d61099 1359 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1360 {
1361 /* This is a frozen varobj and the value was never read.
1362 Presumably, UI shows some "never read" indicator.
1363 Now that we've fetched the real value, we need to report
1364 this varobj as changed so that UI can show the real
1365 value. */
4c37490d 1366 changed = true;
25d5ea92
VP
1367 }
1368 else if (var->value == NULL && value == NULL)
581e13c1 1369 /* Equal. */
acd65feb
VP
1370 ;
1371 else if (var->value == NULL || value == NULL)
57e66780 1372 {
4c37490d 1373 changed = true;
57e66780 1374 }
acd65feb
VP
1375 else
1376 {
b4d61099 1377 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1378 gdb_assert (!value_lazy (value));
85265413 1379
2f408ecb
PA
1380 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1381 if (var->print_value != print_value)
4c37490d 1382 changed = true;
acd65feb
VP
1383 }
1384 }
1385 }
85265413 1386
ee342b23
VP
1387 if (!initial && !changeable)
1388 {
1389 /* For values that are not changeable, we don't compare the values.
1390 However, we want to notice if a value was not NULL and now is NULL,
1391 or vise versa, so that we report when top-level varobjs come in scope
1392 and leave the scope. */
1393 changed = (var->value != NULL) != (value != NULL);
1394 }
1395
acd65feb 1396 /* We must always keep the new value, since children depend on it. */
b4d61099 1397 var->value = value_holder;
25d5ea92 1398 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1399 var->not_fetched = true;
25d5ea92 1400 else
4c37490d
SM
1401 var->not_fetched = false;
1402 var->updated = false;
85265413 1403
0cc7d26f
TT
1404 install_new_value_visualizer (var);
1405
1406 /* If we installed a pretty-printer, re-compare the printed version
1407 to see if the variable changed. */
bb5ce47a 1408 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1409 {
b4d61099
TT
1410 print_value = varobj_value_get_print_value (var->value.get (),
1411 var->format, var);
2f408ecb
PA
1412 if ((var->print_value.empty () && !print_value.empty ())
1413 || (!var->print_value.empty () && print_value.empty ())
1414 || (!var->print_value.empty () && !print_value.empty ()
1415 && var->print_value != print_value))
4c37490d 1416 changed = true;
0cc7d26f 1417 }
0cc7d26f
TT
1418 var->print_value = print_value;
1419
b4d61099 1420 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1421
1422 return changed;
1423}
acd65feb 1424
0cc7d26f
TT
1425/* Return the requested range for a varobj. VAR is the varobj. FROM
1426 and TO are out parameters; *FROM and *TO will be set to the
1427 selected sub-range of VAR. If no range was selected using
1428 -var-set-update-range, then both will be -1. */
1429void
b09e2c59 1430varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1431{
0cc7d26f
TT
1432 *from = var->from;
1433 *to = var->to;
b6313243
TT
1434}
1435
0cc7d26f
TT
1436/* Set the selected sub-range of children of VAR to start at index
1437 FROM and end at index TO. If either FROM or TO is less than zero,
1438 this is interpreted as a request for all children. */
1439void
1440varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1441{
0cc7d26f
TT
1442 var->from = from;
1443 var->to = to;
b6313243
TT
1444}
1445
1446void
1447varobj_set_visualizer (struct varobj *var, const char *visualizer)
1448{
1449#if HAVE_PYTHON
bde7b3e3 1450 PyObject *mainmod;
b6313243 1451
0646da15
TT
1452 if (!gdb_python_initialized)
1453 return;
1454
bde7b3e3 1455 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1456
1457 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1458 gdbpy_ref<> globals
1459 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1460 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1461 globals.get (), globals.get ()));
b6313243 1462
bde7b3e3 1463 if (constructor == NULL)
b6313243
TT
1464 {
1465 gdbpy_print_stack ();
da1f2771 1466 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1467 }
1468
bde7b3e3 1469 construct_visualizer (var, constructor.get ());
b6313243 1470
0cc7d26f 1471 /* If there are any children now, wipe them. */
30914ca8 1472 varobj_delete (var, 1 /* children only */);
0cc7d26f 1473 var->num_children = -1;
b6313243 1474#else
da1f2771 1475 error (_("Python support required"));
b6313243
TT
1476#endif
1477}
1478
7a290c40 1479/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1480 true if var has mutated. In other words, if the type of
7a290c40
JB
1481 the new value is different from the type of the varobj's old
1482 value.
1483
1484 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1485
4c37490d 1486static bool
b09e2c59 1487varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1488 struct type *new_type)
1489{
1490 /* If we haven't previously computed the number of children in var,
1491 it does not matter from the front-end's perspective whether
1492 the type has mutated or not. For all intents and purposes,
1493 it has not mutated. */
1494 if (var->num_children < 0)
4c37490d 1495 return false;
7a290c40 1496
4c37490d 1497 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1498 {
1499 /* The varobj module, when installing new values, explicitly strips
1500 references, saying that we're not interested in those addresses.
1501 But detection of mutation happens before installing the new
1502 value, so our value may be a reference that we need to strip
1503 in order to remain consistent. */
1504 if (new_value != NULL)
1505 new_value = coerce_ref (new_value);
1506 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1507 }
7a290c40 1508 else
4c37490d 1509 return false;
7a290c40
JB
1510}
1511
8b93c638
JM
1512/* Update the values for a variable and its children. This is a
1513 two-pronged attack. First, re-parse the value for the root's
1514 expression to see if it's changed. Then go all the way
1515 through its children, reconstructing them and noting if they've
1516 changed.
1517
4c37490d 1518 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1519 of MI request to update this specific variable, or
581e13c1 1520 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1521 update frozen variables.
705da579 1522
581e13c1 1523 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1524 returns TYPE_CHANGED, then it has done this and VARP will be modified
1525 to point to the new varobj. */
8b93c638 1526
0604393c 1527std::vector<varobj_update_result>
4c37490d 1528varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1529{
4c37490d 1530 bool type_changed = false;
fe978cb0 1531 struct value *newobj;
0604393c
SM
1532 std::vector<varobj_update_result> stack;
1533 std::vector<varobj_update_result> result;
8b93c638 1534
25d5ea92
VP
1535 /* Frozen means frozen -- we don't check for any change in
1536 this varobj, including its going out of scope, or
1537 changing type. One use case for frozen varobjs is
1538 retaining previously evaluated expressions, and we don't
1539 want them to be reevaluated at all. */
fe978cb0 1540 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1541 return result;
8756216b
DP
1542
1543 if (!(*varp)->root->is_valid)
f7f9ae2c 1544 {
0604393c 1545 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1546 return result;
1547 }
8b93c638 1548
25d5ea92 1549 if ((*varp)->root->rootvar == *varp)
ae093f96 1550 {
0604393c 1551 varobj_update_result r (*varp);
f7f9ae2c 1552
581e13c1 1553 /* Update the root variable. value_of_root can return NULL
25d5ea92 1554 if the variable is no longer around, i.e. we stepped out of
581e13c1 1555 the frame in which a local existed. We are letting the
25d5ea92
VP
1556 value_of_root variable dispose of the varobj if the type
1557 has changed. */
fe978cb0 1558 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1559 if (update_type_if_necessary (*varp, newobj))
1560 type_changed = true;
f7f9ae2c 1561 r.varobj = *varp;
f7f9ae2c 1562 r.type_changed = type_changed;
fe978cb0 1563 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1564 r.changed = true;
ea56f9c2 1565
fe978cb0 1566 if (newobj == NULL)
f7f9ae2c 1567 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1568 r.value_installed = true;
f7f9ae2c
VP
1569
1570 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1571 {
0b4bc29a 1572 if (r.type_changed || r.changed)
0604393c
SM
1573 result.push_back (std::move (r));
1574
b6313243
TT
1575 return result;
1576 }
a109c7c1 1577
0604393c 1578 stack.push_back (std::move (r));
b20d8971 1579 }
0604393c
SM
1580 else
1581 stack.emplace_back (*varp);
8b93c638 1582
8756216b 1583 /* Walk through the children, reconstructing them all. */
0604393c 1584 while (!stack.empty ())
8b93c638 1585 {
0604393c
SM
1586 varobj_update_result r = std::move (stack.back ());
1587 stack.pop_back ();
b6313243
TT
1588 struct varobj *v = r.varobj;
1589
b6313243
TT
1590 /* Update this variable, unless it's a root, which is already
1591 updated. */
1592 if (!r.value_installed)
7a290c40
JB
1593 {
1594 struct type *new_type;
1595
fe978cb0 1596 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1597 if (update_type_if_necessary (v, newobj))
1598 r.type_changed = true;
fe978cb0
PA
1599 if (newobj)
1600 new_type = value_type (newobj);
7a290c40 1601 else
ca20d462 1602 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1603
fe978cb0 1604 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1605 {
1606 /* The children are no longer valid; delete them now.
1607 Report the fact that its type changed as well. */
30914ca8 1608 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1609 v->num_children = -1;
1610 v->to = -1;
1611 v->from = -1;
1612 v->type = new_type;
4c37490d 1613 r.type_changed = true;
7a290c40
JB
1614 }
1615
fe978cb0 1616 if (install_new_value (v, newobj, r.type_changed))
b6313243 1617 {
4c37490d
SM
1618 r.changed = true;
1619 v->updated = false;
b6313243
TT
1620 }
1621 }
1622
31f628ae
YQ
1623 /* We probably should not get children of a dynamic varobj, but
1624 for which -var-list-children was never invoked. */
1625 if (varobj_is_dynamic_p (v))
b6313243 1626 {
0604393c 1627 std::vector<varobj *> changed, type_changed, unchanged, newobj;
4c37490d 1628 bool children_changed = false;
b6313243
TT
1629
1630 if (v->frozen)
1631 continue;
1632
bd046f64 1633 if (!v->dynamic->children_requested)
0cc7d26f 1634 {
4c37490d 1635 bool dummy;
0cc7d26f
TT
1636
1637 /* If we initially did not have potential children, but
1638 now we do, consider the varobj as changed.
1639 Otherwise, if children were never requested, consider
1640 it as unchanged -- presumably, such varobj is not yet
1641 expanded in the UI, so we need not bother getting
1642 it. */
1643 if (!varobj_has_more (v, 0))
1644 {
8264ba82 1645 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1646 &dummy, false, 0, 0);
0cc7d26f 1647 if (varobj_has_more (v, 0))
4c37490d 1648 r.changed = true;
0cc7d26f
TT
1649 }
1650
1651 if (r.changed)
0604393c 1652 result.push_back (std::move (r));
0cc7d26f
TT
1653
1654 continue;
1655 }
1656
4c37490d 1657 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1658 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1659 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
4c37490d 1660 &unchanged, &children_changed, true,
0cc7d26f 1661 v->from, v->to))
b6313243 1662 {
0604393c 1663 if (children_changed || !newobj.empty ())
b6313243 1664 {
4c37490d 1665 r.children_changed = true;
0604393c 1666 r.newobj = std::move (newobj);
b6313243 1667 }
0cc7d26f
TT
1668 /* Push in reverse order so that the first child is
1669 popped from the work stack first, and so will be
1670 added to result first. This does not affect
1671 correctness, just "nicer". */
0604393c 1672 for (int i = type_changed.size () - 1; i >= 0; --i)
8264ba82 1673 {
0604393c 1674 varobj_update_result r (type_changed[i]);
8264ba82
AG
1675
1676 /* Type may change only if value was changed. */
4c37490d
SM
1677 r.changed = true;
1678 r.type_changed = true;
1679 r.value_installed = true;
0604393c
SM
1680
1681 stack.push_back (std::move (r));
8264ba82 1682 }
0604393c 1683 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1684 {
0604393c 1685 varobj_update_result r (changed[i]);
a109c7c1 1686
4c37490d
SM
1687 r.changed = true;
1688 r.value_installed = true;
0604393c
SM
1689
1690 stack.push_back (std::move (r));
b6313243 1691 }
0604393c
SM
1692 for (int i = unchanged.size () - 1; i >= 0; --i)
1693 {
1694 if (!unchanged[i]->frozen)
1695 {
1696 varobj_update_result r (unchanged[i]);
1697
4c37490d 1698 r.value_installed = true;
0cc7d26f 1699
0604393c
SM
1700 stack.push_back (std::move (r));
1701 }
1702 }
1703 if (r.changed || r.children_changed)
1704 result.push_back (std::move (r));
0cc7d26f 1705
b6313243
TT
1706 continue;
1707 }
1708 }
28335dcc
VP
1709
1710 /* Push any children. Use reverse order so that the first
1711 child is popped from the work stack first, and so
1712 will be added to result first. This does not
1713 affect correctness, just "nicer". */
0604393c 1714 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1715 {
ddf0ea08 1716 varobj *c = v->children[i];
a109c7c1 1717
28335dcc 1718 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1719 if (c != NULL && !c->frozen)
0604393c 1720 stack.emplace_back (c);
8b93c638 1721 }
b6313243
TT
1722
1723 if (r.changed || r.type_changed)
0604393c 1724 result.push_back (std::move (r));
8b93c638
JM
1725 }
1726
f7f9ae2c 1727 return result;
8b93c638 1728}
8b93c638
JM
1729
1730/* Helper functions */
1731
1732/*
1733 * Variable object construction/destruction
1734 */
1735
1736static int
4c37490d 1737delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1738{
1739 int delcount = 0;
1740
30914ca8 1741 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1742 true /* remove_from_parent_p */ );
8b93c638
JM
1743
1744 return delcount;
1745}
1746
581e13c1 1747/* Delete the variable object VAR and its children. */
8b93c638
JM
1748/* IMPORTANT NOTE: If we delete a variable which is a child
1749 and the parent is not removed we dump core. It must be always
581e13c1 1750 initially called with remove_from_parent_p set. */
8b93c638 1751static void
4c37490d
SM
1752delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1753 bool remove_from_parent_p)
8b93c638 1754{
581e13c1 1755 /* Delete any children of this variable, too. */
ddf0ea08 1756 for (varobj *child : var->children)
28335dcc 1757 {
214270ab
VP
1758 if (!child)
1759 continue;
ddf0ea08 1760
8b93c638 1761 if (!remove_from_parent_p)
28335dcc 1762 child->parent = NULL;
ddf0ea08 1763
4c37490d 1764 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1765 }
ddf0ea08 1766 var->children.clear ();
8b93c638 1767
581e13c1 1768 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1769 if (only_children_p)
1770 return;
1771
581e13c1 1772 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1773 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1774 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1775 if (!var->obj_name.empty ())
8b93c638 1776 {
8b93c638
JM
1777 *delcountp = *delcountp + 1;
1778 }
1779
581e13c1 1780 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1781 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1782 (as indicated by remove_from_parent_p) we don't bother doing an
1783 expensive list search to find the element to remove when we are
581e13c1 1784 discarding the list afterwards. */
72330bd6 1785 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1786 var->parent->children[var->index] = NULL;
72330bd6 1787
2f408ecb 1788 if (!var->obj_name.empty ())
73a93a32 1789 uninstall_variable (var);
8b93c638 1790
581e13c1 1791 /* Free memory associated with this variable. */
9e5b9d2b 1792 delete var;
8b93c638
JM
1793}
1794
581e13c1 1795/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1796static bool
fba45db2 1797install_variable (struct varobj *var)
8b93c638
JM
1798{
1799 struct vlist *cv;
1800 struct vlist *newvl;
1801 const char *chp;
1802 unsigned int index = 0;
1803 unsigned int i = 1;
1804
2f408ecb 1805 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1806 {
1807 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1808 }
1809
1810 cv = *(varobj_table + index);
2f408ecb 1811 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1812 cv = cv->next;
1813
1814 if (cv != NULL)
8a3fe4f8 1815 error (_("Duplicate variable object name"));
8b93c638 1816
581e13c1 1817 /* Add varobj to hash table. */
8d749320 1818 newvl = XNEW (struct vlist);
8b93c638
JM
1819 newvl->next = *(varobj_table + index);
1820 newvl->var = var;
1821 *(varobj_table + index) = newvl;
1822
581e13c1 1823 /* If root, add varobj to root list. */
b2c2bd75 1824 if (is_root_p (var))
8b93c638 1825 {
581e13c1 1826 /* Add to list of root variables. */
8b93c638
JM
1827 if (rootlist == NULL)
1828 var->root->next = NULL;
1829 else
1830 var->root->next = rootlist;
1831 rootlist = var->root;
8b93c638
JM
1832 }
1833
4c37490d 1834 return true; /* OK */
8b93c638
JM
1835}
1836
581e13c1 1837/* Unistall the object VAR. */
8b93c638 1838static void
fba45db2 1839uninstall_variable (struct varobj *var)
8b93c638
JM
1840{
1841 struct vlist *cv;
1842 struct vlist *prev;
1843 struct varobj_root *cr;
1844 struct varobj_root *prer;
1845 const char *chp;
1846 unsigned int index = 0;
1847 unsigned int i = 1;
1848
581e13c1 1849 /* Remove varobj from hash table. */
2f408ecb 1850 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1851 {
1852 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1853 }
1854
1855 cv = *(varobj_table + index);
1856 prev = NULL;
2f408ecb 1857 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1858 {
1859 prev = cv;
1860 cv = cv->next;
1861 }
1862
1863 if (varobjdebug)
2f408ecb 1864 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1865
1866 if (cv == NULL)
1867 {
72330bd6
AC
1868 warning
1869 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1870 var->obj_name.c_str ());
8b93c638
JM
1871 return;
1872 }
1873
1874 if (prev == NULL)
1875 *(varobj_table + index) = cv->next;
1876 else
1877 prev->next = cv->next;
1878
b8c9b27d 1879 xfree (cv);
8b93c638 1880
581e13c1 1881 /* If root, remove varobj from root list. */
b2c2bd75 1882 if (is_root_p (var))
8b93c638 1883 {
581e13c1 1884 /* Remove from list of root variables. */
8b93c638
JM
1885 if (rootlist == var->root)
1886 rootlist = var->root->next;
1887 else
1888 {
1889 prer = NULL;
1890 cr = rootlist;
1891 while ((cr != NULL) && (cr->rootvar != var))
1892 {
1893 prer = cr;
1894 cr = cr->next;
1895 }
1896 if (cr == NULL)
1897 {
8f7e195f
JB
1898 warning (_("Assertion failed: Could not find "
1899 "varobj \"%s\" in root list"),
2f408ecb 1900 var->obj_name.c_str ());
8b93c638
JM
1901 return;
1902 }
1903 if (prer == NULL)
1904 rootlist = NULL;
1905 else
1906 prer->next = cr->next;
1907 }
8b93c638
JM
1908 }
1909
1910}
1911
837ce252
SM
1912/* Create and install a child of the parent of the given name.
1913
1914 The created VAROBJ takes ownership of the allocated NAME. */
1915
8b93c638 1916static struct varobj *
2f408ecb 1917create_child (struct varobj *parent, int index, std::string &name)
b6313243 1918{
5a2e0d6e
YQ
1919 struct varobj_item item;
1920
2f408ecb 1921 std::swap (item.name, name);
5a2e0d6e
YQ
1922 item.value = value_of_child (parent, index);
1923
1924 return create_child_with_value (parent, index, &item);
b6313243
TT
1925}
1926
1927static struct varobj *
5a2e0d6e
YQ
1928create_child_with_value (struct varobj *parent, int index,
1929 struct varobj_item *item)
8b93c638 1930{
9e5b9d2b 1931 varobj *child = new varobj (parent->root);
8b93c638 1932
5e5ac9a5 1933 /* NAME is allocated by caller. */
2f408ecb 1934 std::swap (child->name, item->name);
8b93c638 1935 child->index = index;
8b93c638 1936 child->parent = parent;
85254831 1937
99ad9427 1938 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1939 child->obj_name = string_printf ("%s.%d_anonymous",
1940 parent->obj_name.c_str (), index);
85254831 1941 else
2f408ecb
PA
1942 child->obj_name = string_printf ("%s.%s",
1943 parent->obj_name.c_str (),
1944 child->name.c_str ());
85254831 1945
8b93c638
JM
1946 install_variable (child);
1947
acd65feb
VP
1948 /* Compute the type of the child. Must do this before
1949 calling install_new_value. */
5a2e0d6e 1950 if (item->value != NULL)
acd65feb 1951 /* If the child had no evaluation errors, var->value
581e13c1 1952 will be non-NULL and contain a valid type. */
5a2e0d6e 1953 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1954 else
581e13c1 1955 /* Otherwise, we must compute the type. */
ca20d462
YQ
1956 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1957 child->index);
5a2e0d6e 1958 install_new_value (child, item->value, 1);
acd65feb 1959
8b93c638
JM
1960 return child;
1961}
8b93c638
JM
1962\f
1963
1964/*
1965 * Miscellaneous utility functions.
1966 */
1967
581e13c1 1968/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1969varobj::varobj (varobj_root *root_)
1970: root (root_), dynamic (new varobj_dynamic)
8b93c638 1971{
8b93c638
JM
1972}
1973
581e13c1 1974/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1975
1976varobj::~varobj ()
8b93c638 1977{
9e5b9d2b
SM
1978 varobj *var = this;
1979
d452c4bc 1980#if HAVE_PYTHON
bb5ce47a 1981 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1982 {
bde7b3e3 1983 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1984
1985 Py_XDECREF (var->dynamic->constructor);
1986 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1987 }
1988#endif
1989
827f100c
YQ
1990 varobj_iter_delete (var->dynamic->child_iter);
1991 varobj_clear_saved_item (var->dynamic);
36746093 1992
b2c2bd75 1993 if (is_root_p (var))
4d01a485 1994 delete var->root;
8b93c638 1995
9e5b9d2b 1996 delete var->dynamic;
74b7792f
AC
1997}
1998
6e2a9270
VP
1999/* Return the type of the value that's stored in VAR,
2000 or that would have being stored there if the
581e13c1 2001 value were accessible.
6e2a9270
VP
2002
2003 This differs from VAR->type in that VAR->type is always
2004 the true type of the expession in the source language.
2005 The return value of this function is the type we're
2006 actually storing in varobj, and using for displaying
2007 the values and for comparing previous and new values.
2008
2009 For example, top-level references are always stripped. */
99ad9427 2010struct type *
b09e2c59 2011varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2012{
2013 struct type *type;
2014
b4d61099
TT
2015 if (var->value != nullptr)
2016 type = value_type (var->value.get ());
6e2a9270
VP
2017 else
2018 type = var->type;
2019
2020 type = check_typedef (type);
2021
aa006118 2022 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2023 type = get_target_type (type);
2024
2025 type = check_typedef (type);
2026
2027 return type;
2028}
2029
8b93c638 2030/* What is the default display for this variable? We assume that
581e13c1 2031 everything is "natural". Any exceptions? */
8b93c638 2032static enum varobj_display_formats
fba45db2 2033variable_default_display (struct varobj *var)
8b93c638
JM
2034{
2035 return FORMAT_NATURAL;
2036}
2037
8b93c638
JM
2038/*
2039 * Language-dependencies
2040 */
2041
2042/* Common entry points */
2043
8b93c638
JM
2044/* Return the number of children for a given variable.
2045 The result of this function is defined by the language
581e13c1 2046 implementation. The number of children returned by this function
8b93c638 2047 is the number of children that the user will see in the variable
581e13c1 2048 display. */
8b93c638 2049static int
b09e2c59 2050number_of_children (const struct varobj *var)
8b93c638 2051{
ca20d462 2052 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2053}
2054
2f408ecb
PA
2055/* What is the expression for the root varobj VAR? */
2056
2057static std::string
b09e2c59 2058name_of_variable (const struct varobj *var)
8b93c638 2059{
ca20d462 2060 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2061}
2062
2f408ecb
PA
2063/* What is the name of the INDEX'th child of VAR? */
2064
2065static std::string
fba45db2 2066name_of_child (struct varobj *var, int index)
8b93c638 2067{
ca20d462 2068 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2069}
2070
2213e2be 2071/* If frame associated with VAR can be found, switch
4c37490d 2072 to it and return true. Otherwise, return false. */
2213e2be 2073
4c37490d 2074static bool
b09e2c59 2075check_scope (const struct varobj *var)
2213e2be
YQ
2076{
2077 struct frame_info *fi;
4c37490d 2078 bool scope;
2213e2be
YQ
2079
2080 fi = frame_find_by_id (var->root->frame);
2081 scope = fi != NULL;
2082
2083 if (fi)
2084 {
2085 CORE_ADDR pc = get_frame_pc (fi);
2086
2087 if (pc < BLOCK_START (var->root->valid_block) ||
2088 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2089 scope = false;
2213e2be
YQ
2090 else
2091 select_frame (fi);
2092 }
2093 return scope;
2094}
2095
2096/* Helper function to value_of_root. */
2097
2098static struct value *
2099value_of_root_1 (struct varobj **var_handle)
2100{
2101 struct value *new_val = NULL;
2102 struct varobj *var = *var_handle;
4c37490d 2103 bool within_scope = false;
2213e2be
YQ
2104
2105 /* Only root variables can be updated... */
2106 if (!is_root_p (var))
2107 /* Not a root var. */
2108 return NULL;
2109
5ed8105e 2110 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2111
2112 /* Determine whether the variable is still around. */
2113 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2114 within_scope = true;
2213e2be
YQ
2115 else if (var->root->thread_id == 0)
2116 {
2117 /* The program was single-threaded when the variable object was
2118 created. Technically, it's possible that the program became
2119 multi-threaded since then, but we don't support such
2120 scenario yet. */
2121 within_scope = check_scope (var);
2122 }
2123 else
2124 {
00431a78 2125 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2126
00431a78 2127 if (thread != NULL)
2213e2be 2128 {
00431a78 2129 switch_to_thread (thread);
2213e2be
YQ
2130 within_scope = check_scope (var);
2131 }
2132 }
2133
2134 if (within_scope)
2135 {
2213e2be
YQ
2136
2137 /* We need to catch errors here, because if evaluate
2138 expression fails we want to just return NULL. */
492d29ea 2139 TRY
2213e2be 2140 {
4d01a485 2141 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2142 }
492d29ea
PA
2143 CATCH (except, RETURN_MASK_ERROR)
2144 {
2145 }
2146 END_CATCH
2213e2be
YQ
2147 }
2148
2213e2be
YQ
2149 return new_val;
2150}
2151
a5defcdc
VP
2152/* What is the ``struct value *'' of the root variable VAR?
2153 For floating variable object, evaluation can get us a value
2154 of different type from what is stored in varobj already. In
2155 that case:
2156 - *type_changed will be set to 1
2157 - old varobj will be freed, and new one will be
2158 created, with the same name.
2159 - *var_handle will be set to the new varobj
2160 Otherwise, *type_changed will be set to 0. */
30b28db1 2161static struct value *
4c37490d 2162value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2163{
73a93a32
JI
2164 struct varobj *var;
2165
2166 if (var_handle == NULL)
2167 return NULL;
2168
2169 var = *var_handle;
2170
2171 /* This should really be an exception, since this should
581e13c1 2172 only get called with a root variable. */
73a93a32 2173
b2c2bd75 2174 if (!is_root_p (var))
73a93a32
JI
2175 return NULL;
2176
a5defcdc 2177 if (var->root->floating)
73a93a32
JI
2178 {
2179 struct varobj *tmp_var;
6225abfa 2180
2f408ecb 2181 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2182 USE_SELECTED_FRAME);
2183 if (tmp_var == NULL)
2184 {
2185 return NULL;
2186 }
2f408ecb
PA
2187 std::string old_type = varobj_get_type (var);
2188 std::string new_type = varobj_get_type (tmp_var);
2189 if (old_type == new_type)
73a93a32 2190 {
fcacd99f
VP
2191 /* The expression presently stored inside var->root->exp
2192 remembers the locations of local variables relatively to
2193 the frame where the expression was created (in DWARF location
2194 button, for example). Naturally, those locations are not
2195 correct in other frames, so update the expression. */
2196
4d01a485 2197 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2198
30914ca8 2199 varobj_delete (tmp_var, 0);
73a93a32
JI
2200 *type_changed = 0;
2201 }
2202 else
2203 {
2f408ecb 2204 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2205 tmp_var->from = var->from;
2206 tmp_var->to = var->to;
30914ca8 2207 varobj_delete (var, 0);
a5defcdc 2208
73a93a32
JI
2209 install_variable (tmp_var);
2210 *var_handle = tmp_var;
705da579 2211 var = *var_handle;
4c37490d 2212 *type_changed = true;
73a93a32
JI
2213 }
2214 }
2215 else
2216 {
2217 *type_changed = 0;
2218 }
2219
7a290c40
JB
2220 {
2221 struct value *value;
2222
2213e2be 2223 value = value_of_root_1 (var_handle);
7a290c40
JB
2224 if (var->value == NULL || value == NULL)
2225 {
2226 /* For root varobj-s, a NULL value indicates a scoping issue.
2227 So, nothing to do in terms of checking for mutations. */
2228 }
2229 else if (varobj_value_has_mutated (var, value, value_type (value)))
2230 {
2231 /* The type has mutated, so the children are no longer valid.
2232 Just delete them, and tell our caller that the type has
2233 changed. */
30914ca8 2234 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2235 var->num_children = -1;
2236 var->to = -1;
2237 var->from = -1;
4c37490d 2238 *type_changed = true;
7a290c40
JB
2239 }
2240 return value;
2241 }
8b93c638
JM
2242}
2243
581e13c1 2244/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2245static struct value *
c1cc6152 2246value_of_child (const struct varobj *parent, int index)
8b93c638 2247{
30b28db1 2248 struct value *value;
8b93c638 2249
ca20d462 2250 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2251
8b93c638
JM
2252 return value;
2253}
2254
581e13c1 2255/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2256static std::string
de051565 2257my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2258{
8756216b 2259 if (var->root->is_valid)
0cc7d26f 2260 {
bb5ce47a 2261 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2262 return varobj_value_get_print_value (var->value.get (), var->format,
2263 var);
ca20d462 2264 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2265 }
8756216b 2266 else
2f408ecb 2267 return std::string ();
8b93c638
JM
2268}
2269
99ad9427
YQ
2270void
2271varobj_formatted_print_options (struct value_print_options *opts,
2272 enum varobj_display_formats format)
2273{
2274 get_formatted_print_options (opts, format_code[(int) format]);
2275 opts->deref_ref = 0;
0625771b 2276 opts->raw = !pretty_printing;
99ad9427
YQ
2277}
2278
2f408ecb 2279std::string
99ad9427
YQ
2280varobj_value_get_print_value (struct value *value,
2281 enum varobj_display_formats format,
b09e2c59 2282 const struct varobj *var)
85265413 2283{
79a45b7d 2284 struct value_print_options opts;
be759fcf
PM
2285 struct type *type = NULL;
2286 long len = 0;
1eba6383 2287 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2288 /* Initialize it just to avoid a GCC false warning. */
2289 CORE_ADDR str_addr = 0;
4c37490d 2290 bool string_print = false;
57e66780
DJ
2291
2292 if (value == NULL)
2f408ecb 2293 return std::string ();
57e66780 2294
d7e74731 2295 string_file stb;
2f408ecb
PA
2296 std::string thevalue;
2297
b6313243 2298#if HAVE_PYTHON
0646da15
TT
2299 if (gdb_python_initialized)
2300 {
bb5ce47a 2301 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2302
68cdc557 2303 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2304
0646da15
TT
2305 if (value_formatter)
2306 {
2307 /* First check to see if we have any children at all. If so,
2308 we simply return {...}. */
2309 if (dynamic_varobj_has_child_method (var))
d7e74731 2310 return "{...}";
b6313243 2311
0646da15
TT
2312 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2313 {
2314 struct value *replacement;
0646da15 2315
7780f186
TT
2316 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2317 &replacement,
2318 &stb));
0646da15
TT
2319
2320 /* If we have string like output ... */
68cdc557 2321 if (output != NULL)
0646da15 2322 {
0646da15
TT
2323 /* If this is a lazy string, extract it. For lazy
2324 strings we always print as a string, so set
2325 string_print. */
68cdc557 2326 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2327 {
68cdc557
TT
2328 gdbpy_extract_lazy_string (output.get (), &str_addr,
2329 &type, &len, &encoding);
4c37490d 2330 string_print = true;
0646da15
TT
2331 }
2332 else
2333 {
2334 /* If it is a regular (non-lazy) string, extract
2335 it and copy the contents into THEVALUE. If the
2336 hint says to print it as a string, set
2337 string_print. Otherwise just return the extracted
2338 string as a value. */
2339
9b972014 2340 gdb::unique_xmalloc_ptr<char> s
68cdc557 2341 = python_string_to_target_string (output.get ());
0646da15
TT
2342
2343 if (s)
2344 {
e3821cca 2345 struct gdbarch *gdbarch;
0646da15 2346
9b972014
TT
2347 gdb::unique_xmalloc_ptr<char> hint
2348 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2349 if (hint)
2350 {
9b972014 2351 if (!strcmp (hint.get (), "string"))
4c37490d 2352 string_print = true;
0646da15
TT
2353 }
2354
9b972014 2355 thevalue = std::string (s.get ());
2f408ecb 2356 len = thevalue.size ();
e3821cca 2357 gdbarch = get_type_arch (value_type (value));
0646da15 2358 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2359
2360 if (!string_print)
d7e74731 2361 return thevalue;
0646da15
TT
2362 }
2363 else
2364 gdbpy_print_stack ();
2365 }
2366 }
2367 /* If the printer returned a replacement value, set VALUE
2368 to REPLACEMENT. If there is not a replacement value,
2369 just use the value passed to this function. */
2370 if (replacement)
2371 value = replacement;
2372 }
2373 }
2374 }
b6313243
TT
2375#endif
2376
99ad9427 2377 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2378
2379 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2380 if (!thevalue.empty ())
d7e74731 2381 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2382 len, encoding.get (), 0, &opts);
09ca9e2e 2383 else if (string_print)
00bd41d6
PM
2384 /* Otherwise, if string_print is set, and it is not a regular
2385 string, it is a lazy string. */
d7e74731 2386 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2387 else
00bd41d6 2388 /* All other cases. */
d7e74731 2389 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2390
d7e74731 2391 return std::move (stb.string ());
85265413
NR
2392}
2393
4c37490d 2394bool
b09e2c59 2395varobj_editable_p (const struct varobj *var)
340a7723
NR
2396{
2397 struct type *type;
340a7723 2398
b4d61099
TT
2399 if (!(var->root->is_valid && var->value != nullptr
2400 && VALUE_LVAL (var->value.get ())))
4c37490d 2401 return false;
340a7723 2402
99ad9427 2403 type = varobj_get_value_type (var);
340a7723
NR
2404
2405 switch (TYPE_CODE (type))
2406 {
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_ARRAY:
2410 case TYPE_CODE_FUNC:
2411 case TYPE_CODE_METHOD:
4c37490d 2412 return false;
340a7723
NR
2413 break;
2414
2415 default:
4c37490d 2416 return true;
340a7723
NR
2417 break;
2418 }
2419}
2420
d32cafc7 2421/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2422
4c37490d 2423bool
b09e2c59 2424varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2425{
ca20d462 2426 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2427}
2428
4c37490d 2429/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2430 selected frame, and not bound to thread/frame. Such variable objects
2431 are created using '@' as frame specifier to -var-create. */
4c37490d 2432bool
b09e2c59 2433varobj_floating_p (const struct varobj *var)
5a413362
VP
2434{
2435 return var->root->floating;
2436}
2437
d32cafc7
JB
2438/* Implement the "value_is_changeable_p" varobj callback for most
2439 languages. */
2440
4c37490d 2441bool
b09e2c59 2442varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2443{
4c37490d 2444 bool r;
d32cafc7
JB
2445 struct type *type;
2446
2447 if (CPLUS_FAKE_CHILD (var))
4c37490d 2448 return false;
d32cafc7 2449
99ad9427 2450 type = varobj_get_value_type (var);
d32cafc7
JB
2451
2452 switch (TYPE_CODE (type))
2453 {
2454 case TYPE_CODE_STRUCT:
2455 case TYPE_CODE_UNION:
2456 case TYPE_CODE_ARRAY:
4c37490d 2457 r = false;
d32cafc7
JB
2458 break;
2459
2460 default:
4c37490d 2461 r = true;
d32cafc7
JB
2462 }
2463
2464 return r;
2465}
2466
54333c3b
JK
2467/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2468 with an arbitrary caller supplied DATA pointer. */
2469
2470void
2471all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2472{
2473 struct varobj_root *var_root, *var_root_next;
2474
2475 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2476
2477 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2478 {
2479 var_root_next = var_root->next;
2480
2481 (*func) (var_root->rootvar, data);
2482 }
2483}
8756216b 2484
54333c3b 2485/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2486 defined on globals. It is a helper for varobj_invalidate.
2487
2488 This function is called after changing the symbol file, in this case the
2489 pointers to "struct type" stored by the varobj are no longer valid. All
2490 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2491
54333c3b
JK
2492static void
2493varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2494{
4e969b4f
AB
2495 /* global and floating var must be re-evaluated. */
2496 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2497 {
54333c3b 2498 struct varobj *tmp_var;
2dbd25e5 2499
54333c3b
JK
2500 /* Try to create a varobj with same expression. If we succeed
2501 replace the old varobj, otherwise invalidate it. */
2f408ecb 2502 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2503 USE_CURRENT_FRAME);
2504 if (tmp_var != NULL)
2505 {
2f408ecb 2506 tmp_var->obj_name = var->obj_name;
30914ca8 2507 varobj_delete (var, 0);
54333c3b 2508 install_variable (tmp_var);
2dbd25e5 2509 }
54333c3b 2510 else
4c37490d 2511 var->root->is_valid = false;
2dbd25e5 2512 }
54333c3b 2513 else /* locals must be invalidated. */
4c37490d 2514 var->root->is_valid = false;
54333c3b
JK
2515}
2516
2517/* Invalidate the varobjs that are tied to locals and re-create the ones that
2518 are defined on globals.
2519 Invalidated varobjs will be always printed in_scope="invalid". */
2520
2521void
2522varobj_invalidate (void)
2523{
2524 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2525}
481695ed 2526
1c3569d4
MR
2527void
2528_initialize_varobj (void)
2529{
8d749320 2530 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2531
2532 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2533 &varobjdebug,
2534 _("Set varobj debugging."),
2535 _("Show varobj debugging."),
2536 _("When non-zero, varobj debugging is enabled."),
2537 NULL, show_varobjdebug,
2538 &setdebuglist, &showdebuglist);
2539}
This page took 2.105086 seconds and 4 git commands to generate.