New field 'la_natural_name' in struct language_defn
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
8acc9f48 3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
8b93c638 36
b6313243
TT
37#if HAVE_PYTHON
38#include "python/python.h"
39#include "python/python-internal.h"
50389644
PA
40#else
41typedef int PyObject;
b6313243
TT
42#endif
43
8b93c638
JM
44/* Non-zero if we want to see trace of varobj level stuff. */
45
ccce17b0 46unsigned int varobjdebug = 0;
920d2a44
AC
47static void
48show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50{
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52}
8b93c638 53
581e13c1 54/* String representations of gdb's format codes. */
8b93c638 55char *varobj_format_string[] =
72330bd6 56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 57
581e13c1 58/* String representations of gdb's known languages. */
c573f273 59char *varobj_language_string[] = { "C", "C++", "Java" };
8b93c638 60
0cc7d26f
TT
61/* True if we want to allow Python-based pretty-printing. */
62static int pretty_printing = 0;
63
64void
65varobj_enable_pretty_printing (void)
66{
67 pretty_printing = 1;
68}
69
8b93c638
JM
70/* Data structures */
71
72/* Every root variable has one of these structures saved in its
581e13c1 73 varobj. Members which must be free'd are noted. */
8b93c638 74struct varobj_root
72330bd6 75{
8b93c638 76
581e13c1 77 /* Alloc'd expression for this parent. */
72330bd6 78 struct expression *exp;
8b93c638 79
581e13c1 80 /* Block for which this expression is valid. */
270140bd 81 const struct block *valid_block;
8b93c638 82
44a67aa7
VP
83 /* The frame for this expression. This field is set iff valid_block is
84 not NULL. */
e64d9b3d 85 struct frame_id frame;
8b93c638 86
c5b48eac 87 /* The thread ID that this varobj_root belong to. This field
581e13c1 88 is only valid if valid_block is not NULL.
c5b48eac
VP
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
91 was created. */
92 int thread_id;
93
a5defcdc
VP
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
581e13c1 96 always updated in the specific scope/thread/frame. */
a5defcdc 97 int floating;
73a93a32 98
8756216b
DP
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
101 int is_valid;
102
99ad9427
YQ
103 /* Language-related operations for this variable and its
104 children. */
ca20d462 105 const struct lang_varobj_ops *lang_ops;
8b93c638 106
581e13c1 107 /* The varobj for this root node. */
72330bd6 108 struct varobj *rootvar;
8b93c638 109
72330bd6
AC
110 /* Next root variable */
111 struct varobj_root *next;
112};
8b93c638 113
bb5ce47a 114/* Dynamic part of varobj. */
8b93c638 115
bb5ce47a
YQ
116struct varobj_dynamic
117{
b6313243
TT
118 /* Whether the children of this varobj were requested. This field is
119 used to decide if dynamic varobj should recompute their children.
120 In the event that the frontend never asked for the children, we
121 can avoid that. */
122 int children_requested;
123
0cc7d26f
TT
124 /* The pretty-printer constructor. If NULL, then the default
125 pretty-printer will be looked up. If None, then no
126 pretty-printer will be installed. */
127 PyObject *constructor;
128
b6313243
TT
129 /* The pretty-printer that has been constructed. If NULL, then a
130 new printer object is needed, and one will be constructed. */
131 PyObject *pretty_printer;
0cc7d26f
TT
132
133 /* The iterator returned by the printer's 'children' method, or NULL
134 if not available. */
135 PyObject *child_iter;
136
137 /* We request one extra item from the iterator, so that we can
138 report to the caller whether there are more items than we have
139 already reported. However, we don't want to install this value
140 when we read it, because that will mess up future updates. So,
141 we stash it here instead. */
142 PyObject *saved_item;
72330bd6 143};
8b93c638 144
8b93c638 145struct cpstack
72330bd6
AC
146{
147 char *name;
148 struct cpstack *next;
149};
8b93c638
JM
150
151/* A list of varobjs */
152
153struct vlist
72330bd6
AC
154{
155 struct varobj *var;
156 struct vlist *next;
157};
8b93c638
JM
158
159/* Private function prototypes */
160
581e13c1 161/* Helper functions for the above subcommands. */
8b93c638 162
a14ed312 163static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 164
a14ed312
KB
165static void delete_variable_1 (struct cpstack **, int *,
166 struct varobj *, int, int);
8b93c638 167
a14ed312 168static int install_variable (struct varobj *);
8b93c638 169
a14ed312 170static void uninstall_variable (struct varobj *);
8b93c638 171
a14ed312 172static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 173
b6313243 174static struct varobj *
5e5ac9a5 175create_child_with_value (struct varobj *parent, int index, char *name,
b6313243
TT
176 struct value *value);
177
8b93c638
JM
178/* Utility routines */
179
a14ed312 180static struct varobj *new_variable (void);
8b93c638 181
a14ed312 182static struct varobj *new_root_variable (void);
8b93c638 183
a14ed312 184static void free_variable (struct varobj *var);
8b93c638 185
74b7792f
AC
186static struct cleanup *make_cleanup_free_variable (struct varobj *var);
187
a14ed312 188static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 189
a14ed312 190static void cppush (struct cpstack **pstack, char *name);
8b93c638 191
a14ed312 192static char *cppop (struct cpstack **pstack);
8b93c638 193
8264ba82
AG
194static int update_type_if_necessary (struct varobj *var,
195 struct value *new_value);
196
acd65feb
VP
197static int install_new_value (struct varobj *var, struct value *value,
198 int initial);
199
581e13c1 200/* Language-specific routines. */
8b93c638 201
a14ed312 202static enum varobj_languages variable_language (struct varobj *var);
8b93c638 203
a14ed312 204static int number_of_children (struct varobj *);
8b93c638 205
a14ed312 206static char *name_of_variable (struct varobj *);
8b93c638 207
a14ed312 208static char *name_of_child (struct varobj *, int);
8b93c638 209
30b28db1 210static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 211
30b28db1 212static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 213
de051565
MK
214static char *my_value_of_variable (struct varobj *var,
215 enum varobj_display_formats format);
8b93c638 216
b2c2bd75 217static int is_root_p (struct varobj *var);
8b93c638 218
d8b65138
JK
219#if HAVE_PYTHON
220
9a1edae6 221static struct varobj *varobj_add_child (struct varobj *var,
5e5ac9a5 222 char *name,
9a1edae6 223 struct value *value);
b6313243 224
d8b65138
JK
225#endif /* HAVE_PYTHON */
226
581e13c1 227/* Array of known source language routines. */
99ad9427
YQ
228static const struct lang_varobj_ops *languages[vlang_end] = {
229 &c_varobj_ops,
230 &cplus_varobj_ops,
231 &java_varobj_ops,
232 &ada_varobj_ops,
72330bd6 233};
8b93c638
JM
234
235/* Private data */
236
581e13c1 237/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 238static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 239
581e13c1 240/* Header of the list of root variable objects. */
8b93c638 241static struct varobj_root *rootlist;
8b93c638 242
581e13c1
MS
243/* Prime number indicating the number of buckets in the hash table. */
244/* A prime large enough to avoid too many colisions. */
8b93c638
JM
245#define VAROBJ_TABLE_SIZE 227
246
581e13c1 247/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
248static struct vlist **varobj_table;
249
8b93c638
JM
250\f
251
252/* API Implementation */
b2c2bd75
VP
253static int
254is_root_p (struct varobj *var)
255{
256 return (var->root->rootvar == var);
257}
8b93c638 258
d452c4bc
UW
259#ifdef HAVE_PYTHON
260/* Helper function to install a Python environment suitable for
261 use during operations on VAR. */
70221824 262static struct cleanup *
d452c4bc
UW
263varobj_ensure_python_env (struct varobj *var)
264{
265 return ensure_python_env (var->root->exp->gdbarch,
266 var->root->exp->language_defn);
267}
268#endif
269
581e13c1 270/* Creates a varobj (not its children). */
8b93c638 271
7d8547c9
AC
272/* Return the full FRAME which corresponds to the given CORE_ADDR
273 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
274
275static struct frame_info *
276find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
277{
278 struct frame_info *frame = NULL;
279
280 if (frame_addr == (CORE_ADDR) 0)
281 return NULL;
282
9d49bdc2
PA
283 for (frame = get_current_frame ();
284 frame != NULL;
285 frame = get_prev_frame (frame))
7d8547c9 286 {
1fac167a
UW
287 /* The CORE_ADDR we get as argument was parsed from a string GDB
288 output as $fp. This output got truncated to gdbarch_addr_bit.
289 Truncate the frame base address in the same manner before
290 comparing it against our argument. */
291 CORE_ADDR frame_base = get_frame_base_address (frame);
292 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 293
1fac167a
UW
294 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
295 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
296
297 if (frame_base == frame_addr)
7d8547c9
AC
298 return frame;
299 }
9d49bdc2
PA
300
301 return NULL;
7d8547c9
AC
302}
303
8b93c638
JM
304struct varobj *
305varobj_create (char *objname,
72330bd6 306 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
307{
308 struct varobj *var;
8b93c638
JM
309 struct cleanup *old_chain;
310
581e13c1 311 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 312 var = new_root_variable ();
74b7792f 313 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
314
315 if (expression != NULL)
316 {
e4195b40 317 struct frame_info *fi;
35633fef 318 struct frame_id old_id = null_frame_id;
e4195b40 319 struct block *block;
bbc13ae3 320 const char *p;
e55dccf0 321 struct value *value = NULL;
8e7b59a5 322 volatile struct gdb_exception except;
1bb9788d 323 CORE_ADDR pc;
8b93c638 324
9d49bdc2
PA
325 /* Parse and evaluate the expression, filling in as much of the
326 variable's data as possible. */
327
328 if (has_stack_frames ())
329 {
581e13c1 330 /* Allow creator to specify context of variable. */
9d49bdc2
PA
331 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
332 fi = get_selected_frame (NULL);
333 else
334 /* FIXME: cagney/2002-11-23: This code should be doing a
335 lookup using the frame ID and not just the frame's
336 ``address''. This, of course, means an interface
337 change. However, with out that interface change ISAs,
338 such as the ia64 with its two stacks, won't work.
339 Similar goes for the case where there is a frameless
340 function. */
341 fi = find_frame_addr_in_frame_chain (frame);
342 }
8b93c638 343 else
9d49bdc2 344 fi = NULL;
8b93c638 345
581e13c1 346 /* frame = -2 means always use selected frame. */
73a93a32 347 if (type == USE_SELECTED_FRAME)
a5defcdc 348 var->root->floating = 1;
73a93a32 349
1bb9788d 350 pc = 0;
8b93c638
JM
351 block = NULL;
352 if (fi != NULL)
1bb9788d
TT
353 {
354 block = get_frame_block (fi, 0);
355 pc = get_frame_pc (fi);
356 }
8b93c638
JM
357
358 p = expression;
359 innermost_block = NULL;
73a93a32 360 /* Wrap the call to parse expression, so we can
581e13c1 361 return a sensible error. */
8e7b59a5
KS
362 TRY_CATCH (except, RETURN_MASK_ERROR)
363 {
1bb9788d 364 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
365 }
366
367 if (except.reason < 0)
73a93a32 368 {
f748fb40 369 do_cleanups (old_chain);
73a93a32
JI
370 return NULL;
371 }
8b93c638 372
581e13c1 373 /* Don't allow variables to be created for types. */
608b4967
TT
374 if (var->root->exp->elts[0].opcode == OP_TYPE
375 || var->root->exp->elts[0].opcode == OP_TYPEOF
376 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
377 {
378 do_cleanups (old_chain);
bc8332bb
AC
379 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
380 " as an expression.\n");
8b93c638
JM
381 return NULL;
382 }
383
384 var->format = variable_default_display (var);
385 var->root->valid_block = innermost_block;
1b36a34b 386 var->name = xstrdup (expression);
02142340 387 /* For a root var, the name and the expr are the same. */
1b36a34b 388 var->path_expr = xstrdup (expression);
8b93c638
JM
389
390 /* When the frame is different from the current frame,
391 we must select the appropriate frame before parsing
392 the expression, otherwise the value will not be current.
581e13c1 393 Since select_frame is so benign, just call it for all cases. */
4e22772d 394 if (innermost_block)
8b93c638 395 {
4e22772d
JK
396 /* User could specify explicit FRAME-ADDR which was not found but
397 EXPRESSION is frame specific and we would not be able to evaluate
398 it correctly next time. With VALID_BLOCK set we must also set
399 FRAME and THREAD_ID. */
400 if (fi == NULL)
401 error (_("Failed to find the specified frame"));
402
7a424e99 403 var->root->frame = get_frame_id (fi);
c5b48eac 404 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 405 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 406 select_frame (fi);
8b93c638
JM
407 }
408
340a7723 409 /* We definitely need to catch errors here.
8b93c638 410 If evaluate_expression succeeds we got the value we wanted.
581e13c1 411 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
412 TRY_CATCH (except, RETURN_MASK_ERROR)
413 {
414 value = evaluate_expression (var->root->exp);
415 }
416
417 if (except.reason < 0)
e55dccf0
VP
418 {
419 /* Error getting the value. Try to at least get the
420 right type. */
421 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 422
e55dccf0
VP
423 var->type = value_type (type_only_value);
424 }
8264ba82
AG
425 else
426 {
427 int real_type_found = 0;
428
429 var->type = value_actual_type (value, 0, &real_type_found);
430 if (real_type_found)
431 value = value_cast (var->type, value);
432 }
acd65feb 433
8b93c638 434 /* Set language info */
ca20d462 435 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 436
d32cafc7
JB
437 install_new_value (var, value, 1 /* Initial assignment */);
438
581e13c1 439 /* Set ourselves as our root. */
8b93c638
JM
440 var->root->rootvar = var;
441
581e13c1 442 /* Reset the selected frame. */
35633fef
JK
443 if (frame_id_p (old_id))
444 select_frame (frame_find_by_id (old_id));
8b93c638
JM
445 }
446
73a93a32 447 /* If the variable object name is null, that means this
581e13c1 448 is a temporary variable, so don't install it. */
73a93a32
JI
449
450 if ((var != NULL) && (objname != NULL))
8b93c638 451 {
1b36a34b 452 var->obj_name = xstrdup (objname);
8b93c638
JM
453
454 /* If a varobj name is duplicated, the install will fail so
581e13c1 455 we must cleanup. */
8b93c638
JM
456 if (!install_variable (var))
457 {
458 do_cleanups (old_chain);
459 return NULL;
460 }
461 }
462
463 discard_cleanups (old_chain);
464 return var;
465}
466
581e13c1 467/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
468
469char *
470varobj_gen_name (void)
471{
472 static int id = 0;
e64d9b3d 473 char *obj_name;
8b93c638 474
581e13c1 475 /* Generate a name for this object. */
8b93c638 476 id++;
b435e160 477 obj_name = xstrprintf ("var%d", id);
8b93c638 478
e64d9b3d 479 return obj_name;
8b93c638
JM
480}
481
61d8f275
JK
482/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
483 error if OBJNAME cannot be found. */
8b93c638
JM
484
485struct varobj *
486varobj_get_handle (char *objname)
487{
488 struct vlist *cv;
489 const char *chp;
490 unsigned int index = 0;
491 unsigned int i = 1;
492
493 for (chp = objname; *chp; chp++)
494 {
495 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
496 }
497
498 cv = *(varobj_table + index);
499 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
500 cv = cv->next;
501
502 if (cv == NULL)
8a3fe4f8 503 error (_("Variable object not found"));
8b93c638
JM
504
505 return cv->var;
506}
507
581e13c1 508/* Given the handle, return the name of the object. */
8b93c638
JM
509
510char *
511varobj_get_objname (struct varobj *var)
512{
513 return var->obj_name;
514}
515
581e13c1 516/* Given the handle, return the expression represented by the object. */
8b93c638
JM
517
518char *
519varobj_get_expression (struct varobj *var)
520{
521 return name_of_variable (var);
522}
523
524/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
525 otherwise deletes only the children; returns a malloc'ed list of
526 all the (malloc'ed) names of the variables that have been deleted
581e13c1 527 (NULL terminated). */
8b93c638
JM
528
529int
530varobj_delete (struct varobj *var, char ***dellist, int only_children)
531{
532 int delcount;
533 int mycount;
534 struct cpstack *result = NULL;
535 char **cp;
536
581e13c1 537 /* Initialize a stack for temporary results. */
8b93c638
JM
538 cppush (&result, NULL);
539
540 if (only_children)
581e13c1 541 /* Delete only the variable children. */
8b93c638
JM
542 delcount = delete_variable (&result, var, 1 /* only the children */ );
543 else
581e13c1 544 /* Delete the variable and all its children. */
8b93c638
JM
545 delcount = delete_variable (&result, var, 0 /* parent+children */ );
546
581e13c1 547 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
548 if (dellist != NULL)
549 {
550 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
551
552 cp = *dellist;
553 mycount = delcount;
554 *cp = cppop (&result);
555 while ((*cp != NULL) && (mycount > 0))
556 {
557 mycount--;
558 cp++;
559 *cp = cppop (&result);
560 }
561
562 if (mycount || (*cp != NULL))
8a3fe4f8 563 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 564 mycount);
8b93c638
JM
565 }
566
567 return delcount;
568}
569
d8b65138
JK
570#if HAVE_PYTHON
571
b6313243
TT
572/* Convenience function for varobj_set_visualizer. Instantiate a
573 pretty-printer for a given value. */
574static PyObject *
575instantiate_pretty_printer (PyObject *constructor, struct value *value)
576{
b6313243
TT
577 PyObject *val_obj = NULL;
578 PyObject *printer;
b6313243 579
b6313243 580 val_obj = value_to_value_object (value);
b6313243
TT
581 if (! val_obj)
582 return NULL;
583
584 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
585 Py_DECREF (val_obj);
586 return printer;
b6313243
TT
587}
588
d8b65138
JK
589#endif
590
581e13c1 591/* Set/Get variable object display format. */
8b93c638
JM
592
593enum varobj_display_formats
594varobj_set_display_format (struct varobj *var,
595 enum varobj_display_formats format)
596{
597 switch (format)
598 {
599 case FORMAT_NATURAL:
600 case FORMAT_BINARY:
601 case FORMAT_DECIMAL:
602 case FORMAT_HEXADECIMAL:
603 case FORMAT_OCTAL:
604 var->format = format;
605 break;
606
607 default:
608 var->format = variable_default_display (var);
609 }
610
ae7d22a6
VP
611 if (varobj_value_is_changeable_p (var)
612 && var->value && !value_lazy (var->value))
613 {
6c761d9c 614 xfree (var->print_value);
99ad9427
YQ
615 var->print_value = varobj_value_get_print_value (var->value,
616 var->format, var);
ae7d22a6
VP
617 }
618
8b93c638
JM
619 return var->format;
620}
621
622enum varobj_display_formats
623varobj_get_display_format (struct varobj *var)
624{
625 return var->format;
626}
627
b6313243
TT
628char *
629varobj_get_display_hint (struct varobj *var)
630{
631 char *result = NULL;
632
633#if HAVE_PYTHON
0646da15
TT
634 struct cleanup *back_to;
635
636 if (!gdb_python_initialized)
637 return NULL;
638
639 back_to = varobj_ensure_python_env (var);
d452c4bc 640
bb5ce47a
YQ
641 if (var->dynamic->pretty_printer != NULL)
642 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
643
644 do_cleanups (back_to);
b6313243
TT
645#endif
646
647 return result;
648}
649
0cc7d26f
TT
650/* Return true if the varobj has items after TO, false otherwise. */
651
652int
653varobj_has_more (struct varobj *var, int to)
654{
655 if (VEC_length (varobj_p, var->children) > to)
656 return 1;
657 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 658 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
659}
660
c5b48eac
VP
661/* If the variable object is bound to a specific thread, that
662 is its evaluation can always be done in context of a frame
663 inside that thread, returns GDB id of the thread -- which
581e13c1 664 is always positive. Otherwise, returns -1. */
c5b48eac
VP
665int
666varobj_get_thread_id (struct varobj *var)
667{
668 if (var->root->valid_block && var->root->thread_id > 0)
669 return var->root->thread_id;
670 else
671 return -1;
672}
673
25d5ea92
VP
674void
675varobj_set_frozen (struct varobj *var, int frozen)
676{
677 /* When a variable is unfrozen, we don't fetch its value.
678 The 'not_fetched' flag remains set, so next -var-update
679 won't complain.
680
681 We don't fetch the value, because for structures the client
682 should do -var-update anyway. It would be bad to have different
683 client-size logic for structure and other types. */
684 var->frozen = frozen;
685}
686
687int
688varobj_get_frozen (struct varobj *var)
689{
690 return var->frozen;
691}
692
0cc7d26f
TT
693/* A helper function that restricts a range to what is actually
694 available in a VEC. This follows the usual rules for the meaning
695 of FROM and TO -- if either is negative, the entire range is
696 used. */
697
99ad9427
YQ
698void
699varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
700{
701 if (*from < 0 || *to < 0)
702 {
703 *from = 0;
704 *to = VEC_length (varobj_p, children);
705 }
706 else
707 {
708 if (*from > VEC_length (varobj_p, children))
709 *from = VEC_length (varobj_p, children);
710 if (*to > VEC_length (varobj_p, children))
711 *to = VEC_length (varobj_p, children);
712 if (*from > *to)
713 *from = *to;
714 }
715}
716
d8b65138
JK
717#if HAVE_PYTHON
718
0cc7d26f
TT
719/* A helper for update_dynamic_varobj_children that installs a new
720 child when needed. */
721
722static void
723install_dynamic_child (struct varobj *var,
724 VEC (varobj_p) **changed,
8264ba82 725 VEC (varobj_p) **type_changed,
0cc7d26f
TT
726 VEC (varobj_p) **new,
727 VEC (varobj_p) **unchanged,
728 int *cchanged,
729 int index,
5e5ac9a5 730 char *name,
0cc7d26f
TT
731 struct value *value)
732{
733 if (VEC_length (varobj_p, var->children) < index + 1)
734 {
735 /* There's no child yet. */
736 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 737
0cc7d26f
TT
738 if (new)
739 {
740 VEC_safe_push (varobj_p, *new, child);
741 *cchanged = 1;
742 }
743 }
bf8793bb 744 else
0cc7d26f
TT
745 {
746 varobj_p existing = VEC_index (varobj_p, var->children, index);
8264ba82 747 int type_updated = update_type_if_necessary (existing, value);
bf8793bb 748
8264ba82
AG
749 if (type_updated)
750 {
751 if (type_changed)
752 VEC_safe_push (varobj_p, *type_changed, existing);
753 }
0cc7d26f
TT
754 if (install_new_value (existing, value, 0))
755 {
8264ba82 756 if (!type_updated && changed)
0cc7d26f
TT
757 VEC_safe_push (varobj_p, *changed, existing);
758 }
8264ba82 759 else if (!type_updated && unchanged)
0cc7d26f
TT
760 VEC_safe_push (varobj_p, *unchanged, existing);
761 }
762}
763
0cc7d26f
TT
764static int
765dynamic_varobj_has_child_method (struct varobj *var)
766{
767 struct cleanup *back_to;
bb5ce47a 768 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
769 int result;
770
0646da15
TT
771 if (!gdb_python_initialized)
772 return 0;
773
0cc7d26f
TT
774 back_to = varobj_ensure_python_env (var);
775 result = PyObject_HasAttr (printer, gdbpy_children_cst);
776 do_cleanups (back_to);
777 return result;
778}
779
780#endif
781
b6313243
TT
782static int
783update_dynamic_varobj_children (struct varobj *var,
784 VEC (varobj_p) **changed,
8264ba82 785 VEC (varobj_p) **type_changed,
0cc7d26f
TT
786 VEC (varobj_p) **new,
787 VEC (varobj_p) **unchanged,
788 int *cchanged,
789 int update_children,
790 int from,
791 int to)
b6313243
TT
792{
793#if HAVE_PYTHON
b6313243
TT
794 struct cleanup *back_to;
795 PyObject *children;
b6313243 796 int i;
bb5ce47a 797 PyObject *printer = var->dynamic->pretty_printer;
b6313243 798
0646da15
TT
799 if (!gdb_python_initialized)
800 return 0;
801
d452c4bc 802 back_to = varobj_ensure_python_env (var);
b6313243
TT
803
804 *cchanged = 0;
805 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
806 {
807 do_cleanups (back_to);
808 return 0;
809 }
810
bb5ce47a 811 if (update_children || var->dynamic->child_iter == NULL)
b6313243 812 {
0cc7d26f
TT
813 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
814 NULL);
b6313243 815
0cc7d26f
TT
816 if (!children)
817 {
818 gdbpy_print_stack ();
819 error (_("Null value returned for children"));
820 }
b6313243 821
0cc7d26f 822 make_cleanup_py_decref (children);
b6313243 823
bb5ce47a
YQ
824 Py_XDECREF (var->dynamic->child_iter);
825 var->dynamic->child_iter = PyObject_GetIter (children);
826 if (var->dynamic->child_iter == NULL)
0cc7d26f
TT
827 {
828 gdbpy_print_stack ();
829 error (_("Could not get children iterator"));
830 }
831
bb5ce47a
YQ
832 Py_XDECREF (var->dynamic->saved_item);
833 var->dynamic->saved_item = NULL;
0cc7d26f
TT
834
835 i = 0;
b6313243 836 }
0cc7d26f
TT
837 else
838 i = VEC_length (varobj_p, var->children);
b6313243 839
0cc7d26f
TT
840 /* We ask for one extra child, so that MI can report whether there
841 are more children. */
842 for (; to < 0 || i < to + 1; ++i)
b6313243 843 {
0cc7d26f 844 PyObject *item;
a4c8e806 845 int force_done = 0;
b6313243 846
0cc7d26f 847 /* See if there was a leftover from last time. */
bb5ce47a 848 if (var->dynamic->saved_item)
0cc7d26f 849 {
bb5ce47a
YQ
850 item = var->dynamic->saved_item;
851 var->dynamic->saved_item = NULL;
0cc7d26f
TT
852 }
853 else
bb5ce47a 854 item = PyIter_Next (var->dynamic->child_iter);
b6313243 855
0cc7d26f 856 if (!item)
a4c8e806
TT
857 {
858 /* Normal end of iteration. */
859 if (!PyErr_Occurred ())
860 break;
861
862 /* If we got a memory error, just use the text as the
863 item. */
864 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
865 {
866 PyObject *type, *value, *trace;
867 char *name_str, *value_str;
868
869 PyErr_Fetch (&type, &value, &trace);
870 value_str = gdbpy_exception_to_string (type, value);
871 Py_XDECREF (type);
872 Py_XDECREF (value);
873 Py_XDECREF (trace);
874 if (!value_str)
875 {
876 gdbpy_print_stack ();
877 break;
878 }
879
880 name_str = xstrprintf ("<error at %d>", i);
881 item = Py_BuildValue ("(ss)", name_str, value_str);
882 xfree (name_str);
883 xfree (value_str);
884 if (!item)
885 {
886 gdbpy_print_stack ();
887 break;
888 }
889
890 force_done = 1;
891 }
892 else
893 {
894 /* Any other kind of error. */
895 gdbpy_print_stack ();
896 break;
897 }
898 }
b6313243 899
0cc7d26f
TT
900 /* We don't want to push the extra child on any report list. */
901 if (to < 0 || i < to)
b6313243 902 {
0cc7d26f 903 PyObject *py_v;
ddd49eee 904 const char *name;
0cc7d26f
TT
905 struct value *v;
906 struct cleanup *inner;
907 int can_mention = from < 0 || i >= from;
908
909 inner = make_cleanup_py_decref (item);
910
911 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
912 {
913 gdbpy_print_stack ();
914 error (_("Invalid item from the child list"));
915 }
0cc7d26f
TT
916
917 v = convert_value_from_python (py_v);
8dc78533
JK
918 if (v == NULL)
919 gdbpy_print_stack ();
0cc7d26f 920 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 921 can_mention ? type_changed : NULL,
0cc7d26f
TT
922 can_mention ? new : NULL,
923 can_mention ? unchanged : NULL,
5e5ac9a5
YQ
924 can_mention ? cchanged : NULL, i,
925 xstrdup (name), v);
0cc7d26f 926 do_cleanups (inner);
b6313243 927 }
0cc7d26f 928 else
b6313243 929 {
bb5ce47a
YQ
930 Py_XDECREF (var->dynamic->saved_item);
931 var->dynamic->saved_item = item;
b6313243 932
0cc7d26f
TT
933 /* We want to truncate the child list just before this
934 element. */
935 break;
936 }
a4c8e806
TT
937
938 if (force_done)
939 break;
b6313243
TT
940 }
941
942 if (i < VEC_length (varobj_p, var->children))
943 {
0cc7d26f 944 int j;
a109c7c1 945
0cc7d26f
TT
946 *cchanged = 1;
947 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
948 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
949 VEC_truncate (varobj_p, var->children, i);
b6313243 950 }
0cc7d26f
TT
951
952 /* If there are fewer children than requested, note that the list of
953 children changed. */
954 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
955 *cchanged = 1;
956
b6313243
TT
957 var->num_children = VEC_length (varobj_p, var->children);
958
959 do_cleanups (back_to);
960
b6313243
TT
961 return 1;
962#else
9e77999c 963 gdb_assert_not_reached ("should never be called if Python is not enabled");
b6313243
TT
964#endif
965}
25d5ea92 966
8b93c638
JM
967int
968varobj_get_num_children (struct varobj *var)
969{
970 if (var->num_children == -1)
b6313243 971 {
bb5ce47a 972 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
973 {
974 int dummy;
975
976 /* If we have a dynamic varobj, don't report -1 children.
977 So, try to fetch some children first. */
8264ba82 978 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
979 0, 0, 0);
980 }
981 else
b6313243
TT
982 var->num_children = number_of_children (var);
983 }
8b93c638 984
0cc7d26f 985 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
986}
987
988/* Creates a list of the immediate children of a variable object;
581e13c1 989 the return code is the number of such children or -1 on error. */
8b93c638 990
d56d46f5 991VEC (varobj_p)*
0cc7d26f 992varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 993{
8b93c638 994 char *name;
b6313243
TT
995 int i, children_changed;
996
bb5ce47a 997 var->dynamic->children_requested = 1;
b6313243 998
bb5ce47a 999 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1000 {
b6313243
TT
1001 /* This, in theory, can result in the number of children changing without
1002 frontend noticing. But well, calling -var-list-children on the same
1003 varobj twice is not something a sane frontend would do. */
8264ba82
AG
1004 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1005 &children_changed, 0, 0, *to);
99ad9427 1006 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
1007 return var->children;
1008 }
8b93c638 1009
8b93c638
JM
1010 if (var->num_children == -1)
1011 var->num_children = number_of_children (var);
1012
74a44383
DJ
1013 /* If that failed, give up. */
1014 if (var->num_children == -1)
d56d46f5 1015 return var->children;
74a44383 1016
28335dcc
VP
1017 /* If we're called when the list of children is not yet initialized,
1018 allocate enough elements in it. */
1019 while (VEC_length (varobj_p, var->children) < var->num_children)
1020 VEC_safe_push (varobj_p, var->children, NULL);
1021
8b93c638
JM
1022 for (i = 0; i < var->num_children; i++)
1023 {
d56d46f5 1024 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1025
1026 if (existing == NULL)
1027 {
1028 /* Either it's the first call to varobj_list_children for
1029 this variable object, and the child was never created,
1030 or it was explicitly deleted by the client. */
1031 name = name_of_child (var, i);
1032 existing = create_child (var, i, name);
1033 VEC_replace (varobj_p, var->children, i, existing);
1034 }
8b93c638
JM
1035 }
1036
99ad9427 1037 varobj_restrict_range (var->children, from, to);
d56d46f5 1038 return var->children;
8b93c638
JM
1039}
1040
d8b65138
JK
1041#if HAVE_PYTHON
1042
b6313243 1043static struct varobj *
5e5ac9a5 1044varobj_add_child (struct varobj *var, char *name, struct value *value)
b6313243
TT
1045{
1046 varobj_p v = create_child_with_value (var,
1047 VEC_length (varobj_p, var->children),
1048 name, value);
a109c7c1 1049
b6313243 1050 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1051 return v;
1052}
1053
d8b65138
JK
1054#endif /* HAVE_PYTHON */
1055
8b93c638 1056/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1057 prints on the console. */
8b93c638
JM
1058
1059char *
1060varobj_get_type (struct varobj *var)
1061{
581e13c1 1062 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1063 NULL, too.)
1064 Do not return a type for invalid variables as well. */
1065 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1066 return NULL;
1067
1a4300e9 1068 return type_to_string (var->type);
8b93c638
JM
1069}
1070
1ecb4ee0
DJ
1071/* Obtain the type of an object variable. */
1072
1073struct type *
1074varobj_get_gdb_type (struct varobj *var)
1075{
1076 return var->type;
1077}
1078
85254831
KS
1079/* Is VAR a path expression parent, i.e., can it be used to construct
1080 a valid path expression? */
1081
1082static int
1083is_path_expr_parent (struct varobj *var)
1084{
1085 struct type *type;
1086
1087 /* "Fake" children are not path_expr parents. */
1088 if (CPLUS_FAKE_CHILD (var))
1089 return 0;
1090
99ad9427 1091 type = varobj_get_value_type (var);
85254831
KS
1092
1093 /* Anonymous unions and structs are also not path_expr parents. */
1094 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1095 || TYPE_CODE (type) == TYPE_CODE_UNION)
1096 && TYPE_NAME (type) == NULL);
1097}
1098
1099/* Return the path expression parent for VAR. */
1100
99ad9427
YQ
1101struct varobj *
1102varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1103{
1104 struct varobj *parent = var;
1105
1106 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1107 parent = parent->parent;
1108
1109 return parent;
1110}
1111
02142340
VP
1112/* Return a pointer to the full rooted expression of varobj VAR.
1113 If it has not been computed yet, compute it. */
1114char *
1115varobj_get_path_expr (struct varobj *var)
1116{
1117 if (var->path_expr != NULL)
1118 return var->path_expr;
1119 else
1120 {
1121 /* For root varobjs, we initialize path_expr
1122 when creating varobj, so here it should be
1123 child varobj. */
1124 gdb_assert (!is_root_p (var));
ca20d462 1125 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1126 }
1127}
1128
8b93c638
JM
1129enum varobj_languages
1130varobj_get_language (struct varobj *var)
1131{
1132 return variable_language (var);
1133}
1134
1135int
1136varobj_get_attributes (struct varobj *var)
1137{
1138 int attributes = 0;
1139
340a7723 1140 if (varobj_editable_p (var))
581e13c1 1141 /* FIXME: define masks for attributes. */
8b93c638
JM
1142 attributes |= 0x00000001; /* Editable */
1143
1144 return attributes;
1145}
1146
0cc7d26f
TT
1147int
1148varobj_pretty_printed_p (struct varobj *var)
1149{
bb5ce47a 1150 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1151}
1152
de051565
MK
1153char *
1154varobj_get_formatted_value (struct varobj *var,
1155 enum varobj_display_formats format)
1156{
1157 return my_value_of_variable (var, format);
1158}
1159
8b93c638
JM
1160char *
1161varobj_get_value (struct varobj *var)
1162{
de051565 1163 return my_value_of_variable (var, var->format);
8b93c638
JM
1164}
1165
1166/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1167 value of the given expression. */
1168/* Note: Invokes functions that can call error(). */
8b93c638
JM
1169
1170int
1171varobj_set_value (struct varobj *var, char *expression)
1172{
34365054 1173 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1174 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1175 We need to first construct a legal expression for this -- ugh! */
1176 /* Does this cover all the bases? */
8b93c638 1177 struct expression *exp;
34365054 1178 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1179 int saved_input_radix = input_radix;
bbc13ae3 1180 const char *s = expression;
8e7b59a5 1181 volatile struct gdb_exception except;
8b93c638 1182
340a7723 1183 gdb_assert (varobj_editable_p (var));
8b93c638 1184
581e13c1 1185 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1186 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1187 TRY_CATCH (except, RETURN_MASK_ERROR)
1188 {
1189 value = evaluate_expression (exp);
1190 }
1191
1192 if (except.reason < 0)
340a7723 1193 {
581e13c1 1194 /* We cannot proceed without a valid expression. */
340a7723
NR
1195 xfree (exp);
1196 return 0;
8b93c638
JM
1197 }
1198
340a7723
NR
1199 /* All types that are editable must also be changeable. */
1200 gdb_assert (varobj_value_is_changeable_p (var));
1201
1202 /* The value of a changeable variable object must not be lazy. */
1203 gdb_assert (!value_lazy (var->value));
1204
1205 /* Need to coerce the input. We want to check if the
1206 value of the variable object will be different
1207 after assignment, and the first thing value_assign
1208 does is coerce the input.
1209 For example, if we are assigning an array to a pointer variable we
b021a221 1210 should compare the pointer with the array's address, not with the
340a7723
NR
1211 array's content. */
1212 value = coerce_array (value);
1213
8e7b59a5
KS
1214 /* The new value may be lazy. value_assign, or
1215 rather value_contents, will take care of this. */
1216 TRY_CATCH (except, RETURN_MASK_ERROR)
1217 {
1218 val = value_assign (var->value, value);
1219 }
1220
1221 if (except.reason < 0)
340a7723 1222 return 0;
8e7b59a5 1223
340a7723
NR
1224 /* If the value has changed, record it, so that next -var-update can
1225 report this change. If a variable had a value of '1', we've set it
1226 to '333' and then set again to '1', when -var-update will report this
1227 variable as changed -- because the first assignment has set the
1228 'updated' flag. There's no need to optimize that, because return value
1229 of -var-update should be considered an approximation. */
581e13c1 1230 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1231 input_radix = saved_input_radix;
1232 return 1;
8b93c638
JM
1233}
1234
0cc7d26f
TT
1235#if HAVE_PYTHON
1236
1237/* A helper function to install a constructor function and visualizer
bb5ce47a 1238 in a varobj_dynamic. */
0cc7d26f
TT
1239
1240static void
bb5ce47a 1241install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1242 PyObject *visualizer)
1243{
1244 Py_XDECREF (var->constructor);
1245 var->constructor = constructor;
1246
1247 Py_XDECREF (var->pretty_printer);
1248 var->pretty_printer = visualizer;
1249
1250 Py_XDECREF (var->child_iter);
1251 var->child_iter = NULL;
1252}
1253
1254/* Install the default visualizer for VAR. */
1255
1256static void
1257install_default_visualizer (struct varobj *var)
1258{
d65aec65
PM
1259 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1260 if (CPLUS_FAKE_CHILD (var))
1261 return;
1262
0cc7d26f
TT
1263 if (pretty_printing)
1264 {
1265 PyObject *pretty_printer = NULL;
1266
1267 if (var->value)
1268 {
1269 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1270 if (! pretty_printer)
1271 {
1272 gdbpy_print_stack ();
1273 error (_("Cannot instantiate printer for default visualizer"));
1274 }
1275 }
1276
1277 if (pretty_printer == Py_None)
1278 {
1279 Py_DECREF (pretty_printer);
1280 pretty_printer = NULL;
1281 }
1282
bb5ce47a 1283 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1284 }
1285}
1286
1287/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1288 make a new object. */
1289
1290static void
1291construct_visualizer (struct varobj *var, PyObject *constructor)
1292{
1293 PyObject *pretty_printer;
1294
d65aec65
PM
1295 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1296 if (CPLUS_FAKE_CHILD (var))
1297 return;
1298
0cc7d26f
TT
1299 Py_INCREF (constructor);
1300 if (constructor == Py_None)
1301 pretty_printer = NULL;
1302 else
1303 {
1304 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1305 if (! pretty_printer)
1306 {
1307 gdbpy_print_stack ();
1308 Py_DECREF (constructor);
1309 constructor = Py_None;
1310 Py_INCREF (constructor);
1311 }
1312
1313 if (pretty_printer == Py_None)
1314 {
1315 Py_DECREF (pretty_printer);
1316 pretty_printer = NULL;
1317 }
1318 }
1319
bb5ce47a 1320 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1321}
1322
1323#endif /* HAVE_PYTHON */
1324
1325/* A helper function for install_new_value. This creates and installs
1326 a visualizer for VAR, if appropriate. */
1327
1328static void
1329install_new_value_visualizer (struct varobj *var)
1330{
1331#if HAVE_PYTHON
1332 /* If the constructor is None, then we want the raw value. If VAR
1333 does not have a value, just skip this. */
0646da15
TT
1334 if (!gdb_python_initialized)
1335 return;
1336
bb5ce47a 1337 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1338 {
1339 struct cleanup *cleanup;
0cc7d26f
TT
1340
1341 cleanup = varobj_ensure_python_env (var);
1342
bb5ce47a 1343 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1344 install_default_visualizer (var);
1345 else
bb5ce47a 1346 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1347
1348 do_cleanups (cleanup);
1349 }
1350#else
1351 /* Do nothing. */
1352#endif
1353}
1354
8264ba82
AG
1355/* When using RTTI to determine variable type it may be changed in runtime when
1356 the variable value is changed. This function checks whether type of varobj
1357 VAR will change when a new value NEW_VALUE is assigned and if it is so
1358 updates the type of VAR. */
1359
1360static int
1361update_type_if_necessary (struct varobj *var, struct value *new_value)
1362{
1363 if (new_value)
1364 {
1365 struct value_print_options opts;
1366
1367 get_user_print_options (&opts);
1368 if (opts.objectprint)
1369 {
1370 struct type *new_type;
1371 char *curr_type_str, *new_type_str;
1372
1373 new_type = value_actual_type (new_value, 0, 0);
1374 new_type_str = type_to_string (new_type);
1375 curr_type_str = varobj_get_type (var);
1376 if (strcmp (curr_type_str, new_type_str) != 0)
1377 {
1378 var->type = new_type;
1379
1380 /* This information may be not valid for a new type. */
1381 varobj_delete (var, NULL, 1);
1382 VEC_free (varobj_p, var->children);
1383 var->num_children = -1;
1384 return 1;
1385 }
1386 }
1387 }
1388
1389 return 0;
1390}
1391
acd65feb
VP
1392/* Assign a new value to a variable object. If INITIAL is non-zero,
1393 this is the first assignement after the variable object was just
1394 created, or changed type. In that case, just assign the value
1395 and return 0.
581e13c1
MS
1396 Otherwise, assign the new value, and return 1 if the value is
1397 different from the current one, 0 otherwise. The comparison is
1398 done on textual representation of value. Therefore, some types
1399 need not be compared. E.g. for structures the reported value is
1400 always "{...}", so no comparison is necessary here. If the old
1401 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1402
1403 The VALUE parameter should not be released -- the function will
1404 take care of releasing it when needed. */
acd65feb
VP
1405static int
1406install_new_value (struct varobj *var, struct value *value, int initial)
1407{
1408 int changeable;
1409 int need_to_fetch;
1410 int changed = 0;
25d5ea92 1411 int intentionally_not_fetched = 0;
7a4d50bf 1412 char *print_value = NULL;
acd65feb 1413
acd65feb 1414 /* We need to know the varobj's type to decide if the value should
3e43a32a 1415 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1416 don't have a type. */
acd65feb 1417 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1418 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1419
1420 /* If the type has custom visualizer, we consider it to be always
581e13c1 1421 changeable. FIXME: need to make sure this behaviour will not
b6313243 1422 mess up read-sensitive values. */
bb5ce47a 1423 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1424 changeable = 1;
1425
acd65feb
VP
1426 need_to_fetch = changeable;
1427
b26ed50d
VP
1428 /* We are not interested in the address of references, and given
1429 that in C++ a reference is not rebindable, it cannot
1430 meaningfully change. So, get hold of the real value. */
1431 if (value)
0cc7d26f 1432 value = coerce_ref (value);
b26ed50d 1433
acd65feb
VP
1434 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1435 /* For unions, we need to fetch the value implicitly because
1436 of implementation of union member fetch. When gdb
1437 creates a value for a field and the value of the enclosing
1438 structure is not lazy, it immediately copies the necessary
1439 bytes from the enclosing values. If the enclosing value is
1440 lazy, the call to value_fetch_lazy on the field will read
1441 the data from memory. For unions, that means we'll read the
1442 same memory more than once, which is not desirable. So
1443 fetch now. */
1444 need_to_fetch = 1;
1445
1446 /* The new value might be lazy. If the type is changeable,
1447 that is we'll be comparing values of this type, fetch the
1448 value now. Otherwise, on the next update the old value
1449 will be lazy, which means we've lost that old value. */
1450 if (need_to_fetch && value && value_lazy (value))
1451 {
25d5ea92
VP
1452 struct varobj *parent = var->parent;
1453 int frozen = var->frozen;
a109c7c1 1454
25d5ea92
VP
1455 for (; !frozen && parent; parent = parent->parent)
1456 frozen |= parent->frozen;
1457
1458 if (frozen && initial)
1459 {
1460 /* For variables that are frozen, or are children of frozen
1461 variables, we don't do fetch on initial assignment.
1462 For non-initial assignemnt we do the fetch, since it means we're
1463 explicitly asked to compare the new value with the old one. */
1464 intentionally_not_fetched = 1;
1465 }
8e7b59a5 1466 else
acd65feb 1467 {
8e7b59a5
KS
1468 volatile struct gdb_exception except;
1469
1470 TRY_CATCH (except, RETURN_MASK_ERROR)
1471 {
1472 value_fetch_lazy (value);
1473 }
1474
1475 if (except.reason < 0)
1476 {
1477 /* Set the value to NULL, so that for the next -var-update,
1478 we don't try to compare the new value with this value,
1479 that we couldn't even read. */
1480 value = NULL;
1481 }
acd65feb 1482 }
acd65feb
VP
1483 }
1484
e848a8a5
TT
1485 /* Get a reference now, before possibly passing it to any Python
1486 code that might release it. */
1487 if (value != NULL)
1488 value_incref (value);
b6313243 1489
7a4d50bf
VP
1490 /* Below, we'll be comparing string rendering of old and new
1491 values. Don't get string rendering if the value is
1492 lazy -- if it is, the code above has decided that the value
1493 should not be fetched. */
bb5ce47a
YQ
1494 if (value != NULL && !value_lazy (value)
1495 && var->dynamic->pretty_printer == NULL)
99ad9427 1496 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1497
acd65feb
VP
1498 /* If the type is changeable, compare the old and the new values.
1499 If this is the initial assignment, we don't have any old value
1500 to compare with. */
7a4d50bf 1501 if (!initial && changeable)
acd65feb 1502 {
3e43a32a
MS
1503 /* If the value of the varobj was changed by -var-set-value,
1504 then the value in the varobj and in the target is the same.
1505 However, that value is different from the value that the
581e13c1 1506 varobj had after the previous -var-update. So need to the
3e43a32a 1507 varobj as changed. */
acd65feb 1508 if (var->updated)
57e66780 1509 {
57e66780
DJ
1510 changed = 1;
1511 }
bb5ce47a 1512 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1513 {
1514 /* Try to compare the values. That requires that both
1515 values are non-lazy. */
25d5ea92
VP
1516 if (var->not_fetched && value_lazy (var->value))
1517 {
1518 /* This is a frozen varobj and the value was never read.
1519 Presumably, UI shows some "never read" indicator.
1520 Now that we've fetched the real value, we need to report
1521 this varobj as changed so that UI can show the real
1522 value. */
1523 changed = 1;
1524 }
1525 else if (var->value == NULL && value == NULL)
581e13c1 1526 /* Equal. */
acd65feb
VP
1527 ;
1528 else if (var->value == NULL || value == NULL)
57e66780 1529 {
57e66780
DJ
1530 changed = 1;
1531 }
acd65feb
VP
1532 else
1533 {
1534 gdb_assert (!value_lazy (var->value));
1535 gdb_assert (!value_lazy (value));
85265413 1536
57e66780 1537 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1538 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1539 changed = 1;
acd65feb
VP
1540 }
1541 }
1542 }
85265413 1543
ee342b23
VP
1544 if (!initial && !changeable)
1545 {
1546 /* For values that are not changeable, we don't compare the values.
1547 However, we want to notice if a value was not NULL and now is NULL,
1548 or vise versa, so that we report when top-level varobjs come in scope
1549 and leave the scope. */
1550 changed = (var->value != NULL) != (value != NULL);
1551 }
1552
acd65feb 1553 /* We must always keep the new value, since children depend on it. */
25d5ea92 1554 if (var->value != NULL && var->value != value)
acd65feb
VP
1555 value_free (var->value);
1556 var->value = value;
25d5ea92
VP
1557 if (value && value_lazy (value) && intentionally_not_fetched)
1558 var->not_fetched = 1;
1559 else
1560 var->not_fetched = 0;
acd65feb 1561 var->updated = 0;
85265413 1562
0cc7d26f
TT
1563 install_new_value_visualizer (var);
1564
1565 /* If we installed a pretty-printer, re-compare the printed version
1566 to see if the variable changed. */
bb5ce47a 1567 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1568 {
1569 xfree (print_value);
99ad9427
YQ
1570 print_value = varobj_value_get_print_value (var->value, var->format,
1571 var);
e8f781e2
TT
1572 if ((var->print_value == NULL && print_value != NULL)
1573 || (var->print_value != NULL && print_value == NULL)
1574 || (var->print_value != NULL && print_value != NULL
1575 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1576 changed = 1;
1577 }
1578 if (var->print_value)
1579 xfree (var->print_value);
1580 var->print_value = print_value;
1581
b26ed50d 1582 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1583
1584 return changed;
1585}
acd65feb 1586
0cc7d26f
TT
1587/* Return the requested range for a varobj. VAR is the varobj. FROM
1588 and TO are out parameters; *FROM and *TO will be set to the
1589 selected sub-range of VAR. If no range was selected using
1590 -var-set-update-range, then both will be -1. */
1591void
1592varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1593{
0cc7d26f
TT
1594 *from = var->from;
1595 *to = var->to;
b6313243
TT
1596}
1597
0cc7d26f
TT
1598/* Set the selected sub-range of children of VAR to start at index
1599 FROM and end at index TO. If either FROM or TO is less than zero,
1600 this is interpreted as a request for all children. */
1601void
1602varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1603{
0cc7d26f
TT
1604 var->from = from;
1605 var->to = to;
b6313243
TT
1606}
1607
1608void
1609varobj_set_visualizer (struct varobj *var, const char *visualizer)
1610{
1611#if HAVE_PYTHON
34fa1d9d
MS
1612 PyObject *mainmod, *globals, *constructor;
1613 struct cleanup *back_to;
b6313243 1614
0646da15
TT
1615 if (!gdb_python_initialized)
1616 return;
1617
d452c4bc 1618 back_to = varobj_ensure_python_env (var);
b6313243
TT
1619
1620 mainmod = PyImport_AddModule ("__main__");
1621 globals = PyModule_GetDict (mainmod);
1622 Py_INCREF (globals);
1623 make_cleanup_py_decref (globals);
1624
1625 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1626
0cc7d26f 1627 if (! constructor)
b6313243
TT
1628 {
1629 gdbpy_print_stack ();
da1f2771 1630 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1631 }
1632
0cc7d26f
TT
1633 construct_visualizer (var, constructor);
1634 Py_XDECREF (constructor);
b6313243 1635
0cc7d26f
TT
1636 /* If there are any children now, wipe them. */
1637 varobj_delete (var, NULL, 1 /* children only */);
1638 var->num_children = -1;
b6313243
TT
1639
1640 do_cleanups (back_to);
1641#else
da1f2771 1642 error (_("Python support required"));
b6313243
TT
1643#endif
1644}
1645
7a290c40
JB
1646/* If NEW_VALUE is the new value of the given varobj (var), return
1647 non-zero if var has mutated. In other words, if the type of
1648 the new value is different from the type of the varobj's old
1649 value.
1650
1651 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1652
1653static int
1654varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1655 struct type *new_type)
1656{
1657 /* If we haven't previously computed the number of children in var,
1658 it does not matter from the front-end's perspective whether
1659 the type has mutated or not. For all intents and purposes,
1660 it has not mutated. */
1661 if (var->num_children < 0)
1662 return 0;
1663
ca20d462
YQ
1664 if (var->root->lang_ops->value_has_mutated)
1665 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
7a290c40
JB
1666 else
1667 return 0;
1668}
1669
8b93c638
JM
1670/* Update the values for a variable and its children. This is a
1671 two-pronged attack. First, re-parse the value for the root's
1672 expression to see if it's changed. Then go all the way
1673 through its children, reconstructing them and noting if they've
1674 changed.
1675
25d5ea92
VP
1676 The EXPLICIT parameter specifies if this call is result
1677 of MI request to update this specific variable, or
581e13c1 1678 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1679 update frozen variables.
705da579 1680
581e13c1 1681 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1682 returns TYPE_CHANGED, then it has done this and VARP will be modified
1683 to point to the new varobj. */
8b93c638 1684
1417b39d
JB
1685VEC(varobj_update_result) *
1686varobj_update (struct varobj **varp, int explicit)
8b93c638 1687{
25d5ea92 1688 int type_changed = 0;
8b93c638 1689 int i;
30b28db1 1690 struct value *new;
b6313243 1691 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1692 VEC (varobj_update_result) *result = NULL;
8b93c638 1693
25d5ea92
VP
1694 /* Frozen means frozen -- we don't check for any change in
1695 this varobj, including its going out of scope, or
1696 changing type. One use case for frozen varobjs is
1697 retaining previously evaluated expressions, and we don't
1698 want them to be reevaluated at all. */
1699 if (!explicit && (*varp)->frozen)
f7f9ae2c 1700 return result;
8756216b
DP
1701
1702 if (!(*varp)->root->is_valid)
f7f9ae2c 1703 {
cfce2ea2 1704 varobj_update_result r = {0};
a109c7c1 1705
cfce2ea2 1706 r.varobj = *varp;
f7f9ae2c
VP
1707 r.status = VAROBJ_INVALID;
1708 VEC_safe_push (varobj_update_result, result, &r);
1709 return result;
1710 }
8b93c638 1711
25d5ea92 1712 if ((*varp)->root->rootvar == *varp)
ae093f96 1713 {
cfce2ea2 1714 varobj_update_result r = {0};
a109c7c1 1715
cfce2ea2 1716 r.varobj = *varp;
f7f9ae2c
VP
1717 r.status = VAROBJ_IN_SCOPE;
1718
581e13c1 1719 /* Update the root variable. value_of_root can return NULL
25d5ea92 1720 if the variable is no longer around, i.e. we stepped out of
581e13c1 1721 the frame in which a local existed. We are letting the
25d5ea92
VP
1722 value_of_root variable dispose of the varobj if the type
1723 has changed. */
25d5ea92 1724 new = value_of_root (varp, &type_changed);
8264ba82
AG
1725 if (update_type_if_necessary(*varp, new))
1726 type_changed = 1;
f7f9ae2c 1727 r.varobj = *varp;
f7f9ae2c 1728 r.type_changed = type_changed;
ea56f9c2 1729 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1730 r.changed = 1;
ea56f9c2 1731
25d5ea92 1732 if (new == NULL)
f7f9ae2c 1733 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1734 r.value_installed = 1;
f7f9ae2c
VP
1735
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1737 {
0b4bc29a
JK
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1740 return result;
1741 }
1742
1743 VEC_safe_push (varobj_update_result, stack, &r);
1744 }
1745 else
1746 {
cfce2ea2 1747 varobj_update_result r = {0};
a109c7c1 1748
cfce2ea2 1749 r.varobj = *varp;
b6313243 1750 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1751 }
8b93c638 1752
8756216b 1753 /* Walk through the children, reconstructing them all. */
b6313243 1754 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1755 {
b6313243
TT
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1758
1759 VEC_pop (varobj_update_result, stack);
1760
1761 /* Update this variable, unless it's a root, which is already
1762 updated. */
1763 if (!r.value_installed)
7a290c40
JB
1764 {
1765 struct type *new_type;
1766
b6313243 1767 new = value_of_child (v->parent, v->index);
8264ba82
AG
1768 if (update_type_if_necessary(v, new))
1769 r.type_changed = 1;
7a290c40
JB
1770 if (new)
1771 new_type = value_type (new);
1772 else
ca20d462 1773 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1774
1775 if (varobj_value_has_mutated (v, new, new_type))
1776 {
1777 /* The children are no longer valid; delete them now.
1778 Report the fact that its type changed as well. */
1779 varobj_delete (v, NULL, 1 /* only_children */);
1780 v->num_children = -1;
1781 v->to = -1;
1782 v->from = -1;
1783 v->type = new_type;
1784 r.type_changed = 1;
1785 }
1786
1787 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1788 {
1789 r.changed = 1;
1790 v->updated = 0;
1791 }
1792 }
1793
1794 /* We probably should not get children of a varobj that has a
1795 pretty-printer, but for which -var-list-children was never
581e13c1 1796 invoked. */
bb5ce47a 1797 if (v->dynamic->pretty_printer != NULL)
b6313243 1798 {
8264ba82
AG
1799 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1800 VEC (varobj_p) *new = 0;
26f9bcee 1801 int i, children_changed = 0;
b6313243
TT
1802
1803 if (v->frozen)
1804 continue;
1805
bb5ce47a 1806 if (!v->dynamic->children_requested)
0cc7d26f
TT
1807 {
1808 int dummy;
1809
1810 /* If we initially did not have potential children, but
1811 now we do, consider the varobj as changed.
1812 Otherwise, if children were never requested, consider
1813 it as unchanged -- presumably, such varobj is not yet
1814 expanded in the UI, so we need not bother getting
1815 it. */
1816 if (!varobj_has_more (v, 0))
1817 {
8264ba82 1818 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1819 &dummy, 0, 0, 0);
1820 if (varobj_has_more (v, 0))
1821 r.changed = 1;
1822 }
1823
1824 if (r.changed)
1825 VEC_safe_push (varobj_update_result, result, &r);
1826
1827 continue;
1828 }
1829
b6313243
TT
1830 /* If update_dynamic_varobj_children returns 0, then we have
1831 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1832 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1833 &unchanged, &children_changed, 1,
0cc7d26f 1834 v->from, v->to))
b6313243 1835 {
0cc7d26f 1836 if (children_changed || new)
b6313243 1837 {
0cc7d26f
TT
1838 r.children_changed = 1;
1839 r.new = new;
b6313243 1840 }
0cc7d26f
TT
1841 /* Push in reverse order so that the first child is
1842 popped from the work stack first, and so will be
1843 added to result first. This does not affect
1844 correctness, just "nicer". */
8264ba82
AG
1845 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1846 {
1847 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1848 varobj_update_result r = {0};
1849
1850 /* Type may change only if value was changed. */
1851 r.varobj = tmp;
1852 r.changed = 1;
1853 r.type_changed = 1;
1854 r.value_installed = 1;
1855 VEC_safe_push (varobj_update_result, stack, &r);
1856 }
0cc7d26f 1857 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1858 {
0cc7d26f 1859 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1860 varobj_update_result r = {0};
a109c7c1 1861
cfce2ea2 1862 r.varobj = tmp;
0cc7d26f 1863 r.changed = 1;
b6313243
TT
1864 r.value_installed = 1;
1865 VEC_safe_push (varobj_update_result, stack, &r);
1866 }
0cc7d26f
TT
1867 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1868 {
1869 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1870
0cc7d26f
TT
1871 if (!tmp->frozen)
1872 {
cfce2ea2 1873 varobj_update_result r = {0};
a109c7c1 1874
cfce2ea2 1875 r.varobj = tmp;
0cc7d26f
TT
1876 r.value_installed = 1;
1877 VEC_safe_push (varobj_update_result, stack, &r);
1878 }
1879 }
b6313243
TT
1880 if (r.changed || r.children_changed)
1881 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1882
8264ba82
AG
1883 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1884 because NEW has been put into the result vector. */
0cc7d26f 1885 VEC_free (varobj_p, changed);
8264ba82 1886 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1887 VEC_free (varobj_p, unchanged);
1888
b6313243
TT
1889 continue;
1890 }
1891 }
28335dcc
VP
1892
1893 /* Push any children. Use reverse order so that the first
1894 child is popped from the work stack first, and so
1895 will be added to result first. This does not
1896 affect correctness, just "nicer". */
1897 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1898 {
28335dcc 1899 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1900
28335dcc 1901 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1902 if (c != NULL && !c->frozen)
28335dcc 1903 {
cfce2ea2 1904 varobj_update_result r = {0};
a109c7c1 1905
cfce2ea2 1906 r.varobj = c;
b6313243 1907 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1908 }
8b93c638 1909 }
b6313243
TT
1910
1911 if (r.changed || r.type_changed)
1912 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1913 }
1914
b6313243
TT
1915 VEC_free (varobj_update_result, stack);
1916
f7f9ae2c 1917 return result;
8b93c638
JM
1918}
1919\f
1920
1921/* Helper functions */
1922
1923/*
1924 * Variable object construction/destruction
1925 */
1926
1927static int
fba45db2
KB
1928delete_variable (struct cpstack **resultp, struct varobj *var,
1929 int only_children_p)
8b93c638
JM
1930{
1931 int delcount = 0;
1932
1933 delete_variable_1 (resultp, &delcount, var,
1934 only_children_p, 1 /* remove_from_parent_p */ );
1935
1936 return delcount;
1937}
1938
581e13c1 1939/* Delete the variable object VAR and its children. */
8b93c638
JM
1940/* IMPORTANT NOTE: If we delete a variable which is a child
1941 and the parent is not removed we dump core. It must be always
581e13c1 1942 initially called with remove_from_parent_p set. */
8b93c638 1943static void
72330bd6
AC
1944delete_variable_1 (struct cpstack **resultp, int *delcountp,
1945 struct varobj *var, int only_children_p,
1946 int remove_from_parent_p)
8b93c638 1947{
28335dcc 1948 int i;
8b93c638 1949
581e13c1 1950 /* Delete any children of this variable, too. */
28335dcc
VP
1951 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1952 {
1953 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1954
214270ab
VP
1955 if (!child)
1956 continue;
8b93c638 1957 if (!remove_from_parent_p)
28335dcc
VP
1958 child->parent = NULL;
1959 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1960 }
28335dcc 1961 VEC_free (varobj_p, var->children);
8b93c638 1962
581e13c1 1963 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1964 if (only_children_p)
1965 return;
1966
581e13c1 1967 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1968 /* If the name is null, this is a temporary variable, that has not
581e13c1 1969 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1970 if (var->obj_name != NULL)
8b93c638 1971 {
5b616ba1 1972 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1973 *delcountp = *delcountp + 1;
1974 }
1975
581e13c1 1976 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1977 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1978 (as indicated by remove_from_parent_p) we don't bother doing an
1979 expensive list search to find the element to remove when we are
581e13c1 1980 discarding the list afterwards. */
72330bd6 1981 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1982 {
28335dcc 1983 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1984 }
72330bd6 1985
73a93a32
JI
1986 if (var->obj_name != NULL)
1987 uninstall_variable (var);
8b93c638 1988
581e13c1 1989 /* Free memory associated with this variable. */
8b93c638
JM
1990 free_variable (var);
1991}
1992
581e13c1 1993/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1994static int
fba45db2 1995install_variable (struct varobj *var)
8b93c638
JM
1996{
1997 struct vlist *cv;
1998 struct vlist *newvl;
1999 const char *chp;
2000 unsigned int index = 0;
2001 unsigned int i = 1;
2002
2003 for (chp = var->obj_name; *chp; chp++)
2004 {
2005 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2006 }
2007
2008 cv = *(varobj_table + index);
2009 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2010 cv = cv->next;
2011
2012 if (cv != NULL)
8a3fe4f8 2013 error (_("Duplicate variable object name"));
8b93c638 2014
581e13c1 2015 /* Add varobj to hash table. */
8b93c638
JM
2016 newvl = xmalloc (sizeof (struct vlist));
2017 newvl->next = *(varobj_table + index);
2018 newvl->var = var;
2019 *(varobj_table + index) = newvl;
2020
581e13c1 2021 /* If root, add varobj to root list. */
b2c2bd75 2022 if (is_root_p (var))
8b93c638 2023 {
581e13c1 2024 /* Add to list of root variables. */
8b93c638
JM
2025 if (rootlist == NULL)
2026 var->root->next = NULL;
2027 else
2028 var->root->next = rootlist;
2029 rootlist = var->root;
8b93c638
JM
2030 }
2031
2032 return 1; /* OK */
2033}
2034
581e13c1 2035/* Unistall the object VAR. */
8b93c638 2036static void
fba45db2 2037uninstall_variable (struct varobj *var)
8b93c638
JM
2038{
2039 struct vlist *cv;
2040 struct vlist *prev;
2041 struct varobj_root *cr;
2042 struct varobj_root *prer;
2043 const char *chp;
2044 unsigned int index = 0;
2045 unsigned int i = 1;
2046
581e13c1 2047 /* Remove varobj from hash table. */
8b93c638
JM
2048 for (chp = var->obj_name; *chp; chp++)
2049 {
2050 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2051 }
2052
2053 cv = *(varobj_table + index);
2054 prev = NULL;
2055 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2056 {
2057 prev = cv;
2058 cv = cv->next;
2059 }
2060
2061 if (varobjdebug)
2062 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2063
2064 if (cv == NULL)
2065 {
72330bd6
AC
2066 warning
2067 ("Assertion failed: Could not find variable object \"%s\" to delete",
2068 var->obj_name);
8b93c638
JM
2069 return;
2070 }
2071
2072 if (prev == NULL)
2073 *(varobj_table + index) = cv->next;
2074 else
2075 prev->next = cv->next;
2076
b8c9b27d 2077 xfree (cv);
8b93c638 2078
581e13c1 2079 /* If root, remove varobj from root list. */
b2c2bd75 2080 if (is_root_p (var))
8b93c638 2081 {
581e13c1 2082 /* Remove from list of root variables. */
8b93c638
JM
2083 if (rootlist == var->root)
2084 rootlist = var->root->next;
2085 else
2086 {
2087 prer = NULL;
2088 cr = rootlist;
2089 while ((cr != NULL) && (cr->rootvar != var))
2090 {
2091 prer = cr;
2092 cr = cr->next;
2093 }
2094 if (cr == NULL)
2095 {
8f7e195f
JB
2096 warning (_("Assertion failed: Could not find "
2097 "varobj \"%s\" in root list"),
3e43a32a 2098 var->obj_name);
8b93c638
JM
2099 return;
2100 }
2101 if (prer == NULL)
2102 rootlist = NULL;
2103 else
2104 prer->next = cr->next;
2105 }
8b93c638
JM
2106 }
2107
2108}
2109
581e13c1 2110/* Create and install a child of the parent of the given name. */
8b93c638 2111static struct varobj *
fba45db2 2112create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2113{
2114 return create_child_with_value (parent, index, name,
2115 value_of_child (parent, index));
2116}
2117
2118static struct varobj *
5e5ac9a5 2119create_child_with_value (struct varobj *parent, int index, char *name,
b6313243 2120 struct value *value)
8b93c638
JM
2121{
2122 struct varobj *child;
2123 char *childs_name;
2124
2125 child = new_variable ();
2126
5e5ac9a5
YQ
2127 /* NAME is allocated by caller. */
2128 child->name = name;
8b93c638 2129 child->index = index;
8b93c638
JM
2130 child->parent = parent;
2131 child->root = parent->root;
85254831 2132
99ad9427 2133 if (varobj_is_anonymous_child (child))
85254831
KS
2134 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2135 else
2136 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2137 child->obj_name = childs_name;
85254831 2138
8b93c638
JM
2139 install_variable (child);
2140
acd65feb
VP
2141 /* Compute the type of the child. Must do this before
2142 calling install_new_value. */
2143 if (value != NULL)
2144 /* If the child had no evaluation errors, var->value
581e13c1 2145 will be non-NULL and contain a valid type. */
8264ba82 2146 child->type = value_actual_type (value, 0, NULL);
acd65feb 2147 else
581e13c1 2148 /* Otherwise, we must compute the type. */
ca20d462
YQ
2149 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2150 child->index);
acd65feb
VP
2151 install_new_value (child, value, 1);
2152
8b93c638
JM
2153 return child;
2154}
8b93c638
JM
2155\f
2156
2157/*
2158 * Miscellaneous utility functions.
2159 */
2160
581e13c1 2161/* Allocate memory and initialize a new variable. */
8b93c638
JM
2162static struct varobj *
2163new_variable (void)
2164{
2165 struct varobj *var;
2166
2167 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2168 var->name = NULL;
02142340 2169 var->path_expr = NULL;
8b93c638
JM
2170 var->obj_name = NULL;
2171 var->index = -1;
2172 var->type = NULL;
2173 var->value = NULL;
8b93c638
JM
2174 var->num_children = -1;
2175 var->parent = NULL;
2176 var->children = NULL;
2177 var->format = 0;
2178 var->root = NULL;
fb9b6b35 2179 var->updated = 0;
85265413 2180 var->print_value = NULL;
25d5ea92
VP
2181 var->frozen = 0;
2182 var->not_fetched = 0;
bb5ce47a
YQ
2183 var->dynamic
2184 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2185 var->dynamic->children_requested = 0;
0cc7d26f
TT
2186 var->from = -1;
2187 var->to = -1;
bb5ce47a
YQ
2188 var->dynamic->constructor = 0;
2189 var->dynamic->pretty_printer = 0;
2190 var->dynamic->child_iter = 0;
2191 var->dynamic->saved_item = 0;
8b93c638
JM
2192
2193 return var;
2194}
2195
581e13c1 2196/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2197static struct varobj *
2198new_root_variable (void)
2199{
2200 struct varobj *var = new_variable ();
a109c7c1 2201
3e43a32a 2202 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2203 var->root->lang_ops = NULL;
8b93c638
JM
2204 var->root->exp = NULL;
2205 var->root->valid_block = NULL;
7a424e99 2206 var->root->frame = null_frame_id;
a5defcdc 2207 var->root->floating = 0;
8b93c638 2208 var->root->rootvar = NULL;
8756216b 2209 var->root->is_valid = 1;
8b93c638
JM
2210
2211 return var;
2212}
2213
581e13c1 2214/* Free any allocated memory associated with VAR. */
8b93c638 2215static void
fba45db2 2216free_variable (struct varobj *var)
8b93c638 2217{
d452c4bc 2218#if HAVE_PYTHON
bb5ce47a 2219 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2220 {
2221 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2222
2223 Py_XDECREF (var->dynamic->constructor);
2224 Py_XDECREF (var->dynamic->pretty_printer);
2225 Py_XDECREF (var->dynamic->child_iter);
2226 Py_XDECREF (var->dynamic->saved_item);
d452c4bc
UW
2227 do_cleanups (cleanup);
2228 }
2229#endif
2230
36746093
JK
2231 value_free (var->value);
2232
581e13c1 2233 /* Free the expression if this is a root variable. */
b2c2bd75 2234 if (is_root_p (var))
8b93c638 2235 {
3038237c 2236 xfree (var->root->exp);
8038e1e2 2237 xfree (var->root);
8b93c638
JM
2238 }
2239
8038e1e2
AC
2240 xfree (var->name);
2241 xfree (var->obj_name);
85265413 2242 xfree (var->print_value);
02142340 2243 xfree (var->path_expr);
bb5ce47a 2244 xfree (var->dynamic);
8038e1e2 2245 xfree (var);
8b93c638
JM
2246}
2247
74b7792f
AC
2248static void
2249do_free_variable_cleanup (void *var)
2250{
2251 free_variable (var);
2252}
2253
2254static struct cleanup *
2255make_cleanup_free_variable (struct varobj *var)
2256{
2257 return make_cleanup (do_free_variable_cleanup, var);
2258}
2259
6e2a9270
VP
2260/* Return the type of the value that's stored in VAR,
2261 or that would have being stored there if the
581e13c1 2262 value were accessible.
6e2a9270
VP
2263
2264 This differs from VAR->type in that VAR->type is always
2265 the true type of the expession in the source language.
2266 The return value of this function is the type we're
2267 actually storing in varobj, and using for displaying
2268 the values and for comparing previous and new values.
2269
2270 For example, top-level references are always stripped. */
99ad9427
YQ
2271struct type *
2272varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2273{
2274 struct type *type;
2275
2276 if (var->value)
2277 type = value_type (var->value);
2278 else
2279 type = var->type;
2280
2281 type = check_typedef (type);
2282
2283 if (TYPE_CODE (type) == TYPE_CODE_REF)
2284 type = get_target_type (type);
2285
2286 type = check_typedef (type);
2287
2288 return type;
2289}
2290
8b93c638 2291/* What is the default display for this variable? We assume that
581e13c1 2292 everything is "natural". Any exceptions? */
8b93c638 2293static enum varobj_display_formats
fba45db2 2294variable_default_display (struct varobj *var)
8b93c638
JM
2295{
2296 return FORMAT_NATURAL;
2297}
2298
581e13c1 2299/* FIXME: The following should be generic for any pointer. */
8b93c638 2300static void
fba45db2 2301cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2302{
2303 struct cpstack *s;
2304
2305 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2306 s->name = name;
2307 s->next = *pstack;
2308 *pstack = s;
2309}
2310
581e13c1 2311/* FIXME: The following should be generic for any pointer. */
8b93c638 2312static char *
fba45db2 2313cppop (struct cpstack **pstack)
8b93c638
JM
2314{
2315 struct cpstack *s;
2316 char *v;
2317
2318 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2319 return NULL;
2320
2321 s = *pstack;
2322 v = s->name;
2323 *pstack = (*pstack)->next;
b8c9b27d 2324 xfree (s);
8b93c638
JM
2325
2326 return v;
2327}
2328\f
2329/*
2330 * Language-dependencies
2331 */
2332
2333/* Common entry points */
2334
581e13c1 2335/* Get the language of variable VAR. */
8b93c638 2336static enum varobj_languages
fba45db2 2337variable_language (struct varobj *var)
8b93c638
JM
2338{
2339 enum varobj_languages lang;
2340
2341 switch (var->root->exp->language_defn->la_language)
2342 {
2343 default:
2344 case language_c:
2345 lang = vlang_c;
2346 break;
2347 case language_cplus:
2348 lang = vlang_cplus;
2349 break;
2350 case language_java:
2351 lang = vlang_java;
2352 break;
40591b7d
JCD
2353 case language_ada:
2354 lang = vlang_ada;
2355 break;
8b93c638
JM
2356 }
2357
2358 return lang;
2359}
2360
2361/* Return the number of children for a given variable.
2362 The result of this function is defined by the language
581e13c1 2363 implementation. The number of children returned by this function
8b93c638 2364 is the number of children that the user will see in the variable
581e13c1 2365 display. */
8b93c638 2366static int
fba45db2 2367number_of_children (struct varobj *var)
8b93c638 2368{
ca20d462 2369 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2370}
2371
3e43a32a 2372/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2373 string. */
8b93c638 2374static char *
fba45db2 2375name_of_variable (struct varobj *var)
8b93c638 2376{
ca20d462 2377 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2378}
2379
3e43a32a 2380/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2381 string. */
8b93c638 2382static char *
fba45db2 2383name_of_child (struct varobj *var, int index)
8b93c638 2384{
ca20d462 2385 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2386}
2387
2213e2be
YQ
2388/* If frame associated with VAR can be found, switch
2389 to it and return 1. Otherwise, return 0. */
2390
2391static int
2392check_scope (struct varobj *var)
2393{
2394 struct frame_info *fi;
2395 int scope;
2396
2397 fi = frame_find_by_id (var->root->frame);
2398 scope = fi != NULL;
2399
2400 if (fi)
2401 {
2402 CORE_ADDR pc = get_frame_pc (fi);
2403
2404 if (pc < BLOCK_START (var->root->valid_block) ||
2405 pc >= BLOCK_END (var->root->valid_block))
2406 scope = 0;
2407 else
2408 select_frame (fi);
2409 }
2410 return scope;
2411}
2412
2413/* Helper function to value_of_root. */
2414
2415static struct value *
2416value_of_root_1 (struct varobj **var_handle)
2417{
2418 struct value *new_val = NULL;
2419 struct varobj *var = *var_handle;
2420 int within_scope = 0;
2421 struct cleanup *back_to;
2422
2423 /* Only root variables can be updated... */
2424 if (!is_root_p (var))
2425 /* Not a root var. */
2426 return NULL;
2427
2428 back_to = make_cleanup_restore_current_thread ();
2429
2430 /* Determine whether the variable is still around. */
2431 if (var->root->valid_block == NULL || var->root->floating)
2432 within_scope = 1;
2433 else if (var->root->thread_id == 0)
2434 {
2435 /* The program was single-threaded when the variable object was
2436 created. Technically, it's possible that the program became
2437 multi-threaded since then, but we don't support such
2438 scenario yet. */
2439 within_scope = check_scope (var);
2440 }
2441 else
2442 {
2443 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2444 if (in_thread_list (ptid))
2445 {
2446 switch_to_thread (ptid);
2447 within_scope = check_scope (var);
2448 }
2449 }
2450
2451 if (within_scope)
2452 {
2453 volatile struct gdb_exception except;
2454
2455 /* We need to catch errors here, because if evaluate
2456 expression fails we want to just return NULL. */
2457 TRY_CATCH (except, RETURN_MASK_ERROR)
2458 {
2459 new_val = evaluate_expression (var->root->exp);
2460 }
2461 }
2462
2463 do_cleanups (back_to);
2464
2465 return new_val;
2466}
2467
a5defcdc
VP
2468/* What is the ``struct value *'' of the root variable VAR?
2469 For floating variable object, evaluation can get us a value
2470 of different type from what is stored in varobj already. In
2471 that case:
2472 - *type_changed will be set to 1
2473 - old varobj will be freed, and new one will be
2474 created, with the same name.
2475 - *var_handle will be set to the new varobj
2476 Otherwise, *type_changed will be set to 0. */
30b28db1 2477static struct value *
fba45db2 2478value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2479{
73a93a32
JI
2480 struct varobj *var;
2481
2482 if (var_handle == NULL)
2483 return NULL;
2484
2485 var = *var_handle;
2486
2487 /* This should really be an exception, since this should
581e13c1 2488 only get called with a root variable. */
73a93a32 2489
b2c2bd75 2490 if (!is_root_p (var))
73a93a32
JI
2491 return NULL;
2492
a5defcdc 2493 if (var->root->floating)
73a93a32
JI
2494 {
2495 struct varobj *tmp_var;
2496 char *old_type, *new_type;
6225abfa 2497
73a93a32
JI
2498 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2499 USE_SELECTED_FRAME);
2500 if (tmp_var == NULL)
2501 {
2502 return NULL;
2503 }
6225abfa 2504 old_type = varobj_get_type (var);
73a93a32 2505 new_type = varobj_get_type (tmp_var);
72330bd6 2506 if (strcmp (old_type, new_type) == 0)
73a93a32 2507 {
fcacd99f
VP
2508 /* The expression presently stored inside var->root->exp
2509 remembers the locations of local variables relatively to
2510 the frame where the expression was created (in DWARF location
2511 button, for example). Naturally, those locations are not
2512 correct in other frames, so update the expression. */
2513
2514 struct expression *tmp_exp = var->root->exp;
a109c7c1 2515
fcacd99f
VP
2516 var->root->exp = tmp_var->root->exp;
2517 tmp_var->root->exp = tmp_exp;
2518
73a93a32
JI
2519 varobj_delete (tmp_var, NULL, 0);
2520 *type_changed = 0;
2521 }
2522 else
2523 {
1b36a34b 2524 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2525 tmp_var->from = var->from;
2526 tmp_var->to = var->to;
a5defcdc
VP
2527 varobj_delete (var, NULL, 0);
2528
73a93a32
JI
2529 install_variable (tmp_var);
2530 *var_handle = tmp_var;
705da579 2531 var = *var_handle;
73a93a32
JI
2532 *type_changed = 1;
2533 }
74dddad3
MS
2534 xfree (old_type);
2535 xfree (new_type);
73a93a32
JI
2536 }
2537 else
2538 {
2539 *type_changed = 0;
2540 }
2541
7a290c40
JB
2542 {
2543 struct value *value;
2544
2213e2be 2545 value = value_of_root_1 (var_handle);
7a290c40
JB
2546 if (var->value == NULL || value == NULL)
2547 {
2548 /* For root varobj-s, a NULL value indicates a scoping issue.
2549 So, nothing to do in terms of checking for mutations. */
2550 }
2551 else if (varobj_value_has_mutated (var, value, value_type (value)))
2552 {
2553 /* The type has mutated, so the children are no longer valid.
2554 Just delete them, and tell our caller that the type has
2555 changed. */
2556 varobj_delete (var, NULL, 1 /* only_children */);
2557 var->num_children = -1;
2558 var->to = -1;
2559 var->from = -1;
2560 *type_changed = 1;
2561 }
2562 return value;
2563 }
8b93c638
JM
2564}
2565
581e13c1 2566/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2567static struct value *
fba45db2 2568value_of_child (struct varobj *parent, int index)
8b93c638 2569{
30b28db1 2570 struct value *value;
8b93c638 2571
ca20d462 2572 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2573
8b93c638
JM
2574 return value;
2575}
2576
581e13c1 2577/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2578static char *
de051565 2579my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2580{
8756216b 2581 if (var->root->is_valid)
0cc7d26f 2582 {
bb5ce47a 2583 if (var->dynamic->pretty_printer != NULL)
99ad9427 2584 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2585 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2586 }
8756216b
DP
2587 else
2588 return NULL;
8b93c638
JM
2589}
2590
99ad9427
YQ
2591void
2592varobj_formatted_print_options (struct value_print_options *opts,
2593 enum varobj_display_formats format)
2594{
2595 get_formatted_print_options (opts, format_code[(int) format]);
2596 opts->deref_ref = 0;
2597 opts->raw = 1;
2598}
2599
2600char *
2601varobj_value_get_print_value (struct value *value,
2602 enum varobj_display_formats format,
2603 struct varobj *var)
85265413 2604{
57e66780 2605 struct ui_file *stb;
621c8364 2606 struct cleanup *old_chain;
ac91cd70 2607 char *thevalue = NULL;
79a45b7d 2608 struct value_print_options opts;
be759fcf
PM
2609 struct type *type = NULL;
2610 long len = 0;
2611 char *encoding = NULL;
2612 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2613 /* Initialize it just to avoid a GCC false warning. */
2614 CORE_ADDR str_addr = 0;
09ca9e2e 2615 int string_print = 0;
57e66780
DJ
2616
2617 if (value == NULL)
2618 return NULL;
2619
621c8364
TT
2620 stb = mem_fileopen ();
2621 old_chain = make_cleanup_ui_file_delete (stb);
2622
be759fcf 2623 gdbarch = get_type_arch (value_type (value));
b6313243 2624#if HAVE_PYTHON
0646da15
TT
2625 if (gdb_python_initialized)
2626 {
bb5ce47a 2627 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2628
0646da15 2629 varobj_ensure_python_env (var);
09ca9e2e 2630
0646da15
TT
2631 if (value_formatter)
2632 {
2633 /* First check to see if we have any children at all. If so,
2634 we simply return {...}. */
2635 if (dynamic_varobj_has_child_method (var))
2636 {
2637 do_cleanups (old_chain);
2638 return xstrdup ("{...}");
2639 }
b6313243 2640
0646da15
TT
2641 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2642 {
2643 struct value *replacement;
2644 PyObject *output = NULL;
2645
2646 output = apply_varobj_pretty_printer (value_formatter,
2647 &replacement,
2648 stb);
2649
2650 /* If we have string like output ... */
2651 if (output)
2652 {
2653 make_cleanup_py_decref (output);
2654
2655 /* If this is a lazy string, extract it. For lazy
2656 strings we always print as a string, so set
2657 string_print. */
2658 if (gdbpy_is_lazy_string (output))
2659 {
2660 gdbpy_extract_lazy_string (output, &str_addr, &type,
2661 &len, &encoding);
2662 make_cleanup (free_current_contents, &encoding);
2663 string_print = 1;
2664 }
2665 else
2666 {
2667 /* If it is a regular (non-lazy) string, extract
2668 it and copy the contents into THEVALUE. If the
2669 hint says to print it as a string, set
2670 string_print. Otherwise just return the extracted
2671 string as a value. */
2672
2673 char *s = python_string_to_target_string (output);
2674
2675 if (s)
2676 {
2677 char *hint;
2678
2679 hint = gdbpy_get_display_hint (value_formatter);
2680 if (hint)
2681 {
2682 if (!strcmp (hint, "string"))
2683 string_print = 1;
2684 xfree (hint);
2685 }
2686
2687 len = strlen (s);
2688 thevalue = xmemdup (s, len + 1, len + 1);
2689 type = builtin_type (gdbarch)->builtin_char;
2690 xfree (s);
2691
2692 if (!string_print)
2693 {
2694 do_cleanups (old_chain);
2695 return thevalue;
2696 }
2697
2698 make_cleanup (xfree, thevalue);
2699 }
2700 else
2701 gdbpy_print_stack ();
2702 }
2703 }
2704 /* If the printer returned a replacement value, set VALUE
2705 to REPLACEMENT. If there is not a replacement value,
2706 just use the value passed to this function. */
2707 if (replacement)
2708 value = replacement;
2709 }
2710 }
2711 }
b6313243
TT
2712#endif
2713
99ad9427 2714 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2715
2716 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2717 if (thevalue)
ac91cd70 2718 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2719 else if (string_print)
00bd41d6
PM
2720 /* Otherwise, if string_print is set, and it is not a regular
2721 string, it is a lazy string. */
09ca9e2e 2722 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2723 else
00bd41d6 2724 /* All other cases. */
b6313243 2725 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2726
759ef836 2727 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2728
85265413
NR
2729 do_cleanups (old_chain);
2730 return thevalue;
2731}
2732
340a7723
NR
2733int
2734varobj_editable_p (struct varobj *var)
2735{
2736 struct type *type;
340a7723
NR
2737
2738 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2739 return 0;
2740
99ad9427 2741 type = varobj_get_value_type (var);
340a7723
NR
2742
2743 switch (TYPE_CODE (type))
2744 {
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 case TYPE_CODE_ARRAY:
2748 case TYPE_CODE_FUNC:
2749 case TYPE_CODE_METHOD:
2750 return 0;
2751 break;
2752
2753 default:
2754 return 1;
2755 break;
2756 }
2757}
2758
d32cafc7 2759/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2760
99ad9427 2761int
b2c2bd75 2762varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2763{
ca20d462 2764 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2765}
2766
5a413362
VP
2767/* Return 1 if that varobj is floating, that is is always evaluated in the
2768 selected frame, and not bound to thread/frame. Such variable objects
2769 are created using '@' as frame specifier to -var-create. */
2770int
2771varobj_floating_p (struct varobj *var)
2772{
2773 return var->root->floating;
2774}
2775
d32cafc7
JB
2776/* Implement the "value_is_changeable_p" varobj callback for most
2777 languages. */
2778
99ad9427
YQ
2779int
2780varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2781{
2782 int r;
2783 struct type *type;
2784
2785 if (CPLUS_FAKE_CHILD (var))
2786 return 0;
2787
99ad9427 2788 type = varobj_get_value_type (var);
d32cafc7
JB
2789
2790 switch (TYPE_CODE (type))
2791 {
2792 case TYPE_CODE_STRUCT:
2793 case TYPE_CODE_UNION:
2794 case TYPE_CODE_ARRAY:
2795 r = 0;
2796 break;
2797
2798 default:
2799 r = 1;
2800 }
2801
2802 return r;
2803}
2804
54333c3b
JK
2805/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2806 with an arbitrary caller supplied DATA pointer. */
2807
2808void
2809all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2810{
2811 struct varobj_root *var_root, *var_root_next;
2812
2813 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2814
2815 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2816 {
2817 var_root_next = var_root->next;
2818
2819 (*func) (var_root->rootvar, data);
2820 }
2821}
8b93c638
JM
2822\f
2823extern void _initialize_varobj (void);
2824void
2825_initialize_varobj (void)
2826{
2827 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2828
2829 varobj_table = xmalloc (sizeof_table);
2830 memset (varobj_table, 0, sizeof_table);
2831
ccce17b0
YQ
2832 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2833 &varobjdebug,
2834 _("Set varobj debugging."),
2835 _("Show varobj debugging."),
2836 _("When non-zero, varobj debugging is enabled."),
2837 NULL, show_varobjdebug,
2838 &setlist, &showlist);
8b93c638 2839}
8756216b 2840
54333c3b 2841/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2842 defined on globals. It is a helper for varobj_invalidate.
2843
2844 This function is called after changing the symbol file, in this case the
2845 pointers to "struct type" stored by the varobj are no longer valid. All
2846 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2847
54333c3b
JK
2848static void
2849varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2850{
4e969b4f
AB
2851 /* global and floating var must be re-evaluated. */
2852 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2853 {
54333c3b 2854 struct varobj *tmp_var;
2dbd25e5 2855
54333c3b
JK
2856 /* Try to create a varobj with same expression. If we succeed
2857 replace the old varobj, otherwise invalidate it. */
2858 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2859 USE_CURRENT_FRAME);
2860 if (tmp_var != NULL)
2861 {
2862 tmp_var->obj_name = xstrdup (var->obj_name);
2863 varobj_delete (var, NULL, 0);
2864 install_variable (tmp_var);
2dbd25e5 2865 }
54333c3b
JK
2866 else
2867 var->root->is_valid = 0;
2dbd25e5 2868 }
54333c3b
JK
2869 else /* locals must be invalidated. */
2870 var->root->is_valid = 0;
2871}
2872
2873/* Invalidate the varobjs that are tied to locals and re-create the ones that
2874 are defined on globals.
2875 Invalidated varobjs will be always printed in_scope="invalid". */
2876
2877void
2878varobj_invalidate (void)
2879{
2880 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2881}
This page took 1.586582 seconds and 4 git commands to generate.