Basic c++ification of varobj
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
61baf725 3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
bde7b3e3 37#include "python/py-ref.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f
TT
56/* True if we want to allow Python-based pretty-printing. */
57static int pretty_printing = 0;
58
59void
60varobj_enable_pretty_printing (void)
61{
62 pretty_printing = 1;
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
9e5b9d2b 91 int floating = 0;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
9e5b9d2b 95 int is_valid = 1;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
9e5b9d2b 116 int children_requested = 0;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
30914ca8 151static int delete_variable (struct varobj *, int);
8b93c638 152
30914ca8 153static void delete_variable_1 (int *, struct varobj *, int, int);
8b93c638 154
a14ed312 155static int install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
8264ba82
AG
169static int update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
acd65feb
VP
172static int install_new_value (struct varobj *var, struct value *value,
173 int initial);
174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
30b28db1 183static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
b09e2c59 190static int is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
b2c2bd75 213static int
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
581e13c1 300 /* frame = -2 means always use selected frame. */
73a93a32 301 if (type == USE_SELECTED_FRAME)
a5defcdc 302 var->root->floating = 1;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
313 innermost_block = NULL;
73a93a32 314 /* Wrap the call to parse expression, so we can
581e13c1 315 return a sensible error. */
492d29ea 316 TRY
8e7b59a5 317 {
1bb9788d 318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
319 }
320
492d29ea 321 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
322 {
323 return NULL;
324 }
492d29ea 325 END_CATCH
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
8b93c638 338 var->root->valid_block = innermost_block;
2f408ecb 339 var->name = expression;
02142340 340 /* For a root var, the name and the expr are the same. */
2f408ecb 341 var->path_expr = expression;
8b93c638
JM
342
343 /* When the frame is different from the current frame,
344 we must select the appropriate frame before parsing
345 the expression, otherwise the value will not be current.
581e13c1 346 Since select_frame is so benign, just call it for all cases. */
4e22772d 347 if (innermost_block)
8b93c638 348 {
4e22772d
JK
349 /* User could specify explicit FRAME-ADDR which was not found but
350 EXPRESSION is frame specific and we would not be able to evaluate
351 it correctly next time. With VALID_BLOCK set we must also set
352 FRAME and THREAD_ID. */
353 if (fi == NULL)
354 error (_("Failed to find the specified frame"));
355
7a424e99 356 var->root->frame = get_frame_id (fi);
5d5658a1 357 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 358 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 359 select_frame (fi);
8b93c638
JM
360 }
361
340a7723 362 /* We definitely need to catch errors here.
8b93c638 363 If evaluate_expression succeeds we got the value we wanted.
581e13c1 364 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 365 TRY
8e7b59a5 366 {
4d01a485 367 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 368 }
492d29ea 369 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
370 {
371 /* Error getting the value. Try to at least get the
372 right type. */
4d01a485 373 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 374
e55dccf0
VP
375 var->type = value_type (type_only_value);
376 }
492d29ea 377 END_CATCH
8264ba82 378
492d29ea
PA
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
acd65feb 387
8b93c638 388 /* Set language info */
ca20d462 389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 390
9e5b9d2b 391 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 392
581e13c1 393 /* Set ourselves as our root. */
9e5b9d2b 394 var->root->rootvar = var.get ();
8b93c638 395
581e13c1 396 /* Reset the selected frame. */
35633fef
JK
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
8b93c638
JM
399 }
400
73a93a32 401 /* If the variable object name is null, that means this
581e13c1 402 is a temporary variable, so don't install it. */
73a93a32
JI
403
404 if ((var != NULL) && (objname != NULL))
8b93c638 405 {
2f408ecb 406 var->obj_name = objname;
8b93c638
JM
407
408 /* If a varobj name is duplicated, the install will fail so
581e13c1 409 we must cleanup. */
9e5b9d2b
SM
410 if (!install_variable (var.get ()))
411 return NULL;
8b93c638
JM
412 }
413
9e5b9d2b 414 return var.release ();
8b93c638
JM
415}
416
581e13c1 417/* Generates an unique name that can be used for a varobj. */
8b93c638 418
2d6960b4 419std::string
8b93c638
JM
420varobj_gen_name (void)
421{
422 static int id = 0;
8b93c638 423
581e13c1 424 /* Generate a name for this object. */
8b93c638 425 id++;
2d6960b4 426 return string_printf ("var%d", id);
8b93c638
JM
427}
428
61d8f275
JK
429/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
8b93c638
JM
431
432struct varobj *
2f408ecb 433varobj_get_handle (const char *objname)
8b93c638
JM
434{
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
2f408ecb 446 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
447 cv = cv->next;
448
449 if (cv == NULL)
8a3fe4f8 450 error (_("Variable object not found"));
8b93c638
JM
451
452 return cv->var;
453}
454
581e13c1 455/* Given the handle, return the name of the object. */
8b93c638 456
2f408ecb 457const char *
b09e2c59 458varobj_get_objname (const struct varobj *var)
8b93c638 459{
2f408ecb 460 return var->obj_name.c_str ();
8b93c638
JM
461}
462
2f408ecb
PA
463/* Given the handle, return the expression represented by the
464 object. */
8b93c638 465
2f408ecb 466std::string
b09e2c59 467varobj_get_expression (const struct varobj *var)
8b93c638
JM
468{
469 return name_of_variable (var);
470}
471
30914ca8 472/* See varobj.h. */
8b93c638
JM
473
474int
30914ca8 475varobj_delete (struct varobj *var, int only_children)
8b93c638 476{
30914ca8 477 return delete_variable (var, only_children);
8b93c638
JM
478}
479
d8b65138
JK
480#if HAVE_PYTHON
481
b6313243
TT
482/* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484static PyObject *
485instantiate_pretty_printer (PyObject *constructor, struct value *value)
486{
b6313243
TT
487 PyObject *val_obj = NULL;
488 PyObject *printer;
b6313243 489
b6313243 490 val_obj = value_to_value_object (value);
b6313243
TT
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
b6313243
TT
497}
498
d8b65138
JK
499#endif
500
581e13c1 501/* Set/Get variable object display format. */
8b93c638
JM
502
503enum varobj_display_formats
504varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506{
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
1c35a88f 514 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
ae7d22a6
VP
522 if (varobj_value_is_changeable_p (var)
523 && var->value && !value_lazy (var->value))
524 {
99ad9427
YQ
525 var->print_value = varobj_value_get_print_value (var->value,
526 var->format, var);
ae7d22a6
VP
527 }
528
8b93c638
JM
529 return var->format;
530}
531
532enum varobj_display_formats
b09e2c59 533varobj_get_display_format (const struct varobj *var)
8b93c638
JM
534{
535 return var->format;
536}
537
9b972014 538gdb::unique_xmalloc_ptr<char>
b09e2c59 539varobj_get_display_hint (const struct varobj *var)
b6313243 540{
9b972014 541 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
542
543#if HAVE_PYTHON
0646da15
TT
544 if (!gdb_python_initialized)
545 return NULL;
546
bde7b3e3 547 gdbpy_enter_varobj enter_py (var);
d452c4bc 548
bb5ce47a
YQ
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
551#endif
552
553 return result;
554}
555
0cc7d26f
TT
556/* Return true if the varobj has items after TO, false otherwise. */
557
558int
b09e2c59 559varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
560{
561 if (VEC_length (varobj_p, var->children) > to)
562 return 1;
563 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 564 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
565}
566
c5b48eac
VP
567/* If the variable object is bound to a specific thread, that
568 is its evaluation can always be done in context of a frame
569 inside that thread, returns GDB id of the thread -- which
581e13c1 570 is always positive. Otherwise, returns -1. */
c5b48eac 571int
b09e2c59 572varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
573{
574 if (var->root->valid_block && var->root->thread_id > 0)
575 return var->root->thread_id;
576 else
577 return -1;
578}
579
25d5ea92
VP
580void
581varobj_set_frozen (struct varobj *var, int frozen)
582{
583 /* When a variable is unfrozen, we don't fetch its value.
584 The 'not_fetched' flag remains set, so next -var-update
585 won't complain.
586
587 We don't fetch the value, because for structures the client
588 should do -var-update anyway. It would be bad to have different
589 client-size logic for structure and other types. */
590 var->frozen = frozen;
591}
592
593int
b09e2c59 594varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
595{
596 return var->frozen;
597}
598
0cc7d26f
TT
599/* A helper function that restricts a range to what is actually
600 available in a VEC. This follows the usual rules for the meaning
601 of FROM and TO -- if either is negative, the entire range is
602 used. */
603
99ad9427
YQ
604void
605varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
606{
607 if (*from < 0 || *to < 0)
608 {
609 *from = 0;
610 *to = VEC_length (varobj_p, children);
611 }
612 else
613 {
614 if (*from > VEC_length (varobj_p, children))
615 *from = VEC_length (varobj_p, children);
616 if (*to > VEC_length (varobj_p, children))
617 *to = VEC_length (varobj_p, children);
618 if (*from > *to)
619 *from = *to;
620 }
621}
622
623/* A helper for update_dynamic_varobj_children that installs a new
624 child when needed. */
625
626static void
627install_dynamic_child (struct varobj *var,
628 VEC (varobj_p) **changed,
8264ba82 629 VEC (varobj_p) **type_changed,
fe978cb0 630 VEC (varobj_p) **newobj,
0cc7d26f
TT
631 VEC (varobj_p) **unchanged,
632 int *cchanged,
633 int index,
5a2e0d6e 634 struct varobj_item *item)
0cc7d26f
TT
635{
636 if (VEC_length (varobj_p, var->children) < index + 1)
637 {
638 /* There's no child yet. */
5a2e0d6e 639 struct varobj *child = varobj_add_child (var, item);
a109c7c1 640
fe978cb0 641 if (newobj)
0cc7d26f 642 {
fe978cb0 643 VEC_safe_push (varobj_p, *newobj, child);
0cc7d26f
TT
644 *cchanged = 1;
645 }
646 }
bf8793bb 647 else
0cc7d26f
TT
648 {
649 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 650 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 651
8264ba82
AG
652 if (type_updated)
653 {
654 if (type_changed)
655 VEC_safe_push (varobj_p, *type_changed, existing);
656 }
5a2e0d6e 657 if (install_new_value (existing, item->value, 0))
0cc7d26f 658 {
8264ba82 659 if (!type_updated && changed)
0cc7d26f
TT
660 VEC_safe_push (varobj_p, *changed, existing);
661 }
8264ba82 662 else if (!type_updated && unchanged)
0cc7d26f
TT
663 VEC_safe_push (varobj_p, *unchanged, existing);
664 }
665}
666
576ea091
YQ
667#if HAVE_PYTHON
668
0cc7d26f 669static int
b09e2c59 670dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 671{
bb5ce47a 672 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 673
0646da15
TT
674 if (!gdb_python_initialized)
675 return 0;
676
bde7b3e3
TT
677 gdbpy_enter_varobj enter_py (var);
678 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 679}
576ea091 680#endif
0cc7d26f 681
e5250216
YQ
682/* A factory for creating dynamic varobj's iterators. Returns an
683 iterator object suitable for iterating over VAR's children. */
684
685static struct varobj_iter *
686varobj_get_iterator (struct varobj *var)
687{
576ea091 688#if HAVE_PYTHON
e5250216
YQ
689 if (var->dynamic->pretty_printer)
690 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 691#endif
e5250216
YQ
692
693 gdb_assert_not_reached (_("\
694requested an iterator from a non-dynamic varobj"));
695}
696
827f100c
YQ
697/* Release and clear VAR's saved item, if any. */
698
699static void
700varobj_clear_saved_item (struct varobj_dynamic *var)
701{
702 if (var->saved_item != NULL)
703 {
704 value_free (var->saved_item->value);
0a8beaba 705 delete var->saved_item;
827f100c
YQ
706 var->saved_item = NULL;
707 }
708}
0cc7d26f 709
b6313243
TT
710static int
711update_dynamic_varobj_children (struct varobj *var,
712 VEC (varobj_p) **changed,
8264ba82 713 VEC (varobj_p) **type_changed,
fe978cb0 714 VEC (varobj_p) **newobj,
0cc7d26f
TT
715 VEC (varobj_p) **unchanged,
716 int *cchanged,
717 int update_children,
718 int from,
719 int to)
b6313243 720{
b6313243 721 int i;
b6313243 722
b6313243 723 *cchanged = 0;
b6313243 724
bb5ce47a 725 if (update_children || var->dynamic->child_iter == NULL)
b6313243 726 {
e5250216
YQ
727 varobj_iter_delete (var->dynamic->child_iter);
728 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 729
827f100c 730 varobj_clear_saved_item (var->dynamic);
b6313243 731
e5250216 732 i = 0;
b6313243 733
bb5ce47a 734 if (var->dynamic->child_iter == NULL)
827f100c 735 return 0;
b6313243 736 }
0cc7d26f
TT
737 else
738 i = VEC_length (varobj_p, var->children);
b6313243 739
0cc7d26f
TT
740 /* We ask for one extra child, so that MI can report whether there
741 are more children. */
742 for (; to < 0 || i < to + 1; ++i)
b6313243 743 {
827f100c 744 varobj_item *item;
b6313243 745
0cc7d26f 746 /* See if there was a leftover from last time. */
827f100c 747 if (var->dynamic->saved_item != NULL)
0cc7d26f 748 {
bb5ce47a
YQ
749 item = var->dynamic->saved_item;
750 var->dynamic->saved_item = NULL;
0cc7d26f
TT
751 }
752 else
a4c8e806 753 {
e5250216 754 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
755 /* Release vitem->value so its lifetime is not bound to the
756 execution of a command. */
757 if (item != NULL && item->value != NULL)
758 release_value_or_incref (item->value);
a4c8e806 759 }
b6313243 760
e5250216
YQ
761 if (item == NULL)
762 {
763 /* Iteration is done. Remove iterator from VAR. */
764 varobj_iter_delete (var->dynamic->child_iter);
765 var->dynamic->child_iter = NULL;
766 break;
767 }
0cc7d26f
TT
768 /* We don't want to push the extra child on any report list. */
769 if (to < 0 || i < to)
b6313243 770 {
0cc7d26f
TT
771 int can_mention = from < 0 || i >= from;
772
0cc7d26f 773 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 774 can_mention ? type_changed : NULL,
fe978cb0 775 can_mention ? newobj : NULL,
0cc7d26f 776 can_mention ? unchanged : NULL,
5e5ac9a5 777 can_mention ? cchanged : NULL, i,
827f100c
YQ
778 item);
779
0a8beaba 780 delete item;
b6313243 781 }
0cc7d26f 782 else
b6313243 783 {
bb5ce47a 784 var->dynamic->saved_item = item;
b6313243 785
0cc7d26f
TT
786 /* We want to truncate the child list just before this
787 element. */
788 break;
789 }
b6313243
TT
790 }
791
792 if (i < VEC_length (varobj_p, var->children))
793 {
0cc7d26f 794 int j;
a109c7c1 795
0cc7d26f
TT
796 *cchanged = 1;
797 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
30914ca8 798 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
0cc7d26f 799 VEC_truncate (varobj_p, var->children, i);
b6313243 800 }
0cc7d26f
TT
801
802 /* If there are fewer children than requested, note that the list of
803 children changed. */
804 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
805 *cchanged = 1;
806
b6313243 807 var->num_children = VEC_length (varobj_p, var->children);
b6313243 808
b6313243 809 return 1;
b6313243 810}
25d5ea92 811
8b93c638
JM
812int
813varobj_get_num_children (struct varobj *var)
814{
815 if (var->num_children == -1)
b6313243 816 {
31f628ae 817 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
818 {
819 int dummy;
820
821 /* If we have a dynamic varobj, don't report -1 children.
822 So, try to fetch some children first. */
8264ba82 823 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
824 0, 0, 0);
825 }
826 else
b6313243
TT
827 var->num_children = number_of_children (var);
828 }
8b93c638 829
0cc7d26f 830 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
831}
832
833/* Creates a list of the immediate children of a variable object;
581e13c1 834 the return code is the number of such children or -1 on error. */
8b93c638 835
d56d46f5 836VEC (varobj_p)*
0cc7d26f 837varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 838{
b6313243
TT
839 int i, children_changed;
840
bb5ce47a 841 var->dynamic->children_requested = 1;
b6313243 842
31f628ae 843 if (varobj_is_dynamic_p (var))
0cc7d26f 844 {
b6313243
TT
845 /* This, in theory, can result in the number of children changing without
846 frontend noticing. But well, calling -var-list-children on the same
847 varobj twice is not something a sane frontend would do. */
8264ba82
AG
848 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
849 &children_changed, 0, 0, *to);
99ad9427 850 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
851 return var->children;
852 }
8b93c638 853
8b93c638
JM
854 if (var->num_children == -1)
855 var->num_children = number_of_children (var);
856
74a44383
DJ
857 /* If that failed, give up. */
858 if (var->num_children == -1)
d56d46f5 859 return var->children;
74a44383 860
28335dcc
VP
861 /* If we're called when the list of children is not yet initialized,
862 allocate enough elements in it. */
863 while (VEC_length (varobj_p, var->children) < var->num_children)
864 VEC_safe_push (varobj_p, var->children, NULL);
865
8b93c638
JM
866 for (i = 0; i < var->num_children; i++)
867 {
d56d46f5 868 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
869
870 if (existing == NULL)
871 {
872 /* Either it's the first call to varobj_list_children for
873 this variable object, and the child was never created,
874 or it was explicitly deleted by the client. */
2f408ecb 875 std::string name = name_of_child (var, i);
28335dcc
VP
876 existing = create_child (var, i, name);
877 VEC_replace (varobj_p, var->children, i, existing);
878 }
8b93c638
JM
879 }
880
99ad9427 881 varobj_restrict_range (var->children, from, to);
d56d46f5 882 return var->children;
8b93c638
JM
883}
884
b6313243 885static struct varobj *
5a2e0d6e 886varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 887{
5a2e0d6e 888 varobj_p v = create_child_with_value (var,
b6313243 889 VEC_length (varobj_p, var->children),
5a2e0d6e 890 item);
a109c7c1 891
b6313243 892 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
893 return v;
894}
895
8b93c638 896/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
897 prints on the console. The caller is responsible for freeing the string.
898 */
8b93c638 899
2f408ecb 900std::string
8b93c638
JM
901varobj_get_type (struct varobj *var)
902{
8ab91b96 903 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 907 return std::string ();
8b93c638 908
1a4300e9 909 return type_to_string (var->type);
8b93c638
JM
910}
911
1ecb4ee0
DJ
912/* Obtain the type of an object variable. */
913
914struct type *
b09e2c59 915varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
916{
917 return var->type;
918}
919
85254831
KS
920/* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
923static int
b09e2c59 924is_path_expr_parent (const struct varobj *var)
85254831 925{
9a9a7608
AB
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928}
85254831 929
9a9a7608
AB
930/* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
85254831 933
9a9a7608 934int
b09e2c59 935varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
936{
937 return 1;
85254831
KS
938}
939
940/* Return the path expression parent for VAR. */
941
c1cc6152
SM
942const struct varobj *
943varobj_get_path_expr_parent (const struct varobj *var)
85254831 944{
c1cc6152 945 const struct varobj *parent = var;
85254831
KS
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 return parent;
951}
952
02142340
VP
953/* Return a pointer to the full rooted expression of varobj VAR.
954 If it has not been computed yet, compute it. */
2f408ecb
PA
955
956const char *
c1cc6152 957varobj_get_path_expr (const struct varobj *var)
02142340 958{
2f408ecb 959 if (var->path_expr.empty ())
02142340
VP
960 {
961 /* For root varobjs, we initialize path_expr
962 when creating varobj, so here it should be
963 child varobj. */
c1cc6152 964 struct varobj *mutable_var = (struct varobj *) var;
02142340 965 gdb_assert (!is_root_p (var));
2568868e 966
c1cc6152 967 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 968 }
2568868e 969
2f408ecb 970 return var->path_expr.c_str ();
02142340
VP
971}
972
fa4d0c40 973const struct language_defn *
b09e2c59 974varobj_get_language (const struct varobj *var)
8b93c638 975{
fa4d0c40 976 return var->root->exp->language_defn;
8b93c638
JM
977}
978
979int
b09e2c59 980varobj_get_attributes (const struct varobj *var)
8b93c638
JM
981{
982 int attributes = 0;
983
340a7723 984 if (varobj_editable_p (var))
581e13c1 985 /* FIXME: define masks for attributes. */
8b93c638
JM
986 attributes |= 0x00000001; /* Editable */
987
988 return attributes;
989}
990
cde5ef40
YQ
991/* Return true if VAR is a dynamic varobj. */
992
0cc7d26f 993int
b09e2c59 994varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 995{
bb5ce47a 996 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
997}
998
2f408ecb 999std::string
de051565
MK
1000varobj_get_formatted_value (struct varobj *var,
1001 enum varobj_display_formats format)
1002{
1003 return my_value_of_variable (var, format);
1004}
1005
2f408ecb 1006std::string
8b93c638
JM
1007varobj_get_value (struct varobj *var)
1008{
de051565 1009 return my_value_of_variable (var, var->format);
8b93c638
JM
1010}
1011
1012/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1013 value of the given expression. */
1014/* Note: Invokes functions that can call error(). */
8b93c638
JM
1015
1016int
2f408ecb 1017varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1018{
34365054 1019 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1020 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1021 We need to first construct a legal expression for this -- ugh! */
1022 /* Does this cover all the bases? */
34365054 1023 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1024 int saved_input_radix = input_radix;
bbc13ae3 1025 const char *s = expression;
8b93c638 1026
340a7723 1027 gdb_assert (varobj_editable_p (var));
8b93c638 1028
581e13c1 1029 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1030 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1031 TRY
8e7b59a5 1032 {
4d01a485 1033 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1034 }
1035
492d29ea 1036 CATCH (except, RETURN_MASK_ERROR)
340a7723 1037 {
581e13c1 1038 /* We cannot proceed without a valid expression. */
340a7723 1039 return 0;
8b93c638 1040 }
492d29ea 1041 END_CATCH
8b93c638 1042
340a7723
NR
1043 /* All types that are editable must also be changeable. */
1044 gdb_assert (varobj_value_is_changeable_p (var));
1045
1046 /* The value of a changeable variable object must not be lazy. */
1047 gdb_assert (!value_lazy (var->value));
1048
1049 /* Need to coerce the input. We want to check if the
1050 value of the variable object will be different
1051 after assignment, and the first thing value_assign
1052 does is coerce the input.
1053 For example, if we are assigning an array to a pointer variable we
b021a221 1054 should compare the pointer with the array's address, not with the
340a7723
NR
1055 array's content. */
1056 value = coerce_array (value);
1057
8e7b59a5
KS
1058 /* The new value may be lazy. value_assign, or
1059 rather value_contents, will take care of this. */
492d29ea 1060 TRY
8e7b59a5
KS
1061 {
1062 val = value_assign (var->value, value);
1063 }
1064
492d29ea
PA
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
1067 return 0;
1068 }
1069 END_CATCH
8e7b59a5 1070
340a7723
NR
1071 /* If the value has changed, record it, so that next -var-update can
1072 report this change. If a variable had a value of '1', we've set it
1073 to '333' and then set again to '1', when -var-update will report this
1074 variable as changed -- because the first assignment has set the
1075 'updated' flag. There's no need to optimize that, because return value
1076 of -var-update should be considered an approximation. */
581e13c1 1077 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1078 input_radix = saved_input_radix;
1079 return 1;
8b93c638
JM
1080}
1081
0cc7d26f
TT
1082#if HAVE_PYTHON
1083
1084/* A helper function to install a constructor function and visualizer
bb5ce47a 1085 in a varobj_dynamic. */
0cc7d26f
TT
1086
1087static void
bb5ce47a 1088install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1089 PyObject *visualizer)
1090{
1091 Py_XDECREF (var->constructor);
1092 var->constructor = constructor;
1093
1094 Py_XDECREF (var->pretty_printer);
1095 var->pretty_printer = visualizer;
1096
e5250216 1097 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1098 var->child_iter = NULL;
1099}
1100
1101/* Install the default visualizer for VAR. */
1102
1103static void
1104install_default_visualizer (struct varobj *var)
1105{
d65aec65
PM
1106 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1107 if (CPLUS_FAKE_CHILD (var))
1108 return;
1109
0cc7d26f
TT
1110 if (pretty_printing)
1111 {
1112 PyObject *pretty_printer = NULL;
1113
1114 if (var->value)
1115 {
1116 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1117 if (! pretty_printer)
1118 {
1119 gdbpy_print_stack ();
1120 error (_("Cannot instantiate printer for default visualizer"));
1121 }
1122 }
1123
1124 if (pretty_printer == Py_None)
1125 {
1126 Py_DECREF (pretty_printer);
1127 pretty_printer = NULL;
1128 }
1129
bb5ce47a 1130 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1131 }
1132}
1133
1134/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137static void
1138construct_visualizer (struct varobj *var, PyObject *constructor)
1139{
1140 PyObject *pretty_printer;
1141
d65aec65
PM
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
0cc7d26f
TT
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
1151 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
bb5ce47a 1167 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1168}
1169
1170#endif /* HAVE_PYTHON */
1171
1172/* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175static void
1176install_new_value_visualizer (struct varobj *var)
1177{
1178#if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
0646da15
TT
1181 if (!gdb_python_initialized)
1182 return;
1183
bb5ce47a 1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1185 {
bde7b3e3 1186 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1187
bb5ce47a 1188 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1189 install_default_visualizer (var);
1190 else
bb5ce47a 1191 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1192 }
1193#else
1194 /* Do nothing. */
1195#endif
1196}
1197
8264ba82
AG
1198/* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
1203static int
1204update_type_if_necessary (struct varobj *var, struct value *new_value)
1205{
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
2f408ecb
PA
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
8264ba82 1216
2f408ecb
PA
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
8264ba82
AG
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
30914ca8 1223 varobj_delete (var, 1);
8264ba82
AG
1224 VEC_free (varobj_p, var->children);
1225 var->num_children = -1;
1226 return 1;
1227 }
1228 }
1229 }
1230
1231 return 0;
1232}
1233
acd65feb
VP
1234/* Assign a new value to a variable object. If INITIAL is non-zero,
1235 this is the first assignement after the variable object was just
1236 created, or changed type. In that case, just assign the value
1237 and return 0.
581e13c1
MS
1238 Otherwise, assign the new value, and return 1 if the value is
1239 different from the current one, 0 otherwise. The comparison is
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
1243 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
acd65feb
VP
1247static int
1248install_new_value (struct varobj *var, struct value *value, int initial)
1249{
1250 int changeable;
1251 int need_to_fetch;
1252 int changed = 0;
25d5ea92 1253 int intentionally_not_fetched = 0;
acd65feb 1254
acd65feb 1255 /* We need to know the varobj's type to decide if the value should
3e43a32a 1256 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1257 don't have a type. */
acd65feb 1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1259 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1260
1261 /* If the type has custom visualizer, we consider it to be always
581e13c1 1262 changeable. FIXME: need to make sure this behaviour will not
b6313243 1263 mess up read-sensitive values. */
bb5ce47a 1264 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1265 changeable = 1;
1266
acd65feb
VP
1267 need_to_fetch = changeable;
1268
b26ed50d
VP
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
0cc7d26f 1273 value = coerce_ref (value);
b26ed50d 1274
acd65feb
VP
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
1285 need_to_fetch = 1;
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
c1cc6152 1293 const struct varobj *parent = var->parent;
25d5ea92 1294 int frozen = var->frozen;
a109c7c1 1295
25d5ea92
VP
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
1305 intentionally_not_fetched = 1;
1306 }
8e7b59a5 1307 else
acd65feb 1308 {
8e7b59a5 1309
492d29ea 1310 TRY
8e7b59a5
KS
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
492d29ea 1315 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
492d29ea 1322 END_CATCH
acd65feb 1323 }
acd65feb
VP
1324 }
1325
e848a8a5
TT
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 if (value != NULL)
1329 value_incref (value);
b6313243 1330
7a4d50bf
VP
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
2f408ecb 1335 std::string print_value;
bb5ce47a
YQ
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
99ad9427 1338 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1339
acd65feb
VP
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
7a4d50bf 1343 if (!initial && changeable)
acd65feb 1344 {
3e43a32a
MS
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
581e13c1 1348 varobj had after the previous -var-update. So need to the
3e43a32a 1349 varobj as changed. */
acd65feb 1350 if (var->updated)
57e66780 1351 {
57e66780
DJ
1352 changed = 1;
1353 }
bb5ce47a 1354 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1355 {
1356 /* Try to compare the values. That requires that both
1357 values are non-lazy. */
25d5ea92
VP
1358 if (var->not_fetched && value_lazy (var->value))
1359 {
1360 /* This is a frozen varobj and the value was never read.
1361 Presumably, UI shows some "never read" indicator.
1362 Now that we've fetched the real value, we need to report
1363 this varobj as changed so that UI can show the real
1364 value. */
1365 changed = 1;
1366 }
1367 else if (var->value == NULL && value == NULL)
581e13c1 1368 /* Equal. */
acd65feb
VP
1369 ;
1370 else if (var->value == NULL || value == NULL)
57e66780 1371 {
57e66780
DJ
1372 changed = 1;
1373 }
acd65feb
VP
1374 else
1375 {
1376 gdb_assert (!value_lazy (var->value));
1377 gdb_assert (!value_lazy (value));
85265413 1378
2f408ecb
PA
1379 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1380 if (var->print_value != print_value)
7a4d50bf 1381 changed = 1;
acd65feb
VP
1382 }
1383 }
1384 }
85265413 1385
ee342b23
VP
1386 if (!initial && !changeable)
1387 {
1388 /* For values that are not changeable, we don't compare the values.
1389 However, we want to notice if a value was not NULL and now is NULL,
1390 or vise versa, so that we report when top-level varobjs come in scope
1391 and leave the scope. */
1392 changed = (var->value != NULL) != (value != NULL);
1393 }
1394
acd65feb 1395 /* We must always keep the new value, since children depend on it. */
25d5ea92 1396 if (var->value != NULL && var->value != value)
acd65feb
VP
1397 value_free (var->value);
1398 var->value = value;
25d5ea92
VP
1399 if (value && value_lazy (value) && intentionally_not_fetched)
1400 var->not_fetched = 1;
1401 else
1402 var->not_fetched = 0;
acd65feb 1403 var->updated = 0;
85265413 1404
0cc7d26f
TT
1405 install_new_value_visualizer (var);
1406
1407 /* If we installed a pretty-printer, re-compare the printed version
1408 to see if the variable changed. */
bb5ce47a 1409 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1410 {
99ad9427
YQ
1411 print_value = varobj_value_get_print_value (var->value, var->format,
1412 var);
2f408ecb
PA
1413 if ((var->print_value.empty () && !print_value.empty ())
1414 || (!var->print_value.empty () && print_value.empty ())
1415 || (!var->print_value.empty () && !print_value.empty ()
1416 && var->print_value != print_value))
1417 changed = 1;
0cc7d26f 1418 }
0cc7d26f
TT
1419 var->print_value = print_value;
1420
b26ed50d 1421 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1422
1423 return changed;
1424}
acd65feb 1425
0cc7d26f
TT
1426/* Return the requested range for a varobj. VAR is the varobj. FROM
1427 and TO are out parameters; *FROM and *TO will be set to the
1428 selected sub-range of VAR. If no range was selected using
1429 -var-set-update-range, then both will be -1. */
1430void
b09e2c59 1431varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1432{
0cc7d26f
TT
1433 *from = var->from;
1434 *to = var->to;
b6313243
TT
1435}
1436
0cc7d26f
TT
1437/* Set the selected sub-range of children of VAR to start at index
1438 FROM and end at index TO. If either FROM or TO is less than zero,
1439 this is interpreted as a request for all children. */
1440void
1441varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1442{
0cc7d26f
TT
1443 var->from = from;
1444 var->to = to;
b6313243
TT
1445}
1446
1447void
1448varobj_set_visualizer (struct varobj *var, const char *visualizer)
1449{
1450#if HAVE_PYTHON
bde7b3e3 1451 PyObject *mainmod;
b6313243 1452
0646da15
TT
1453 if (!gdb_python_initialized)
1454 return;
1455
bde7b3e3 1456 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1457
1458 mainmod = PyImport_AddModule ("__main__");
7780f186 1459 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
bde7b3e3 1460 Py_INCREF (globals.get ());
b6313243 1461
7780f186
TT
1462 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1463 globals.get (), globals.get ()));
b6313243 1464
bde7b3e3 1465 if (constructor == NULL)
b6313243
TT
1466 {
1467 gdbpy_print_stack ();
da1f2771 1468 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1469 }
1470
bde7b3e3 1471 construct_visualizer (var, constructor.get ());
b6313243 1472
0cc7d26f 1473 /* If there are any children now, wipe them. */
30914ca8 1474 varobj_delete (var, 1 /* children only */);
0cc7d26f 1475 var->num_children = -1;
b6313243 1476#else
da1f2771 1477 error (_("Python support required"));
b6313243
TT
1478#endif
1479}
1480
7a290c40
JB
1481/* If NEW_VALUE is the new value of the given varobj (var), return
1482 non-zero if var has mutated. In other words, if the type of
1483 the new value is different from the type of the varobj's old
1484 value.
1485
1486 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1487
1488static int
b09e2c59 1489varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1490 struct type *new_type)
1491{
1492 /* If we haven't previously computed the number of children in var,
1493 it does not matter from the front-end's perspective whether
1494 the type has mutated or not. For all intents and purposes,
1495 it has not mutated. */
1496 if (var->num_children < 0)
1497 return 0;
1498
ca20d462 1499 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1500 {
1501 /* The varobj module, when installing new values, explicitly strips
1502 references, saying that we're not interested in those addresses.
1503 But detection of mutation happens before installing the new
1504 value, so our value may be a reference that we need to strip
1505 in order to remain consistent. */
1506 if (new_value != NULL)
1507 new_value = coerce_ref (new_value);
1508 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1509 }
7a290c40
JB
1510 else
1511 return 0;
1512}
1513
8b93c638
JM
1514/* Update the values for a variable and its children. This is a
1515 two-pronged attack. First, re-parse the value for the root's
1516 expression to see if it's changed. Then go all the way
1517 through its children, reconstructing them and noting if they've
1518 changed.
1519
25d5ea92
VP
1520 The EXPLICIT parameter specifies if this call is result
1521 of MI request to update this specific variable, or
581e13c1 1522 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1523 update frozen variables.
705da579 1524
581e13c1 1525 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1526 returns TYPE_CHANGED, then it has done this and VARP will be modified
1527 to point to the new varobj. */
8b93c638 1528
1417b39d 1529VEC(varobj_update_result) *
fe978cb0 1530varobj_update (struct varobj **varp, int is_explicit)
8b93c638 1531{
25d5ea92 1532 int type_changed = 0;
8b93c638 1533 int i;
fe978cb0 1534 struct value *newobj;
b6313243 1535 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1536 VEC (varobj_update_result) *result = NULL;
8b93c638 1537
25d5ea92
VP
1538 /* Frozen means frozen -- we don't check for any change in
1539 this varobj, including its going out of scope, or
1540 changing type. One use case for frozen varobjs is
1541 retaining previously evaluated expressions, and we don't
1542 want them to be reevaluated at all. */
fe978cb0 1543 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1544 return result;
8756216b
DP
1545
1546 if (!(*varp)->root->is_valid)
f7f9ae2c 1547 {
cfce2ea2 1548 varobj_update_result r = {0};
a109c7c1 1549
cfce2ea2 1550 r.varobj = *varp;
f7f9ae2c
VP
1551 r.status = VAROBJ_INVALID;
1552 VEC_safe_push (varobj_update_result, result, &r);
1553 return result;
1554 }
8b93c638 1555
25d5ea92 1556 if ((*varp)->root->rootvar == *varp)
ae093f96 1557 {
cfce2ea2 1558 varobj_update_result r = {0};
a109c7c1 1559
cfce2ea2 1560 r.varobj = *varp;
f7f9ae2c
VP
1561 r.status = VAROBJ_IN_SCOPE;
1562
581e13c1 1563 /* Update the root variable. value_of_root can return NULL
25d5ea92 1564 if the variable is no longer around, i.e. we stepped out of
581e13c1 1565 the frame in which a local existed. We are letting the
25d5ea92
VP
1566 value_of_root variable dispose of the varobj if the type
1567 has changed. */
fe978cb0
PA
1568 newobj = value_of_root (varp, &type_changed);
1569 if (update_type_if_necessary(*varp, newobj))
8264ba82 1570 type_changed = 1;
f7f9ae2c 1571 r.varobj = *varp;
f7f9ae2c 1572 r.type_changed = type_changed;
fe978cb0 1573 if (install_new_value ((*varp), newobj, type_changed))
f7f9ae2c 1574 r.changed = 1;
ea56f9c2 1575
fe978cb0 1576 if (newobj == NULL)
f7f9ae2c 1577 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1578 r.value_installed = 1;
f7f9ae2c
VP
1579
1580 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1581 {
0b4bc29a
JK
1582 if (r.type_changed || r.changed)
1583 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1584 return result;
1585 }
1586
1587 VEC_safe_push (varobj_update_result, stack, &r);
1588 }
1589 else
1590 {
cfce2ea2 1591 varobj_update_result r = {0};
a109c7c1 1592
cfce2ea2 1593 r.varobj = *varp;
b6313243 1594 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1595 }
8b93c638 1596
8756216b 1597 /* Walk through the children, reconstructing them all. */
b6313243 1598 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1599 {
b6313243
TT
1600 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1601 struct varobj *v = r.varobj;
1602
1603 VEC_pop (varobj_update_result, stack);
1604
1605 /* Update this variable, unless it's a root, which is already
1606 updated. */
1607 if (!r.value_installed)
7a290c40
JB
1608 {
1609 struct type *new_type;
1610
fe978cb0
PA
1611 newobj = value_of_child (v->parent, v->index);
1612 if (update_type_if_necessary(v, newobj))
8264ba82 1613 r.type_changed = 1;
fe978cb0
PA
1614 if (newobj)
1615 new_type = value_type (newobj);
7a290c40 1616 else
ca20d462 1617 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1618
fe978cb0 1619 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1620 {
1621 /* The children are no longer valid; delete them now.
1622 Report the fact that its type changed as well. */
30914ca8 1623 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1624 v->num_children = -1;
1625 v->to = -1;
1626 v->from = -1;
1627 v->type = new_type;
1628 r.type_changed = 1;
1629 }
1630
fe978cb0 1631 if (install_new_value (v, newobj, r.type_changed))
b6313243
TT
1632 {
1633 r.changed = 1;
1634 v->updated = 0;
1635 }
1636 }
1637
31f628ae
YQ
1638 /* We probably should not get children of a dynamic varobj, but
1639 for which -var-list-children was never invoked. */
1640 if (varobj_is_dynamic_p (v))
b6313243 1641 {
8264ba82 1642 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
fe978cb0 1643 VEC (varobj_p) *newobj = 0;
26f9bcee 1644 int i, children_changed = 0;
b6313243
TT
1645
1646 if (v->frozen)
1647 continue;
1648
bb5ce47a 1649 if (!v->dynamic->children_requested)
0cc7d26f
TT
1650 {
1651 int dummy;
1652
1653 /* If we initially did not have potential children, but
1654 now we do, consider the varobj as changed.
1655 Otherwise, if children were never requested, consider
1656 it as unchanged -- presumably, such varobj is not yet
1657 expanded in the UI, so we need not bother getting
1658 it. */
1659 if (!varobj_has_more (v, 0))
1660 {
8264ba82 1661 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1662 &dummy, 0, 0, 0);
1663 if (varobj_has_more (v, 0))
1664 r.changed = 1;
1665 }
1666
1667 if (r.changed)
1668 VEC_safe_push (varobj_update_result, result, &r);
1669
1670 continue;
1671 }
1672
b6313243
TT
1673 /* If update_dynamic_varobj_children returns 0, then we have
1674 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1675 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
8264ba82 1676 &unchanged, &children_changed, 1,
0cc7d26f 1677 v->from, v->to))
b6313243 1678 {
fe978cb0 1679 if (children_changed || newobj)
b6313243 1680 {
0cc7d26f 1681 r.children_changed = 1;
fe978cb0 1682 r.newobj = newobj;
b6313243 1683 }
0cc7d26f
TT
1684 /* Push in reverse order so that the first child is
1685 popped from the work stack first, and so will be
1686 added to result first. This does not affect
1687 correctness, just "nicer". */
8264ba82
AG
1688 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1689 {
1690 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1691 varobj_update_result r = {0};
1692
1693 /* Type may change only if value was changed. */
1694 r.varobj = tmp;
1695 r.changed = 1;
1696 r.type_changed = 1;
1697 r.value_installed = 1;
1698 VEC_safe_push (varobj_update_result, stack, &r);
1699 }
0cc7d26f 1700 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1701 {
0cc7d26f 1702 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1703 varobj_update_result r = {0};
a109c7c1 1704
cfce2ea2 1705 r.varobj = tmp;
0cc7d26f 1706 r.changed = 1;
b6313243
TT
1707 r.value_installed = 1;
1708 VEC_safe_push (varobj_update_result, stack, &r);
1709 }
0cc7d26f
TT
1710 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1711 {
1712 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1713
0cc7d26f
TT
1714 if (!tmp->frozen)
1715 {
cfce2ea2 1716 varobj_update_result r = {0};
a109c7c1 1717
cfce2ea2 1718 r.varobj = tmp;
0cc7d26f
TT
1719 r.value_installed = 1;
1720 VEC_safe_push (varobj_update_result, stack, &r);
1721 }
1722 }
b6313243
TT
1723 if (r.changed || r.children_changed)
1724 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1725
8264ba82
AG
1726 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1727 because NEW has been put into the result vector. */
0cc7d26f 1728 VEC_free (varobj_p, changed);
8264ba82 1729 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1730 VEC_free (varobj_p, unchanged);
1731
b6313243
TT
1732 continue;
1733 }
1734 }
28335dcc
VP
1735
1736 /* Push any children. Use reverse order so that the first
1737 child is popped from the work stack first, and so
1738 will be added to result first. This does not
1739 affect correctness, just "nicer". */
1740 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1741 {
28335dcc 1742 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1743
28335dcc 1744 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1745 if (c != NULL && !c->frozen)
28335dcc 1746 {
cfce2ea2 1747 varobj_update_result r = {0};
a109c7c1 1748
cfce2ea2 1749 r.varobj = c;
b6313243 1750 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1751 }
8b93c638 1752 }
b6313243
TT
1753
1754 if (r.changed || r.type_changed)
1755 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1756 }
1757
b6313243
TT
1758 VEC_free (varobj_update_result, stack);
1759
f7f9ae2c 1760 return result;
8b93c638
JM
1761}
1762\f
1763
1764/* Helper functions */
1765
1766/*
1767 * Variable object construction/destruction
1768 */
1769
1770static int
30914ca8 1771delete_variable (struct varobj *var, int only_children_p)
8b93c638
JM
1772{
1773 int delcount = 0;
1774
30914ca8
SM
1775 delete_variable_1 (&delcount, var, only_children_p,
1776 1 /* remove_from_parent_p */ );
8b93c638
JM
1777
1778 return delcount;
1779}
1780
581e13c1 1781/* Delete the variable object VAR and its children. */
8b93c638
JM
1782/* IMPORTANT NOTE: If we delete a variable which is a child
1783 and the parent is not removed we dump core. It must be always
581e13c1 1784 initially called with remove_from_parent_p set. */
8b93c638 1785static void
30914ca8 1786delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
72330bd6 1787 int remove_from_parent_p)
8b93c638 1788{
28335dcc 1789 int i;
8b93c638 1790
581e13c1 1791 /* Delete any children of this variable, too. */
28335dcc
VP
1792 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1793 {
1794 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1795
214270ab
VP
1796 if (!child)
1797 continue;
8b93c638 1798 if (!remove_from_parent_p)
28335dcc 1799 child->parent = NULL;
30914ca8 1800 delete_variable_1 (delcountp, child, 0, only_children_p);
8b93c638 1801 }
28335dcc 1802 VEC_free (varobj_p, var->children);
8b93c638 1803
581e13c1 1804 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1805 if (only_children_p)
1806 return;
1807
581e13c1 1808 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1809 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1810 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1811 if (!var->obj_name.empty ())
8b93c638 1812 {
8b93c638
JM
1813 *delcountp = *delcountp + 1;
1814 }
1815
581e13c1 1816 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1817 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1818 (as indicated by remove_from_parent_p) we don't bother doing an
1819 expensive list search to find the element to remove when we are
581e13c1 1820 discarding the list afterwards. */
72330bd6 1821 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1822 {
28335dcc 1823 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1824 }
72330bd6 1825
2f408ecb 1826 if (!var->obj_name.empty ())
73a93a32 1827 uninstall_variable (var);
8b93c638 1828
581e13c1 1829 /* Free memory associated with this variable. */
9e5b9d2b 1830 delete var;
8b93c638
JM
1831}
1832
581e13c1 1833/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1834static int
fba45db2 1835install_variable (struct varobj *var)
8b93c638
JM
1836{
1837 struct vlist *cv;
1838 struct vlist *newvl;
1839 const char *chp;
1840 unsigned int index = 0;
1841 unsigned int i = 1;
1842
2f408ecb 1843 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1844 {
1845 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1846 }
1847
1848 cv = *(varobj_table + index);
2f408ecb 1849 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1850 cv = cv->next;
1851
1852 if (cv != NULL)
8a3fe4f8 1853 error (_("Duplicate variable object name"));
8b93c638 1854
581e13c1 1855 /* Add varobj to hash table. */
8d749320 1856 newvl = XNEW (struct vlist);
8b93c638
JM
1857 newvl->next = *(varobj_table + index);
1858 newvl->var = var;
1859 *(varobj_table + index) = newvl;
1860
581e13c1 1861 /* If root, add varobj to root list. */
b2c2bd75 1862 if (is_root_p (var))
8b93c638 1863 {
581e13c1 1864 /* Add to list of root variables. */
8b93c638
JM
1865 if (rootlist == NULL)
1866 var->root->next = NULL;
1867 else
1868 var->root->next = rootlist;
1869 rootlist = var->root;
8b93c638
JM
1870 }
1871
1872 return 1; /* OK */
1873}
1874
581e13c1 1875/* Unistall the object VAR. */
8b93c638 1876static void
fba45db2 1877uninstall_variable (struct varobj *var)
8b93c638
JM
1878{
1879 struct vlist *cv;
1880 struct vlist *prev;
1881 struct varobj_root *cr;
1882 struct varobj_root *prer;
1883 const char *chp;
1884 unsigned int index = 0;
1885 unsigned int i = 1;
1886
581e13c1 1887 /* Remove varobj from hash table. */
2f408ecb 1888 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1889 {
1890 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1891 }
1892
1893 cv = *(varobj_table + index);
1894 prev = NULL;
2f408ecb 1895 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1896 {
1897 prev = cv;
1898 cv = cv->next;
1899 }
1900
1901 if (varobjdebug)
2f408ecb 1902 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1903
1904 if (cv == NULL)
1905 {
72330bd6
AC
1906 warning
1907 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1908 var->obj_name.c_str ());
8b93c638
JM
1909 return;
1910 }
1911
1912 if (prev == NULL)
1913 *(varobj_table + index) = cv->next;
1914 else
1915 prev->next = cv->next;
1916
b8c9b27d 1917 xfree (cv);
8b93c638 1918
581e13c1 1919 /* If root, remove varobj from root list. */
b2c2bd75 1920 if (is_root_p (var))
8b93c638 1921 {
581e13c1 1922 /* Remove from list of root variables. */
8b93c638
JM
1923 if (rootlist == var->root)
1924 rootlist = var->root->next;
1925 else
1926 {
1927 prer = NULL;
1928 cr = rootlist;
1929 while ((cr != NULL) && (cr->rootvar != var))
1930 {
1931 prer = cr;
1932 cr = cr->next;
1933 }
1934 if (cr == NULL)
1935 {
8f7e195f
JB
1936 warning (_("Assertion failed: Could not find "
1937 "varobj \"%s\" in root list"),
2f408ecb 1938 var->obj_name.c_str ());
8b93c638
JM
1939 return;
1940 }
1941 if (prer == NULL)
1942 rootlist = NULL;
1943 else
1944 prer->next = cr->next;
1945 }
8b93c638
JM
1946 }
1947
1948}
1949
837ce252
SM
1950/* Create and install a child of the parent of the given name.
1951
1952 The created VAROBJ takes ownership of the allocated NAME. */
1953
8b93c638 1954static struct varobj *
2f408ecb 1955create_child (struct varobj *parent, int index, std::string &name)
b6313243 1956{
5a2e0d6e
YQ
1957 struct varobj_item item;
1958
2f408ecb 1959 std::swap (item.name, name);
5a2e0d6e
YQ
1960 item.value = value_of_child (parent, index);
1961
1962 return create_child_with_value (parent, index, &item);
b6313243
TT
1963}
1964
1965static struct varobj *
5a2e0d6e
YQ
1966create_child_with_value (struct varobj *parent, int index,
1967 struct varobj_item *item)
8b93c638 1968{
9e5b9d2b 1969 varobj *child = new varobj (parent->root);
8b93c638 1970
5e5ac9a5 1971 /* NAME is allocated by caller. */
2f408ecb 1972 std::swap (child->name, item->name);
8b93c638 1973 child->index = index;
8b93c638 1974 child->parent = parent;
85254831 1975
99ad9427 1976 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1977 child->obj_name = string_printf ("%s.%d_anonymous",
1978 parent->obj_name.c_str (), index);
85254831 1979 else
2f408ecb
PA
1980 child->obj_name = string_printf ("%s.%s",
1981 parent->obj_name.c_str (),
1982 child->name.c_str ());
85254831 1983
8b93c638
JM
1984 install_variable (child);
1985
acd65feb
VP
1986 /* Compute the type of the child. Must do this before
1987 calling install_new_value. */
5a2e0d6e 1988 if (item->value != NULL)
acd65feb 1989 /* If the child had no evaluation errors, var->value
581e13c1 1990 will be non-NULL and contain a valid type. */
5a2e0d6e 1991 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1992 else
581e13c1 1993 /* Otherwise, we must compute the type. */
ca20d462
YQ
1994 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1995 child->index);
5a2e0d6e 1996 install_new_value (child, item->value, 1);
acd65feb 1997
8b93c638
JM
1998 return child;
1999}
8b93c638
JM
2000\f
2001
2002/*
2003 * Miscellaneous utility functions.
2004 */
2005
581e13c1 2006/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
2007varobj::varobj (varobj_root *root_)
2008: root (root_), dynamic (new varobj_dynamic)
8b93c638 2009{
8b93c638
JM
2010}
2011
581e13c1 2012/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
2013
2014varobj::~varobj ()
8b93c638 2015{
9e5b9d2b
SM
2016 varobj *var = this;
2017
d452c4bc 2018#if HAVE_PYTHON
bb5ce47a 2019 if (var->dynamic->pretty_printer != NULL)
d452c4bc 2020 {
bde7b3e3 2021 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
2022
2023 Py_XDECREF (var->dynamic->constructor);
2024 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2025 }
2026#endif
2027
827f100c
YQ
2028 varobj_iter_delete (var->dynamic->child_iter);
2029 varobj_clear_saved_item (var->dynamic);
36746093
JK
2030 value_free (var->value);
2031
b2c2bd75 2032 if (is_root_p (var))
4d01a485 2033 delete var->root;
8b93c638 2034
9e5b9d2b 2035 delete var->dynamic;
74b7792f
AC
2036}
2037
6e2a9270
VP
2038/* Return the type of the value that's stored in VAR,
2039 or that would have being stored there if the
581e13c1 2040 value were accessible.
6e2a9270
VP
2041
2042 This differs from VAR->type in that VAR->type is always
2043 the true type of the expession in the source language.
2044 The return value of this function is the type we're
2045 actually storing in varobj, and using for displaying
2046 the values and for comparing previous and new values.
2047
2048 For example, top-level references are always stripped. */
99ad9427 2049struct type *
b09e2c59 2050varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2051{
2052 struct type *type;
2053
2054 if (var->value)
2055 type = value_type (var->value);
2056 else
2057 type = var->type;
2058
2059 type = check_typedef (type);
2060
aa006118 2061 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2062 type = get_target_type (type);
2063
2064 type = check_typedef (type);
2065
2066 return type;
2067}
2068
8b93c638 2069/* What is the default display for this variable? We assume that
581e13c1 2070 everything is "natural". Any exceptions? */
8b93c638 2071static enum varobj_display_formats
fba45db2 2072variable_default_display (struct varobj *var)
8b93c638
JM
2073{
2074 return FORMAT_NATURAL;
2075}
2076
8b93c638
JM
2077/*
2078 * Language-dependencies
2079 */
2080
2081/* Common entry points */
2082
8b93c638
JM
2083/* Return the number of children for a given variable.
2084 The result of this function is defined by the language
581e13c1 2085 implementation. The number of children returned by this function
8b93c638 2086 is the number of children that the user will see in the variable
581e13c1 2087 display. */
8b93c638 2088static int
b09e2c59 2089number_of_children (const struct varobj *var)
8b93c638 2090{
ca20d462 2091 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2092}
2093
2f408ecb
PA
2094/* What is the expression for the root varobj VAR? */
2095
2096static std::string
b09e2c59 2097name_of_variable (const struct varobj *var)
8b93c638 2098{
ca20d462 2099 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2100}
2101
2f408ecb
PA
2102/* What is the name of the INDEX'th child of VAR? */
2103
2104static std::string
fba45db2 2105name_of_child (struct varobj *var, int index)
8b93c638 2106{
ca20d462 2107 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2108}
2109
2213e2be
YQ
2110/* If frame associated with VAR can be found, switch
2111 to it and return 1. Otherwise, return 0. */
2112
2113static int
b09e2c59 2114check_scope (const struct varobj *var)
2213e2be
YQ
2115{
2116 struct frame_info *fi;
2117 int scope;
2118
2119 fi = frame_find_by_id (var->root->frame);
2120 scope = fi != NULL;
2121
2122 if (fi)
2123 {
2124 CORE_ADDR pc = get_frame_pc (fi);
2125
2126 if (pc < BLOCK_START (var->root->valid_block) ||
2127 pc >= BLOCK_END (var->root->valid_block))
2128 scope = 0;
2129 else
2130 select_frame (fi);
2131 }
2132 return scope;
2133}
2134
2135/* Helper function to value_of_root. */
2136
2137static struct value *
2138value_of_root_1 (struct varobj **var_handle)
2139{
2140 struct value *new_val = NULL;
2141 struct varobj *var = *var_handle;
2142 int within_scope = 0;
2213e2be
YQ
2143
2144 /* Only root variables can be updated... */
2145 if (!is_root_p (var))
2146 /* Not a root var. */
2147 return NULL;
2148
5ed8105e 2149 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2150
2151 /* Determine whether the variable is still around. */
2152 if (var->root->valid_block == NULL || var->root->floating)
2153 within_scope = 1;
2154 else if (var->root->thread_id == 0)
2155 {
2156 /* The program was single-threaded when the variable object was
2157 created. Technically, it's possible that the program became
2158 multi-threaded since then, but we don't support such
2159 scenario yet. */
2160 within_scope = check_scope (var);
2161 }
2162 else
2163 {
5d5658a1
PA
2164 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2165
2166 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2167 {
2168 switch_to_thread (ptid);
2169 within_scope = check_scope (var);
2170 }
2171 }
2172
2173 if (within_scope)
2174 {
2213e2be
YQ
2175
2176 /* We need to catch errors here, because if evaluate
2177 expression fails we want to just return NULL. */
492d29ea 2178 TRY
2213e2be 2179 {
4d01a485 2180 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2181 }
492d29ea
PA
2182 CATCH (except, RETURN_MASK_ERROR)
2183 {
2184 }
2185 END_CATCH
2213e2be
YQ
2186 }
2187
2213e2be
YQ
2188 return new_val;
2189}
2190
a5defcdc
VP
2191/* What is the ``struct value *'' of the root variable VAR?
2192 For floating variable object, evaluation can get us a value
2193 of different type from what is stored in varobj already. In
2194 that case:
2195 - *type_changed will be set to 1
2196 - old varobj will be freed, and new one will be
2197 created, with the same name.
2198 - *var_handle will be set to the new varobj
2199 Otherwise, *type_changed will be set to 0. */
30b28db1 2200static struct value *
fba45db2 2201value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2202{
73a93a32
JI
2203 struct varobj *var;
2204
2205 if (var_handle == NULL)
2206 return NULL;
2207
2208 var = *var_handle;
2209
2210 /* This should really be an exception, since this should
581e13c1 2211 only get called with a root variable. */
73a93a32 2212
b2c2bd75 2213 if (!is_root_p (var))
73a93a32
JI
2214 return NULL;
2215
a5defcdc 2216 if (var->root->floating)
73a93a32
JI
2217 {
2218 struct varobj *tmp_var;
6225abfa 2219
2f408ecb 2220 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2221 USE_SELECTED_FRAME);
2222 if (tmp_var == NULL)
2223 {
2224 return NULL;
2225 }
2f408ecb
PA
2226 std::string old_type = varobj_get_type (var);
2227 std::string new_type = varobj_get_type (tmp_var);
2228 if (old_type == new_type)
73a93a32 2229 {
fcacd99f
VP
2230 /* The expression presently stored inside var->root->exp
2231 remembers the locations of local variables relatively to
2232 the frame where the expression was created (in DWARF location
2233 button, for example). Naturally, those locations are not
2234 correct in other frames, so update the expression. */
2235
4d01a485 2236 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2237
30914ca8 2238 varobj_delete (tmp_var, 0);
73a93a32
JI
2239 *type_changed = 0;
2240 }
2241 else
2242 {
2f408ecb 2243 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2244 tmp_var->from = var->from;
2245 tmp_var->to = var->to;
30914ca8 2246 varobj_delete (var, 0);
a5defcdc 2247
73a93a32
JI
2248 install_variable (tmp_var);
2249 *var_handle = tmp_var;
705da579 2250 var = *var_handle;
73a93a32
JI
2251 *type_changed = 1;
2252 }
2253 }
2254 else
2255 {
2256 *type_changed = 0;
2257 }
2258
7a290c40
JB
2259 {
2260 struct value *value;
2261
2213e2be 2262 value = value_of_root_1 (var_handle);
7a290c40
JB
2263 if (var->value == NULL || value == NULL)
2264 {
2265 /* For root varobj-s, a NULL value indicates a scoping issue.
2266 So, nothing to do in terms of checking for mutations. */
2267 }
2268 else if (varobj_value_has_mutated (var, value, value_type (value)))
2269 {
2270 /* The type has mutated, so the children are no longer valid.
2271 Just delete them, and tell our caller that the type has
2272 changed. */
30914ca8 2273 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2274 var->num_children = -1;
2275 var->to = -1;
2276 var->from = -1;
2277 *type_changed = 1;
2278 }
2279 return value;
2280 }
8b93c638
JM
2281}
2282
581e13c1 2283/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2284static struct value *
c1cc6152 2285value_of_child (const struct varobj *parent, int index)
8b93c638 2286{
30b28db1 2287 struct value *value;
8b93c638 2288
ca20d462 2289 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2290
8b93c638
JM
2291 return value;
2292}
2293
581e13c1 2294/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2295static std::string
de051565 2296my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2297{
8756216b 2298 if (var->root->is_valid)
0cc7d26f 2299 {
bb5ce47a 2300 if (var->dynamic->pretty_printer != NULL)
99ad9427 2301 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2302 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2303 }
8756216b 2304 else
2f408ecb 2305 return std::string ();
8b93c638
JM
2306}
2307
99ad9427
YQ
2308void
2309varobj_formatted_print_options (struct value_print_options *opts,
2310 enum varobj_display_formats format)
2311{
2312 get_formatted_print_options (opts, format_code[(int) format]);
2313 opts->deref_ref = 0;
2314 opts->raw = 1;
2315}
2316
2f408ecb 2317std::string
99ad9427
YQ
2318varobj_value_get_print_value (struct value *value,
2319 enum varobj_display_formats format,
b09e2c59 2320 const struct varobj *var)
85265413 2321{
79a45b7d 2322 struct value_print_options opts;
be759fcf
PM
2323 struct type *type = NULL;
2324 long len = 0;
1eba6383 2325 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2326 /* Initialize it just to avoid a GCC false warning. */
2327 CORE_ADDR str_addr = 0;
09ca9e2e 2328 int string_print = 0;
57e66780
DJ
2329
2330 if (value == NULL)
2f408ecb 2331 return std::string ();
57e66780 2332
d7e74731 2333 string_file stb;
2f408ecb
PA
2334 std::string thevalue;
2335
b6313243 2336#if HAVE_PYTHON
0646da15
TT
2337 if (gdb_python_initialized)
2338 {
bb5ce47a 2339 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2340
68cdc557 2341 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2342
0646da15
TT
2343 if (value_formatter)
2344 {
2345 /* First check to see if we have any children at all. If so,
2346 we simply return {...}. */
2347 if (dynamic_varobj_has_child_method (var))
d7e74731 2348 return "{...}";
b6313243 2349
0646da15
TT
2350 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2351 {
2352 struct value *replacement;
0646da15 2353
7780f186
TT
2354 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2355 &replacement,
2356 &stb));
0646da15
TT
2357
2358 /* If we have string like output ... */
68cdc557 2359 if (output != NULL)
0646da15 2360 {
0646da15
TT
2361 /* If this is a lazy string, extract it. For lazy
2362 strings we always print as a string, so set
2363 string_print. */
68cdc557 2364 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2365 {
68cdc557
TT
2366 gdbpy_extract_lazy_string (output.get (), &str_addr,
2367 &type, &len, &encoding);
0646da15
TT
2368 string_print = 1;
2369 }
2370 else
2371 {
2372 /* If it is a regular (non-lazy) string, extract
2373 it and copy the contents into THEVALUE. If the
2374 hint says to print it as a string, set
2375 string_print. Otherwise just return the extracted
2376 string as a value. */
2377
9b972014 2378 gdb::unique_xmalloc_ptr<char> s
68cdc557 2379 = python_string_to_target_string (output.get ());
0646da15
TT
2380
2381 if (s)
2382 {
e3821cca 2383 struct gdbarch *gdbarch;
0646da15 2384
9b972014
TT
2385 gdb::unique_xmalloc_ptr<char> hint
2386 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2387 if (hint)
2388 {
9b972014 2389 if (!strcmp (hint.get (), "string"))
0646da15 2390 string_print = 1;
0646da15
TT
2391 }
2392
9b972014 2393 thevalue = std::string (s.get ());
2f408ecb 2394 len = thevalue.size ();
e3821cca 2395 gdbarch = get_type_arch (value_type (value));
0646da15 2396 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2397
2398 if (!string_print)
d7e74731 2399 return thevalue;
0646da15
TT
2400 }
2401 else
2402 gdbpy_print_stack ();
2403 }
2404 }
2405 /* If the printer returned a replacement value, set VALUE
2406 to REPLACEMENT. If there is not a replacement value,
2407 just use the value passed to this function. */
2408 if (replacement)
2409 value = replacement;
2410 }
2411 }
2412 }
b6313243
TT
2413#endif
2414
99ad9427 2415 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2416
2417 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2418 if (!thevalue.empty ())
d7e74731 2419 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2420 len, encoding.get (), 0, &opts);
09ca9e2e 2421 else if (string_print)
00bd41d6
PM
2422 /* Otherwise, if string_print is set, and it is not a regular
2423 string, it is a lazy string. */
d7e74731 2424 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2425 else
00bd41d6 2426 /* All other cases. */
d7e74731 2427 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2428
d7e74731 2429 return std::move (stb.string ());
85265413
NR
2430}
2431
340a7723 2432int
b09e2c59 2433varobj_editable_p (const struct varobj *var)
340a7723
NR
2434{
2435 struct type *type;
340a7723
NR
2436
2437 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2438 return 0;
2439
99ad9427 2440 type = varobj_get_value_type (var);
340a7723
NR
2441
2442 switch (TYPE_CODE (type))
2443 {
2444 case TYPE_CODE_STRUCT:
2445 case TYPE_CODE_UNION:
2446 case TYPE_CODE_ARRAY:
2447 case TYPE_CODE_FUNC:
2448 case TYPE_CODE_METHOD:
2449 return 0;
2450 break;
2451
2452 default:
2453 return 1;
2454 break;
2455 }
2456}
2457
d32cafc7 2458/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2459
99ad9427 2460int
b09e2c59 2461varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2462{
ca20d462 2463 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2464}
2465
5a413362
VP
2466/* Return 1 if that varobj is floating, that is is always evaluated in the
2467 selected frame, and not bound to thread/frame. Such variable objects
2468 are created using '@' as frame specifier to -var-create. */
2469int
b09e2c59 2470varobj_floating_p (const struct varobj *var)
5a413362
VP
2471{
2472 return var->root->floating;
2473}
2474
d32cafc7
JB
2475/* Implement the "value_is_changeable_p" varobj callback for most
2476 languages. */
2477
99ad9427 2478int
b09e2c59 2479varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2480{
2481 int r;
2482 struct type *type;
2483
2484 if (CPLUS_FAKE_CHILD (var))
2485 return 0;
2486
99ad9427 2487 type = varobj_get_value_type (var);
d32cafc7
JB
2488
2489 switch (TYPE_CODE (type))
2490 {
2491 case TYPE_CODE_STRUCT:
2492 case TYPE_CODE_UNION:
2493 case TYPE_CODE_ARRAY:
2494 r = 0;
2495 break;
2496
2497 default:
2498 r = 1;
2499 }
2500
2501 return r;
2502}
2503
54333c3b
JK
2504/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2505 with an arbitrary caller supplied DATA pointer. */
2506
2507void
2508all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2509{
2510 struct varobj_root *var_root, *var_root_next;
2511
2512 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2513
2514 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2515 {
2516 var_root_next = var_root->next;
2517
2518 (*func) (var_root->rootvar, data);
2519 }
2520}
8756216b 2521
54333c3b 2522/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2523 defined on globals. It is a helper for varobj_invalidate.
2524
2525 This function is called after changing the symbol file, in this case the
2526 pointers to "struct type" stored by the varobj are no longer valid. All
2527 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2528
54333c3b
JK
2529static void
2530varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2531{
4e969b4f
AB
2532 /* global and floating var must be re-evaluated. */
2533 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2534 {
54333c3b 2535 struct varobj *tmp_var;
2dbd25e5 2536
54333c3b
JK
2537 /* Try to create a varobj with same expression. If we succeed
2538 replace the old varobj, otherwise invalidate it. */
2f408ecb 2539 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2540 USE_CURRENT_FRAME);
2541 if (tmp_var != NULL)
2542 {
2f408ecb 2543 tmp_var->obj_name = var->obj_name;
30914ca8 2544 varobj_delete (var, 0);
54333c3b 2545 install_variable (tmp_var);
2dbd25e5 2546 }
54333c3b
JK
2547 else
2548 var->root->is_valid = 0;
2dbd25e5 2549 }
54333c3b
JK
2550 else /* locals must be invalidated. */
2551 var->root->is_valid = 0;
2552}
2553
2554/* Invalidate the varobjs that are tied to locals and re-create the ones that
2555 are defined on globals.
2556 Invalidated varobjs will be always printed in_scope="invalid". */
2557
2558void
2559varobj_invalidate (void)
2560{
2561 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2562}
481695ed 2563
1c3569d4
MR
2564void
2565_initialize_varobj (void)
2566{
8d749320 2567 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2568
2569 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2570 &varobjdebug,
2571 _("Set varobj debugging."),
2572 _("Show varobj debugging."),
2573 _("When non-zero, varobj debugging is enabled."),
2574 NULL, show_varobjdebug,
2575 &setdebuglist, &showdebuglist);
2576}
This page took 2.193091 seconds and 4 git commands to generate.