Fix compile errors about shift counts too large.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
618f726f 3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
1c35a88f 53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
b09e2c59 196static int number_of_children (const struct varobj *);
8b93c638 197
b09e2c59 198static char *name_of_variable (const struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
c1cc6152 204static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b09e2c59 209static int is_root_p (const struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 217static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1 222/* Prime number indicating the number of buckets in the hash table. */
5fa13070 223/* A prime large enough to avoid too many collisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75 232static int
b09e2c59 233is_root_p (const struct varobj *var)
b2c2bd75
VP
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
b09e2c59 242varobj_ensure_python_env (const struct varobj *var)
d452c4bc
UW
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
7d8547c9
AC
249/* Return the full FRAME which corresponds to the given CORE_ADDR
250 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
251
252static struct frame_info *
253find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
254{
255 struct frame_info *frame = NULL;
256
257 if (frame_addr == (CORE_ADDR) 0)
258 return NULL;
259
9d49bdc2
PA
260 for (frame = get_current_frame ();
261 frame != NULL;
262 frame = get_prev_frame (frame))
7d8547c9 263 {
1fac167a
UW
264 /* The CORE_ADDR we get as argument was parsed from a string GDB
265 output as $fp. This output got truncated to gdbarch_addr_bit.
266 Truncate the frame base address in the same manner before
267 comparing it against our argument. */
268 CORE_ADDR frame_base = get_frame_base_address (frame);
269 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 270
1fac167a
UW
271 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
272 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
273
274 if (frame_base == frame_addr)
7d8547c9
AC
275 return frame;
276 }
9d49bdc2
PA
277
278 return NULL;
7d8547c9
AC
279}
280
5fa13070
SM
281/* Creates a varobj (not its children). */
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
1bb9788d 301 CORE_ADDR pc;
8b93c638 302
9d49bdc2
PA
303 /* Parse and evaluate the expression, filling in as much of the
304 variable's data as possible. */
305
306 if (has_stack_frames ())
307 {
581e13c1 308 /* Allow creator to specify context of variable. */
9d49bdc2
PA
309 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
310 fi = get_selected_frame (NULL);
311 else
312 /* FIXME: cagney/2002-11-23: This code should be doing a
313 lookup using the frame ID and not just the frame's
314 ``address''. This, of course, means an interface
315 change. However, with out that interface change ISAs,
316 such as the ia64 with its two stacks, won't work.
317 Similar goes for the case where there is a frameless
318 function. */
319 fi = find_frame_addr_in_frame_chain (frame);
320 }
8b93c638 321 else
9d49bdc2 322 fi = NULL;
8b93c638 323
581e13c1 324 /* frame = -2 means always use selected frame. */
73a93a32 325 if (type == USE_SELECTED_FRAME)
a5defcdc 326 var->root->floating = 1;
73a93a32 327
1bb9788d 328 pc = 0;
8b93c638
JM
329 block = NULL;
330 if (fi != NULL)
1bb9788d
TT
331 {
332 block = get_frame_block (fi, 0);
333 pc = get_frame_pc (fi);
334 }
8b93c638
JM
335
336 p = expression;
337 innermost_block = NULL;
73a93a32 338 /* Wrap the call to parse expression, so we can
581e13c1 339 return a sensible error. */
492d29ea 340 TRY
8e7b59a5 341 {
1bb9788d 342 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
343 }
344
492d29ea 345 CATCH (except, RETURN_MASK_ERROR)
73a93a32 346 {
f748fb40 347 do_cleanups (old_chain);
73a93a32
JI
348 return NULL;
349 }
492d29ea 350 END_CATCH
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
5d5658a1 383 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 391 TRY
8e7b59a5
KS
392 {
393 value = evaluate_expression (var->root->exp);
394 }
492d29ea 395 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
396 {
397 /* Error getting the value. Try to at least get the
398 right type. */
399 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 400
e55dccf0
VP
401 var->type = value_type (type_only_value);
402 }
492d29ea 403 END_CATCH
8264ba82 404
492d29ea
PA
405 if (value != NULL)
406 {
407 int real_type_found = 0;
408
409 var->type = value_actual_type (value, 0, &real_type_found);
410 if (real_type_found)
411 value = value_cast (var->type, value);
412 }
acd65feb 413
8b93c638 414 /* Set language info */
ca20d462 415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 416
d32cafc7
JB
417 install_new_value (var, value, 1 /* Initial assignment */);
418
581e13c1 419 /* Set ourselves as our root. */
8b93c638
JM
420 var->root->rootvar = var;
421
581e13c1 422 /* Reset the selected frame. */
35633fef
JK
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
8b93c638
JM
425 }
426
73a93a32 427 /* If the variable object name is null, that means this
581e13c1 428 is a temporary variable, so don't install it. */
73a93a32
JI
429
430 if ((var != NULL) && (objname != NULL))
8b93c638 431 {
1b36a34b 432 var->obj_name = xstrdup (objname);
8b93c638
JM
433
434 /* If a varobj name is duplicated, the install will fail so
581e13c1 435 we must cleanup. */
8b93c638
JM
436 if (!install_variable (var))
437 {
438 do_cleanups (old_chain);
439 return NULL;
440 }
441 }
442
443 discard_cleanups (old_chain);
444 return var;
445}
446
581e13c1 447/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
448
449char *
450varobj_gen_name (void)
451{
452 static int id = 0;
e64d9b3d 453 char *obj_name;
8b93c638 454
581e13c1 455 /* Generate a name for this object. */
8b93c638 456 id++;
b435e160 457 obj_name = xstrprintf ("var%d", id);
8b93c638 458
e64d9b3d 459 return obj_name;
8b93c638
JM
460}
461
61d8f275
JK
462/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
8b93c638
JM
464
465struct varobj *
466varobj_get_handle (char *objname)
467{
468 struct vlist *cv;
469 const char *chp;
470 unsigned int index = 0;
471 unsigned int i = 1;
472
473 for (chp = objname; *chp; chp++)
474 {
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
476 }
477
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
480 cv = cv->next;
481
482 if (cv == NULL)
8a3fe4f8 483 error (_("Variable object not found"));
8b93c638
JM
484
485 return cv->var;
486}
487
581e13c1 488/* Given the handle, return the name of the object. */
8b93c638
JM
489
490char *
b09e2c59 491varobj_get_objname (const struct varobj *var)
8b93c638
JM
492{
493 return var->obj_name;
494}
495
ca83fa81
SM
496/* Given the handle, return the expression represented by the object. The
497 result must be freed by the caller. */
8b93c638
JM
498
499char *
b09e2c59 500varobj_get_expression (const struct varobj *var)
8b93c638
JM
501{
502 return name_of_variable (var);
503}
504
505/* Deletes a varobj and all its children if only_children == 0,
6da58d3e
SM
506 otherwise deletes only the children. If DELLIST is non-NULL, it is
507 assigned a malloc'ed list of all the (malloc'ed) names of the variables
508 that have been deleted (NULL terminated). Returns the number of deleted
509 variables. */
8b93c638
JM
510
511int
512varobj_delete (struct varobj *var, char ***dellist, int only_children)
513{
514 int delcount;
515 int mycount;
516 struct cpstack *result = NULL;
517 char **cp;
518
581e13c1 519 /* Initialize a stack for temporary results. */
8b93c638
JM
520 cppush (&result, NULL);
521
522 if (only_children)
581e13c1 523 /* Delete only the variable children. */
8b93c638
JM
524 delcount = delete_variable (&result, var, 1 /* only the children */ );
525 else
581e13c1 526 /* Delete the variable and all its children. */
8b93c638
JM
527 delcount = delete_variable (&result, var, 0 /* parent+children */ );
528
581e13c1 529 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
530 if (dellist != NULL)
531 {
224c3ddb 532 *dellist = XNEWVEC (char *, delcount + 1);
8b93c638
JM
533
534 cp = *dellist;
535 mycount = delcount;
536 *cp = cppop (&result);
537 while ((*cp != NULL) && (mycount > 0))
538 {
539 mycount--;
540 cp++;
541 *cp = cppop (&result);
542 }
543
544 if (mycount || (*cp != NULL))
8a3fe4f8 545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 546 mycount);
8b93c638
JM
547 }
548
549 return delcount;
550}
551
d8b65138
JK
552#if HAVE_PYTHON
553
b6313243
TT
554/* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
556static PyObject *
557instantiate_pretty_printer (PyObject *constructor, struct value *value)
558{
b6313243
TT
559 PyObject *val_obj = NULL;
560 PyObject *printer;
b6313243 561
b6313243 562 val_obj = value_to_value_object (value);
b6313243
TT
563 if (! val_obj)
564 return NULL;
565
566 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
567 Py_DECREF (val_obj);
568 return printer;
b6313243
TT
569}
570
d8b65138
JK
571#endif
572
581e13c1 573/* Set/Get variable object display format. */
8b93c638
JM
574
575enum varobj_display_formats
576varobj_set_display_format (struct varobj *var,
577 enum varobj_display_formats format)
578{
579 switch (format)
580 {
581 case FORMAT_NATURAL:
582 case FORMAT_BINARY:
583 case FORMAT_DECIMAL:
584 case FORMAT_HEXADECIMAL:
585 case FORMAT_OCTAL:
1c35a88f 586 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
ae7d22a6
VP
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
6c761d9c 597 xfree (var->print_value);
99ad9427
YQ
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
ae7d22a6
VP
600 }
601
8b93c638
JM
602 return var->format;
603}
604
605enum varobj_display_formats
b09e2c59 606varobj_get_display_format (const struct varobj *var)
8b93c638
JM
607{
608 return var->format;
609}
610
b6313243 611char *
b09e2c59 612varobj_get_display_hint (const struct varobj *var)
b6313243
TT
613{
614 char *result = NULL;
615
616#if HAVE_PYTHON
0646da15
TT
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
d452c4bc 623
bb5ce47a
YQ
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
626
627 do_cleanups (back_to);
b6313243
TT
628#endif
629
630 return result;
631}
632
0cc7d26f
TT
633/* Return true if the varobj has items after TO, false otherwise. */
634
635int
b09e2c59 636varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
637{
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 641 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
642}
643
c5b48eac
VP
644/* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
581e13c1 647 is always positive. Otherwise, returns -1. */
c5b48eac 648int
b09e2c59 649varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
650{
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655}
656
25d5ea92
VP
657void
658varobj_set_frozen (struct varobj *var, int frozen)
659{
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668}
669
670int
b09e2c59 671varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
672{
673 return var->frozen;
674}
675
0cc7d26f
TT
676/* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
99ad9427
YQ
681void
682varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
683{
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698}
699
700/* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703static void
704install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
8264ba82 706 VEC (varobj_p) **type_changed,
fe978cb0 707 VEC (varobj_p) **newobj,
0cc7d26f
TT
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
5a2e0d6e 711 struct varobj_item *item)
0cc7d26f
TT
712{
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
5a2e0d6e 716 struct varobj *child = varobj_add_child (var, item);
a109c7c1 717
fe978cb0 718 if (newobj)
0cc7d26f 719 {
fe978cb0 720 VEC_safe_push (varobj_p, *newobj, child);
0cc7d26f
TT
721 *cchanged = 1;
722 }
723 }
bf8793bb 724 else
0cc7d26f
TT
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 727 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 728
8264ba82
AG
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
5a2e0d6e 734 if (install_new_value (existing, item->value, 0))
0cc7d26f 735 {
8264ba82 736 if (!type_updated && changed)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
8264ba82 739 else if (!type_updated && unchanged)
0cc7d26f
TT
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742}
743
576ea091
YQ
744#if HAVE_PYTHON
745
0cc7d26f 746static int
b09e2c59 747dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f
TT
748{
749 struct cleanup *back_to;
bb5ce47a 750 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
751 int result;
752
0646da15
TT
753 if (!gdb_python_initialized)
754 return 0;
755
0cc7d26f
TT
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760}
576ea091 761#endif
0cc7d26f 762
e5250216
YQ
763/* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766static struct varobj_iter *
767varobj_get_iterator (struct varobj *var)
768{
576ea091 769#if HAVE_PYTHON
e5250216
YQ
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 772#endif
e5250216
YQ
773
774 gdb_assert_not_reached (_("\
775requested an iterator from a non-dynamic varobj"));
776}
777
827f100c
YQ
778/* Release and clear VAR's saved item, if any. */
779
780static void
781varobj_clear_saved_item (struct varobj_dynamic *var)
782{
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789}
0cc7d26f 790
b6313243
TT
791static int
792update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
8264ba82 794 VEC (varobj_p) **type_changed,
fe978cb0 795 VEC (varobj_p) **newobj,
0cc7d26f
TT
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
b6313243 801{
b6313243 802 int i;
b6313243 803
b6313243 804 *cchanged = 0;
b6313243 805
bb5ce47a 806 if (update_children || var->dynamic->child_iter == NULL)
b6313243 807 {
e5250216
YQ
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 810
827f100c 811 varobj_clear_saved_item (var->dynamic);
b6313243 812
e5250216 813 i = 0;
b6313243 814
bb5ce47a 815 if (var->dynamic->child_iter == NULL)
827f100c 816 return 0;
b6313243 817 }
0cc7d26f
TT
818 else
819 i = VEC_length (varobj_p, var->children);
b6313243 820
0cc7d26f
TT
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
b6313243 824 {
827f100c 825 varobj_item *item;
b6313243 826
0cc7d26f 827 /* See if there was a leftover from last time. */
827f100c 828 if (var->dynamic->saved_item != NULL)
0cc7d26f 829 {
bb5ce47a
YQ
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
0cc7d26f
TT
832 }
833 else
a4c8e806 834 {
e5250216 835 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
a4c8e806 840 }
b6313243 841
e5250216
YQ
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
0cc7d26f
TT
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
b6313243 851 {
0cc7d26f
TT
852 int can_mention = from < 0 || i >= from;
853
0cc7d26f 854 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 855 can_mention ? type_changed : NULL,
fe978cb0 856 can_mention ? newobj : NULL,
0cc7d26f 857 can_mention ? unchanged : NULL,
5e5ac9a5 858 can_mention ? cchanged : NULL, i,
827f100c
YQ
859 item);
860
861 xfree (item);
b6313243 862 }
0cc7d26f 863 else
b6313243 864 {
bb5ce47a 865 var->dynamic->saved_item = item;
b6313243 866
0cc7d26f
TT
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
b6313243
TT
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
0cc7d26f 875 int j;
a109c7c1 876
0cc7d26f
TT
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
b6313243 881 }
0cc7d26f
TT
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
b6313243 888 var->num_children = VEC_length (varobj_p, var->children);
b6313243 889
b6313243 890 return 1;
b6313243 891}
25d5ea92 892
8b93c638
JM
893int
894varobj_get_num_children (struct varobj *var)
895{
896 if (var->num_children == -1)
b6313243 897 {
31f628ae 898 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
8264ba82 904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
905 0, 0, 0);
906 }
907 else
b6313243
TT
908 var->num_children = number_of_children (var);
909 }
8b93c638 910
0cc7d26f 911 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
912}
913
914/* Creates a list of the immediate children of a variable object;
581e13c1 915 the return code is the number of such children or -1 on error. */
8b93c638 916
d56d46f5 917VEC (varobj_p)*
0cc7d26f 918varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 919{
8b93c638 920 char *name;
b6313243
TT
921 int i, children_changed;
922
bb5ce47a 923 var->dynamic->children_requested = 1;
b6313243 924
31f628ae 925 if (varobj_is_dynamic_p (var))
0cc7d26f 926 {
b6313243
TT
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
8264ba82
AG
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
99ad9427 932 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
933 return var->children;
934 }
8b93c638 935
8b93c638
JM
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
74a44383
DJ
939 /* If that failed, give up. */
940 if (var->num_children == -1)
d56d46f5 941 return var->children;
74a44383 942
28335dcc
VP
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
8b93c638
JM
948 for (i = 0; i < var->num_children; i++)
949 {
d56d46f5 950 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
8b93c638
JM
961 }
962
99ad9427 963 varobj_restrict_range (var->children, from, to);
d56d46f5 964 return var->children;
8b93c638
JM
965}
966
b6313243 967static struct varobj *
5a2e0d6e 968varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 969{
5a2e0d6e 970 varobj_p v = create_child_with_value (var,
b6313243 971 VEC_length (varobj_p, var->children),
5a2e0d6e 972 item);
a109c7c1 973
b6313243 974 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
975 return v;
976}
977
8b93c638 978/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
979 prints on the console. The caller is responsible for freeing the string.
980 */
8b93c638
JM
981
982char *
983varobj_get_type (struct varobj *var)
984{
8ab91b96 985 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
986 NULL, too.)
987 Do not return a type for invalid variables as well. */
988 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
989 return NULL;
990
1a4300e9 991 return type_to_string (var->type);
8b93c638
JM
992}
993
1ecb4ee0
DJ
994/* Obtain the type of an object variable. */
995
996struct type *
b09e2c59 997varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
998{
999 return var->type;
1000}
1001
85254831
KS
1002/* Is VAR a path expression parent, i.e., can it be used to construct
1003 a valid path expression? */
1004
1005static int
b09e2c59 1006is_path_expr_parent (const struct varobj *var)
85254831 1007{
9a9a7608
AB
1008 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1009 return var->root->lang_ops->is_path_expr_parent (var);
1010}
85254831 1011
9a9a7608
AB
1012/* Is VAR a path expression parent, i.e., can it be used to construct
1013 a valid path expression? By default we assume any VAR can be a path
1014 parent. */
85254831 1015
9a9a7608 1016int
b09e2c59 1017varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
1018{
1019 return 1;
85254831
KS
1020}
1021
1022/* Return the path expression parent for VAR. */
1023
c1cc6152
SM
1024const struct varobj *
1025varobj_get_path_expr_parent (const struct varobj *var)
85254831 1026{
c1cc6152 1027 const struct varobj *parent = var;
85254831
KS
1028
1029 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1030 parent = parent->parent;
1031
1032 return parent;
1033}
1034
02142340
VP
1035/* Return a pointer to the full rooted expression of varobj VAR.
1036 If it has not been computed yet, compute it. */
1037char *
c1cc6152 1038varobj_get_path_expr (const struct varobj *var)
02142340 1039{
2568868e 1040 if (var->path_expr == NULL)
02142340
VP
1041 {
1042 /* For root varobjs, we initialize path_expr
1043 when creating varobj, so here it should be
1044 child varobj. */
c1cc6152 1045 struct varobj *mutable_var = (struct varobj *) var;
02142340 1046 gdb_assert (!is_root_p (var));
2568868e 1047
c1cc6152 1048 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 1049 }
2568868e
SM
1050
1051 return var->path_expr;
02142340
VP
1052}
1053
fa4d0c40 1054const struct language_defn *
b09e2c59 1055varobj_get_language (const struct varobj *var)
8b93c638 1056{
fa4d0c40 1057 return var->root->exp->language_defn;
8b93c638
JM
1058}
1059
1060int
b09e2c59 1061varobj_get_attributes (const struct varobj *var)
8b93c638
JM
1062{
1063 int attributes = 0;
1064
340a7723 1065 if (varobj_editable_p (var))
581e13c1 1066 /* FIXME: define masks for attributes. */
8b93c638
JM
1067 attributes |= 0x00000001; /* Editable */
1068
1069 return attributes;
1070}
1071
cde5ef40
YQ
1072/* Return true if VAR is a dynamic varobj. */
1073
0cc7d26f 1074int
b09e2c59 1075varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1076{
bb5ce47a 1077 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1078}
1079
de051565
MK
1080char *
1081varobj_get_formatted_value (struct varobj *var,
1082 enum varobj_display_formats format)
1083{
1084 return my_value_of_variable (var, format);
1085}
1086
8b93c638
JM
1087char *
1088varobj_get_value (struct varobj *var)
1089{
de051565 1090 return my_value_of_variable (var, var->format);
8b93c638
JM
1091}
1092
1093/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1094 value of the given expression. */
1095/* Note: Invokes functions that can call error(). */
8b93c638
JM
1096
1097int
1098varobj_set_value (struct varobj *var, char *expression)
1099{
34365054 1100 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1101 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1102 We need to first construct a legal expression for this -- ugh! */
1103 /* Does this cover all the bases? */
8b93c638 1104 struct expression *exp;
34365054 1105 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1106 int saved_input_radix = input_radix;
bbc13ae3 1107 const char *s = expression;
8b93c638 1108
340a7723 1109 gdb_assert (varobj_editable_p (var));
8b93c638 1110
581e13c1 1111 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1112 exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1113 TRY
8e7b59a5
KS
1114 {
1115 value = evaluate_expression (exp);
1116 }
1117
492d29ea 1118 CATCH (except, RETURN_MASK_ERROR)
340a7723 1119 {
581e13c1 1120 /* We cannot proceed without a valid expression. */
340a7723
NR
1121 xfree (exp);
1122 return 0;
8b93c638 1123 }
492d29ea 1124 END_CATCH
8b93c638 1125
340a7723
NR
1126 /* All types that are editable must also be changeable. */
1127 gdb_assert (varobj_value_is_changeable_p (var));
1128
1129 /* The value of a changeable variable object must not be lazy. */
1130 gdb_assert (!value_lazy (var->value));
1131
1132 /* Need to coerce the input. We want to check if the
1133 value of the variable object will be different
1134 after assignment, and the first thing value_assign
1135 does is coerce the input.
1136 For example, if we are assigning an array to a pointer variable we
b021a221 1137 should compare the pointer with the array's address, not with the
340a7723
NR
1138 array's content. */
1139 value = coerce_array (value);
1140
8e7b59a5
KS
1141 /* The new value may be lazy. value_assign, or
1142 rather value_contents, will take care of this. */
492d29ea 1143 TRY
8e7b59a5
KS
1144 {
1145 val = value_assign (var->value, value);
1146 }
1147
492d29ea
PA
1148 CATCH (except, RETURN_MASK_ERROR)
1149 {
1150 return 0;
1151 }
1152 END_CATCH
8e7b59a5 1153
340a7723
NR
1154 /* If the value has changed, record it, so that next -var-update can
1155 report this change. If a variable had a value of '1', we've set it
1156 to '333' and then set again to '1', when -var-update will report this
1157 variable as changed -- because the first assignment has set the
1158 'updated' flag. There's no need to optimize that, because return value
1159 of -var-update should be considered an approximation. */
581e13c1 1160 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1161 input_radix = saved_input_radix;
1162 return 1;
8b93c638
JM
1163}
1164
0cc7d26f
TT
1165#if HAVE_PYTHON
1166
1167/* A helper function to install a constructor function and visualizer
bb5ce47a 1168 in a varobj_dynamic. */
0cc7d26f
TT
1169
1170static void
bb5ce47a 1171install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1172 PyObject *visualizer)
1173{
1174 Py_XDECREF (var->constructor);
1175 var->constructor = constructor;
1176
1177 Py_XDECREF (var->pretty_printer);
1178 var->pretty_printer = visualizer;
1179
e5250216 1180 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1181 var->child_iter = NULL;
1182}
1183
1184/* Install the default visualizer for VAR. */
1185
1186static void
1187install_default_visualizer (struct varobj *var)
1188{
d65aec65
PM
1189 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1190 if (CPLUS_FAKE_CHILD (var))
1191 return;
1192
0cc7d26f
TT
1193 if (pretty_printing)
1194 {
1195 PyObject *pretty_printer = NULL;
1196
1197 if (var->value)
1198 {
1199 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1200 if (! pretty_printer)
1201 {
1202 gdbpy_print_stack ();
1203 error (_("Cannot instantiate printer for default visualizer"));
1204 }
1205 }
1206
1207 if (pretty_printer == Py_None)
1208 {
1209 Py_DECREF (pretty_printer);
1210 pretty_printer = NULL;
1211 }
1212
bb5ce47a 1213 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1214 }
1215}
1216
1217/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1218 make a new object. */
1219
1220static void
1221construct_visualizer (struct varobj *var, PyObject *constructor)
1222{
1223 PyObject *pretty_printer;
1224
d65aec65
PM
1225 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1226 if (CPLUS_FAKE_CHILD (var))
1227 return;
1228
0cc7d26f
TT
1229 Py_INCREF (constructor);
1230 if (constructor == Py_None)
1231 pretty_printer = NULL;
1232 else
1233 {
1234 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1235 if (! pretty_printer)
1236 {
1237 gdbpy_print_stack ();
1238 Py_DECREF (constructor);
1239 constructor = Py_None;
1240 Py_INCREF (constructor);
1241 }
1242
1243 if (pretty_printer == Py_None)
1244 {
1245 Py_DECREF (pretty_printer);
1246 pretty_printer = NULL;
1247 }
1248 }
1249
bb5ce47a 1250 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1251}
1252
1253#endif /* HAVE_PYTHON */
1254
1255/* A helper function for install_new_value. This creates and installs
1256 a visualizer for VAR, if appropriate. */
1257
1258static void
1259install_new_value_visualizer (struct varobj *var)
1260{
1261#if HAVE_PYTHON
1262 /* If the constructor is None, then we want the raw value. If VAR
1263 does not have a value, just skip this. */
0646da15
TT
1264 if (!gdb_python_initialized)
1265 return;
1266
bb5ce47a 1267 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1268 {
1269 struct cleanup *cleanup;
0cc7d26f
TT
1270
1271 cleanup = varobj_ensure_python_env (var);
1272
bb5ce47a 1273 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1274 install_default_visualizer (var);
1275 else
bb5ce47a 1276 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1277
1278 do_cleanups (cleanup);
1279 }
1280#else
1281 /* Do nothing. */
1282#endif
1283}
1284
8264ba82
AG
1285/* When using RTTI to determine variable type it may be changed in runtime when
1286 the variable value is changed. This function checks whether type of varobj
1287 VAR will change when a new value NEW_VALUE is assigned and if it is so
1288 updates the type of VAR. */
1289
1290static int
1291update_type_if_necessary (struct varobj *var, struct value *new_value)
1292{
1293 if (new_value)
1294 {
1295 struct value_print_options opts;
1296
1297 get_user_print_options (&opts);
1298 if (opts.objectprint)
1299 {
1300 struct type *new_type;
1301 char *curr_type_str, *new_type_str;
afa269ae 1302 int type_name_changed;
8264ba82
AG
1303
1304 new_type = value_actual_type (new_value, 0, 0);
1305 new_type_str = type_to_string (new_type);
1306 curr_type_str = varobj_get_type (var);
afa269ae
SM
1307 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1308 xfree (curr_type_str);
1309 xfree (new_type_str);
1310
1311 if (type_name_changed)
8264ba82
AG
1312 {
1313 var->type = new_type;
1314
1315 /* This information may be not valid for a new type. */
1316 varobj_delete (var, NULL, 1);
1317 VEC_free (varobj_p, var->children);
1318 var->num_children = -1;
1319 return 1;
1320 }
1321 }
1322 }
1323
1324 return 0;
1325}
1326
acd65feb
VP
1327/* Assign a new value to a variable object. If INITIAL is non-zero,
1328 this is the first assignement after the variable object was just
1329 created, or changed type. In that case, just assign the value
1330 and return 0.
581e13c1
MS
1331 Otherwise, assign the new value, and return 1 if the value is
1332 different from the current one, 0 otherwise. The comparison is
1333 done on textual representation of value. Therefore, some types
1334 need not be compared. E.g. for structures the reported value is
1335 always "{...}", so no comparison is necessary here. If the old
1336 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1337
1338 The VALUE parameter should not be released -- the function will
1339 take care of releasing it when needed. */
acd65feb
VP
1340static int
1341install_new_value (struct varobj *var, struct value *value, int initial)
1342{
1343 int changeable;
1344 int need_to_fetch;
1345 int changed = 0;
25d5ea92 1346 int intentionally_not_fetched = 0;
7a4d50bf 1347 char *print_value = NULL;
acd65feb 1348
acd65feb 1349 /* We need to know the varobj's type to decide if the value should
3e43a32a 1350 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1351 don't have a type. */
acd65feb 1352 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1353 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1354
1355 /* If the type has custom visualizer, we consider it to be always
581e13c1 1356 changeable. FIXME: need to make sure this behaviour will not
b6313243 1357 mess up read-sensitive values. */
bb5ce47a 1358 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1359 changeable = 1;
1360
acd65feb
VP
1361 need_to_fetch = changeable;
1362
b26ed50d
VP
1363 /* We are not interested in the address of references, and given
1364 that in C++ a reference is not rebindable, it cannot
1365 meaningfully change. So, get hold of the real value. */
1366 if (value)
0cc7d26f 1367 value = coerce_ref (value);
b26ed50d 1368
acd65feb
VP
1369 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1370 /* For unions, we need to fetch the value implicitly because
1371 of implementation of union member fetch. When gdb
1372 creates a value for a field and the value of the enclosing
1373 structure is not lazy, it immediately copies the necessary
1374 bytes from the enclosing values. If the enclosing value is
1375 lazy, the call to value_fetch_lazy on the field will read
1376 the data from memory. For unions, that means we'll read the
1377 same memory more than once, which is not desirable. So
1378 fetch now. */
1379 need_to_fetch = 1;
1380
1381 /* The new value might be lazy. If the type is changeable,
1382 that is we'll be comparing values of this type, fetch the
1383 value now. Otherwise, on the next update the old value
1384 will be lazy, which means we've lost that old value. */
1385 if (need_to_fetch && value && value_lazy (value))
1386 {
c1cc6152 1387 const struct varobj *parent = var->parent;
25d5ea92 1388 int frozen = var->frozen;
a109c7c1 1389
25d5ea92
VP
1390 for (; !frozen && parent; parent = parent->parent)
1391 frozen |= parent->frozen;
1392
1393 if (frozen && initial)
1394 {
1395 /* For variables that are frozen, or are children of frozen
1396 variables, we don't do fetch on initial assignment.
1397 For non-initial assignemnt we do the fetch, since it means we're
1398 explicitly asked to compare the new value with the old one. */
1399 intentionally_not_fetched = 1;
1400 }
8e7b59a5 1401 else
acd65feb 1402 {
8e7b59a5 1403
492d29ea 1404 TRY
8e7b59a5
KS
1405 {
1406 value_fetch_lazy (value);
1407 }
1408
492d29ea 1409 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1410 {
1411 /* Set the value to NULL, so that for the next -var-update,
1412 we don't try to compare the new value with this value,
1413 that we couldn't even read. */
1414 value = NULL;
1415 }
492d29ea 1416 END_CATCH
acd65feb 1417 }
acd65feb
VP
1418 }
1419
e848a8a5
TT
1420 /* Get a reference now, before possibly passing it to any Python
1421 code that might release it. */
1422 if (value != NULL)
1423 value_incref (value);
b6313243 1424
7a4d50bf
VP
1425 /* Below, we'll be comparing string rendering of old and new
1426 values. Don't get string rendering if the value is
1427 lazy -- if it is, the code above has decided that the value
1428 should not be fetched. */
bb5ce47a
YQ
1429 if (value != NULL && !value_lazy (value)
1430 && var->dynamic->pretty_printer == NULL)
99ad9427 1431 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1432
acd65feb
VP
1433 /* If the type is changeable, compare the old and the new values.
1434 If this is the initial assignment, we don't have any old value
1435 to compare with. */
7a4d50bf 1436 if (!initial && changeable)
acd65feb 1437 {
3e43a32a
MS
1438 /* If the value of the varobj was changed by -var-set-value,
1439 then the value in the varobj and in the target is the same.
1440 However, that value is different from the value that the
581e13c1 1441 varobj had after the previous -var-update. So need to the
3e43a32a 1442 varobj as changed. */
acd65feb 1443 if (var->updated)
57e66780 1444 {
57e66780
DJ
1445 changed = 1;
1446 }
bb5ce47a 1447 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1448 {
1449 /* Try to compare the values. That requires that both
1450 values are non-lazy. */
25d5ea92
VP
1451 if (var->not_fetched && value_lazy (var->value))
1452 {
1453 /* This is a frozen varobj and the value was never read.
1454 Presumably, UI shows some "never read" indicator.
1455 Now that we've fetched the real value, we need to report
1456 this varobj as changed so that UI can show the real
1457 value. */
1458 changed = 1;
1459 }
1460 else if (var->value == NULL && value == NULL)
581e13c1 1461 /* Equal. */
acd65feb
VP
1462 ;
1463 else if (var->value == NULL || value == NULL)
57e66780 1464 {
57e66780
DJ
1465 changed = 1;
1466 }
acd65feb
VP
1467 else
1468 {
1469 gdb_assert (!value_lazy (var->value));
1470 gdb_assert (!value_lazy (value));
85265413 1471
57e66780 1472 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1473 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1474 changed = 1;
acd65feb
VP
1475 }
1476 }
1477 }
85265413 1478
ee342b23
VP
1479 if (!initial && !changeable)
1480 {
1481 /* For values that are not changeable, we don't compare the values.
1482 However, we want to notice if a value was not NULL and now is NULL,
1483 or vise versa, so that we report when top-level varobjs come in scope
1484 and leave the scope. */
1485 changed = (var->value != NULL) != (value != NULL);
1486 }
1487
acd65feb 1488 /* We must always keep the new value, since children depend on it. */
25d5ea92 1489 if (var->value != NULL && var->value != value)
acd65feb
VP
1490 value_free (var->value);
1491 var->value = value;
25d5ea92
VP
1492 if (value && value_lazy (value) && intentionally_not_fetched)
1493 var->not_fetched = 1;
1494 else
1495 var->not_fetched = 0;
acd65feb 1496 var->updated = 0;
85265413 1497
0cc7d26f
TT
1498 install_new_value_visualizer (var);
1499
1500 /* If we installed a pretty-printer, re-compare the printed version
1501 to see if the variable changed. */
bb5ce47a 1502 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1503 {
1504 xfree (print_value);
99ad9427
YQ
1505 print_value = varobj_value_get_print_value (var->value, var->format,
1506 var);
e8f781e2
TT
1507 if ((var->print_value == NULL && print_value != NULL)
1508 || (var->print_value != NULL && print_value == NULL)
1509 || (var->print_value != NULL && print_value != NULL
1510 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1511 changed = 1;
1512 }
1513 if (var->print_value)
1514 xfree (var->print_value);
1515 var->print_value = print_value;
1516
b26ed50d 1517 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1518
1519 return changed;
1520}
acd65feb 1521
0cc7d26f
TT
1522/* Return the requested range for a varobj. VAR is the varobj. FROM
1523 and TO are out parameters; *FROM and *TO will be set to the
1524 selected sub-range of VAR. If no range was selected using
1525 -var-set-update-range, then both will be -1. */
1526void
b09e2c59 1527varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1528{
0cc7d26f
TT
1529 *from = var->from;
1530 *to = var->to;
b6313243
TT
1531}
1532
0cc7d26f
TT
1533/* Set the selected sub-range of children of VAR to start at index
1534 FROM and end at index TO. If either FROM or TO is less than zero,
1535 this is interpreted as a request for all children. */
1536void
1537varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1538{
0cc7d26f
TT
1539 var->from = from;
1540 var->to = to;
b6313243
TT
1541}
1542
1543void
1544varobj_set_visualizer (struct varobj *var, const char *visualizer)
1545{
1546#if HAVE_PYTHON
34fa1d9d
MS
1547 PyObject *mainmod, *globals, *constructor;
1548 struct cleanup *back_to;
b6313243 1549
0646da15
TT
1550 if (!gdb_python_initialized)
1551 return;
1552
d452c4bc 1553 back_to = varobj_ensure_python_env (var);
b6313243
TT
1554
1555 mainmod = PyImport_AddModule ("__main__");
1556 globals = PyModule_GetDict (mainmod);
1557 Py_INCREF (globals);
1558 make_cleanup_py_decref (globals);
1559
1560 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1561
0cc7d26f 1562 if (! constructor)
b6313243
TT
1563 {
1564 gdbpy_print_stack ();
da1f2771 1565 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1566 }
1567
0cc7d26f
TT
1568 construct_visualizer (var, constructor);
1569 Py_XDECREF (constructor);
b6313243 1570
0cc7d26f
TT
1571 /* If there are any children now, wipe them. */
1572 varobj_delete (var, NULL, 1 /* children only */);
1573 var->num_children = -1;
b6313243
TT
1574
1575 do_cleanups (back_to);
1576#else
da1f2771 1577 error (_("Python support required"));
b6313243
TT
1578#endif
1579}
1580
7a290c40
JB
1581/* If NEW_VALUE is the new value of the given varobj (var), return
1582 non-zero if var has mutated. In other words, if the type of
1583 the new value is different from the type of the varobj's old
1584 value.
1585
1586 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1587
1588static int
b09e2c59 1589varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1590 struct type *new_type)
1591{
1592 /* If we haven't previously computed the number of children in var,
1593 it does not matter from the front-end's perspective whether
1594 the type has mutated or not. For all intents and purposes,
1595 it has not mutated. */
1596 if (var->num_children < 0)
1597 return 0;
1598
ca20d462 1599 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1600 {
1601 /* The varobj module, when installing new values, explicitly strips
1602 references, saying that we're not interested in those addresses.
1603 But detection of mutation happens before installing the new
1604 value, so our value may be a reference that we need to strip
1605 in order to remain consistent. */
1606 if (new_value != NULL)
1607 new_value = coerce_ref (new_value);
1608 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1609 }
7a290c40
JB
1610 else
1611 return 0;
1612}
1613
8b93c638
JM
1614/* Update the values for a variable and its children. This is a
1615 two-pronged attack. First, re-parse the value for the root's
1616 expression to see if it's changed. Then go all the way
1617 through its children, reconstructing them and noting if they've
1618 changed.
1619
25d5ea92
VP
1620 The EXPLICIT parameter specifies if this call is result
1621 of MI request to update this specific variable, or
581e13c1 1622 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1623 update frozen variables.
705da579 1624
581e13c1 1625 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1626 returns TYPE_CHANGED, then it has done this and VARP will be modified
1627 to point to the new varobj. */
8b93c638 1628
1417b39d 1629VEC(varobj_update_result) *
fe978cb0 1630varobj_update (struct varobj **varp, int is_explicit)
8b93c638 1631{
25d5ea92 1632 int type_changed = 0;
8b93c638 1633 int i;
fe978cb0 1634 struct value *newobj;
b6313243 1635 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1636 VEC (varobj_update_result) *result = NULL;
8b93c638 1637
25d5ea92
VP
1638 /* Frozen means frozen -- we don't check for any change in
1639 this varobj, including its going out of scope, or
1640 changing type. One use case for frozen varobjs is
1641 retaining previously evaluated expressions, and we don't
1642 want them to be reevaluated at all. */
fe978cb0 1643 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1644 return result;
8756216b
DP
1645
1646 if (!(*varp)->root->is_valid)
f7f9ae2c 1647 {
cfce2ea2 1648 varobj_update_result r = {0};
a109c7c1 1649
cfce2ea2 1650 r.varobj = *varp;
f7f9ae2c
VP
1651 r.status = VAROBJ_INVALID;
1652 VEC_safe_push (varobj_update_result, result, &r);
1653 return result;
1654 }
8b93c638 1655
25d5ea92 1656 if ((*varp)->root->rootvar == *varp)
ae093f96 1657 {
cfce2ea2 1658 varobj_update_result r = {0};
a109c7c1 1659
cfce2ea2 1660 r.varobj = *varp;
f7f9ae2c
VP
1661 r.status = VAROBJ_IN_SCOPE;
1662
581e13c1 1663 /* Update the root variable. value_of_root can return NULL
25d5ea92 1664 if the variable is no longer around, i.e. we stepped out of
581e13c1 1665 the frame in which a local existed. We are letting the
25d5ea92
VP
1666 value_of_root variable dispose of the varobj if the type
1667 has changed. */
fe978cb0
PA
1668 newobj = value_of_root (varp, &type_changed);
1669 if (update_type_if_necessary(*varp, newobj))
8264ba82 1670 type_changed = 1;
f7f9ae2c 1671 r.varobj = *varp;
f7f9ae2c 1672 r.type_changed = type_changed;
fe978cb0 1673 if (install_new_value ((*varp), newobj, type_changed))
f7f9ae2c 1674 r.changed = 1;
ea56f9c2 1675
fe978cb0 1676 if (newobj == NULL)
f7f9ae2c 1677 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1678 r.value_installed = 1;
f7f9ae2c
VP
1679
1680 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1681 {
0b4bc29a
JK
1682 if (r.type_changed || r.changed)
1683 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1684 return result;
1685 }
1686
1687 VEC_safe_push (varobj_update_result, stack, &r);
1688 }
1689 else
1690 {
cfce2ea2 1691 varobj_update_result r = {0};
a109c7c1 1692
cfce2ea2 1693 r.varobj = *varp;
b6313243 1694 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1695 }
8b93c638 1696
8756216b 1697 /* Walk through the children, reconstructing them all. */
b6313243 1698 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1699 {
b6313243
TT
1700 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1701 struct varobj *v = r.varobj;
1702
1703 VEC_pop (varobj_update_result, stack);
1704
1705 /* Update this variable, unless it's a root, which is already
1706 updated. */
1707 if (!r.value_installed)
7a290c40
JB
1708 {
1709 struct type *new_type;
1710
fe978cb0
PA
1711 newobj = value_of_child (v->parent, v->index);
1712 if (update_type_if_necessary(v, newobj))
8264ba82 1713 r.type_changed = 1;
fe978cb0
PA
1714 if (newobj)
1715 new_type = value_type (newobj);
7a290c40 1716 else
ca20d462 1717 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1718
fe978cb0 1719 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1720 {
1721 /* The children are no longer valid; delete them now.
1722 Report the fact that its type changed as well. */
1723 varobj_delete (v, NULL, 1 /* only_children */);
1724 v->num_children = -1;
1725 v->to = -1;
1726 v->from = -1;
1727 v->type = new_type;
1728 r.type_changed = 1;
1729 }
1730
fe978cb0 1731 if (install_new_value (v, newobj, r.type_changed))
b6313243
TT
1732 {
1733 r.changed = 1;
1734 v->updated = 0;
1735 }
1736 }
1737
31f628ae
YQ
1738 /* We probably should not get children of a dynamic varobj, but
1739 for which -var-list-children was never invoked. */
1740 if (varobj_is_dynamic_p (v))
b6313243 1741 {
8264ba82 1742 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
fe978cb0 1743 VEC (varobj_p) *newobj = 0;
26f9bcee 1744 int i, children_changed = 0;
b6313243
TT
1745
1746 if (v->frozen)
1747 continue;
1748
bb5ce47a 1749 if (!v->dynamic->children_requested)
0cc7d26f
TT
1750 {
1751 int dummy;
1752
1753 /* If we initially did not have potential children, but
1754 now we do, consider the varobj as changed.
1755 Otherwise, if children were never requested, consider
1756 it as unchanged -- presumably, such varobj is not yet
1757 expanded in the UI, so we need not bother getting
1758 it. */
1759 if (!varobj_has_more (v, 0))
1760 {
8264ba82 1761 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1762 &dummy, 0, 0, 0);
1763 if (varobj_has_more (v, 0))
1764 r.changed = 1;
1765 }
1766
1767 if (r.changed)
1768 VEC_safe_push (varobj_update_result, result, &r);
1769
1770 continue;
1771 }
1772
b6313243
TT
1773 /* If update_dynamic_varobj_children returns 0, then we have
1774 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1775 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
8264ba82 1776 &unchanged, &children_changed, 1,
0cc7d26f 1777 v->from, v->to))
b6313243 1778 {
fe978cb0 1779 if (children_changed || newobj)
b6313243 1780 {
0cc7d26f 1781 r.children_changed = 1;
fe978cb0 1782 r.newobj = newobj;
b6313243 1783 }
0cc7d26f
TT
1784 /* Push in reverse order so that the first child is
1785 popped from the work stack first, and so will be
1786 added to result first. This does not affect
1787 correctness, just "nicer". */
8264ba82
AG
1788 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1789 {
1790 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1791 varobj_update_result r = {0};
1792
1793 /* Type may change only if value was changed. */
1794 r.varobj = tmp;
1795 r.changed = 1;
1796 r.type_changed = 1;
1797 r.value_installed = 1;
1798 VEC_safe_push (varobj_update_result, stack, &r);
1799 }
0cc7d26f 1800 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1801 {
0cc7d26f 1802 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1803 varobj_update_result r = {0};
a109c7c1 1804
cfce2ea2 1805 r.varobj = tmp;
0cc7d26f 1806 r.changed = 1;
b6313243
TT
1807 r.value_installed = 1;
1808 VEC_safe_push (varobj_update_result, stack, &r);
1809 }
0cc7d26f
TT
1810 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1811 {
1812 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1813
0cc7d26f
TT
1814 if (!tmp->frozen)
1815 {
cfce2ea2 1816 varobj_update_result r = {0};
a109c7c1 1817
cfce2ea2 1818 r.varobj = tmp;
0cc7d26f
TT
1819 r.value_installed = 1;
1820 VEC_safe_push (varobj_update_result, stack, &r);
1821 }
1822 }
b6313243
TT
1823 if (r.changed || r.children_changed)
1824 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1825
8264ba82
AG
1826 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1827 because NEW has been put into the result vector. */
0cc7d26f 1828 VEC_free (varobj_p, changed);
8264ba82 1829 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1830 VEC_free (varobj_p, unchanged);
1831
b6313243
TT
1832 continue;
1833 }
1834 }
28335dcc
VP
1835
1836 /* Push any children. Use reverse order so that the first
1837 child is popped from the work stack first, and so
1838 will be added to result first. This does not
1839 affect correctness, just "nicer". */
1840 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1841 {
28335dcc 1842 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1843
28335dcc 1844 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1845 if (c != NULL && !c->frozen)
28335dcc 1846 {
cfce2ea2 1847 varobj_update_result r = {0};
a109c7c1 1848
cfce2ea2 1849 r.varobj = c;
b6313243 1850 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1851 }
8b93c638 1852 }
b6313243
TT
1853
1854 if (r.changed || r.type_changed)
1855 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1856 }
1857
b6313243
TT
1858 VEC_free (varobj_update_result, stack);
1859
f7f9ae2c 1860 return result;
8b93c638
JM
1861}
1862\f
1863
1864/* Helper functions */
1865
1866/*
1867 * Variable object construction/destruction
1868 */
1869
1870static int
fba45db2
KB
1871delete_variable (struct cpstack **resultp, struct varobj *var,
1872 int only_children_p)
8b93c638
JM
1873{
1874 int delcount = 0;
1875
1876 delete_variable_1 (resultp, &delcount, var,
1877 only_children_p, 1 /* remove_from_parent_p */ );
1878
1879 return delcount;
1880}
1881
581e13c1 1882/* Delete the variable object VAR and its children. */
8b93c638
JM
1883/* IMPORTANT NOTE: If we delete a variable which is a child
1884 and the parent is not removed we dump core. It must be always
581e13c1 1885 initially called with remove_from_parent_p set. */
8b93c638 1886static void
72330bd6
AC
1887delete_variable_1 (struct cpstack **resultp, int *delcountp,
1888 struct varobj *var, int only_children_p,
1889 int remove_from_parent_p)
8b93c638 1890{
28335dcc 1891 int i;
8b93c638 1892
581e13c1 1893 /* Delete any children of this variable, too. */
28335dcc
VP
1894 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1895 {
1896 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1897
214270ab
VP
1898 if (!child)
1899 continue;
8b93c638 1900 if (!remove_from_parent_p)
28335dcc
VP
1901 child->parent = NULL;
1902 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1903 }
28335dcc 1904 VEC_free (varobj_p, var->children);
8b93c638 1905
581e13c1 1906 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1907 if (only_children_p)
1908 return;
1909
581e13c1 1910 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1911 /* If the name is null, this is a temporary variable, that has not
581e13c1 1912 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1913 if (var->obj_name != NULL)
8b93c638 1914 {
5b616ba1 1915 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1916 *delcountp = *delcountp + 1;
1917 }
1918
581e13c1 1919 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1920 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1921 (as indicated by remove_from_parent_p) we don't bother doing an
1922 expensive list search to find the element to remove when we are
581e13c1 1923 discarding the list afterwards. */
72330bd6 1924 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1925 {
28335dcc 1926 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1927 }
72330bd6 1928
73a93a32
JI
1929 if (var->obj_name != NULL)
1930 uninstall_variable (var);
8b93c638 1931
581e13c1 1932 /* Free memory associated with this variable. */
8b93c638
JM
1933 free_variable (var);
1934}
1935
581e13c1 1936/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1937static int
fba45db2 1938install_variable (struct varobj *var)
8b93c638
JM
1939{
1940 struct vlist *cv;
1941 struct vlist *newvl;
1942 const char *chp;
1943 unsigned int index = 0;
1944 unsigned int i = 1;
1945
1946 for (chp = var->obj_name; *chp; chp++)
1947 {
1948 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1949 }
1950
1951 cv = *(varobj_table + index);
1952 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1953 cv = cv->next;
1954
1955 if (cv != NULL)
8a3fe4f8 1956 error (_("Duplicate variable object name"));
8b93c638 1957
581e13c1 1958 /* Add varobj to hash table. */
8d749320 1959 newvl = XNEW (struct vlist);
8b93c638
JM
1960 newvl->next = *(varobj_table + index);
1961 newvl->var = var;
1962 *(varobj_table + index) = newvl;
1963
581e13c1 1964 /* If root, add varobj to root list. */
b2c2bd75 1965 if (is_root_p (var))
8b93c638 1966 {
581e13c1 1967 /* Add to list of root variables. */
8b93c638
JM
1968 if (rootlist == NULL)
1969 var->root->next = NULL;
1970 else
1971 var->root->next = rootlist;
1972 rootlist = var->root;
8b93c638
JM
1973 }
1974
1975 return 1; /* OK */
1976}
1977
581e13c1 1978/* Unistall the object VAR. */
8b93c638 1979static void
fba45db2 1980uninstall_variable (struct varobj *var)
8b93c638
JM
1981{
1982 struct vlist *cv;
1983 struct vlist *prev;
1984 struct varobj_root *cr;
1985 struct varobj_root *prer;
1986 const char *chp;
1987 unsigned int index = 0;
1988 unsigned int i = 1;
1989
581e13c1 1990 /* Remove varobj from hash table. */
8b93c638
JM
1991 for (chp = var->obj_name; *chp; chp++)
1992 {
1993 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1994 }
1995
1996 cv = *(varobj_table + index);
1997 prev = NULL;
1998 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1999 {
2000 prev = cv;
2001 cv = cv->next;
2002 }
2003
2004 if (varobjdebug)
2005 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2006
2007 if (cv == NULL)
2008 {
72330bd6
AC
2009 warning
2010 ("Assertion failed: Could not find variable object \"%s\" to delete",
2011 var->obj_name);
8b93c638
JM
2012 return;
2013 }
2014
2015 if (prev == NULL)
2016 *(varobj_table + index) = cv->next;
2017 else
2018 prev->next = cv->next;
2019
b8c9b27d 2020 xfree (cv);
8b93c638 2021
581e13c1 2022 /* If root, remove varobj from root list. */
b2c2bd75 2023 if (is_root_p (var))
8b93c638 2024 {
581e13c1 2025 /* Remove from list of root variables. */
8b93c638
JM
2026 if (rootlist == var->root)
2027 rootlist = var->root->next;
2028 else
2029 {
2030 prer = NULL;
2031 cr = rootlist;
2032 while ((cr != NULL) && (cr->rootvar != var))
2033 {
2034 prer = cr;
2035 cr = cr->next;
2036 }
2037 if (cr == NULL)
2038 {
8f7e195f
JB
2039 warning (_("Assertion failed: Could not find "
2040 "varobj \"%s\" in root list"),
3e43a32a 2041 var->obj_name);
8b93c638
JM
2042 return;
2043 }
2044 if (prer == NULL)
2045 rootlist = NULL;
2046 else
2047 prer->next = cr->next;
2048 }
8b93c638
JM
2049 }
2050
2051}
2052
837ce252
SM
2053/* Create and install a child of the parent of the given name.
2054
2055 The created VAROBJ takes ownership of the allocated NAME. */
2056
8b93c638 2057static struct varobj *
fba45db2 2058create_child (struct varobj *parent, int index, char *name)
b6313243 2059{
5a2e0d6e
YQ
2060 struct varobj_item item;
2061
2062 item.name = name;
2063 item.value = value_of_child (parent, index);
2064
2065 return create_child_with_value (parent, index, &item);
b6313243
TT
2066}
2067
2068static struct varobj *
5a2e0d6e
YQ
2069create_child_with_value (struct varobj *parent, int index,
2070 struct varobj_item *item)
8b93c638
JM
2071{
2072 struct varobj *child;
2073 char *childs_name;
2074
2075 child = new_variable ();
2076
5e5ac9a5 2077 /* NAME is allocated by caller. */
5a2e0d6e 2078 child->name = item->name;
8b93c638 2079 child->index = index;
8b93c638
JM
2080 child->parent = parent;
2081 child->root = parent->root;
85254831 2082
99ad9427 2083 if (varobj_is_anonymous_child (child))
85254831
KS
2084 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2085 else
5a2e0d6e 2086 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2087 child->obj_name = childs_name;
85254831 2088
8b93c638
JM
2089 install_variable (child);
2090
acd65feb
VP
2091 /* Compute the type of the child. Must do this before
2092 calling install_new_value. */
5a2e0d6e 2093 if (item->value != NULL)
acd65feb 2094 /* If the child had no evaluation errors, var->value
581e13c1 2095 will be non-NULL and contain a valid type. */
5a2e0d6e 2096 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2097 else
581e13c1 2098 /* Otherwise, we must compute the type. */
ca20d462
YQ
2099 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2100 child->index);
5a2e0d6e 2101 install_new_value (child, item->value, 1);
acd65feb 2102
8b93c638
JM
2103 return child;
2104}
8b93c638
JM
2105\f
2106
2107/*
2108 * Miscellaneous utility functions.
2109 */
2110
581e13c1 2111/* Allocate memory and initialize a new variable. */
8b93c638
JM
2112static struct varobj *
2113new_variable (void)
2114{
2115 struct varobj *var;
2116
8d749320 2117 var = XNEW (struct varobj);
8b93c638 2118 var->name = NULL;
02142340 2119 var->path_expr = NULL;
8b93c638
JM
2120 var->obj_name = NULL;
2121 var->index = -1;
2122 var->type = NULL;
2123 var->value = NULL;
8b93c638
JM
2124 var->num_children = -1;
2125 var->parent = NULL;
2126 var->children = NULL;
f486487f 2127 var->format = FORMAT_NATURAL;
8b93c638 2128 var->root = NULL;
fb9b6b35 2129 var->updated = 0;
85265413 2130 var->print_value = NULL;
25d5ea92
VP
2131 var->frozen = 0;
2132 var->not_fetched = 0;
8d749320 2133 var->dynamic = XNEW (struct varobj_dynamic);
bb5ce47a 2134 var->dynamic->children_requested = 0;
0cc7d26f
TT
2135 var->from = -1;
2136 var->to = -1;
bb5ce47a
YQ
2137 var->dynamic->constructor = 0;
2138 var->dynamic->pretty_printer = 0;
2139 var->dynamic->child_iter = 0;
2140 var->dynamic->saved_item = 0;
8b93c638
JM
2141
2142 return var;
2143}
2144
581e13c1 2145/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2146static struct varobj *
2147new_root_variable (void)
2148{
2149 struct varobj *var = new_variable ();
a109c7c1 2150
8d749320 2151 var->root = XNEW (struct varobj_root);
ca20d462 2152 var->root->lang_ops = NULL;
8b93c638
JM
2153 var->root->exp = NULL;
2154 var->root->valid_block = NULL;
7a424e99 2155 var->root->frame = null_frame_id;
a5defcdc 2156 var->root->floating = 0;
8b93c638 2157 var->root->rootvar = NULL;
8756216b 2158 var->root->is_valid = 1;
8b93c638
JM
2159
2160 return var;
2161}
2162
581e13c1 2163/* Free any allocated memory associated with VAR. */
8b93c638 2164static void
fba45db2 2165free_variable (struct varobj *var)
8b93c638 2166{
d452c4bc 2167#if HAVE_PYTHON
bb5ce47a 2168 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2169 {
2170 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2171
2172 Py_XDECREF (var->dynamic->constructor);
2173 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2174 do_cleanups (cleanup);
2175 }
2176#endif
2177
827f100c
YQ
2178 varobj_iter_delete (var->dynamic->child_iter);
2179 varobj_clear_saved_item (var->dynamic);
36746093
JK
2180 value_free (var->value);
2181
581e13c1 2182 /* Free the expression if this is a root variable. */
b2c2bd75 2183 if (is_root_p (var))
8b93c638 2184 {
3038237c 2185 xfree (var->root->exp);
8038e1e2 2186 xfree (var->root);
8b93c638
JM
2187 }
2188
8038e1e2
AC
2189 xfree (var->name);
2190 xfree (var->obj_name);
85265413 2191 xfree (var->print_value);
02142340 2192 xfree (var->path_expr);
bb5ce47a 2193 xfree (var->dynamic);
8038e1e2 2194 xfree (var);
8b93c638
JM
2195}
2196
74b7792f
AC
2197static void
2198do_free_variable_cleanup (void *var)
2199{
19ba03f4 2200 free_variable ((struct varobj *) var);
74b7792f
AC
2201}
2202
2203static struct cleanup *
2204make_cleanup_free_variable (struct varobj *var)
2205{
2206 return make_cleanup (do_free_variable_cleanup, var);
2207}
2208
6e2a9270
VP
2209/* Return the type of the value that's stored in VAR,
2210 or that would have being stored there if the
581e13c1 2211 value were accessible.
6e2a9270
VP
2212
2213 This differs from VAR->type in that VAR->type is always
2214 the true type of the expession in the source language.
2215 The return value of this function is the type we're
2216 actually storing in varobj, and using for displaying
2217 the values and for comparing previous and new values.
2218
2219 For example, top-level references are always stripped. */
99ad9427 2220struct type *
b09e2c59 2221varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2222{
2223 struct type *type;
2224
2225 if (var->value)
2226 type = value_type (var->value);
2227 else
2228 type = var->type;
2229
2230 type = check_typedef (type);
2231
2232 if (TYPE_CODE (type) == TYPE_CODE_REF)
2233 type = get_target_type (type);
2234
2235 type = check_typedef (type);
2236
2237 return type;
2238}
2239
8b93c638 2240/* What is the default display for this variable? We assume that
581e13c1 2241 everything is "natural". Any exceptions? */
8b93c638 2242static enum varobj_display_formats
fba45db2 2243variable_default_display (struct varobj *var)
8b93c638
JM
2244{
2245 return FORMAT_NATURAL;
2246}
2247
581e13c1 2248/* FIXME: The following should be generic for any pointer. */
8b93c638 2249static void
fba45db2 2250cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2251{
2252 struct cpstack *s;
2253
8d749320 2254 s = XNEW (struct cpstack);
8b93c638
JM
2255 s->name = name;
2256 s->next = *pstack;
2257 *pstack = s;
2258}
2259
581e13c1 2260/* FIXME: The following should be generic for any pointer. */
8b93c638 2261static char *
fba45db2 2262cppop (struct cpstack **pstack)
8b93c638
JM
2263{
2264 struct cpstack *s;
2265 char *v;
2266
2267 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2268 return NULL;
2269
2270 s = *pstack;
2271 v = s->name;
2272 *pstack = (*pstack)->next;
b8c9b27d 2273 xfree (s);
8b93c638
JM
2274
2275 return v;
2276}
2277\f
2278/*
2279 * Language-dependencies
2280 */
2281
2282/* Common entry points */
2283
8b93c638
JM
2284/* Return the number of children for a given variable.
2285 The result of this function is defined by the language
581e13c1 2286 implementation. The number of children returned by this function
8b93c638 2287 is the number of children that the user will see in the variable
581e13c1 2288 display. */
8b93c638 2289static int
b09e2c59 2290number_of_children (const struct varobj *var)
8b93c638 2291{
ca20d462 2292 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2293}
2294
3e43a32a 2295/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2296 string. */
8b93c638 2297static char *
b09e2c59 2298name_of_variable (const struct varobj *var)
8b93c638 2299{
ca20d462 2300 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2301}
2302
3e43a32a 2303/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2304 string. */
8b93c638 2305static char *
fba45db2 2306name_of_child (struct varobj *var, int index)
8b93c638 2307{
ca20d462 2308 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2309}
2310
2213e2be
YQ
2311/* If frame associated with VAR can be found, switch
2312 to it and return 1. Otherwise, return 0. */
2313
2314static int
b09e2c59 2315check_scope (const struct varobj *var)
2213e2be
YQ
2316{
2317 struct frame_info *fi;
2318 int scope;
2319
2320 fi = frame_find_by_id (var->root->frame);
2321 scope = fi != NULL;
2322
2323 if (fi)
2324 {
2325 CORE_ADDR pc = get_frame_pc (fi);
2326
2327 if (pc < BLOCK_START (var->root->valid_block) ||
2328 pc >= BLOCK_END (var->root->valid_block))
2329 scope = 0;
2330 else
2331 select_frame (fi);
2332 }
2333 return scope;
2334}
2335
2336/* Helper function to value_of_root. */
2337
2338static struct value *
2339value_of_root_1 (struct varobj **var_handle)
2340{
2341 struct value *new_val = NULL;
2342 struct varobj *var = *var_handle;
2343 int within_scope = 0;
2344 struct cleanup *back_to;
2345
2346 /* Only root variables can be updated... */
2347 if (!is_root_p (var))
2348 /* Not a root var. */
2349 return NULL;
2350
2351 back_to = make_cleanup_restore_current_thread ();
2352
2353 /* Determine whether the variable is still around. */
2354 if (var->root->valid_block == NULL || var->root->floating)
2355 within_scope = 1;
2356 else if (var->root->thread_id == 0)
2357 {
2358 /* The program was single-threaded when the variable object was
2359 created. Technically, it's possible that the program became
2360 multi-threaded since then, but we don't support such
2361 scenario yet. */
2362 within_scope = check_scope (var);
2363 }
2364 else
2365 {
5d5658a1
PA
2366 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2367
2368 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2369 {
2370 switch_to_thread (ptid);
2371 within_scope = check_scope (var);
2372 }
2373 }
2374
2375 if (within_scope)
2376 {
2213e2be
YQ
2377
2378 /* We need to catch errors here, because if evaluate
2379 expression fails we want to just return NULL. */
492d29ea 2380 TRY
2213e2be
YQ
2381 {
2382 new_val = evaluate_expression (var->root->exp);
2383 }
492d29ea
PA
2384 CATCH (except, RETURN_MASK_ERROR)
2385 {
2386 }
2387 END_CATCH
2213e2be
YQ
2388 }
2389
2390 do_cleanups (back_to);
2391
2392 return new_val;
2393}
2394
a5defcdc
VP
2395/* What is the ``struct value *'' of the root variable VAR?
2396 For floating variable object, evaluation can get us a value
2397 of different type from what is stored in varobj already. In
2398 that case:
2399 - *type_changed will be set to 1
2400 - old varobj will be freed, and new one will be
2401 created, with the same name.
2402 - *var_handle will be set to the new varobj
2403 Otherwise, *type_changed will be set to 0. */
30b28db1 2404static struct value *
fba45db2 2405value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2406{
73a93a32
JI
2407 struct varobj *var;
2408
2409 if (var_handle == NULL)
2410 return NULL;
2411
2412 var = *var_handle;
2413
2414 /* This should really be an exception, since this should
581e13c1 2415 only get called with a root variable. */
73a93a32 2416
b2c2bd75 2417 if (!is_root_p (var))
73a93a32
JI
2418 return NULL;
2419
a5defcdc 2420 if (var->root->floating)
73a93a32
JI
2421 {
2422 struct varobj *tmp_var;
2423 char *old_type, *new_type;
6225abfa 2424
73a93a32
JI
2425 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2426 USE_SELECTED_FRAME);
2427 if (tmp_var == NULL)
2428 {
2429 return NULL;
2430 }
6225abfa 2431 old_type = varobj_get_type (var);
73a93a32 2432 new_type = varobj_get_type (tmp_var);
72330bd6 2433 if (strcmp (old_type, new_type) == 0)
73a93a32 2434 {
fcacd99f
VP
2435 /* The expression presently stored inside var->root->exp
2436 remembers the locations of local variables relatively to
2437 the frame where the expression was created (in DWARF location
2438 button, for example). Naturally, those locations are not
2439 correct in other frames, so update the expression. */
2440
2441 struct expression *tmp_exp = var->root->exp;
a109c7c1 2442
fcacd99f
VP
2443 var->root->exp = tmp_var->root->exp;
2444 tmp_var->root->exp = tmp_exp;
2445
73a93a32
JI
2446 varobj_delete (tmp_var, NULL, 0);
2447 *type_changed = 0;
2448 }
2449 else
2450 {
1b36a34b 2451 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2452 tmp_var->from = var->from;
2453 tmp_var->to = var->to;
a5defcdc
VP
2454 varobj_delete (var, NULL, 0);
2455
73a93a32
JI
2456 install_variable (tmp_var);
2457 *var_handle = tmp_var;
705da579 2458 var = *var_handle;
73a93a32
JI
2459 *type_changed = 1;
2460 }
74dddad3
MS
2461 xfree (old_type);
2462 xfree (new_type);
73a93a32
JI
2463 }
2464 else
2465 {
2466 *type_changed = 0;
2467 }
2468
7a290c40
JB
2469 {
2470 struct value *value;
2471
2213e2be 2472 value = value_of_root_1 (var_handle);
7a290c40
JB
2473 if (var->value == NULL || value == NULL)
2474 {
2475 /* For root varobj-s, a NULL value indicates a scoping issue.
2476 So, nothing to do in terms of checking for mutations. */
2477 }
2478 else if (varobj_value_has_mutated (var, value, value_type (value)))
2479 {
2480 /* The type has mutated, so the children are no longer valid.
2481 Just delete them, and tell our caller that the type has
2482 changed. */
2483 varobj_delete (var, NULL, 1 /* only_children */);
2484 var->num_children = -1;
2485 var->to = -1;
2486 var->from = -1;
2487 *type_changed = 1;
2488 }
2489 return value;
2490 }
8b93c638
JM
2491}
2492
581e13c1 2493/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2494static struct value *
c1cc6152 2495value_of_child (const struct varobj *parent, int index)
8b93c638 2496{
30b28db1 2497 struct value *value;
8b93c638 2498
ca20d462 2499 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2500
8b93c638
JM
2501 return value;
2502}
2503
581e13c1 2504/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2505static char *
de051565 2506my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2507{
8756216b 2508 if (var->root->is_valid)
0cc7d26f 2509 {
bb5ce47a 2510 if (var->dynamic->pretty_printer != NULL)
99ad9427 2511 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2512 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2513 }
8756216b
DP
2514 else
2515 return NULL;
8b93c638
JM
2516}
2517
99ad9427
YQ
2518void
2519varobj_formatted_print_options (struct value_print_options *opts,
2520 enum varobj_display_formats format)
2521{
2522 get_formatted_print_options (opts, format_code[(int) format]);
2523 opts->deref_ref = 0;
2524 opts->raw = 1;
2525}
2526
2527char *
2528varobj_value_get_print_value (struct value *value,
2529 enum varobj_display_formats format,
b09e2c59 2530 const struct varobj *var)
85265413 2531{
57e66780 2532 struct ui_file *stb;
621c8364 2533 struct cleanup *old_chain;
ac91cd70 2534 char *thevalue = NULL;
79a45b7d 2535 struct value_print_options opts;
be759fcf
PM
2536 struct type *type = NULL;
2537 long len = 0;
2538 char *encoding = NULL;
2539 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2540 /* Initialize it just to avoid a GCC false warning. */
2541 CORE_ADDR str_addr = 0;
09ca9e2e 2542 int string_print = 0;
57e66780
DJ
2543
2544 if (value == NULL)
2545 return NULL;
2546
621c8364
TT
2547 stb = mem_fileopen ();
2548 old_chain = make_cleanup_ui_file_delete (stb);
2549
be759fcf 2550 gdbarch = get_type_arch (value_type (value));
b6313243 2551#if HAVE_PYTHON
0646da15
TT
2552 if (gdb_python_initialized)
2553 {
bb5ce47a 2554 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2555
0646da15 2556 varobj_ensure_python_env (var);
09ca9e2e 2557
0646da15
TT
2558 if (value_formatter)
2559 {
2560 /* First check to see if we have any children at all. If so,
2561 we simply return {...}. */
2562 if (dynamic_varobj_has_child_method (var))
2563 {
2564 do_cleanups (old_chain);
2565 return xstrdup ("{...}");
2566 }
b6313243 2567
0646da15
TT
2568 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2569 {
2570 struct value *replacement;
2571 PyObject *output = NULL;
2572
2573 output = apply_varobj_pretty_printer (value_formatter,
2574 &replacement,
2575 stb);
2576
2577 /* If we have string like output ... */
2578 if (output)
2579 {
2580 make_cleanup_py_decref (output);
2581
2582 /* If this is a lazy string, extract it. For lazy
2583 strings we always print as a string, so set
2584 string_print. */
2585 if (gdbpy_is_lazy_string (output))
2586 {
2587 gdbpy_extract_lazy_string (output, &str_addr, &type,
2588 &len, &encoding);
2589 make_cleanup (free_current_contents, &encoding);
2590 string_print = 1;
2591 }
2592 else
2593 {
2594 /* If it is a regular (non-lazy) string, extract
2595 it and copy the contents into THEVALUE. If the
2596 hint says to print it as a string, set
2597 string_print. Otherwise just return the extracted
2598 string as a value. */
2599
2600 char *s = python_string_to_target_string (output);
2601
2602 if (s)
2603 {
2604 char *hint;
2605
2606 hint = gdbpy_get_display_hint (value_formatter);
2607 if (hint)
2608 {
2609 if (!strcmp (hint, "string"))
2610 string_print = 1;
2611 xfree (hint);
2612 }
2613
2614 len = strlen (s);
224c3ddb 2615 thevalue = (char *) xmemdup (s, len + 1, len + 1);
0646da15
TT
2616 type = builtin_type (gdbarch)->builtin_char;
2617 xfree (s);
2618
2619 if (!string_print)
2620 {
2621 do_cleanups (old_chain);
2622 return thevalue;
2623 }
2624
2625 make_cleanup (xfree, thevalue);
2626 }
2627 else
2628 gdbpy_print_stack ();
2629 }
2630 }
2631 /* If the printer returned a replacement value, set VALUE
2632 to REPLACEMENT. If there is not a replacement value,
2633 just use the value passed to this function. */
2634 if (replacement)
2635 value = replacement;
2636 }
2637 }
2638 }
b6313243
TT
2639#endif
2640
99ad9427 2641 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2642
2643 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2644 if (thevalue)
ac91cd70 2645 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2646 else if (string_print)
00bd41d6
PM
2647 /* Otherwise, if string_print is set, and it is not a regular
2648 string, it is a lazy string. */
09ca9e2e 2649 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2650 else
00bd41d6 2651 /* All other cases. */
b6313243 2652 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2653
759ef836 2654 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2655
85265413
NR
2656 do_cleanups (old_chain);
2657 return thevalue;
2658}
2659
340a7723 2660int
b09e2c59 2661varobj_editable_p (const struct varobj *var)
340a7723
NR
2662{
2663 struct type *type;
340a7723
NR
2664
2665 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2666 return 0;
2667
99ad9427 2668 type = varobj_get_value_type (var);
340a7723
NR
2669
2670 switch (TYPE_CODE (type))
2671 {
2672 case TYPE_CODE_STRUCT:
2673 case TYPE_CODE_UNION:
2674 case TYPE_CODE_ARRAY:
2675 case TYPE_CODE_FUNC:
2676 case TYPE_CODE_METHOD:
2677 return 0;
2678 break;
2679
2680 default:
2681 return 1;
2682 break;
2683 }
2684}
2685
d32cafc7 2686/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2687
99ad9427 2688int
b09e2c59 2689varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2690{
ca20d462 2691 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2692}
2693
5a413362
VP
2694/* Return 1 if that varobj is floating, that is is always evaluated in the
2695 selected frame, and not bound to thread/frame. Such variable objects
2696 are created using '@' as frame specifier to -var-create. */
2697int
b09e2c59 2698varobj_floating_p (const struct varobj *var)
5a413362
VP
2699{
2700 return var->root->floating;
2701}
2702
d32cafc7
JB
2703/* Implement the "value_is_changeable_p" varobj callback for most
2704 languages. */
2705
99ad9427 2706int
b09e2c59 2707varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2708{
2709 int r;
2710 struct type *type;
2711
2712 if (CPLUS_FAKE_CHILD (var))
2713 return 0;
2714
99ad9427 2715 type = varobj_get_value_type (var);
d32cafc7
JB
2716
2717 switch (TYPE_CODE (type))
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_ARRAY:
2722 r = 0;
2723 break;
2724
2725 default:
2726 r = 1;
2727 }
2728
2729 return r;
2730}
2731
54333c3b
JK
2732/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2733 with an arbitrary caller supplied DATA pointer. */
2734
2735void
2736all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2737{
2738 struct varobj_root *var_root, *var_root_next;
2739
2740 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2741
2742 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2743 {
2744 var_root_next = var_root->next;
2745
2746 (*func) (var_root->rootvar, data);
2747 }
2748}
8756216b 2749
54333c3b 2750/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2751 defined on globals. It is a helper for varobj_invalidate.
2752
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2756
54333c3b
JK
2757static void
2758varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2759{
4e969b4f
AB
2760 /* global and floating var must be re-evaluated. */
2761 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2762 {
54333c3b 2763 struct varobj *tmp_var;
2dbd25e5 2764
54333c3b
JK
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2768 USE_CURRENT_FRAME);
2769 if (tmp_var != NULL)
2770 {
2771 tmp_var->obj_name = xstrdup (var->obj_name);
2772 varobj_delete (var, NULL, 0);
2773 install_variable (tmp_var);
2dbd25e5 2774 }
54333c3b
JK
2775 else
2776 var->root->is_valid = 0;
2dbd25e5 2777 }
54333c3b
JK
2778 else /* locals must be invalidated. */
2779 var->root->is_valid = 0;
2780}
2781
2782/* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2785
2786void
2787varobj_invalidate (void)
2788{
2789 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2790}
1c3569d4
MR
2791\f
2792extern void _initialize_varobj (void);
2793void
2794_initialize_varobj (void)
2795{
8d749320 2796 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2797
2798 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2799 &varobjdebug,
2800 _("Set varobj debugging."),
2801 _("Show varobj debugging."),
2802 _("When non-zero, varobj debugging is enabled."),
2803 NULL, show_varobjdebug,
2804 &setdebuglist, &showdebuglist);
2805}
This page took 2.023299 seconds and 4 git commands to generate.