* ld/testsuite/ld-arm/arm-elf.exp (armeabitests): Replace --defsym argument in
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 4 2009, 2010 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
b6313243
TT
42#endif
43
8b93c638
JM
44/* Non-zero if we want to see trace of varobj level stuff. */
45
46int varobjdebug = 0;
920d2a44
AC
47static void
48show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50{
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52}
8b93c638
JM
53
54/* String representations of gdb's format codes */
55char *varobj_format_string[] =
72330bd6 56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
57
58/* String representations of gdb's known languages */
72330bd6 59char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 60
0cc7d26f
TT
61/* True if we want to allow Python-based pretty-printing. */
62static int pretty_printing = 0;
63
64void
65varobj_enable_pretty_printing (void)
66{
67 pretty_printing = 1;
68}
69
8b93c638
JM
70/* Data structures */
71
72/* Every root variable has one of these structures saved in its
73 varobj. Members which must be free'd are noted. */
74struct varobj_root
72330bd6 75{
8b93c638 76
72330bd6
AC
77 /* Alloc'd expression for this parent. */
78 struct expression *exp;
8b93c638 79
72330bd6
AC
80 /* Block for which this expression is valid */
81 struct block *valid_block;
8b93c638 82
44a67aa7
VP
83 /* The frame for this expression. This field is set iff valid_block is
84 not NULL. */
e64d9b3d 85 struct frame_id frame;
8b93c638 86
c5b48eac
VP
87 /* The thread ID that this varobj_root belong to. This field
88 is only valid if valid_block is not NULL.
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
91 was created. */
92 int thread_id;
93
a5defcdc
VP
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
96 always updated in the specific scope/thread/frame */
97 int floating;
73a93a32 98
8756216b
DP
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
101 int is_valid;
102
72330bd6
AC
103 /* Language info for this variable and its children */
104 struct language_specific *lang;
8b93c638 105
72330bd6
AC
106 /* The varobj for this root node. */
107 struct varobj *rootvar;
8b93c638 108
72330bd6
AC
109 /* Next root variable */
110 struct varobj_root *next;
111};
8b93c638
JM
112
113/* Every variable in the system has a structure of this type defined
114 for it. This structure holds all information necessary to manipulate
115 a particular object variable. Members which must be freed are noted. */
116struct varobj
72330bd6 117{
8b93c638 118
72330bd6
AC
119 /* Alloc'd name of the variable for this object.. If this variable is a
120 child, then this name will be the child's source name.
121 (bar, not foo.bar) */
122 /* NOTE: This is the "expression" */
123 char *name;
8b93c638 124
02142340
VP
125 /* Alloc'd expression for this child. Can be used to create a
126 root variable corresponding to this child. */
127 char *path_expr;
128
72330bd6
AC
129 /* The alloc'd name for this variable's object. This is here for
130 convenience when constructing this object's children. */
131 char *obj_name;
8b93c638 132
72330bd6
AC
133 /* Index of this variable in its parent or -1 */
134 int index;
8b93c638 135
202ddcaa
VP
136 /* The type of this variable. This can be NULL
137 for artifial variable objects -- currently, the "accessibility"
138 variable objects in C++. */
72330bd6 139 struct type *type;
8b93c638 140
b20d8971
VP
141 /* The value of this expression or subexpression. A NULL value
142 indicates there was an error getting this value.
b2c2bd75
VP
143 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
144 the value is either NULL, or not lazy. */
30b28db1 145 struct value *value;
8b93c638 146
72330bd6
AC
147 /* The number of (immediate) children this variable has */
148 int num_children;
8b93c638 149
72330bd6
AC
150 /* If this object is a child, this points to its immediate parent. */
151 struct varobj *parent;
8b93c638 152
28335dcc
VP
153 /* Children of this object. */
154 VEC (varobj_p) *children;
8b93c638 155
b6313243
TT
156 /* Whether the children of this varobj were requested. This field is
157 used to decide if dynamic varobj should recompute their children.
158 In the event that the frontend never asked for the children, we
159 can avoid that. */
160 int children_requested;
161
72330bd6
AC
162 /* Description of the root variable. Points to root variable for children. */
163 struct varobj_root *root;
8b93c638 164
72330bd6
AC
165 /* The format of the output for this object */
166 enum varobj_display_formats format;
fb9b6b35
JJ
167
168 /* Was this variable updated via a varobj_set_value operation */
169 int updated;
85265413
NR
170
171 /* Last print value. */
172 char *print_value;
25d5ea92
VP
173
174 /* Is this variable frozen. Frozen variables are never implicitly
175 updated by -var-update *
176 or -var-update <direct-or-indirect-parent>. */
177 int frozen;
178
179 /* Is the value of this variable intentionally not fetched? It is
180 not fetched if either the variable is frozen, or any parents is
181 frozen. */
182 int not_fetched;
b6313243 183
0cc7d26f
TT
184 /* Sub-range of children which the MI consumer has requested. If
185 FROM < 0 or TO < 0, means that all children have been
186 requested. */
187 int from;
188 int to;
189
190 /* The pretty-printer constructor. If NULL, then the default
191 pretty-printer will be looked up. If None, then no
192 pretty-printer will be installed. */
193 PyObject *constructor;
194
b6313243
TT
195 /* The pretty-printer that has been constructed. If NULL, then a
196 new printer object is needed, and one will be constructed. */
197 PyObject *pretty_printer;
0cc7d26f
TT
198
199 /* The iterator returned by the printer's 'children' method, or NULL
200 if not available. */
201 PyObject *child_iter;
202
203 /* We request one extra item from the iterator, so that we can
204 report to the caller whether there are more items than we have
205 already reported. However, we don't want to install this value
206 when we read it, because that will mess up future updates. So,
207 we stash it here instead. */
208 PyObject *saved_item;
72330bd6 209};
8b93c638 210
8b93c638 211struct cpstack
72330bd6
AC
212{
213 char *name;
214 struct cpstack *next;
215};
8b93c638
JM
216
217/* A list of varobjs */
218
219struct vlist
72330bd6
AC
220{
221 struct varobj *var;
222 struct vlist *next;
223};
8b93c638
JM
224
225/* Private function prototypes */
226
227/* Helper functions for the above subcommands. */
228
a14ed312 229static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 230
a14ed312
KB
231static void delete_variable_1 (struct cpstack **, int *,
232 struct varobj *, int, int);
8b93c638 233
a14ed312 234static int install_variable (struct varobj *);
8b93c638 235
a14ed312 236static void uninstall_variable (struct varobj *);
8b93c638 237
a14ed312 238static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 239
b6313243
TT
240static struct varobj *
241create_child_with_value (struct varobj *parent, int index, const char *name,
242 struct value *value);
243
8b93c638
JM
244/* Utility routines */
245
a14ed312 246static struct varobj *new_variable (void);
8b93c638 247
a14ed312 248static struct varobj *new_root_variable (void);
8b93c638 249
a14ed312 250static void free_variable (struct varobj *var);
8b93c638 251
74b7792f
AC
252static struct cleanup *make_cleanup_free_variable (struct varobj *var);
253
a14ed312 254static struct type *get_type (struct varobj *var);
8b93c638 255
6e2a9270
VP
256static struct type *get_value_type (struct varobj *var);
257
a14ed312 258static struct type *get_target_type (struct type *);
8b93c638 259
a14ed312 260static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 261
a14ed312 262static void cppush (struct cpstack **pstack, char *name);
8b93c638 263
a14ed312 264static char *cppop (struct cpstack **pstack);
8b93c638 265
acd65feb
VP
266static int install_new_value (struct varobj *var, struct value *value,
267 int initial);
268
8b93c638
JM
269/* Language-specific routines. */
270
a14ed312 271static enum varobj_languages variable_language (struct varobj *var);
8b93c638 272
a14ed312 273static int number_of_children (struct varobj *);
8b93c638 274
a14ed312 275static char *name_of_variable (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_child (struct varobj *, int);
8b93c638 278
30b28db1 279static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 280
30b28db1 281static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 282
de051565
MK
283static char *my_value_of_variable (struct varobj *var,
284 enum varobj_display_formats format);
8b93c638 285
85265413 286static char *value_get_print_value (struct value *value,
b6313243 287 enum varobj_display_formats format,
d452c4bc 288 struct varobj *var);
85265413 289
b2c2bd75
VP
290static int varobj_value_is_changeable_p (struct varobj *var);
291
292static int is_root_p (struct varobj *var);
8b93c638 293
d8b65138
JK
294#if HAVE_PYTHON
295
b6313243
TT
296static struct varobj *
297varobj_add_child (struct varobj *var, const char *name, struct value *value);
298
d8b65138
JK
299#endif /* HAVE_PYTHON */
300
8b93c638
JM
301/* C implementation */
302
a14ed312 303static int c_number_of_children (struct varobj *var);
8b93c638 304
a14ed312 305static char *c_name_of_variable (struct varobj *parent);
8b93c638 306
a14ed312 307static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 308
02142340
VP
309static char *c_path_expr_of_child (struct varobj *child);
310
30b28db1 311static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 312
30b28db1 313static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 314
a14ed312 315static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 316
de051565
MK
317static char *c_value_of_variable (struct varobj *var,
318 enum varobj_display_formats format);
8b93c638
JM
319
320/* C++ implementation */
321
a14ed312 322static int cplus_number_of_children (struct varobj *var);
8b93c638 323
a14ed312 324static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 325
a14ed312 326static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 327
a14ed312 328static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 329
02142340
VP
330static char *cplus_path_expr_of_child (struct varobj *child);
331
30b28db1 332static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 333
30b28db1 334static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 335
a14ed312 336static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 337
de051565
MK
338static char *cplus_value_of_variable (struct varobj *var,
339 enum varobj_display_formats format);
8b93c638
JM
340
341/* Java implementation */
342
a14ed312 343static int java_number_of_children (struct varobj *var);
8b93c638 344
a14ed312 345static char *java_name_of_variable (struct varobj *parent);
8b93c638 346
a14ed312 347static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 348
02142340
VP
349static char *java_path_expr_of_child (struct varobj *child);
350
30b28db1 351static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 352
30b28db1 353static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 354
a14ed312 355static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 356
de051565
MK
357static char *java_value_of_variable (struct varobj *var,
358 enum varobj_display_formats format);
8b93c638
JM
359
360/* The language specific vector */
361
362struct language_specific
72330bd6 363{
8b93c638 364
72330bd6
AC
365 /* The language of this variable */
366 enum varobj_languages language;
8b93c638 367
72330bd6
AC
368 /* The number of children of PARENT. */
369 int (*number_of_children) (struct varobj * parent);
8b93c638 370
72330bd6
AC
371 /* The name (expression) of a root varobj. */
372 char *(*name_of_variable) (struct varobj * parent);
8b93c638 373
72330bd6
AC
374 /* The name of the INDEX'th child of PARENT. */
375 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 376
02142340
VP
377 /* Returns the rooted expression of CHILD, which is a variable
378 obtain that has some parent. */
379 char *(*path_expr_of_child) (struct varobj * child);
380
30b28db1
AC
381 /* The ``struct value *'' of the root variable ROOT. */
382 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 383
30b28db1
AC
384 /* The ``struct value *'' of the INDEX'th child of PARENT. */
385 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 386
72330bd6
AC
387 /* The type of the INDEX'th child of PARENT. */
388 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 389
72330bd6 390 /* The current value of VAR. */
de051565
MK
391 char *(*value_of_variable) (struct varobj * var,
392 enum varobj_display_formats format);
72330bd6 393};
8b93c638
JM
394
395/* Array of known source language routines. */
d5d6fca5 396static struct language_specific languages[vlang_end] = {
8b93c638
JM
397 /* Unknown (try treating as C */
398 {
72330bd6
AC
399 vlang_unknown,
400 c_number_of_children,
401 c_name_of_variable,
402 c_name_of_child,
02142340 403 c_path_expr_of_child,
72330bd6
AC
404 c_value_of_root,
405 c_value_of_child,
406 c_type_of_child,
72330bd6 407 c_value_of_variable}
8b93c638
JM
408 ,
409 /* C */
410 {
72330bd6
AC
411 vlang_c,
412 c_number_of_children,
413 c_name_of_variable,
414 c_name_of_child,
02142340 415 c_path_expr_of_child,
72330bd6
AC
416 c_value_of_root,
417 c_value_of_child,
418 c_type_of_child,
72330bd6 419 c_value_of_variable}
8b93c638
JM
420 ,
421 /* C++ */
422 {
72330bd6
AC
423 vlang_cplus,
424 cplus_number_of_children,
425 cplus_name_of_variable,
426 cplus_name_of_child,
02142340 427 cplus_path_expr_of_child,
72330bd6
AC
428 cplus_value_of_root,
429 cplus_value_of_child,
430 cplus_type_of_child,
72330bd6 431 cplus_value_of_variable}
8b93c638
JM
432 ,
433 /* Java */
434 {
72330bd6
AC
435 vlang_java,
436 java_number_of_children,
437 java_name_of_variable,
438 java_name_of_child,
02142340 439 java_path_expr_of_child,
72330bd6
AC
440 java_value_of_root,
441 java_value_of_child,
442 java_type_of_child,
72330bd6 443 java_value_of_variable}
8b93c638
JM
444};
445
446/* A little convenience enum for dealing with C++/Java */
447enum vsections
72330bd6
AC
448{
449 v_public = 0, v_private, v_protected
450};
8b93c638
JM
451
452/* Private data */
453
454/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 455static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
456
457/* Header of the list of root variable objects */
458static struct varobj_root *rootlist;
8b93c638
JM
459
460/* Prime number indicating the number of buckets in the hash table */
461/* A prime large enough to avoid too many colisions */
462#define VAROBJ_TABLE_SIZE 227
463
464/* Pointer to the varobj hash table (built at run time) */
465static struct vlist **varobj_table;
466
8b93c638
JM
467/* Is the variable X one of our "fake" children? */
468#define CPLUS_FAKE_CHILD(x) \
469((x) != NULL && (x)->type == NULL && (x)->value == NULL)
470\f
471
472/* API Implementation */
b2c2bd75
VP
473static int
474is_root_p (struct varobj *var)
475{
476 return (var->root->rootvar == var);
477}
8b93c638 478
d452c4bc
UW
479#ifdef HAVE_PYTHON
480/* Helper function to install a Python environment suitable for
481 use during operations on VAR. */
482struct cleanup *
483varobj_ensure_python_env (struct varobj *var)
484{
485 return ensure_python_env (var->root->exp->gdbarch,
486 var->root->exp->language_defn);
487}
488#endif
489
8b93c638
JM
490/* Creates a varobj (not its children) */
491
7d8547c9
AC
492/* Return the full FRAME which corresponds to the given CORE_ADDR
493 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
494
495static struct frame_info *
496find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
497{
498 struct frame_info *frame = NULL;
499
500 if (frame_addr == (CORE_ADDR) 0)
501 return NULL;
502
9d49bdc2
PA
503 for (frame = get_current_frame ();
504 frame != NULL;
505 frame = get_prev_frame (frame))
7d8547c9 506 {
1fac167a
UW
507 /* The CORE_ADDR we get as argument was parsed from a string GDB
508 output as $fp. This output got truncated to gdbarch_addr_bit.
509 Truncate the frame base address in the same manner before
510 comparing it against our argument. */
511 CORE_ADDR frame_base = get_frame_base_address (frame);
512 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 513
1fac167a
UW
514 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
515 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
516
517 if (frame_base == frame_addr)
7d8547c9
AC
518 return frame;
519 }
9d49bdc2
PA
520
521 return NULL;
7d8547c9
AC
522}
523
8b93c638
JM
524struct varobj *
525varobj_create (char *objname,
72330bd6 526 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
527{
528 struct varobj *var;
8b93c638
JM
529 struct cleanup *old_chain;
530
531 /* Fill out a varobj structure for the (root) variable being constructed. */
532 var = new_root_variable ();
74b7792f 533 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
534
535 if (expression != NULL)
536 {
e4195b40 537 struct frame_info *fi;
35633fef 538 struct frame_id old_id = null_frame_id;
e4195b40 539 struct block *block;
8b93c638
JM
540 char *p;
541 enum varobj_languages lang;
e55dccf0 542 struct value *value = NULL;
8b93c638 543
9d49bdc2
PA
544 /* Parse and evaluate the expression, filling in as much of the
545 variable's data as possible. */
546
547 if (has_stack_frames ())
548 {
549 /* Allow creator to specify context of variable */
550 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
551 fi = get_selected_frame (NULL);
552 else
553 /* FIXME: cagney/2002-11-23: This code should be doing a
554 lookup using the frame ID and not just the frame's
555 ``address''. This, of course, means an interface
556 change. However, with out that interface change ISAs,
557 such as the ia64 with its two stacks, won't work.
558 Similar goes for the case where there is a frameless
559 function. */
560 fi = find_frame_addr_in_frame_chain (frame);
561 }
8b93c638 562 else
9d49bdc2 563 fi = NULL;
8b93c638 564
73a93a32
JI
565 /* frame = -2 means always use selected frame */
566 if (type == USE_SELECTED_FRAME)
a5defcdc 567 var->root->floating = 1;
73a93a32 568
8b93c638
JM
569 block = NULL;
570 if (fi != NULL)
ae767bfb 571 block = get_frame_block (fi, 0);
8b93c638
JM
572
573 p = expression;
574 innermost_block = NULL;
73a93a32
JI
575 /* Wrap the call to parse expression, so we can
576 return a sensible error. */
577 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
578 {
579 return NULL;
580 }
8b93c638
JM
581
582 /* Don't allow variables to be created for types. */
583 if (var->root->exp->elts[0].opcode == OP_TYPE)
584 {
585 do_cleanups (old_chain);
bc8332bb
AC
586 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
587 " as an expression.\n");
8b93c638
JM
588 return NULL;
589 }
590
591 var->format = variable_default_display (var);
592 var->root->valid_block = innermost_block;
1b36a34b 593 var->name = xstrdup (expression);
02142340 594 /* For a root var, the name and the expr are the same. */
1b36a34b 595 var->path_expr = xstrdup (expression);
8b93c638
JM
596
597 /* When the frame is different from the current frame,
598 we must select the appropriate frame before parsing
599 the expression, otherwise the value will not be current.
600 Since select_frame is so benign, just call it for all cases. */
4e22772d 601 if (innermost_block)
8b93c638 602 {
4e22772d
JK
603 /* User could specify explicit FRAME-ADDR which was not found but
604 EXPRESSION is frame specific and we would not be able to evaluate
605 it correctly next time. With VALID_BLOCK set we must also set
606 FRAME and THREAD_ID. */
607 if (fi == NULL)
608 error (_("Failed to find the specified frame"));
609
7a424e99 610 var->root->frame = get_frame_id (fi);
c5b48eac 611 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 612 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 613 select_frame (fi);
8b93c638
JM
614 }
615
340a7723 616 /* We definitely need to catch errors here.
8b93c638
JM
617 If evaluate_expression succeeds we got the value we wanted.
618 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 619 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
620 {
621 /* Error getting the value. Try to at least get the
622 right type. */
623 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 624
e55dccf0
VP
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
acd65feb 629
acd65feb 630 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
631
632 /* Set language info */
633 lang = variable_language (var);
d5d6fca5 634 var->root->lang = &languages[lang];
8b93c638
JM
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
35633fef
JK
640 if (frame_id_p (old_id))
641 select_frame (frame_find_by_id (old_id));
8b93c638
JM
642 }
643
73a93a32
JI
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
8b93c638 648 {
1b36a34b 649 var->obj_name = xstrdup (objname);
8b93c638
JM
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662}
663
664/* Generates an unique name that can be used for a varobj */
665
666char *
667varobj_gen_name (void)
668{
669 static int id = 0;
e64d9b3d 670 char *obj_name;
8b93c638
JM
671
672 /* generate a name for this object */
673 id++;
b435e160 674 obj_name = xstrprintf ("var%d", id);
8b93c638 675
e64d9b3d 676 return obj_name;
8b93c638
JM
677}
678
61d8f275
JK
679/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
8b93c638
JM
681
682struct varobj *
683varobj_get_handle (char *objname)
684{
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
8a3fe4f8 700 error (_("Variable object not found"));
8b93c638
JM
701
702 return cv->var;
703}
704
705/* Given the handle, return the name of the object */
706
707char *
708varobj_get_objname (struct varobj *var)
709{
710 return var->obj_name;
711}
712
713/* Given the handle, return the expression represented by the object */
714
715char *
716varobj_get_expression (struct varobj *var)
717{
718 return name_of_variable (var);
719}
720
721/* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725int
726varobj_delete (struct varobj *var, char ***dellist, int only_children)
727{
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
8a3fe4f8 759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 760 mycount);
8b93c638
JM
761 }
762
763 return delcount;
764}
765
d8b65138
JK
766#if HAVE_PYTHON
767
b6313243
TT
768/* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770static PyObject *
771instantiate_pretty_printer (PyObject *constructor, struct value *value)
772{
b6313243
TT
773 PyObject *val_obj = NULL;
774 PyObject *printer;
b6313243 775
b6313243 776 val_obj = value_to_value_object (value);
b6313243
TT
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
b6313243
TT
783 return NULL;
784}
785
d8b65138
JK
786#endif
787
8b93c638
JM
788/* Set/Get variable object display format */
789
790enum varobj_display_formats
791varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793{
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
ae7d22a6
VP
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
6c761d9c 811 xfree (var->print_value);
d452c4bc 812 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
813 }
814
8b93c638
JM
815 return var->format;
816}
817
818enum varobj_display_formats
819varobj_get_display_format (struct varobj *var)
820{
821 return var->format;
822}
823
b6313243
TT
824char *
825varobj_get_display_hint (struct varobj *var)
826{
827 char *result = NULL;
828
829#if HAVE_PYTHON
d452c4bc
UW
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
b6313243
TT
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
834
835 do_cleanups (back_to);
b6313243
TT
836#endif
837
838 return result;
839}
840
0cc7d26f
TT
841/* Return true if the varobj has items after TO, false otherwise. */
842
843int
844varobj_has_more (struct varobj *var, int to)
845{
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850}
851
c5b48eac
VP
852/* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856int
857varobj_get_thread_id (struct varobj *var)
858{
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863}
864
25d5ea92
VP
865void
866varobj_set_frozen (struct varobj *var, int frozen)
867{
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876}
877
878int
879varobj_get_frozen (struct varobj *var)
880{
881 return var->frozen;
882}
883
0cc7d26f
TT
884/* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889static void
890restrict_range (VEC (varobj_p) *children, int *from, int *to)
891{
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906}
907
d8b65138
JK
908#if HAVE_PYTHON
909
0cc7d26f
TT
910/* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913static void
914install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922{
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 927
0cc7d26f
TT
928 if (new)
929 {
930 VEC_safe_push (varobj_p, *new, child);
931 *cchanged = 1;
932 }
933 }
934 else
935 {
936 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 937
0cc7d26f
TT
938 if (install_new_value (existing, value, 0))
939 {
940 if (changed)
941 VEC_safe_push (varobj_p, *changed, existing);
942 }
943 else if (unchanged)
944 VEC_safe_push (varobj_p, *unchanged, existing);
945 }
946}
947
0cc7d26f
TT
948static int
949dynamic_varobj_has_child_method (struct varobj *var)
950{
951 struct cleanup *back_to;
952 PyObject *printer = var->pretty_printer;
953 int result;
954
955 back_to = varobj_ensure_python_env (var);
956 result = PyObject_HasAttr (printer, gdbpy_children_cst);
957 do_cleanups (back_to);
958 return result;
959}
960
961#endif
962
b6313243
TT
963static int
964update_dynamic_varobj_children (struct varobj *var,
965 VEC (varobj_p) **changed,
0cc7d26f
TT
966 VEC (varobj_p) **new,
967 VEC (varobj_p) **unchanged,
968 int *cchanged,
969 int update_children,
970 int from,
971 int to)
b6313243
TT
972{
973#if HAVE_PYTHON
b6313243
TT
974 struct cleanup *back_to;
975 PyObject *children;
b6313243 976 int i;
b6313243 977 PyObject *printer = var->pretty_printer;
b6313243 978
d452c4bc 979 back_to = varobj_ensure_python_env (var);
b6313243
TT
980
981 *cchanged = 0;
982 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
983 {
984 do_cleanups (back_to);
985 return 0;
986 }
987
0cc7d26f 988 if (update_children || !var->child_iter)
b6313243 989 {
0cc7d26f
TT
990 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
991 NULL);
b6313243 992
0cc7d26f
TT
993 if (!children)
994 {
995 gdbpy_print_stack ();
996 error (_("Null value returned for children"));
997 }
b6313243 998
0cc7d26f 999 make_cleanup_py_decref (children);
b6313243 1000
0cc7d26f
TT
1001 if (!PyIter_Check (children))
1002 error (_("Returned value is not iterable"));
1003
1004 Py_XDECREF (var->child_iter);
1005 var->child_iter = PyObject_GetIter (children);
1006 if (!var->child_iter)
1007 {
1008 gdbpy_print_stack ();
1009 error (_("Could not get children iterator"));
1010 }
1011
1012 Py_XDECREF (var->saved_item);
1013 var->saved_item = NULL;
1014
1015 i = 0;
b6313243 1016 }
0cc7d26f
TT
1017 else
1018 i = VEC_length (varobj_p, var->children);
b6313243 1019
0cc7d26f
TT
1020 /* We ask for one extra child, so that MI can report whether there
1021 are more children. */
1022 for (; to < 0 || i < to + 1; ++i)
b6313243 1023 {
0cc7d26f 1024 PyObject *item;
b6313243 1025
0cc7d26f
TT
1026 /* See if there was a leftover from last time. */
1027 if (var->saved_item)
1028 {
1029 item = var->saved_item;
1030 var->saved_item = NULL;
1031 }
1032 else
1033 item = PyIter_Next (var->child_iter);
b6313243 1034
0cc7d26f
TT
1035 if (!item)
1036 break;
b6313243 1037
0cc7d26f
TT
1038 /* We don't want to push the extra child on any report list. */
1039 if (to < 0 || i < to)
b6313243 1040 {
0cc7d26f
TT
1041 PyObject *py_v;
1042 char *name;
1043 struct value *v;
1044 struct cleanup *inner;
1045 int can_mention = from < 0 || i >= from;
1046
1047 inner = make_cleanup_py_decref (item);
1048
1049 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1050 error (_("Invalid item from the child list"));
1051
1052 v = convert_value_from_python (py_v);
8dc78533
JK
1053 if (v == NULL)
1054 gdbpy_print_stack ();
0cc7d26f
TT
1055 install_dynamic_child (var, can_mention ? changed : NULL,
1056 can_mention ? new : NULL,
1057 can_mention ? unchanged : NULL,
1058 can_mention ? cchanged : NULL, i, name, v);
1059 do_cleanups (inner);
b6313243 1060 }
0cc7d26f 1061 else
b6313243 1062 {
0cc7d26f
TT
1063 Py_XDECREF (var->saved_item);
1064 var->saved_item = item;
b6313243 1065
0cc7d26f
TT
1066 /* We want to truncate the child list just before this
1067 element. */
1068 break;
1069 }
b6313243
TT
1070 }
1071
1072 if (i < VEC_length (varobj_p, var->children))
1073 {
0cc7d26f 1074 int j;
a109c7c1 1075
0cc7d26f
TT
1076 *cchanged = 1;
1077 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1078 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1079 VEC_truncate (varobj_p, var->children, i);
b6313243 1080 }
0cc7d26f
TT
1081
1082 /* If there are fewer children than requested, note that the list of
1083 children changed. */
1084 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1085 *cchanged = 1;
1086
b6313243
TT
1087 var->num_children = VEC_length (varobj_p, var->children);
1088
1089 do_cleanups (back_to);
1090
b6313243
TT
1091 return 1;
1092#else
1093 gdb_assert (0 && "should never be called if Python is not enabled");
1094#endif
1095}
25d5ea92 1096
8b93c638
JM
1097int
1098varobj_get_num_children (struct varobj *var)
1099{
1100 if (var->num_children == -1)
b6313243 1101 {
0cc7d26f
TT
1102 if (var->pretty_printer)
1103 {
1104 int dummy;
1105
1106 /* If we have a dynamic varobj, don't report -1 children.
1107 So, try to fetch some children first. */
1108 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1109 0, 0, 0);
1110 }
1111 else
b6313243
TT
1112 var->num_children = number_of_children (var);
1113 }
8b93c638 1114
0cc7d26f 1115 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1116}
1117
1118/* Creates a list of the immediate children of a variable object;
1119 the return code is the number of such children or -1 on error */
1120
d56d46f5 1121VEC (varobj_p)*
0cc7d26f 1122varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1123{
8b93c638 1124 char *name;
b6313243
TT
1125 int i, children_changed;
1126
1127 var->children_requested = 1;
1128
0cc7d26f
TT
1129 if (var->pretty_printer)
1130 {
b6313243
TT
1131 /* This, in theory, can result in the number of children changing without
1132 frontend noticing. But well, calling -var-list-children on the same
1133 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1134 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1135 0, 0, *to);
1136 restrict_range (var->children, from, to);
1137 return var->children;
1138 }
8b93c638 1139
8b93c638
JM
1140 if (var->num_children == -1)
1141 var->num_children = number_of_children (var);
1142
74a44383
DJ
1143 /* If that failed, give up. */
1144 if (var->num_children == -1)
d56d46f5 1145 return var->children;
74a44383 1146
28335dcc
VP
1147 /* If we're called when the list of children is not yet initialized,
1148 allocate enough elements in it. */
1149 while (VEC_length (varobj_p, var->children) < var->num_children)
1150 VEC_safe_push (varobj_p, var->children, NULL);
1151
8b93c638
JM
1152 for (i = 0; i < var->num_children; i++)
1153 {
d56d46f5 1154 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1155
1156 if (existing == NULL)
1157 {
1158 /* Either it's the first call to varobj_list_children for
1159 this variable object, and the child was never created,
1160 or it was explicitly deleted by the client. */
1161 name = name_of_child (var, i);
1162 existing = create_child (var, i, name);
1163 VEC_replace (varobj_p, var->children, i, existing);
1164 }
8b93c638
JM
1165 }
1166
0cc7d26f 1167 restrict_range (var->children, from, to);
d56d46f5 1168 return var->children;
8b93c638
JM
1169}
1170
d8b65138
JK
1171#if HAVE_PYTHON
1172
b6313243
TT
1173static struct varobj *
1174varobj_add_child (struct varobj *var, const char *name, struct value *value)
1175{
1176 varobj_p v = create_child_with_value (var,
1177 VEC_length (varobj_p, var->children),
1178 name, value);
a109c7c1 1179
b6313243 1180 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1181 return v;
1182}
1183
d8b65138
JK
1184#endif /* HAVE_PYTHON */
1185
8b93c638
JM
1186/* Obtain the type of an object Variable as a string similar to the one gdb
1187 prints on the console */
1188
1189char *
1190varobj_get_type (struct varobj *var)
1191{
8b93c638 1192 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1193 NULL, too.)
1194 Do not return a type for invalid variables as well. */
1195 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1196 return NULL;
1197
1a4300e9 1198 return type_to_string (var->type);
8b93c638
JM
1199}
1200
1ecb4ee0
DJ
1201/* Obtain the type of an object variable. */
1202
1203struct type *
1204varobj_get_gdb_type (struct varobj *var)
1205{
1206 return var->type;
1207}
1208
02142340
VP
1209/* Return a pointer to the full rooted expression of varobj VAR.
1210 If it has not been computed yet, compute it. */
1211char *
1212varobj_get_path_expr (struct varobj *var)
1213{
1214 if (var->path_expr != NULL)
1215 return var->path_expr;
1216 else
1217 {
1218 /* For root varobjs, we initialize path_expr
1219 when creating varobj, so here it should be
1220 child varobj. */
1221 gdb_assert (!is_root_p (var));
1222 return (*var->root->lang->path_expr_of_child) (var);
1223 }
1224}
1225
8b93c638
JM
1226enum varobj_languages
1227varobj_get_language (struct varobj *var)
1228{
1229 return variable_language (var);
1230}
1231
1232int
1233varobj_get_attributes (struct varobj *var)
1234{
1235 int attributes = 0;
1236
340a7723 1237 if (varobj_editable_p (var))
8b93c638
JM
1238 /* FIXME: define masks for attributes */
1239 attributes |= 0x00000001; /* Editable */
1240
1241 return attributes;
1242}
1243
0cc7d26f
TT
1244int
1245varobj_pretty_printed_p (struct varobj *var)
1246{
1247 return var->pretty_printer != NULL;
1248}
1249
de051565
MK
1250char *
1251varobj_get_formatted_value (struct varobj *var,
1252 enum varobj_display_formats format)
1253{
1254 return my_value_of_variable (var, format);
1255}
1256
8b93c638
JM
1257char *
1258varobj_get_value (struct varobj *var)
1259{
de051565 1260 return my_value_of_variable (var, var->format);
8b93c638
JM
1261}
1262
1263/* Set the value of an object variable (if it is editable) to the
1264 value of the given expression */
1265/* Note: Invokes functions that can call error() */
1266
1267int
1268varobj_set_value (struct varobj *var, char *expression)
1269{
30b28db1 1270 struct value *val;
8b93c638
JM
1271
1272 /* The argument "expression" contains the variable's new value.
1273 We need to first construct a legal expression for this -- ugh! */
1274 /* Does this cover all the bases? */
1275 struct expression *exp;
30b28db1 1276 struct value *value;
8b93c638 1277 int saved_input_radix = input_radix;
340a7723 1278 char *s = expression;
8b93c638 1279
340a7723 1280 gdb_assert (varobj_editable_p (var));
8b93c638 1281
340a7723
NR
1282 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1283 exp = parse_exp_1 (&s, 0, 0);
1284 if (!gdb_evaluate_expression (exp, &value))
1285 {
1286 /* We cannot proceed without a valid expression. */
1287 xfree (exp);
1288 return 0;
8b93c638
JM
1289 }
1290
340a7723
NR
1291 /* All types that are editable must also be changeable. */
1292 gdb_assert (varobj_value_is_changeable_p (var));
1293
1294 /* The value of a changeable variable object must not be lazy. */
1295 gdb_assert (!value_lazy (var->value));
1296
1297 /* Need to coerce the input. We want to check if the
1298 value of the variable object will be different
1299 after assignment, and the first thing value_assign
1300 does is coerce the input.
1301 For example, if we are assigning an array to a pointer variable we
1302 should compare the pointer with the the array's address, not with the
1303 array's content. */
1304 value = coerce_array (value);
1305
1306 /* The new value may be lazy. gdb_value_assign, or
1307 rather value_contents, will take care of this.
1308 If fetching of the new value will fail, gdb_value_assign
1309 with catch the exception. */
1310 if (!gdb_value_assign (var->value, value, &val))
1311 return 0;
1312
1313 /* If the value has changed, record it, so that next -var-update can
1314 report this change. If a variable had a value of '1', we've set it
1315 to '333' and then set again to '1', when -var-update will report this
1316 variable as changed -- because the first assignment has set the
1317 'updated' flag. There's no need to optimize that, because return value
1318 of -var-update should be considered an approximation. */
1319 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1320 input_radix = saved_input_radix;
1321 return 1;
8b93c638
JM
1322}
1323
0cc7d26f
TT
1324#if HAVE_PYTHON
1325
1326/* A helper function to install a constructor function and visualizer
1327 in a varobj. */
1328
1329static void
1330install_visualizer (struct varobj *var, PyObject *constructor,
1331 PyObject *visualizer)
1332{
1333 Py_XDECREF (var->constructor);
1334 var->constructor = constructor;
1335
1336 Py_XDECREF (var->pretty_printer);
1337 var->pretty_printer = visualizer;
1338
1339 Py_XDECREF (var->child_iter);
1340 var->child_iter = NULL;
1341}
1342
1343/* Install the default visualizer for VAR. */
1344
1345static void
1346install_default_visualizer (struct varobj *var)
1347{
1348 if (pretty_printing)
1349 {
1350 PyObject *pretty_printer = NULL;
1351
1352 if (var->value)
1353 {
1354 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1355 if (! pretty_printer)
1356 {
1357 gdbpy_print_stack ();
1358 error (_("Cannot instantiate printer for default visualizer"));
1359 }
1360 }
1361
1362 if (pretty_printer == Py_None)
1363 {
1364 Py_DECREF (pretty_printer);
1365 pretty_printer = NULL;
1366 }
1367
1368 install_visualizer (var, NULL, pretty_printer);
1369 }
1370}
1371
1372/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1373 make a new object. */
1374
1375static void
1376construct_visualizer (struct varobj *var, PyObject *constructor)
1377{
1378 PyObject *pretty_printer;
1379
1380 Py_INCREF (constructor);
1381 if (constructor == Py_None)
1382 pretty_printer = NULL;
1383 else
1384 {
1385 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1386 if (! pretty_printer)
1387 {
1388 gdbpy_print_stack ();
1389 Py_DECREF (constructor);
1390 constructor = Py_None;
1391 Py_INCREF (constructor);
1392 }
1393
1394 if (pretty_printer == Py_None)
1395 {
1396 Py_DECREF (pretty_printer);
1397 pretty_printer = NULL;
1398 }
1399 }
1400
1401 install_visualizer (var, constructor, pretty_printer);
1402}
1403
1404#endif /* HAVE_PYTHON */
1405
1406/* A helper function for install_new_value. This creates and installs
1407 a visualizer for VAR, if appropriate. */
1408
1409static void
1410install_new_value_visualizer (struct varobj *var)
1411{
1412#if HAVE_PYTHON
1413 /* If the constructor is None, then we want the raw value. If VAR
1414 does not have a value, just skip this. */
1415 if (var->constructor != Py_None && var->value)
1416 {
1417 struct cleanup *cleanup;
0cc7d26f
TT
1418
1419 cleanup = varobj_ensure_python_env (var);
1420
1421 if (!var->constructor)
1422 install_default_visualizer (var);
1423 else
1424 construct_visualizer (var, var->constructor);
1425
1426 do_cleanups (cleanup);
1427 }
1428#else
1429 /* Do nothing. */
1430#endif
1431}
1432
acd65feb
VP
1433/* Assign a new value to a variable object. If INITIAL is non-zero,
1434 this is the first assignement after the variable object was just
1435 created, or changed type. In that case, just assign the value
1436 and return 0.
ee342b23
VP
1437 Otherwise, assign the new value, and return 1 if the value is different
1438 from the current one, 0 otherwise. The comparison is done on textual
1439 representation of value. Therefore, some types need not be compared. E.g.
1440 for structures the reported value is always "{...}", so no comparison is
1441 necessary here. If the old value was NULL and new one is not, or vice versa,
1442 we always return 1.
b26ed50d
VP
1443
1444 The VALUE parameter should not be released -- the function will
1445 take care of releasing it when needed. */
acd65feb
VP
1446static int
1447install_new_value (struct varobj *var, struct value *value, int initial)
1448{
1449 int changeable;
1450 int need_to_fetch;
1451 int changed = 0;
25d5ea92 1452 int intentionally_not_fetched = 0;
7a4d50bf 1453 char *print_value = NULL;
acd65feb 1454
acd65feb
VP
1455 /* We need to know the varobj's type to decide if the value should
1456 be fetched or not. C++ fake children (public/protected/private) don't have
1457 a type. */
1458 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1459 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1460
1461 /* If the type has custom visualizer, we consider it to be always
1462 changeable. FIXME: need to make sure this behaviour will not
1463 mess up read-sensitive values. */
1464 if (var->pretty_printer)
1465 changeable = 1;
1466
acd65feb
VP
1467 need_to_fetch = changeable;
1468
b26ed50d
VP
1469 /* We are not interested in the address of references, and given
1470 that in C++ a reference is not rebindable, it cannot
1471 meaningfully change. So, get hold of the real value. */
1472 if (value)
0cc7d26f 1473 value = coerce_ref (value);
b26ed50d 1474
acd65feb
VP
1475 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1476 /* For unions, we need to fetch the value implicitly because
1477 of implementation of union member fetch. When gdb
1478 creates a value for a field and the value of the enclosing
1479 structure is not lazy, it immediately copies the necessary
1480 bytes from the enclosing values. If the enclosing value is
1481 lazy, the call to value_fetch_lazy on the field will read
1482 the data from memory. For unions, that means we'll read the
1483 same memory more than once, which is not desirable. So
1484 fetch now. */
1485 need_to_fetch = 1;
1486
1487 /* The new value might be lazy. If the type is changeable,
1488 that is we'll be comparing values of this type, fetch the
1489 value now. Otherwise, on the next update the old value
1490 will be lazy, which means we've lost that old value. */
1491 if (need_to_fetch && value && value_lazy (value))
1492 {
25d5ea92
VP
1493 struct varobj *parent = var->parent;
1494 int frozen = var->frozen;
a109c7c1 1495
25d5ea92
VP
1496 for (; !frozen && parent; parent = parent->parent)
1497 frozen |= parent->frozen;
1498
1499 if (frozen && initial)
1500 {
1501 /* For variables that are frozen, or are children of frozen
1502 variables, we don't do fetch on initial assignment.
1503 For non-initial assignemnt we do the fetch, since it means we're
1504 explicitly asked to compare the new value with the old one. */
1505 intentionally_not_fetched = 1;
1506 }
1507 else if (!gdb_value_fetch_lazy (value))
acd65feb 1508 {
acd65feb
VP
1509 /* Set the value to NULL, so that for the next -var-update,
1510 we don't try to compare the new value with this value,
1511 that we couldn't even read. */
1512 value = NULL;
1513 }
acd65feb
VP
1514 }
1515
b6313243 1516
7a4d50bf
VP
1517 /* Below, we'll be comparing string rendering of old and new
1518 values. Don't get string rendering if the value is
1519 lazy -- if it is, the code above has decided that the value
1520 should not be fetched. */
0cc7d26f 1521 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1522 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1523
acd65feb
VP
1524 /* If the type is changeable, compare the old and the new values.
1525 If this is the initial assignment, we don't have any old value
1526 to compare with. */
7a4d50bf 1527 if (!initial && changeable)
acd65feb
VP
1528 {
1529 /* If the value of the varobj was changed by -var-set-value, then the
1530 value in the varobj and in the target is the same. However, that value
1531 is different from the value that the varobj had after the previous
57e66780 1532 -var-update. So need to the varobj as changed. */
acd65feb 1533 if (var->updated)
57e66780 1534 {
57e66780
DJ
1535 changed = 1;
1536 }
0cc7d26f 1537 else if (! var->pretty_printer)
acd65feb
VP
1538 {
1539 /* Try to compare the values. That requires that both
1540 values are non-lazy. */
25d5ea92
VP
1541 if (var->not_fetched && value_lazy (var->value))
1542 {
1543 /* This is a frozen varobj and the value was never read.
1544 Presumably, UI shows some "never read" indicator.
1545 Now that we've fetched the real value, we need to report
1546 this varobj as changed so that UI can show the real
1547 value. */
1548 changed = 1;
1549 }
1550 else if (var->value == NULL && value == NULL)
acd65feb
VP
1551 /* Equal. */
1552 ;
1553 else if (var->value == NULL || value == NULL)
57e66780 1554 {
57e66780
DJ
1555 changed = 1;
1556 }
acd65feb
VP
1557 else
1558 {
1559 gdb_assert (!value_lazy (var->value));
1560 gdb_assert (!value_lazy (value));
85265413 1561
57e66780 1562 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1563 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1564 changed = 1;
acd65feb
VP
1565 }
1566 }
1567 }
85265413 1568
ee342b23
VP
1569 if (!initial && !changeable)
1570 {
1571 /* For values that are not changeable, we don't compare the values.
1572 However, we want to notice if a value was not NULL and now is NULL,
1573 or vise versa, so that we report when top-level varobjs come in scope
1574 and leave the scope. */
1575 changed = (var->value != NULL) != (value != NULL);
1576 }
1577
acd65feb 1578 /* We must always keep the new value, since children depend on it. */
25d5ea92 1579 if (var->value != NULL && var->value != value)
acd65feb
VP
1580 value_free (var->value);
1581 var->value = value;
0cc7d26f
TT
1582 if (value != NULL)
1583 value_incref (value);
25d5ea92
VP
1584 if (value && value_lazy (value) && intentionally_not_fetched)
1585 var->not_fetched = 1;
1586 else
1587 var->not_fetched = 0;
acd65feb 1588 var->updated = 0;
85265413 1589
0cc7d26f
TT
1590 install_new_value_visualizer (var);
1591
1592 /* If we installed a pretty-printer, re-compare the printed version
1593 to see if the variable changed. */
1594 if (var->pretty_printer)
1595 {
1596 xfree (print_value);
1597 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1598 if ((var->print_value == NULL && print_value != NULL)
1599 || (var->print_value != NULL && print_value == NULL)
1600 || (var->print_value != NULL && print_value != NULL
1601 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1602 changed = 1;
1603 }
1604 if (var->print_value)
1605 xfree (var->print_value);
1606 var->print_value = print_value;
1607
b26ed50d 1608 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1609
1610 return changed;
1611}
acd65feb 1612
0cc7d26f
TT
1613/* Return the requested range for a varobj. VAR is the varobj. FROM
1614 and TO are out parameters; *FROM and *TO will be set to the
1615 selected sub-range of VAR. If no range was selected using
1616 -var-set-update-range, then both will be -1. */
1617void
1618varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1619{
0cc7d26f
TT
1620 *from = var->from;
1621 *to = var->to;
b6313243
TT
1622}
1623
0cc7d26f
TT
1624/* Set the selected sub-range of children of VAR to start at index
1625 FROM and end at index TO. If either FROM or TO is less than zero,
1626 this is interpreted as a request for all children. */
1627void
1628varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1629{
0cc7d26f
TT
1630 var->from = from;
1631 var->to = to;
b6313243
TT
1632}
1633
1634void
1635varobj_set_visualizer (struct varobj *var, const char *visualizer)
1636{
1637#if HAVE_PYTHON
34fa1d9d
MS
1638 PyObject *mainmod, *globals, *constructor;
1639 struct cleanup *back_to;
b6313243 1640
d452c4bc 1641 back_to = varobj_ensure_python_env (var);
b6313243
TT
1642
1643 mainmod = PyImport_AddModule ("__main__");
1644 globals = PyModule_GetDict (mainmod);
1645 Py_INCREF (globals);
1646 make_cleanup_py_decref (globals);
1647
1648 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1649
0cc7d26f 1650 if (! constructor)
b6313243
TT
1651 {
1652 gdbpy_print_stack ();
da1f2771 1653 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1654 }
1655
0cc7d26f
TT
1656 construct_visualizer (var, constructor);
1657 Py_XDECREF (constructor);
b6313243 1658
0cc7d26f
TT
1659 /* If there are any children now, wipe them. */
1660 varobj_delete (var, NULL, 1 /* children only */);
1661 var->num_children = -1;
b6313243
TT
1662
1663 do_cleanups (back_to);
1664#else
da1f2771 1665 error (_("Python support required"));
b6313243
TT
1666#endif
1667}
1668
8b93c638
JM
1669/* Update the values for a variable and its children. This is a
1670 two-pronged attack. First, re-parse the value for the root's
1671 expression to see if it's changed. Then go all the way
1672 through its children, reconstructing them and noting if they've
1673 changed.
1674
25d5ea92
VP
1675 The EXPLICIT parameter specifies if this call is result
1676 of MI request to update this specific variable, or
1677 result of implicit -var-update *. For implicit request, we don't
1678 update frozen variables.
705da579
KS
1679
1680 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1681 returns TYPE_CHANGED, then it has done this and VARP will be modified
1682 to point to the new varobj. */
8b93c638 1683
f7f9ae2c 1684VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1685{
1686 int changed = 0;
25d5ea92 1687 int type_changed = 0;
8b93c638 1688 int i;
30b28db1 1689 struct value *new;
b6313243 1690 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1691 VEC (varobj_update_result) *result = NULL;
8b93c638 1692
25d5ea92
VP
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
f7f9ae2c 1699 return result;
8756216b
DP
1700
1701 if (!(*varp)->root->is_valid)
f7f9ae2c 1702 {
cfce2ea2 1703 varobj_update_result r = {0};
a109c7c1 1704
cfce2ea2 1705 r.varobj = *varp;
f7f9ae2c
VP
1706 r.status = VAROBJ_INVALID;
1707 VEC_safe_push (varobj_update_result, result, &r);
1708 return result;
1709 }
8b93c638 1710
25d5ea92 1711 if ((*varp)->root->rootvar == *varp)
ae093f96 1712 {
cfce2ea2 1713 varobj_update_result r = {0};
a109c7c1 1714
cfce2ea2 1715 r.varobj = *varp;
f7f9ae2c
VP
1716 r.status = VAROBJ_IN_SCOPE;
1717
25d5ea92
VP
1718 /* Update the root variable. value_of_root can return NULL
1719 if the variable is no longer around, i.e. we stepped out of
1720 the frame in which a local existed. We are letting the
1721 value_of_root variable dispose of the varobj if the type
1722 has changed. */
25d5ea92 1723 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1724 r.varobj = *varp;
1725
1726 r.type_changed = type_changed;
ea56f9c2 1727 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1728 r.changed = 1;
ea56f9c2 1729
25d5ea92 1730 if (new == NULL)
f7f9ae2c 1731 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1732 r.value_installed = 1;
f7f9ae2c
VP
1733
1734 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1735 {
0b4bc29a
JK
1736 if (r.type_changed || r.changed)
1737 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1738 return result;
1739 }
1740
1741 VEC_safe_push (varobj_update_result, stack, &r);
1742 }
1743 else
1744 {
cfce2ea2 1745 varobj_update_result r = {0};
a109c7c1 1746
cfce2ea2 1747 r.varobj = *varp;
b6313243 1748 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1749 }
8b93c638 1750
8756216b 1751 /* Walk through the children, reconstructing them all. */
b6313243 1752 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1753 {
b6313243
TT
1754 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1755 struct varobj *v = r.varobj;
1756
1757 VEC_pop (varobj_update_result, stack);
1758
1759 /* Update this variable, unless it's a root, which is already
1760 updated. */
1761 if (!r.value_installed)
1762 {
1763 new = value_of_child (v->parent, v->index);
1764 if (install_new_value (v, new, 0 /* type not changed */))
1765 {
1766 r.changed = 1;
1767 v->updated = 0;
1768 }
1769 }
1770
1771 /* We probably should not get children of a varobj that has a
1772 pretty-printer, but for which -var-list-children was never
0cc7d26f 1773 invoked. */
b6313243
TT
1774 if (v->pretty_printer)
1775 {
0cc7d26f 1776 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1777 int i, children_changed = 0;
b6313243
TT
1778
1779 if (v->frozen)
1780 continue;
1781
0cc7d26f
TT
1782 if (!v->children_requested)
1783 {
1784 int dummy;
1785
1786 /* If we initially did not have potential children, but
1787 now we do, consider the varobj as changed.
1788 Otherwise, if children were never requested, consider
1789 it as unchanged -- presumably, such varobj is not yet
1790 expanded in the UI, so we need not bother getting
1791 it. */
1792 if (!varobj_has_more (v, 0))
1793 {
1794 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1795 &dummy, 0, 0, 0);
1796 if (varobj_has_more (v, 0))
1797 r.changed = 1;
1798 }
1799
1800 if (r.changed)
1801 VEC_safe_push (varobj_update_result, result, &r);
1802
1803 continue;
1804 }
1805
b6313243
TT
1806 /* If update_dynamic_varobj_children returns 0, then we have
1807 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1808 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1809 &children_changed, 1,
1810 v->from, v->to))
b6313243 1811 {
0cc7d26f 1812 if (children_changed || new)
b6313243 1813 {
0cc7d26f
TT
1814 r.children_changed = 1;
1815 r.new = new;
b6313243 1816 }
0cc7d26f
TT
1817 /* Push in reverse order so that the first child is
1818 popped from the work stack first, and so will be
1819 added to result first. This does not affect
1820 correctness, just "nicer". */
1821 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1822 {
0cc7d26f 1823 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1824 varobj_update_result r = {0};
a109c7c1 1825
cfce2ea2 1826 r.varobj = tmp;
0cc7d26f 1827 r.changed = 1;
b6313243
TT
1828 r.value_installed = 1;
1829 VEC_safe_push (varobj_update_result, stack, &r);
1830 }
0cc7d26f
TT
1831 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1832 {
1833 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1834
0cc7d26f
TT
1835 if (!tmp->frozen)
1836 {
cfce2ea2 1837 varobj_update_result r = {0};
a109c7c1 1838
cfce2ea2 1839 r.varobj = tmp;
0cc7d26f
TT
1840 r.value_installed = 1;
1841 VEC_safe_push (varobj_update_result, stack, &r);
1842 }
1843 }
b6313243
TT
1844 if (r.changed || r.children_changed)
1845 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1846
1847 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1848 has been put into the result vector. */
1849 VEC_free (varobj_p, changed);
1850 VEC_free (varobj_p, unchanged);
1851
b6313243
TT
1852 continue;
1853 }
1854 }
28335dcc
VP
1855
1856 /* Push any children. Use reverse order so that the first
1857 child is popped from the work stack first, and so
1858 will be added to result first. This does not
1859 affect correctness, just "nicer". */
1860 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1861 {
28335dcc 1862 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1863
28335dcc 1864 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1865 if (c != NULL && !c->frozen)
28335dcc 1866 {
cfce2ea2 1867 varobj_update_result r = {0};
a109c7c1 1868
cfce2ea2 1869 r.varobj = c;
b6313243 1870 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1871 }
8b93c638 1872 }
b6313243
TT
1873
1874 if (r.changed || r.type_changed)
1875 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1876 }
1877
b6313243
TT
1878 VEC_free (varobj_update_result, stack);
1879
f7f9ae2c 1880 return result;
8b93c638
JM
1881}
1882\f
1883
1884/* Helper functions */
1885
1886/*
1887 * Variable object construction/destruction
1888 */
1889
1890static int
fba45db2
KB
1891delete_variable (struct cpstack **resultp, struct varobj *var,
1892 int only_children_p)
8b93c638
JM
1893{
1894 int delcount = 0;
1895
1896 delete_variable_1 (resultp, &delcount, var,
1897 only_children_p, 1 /* remove_from_parent_p */ );
1898
1899 return delcount;
1900}
1901
1902/* Delete the variable object VAR and its children */
1903/* IMPORTANT NOTE: If we delete a variable which is a child
1904 and the parent is not removed we dump core. It must be always
1905 initially called with remove_from_parent_p set */
1906static void
72330bd6
AC
1907delete_variable_1 (struct cpstack **resultp, int *delcountp,
1908 struct varobj *var, int only_children_p,
1909 int remove_from_parent_p)
8b93c638 1910{
28335dcc 1911 int i;
8b93c638
JM
1912
1913 /* Delete any children of this variable, too. */
28335dcc
VP
1914 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1915 {
1916 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1917
214270ab
VP
1918 if (!child)
1919 continue;
8b93c638 1920 if (!remove_from_parent_p)
28335dcc
VP
1921 child->parent = NULL;
1922 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1923 }
28335dcc 1924 VEC_free (varobj_p, var->children);
8b93c638
JM
1925
1926 /* if we were called to delete only the children we are done here */
1927 if (only_children_p)
1928 return;
1929
1930 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1931 /* If the name is null, this is a temporary variable, that has not
1932 yet been installed, don't report it, it belongs to the caller... */
1933 if (var->obj_name != NULL)
8b93c638 1934 {
5b616ba1 1935 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1936 *delcountp = *delcountp + 1;
1937 }
1938
1939 /* If this variable has a parent, remove it from its parent's list */
1940 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1941 (as indicated by remove_from_parent_p) we don't bother doing an
1942 expensive list search to find the element to remove when we are
1943 discarding the list afterwards */
72330bd6 1944 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1945 {
28335dcc 1946 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1947 }
72330bd6 1948
73a93a32
JI
1949 if (var->obj_name != NULL)
1950 uninstall_variable (var);
8b93c638
JM
1951
1952 /* Free memory associated with this variable */
1953 free_variable (var);
1954}
1955
1956/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1957static int
fba45db2 1958install_variable (struct varobj *var)
8b93c638
JM
1959{
1960 struct vlist *cv;
1961 struct vlist *newvl;
1962 const char *chp;
1963 unsigned int index = 0;
1964 unsigned int i = 1;
1965
1966 for (chp = var->obj_name; *chp; chp++)
1967 {
1968 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1969 }
1970
1971 cv = *(varobj_table + index);
1972 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1973 cv = cv->next;
1974
1975 if (cv != NULL)
8a3fe4f8 1976 error (_("Duplicate variable object name"));
8b93c638
JM
1977
1978 /* Add varobj to hash table */
1979 newvl = xmalloc (sizeof (struct vlist));
1980 newvl->next = *(varobj_table + index);
1981 newvl->var = var;
1982 *(varobj_table + index) = newvl;
1983
1984 /* If root, add varobj to root list */
b2c2bd75 1985 if (is_root_p (var))
8b93c638
JM
1986 {
1987 /* Add to list of root variables */
1988 if (rootlist == NULL)
1989 var->root->next = NULL;
1990 else
1991 var->root->next = rootlist;
1992 rootlist = var->root;
8b93c638
JM
1993 }
1994
1995 return 1; /* OK */
1996}
1997
1998/* Unistall the object VAR. */
1999static void
fba45db2 2000uninstall_variable (struct varobj *var)
8b93c638
JM
2001{
2002 struct vlist *cv;
2003 struct vlist *prev;
2004 struct varobj_root *cr;
2005 struct varobj_root *prer;
2006 const char *chp;
2007 unsigned int index = 0;
2008 unsigned int i = 1;
2009
2010 /* Remove varobj from hash table */
2011 for (chp = var->obj_name; *chp; chp++)
2012 {
2013 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2014 }
2015
2016 cv = *(varobj_table + index);
2017 prev = NULL;
2018 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2019 {
2020 prev = cv;
2021 cv = cv->next;
2022 }
2023
2024 if (varobjdebug)
2025 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2026
2027 if (cv == NULL)
2028 {
72330bd6
AC
2029 warning
2030 ("Assertion failed: Could not find variable object \"%s\" to delete",
2031 var->obj_name);
8b93c638
JM
2032 return;
2033 }
2034
2035 if (prev == NULL)
2036 *(varobj_table + index) = cv->next;
2037 else
2038 prev->next = cv->next;
2039
b8c9b27d 2040 xfree (cv);
8b93c638
JM
2041
2042 /* If root, remove varobj from root list */
b2c2bd75 2043 if (is_root_p (var))
8b93c638
JM
2044 {
2045 /* Remove from list of root variables */
2046 if (rootlist == var->root)
2047 rootlist = var->root->next;
2048 else
2049 {
2050 prer = NULL;
2051 cr = rootlist;
2052 while ((cr != NULL) && (cr->rootvar != var))
2053 {
2054 prer = cr;
2055 cr = cr->next;
2056 }
2057 if (cr == NULL)
2058 {
72330bd6
AC
2059 warning
2060 ("Assertion failed: Could not find varobj \"%s\" in root list",
2061 var->obj_name);
8b93c638
JM
2062 return;
2063 }
2064 if (prer == NULL)
2065 rootlist = NULL;
2066 else
2067 prer->next = cr->next;
2068 }
8b93c638
JM
2069 }
2070
2071}
2072
8b93c638
JM
2073/* Create and install a child of the parent of the given name */
2074static struct varobj *
fba45db2 2075create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2076{
2077 return create_child_with_value (parent, index, name,
2078 value_of_child (parent, index));
2079}
2080
2081static struct varobj *
2082create_child_with_value (struct varobj *parent, int index, const char *name,
2083 struct value *value)
8b93c638
JM
2084{
2085 struct varobj *child;
2086 char *childs_name;
2087
2088 child = new_variable ();
2089
2090 /* name is allocated by name_of_child */
b6313243
TT
2091 /* FIXME: xstrdup should not be here. */
2092 child->name = xstrdup (name);
8b93c638 2093 child->index = index;
8b93c638
JM
2094 child->parent = parent;
2095 child->root = parent->root;
b435e160 2096 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2097 child->obj_name = childs_name;
2098 install_variable (child);
2099
acd65feb
VP
2100 /* Compute the type of the child. Must do this before
2101 calling install_new_value. */
2102 if (value != NULL)
2103 /* If the child had no evaluation errors, var->value
2104 will be non-NULL and contain a valid type. */
2105 child->type = value_type (value);
2106 else
2107 /* Otherwise, we must compute the type. */
2108 child->type = (*child->root->lang->type_of_child) (child->parent,
2109 child->index);
2110 install_new_value (child, value, 1);
2111
8b93c638
JM
2112 return child;
2113}
8b93c638
JM
2114\f
2115
2116/*
2117 * Miscellaneous utility functions.
2118 */
2119
2120/* Allocate memory and initialize a new variable */
2121static struct varobj *
2122new_variable (void)
2123{
2124 struct varobj *var;
2125
2126 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2127 var->name = NULL;
02142340 2128 var->path_expr = NULL;
8b93c638
JM
2129 var->obj_name = NULL;
2130 var->index = -1;
2131 var->type = NULL;
2132 var->value = NULL;
8b93c638
JM
2133 var->num_children = -1;
2134 var->parent = NULL;
2135 var->children = NULL;
2136 var->format = 0;
2137 var->root = NULL;
fb9b6b35 2138 var->updated = 0;
85265413 2139 var->print_value = NULL;
25d5ea92
VP
2140 var->frozen = 0;
2141 var->not_fetched = 0;
b6313243 2142 var->children_requested = 0;
0cc7d26f
TT
2143 var->from = -1;
2144 var->to = -1;
2145 var->constructor = 0;
b6313243 2146 var->pretty_printer = 0;
0cc7d26f
TT
2147 var->child_iter = 0;
2148 var->saved_item = 0;
8b93c638
JM
2149
2150 return var;
2151}
2152
2153/* Allocate memory and initialize a new root variable */
2154static struct varobj *
2155new_root_variable (void)
2156{
2157 struct varobj *var = new_variable ();
a109c7c1 2158
8b93c638
JM
2159 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2160 var->root->lang = NULL;
2161 var->root->exp = NULL;
2162 var->root->valid_block = NULL;
7a424e99 2163 var->root->frame = null_frame_id;
a5defcdc 2164 var->root->floating = 0;
8b93c638 2165 var->root->rootvar = NULL;
8756216b 2166 var->root->is_valid = 1;
8b93c638
JM
2167
2168 return var;
2169}
2170
2171/* Free any allocated memory associated with VAR. */
2172static void
fba45db2 2173free_variable (struct varobj *var)
8b93c638 2174{
d452c4bc
UW
2175#if HAVE_PYTHON
2176 if (var->pretty_printer)
2177 {
2178 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2179 Py_XDECREF (var->constructor);
2180 Py_XDECREF (var->pretty_printer);
2181 Py_XDECREF (var->child_iter);
2182 Py_XDECREF (var->saved_item);
d452c4bc
UW
2183 do_cleanups (cleanup);
2184 }
2185#endif
2186
36746093
JK
2187 value_free (var->value);
2188
8b93c638 2189 /* Free the expression if this is a root variable. */
b2c2bd75 2190 if (is_root_p (var))
8b93c638 2191 {
3038237c 2192 xfree (var->root->exp);
8038e1e2 2193 xfree (var->root);
8b93c638
JM
2194 }
2195
8038e1e2
AC
2196 xfree (var->name);
2197 xfree (var->obj_name);
85265413 2198 xfree (var->print_value);
02142340 2199 xfree (var->path_expr);
8038e1e2 2200 xfree (var);
8b93c638
JM
2201}
2202
74b7792f
AC
2203static void
2204do_free_variable_cleanup (void *var)
2205{
2206 free_variable (var);
2207}
2208
2209static struct cleanup *
2210make_cleanup_free_variable (struct varobj *var)
2211{
2212 return make_cleanup (do_free_variable_cleanup, var);
2213}
2214
6766a268
DJ
2215/* This returns the type of the variable. It also skips past typedefs
2216 to return the real type of the variable.
94b66fa7
KS
2217
2218 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2219 except within get_target_type and get_type. */
8b93c638 2220static struct type *
fba45db2 2221get_type (struct varobj *var)
8b93c638
JM
2222{
2223 struct type *type;
8b93c638 2224
a109c7c1 2225 type = var->type;
6766a268
DJ
2226 if (type != NULL)
2227 type = check_typedef (type);
8b93c638
JM
2228
2229 return type;
2230}
2231
6e2a9270
VP
2232/* Return the type of the value that's stored in VAR,
2233 or that would have being stored there if the
2234 value were accessible.
2235
2236 This differs from VAR->type in that VAR->type is always
2237 the true type of the expession in the source language.
2238 The return value of this function is the type we're
2239 actually storing in varobj, and using for displaying
2240 the values and for comparing previous and new values.
2241
2242 For example, top-level references are always stripped. */
2243static struct type *
2244get_value_type (struct varobj *var)
2245{
2246 struct type *type;
2247
2248 if (var->value)
2249 type = value_type (var->value);
2250 else
2251 type = var->type;
2252
2253 type = check_typedef (type);
2254
2255 if (TYPE_CODE (type) == TYPE_CODE_REF)
2256 type = get_target_type (type);
2257
2258 type = check_typedef (type);
2259
2260 return type;
2261}
2262
8b93c638 2263/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2264 past typedefs, just like get_type ().
2265
2266 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2267 except within get_target_type and get_type. */
8b93c638 2268static struct type *
fba45db2 2269get_target_type (struct type *type)
8b93c638
JM
2270{
2271 if (type != NULL)
2272 {
2273 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2274 if (type != NULL)
2275 type = check_typedef (type);
8b93c638
JM
2276 }
2277
2278 return type;
2279}
2280
2281/* What is the default display for this variable? We assume that
2282 everything is "natural". Any exceptions? */
2283static enum varobj_display_formats
fba45db2 2284variable_default_display (struct varobj *var)
8b93c638
JM
2285{
2286 return FORMAT_NATURAL;
2287}
2288
8b93c638
JM
2289/* FIXME: The following should be generic for any pointer */
2290static void
fba45db2 2291cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2292{
2293 struct cpstack *s;
2294
2295 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2296 s->name = name;
2297 s->next = *pstack;
2298 *pstack = s;
2299}
2300
2301/* FIXME: The following should be generic for any pointer */
2302static char *
fba45db2 2303cppop (struct cpstack **pstack)
8b93c638
JM
2304{
2305 struct cpstack *s;
2306 char *v;
2307
2308 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2309 return NULL;
2310
2311 s = *pstack;
2312 v = s->name;
2313 *pstack = (*pstack)->next;
b8c9b27d 2314 xfree (s);
8b93c638
JM
2315
2316 return v;
2317}
2318\f
2319/*
2320 * Language-dependencies
2321 */
2322
2323/* Common entry points */
2324
2325/* Get the language of variable VAR. */
2326static enum varobj_languages
fba45db2 2327variable_language (struct varobj *var)
8b93c638
JM
2328{
2329 enum varobj_languages lang;
2330
2331 switch (var->root->exp->language_defn->la_language)
2332 {
2333 default:
2334 case language_c:
2335 lang = vlang_c;
2336 break;
2337 case language_cplus:
2338 lang = vlang_cplus;
2339 break;
2340 case language_java:
2341 lang = vlang_java;
2342 break;
2343 }
2344
2345 return lang;
2346}
2347
2348/* Return the number of children for a given variable.
2349 The result of this function is defined by the language
2350 implementation. The number of children returned by this function
2351 is the number of children that the user will see in the variable
2352 display. */
2353static int
fba45db2 2354number_of_children (struct varobj *var)
8b93c638
JM
2355{
2356 return (*var->root->lang->number_of_children) (var);;
2357}
2358
2359/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2360static char *
fba45db2 2361name_of_variable (struct varobj *var)
8b93c638
JM
2362{
2363 return (*var->root->lang->name_of_variable) (var);
2364}
2365
2366/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2367static char *
fba45db2 2368name_of_child (struct varobj *var, int index)
8b93c638
JM
2369{
2370 return (*var->root->lang->name_of_child) (var, index);
2371}
2372
a5defcdc
VP
2373/* What is the ``struct value *'' of the root variable VAR?
2374 For floating variable object, evaluation can get us a value
2375 of different type from what is stored in varobj already. In
2376 that case:
2377 - *type_changed will be set to 1
2378 - old varobj will be freed, and new one will be
2379 created, with the same name.
2380 - *var_handle will be set to the new varobj
2381 Otherwise, *type_changed will be set to 0. */
30b28db1 2382static struct value *
fba45db2 2383value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2384{
73a93a32
JI
2385 struct varobj *var;
2386
2387 if (var_handle == NULL)
2388 return NULL;
2389
2390 var = *var_handle;
2391
2392 /* This should really be an exception, since this should
2393 only get called with a root variable. */
2394
b2c2bd75 2395 if (!is_root_p (var))
73a93a32
JI
2396 return NULL;
2397
a5defcdc 2398 if (var->root->floating)
73a93a32
JI
2399 {
2400 struct varobj *tmp_var;
2401 char *old_type, *new_type;
6225abfa 2402
73a93a32
JI
2403 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2404 USE_SELECTED_FRAME);
2405 if (tmp_var == NULL)
2406 {
2407 return NULL;
2408 }
6225abfa 2409 old_type = varobj_get_type (var);
73a93a32 2410 new_type = varobj_get_type (tmp_var);
72330bd6 2411 if (strcmp (old_type, new_type) == 0)
73a93a32 2412 {
fcacd99f
VP
2413 /* The expression presently stored inside var->root->exp
2414 remembers the locations of local variables relatively to
2415 the frame where the expression was created (in DWARF location
2416 button, for example). Naturally, those locations are not
2417 correct in other frames, so update the expression. */
2418
2419 struct expression *tmp_exp = var->root->exp;
a109c7c1 2420
fcacd99f
VP
2421 var->root->exp = tmp_var->root->exp;
2422 tmp_var->root->exp = tmp_exp;
2423
73a93a32
JI
2424 varobj_delete (tmp_var, NULL, 0);
2425 *type_changed = 0;
2426 }
2427 else
2428 {
1b36a34b 2429 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2430 tmp_var->from = var->from;
2431 tmp_var->to = var->to;
a5defcdc
VP
2432 varobj_delete (var, NULL, 0);
2433
73a93a32
JI
2434 install_variable (tmp_var);
2435 *var_handle = tmp_var;
705da579 2436 var = *var_handle;
73a93a32
JI
2437 *type_changed = 1;
2438 }
74dddad3
MS
2439 xfree (old_type);
2440 xfree (new_type);
73a93a32
JI
2441 }
2442 else
2443 {
2444 *type_changed = 0;
2445 }
2446
2447 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2448}
2449
30b28db1
AC
2450/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2451static struct value *
fba45db2 2452value_of_child (struct varobj *parent, int index)
8b93c638 2453{
30b28db1 2454 struct value *value;
8b93c638
JM
2455
2456 value = (*parent->root->lang->value_of_child) (parent, index);
2457
8b93c638
JM
2458 return value;
2459}
2460
8b93c638
JM
2461/* GDB already has a command called "value_of_variable". Sigh. */
2462static char *
de051565 2463my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2464{
8756216b 2465 if (var->root->is_valid)
0cc7d26f
TT
2466 {
2467 if (var->pretty_printer)
2468 return value_get_print_value (var->value, var->format, var);
2469 return (*var->root->lang->value_of_variable) (var, format);
2470 }
8756216b
DP
2471 else
2472 return NULL;
8b93c638
JM
2473}
2474
85265413 2475static char *
b6313243 2476value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2477 struct varobj *var)
85265413 2478{
57e66780 2479 struct ui_file *stb;
621c8364 2480 struct cleanup *old_chain;
fbb8f299 2481 gdb_byte *thevalue = NULL;
79a45b7d 2482 struct value_print_options opts;
be759fcf
PM
2483 struct type *type = NULL;
2484 long len = 0;
2485 char *encoding = NULL;
2486 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2487 /* Initialize it just to avoid a GCC false warning. */
2488 CORE_ADDR str_addr = 0;
09ca9e2e 2489 int string_print = 0;
57e66780
DJ
2490
2491 if (value == NULL)
2492 return NULL;
2493
621c8364
TT
2494 stb = mem_fileopen ();
2495 old_chain = make_cleanup_ui_file_delete (stb);
2496
be759fcf 2497 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2498#if HAVE_PYTHON
2499 {
d452c4bc
UW
2500 PyObject *value_formatter = var->pretty_printer;
2501
09ca9e2e
TT
2502 varobj_ensure_python_env (var);
2503
0cc7d26f 2504 if (value_formatter)
b6313243 2505 {
0cc7d26f
TT
2506 /* First check to see if we have any children at all. If so,
2507 we simply return {...}. */
2508 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2509 {
2510 do_cleanups (old_chain);
2511 return xstrdup ("{...}");
2512 }
b6313243 2513
0cc7d26f 2514 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2515 {
0cc7d26f
TT
2516 char *hint;
2517 struct value *replacement;
0cc7d26f
TT
2518 PyObject *output = NULL;
2519
2520 hint = gdbpy_get_display_hint (value_formatter);
2521 if (hint)
2522 {
2523 if (!strcmp (hint, "string"))
2524 string_print = 1;
2525 xfree (hint);
2526 }
b6313243 2527
0cc7d26f 2528 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2529 &replacement,
2530 stb);
0cc7d26f
TT
2531 if (output)
2532 {
09ca9e2e
TT
2533 make_cleanup_py_decref (output);
2534
be759fcf 2535 if (gdbpy_is_lazy_string (output))
0cc7d26f 2536 {
09ca9e2e
TT
2537 gdbpy_extract_lazy_string (output, &str_addr, &type,
2538 &len, &encoding);
2539 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2540 string_print = 1;
2541 }
2542 else
2543 {
2544 PyObject *py_str
2545 = python_string_to_target_python_string (output);
a109c7c1 2546
be759fcf
PM
2547 if (py_str)
2548 {
2549 char *s = PyString_AsString (py_str);
a109c7c1 2550
be759fcf
PM
2551 len = PyString_Size (py_str);
2552 thevalue = xmemdup (s, len + 1, len + 1);
2553 type = builtin_type (gdbarch)->builtin_char;
2554 Py_DECREF (py_str);
09ca9e2e
TT
2555
2556 if (!string_print)
2557 {
2558 do_cleanups (old_chain);
2559 return thevalue;
2560 }
2561
2562 make_cleanup (xfree, thevalue);
be759fcf 2563 }
8dc78533
JK
2564 else
2565 gdbpy_print_stack ();
0cc7d26f 2566 }
0cc7d26f
TT
2567 }
2568 if (replacement)
2569 value = replacement;
b6313243 2570 }
b6313243 2571 }
b6313243
TT
2572 }
2573#endif
2574
79a45b7d
TT
2575 get_formatted_print_options (&opts, format_code[(int) format]);
2576 opts.deref_ref = 0;
b6313243
TT
2577 opts.raw = 1;
2578 if (thevalue)
09ca9e2e
TT
2579 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2580 else if (string_print)
2581 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243
TT
2582 else
2583 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2584 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2585
85265413
NR
2586 do_cleanups (old_chain);
2587 return thevalue;
2588}
2589
340a7723
NR
2590int
2591varobj_editable_p (struct varobj *var)
2592{
2593 struct type *type;
340a7723
NR
2594
2595 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2596 return 0;
2597
2598 type = get_value_type (var);
2599
2600 switch (TYPE_CODE (type))
2601 {
2602 case TYPE_CODE_STRUCT:
2603 case TYPE_CODE_UNION:
2604 case TYPE_CODE_ARRAY:
2605 case TYPE_CODE_FUNC:
2606 case TYPE_CODE_METHOD:
2607 return 0;
2608 break;
2609
2610 default:
2611 return 1;
2612 break;
2613 }
2614}
2615
acd65feb
VP
2616/* Return non-zero if changes in value of VAR
2617 must be detected and reported by -var-update.
2618 Return zero is -var-update should never report
2619 changes of such values. This makes sense for structures
2620 (since the changes in children values will be reported separately),
2621 or for artifical objects (like 'public' pseudo-field in C++).
2622
2623 Return value of 0 means that gdb need not call value_fetch_lazy
2624 for the value of this variable object. */
8b93c638 2625static int
b2c2bd75 2626varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2627{
2628 int r;
2629 struct type *type;
2630
2631 if (CPLUS_FAKE_CHILD (var))
2632 return 0;
2633
6e2a9270 2634 type = get_value_type (var);
8b93c638
JM
2635
2636 switch (TYPE_CODE (type))
2637 {
72330bd6
AC
2638 case TYPE_CODE_STRUCT:
2639 case TYPE_CODE_UNION:
2640 case TYPE_CODE_ARRAY:
2641 r = 0;
2642 break;
8b93c638 2643
72330bd6
AC
2644 default:
2645 r = 1;
8b93c638
JM
2646 }
2647
2648 return r;
2649}
2650
5a413362
VP
2651/* Return 1 if that varobj is floating, that is is always evaluated in the
2652 selected frame, and not bound to thread/frame. Such variable objects
2653 are created using '@' as frame specifier to -var-create. */
2654int
2655varobj_floating_p (struct varobj *var)
2656{
2657 return var->root->floating;
2658}
2659
2024f65a
VP
2660/* Given the value and the type of a variable object,
2661 adjust the value and type to those necessary
2662 for getting children of the variable object.
2663 This includes dereferencing top-level references
2664 to all types and dereferencing pointers to
2665 structures.
2666
2667 Both TYPE and *TYPE should be non-null. VALUE
2668 can be null if we want to only translate type.
2669 *VALUE can be null as well -- if the parent
02142340
VP
2670 value is not known.
2671
2672 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2673 depending on whether pointer was dereferenced
02142340 2674 in this function. */
2024f65a
VP
2675static void
2676adjust_value_for_child_access (struct value **value,
02142340
VP
2677 struct type **type,
2678 int *was_ptr)
2024f65a
VP
2679{
2680 gdb_assert (type && *type);
2681
02142340
VP
2682 if (was_ptr)
2683 *was_ptr = 0;
2684
2024f65a
VP
2685 *type = check_typedef (*type);
2686
2687 /* The type of value stored in varobj, that is passed
2688 to us, is already supposed to be
2689 reference-stripped. */
2690
2691 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2692
2693 /* Pointers to structures are treated just like
2694 structures when accessing children. Don't
2695 dererences pointers to other types. */
2696 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2697 {
2698 struct type *target_type = get_target_type (*type);
2699 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2700 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2701 {
2702 if (value && *value)
3f4178d6 2703 {
a109c7c1
MS
2704 int success = gdb_value_ind (*value, value);
2705
3f4178d6
DJ
2706 if (!success)
2707 *value = NULL;
2708 }
2024f65a 2709 *type = target_type;
02142340
VP
2710 if (was_ptr)
2711 *was_ptr = 1;
2024f65a
VP
2712 }
2713 }
2714
2715 /* The 'get_target_type' function calls check_typedef on
2716 result, so we can immediately check type code. No
2717 need to call check_typedef here. */
2718}
2719
8b93c638
JM
2720/* C */
2721static int
fba45db2 2722c_number_of_children (struct varobj *var)
8b93c638 2723{
2024f65a
VP
2724 struct type *type = get_value_type (var);
2725 int children = 0;
8b93c638 2726 struct type *target;
8b93c638 2727
02142340 2728 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2729 target = get_target_type (type);
8b93c638
JM
2730
2731 switch (TYPE_CODE (type))
2732 {
2733 case TYPE_CODE_ARRAY:
2734 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2735 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2736 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2737 else
74a44383
DJ
2738 /* If we don't know how many elements there are, don't display
2739 any. */
2740 children = 0;
8b93c638
JM
2741 break;
2742
2743 case TYPE_CODE_STRUCT:
2744 case TYPE_CODE_UNION:
2745 children = TYPE_NFIELDS (type);
2746 break;
2747
2748 case TYPE_CODE_PTR:
2024f65a
VP
2749 /* The type here is a pointer to non-struct. Typically, pointers
2750 have one child, except for function ptrs, which have no children,
2751 and except for void*, as we don't know what to show.
2752
0755e6c1
FN
2753 We can show char* so we allow it to be dereferenced. If you decide
2754 to test for it, please mind that a little magic is necessary to
2755 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2756 TYPE_NAME == "char" */
2024f65a
VP
2757 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2758 || TYPE_CODE (target) == TYPE_CODE_VOID)
2759 children = 0;
2760 else
2761 children = 1;
8b93c638
JM
2762 break;
2763
2764 default:
2765 /* Other types have no children */
2766 break;
2767 }
2768
2769 return children;
2770}
2771
2772static char *
fba45db2 2773c_name_of_variable (struct varobj *parent)
8b93c638 2774{
1b36a34b 2775 return xstrdup (parent->name);
8b93c638
JM
2776}
2777
bbec2603
VP
2778/* Return the value of element TYPE_INDEX of a structure
2779 value VALUE. VALUE's type should be a structure,
2780 or union, or a typedef to struct/union.
2781
2782 Returns NULL if getting the value fails. Never throws. */
2783static struct value *
2784value_struct_element_index (struct value *value, int type_index)
8b93c638 2785{
bbec2603
VP
2786 struct value *result = NULL;
2787 volatile struct gdb_exception e;
bbec2603 2788 struct type *type = value_type (value);
a109c7c1 2789
bbec2603
VP
2790 type = check_typedef (type);
2791
2792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2793 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2794
bbec2603
VP
2795 TRY_CATCH (e, RETURN_MASK_ERROR)
2796 {
d6a843b5 2797 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2798 result = value_static_field (type, type_index);
2799 else
2800 result = value_primitive_field (value, 0, type_index, type);
2801 }
2802 if (e.reason < 0)
2803 {
2804 return NULL;
2805 }
2806 else
2807 {
2808 return result;
2809 }
2810}
2811
2812/* Obtain the information about child INDEX of the variable
2813 object PARENT.
2814 If CNAME is not null, sets *CNAME to the name of the child relative
2815 to the parent.
2816 If CVALUE is not null, sets *CVALUE to the value of the child.
2817 If CTYPE is not null, sets *CTYPE to the type of the child.
2818
2819 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2820 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2821 to NULL. */
2822static void
2823c_describe_child (struct varobj *parent, int index,
02142340
VP
2824 char **cname, struct value **cvalue, struct type **ctype,
2825 char **cfull_expression)
bbec2603
VP
2826{
2827 struct value *value = parent->value;
2024f65a 2828 struct type *type = get_value_type (parent);
02142340
VP
2829 char *parent_expression = NULL;
2830 int was_ptr;
bbec2603
VP
2831
2832 if (cname)
2833 *cname = NULL;
2834 if (cvalue)
2835 *cvalue = NULL;
2836 if (ctype)
2837 *ctype = NULL;
02142340
VP
2838 if (cfull_expression)
2839 {
2840 *cfull_expression = NULL;
2841 parent_expression = varobj_get_path_expr (parent);
2842 }
2843 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2844
8b93c638
JM
2845 switch (TYPE_CODE (type))
2846 {
2847 case TYPE_CODE_ARRAY:
bbec2603 2848 if (cname)
43bbcdc2
PH
2849 *cname = xstrdup (int_string (index
2850 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2851 10, 1, 0, 0));
bbec2603
VP
2852
2853 if (cvalue && value)
2854 {
2855 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2856
2497b498 2857 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2858 }
2859
2860 if (ctype)
2861 *ctype = get_target_type (type);
2862
02142340 2863 if (cfull_expression)
43bbcdc2
PH
2864 *cfull_expression =
2865 xstrprintf ("(%s)[%s]", parent_expression,
2866 int_string (index
2867 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2868 10, 1, 0, 0));
02142340
VP
2869
2870
8b93c638
JM
2871 break;
2872
2873 case TYPE_CODE_STRUCT:
2874 case TYPE_CODE_UNION:
bbec2603 2875 if (cname)
1b36a34b 2876 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2877
2878 if (cvalue && value)
2879 {
2880 /* For C, varobj index is the same as type index. */
2881 *cvalue = value_struct_element_index (value, index);
2882 }
2883
2884 if (ctype)
2885 *ctype = TYPE_FIELD_TYPE (type, index);
2886
02142340
VP
2887 if (cfull_expression)
2888 {
2889 char *join = was_ptr ? "->" : ".";
a109c7c1 2890
02142340
VP
2891 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2892 TYPE_FIELD_NAME (type, index));
2893 }
2894
8b93c638
JM
2895 break;
2896
2897 case TYPE_CODE_PTR:
bbec2603
VP
2898 if (cname)
2899 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2900
bbec2603 2901 if (cvalue && value)
3f4178d6
DJ
2902 {
2903 int success = gdb_value_ind (value, cvalue);
a109c7c1 2904
3f4178d6
DJ
2905 if (!success)
2906 *cvalue = NULL;
2907 }
bbec2603 2908
2024f65a
VP
2909 /* Don't use get_target_type because it calls
2910 check_typedef and here, we want to show the true
2911 declared type of the variable. */
bbec2603 2912 if (ctype)
2024f65a 2913 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2914
2915 if (cfull_expression)
2916 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2917
8b93c638
JM
2918 break;
2919
2920 default:
2921 /* This should not happen */
bbec2603
VP
2922 if (cname)
2923 *cname = xstrdup ("???");
02142340
VP
2924 if (cfull_expression)
2925 *cfull_expression = xstrdup ("???");
bbec2603 2926 /* Don't set value and type, we don't know then. */
8b93c638 2927 }
bbec2603 2928}
8b93c638 2929
bbec2603
VP
2930static char *
2931c_name_of_child (struct varobj *parent, int index)
2932{
2933 char *name;
a109c7c1 2934
02142340 2935 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2936 return name;
2937}
2938
02142340
VP
2939static char *
2940c_path_expr_of_child (struct varobj *child)
2941{
2942 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2943 &child->path_expr);
2944 return child->path_expr;
2945}
2946
c5b48eac
VP
2947/* If frame associated with VAR can be found, switch
2948 to it and return 1. Otherwise, return 0. */
2949static int
2950check_scope (struct varobj *var)
2951{
2952 struct frame_info *fi;
2953 int scope;
2954
2955 fi = frame_find_by_id (var->root->frame);
2956 scope = fi != NULL;
2957
2958 if (fi)
2959 {
2960 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 2961
c5b48eac
VP
2962 if (pc < BLOCK_START (var->root->valid_block) ||
2963 pc >= BLOCK_END (var->root->valid_block))
2964 scope = 0;
2965 else
2966 select_frame (fi);
2967 }
2968 return scope;
2969}
2970
30b28db1 2971static struct value *
fba45db2 2972c_value_of_root (struct varobj **var_handle)
8b93c638 2973{
5e572bb4 2974 struct value *new_val = NULL;
73a93a32 2975 struct varobj *var = *var_handle;
c5b48eac 2976 int within_scope = 0;
6208b47d
VP
2977 struct cleanup *back_to;
2978
73a93a32 2979 /* Only root variables can be updated... */
b2c2bd75 2980 if (!is_root_p (var))
73a93a32
JI
2981 /* Not a root var */
2982 return NULL;
2983
4f8d22e3 2984 back_to = make_cleanup_restore_current_thread ();
72330bd6 2985
8b93c638 2986 /* Determine whether the variable is still around. */
a5defcdc 2987 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2988 within_scope = 1;
c5b48eac
VP
2989 else if (var->root->thread_id == 0)
2990 {
2991 /* The program was single-threaded when the variable object was
2992 created. Technically, it's possible that the program became
2993 multi-threaded since then, but we don't support such
2994 scenario yet. */
2995 within_scope = check_scope (var);
2996 }
8b93c638
JM
2997 else
2998 {
c5b48eac
VP
2999 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3000 if (in_thread_list (ptid))
d2353924 3001 {
c5b48eac
VP
3002 switch_to_thread (ptid);
3003 within_scope = check_scope (var);
3004 }
8b93c638 3005 }
72330bd6 3006
8b93c638
JM
3007 if (within_scope)
3008 {
73a93a32 3009 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3010 expression fails we want to just return NULL. */
3011 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3012 return new_val;
3013 }
3014
6208b47d
VP
3015 do_cleanups (back_to);
3016
8b93c638
JM
3017 return NULL;
3018}
3019
30b28db1 3020static struct value *
fba45db2 3021c_value_of_child (struct varobj *parent, int index)
8b93c638 3022{
bbec2603 3023 struct value *value = NULL;
8b93c638 3024
a109c7c1 3025 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3026 return value;
3027}
3028
3029static struct type *
fba45db2 3030c_type_of_child (struct varobj *parent, int index)
8b93c638 3031{
bbec2603 3032 struct type *type = NULL;
a109c7c1 3033
02142340 3034 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3035 return type;
3036}
3037
8b93c638 3038static char *
de051565 3039c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3040{
14b3d9c9
JB
3041 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3042 it will print out its children instead of "{...}". So we need to
3043 catch that case explicitly. */
3044 struct type *type = get_type (var);
e64d9b3d 3045
b6313243
TT
3046 /* If we have a custom formatter, return whatever string it has
3047 produced. */
3048 if (var->pretty_printer && var->print_value)
3049 return xstrdup (var->print_value);
3050
14b3d9c9
JB
3051 /* Strip top-level references. */
3052 while (TYPE_CODE (type) == TYPE_CODE_REF)
3053 type = check_typedef (TYPE_TARGET_TYPE (type));
3054
3055 switch (TYPE_CODE (type))
8b93c638
JM
3056 {
3057 case TYPE_CODE_STRUCT:
3058 case TYPE_CODE_UNION:
3059 return xstrdup ("{...}");
3060 /* break; */
3061
3062 case TYPE_CODE_ARRAY:
3063 {
e64d9b3d 3064 char *number;
a109c7c1 3065
b435e160 3066 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3067 return (number);
8b93c638
JM
3068 }
3069 /* break; */
3070
3071 default:
3072 {
575bbeb6
KS
3073 if (var->value == NULL)
3074 {
3075 /* This can happen if we attempt to get the value of a struct
3076 member when the parent is an invalid pointer. This is an
3077 error condition, so we should tell the caller. */
3078 return NULL;
3079 }
3080 else
3081 {
25d5ea92
VP
3082 if (var->not_fetched && value_lazy (var->value))
3083 /* Frozen variable and no value yet. We don't
3084 implicitly fetch the value. MI response will
3085 use empty string for the value, which is OK. */
3086 return NULL;
3087
b2c2bd75 3088 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3089 gdb_assert (!value_lazy (var->value));
de051565
MK
3090
3091 /* If the specified format is the current one,
3092 we can reuse print_value */
3093 if (format == var->format)
3094 return xstrdup (var->print_value);
3095 else
d452c4bc 3096 return value_get_print_value (var->value, format, var);
85265413 3097 }
e64d9b3d 3098 }
8b93c638
JM
3099 }
3100}
3101\f
3102
3103/* C++ */
3104
3105static int
fba45db2 3106cplus_number_of_children (struct varobj *var)
8b93c638
JM
3107{
3108 struct type *type;
3109 int children, dont_know;
3110
3111 dont_know = 1;
3112 children = 0;
3113
3114 if (!CPLUS_FAKE_CHILD (var))
3115 {
2024f65a 3116 type = get_value_type (var);
02142340 3117 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3118
3119 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3120 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3121 {
3122 int kids[3];
3123
3124 cplus_class_num_children (type, kids);
3125 if (kids[v_public] != 0)
3126 children++;
3127 if (kids[v_private] != 0)
3128 children++;
3129 if (kids[v_protected] != 0)
3130 children++;
3131
3132 /* Add any baseclasses */
3133 children += TYPE_N_BASECLASSES (type);
3134 dont_know = 0;
3135
3136 /* FIXME: save children in var */
3137 }
3138 }
3139 else
3140 {
3141 int kids[3];
3142
2024f65a 3143 type = get_value_type (var->parent);
02142340 3144 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3145
3146 cplus_class_num_children (type, kids);
6e382aa3 3147 if (strcmp (var->name, "public") == 0)
8b93c638 3148 children = kids[v_public];
6e382aa3 3149 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3150 children = kids[v_private];
3151 else
3152 children = kids[v_protected];
3153 dont_know = 0;
3154 }
3155
3156 if (dont_know)
3157 children = c_number_of_children (var);
3158
3159 return children;
3160}
3161
3162/* Compute # of public, private, and protected variables in this class.
3163 That means we need to descend into all baseclasses and find out
3164 how many are there, too. */
3165static void
1669605f 3166cplus_class_num_children (struct type *type, int children[3])
8b93c638 3167{
d48cc9dd
DJ
3168 int i, vptr_fieldno;
3169 struct type *basetype = NULL;
8b93c638
JM
3170
3171 children[v_public] = 0;
3172 children[v_private] = 0;
3173 children[v_protected] = 0;
3174
d48cc9dd 3175 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3176 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3177 {
d48cc9dd
DJ
3178 /* If we have a virtual table pointer, omit it. Even if virtual
3179 table pointers are not specifically marked in the debug info,
3180 they should be artificial. */
3181 if ((type == basetype && i == vptr_fieldno)
3182 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3183 continue;
3184
3185 if (TYPE_FIELD_PROTECTED (type, i))
3186 children[v_protected]++;
3187 else if (TYPE_FIELD_PRIVATE (type, i))
3188 children[v_private]++;
3189 else
3190 children[v_public]++;
3191 }
3192}
3193
3194static char *
fba45db2 3195cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3196{
3197 return c_name_of_variable (parent);
3198}
3199
2024f65a
VP
3200enum accessibility { private_field, protected_field, public_field };
3201
3202/* Check if field INDEX of TYPE has the specified accessibility.
3203 Return 0 if so and 1 otherwise. */
3204static int
3205match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3206{
2024f65a
VP
3207 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3208 return 1;
3209 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3210 return 1;
3211 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3212 && !TYPE_FIELD_PROTECTED (type, index))
3213 return 1;
3214 else
3215 return 0;
3216}
3217
3218static void
3219cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3220 char **cname, struct value **cvalue, struct type **ctype,
3221 char **cfull_expression)
2024f65a 3222{
2024f65a 3223 struct value *value;
8b93c638 3224 struct type *type;
02142340
VP
3225 int was_ptr;
3226 char *parent_expression = NULL;
8b93c638 3227
2024f65a
VP
3228 if (cname)
3229 *cname = NULL;
3230 if (cvalue)
3231 *cvalue = NULL;
3232 if (ctype)
3233 *ctype = NULL;
02142340
VP
3234 if (cfull_expression)
3235 *cfull_expression = NULL;
2024f65a 3236
8b93c638
JM
3237 if (CPLUS_FAKE_CHILD (parent))
3238 {
2024f65a
VP
3239 value = parent->parent->value;
3240 type = get_value_type (parent->parent);
02142340
VP
3241 if (cfull_expression)
3242 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3243 }
3244 else
2024f65a
VP
3245 {
3246 value = parent->value;
3247 type = get_value_type (parent);
02142340
VP
3248 if (cfull_expression)
3249 parent_expression = varobj_get_path_expr (parent);
2024f65a 3250 }
8b93c638 3251
02142340 3252 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3253
3254 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3255 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3256 {
02142340 3257 char *join = was_ptr ? "->" : ".";
a109c7c1 3258
8b93c638
JM
3259 if (CPLUS_FAKE_CHILD (parent))
3260 {
6e382aa3
JJ
3261 /* The fields of the class type are ordered as they
3262 appear in the class. We are given an index for a
3263 particular access control type ("public","protected",
3264 or "private"). We must skip over fields that don't
3265 have the access control we are looking for to properly
3266 find the indexed field. */
3267 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3268 enum accessibility acc = public_field;
d48cc9dd
DJ
3269 int vptr_fieldno;
3270 struct type *basetype = NULL;
3271
3272 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3273 if (strcmp (parent->name, "private") == 0)
2024f65a 3274 acc = private_field;
6e382aa3 3275 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3276 acc = protected_field;
3277
3278 while (index >= 0)
6e382aa3 3279 {
d48cc9dd
DJ
3280 if ((type == basetype && type_index == vptr_fieldno)
3281 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3282 ; /* ignore vptr */
3283 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3284 --index;
3285 ++type_index;
6e382aa3 3286 }
2024f65a
VP
3287 --type_index;
3288
3289 if (cname)
3290 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3291
3292 if (cvalue && value)
3293 *cvalue = value_struct_element_index (value, type_index);
3294
3295 if (ctype)
3296 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3297
3298 if (cfull_expression)
3299 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3300 join,
3301 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3302 }
3303 else if (index < TYPE_N_BASECLASSES (type))
3304 {
3305 /* This is a baseclass. */
3306 if (cname)
3307 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3308
3309 if (cvalue && value)
0cc7d26f 3310 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3311
2024f65a
VP
3312 if (ctype)
3313 {
3314 *ctype = TYPE_FIELD_TYPE (type, index);
3315 }
02142340
VP
3316
3317 if (cfull_expression)
3318 {
3319 char *ptr = was_ptr ? "*" : "";
a109c7c1 3320
02142340
VP
3321 /* Cast the parent to the base' type. Note that in gdb,
3322 expression like
3323 (Base1)d
3324 will create an lvalue, for all appearences, so we don't
3325 need to use more fancy:
3326 *(Base1*)(&d)
3327 construct. */
3328 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3329 ptr,
3330 TYPE_FIELD_NAME (type, index),
3331 ptr,
3332 parent_expression);
3333 }
8b93c638 3334 }
8b93c638
JM
3335 else
3336 {
348144ba 3337 char *access = NULL;
6e382aa3 3338 int children[3];
a109c7c1 3339
2024f65a 3340 cplus_class_num_children (type, children);
6e382aa3 3341
8b93c638 3342 /* Everything beyond the baseclasses can
6e382aa3
JJ
3343 only be "public", "private", or "protected"
3344
3345 The special "fake" children are always output by varobj in
3346 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3347 index -= TYPE_N_BASECLASSES (type);
3348 switch (index)
3349 {
3350 case 0:
6e382aa3 3351 if (children[v_public] > 0)
2024f65a 3352 access = "public";
6e382aa3 3353 else if (children[v_private] > 0)
2024f65a 3354 access = "private";
6e382aa3 3355 else
2024f65a 3356 access = "protected";
6e382aa3 3357 break;
8b93c638 3358 case 1:
6e382aa3 3359 if (children[v_public] > 0)
8b93c638 3360 {
6e382aa3 3361 if (children[v_private] > 0)
2024f65a 3362 access = "private";
6e382aa3 3363 else
2024f65a 3364 access = "protected";
8b93c638 3365 }
6e382aa3 3366 else if (children[v_private] > 0)
2024f65a 3367 access = "protected";
6e382aa3 3368 break;
8b93c638 3369 case 2:
6e382aa3 3370 /* Must be protected */
2024f65a 3371 access = "protected";
6e382aa3 3372 break;
8b93c638
JM
3373 default:
3374 /* error! */
3375 break;
3376 }
348144ba
MS
3377
3378 gdb_assert (access);
2024f65a
VP
3379 if (cname)
3380 *cname = xstrdup (access);
8b93c638 3381
02142340 3382 /* Value and type and full expression are null here. */
2024f65a 3383 }
8b93c638 3384 }
8b93c638
JM
3385 else
3386 {
02142340 3387 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3388 }
3389}
8b93c638 3390
2024f65a
VP
3391static char *
3392cplus_name_of_child (struct varobj *parent, int index)
3393{
3394 char *name = NULL;
a109c7c1 3395
02142340 3396 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3397 return name;
3398}
3399
02142340
VP
3400static char *
3401cplus_path_expr_of_child (struct varobj *child)
3402{
3403 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3404 &child->path_expr);
3405 return child->path_expr;
3406}
3407
30b28db1 3408static struct value *
fba45db2 3409cplus_value_of_root (struct varobj **var_handle)
8b93c638 3410{
73a93a32 3411 return c_value_of_root (var_handle);
8b93c638
JM
3412}
3413
30b28db1 3414static struct value *
fba45db2 3415cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3416{
2024f65a 3417 struct value *value = NULL;
a109c7c1 3418
02142340 3419 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3420 return value;
3421}
3422
3423static struct type *
fba45db2 3424cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3425{
2024f65a 3426 struct type *type = NULL;
a109c7c1 3427
02142340 3428 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3429 return type;
3430}
3431
8b93c638 3432static char *
a109c7c1
MS
3433cplus_value_of_variable (struct varobj *var,
3434 enum varobj_display_formats format)
8b93c638
JM
3435{
3436
3437 /* If we have one of our special types, don't print out
3438 any value. */
3439 if (CPLUS_FAKE_CHILD (var))
3440 return xstrdup ("");
3441
de051565 3442 return c_value_of_variable (var, format);
8b93c638
JM
3443}
3444\f
3445/* Java */
3446
3447static int
fba45db2 3448java_number_of_children (struct varobj *var)
8b93c638
JM
3449{
3450 return cplus_number_of_children (var);
3451}
3452
3453static char *
fba45db2 3454java_name_of_variable (struct varobj *parent)
8b93c638
JM
3455{
3456 char *p, *name;
3457
3458 name = cplus_name_of_variable (parent);
3459 /* If the name has "-" in it, it is because we
3460 needed to escape periods in the name... */
3461 p = name;
3462
3463 while (*p != '\000')
3464 {
3465 if (*p == '-')
3466 *p = '.';
3467 p++;
3468 }
3469
3470 return name;
3471}
3472
3473static char *
fba45db2 3474java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3475{
3476 char *name, *p;
3477
3478 name = cplus_name_of_child (parent, index);
3479 /* Escape any periods in the name... */
3480 p = name;
3481
3482 while (*p != '\000')
3483 {
3484 if (*p == '.')
3485 *p = '-';
3486 p++;
3487 }
3488
3489 return name;
3490}
3491
02142340
VP
3492static char *
3493java_path_expr_of_child (struct varobj *child)
3494{
3495 return NULL;
3496}
3497
30b28db1 3498static struct value *
fba45db2 3499java_value_of_root (struct varobj **var_handle)
8b93c638 3500{
73a93a32 3501 return cplus_value_of_root (var_handle);
8b93c638
JM
3502}
3503
30b28db1 3504static struct value *
fba45db2 3505java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3506{
3507 return cplus_value_of_child (parent, index);
3508}
3509
3510static struct type *
fba45db2 3511java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3512{
3513 return cplus_type_of_child (parent, index);
3514}
3515
8b93c638 3516static char *
de051565 3517java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3518{
de051565 3519 return cplus_value_of_variable (var, format);
8b93c638 3520}
54333c3b
JK
3521
3522/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3523 with an arbitrary caller supplied DATA pointer. */
3524
3525void
3526all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3527{
3528 struct varobj_root *var_root, *var_root_next;
3529
3530 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3531
3532 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3533 {
3534 var_root_next = var_root->next;
3535
3536 (*func) (var_root->rootvar, data);
3537 }
3538}
8b93c638
JM
3539\f
3540extern void _initialize_varobj (void);
3541void
3542_initialize_varobj (void)
3543{
3544 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3545
3546 varobj_table = xmalloc (sizeof_table);
3547 memset (varobj_table, 0, sizeof_table);
3548
85c07804
AC
3549 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3550 &varobjdebug, _("\
3551Set varobj debugging."), _("\
3552Show varobj debugging."), _("\
3553When non-zero, varobj debugging is enabled."),
3554 NULL,
920d2a44 3555 show_varobjdebug,
85c07804 3556 &setlist, &showlist);
8b93c638 3557}
8756216b 3558
54333c3b
JK
3559/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3560 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3561
54333c3b
JK
3562static void
3563varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3564{
54333c3b
JK
3565 /* Floating varobjs are reparsed on each stop, so we don't care if the
3566 presently parsed expression refers to something that's gone. */
3567 if (var->root->floating)
3568 return;
8756216b 3569
54333c3b
JK
3570 /* global var must be re-evaluated. */
3571 if (var->root->valid_block == NULL)
2dbd25e5 3572 {
54333c3b 3573 struct varobj *tmp_var;
2dbd25e5 3574
54333c3b
JK
3575 /* Try to create a varobj with same expression. If we succeed
3576 replace the old varobj, otherwise invalidate it. */
3577 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3578 USE_CURRENT_FRAME);
3579 if (tmp_var != NULL)
3580 {
3581 tmp_var->obj_name = xstrdup (var->obj_name);
3582 varobj_delete (var, NULL, 0);
3583 install_variable (tmp_var);
2dbd25e5 3584 }
54333c3b
JK
3585 else
3586 var->root->is_valid = 0;
2dbd25e5 3587 }
54333c3b
JK
3588 else /* locals must be invalidated. */
3589 var->root->is_valid = 0;
3590}
3591
3592/* Invalidate the varobjs that are tied to locals and re-create the ones that
3593 are defined on globals.
3594 Invalidated varobjs will be always printed in_scope="invalid". */
3595
3596void
3597varobj_invalidate (void)
3598{
3599 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3600}
This page took 1.793789 seconds and 4 git commands to generate.