* elf32-ppc.c (ppc_elf_relocate_section): Don't look for a nop after
[deliverable/binutils-gdb.git] / gdb / x86-64-tdep.c
CommitLineData
53e95fcf 1/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
ce0eebec 2
51603483 3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
53e95fcf
JS
4 Contributed by Jiri Smid, SuSE Labs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "inferior.h"
25#include "gdbcore.h"
26#include "gdbcmd.h"
27#include "arch-utils.h"
28#include "regcache.h"
29#include "symfile.h"
8a8ab2b9 30#include "objfiles.h"
53e95fcf
JS
31#include "x86-64-tdep.h"
32#include "dwarf2cfi.h"
82dbc5f7 33#include "gdb_assert.h"
fe898f56 34#include "block.h"
53e95fcf 35
53e95fcf
JS
36/* Register numbers of various important registers. */
37#define RAX_REGNUM 0
de220d0f 38#define RDX_REGNUM 3
53e95fcf
JS
39#define RDI_REGNUM 5
40#define EFLAGS_REGNUM 17
0e04a514 41#define ST0_REGNUM 22
de220d0f
ML
42#define XMM1_REGNUM 39
43
44struct register_info
45{
46 int size;
47 char *name;
48 struct type **type;
49};
53e95fcf
JS
50
51/* x86_64_register_raw_size_table[i] is the number of bytes of storage in
52 GDB's register array occupied by register i. */
de220d0f 53static struct register_info x86_64_register_info_table[] = {
91fd20f7
ML
54 /* 0 */ {8, "rax", &builtin_type_int64},
55 /* 1 */ {8, "rbx", &builtin_type_int64},
56 /* 2 */ {8, "rcx", &builtin_type_int64},
57 /* 3 */ {8, "rdx", &builtin_type_int64},
58 /* 4 */ {8, "rsi", &builtin_type_int64},
59 /* 5 */ {8, "rdi", &builtin_type_int64},
60 /* 6 */ {8, "rbp", &builtin_type_void_func_ptr},
61 /* 7 */ {8, "rsp", &builtin_type_void_func_ptr},
62 /* 8 */ {8, "r8", &builtin_type_int64},
63 /* 9 */ {8, "r9", &builtin_type_int64},
64 /* 10 */ {8, "r10", &builtin_type_int64},
65 /* 11 */ {8, "r11", &builtin_type_int64},
66 /* 12 */ {8, "r12", &builtin_type_int64},
67 /* 13 */ {8, "r13", &builtin_type_int64},
68 /* 14 */ {8, "r14", &builtin_type_int64},
69 /* 15 */ {8, "r15", &builtin_type_int64},
70 /* 16 */ {8, "rip", &builtin_type_void_func_ptr},
71 /* 17 */ {4, "eflags", &builtin_type_int32},
72 /* 18 */ {4, "ds", &builtin_type_int32},
73 /* 19 */ {4, "es", &builtin_type_int32},
74 /* 20 */ {4, "fs", &builtin_type_int32},
75 /* 21 */ {4, "gs", &builtin_type_int32},
76 /* 22 */ {10, "st0", &builtin_type_i387_ext},
77 /* 23 */ {10, "st1", &builtin_type_i387_ext},
78 /* 24 */ {10, "st2", &builtin_type_i387_ext},
79 /* 25 */ {10, "st3", &builtin_type_i387_ext},
80 /* 26 */ {10, "st4", &builtin_type_i387_ext},
81 /* 27 */ {10, "st5", &builtin_type_i387_ext},
82 /* 28 */ {10, "st6", &builtin_type_i387_ext},
83 /* 29 */ {10, "st7", &builtin_type_i387_ext},
84 /* 30 */ {4, "fctrl", &builtin_type_int32},
85 /* 31 */ {4, "fstat", &builtin_type_int32},
86 /* 32 */ {4, "ftag", &builtin_type_int32},
87 /* 33 */ {4, "fiseg", &builtin_type_int32},
88 /* 34 */ {4, "fioff", &builtin_type_int32},
89 /* 35 */ {4, "foseg", &builtin_type_int32},
90 /* 36 */ {4, "fooff", &builtin_type_int32},
91 /* 37 */ {4, "fop", &builtin_type_int32},
92 /* 38 */ {16, "xmm0", &builtin_type_v4sf},
93 /* 39 */ {16, "xmm1", &builtin_type_v4sf},
94 /* 40 */ {16, "xmm2", &builtin_type_v4sf},
95 /* 41 */ {16, "xmm3", &builtin_type_v4sf},
96 /* 42 */ {16, "xmm4", &builtin_type_v4sf},
97 /* 43 */ {16, "xmm5", &builtin_type_v4sf},
98 /* 44 */ {16, "xmm6", &builtin_type_v4sf},
99 /* 45 */ {16, "xmm7", &builtin_type_v4sf},
100 /* 46 */ {16, "xmm8", &builtin_type_v4sf},
101 /* 47 */ {16, "xmm9", &builtin_type_v4sf},
102 /* 48 */ {16, "xmm10", &builtin_type_v4sf},
103 /* 49 */ {16, "xmm11", &builtin_type_v4sf},
104 /* 50 */ {16, "xmm12", &builtin_type_v4sf},
105 /* 51 */ {16, "xmm13", &builtin_type_v4sf},
106 /* 52 */ {16, "xmm14", &builtin_type_v4sf},
107 /* 53 */ {16, "xmm15", &builtin_type_v4sf},
108 /* 54 */ {4, "mxcsr", &builtin_type_int32}
53e95fcf
JS
109};
110
0e04a514
ML
111/* This array is a mapping from Dwarf-2 register
112 numbering to GDB's one. Dwarf-2 numbering is
113 defined in x86-64 ABI, section 3.6. */
114static int x86_64_dwarf2gdb_regno_map[] = {
115 0, 1, 2, 3, /* RAX - RDX */
116 4, 5, 6, 7, /* RSI, RDI, RBP, RSP */
117 8, 9, 10, 11, /* R8 - R11 */
118 12, 13, 14, 15, /* R12 - R15 */
119 -1, /* RA - not mapped */
120 XMM1_REGNUM - 1, XMM1_REGNUM, /* XMM0 ... */
121 XMM1_REGNUM + 1, XMM1_REGNUM + 2,
122 XMM1_REGNUM + 3, XMM1_REGNUM + 4,
123 XMM1_REGNUM + 5, XMM1_REGNUM + 6,
124 XMM1_REGNUM + 7, XMM1_REGNUM + 8,
125 XMM1_REGNUM + 9, XMM1_REGNUM + 10,
126 XMM1_REGNUM + 11, XMM1_REGNUM + 12,
127 XMM1_REGNUM + 13, XMM1_REGNUM + 14, /* ... XMM15 */
128 ST0_REGNUM + 0, ST0_REGNUM + 1, /* ST0 ... */
129 ST0_REGNUM + 2, ST0_REGNUM + 3,
130 ST0_REGNUM + 4, ST0_REGNUM + 5,
131 ST0_REGNUM + 6, ST0_REGNUM + 7 /* ... ST7 */
132};
133
134static int x86_64_dwarf2gdb_regno_map_length =
135 sizeof (x86_64_dwarf2gdb_regno_map) /
136 sizeof (x86_64_dwarf2gdb_regno_map[0]);
137
de220d0f
ML
138/* Number of all registers */
139#define X86_64_NUM_REGS (sizeof (x86_64_register_info_table) / \
140 sizeof (x86_64_register_info_table[0]))
141
142/* Number of general registers. */
143#define X86_64_NUM_GREGS (22)
144
145int x86_64_num_regs = X86_64_NUM_REGS;
146int x86_64_num_gregs = X86_64_NUM_GREGS;
147
b6779aa2
AC
148/* Did we already print a note about frame pointer? */
149int omit_fp_note_printed = 0;
150
53e95fcf
JS
151/* Number of bytes of storage in the actual machine representation for
152 register REGNO. */
153int
154x86_64_register_raw_size (int regno)
155{
de220d0f 156 return x86_64_register_info_table[regno].size;
53e95fcf
JS
157}
158
159/* x86_64_register_byte_table[i] is the offset into the register file of the
160 start of register number i. We initialize this from
de220d0f 161 x86_64_register_info_table. */
53e95fcf
JS
162int x86_64_register_byte_table[X86_64_NUM_REGS];
163
164/* Index within `registers' of the first byte of the space for register REGNO. */
165int
166x86_64_register_byte (int regno)
167{
168 return x86_64_register_byte_table[regno];
169}
170
171/* Return the GDB type object for the "standard" data type of data in
172 register N. */
173static struct type *
174x86_64_register_virtual_type (int regno)
175{
de220d0f 176 return *x86_64_register_info_table[regno].type;
53e95fcf
JS
177}
178
53e95fcf
JS
179/* x86_64_register_convertible is true if register N's virtual format is
180 different from its raw format. Note that this definition assumes
181 that the host supports IEEE 32-bit floats, since it doesn't say
182 that SSE registers need conversion. Even if we can't find a
183 counterexample, this is still sloppy. */
184int
185x86_64_register_convertible (int regno)
186{
187 return IS_FP_REGNUM (regno);
188}
189
190/* Convert data from raw format for register REGNUM in buffer FROM to
191 virtual format with type TYPE in buffer TO. In principle both
192 formats are identical except that the virtual format has two extra
193 bytes appended that aren't used. We set these to zero. */
194void
195x86_64_register_convert_to_virtual (int regnum, struct type *type,
196 char *from, char *to)
197{
82dbc5f7 198 char buf[12];
4657573b 199
82dbc5f7
AC
200 /* We only support floating-point values. */
201 if (TYPE_CODE (type) != TYPE_CODE_FLT)
202 {
203 warning ("Cannot convert floating-point register value "
204 "to non-floating-point type.");
205 memset (to, 0, TYPE_LENGTH (type));
206 return;
207 }
208 /* First add the necessary padding. */
209 memcpy (buf, from, FPU_REG_RAW_SIZE);
210 memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
211 /* Convert to TYPE. This should be a no-op, if TYPE is equivalent
212 to the extended floating-point format used by the FPU. */
ce0eebec
AC
213 convert_typed_floating (to, type, buf,
214 x86_64_register_virtual_type (regnum));
53e95fcf
JS
215}
216
217/* Convert data from virtual format with type TYPE in buffer FROM to
218 raw format for register REGNUM in buffer TO. Simply omit the two
219 unused bytes. */
220
221void
222x86_64_register_convert_to_raw (struct type *type, int regnum,
223 char *from, char *to)
224{
ce0eebec 225 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12);
82dbc5f7 226 /* Simply omit the two unused bytes. */
53e95fcf
JS
227 memcpy (to, from, FPU_REG_RAW_SIZE);
228}
53e95fcf 229
0e04a514
ML
230/* Dwarf-2 <-> GDB register numbers mapping. */
231int
232x86_64_dwarf2_reg_to_regnum (int dw_reg)
233{
234 if (dw_reg < 0 || dw_reg > x86_64_dwarf2gdb_regno_map_length)
235 {
236 warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg);
237 return dw_reg;
238 }
239
240 return x86_64_dwarf2gdb_regno_map[dw_reg];
241}
242
53e95fcf
JS
243/* This is the variable that is set with "set disassembly-flavour", and
244 its legitimate values. */
245static const char att_flavour[] = "att";
246static const char intel_flavour[] = "intel";
247static const char *valid_flavours[] = {
248 att_flavour,
249 intel_flavour,
250 NULL
251};
252static const char *disassembly_flavour = att_flavour;
253
26abbdc4
MK
254/* Push the return address (pointing to the call dummy) onto the stack
255 and return the new value for the stack pointer. */
256
53e95fcf
JS
257static CORE_ADDR
258x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
259{
260 char buf[8];
261
262 store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());
53e95fcf
JS
263 write_memory (sp - 8, buf, 8);
264 return sp - 8;
265}
266
26abbdc4 267static void
53e95fcf
JS
268x86_64_pop_frame (void)
269{
270 generic_pop_current_frame (cfi_pop_frame);
271}
272\f
273
274/* The returning of values is done according to the special algorithm.
275 Some types are returned in registers an some (big structures) in memory.
276 See ABI for details.
277 */
278
279#define MAX_CLASSES 4
280
281enum x86_64_reg_class
282{
283 X86_64_NO_CLASS,
284 X86_64_INTEGER_CLASS,
285 X86_64_INTEGERSI_CLASS,
286 X86_64_SSE_CLASS,
287 X86_64_SSESF_CLASS,
288 X86_64_SSEDF_CLASS,
289 X86_64_SSEUP_CLASS,
290 X86_64_X87_CLASS,
291 X86_64_X87UP_CLASS,
292 X86_64_MEMORY_CLASS
293};
294
295/* Return the union class of CLASS1 and CLASS2.
296 See the x86-64 ABI for details. */
297
298static enum x86_64_reg_class
299merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
300{
301 /* Rule #1: If both classes are equal, this is the resulting class. */
302 if (class1 == class2)
303 return class1;
304
26abbdc4
MK
305 /* Rule #2: If one of the classes is NO_CLASS, the resulting class
306 is the other class. */
53e95fcf
JS
307 if (class1 == X86_64_NO_CLASS)
308 return class2;
309 if (class2 == X86_64_NO_CLASS)
310 return class1;
311
312 /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
313 if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
314 return X86_64_MEMORY_CLASS;
315
316 /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
317 if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
318 || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
319 return X86_64_INTEGERSI_CLASS;
320 if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
321 || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
322 return X86_64_INTEGER_CLASS;
323
324 /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
325 if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
326 || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
327 return X86_64_MEMORY_CLASS;
328
329 /* Rule #6: Otherwise class SSE is used. */
330 return X86_64_SSE_CLASS;
331}
332
26abbdc4
MK
333/* Classify the argument type. CLASSES will be filled by the register
334 class used to pass each word of the operand. The number of words
335 is returned. In case the parameter should be passed in memory, 0
336 is returned. As a special case for zero sized containers,
337 classes[0] will be NO_CLASS and 1 is returned.
53e95fcf 338
26abbdc4 339 See the x86-64 psABI for details. */
53e95fcf
JS
340
341static int
342classify_argument (struct type *type,
343 enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
344{
345 int bytes = TYPE_LENGTH (type);
346 int words = (bytes + 8 - 1) / 8;
347
348 switch (TYPE_CODE (type))
349 {
350 case TYPE_CODE_ARRAY:
351 case TYPE_CODE_STRUCT:
352 case TYPE_CODE_UNION:
353 {
354 int i;
355 enum x86_64_reg_class subclasses[MAX_CLASSES];
356
357 /* On x86-64 we pass structures larger than 16 bytes on the stack. */
358 if (bytes > 16)
359 return 0;
360
361 for (i = 0; i < words; i++)
362 classes[i] = X86_64_NO_CLASS;
363
26abbdc4
MK
364 /* Zero sized arrays or structures are NO_CLASS. We return 0
365 to signalize memory class, so handle it as special case. */
53e95fcf
JS
366 if (!words)
367 {
368 classes[0] = X86_64_NO_CLASS;
369 return 1;
370 }
371 switch (TYPE_CODE (type))
372 {
373 case TYPE_CODE_STRUCT:
374 {
375 int j;
0004e5a2 376 for (j = 0; j < TYPE_NFIELDS (type); ++j)
53e95fcf 377 {
0004e5a2 378 int num = classify_argument (TYPE_FIELDS (type)[j].type,
53e95fcf 379 subclasses,
8dda9770
ML
380 (TYPE_FIELDS (type)[j].loc.
381 bitpos + bit_offset) % 256);
53e95fcf
JS
382 if (!num)
383 return 0;
384 for (i = 0; i < num; i++)
385 {
386 int pos =
8dda9770
ML
387 (TYPE_FIELDS (type)[j].loc.bitpos +
388 bit_offset) / 8 / 8;
53e95fcf
JS
389 classes[i + pos] =
390 merge_classes (subclasses[i], classes[i + pos]);
391 }
392 }
393 }
394 break;
395 case TYPE_CODE_ARRAY:
396 {
397 int num;
398
0004e5a2 399 num = classify_argument (TYPE_TARGET_TYPE (type),
53e95fcf
JS
400 subclasses, bit_offset);
401 if (!num)
402 return 0;
403
404 /* The partial classes are now full classes. */
405 if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
406 subclasses[0] = X86_64_SSE_CLASS;
407 if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
408 subclasses[0] = X86_64_INTEGER_CLASS;
409
410 for (i = 0; i < words; i++)
411 classes[i] = subclasses[i % num];
412 }
413 break;
414 case TYPE_CODE_UNION:
415 {
416 int j;
417 {
0004e5a2 418 for (j = 0; j < TYPE_NFIELDS (type); ++j)
53e95fcf
JS
419 {
420 int num;
0004e5a2 421 num = classify_argument (TYPE_FIELDS (type)[j].type,
53e95fcf
JS
422 subclasses, bit_offset);
423 if (!num)
424 return 0;
425 for (i = 0; i < num; i++)
426 classes[i] = merge_classes (subclasses[i], classes[i]);
427 }
428 }
429 }
430 break;
4657573b
ML
431 default:
432 break;
53e95fcf
JS
433 }
434 /* Final merger cleanup. */
435 for (i = 0; i < words; i++)
436 {
437 /* If one class is MEMORY, everything should be passed in
438 memory. */
439 if (classes[i] == X86_64_MEMORY_CLASS)
440 return 0;
441
442 /* The X86_64_SSEUP_CLASS should be always preceeded by
443 X86_64_SSE_CLASS. */
444 if (classes[i] == X86_64_SSEUP_CLASS
445 && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
446 classes[i] = X86_64_SSE_CLASS;
447
26abbdc4 448 /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
53e95fcf
JS
449 if (classes[i] == X86_64_X87UP_CLASS
450 && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
451 classes[i] = X86_64_SSE_CLASS;
452 }
453 return words;
454 }
455 break;
456 case TYPE_CODE_FLT:
457 switch (bytes)
458 {
459 case 4:
460 if (!(bit_offset % 64))
461 classes[0] = X86_64_SSESF_CLASS;
462 else
463 classes[0] = X86_64_SSE_CLASS;
464 return 1;
465 case 8:
466 classes[0] = X86_64_SSEDF_CLASS;
467 return 1;
468 case 16:
469 classes[0] = X86_64_X87_CLASS;
470 classes[1] = X86_64_X87UP_CLASS;
471 return 2;
472 }
473 break;
474 case TYPE_CODE_INT:
475 case TYPE_CODE_PTR:
476 switch (bytes)
477 {
478 case 1:
479 case 2:
480 case 4:
481 case 8:
482 if (bytes * 8 + bit_offset <= 32)
483 classes[0] = X86_64_INTEGERSI_CLASS;
484 else
485 classes[0] = X86_64_INTEGER_CLASS;
486 return 1;
487 case 16:
488 classes[0] = classes[1] = X86_64_INTEGER_CLASS;
489 return 2;
490 default:
491 break;
492 }
493 case TYPE_CODE_VOID:
494 return 0;
8dda9770 495 default: /* Avoid warning. */
4657573b 496 break;
53e95fcf 497 }
ce0eebec
AC
498 internal_error (__FILE__, __LINE__,
499 "classify_argument: unknown argument type");
53e95fcf
JS
500}
501
26abbdc4
MK
502/* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
503 number of registers required based on the information passed in
504 CLASSES. Return 0 if parameter should be passed in memory. */
53e95fcf
JS
505
506static int
507examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
508 int n, int *int_nregs, int *sse_nregs)
509{
510 *int_nregs = 0;
511 *sse_nregs = 0;
512 if (!n)
513 return 0;
514 for (n--; n >= 0; n--)
515 switch (classes[n])
516 {
517 case X86_64_INTEGER_CLASS:
518 case X86_64_INTEGERSI_CLASS:
519 (*int_nregs)++;
520 break;
521 case X86_64_SSE_CLASS:
522 case X86_64_SSESF_CLASS:
523 case X86_64_SSEDF_CLASS:
524 (*sse_nregs)++;
525 break;
526 case X86_64_NO_CLASS:
527 case X86_64_SSEUP_CLASS:
528 case X86_64_X87_CLASS:
529 case X86_64_X87UP_CLASS:
530 break;
531 case X86_64_MEMORY_CLASS:
ce0eebec
AC
532 internal_error (__FILE__, __LINE__,
533 "examine_argument: unexpected memory class");
53e95fcf
JS
534 }
535 return 1;
536}
537
538#define RET_INT_REGS 2
539#define RET_SSE_REGS 2
540
541/* Check if the structure in value_type is returned in registers or in
26abbdc4
MK
542 memory. If this function returns 1, GDB will call
543 STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
544 STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
53e95fcf
JS
545int
546x86_64_use_struct_convention (int gcc_p, struct type *value_type)
547{
548 enum x86_64_reg_class class[MAX_CLASSES];
549 int n = classify_argument (value_type, class, 0);
550 int needed_intregs;
551 int needed_sseregs;
552
553 return (!n ||
554 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
555 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
556}
557
53e95fcf
JS
558/* Extract from an array REGBUF containing the (raw) register state, a
559 function return value of TYPE, and copy that, in virtual format,
560 into VALBUF. */
561
562void
48037ead
ML
563x86_64_extract_return_value (struct type *type, struct regcache *regcache,
564 void *valbuf)
53e95fcf
JS
565{
566 enum x86_64_reg_class class[MAX_CLASSES];
567 int n = classify_argument (type, class, 0);
568 int needed_intregs;
569 int needed_sseregs;
570 int intreg = 0;
571 int ssereg = 0;
572 int offset = 0;
573 int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
574 int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };
575
576 if (!n ||
577 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
578 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
579 { /* memory class */
580 CORE_ADDR addr;
48037ead 581 regcache_cooked_read (regcache, RAX_REGNUM, &addr);
53e95fcf
JS
582 read_memory (addr, valbuf, TYPE_LENGTH (type));
583 return;
584 }
585 else
586 {
587 int i;
588 for (i = 0; i < n; i++)
589 {
590 switch (class[i])
591 {
592 case X86_64_NO_CLASS:
593 break;
594 case X86_64_INTEGER_CLASS:
48037ead
ML
595 regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
596 (char *) valbuf + offset);
53e95fcf
JS
597 offset += 8;
598 intreg += 2;
599 break;
600 case X86_64_INTEGERSI_CLASS:
48037ead
ML
601 regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
602 0, 4, (char *) valbuf + offset);
53e95fcf
JS
603 offset += 8;
604 intreg++;
605 break;
606 case X86_64_SSEDF_CLASS:
607 case X86_64_SSESF_CLASS:
608 case X86_64_SSE_CLASS:
48037ead
ML
609 regcache_cooked_read_part (regcache,
610 ret_sse_r[(ssereg + 1) / 2], 0, 8,
611 (char *) valbuf + offset);
53e95fcf
JS
612 offset += 8;
613 ssereg += 2;
614 break;
615 case X86_64_SSEUP_CLASS:
48037ead
ML
616 regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
617 0, 8, (char *) valbuf + offset);
53e95fcf
JS
618 offset += 8;
619 ssereg++;
620 break;
621 case X86_64_X87_CLASS:
48037ead
ML
622 regcache_cooked_read_part (regcache, FP0_REGNUM,
623 0, 8, (char *) valbuf + offset);
53e95fcf
JS
624 offset += 8;
625 break;
626 case X86_64_X87UP_CLASS:
48037ead
ML
627 regcache_cooked_read_part (regcache, FP0_REGNUM,
628 8, 2, (char *) valbuf + offset);
53e95fcf
JS
629 offset += 8;
630 break;
631 case X86_64_MEMORY_CLASS:
632 default:
633 internal_error (__FILE__, __LINE__,
634 "Unexpected argument class");
635 }
636 }
637 }
638}
639
53e95fcf
JS
640static void
641x86_64_frame_init_saved_regs (struct frame_info *fi)
642{
26abbdc4 643 /* Do nothing. Everything is handled by the stack unwinding code. */
53e95fcf
JS
644}
645
646#define INT_REGS 6
647#define SSE_REGS 16
648
53e95fcf 649CORE_ADDR
d45fc520 650x86_64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
53e95fcf
JS
651 int struct_return, CORE_ADDR struct_addr)
652{
653 int intreg = 0;
654 int ssereg = 0;
655 int i;
ce0eebec 656 static int int_parameter_registers[INT_REGS] = {
de220d0f
ML
657 5 /* RDI */ , 4 /* RSI */ ,
658 3 /* RDX */ , 2 /* RCX */ ,
91fd20f7 659 8 /* R8 */ , 9 /* R9 */
ce0eebec 660 };
53e95fcf 661 /* XMM0 - XMM15 */
ce0eebec 662 static int sse_parameter_registers[SSE_REGS] = {
de220d0f
ML
663 XMM1_REGNUM - 1, XMM1_REGNUM, XMM1_REGNUM + 1, XMM1_REGNUM + 2,
664 XMM1_REGNUM + 3, XMM1_REGNUM + 4, XMM1_REGNUM + 5, XMM1_REGNUM + 6,
665 XMM1_REGNUM + 7, XMM1_REGNUM + 8, XMM1_REGNUM + 9, XMM1_REGNUM + 10,
666 XMM1_REGNUM + 11, XMM1_REGNUM + 12, XMM1_REGNUM + 13, XMM1_REGNUM + 14
ce0eebec
AC
667 };
668 int stack_values_count = 0;
82dbc5f7 669 int *stack_values;
e9f30c21 670 stack_values = alloca (nargs * sizeof (int));
53e95fcf
JS
671 for (i = 0; i < nargs; i++)
672 {
673 enum x86_64_reg_class class[MAX_CLASSES];
674 int n = classify_argument (args[i]->type, class, 0);
675 int needed_intregs;
676 int needed_sseregs;
677
678 if (!n ||
679 !examine_argument (class, n, &needed_intregs, &needed_sseregs)
82dbc5f7
AC
680 || intreg / 2 + needed_intregs > INT_REGS
681 || ssereg / 2 + needed_sseregs > SSE_REGS)
ce0eebec
AC
682 { /* memory class */
683 stack_values[stack_values_count++] = i;
53e95fcf
JS
684 }
685 else
686 {
687 int j;
688 for (j = 0; j < n; j++)
689 {
690 int offset = 0;
691 switch (class[j])
692 {
693 case X86_64_NO_CLASS:
694 break;
695 case X86_64_INTEGER_CLASS:
4caf0990
AC
696 deprecated_write_register_gen (int_parameter_registers
697 [(intreg + 1) / 2],
698 VALUE_CONTENTS_ALL (args[i]) + offset);
53e95fcf
JS
699 offset += 8;
700 intreg += 2;
701 break;
702 case X86_64_INTEGERSI_CLASS:
4caf0990
AC
703 deprecated_write_register_gen (int_parameter_registers[intreg / 2],
704 VALUE_CONTENTS_ALL (args[i]) + offset);
53e95fcf
JS
705 offset += 8;
706 intreg++;
707 break;
708 case X86_64_SSEDF_CLASS:
709 case X86_64_SSESF_CLASS:
710 case X86_64_SSE_CLASS:
4caf0990
AC
711 deprecated_write_register_gen (sse_parameter_registers
712 [(ssereg + 1) / 2],
713 VALUE_CONTENTS_ALL (args[i]) + offset);
53e95fcf
JS
714 offset += 8;
715 ssereg += 2;
716 break;
717 case X86_64_SSEUP_CLASS:
4caf0990
AC
718 deprecated_write_register_gen (sse_parameter_registers[ssereg / 2],
719 VALUE_CONTENTS_ALL (args[i]) + offset);
53e95fcf
JS
720 offset += 8;
721 ssereg++;
722 break;
723 case X86_64_X87_CLASS:
53e95fcf 724 case X86_64_MEMORY_CLASS:
ce0eebec 725 stack_values[stack_values_count++] = i;
82dbc5f7
AC
726 break;
727 case X86_64_X87UP_CLASS:
53e95fcf
JS
728 break;
729 default:
730 internal_error (__FILE__, __LINE__,
731 "Unexpected argument class");
732 }
733 intreg += intreg % 2;
734 ssereg += ssereg % 2;
735 }
736 }
737 }
82dbc5f7
AC
738 while (--stack_values_count >= 0)
739 {
e9f30c21 740 struct value *arg = args[stack_values[stack_values_count]];
82dbc5f7
AC
741 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
742 len += 7;
743 len -= len % 8;
744 sp -= len;
745 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
746 }
53e95fcf
JS
747 return sp;
748}
749
750/* Write into the appropriate registers a function return value stored
751 in VALBUF of type TYPE, given in virtual format. */
752void
48037ead
ML
753x86_64_store_return_value (struct type *type, struct regcache *regcache,
754 const void *valbuf)
53e95fcf
JS
755{
756 int len = TYPE_LENGTH (type);
757
758 if (TYPE_CODE_FLT == TYPE_CODE (type))
759 {
760 /* Floating-point return values can be found in %st(0). */
761 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
762 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
763 {
764 /* Copy straight over. */
48037ead 765 regcache_cooked_write (regcache, FP0_REGNUM, valbuf);
53e95fcf
JS
766 }
767 else
768 {
769 char buf[FPU_REG_RAW_SIZE];
770 DOUBLEST val;
771
772 /* Convert the value found in VALBUF to the extended
773 floating point format used by the FPU. This is probably
774 not exactly how it would happen on the target itself, but
775 it is the best we can do. */
776 val = extract_floating (valbuf, TYPE_LENGTH (type));
777 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
48037ead
ML
778 regcache_cooked_write_part (regcache, FP0_REGNUM,
779 0, FPU_REG_RAW_SIZE, buf);
53e95fcf
JS
780 }
781 }
782 else
783 {
784 int low_size = REGISTER_RAW_SIZE (0);
785 int high_size = REGISTER_RAW_SIZE (1);
786
787 if (len <= low_size)
48037ead 788 regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
53e95fcf
JS
789 else if (len <= (low_size + high_size))
790 {
48037ead
ML
791 regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
792 regcache_cooked_write_part (regcache, 1, 0,
793 len - low_size,
794 (const char *) valbuf + low_size);
53e95fcf
JS
795 }
796 else
797 internal_error (__FILE__, __LINE__,
798 "Cannot store return value of %d bytes long.", len);
799 }
800}
801\f
802
1cf877ad
ML
803const char *
804x86_64_register_name (int reg_nr)
53e95fcf 805{
de220d0f 806 if (reg_nr < 0 || reg_nr >= X86_64_NUM_REGS)
53e95fcf 807 return NULL;
de220d0f 808 return x86_64_register_info_table[reg_nr].name;
53e95fcf 809}
8dda9770
ML
810
811int
1cf877ad 812x86_64_register_number (const char *name)
8dda9770
ML
813{
814 int reg_nr;
815
816 for (reg_nr = 0; reg_nr < X86_64_NUM_REGS; reg_nr++)
817 if (strcmp (name, x86_64_register_info_table[reg_nr].name) == 0)
818 return reg_nr;
819 return -1;
820}
53e95fcf
JS
821\f
822
823
824/* We have two flavours of disassembly. The machinery on this page
825 deals with switching between those. */
826
827static int
828gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
829{
830 if (disassembly_flavour == att_flavour)
831 return print_insn_i386_att (memaddr, info);
832 else if (disassembly_flavour == intel_flavour)
833 return print_insn_i386_intel (memaddr, info);
834 /* Never reached -- disassembly_flavour is always either att_flavour
835 or intel_flavour. */
836 internal_error (__FILE__, __LINE__, "failed internal consistency check");
837}
838\f
839
840/* Store the address of the place in which to copy the structure the
841 subroutine will return. This is called from call_function. */
842void
843x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
844{
845 write_register (RDI_REGNUM, addr);
846}
847
848int
849x86_64_frameless_function_invocation (struct frame_info *frame)
850{
851 return 0;
852}
853
e76e1718
ML
854/* If a function with debugging information and known beginning
855 is detected, we will return pc of the next line in the source
856 code. With this approach we effectively skip the prolog. */
857
858#define PROLOG_BUFSIZE 4
53e95fcf
JS
859CORE_ADDR
860x86_64_skip_prologue (CORE_ADDR pc)
861{
482a4d06 862 int i;
e76e1718
ML
863 struct symtab_and_line v_sal;
864 struct symbol *v_function;
482a4d06 865 CORE_ADDR endaddr;
26abbdc4 866 unsigned char prolog_buf[PROLOG_BUFSIZE];
e76e1718 867
26abbdc4
MK
868 /* We will handle only functions starting with: */
869 static unsigned char prolog_expect[PROLOG_BUFSIZE] =
870 {
871 0x55, /* pushq %rbp */
872 0x48, 0x89, 0xe5 /* movq %rsp, %rbp */
873 };
e76e1718
ML
874
875 read_memory (pc, (char *) prolog_buf, PROLOG_BUFSIZE);
876
26abbdc4 877 /* First check, whether pc points to pushq %rbp, movq %rsp, %rbp. */
b1ab997b 878 for (i = 0; i < PROLOG_BUFSIZE; i++)
b6779aa2 879 if (prolog_expect[i] != prolog_buf[i])
26abbdc4 880 return pc; /* ... no, it doesn't. Nothing to skip. */
b1ab997b 881
26abbdc4 882 /* OK, we have found the prologue and want PC of the first
b1ab997b
ML
883 non-prologue instruction. */
884 pc += PROLOG_BUFSIZE;
e76e1718
ML
885
886 v_function = find_pc_function (pc);
887 v_sal = find_pc_line (pc, 0);
888
26abbdc4
MK
889 /* If pc doesn't point to a function with debuginfo, some of the
890 following may be NULL. */
e76e1718
ML
891 if (!v_function || !v_function->ginfo.value.block || !v_sal.symtab)
892 return pc;
893
8da065d5 894 endaddr = BLOCK_END (SYMBOL_BLOCK_VALUE (v_function));
e76e1718
ML
895
896 for (i = 0; i < v_sal.symtab->linetable->nitems; i++)
482a4d06 897 if (v_sal.symtab->linetable->item[i].pc >= pc
e76e1718
ML
898 && v_sal.symtab->linetable->item[i].pc < endaddr)
899 {
900 pc = v_sal.symtab->linetable->item[i].pc;
e76e1718
ML
901 break;
902 }
903
53e95fcf
JS
904 return pc;
905}
906
907/* Sequence of bytes for breakpoint instruction. */
ab91194c 908static const unsigned char *
b64bbf8c 909x86_64_breakpoint_from_pc (CORE_ADDR *pc, int *lenptr)
53e95fcf
JS
910{
911 static unsigned char breakpoint[] = { 0xcc };
912 *lenptr = 1;
913 return breakpoint;
914}
915
2213a65d 916void
0c1a73d6 917x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 918{
0c1a73d6 919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
de220d0f 920 int i, sum;
53e95fcf 921
b83b026c 922 /* The x86-64 has 16 SSE registers. */
0c1a73d6 923 tdep->num_xmm_regs = 16;
53e95fcf 924
0c1a73d6 925 /* This is what all the fuss is about. */
53e95fcf
JS
926 set_gdbarch_long_bit (gdbarch, 64);
927 set_gdbarch_long_long_bit (gdbarch, 64);
928 set_gdbarch_ptr_bit (gdbarch, 64);
929
b83b026c
MK
930 /* In contrast to the i386, on the x86-64 a `long double' actually
931 takes up 128 bits, even though it's still based on the i387
932 extended floating-point format which has only 80 significant bits. */
933 set_gdbarch_long_double_bit (gdbarch, 128);
934
53e95fcf 935 set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
b83b026c
MK
936
937 /* Register numbers of various important registers. */
938 set_gdbarch_sp_regnum (gdbarch, 7); /* %rsp */
939 set_gdbarch_fp_regnum (gdbarch, 6); /* %rbp */
940 set_gdbarch_pc_regnum (gdbarch, 16); /* %rip */
941 set_gdbarch_ps_regnum (gdbarch, 17); /* %eflags */
942 set_gdbarch_fp0_regnum (gdbarch, X86_64_NUM_GREGS); /* %st(0) */
943
944 /* The "default" register numbering scheme for the x86-64 is
945 referred to as the "DWARF register number mapping" in the psABI.
946 The preferred debugging format for all known x86-64 targets is
947 actually DWARF2, and GCC doesn't seem to support DWARF (that is
948 DWARF-1), but we provide the same mapping just in case. This
949 mapping is also used for stabs, which GCC does support. */
950 set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
951 set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
952 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
953
954 /* We don't override SDB_REG_RO_REGNUM, sice COFF doesn't seem to be
955 in use on any of the supported x86-64 targets. */
956
1cf877ad 957 set_gdbarch_register_name (gdbarch, x86_64_register_name);
53e95fcf 958 set_gdbarch_register_size (gdbarch, 8);
de220d0f 959
0c1a73d6
MK
960 /* Total amount of space needed to store our copies of the machine's
961 register (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS +
962 SIZEOF_SSE_REGS) */
de220d0f
ML
963 for (i = 0, sum = 0; i < X86_64_NUM_REGS; i++)
964 sum += x86_64_register_info_table[i].size;
965 set_gdbarch_register_bytes (gdbarch, sum);
53e95fcf 966
b83b026c
MK
967 set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
968 set_gdbarch_register_byte (gdbarch, x86_64_register_byte);
53e95fcf
JS
969 set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);
970
971 set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
972 set_gdbarch_register_convert_to_virtual (gdbarch,
973 x86_64_register_convert_to_virtual);
974 set_gdbarch_register_convert_to_raw (gdbarch,
975 x86_64_register_convert_to_raw);
976
b83b026c
MK
977 /* Getting saved registers is handled by unwind information. */
978 set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);
53e95fcf 979
b83b026c 980 /* FIXME: kettenis/20021026: Should we set parm_boundary to 64 here? */
53e95fcf 981 set_gdbarch_read_fp (gdbarch, cfi_read_fp);
53e95fcf 982
48037ead
ML
983 set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
984
b83b026c
MK
985 set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);
986 set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
53e95fcf 987 set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);
b83b026c 988 set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);
48037ead 989 set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
b83b026c
MK
990 /* Override, since this is handled by x86_64_extract_return_value. */
991 set_gdbarch_extract_struct_value_address (gdbarch, NULL);
992 set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
53e95fcf 993
f30ee0bc 994 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
b83b026c 995 set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
53e95fcf 996
b83b026c
MK
997 set_gdbarch_frame_chain (gdbarch, x86_64_linux_frame_chain);
998 set_gdbarch_frameless_function_invocation (gdbarch,
999 x86_64_frameless_function_invocation);
b83b026c
MK
1000 /* FIXME: kettenis/20021026: These two are GNU/Linux-specific and
1001 should be moved elsewhere. */
1002 set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);
1003 set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);
53e95fcf 1004 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
b83b026c
MK
1005 /* FIXME: kettenis/20021026: This one is GNU/Linux-specific too. */
1006 set_gdbarch_pc_in_sigtramp (gdbarch, x86_64_linux_in_sigtramp);
53e95fcf 1007
2213a65d
MK
1008 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1009
b83b026c
MK
1010 /* Build call frame information (CFI) from DWARF2 frame debug info. */
1011 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
53e95fcf 1012
b83b026c 1013 /* Initialization of per-frame CFI. */
e9582e71 1014 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);
53e95fcf 1015
b83b026c 1016 /* Frame PC initialization is handled by using CFI. */
a5afb99f 1017 set_gdbarch_deprecated_init_frame_pc (gdbarch, x86_64_init_frame_pc);
53e95fcf 1018
b83b026c
MK
1019 /* Cons up virtual frame pointer for trace. */
1020 set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);
53e95fcf 1021
b83b026c
MK
1022 /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
1023 since all supported x86-64 targets are ELF, but that might change
1024 in the future. */
8a8ab2b9 1025 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
0c1a73d6
MK
1026}
1027
53e95fcf
JS
1028void
1029_initialize_x86_64_tdep (void)
1030{
53e95fcf
JS
1031 /* Initialize the table saying where each register starts in the
1032 register file. */
1033 {
1034 int i, offset;
1035
1036 offset = 0;
1037 for (i = 0; i < X86_64_NUM_REGS; i++)
1038 {
1039 x86_64_register_byte_table[i] = offset;
de220d0f 1040 offset += x86_64_register_info_table[i].size;
53e95fcf
JS
1041 }
1042 }
53e95fcf 1043}
This page took 0.267364 seconds and 4 git commands to generate.