Remove regcache_raw_update
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
e2882c85 3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "regcache.h"
33#include "reggroups.h"
34#include "regset.h"
35
36#include "dummy-frame.h"
fa8f86ff 37#include "dwarf2.h"
ca3bf3bd
DJ
38#include "dwarf2-frame.h"
39#include "dwarf2loc.h"
ca3bf3bd
DJ
40#include "frame-base.h"
41#include "frame-unwind.h"
42
43#include "arch-utils.h"
44#include "gdbarch.h"
45#include "remote.h"
46#include "serial.h"
47
48#include "command.h"
49#include "gdbcmd.h"
ca3bf3bd 50
bdb4c075 51#include "xtensa-isa.h"
ca3bf3bd 52#include "xtensa-tdep.h"
94a0e877 53#include "xtensa-config.h"
325fac50 54#include <algorithm>
ca3bf3bd
DJ
55
56
ccce17b0 57static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
58
59#define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63#define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67#define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71#define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
77#define SP_ALIGNMENT 16
78
79
bdb4c075
MG
80/* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
82#define ARGS_NUM_REGS 6
83#define REGISTER_SIZE 4
ca3bf3bd 84
ca3bf3bd 85
bdb4c075
MG
86/* Extract the call size from the return address or PS register. */
87#define PS_CALLINC_SHIFT 16
88#define PS_CALLINC_MASK 0x00030000
89#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 91
98689b25
MG
92/* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95#define TX_PS 0x20
96
bdb4c075 97/* ABI-independent macros. */
91d8eb23
MD
98#define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101#define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 105
ca3bf3bd
DJ
106/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
91d8eb23
MD
109#define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 111 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 112
bdb4c075 113#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
114
115/* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
bdb4c075
MG
119#define PS_WOE (1<<18)
120#define PS_EXC (1<<4)
121
0dd5cbc5
AH
122/* Big enough to hold the size of the largest register in bytes. */
123#define XTENSA_MAX_REGISTER_SIZE 64
124
b801de47 125static int
98689b25
MG
126windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127{
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133}
134
581e13c1
MS
135/* Convert a live A-register number to the corresponding AR-register
136 number. */
91d8eb23 137static int
ee967b5f 138arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
139{
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 141 int arreg;
91d8eb23 142
ee967b5f
MG
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
91d8eb23 146
ee967b5f
MG
147 return arreg + tdep->ar_base;
148}
149
150/* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152static int
153areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
91d8eb23
MD
163}
164
68d6df83 165/* Read Xtensa register directly from the hardware. */
b801de47 166static unsigned long
08b9c608
MG
167xtensa_read_register (int regnum)
168{
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173}
174
68d6df83 175/* Write Xtensa register directly to the hardware. */
b801de47 176static void
08b9c608
MG
177xtensa_write_register (int regnum, ULONGEST value)
178{
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180}
181
ca3bf3bd
DJ
182/* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
bdb4c075 186 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193static int
91d8eb23 194extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 195{
e17a4113 196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 197 int winsize = 4;
ca3bf3bd 198 int insn;
ff7a4c00 199 gdb_byte buf[4];
ca3bf3bd
DJ
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
e17a4113 205 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
e17a4113 215 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
224 }
225 return winsize;
226}
227
228
229/* REGISTER INFORMATION */
230
08b9c608
MG
231/* Find register by name. */
232static int
a121b7c1 233xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
08b9c608
MG
234{
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245}
246
ca3bf3bd 247/* Returns the name of a register. */
ca3bf3bd 248static const char *
d93859e2 249xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
250{
251 /* Return the name stored in the register map. */
d93859e2
UW
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 255
ca3bf3bd
DJ
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258}
259
ca3bf3bd
DJ
260/* Return the type of a register. Create a new type, if necessary. */
261
ca3bf3bd
DJ
262static struct type *
263xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264{
df4df182
UW
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
ca3bf3bd 267 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
0dfff4cb 272 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 273
6b50c0b0 274 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 275 || regnum == tdep->a0_base + 1)
fde6c819 276 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
277
278 /* Return the stored type for all other registers. */
6b50c0b0
UW
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 281 {
df4df182 282 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 283
bdb4c075 284 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
bdb4c075
MG
291 /* We always use the memory representation,
292 even if the register width is smaller. */
ca3bf3bd
DJ
293 switch (size)
294 {
295 case 1:
df4df182 296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
297 break;
298
299 case 2:
df4df182 300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
301 break;
302
303 case 4:
df4df182 304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
305 break;
306
307 case 8:
df4df182 308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
309 break;
310
311 case 16:
df4df182 312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
313 break;
314
315 default:
df4df182 316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
1448a0a2 322 char *name = xstrprintf ("int%d", size * 8);
8d749320
SM
323
324 tp = XNEW (struct ctype_cache);
df4df182
UW
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
ca3bf3bd 327 tp->size = size;
e9bb382b 328 tp->virtual_type
1448a0a2
PM
329 = arch_integer_type (gdbarch, size * 8, 1, name);
330 xfree (name);
ca3bf3bd
DJ
331 }
332
333 reg->ctype = tp->virtual_type;
334 }
335 }
336 return reg->ctype;
337 }
338
ca3bf3bd
DJ
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 return 0;
341}
342
343
bdb4c075 344/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
347
348static int
d3f73121 349xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
350{
351 int i;
352
353 if (regnum >= 0 && regnum < 16)
d3f73121 354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 355
f57d151a 356 for (i = 0;
d3f73121 357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 358 i++)
d3f73121 359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
360 return i;
361
0fde2c53 362 return -1;
ca3bf3bd
DJ
363}
364
365
bdb4c075
MG
366/* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
ca3bf3bd
DJ
370
371static void
9c9acae0
UW
372xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd 374{
0dd5cbc5 375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
376 const xtensa_mask_t *mask = reg->mask;
377
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
380
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
383
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
386 int i, r;
387
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
389
390 /* Copy the masked register to host byte-order. */
ac7936df 391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
392 for (i = 0; i < bytesize; i++)
393 {
394 mem >>= 8;
395 mem |= (buffer[bytesize - i - 1] << 24);
396 if ((i & 3) == 3)
397 *ptr++ = mem;
398 }
399 else
400 for (i = 0; i < bytesize; i++)
401 {
402 mem >>= 8;
403 mem |= (buffer[i] << 24);
404 if ((i & 3) == 3)
405 *ptr++ = mem;
406 }
407
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
411
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
413 ptr = value;
414 mem = *ptr;
415
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
418 {
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
422
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
425
426 if (shift >= 32)
427 {
428 mem = *(++ptr);
429 shift -= 32;
430 bitsize -= 32;
431
432 if (shift > 0)
433 regval |= mem << (size - shift);
434 }
435
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
439 {
440 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
441 ULONGEST old_val;
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
443 m = 0xffffffff >> (32 - size) << start;
444 regval <<= start;
9c9acae0
UW
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
447 }
448 }
449}
450
451
bdb4c075
MG
452/* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
ca3bf3bd 454
05d1431c 455static enum register_status
849d0ba8 456xtensa_register_read_masked (readable_regcache *regcache,
9c9acae0 457 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd 458{
0dd5cbc5 459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
460 const xtensa_mask_t *mask = reg->mask;
461
462 int shift = 0;
463 int start, size;
464
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
467
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
470 int i;
471
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
474
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
477 {
478 int r = mask->mask[i].reg_num;
9c9acae0
UW
479 if (r >= 0)
480 {
05d1431c 481 enum register_status status;
9c9acae0 482 ULONGEST val;
05d1431c 483
11f57cb6 484 status = regcache->cooked_read (r, &val);
05d1431c
PA
485 if (status != REG_VALID)
486 return status;
9c9acae0
UW
487 regval = (unsigned int) val;
488 }
489 else
490 regval = 0;
491
ca3bf3bd
DJ
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
494
495 regval >>= start;
496
497 if (size < 32)
498 regval &= (0xffffffff >> (32 - size));
499
500 mem |= regval << shift;
501
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
504
505 if (shift >= 32)
506 {
507 *ptr++ = mem;
508 bitsize -= 32;
509 shift -= 32;
510
511 if (shift == 0)
512 mem = 0;
513 else
514 mem = regval >> (size - shift);
515 }
516 }
517
518 if (shift > 0)
519 *ptr = mem;
520
521 /* Copy value to target byte order. */
522 ptr = value;
523 mem = *ptr;
524
ac7936df 525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
526 for (i = 0; i < bytesize; i++)
527 {
528 if ((i & 3) == 0)
529 mem = *ptr++;
530 buffer[bytesize - i - 1] = mem & 0xff;
531 mem >>= 8;
532 }
533 else
534 for (i = 0; i < bytesize; i++)
535 {
536 if ((i & 3) == 0)
537 mem = *ptr++;
538 buffer[i] = mem & 0xff;
539 mem >>= 8;
540 }
05d1431c
PA
541
542 return REG_VALID;
ca3bf3bd
DJ
543}
544
545
546/* Read pseudo registers. */
547
05d1431c 548static enum register_status
ca3bf3bd 549xtensa_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 550 readable_regcache *regcache,
ca3bf3bd
DJ
551 int regnum,
552 gdb_byte *buffer)
553{
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 555 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 556
bdb4c075 557 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 561 {
c185f580 562 ULONGEST value;
05d1431c 563 enum register_status status;
ca3bf3bd 564
03f50fc8
YQ
565 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
566 &value);
05d1431c
PA
567 if (status != REG_VALID)
568 return status;
c185f580 569 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
570 }
571
bdb4c075 572 /* We can always read non-pseudo registers. */
6b50c0b0 573 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
03f50fc8 574 return regcache->raw_read (regnum, buffer);
94a0e877
MG
575
576 /* We have to find out how to deal with priveleged registers.
577 Let's treat them as pseudo-registers, but we cannot read/write them. */
578
0d0bf81a
MF
579 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
580 || regnum < gdbarch_tdep (gdbarch)->a0_base)
94a0e877
MG
581 {
582 buffer[0] = (gdb_byte)0;
583 buffer[1] = (gdb_byte)0;
584 buffer[2] = (gdb_byte)0;
585 buffer[3] = (gdb_byte)0;
05d1431c 586 return REG_VALID;
94a0e877 587 }
ca3bf3bd 588 /* Pseudo registers. */
f57d151a 589 else if (regnum >= 0
6b50c0b0
UW
590 && regnum < gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 592 {
6b50c0b0 593 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 594 xtensa_register_type_t type = reg->type;
6b50c0b0 595 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 596
bdb4c075 597 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
598 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
599 {
600 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
601 {
602 warning (_("cannot read register %s"),
d93859e2 603 xtensa_register_name (gdbarch, regnum));
05d1431c 604 return REG_VALID;
ca3bf3bd
DJ
605 }
606 }
607
608 /* Some targets cannot read TIE register files. */
609 else if (type == xtRegisterTypeTieRegfile)
610 {
611 /* Use 'fetch' to get register? */
612 if (flags & xtTargetFlagsUseFetchStore)
613 {
614 warning (_("cannot read register"));
05d1431c 615 return REG_VALID;
ca3bf3bd
DJ
616 }
617
618 /* On some targets (esp. simulators), we can always read the reg. */
619 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
620 {
621 warning (_("cannot read register"));
05d1431c 622 return REG_VALID;
ca3bf3bd
DJ
623 }
624 }
625
626 /* We can always read mapped registers. */
627 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 628 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
629
630 /* Assume that we can read the register. */
03f50fc8 631 return regcache->raw_read (regnum, buffer);
ca3bf3bd 632 }
ca3bf3bd
DJ
633 else
634 internal_error (__FILE__, __LINE__,
635 _("invalid register number %d"), regnum);
636}
637
638
639/* Write pseudo registers. */
640
641static void
642xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 struct regcache *regcache,
644 int regnum,
645 const gdb_byte *buffer)
646{
647 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 648 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 649
bdb4c075 650 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0 651 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 652 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 653 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 654 {
c185f580
AH
655 ULONGEST value;
656 regcache_raw_read_unsigned (regcache,
657 gdbarch_tdep (gdbarch)->wb_regnum, &value);
658 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
659 }
660
661 /* We can always write 'core' registers.
662 Note: We might have converted Ax->ARy. */
6b50c0b0 663 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
664 regcache_raw_write (regcache, regnum, buffer);
665
94a0e877
MG
666 /* We have to find out how to deal with priveleged registers.
667 Let's treat them as pseudo-registers, but we cannot read/write them. */
668
669 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
670 {
671 return;
672 }
ca3bf3bd 673 /* Pseudo registers. */
f57d151a 674 else if (regnum >= 0
6b50c0b0
UW
675 && regnum < gdbarch_num_regs (gdbarch)
676 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 677 {
6b50c0b0 678 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 679 xtensa_register_type_t type = reg->type;
6b50c0b0 680 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 681
bdb4c075
MG
682 /* On most targets, we cannot write registers
683 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
684 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
685 {
686 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
687 {
688 warning (_("cannot write register %s"),
d93859e2 689 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
690 return;
691 }
692 }
693
694 /* Some targets cannot read TIE register files. */
695 else if (type == xtRegisterTypeTieRegfile)
696 {
697 /* Use 'store' to get register? */
698 if (flags & xtTargetFlagsUseFetchStore)
699 {
700 warning (_("cannot write register"));
701 return;
702 }
703
704 /* On some targets (esp. simulators), we can always write
705 the register. */
ca3bf3bd
DJ
706 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
707 {
708 warning (_("cannot write register"));
709 return;
710 }
711 }
712
713 /* We can always write mapped registers. */
714 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
715 {
9c9acae0 716 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
717 return;
718 }
719
720 /* Assume that we can write the register. */
721 regcache_raw_write (regcache, regnum, buffer);
722 }
ca3bf3bd
DJ
723 else
724 internal_error (__FILE__, __LINE__,
725 _("invalid register number %d"), regnum);
726}
727
ca3bf3bd
DJ
728static struct reggroup *xtensa_ar_reggroup;
729static struct reggroup *xtensa_user_reggroup;
730static struct reggroup *xtensa_vectra_reggroup;
7b871568 731static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
732
733static void
734xtensa_init_reggroups (void)
735{
98689b25 736 int i;
98689b25 737
ca3bf3bd
DJ
738 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
739 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
740 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 741
98689b25 742 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
9c3cc999 743 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
7b871568 744}
ca3bf3bd
DJ
745
746static void
747xtensa_add_reggroups (struct gdbarch *gdbarch)
748{
7b871568
MG
749 int i;
750
751 /* Predefined groups. */
ca3bf3bd
DJ
752 reggroup_add (gdbarch, all_reggroup);
753 reggroup_add (gdbarch, save_reggroup);
754 reggroup_add (gdbarch, restore_reggroup);
755 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
756 reggroup_add (gdbarch, vector_reggroup);
757 reggroup_add (gdbarch, general_reggroup);
758 reggroup_add (gdbarch, float_reggroup);
759
760 /* Xtensa-specific groups. */
761 reggroup_add (gdbarch, xtensa_ar_reggroup);
762 reggroup_add (gdbarch, xtensa_user_reggroup);
763 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 764
7b871568
MG
765 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
766 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
767}
768
7b871568
MG
769static int
770xtensa_coprocessor_register_group (struct reggroup *group)
771{
772 int i;
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 if (group == xtensa_cp[i])
776 return i;
777
778 return -1;
779}
ca3bf3bd
DJ
780
781#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
782 | XTENSA_REGISTER_FLAGS_WRITABLE \
783 | XTENSA_REGISTER_FLAGS_VOLATILE)
784
785#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
786 | XTENSA_REGISTER_FLAGS_WRITABLE)
787
788static int
789xtensa_register_reggroup_p (struct gdbarch *gdbarch,
790 int regnum,
791 struct reggroup *group)
792{
6b50c0b0 793 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
794 xtensa_register_type_t type = reg->type;
795 xtensa_register_group_t rg = reg->group;
7b871568 796 int cp_number;
ca3bf3bd 797
57041825
MG
798 if (group == save_reggroup)
799 /* Every single register should be included into the list of registers
800 to be watched for changes while using -data-list-changed-registers. */
801 return 1;
802
ca3bf3bd
DJ
803 /* First, skip registers that are not visible to this target
804 (unknown and unmapped registers when not using ISS). */
805
806 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
807 return 0;
808 if (group == all_reggroup)
809 return 1;
810 if (group == xtensa_ar_reggroup)
811 return rg & xtRegisterGroupAddrReg;
812 if (group == xtensa_user_reggroup)
813 return rg & xtRegisterGroupUser;
814 if (group == float_reggroup)
815 return rg & xtRegisterGroupFloat;
816 if (group == general_reggroup)
817 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
818 if (group == system_reggroup)
819 return rg & xtRegisterGroupState;
820 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
821 return rg & xtRegisterGroupVectra;
57041825 822 if (group == restore_reggroup)
6b50c0b0 823 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 824 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
825 cp_number = xtensa_coprocessor_register_group (group);
826 if (cp_number >= 0)
7b871568 827 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
828 else
829 return 1;
830}
831
832
ca3bf3bd
DJ
833/* Supply register REGNUM from the buffer specified by GREGS and LEN
834 in the general-purpose register set REGSET to register cache
bdb4c075 835 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
836
837static void
838xtensa_supply_gregset (const struct regset *regset,
839 struct regcache *rc,
840 int regnum,
841 const void *gregs,
842 size_t len)
843{
19ba03f4 844 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
ac7936df 845 struct gdbarch *gdbarch = rc->arch ();
ca3bf3bd
DJ
846 int i;
847
cce7e648 848 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 849
6b50c0b0
UW
850 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
851 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
852 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
853 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
854 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
855 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 856 (char *) &regs->windowbase);
6b50c0b0
UW
857 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 859 (char *) &regs->windowstart);
6b50c0b0
UW
860 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 862 (char *) &regs->lbeg);
6b50c0b0
UW
863 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 865 (char *) &regs->lend);
6b50c0b0
UW
866 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 868 (char *) &regs->lcount);
6b50c0b0
UW
869 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 871 (char *) &regs->sar);
6b50c0b0
UW
872 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
873 && regnum < gdbarch_tdep (gdbarch)->ar_base
874 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
875 regcache_raw_supply (rc, regnum,
876 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 877 (gdbarch)->ar_base]);
ca3bf3bd
DJ
878 else if (regnum == -1)
879 {
6b50c0b0
UW
880 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
881 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 882 (char *) &regs->ar[i]);
ca3bf3bd
DJ
883 }
884}
885
886
887/* Xtensa register set. */
888
889static struct regset
890xtensa_gregset =
891{
892 NULL,
893 xtensa_supply_gregset
894};
895
896
97094034 897/* Iterate over supported core file register note sections. */
ca3bf3bd 898
97094034
AA
899static void
900xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
901 iterate_over_regset_sections_cb *cb,
902 void *cb_data,
903 const struct regcache *regcache)
ca3bf3bd 904{
97094034 905 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 906
97094034
AA
907 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
908 NULL, cb_data);
ca3bf3bd
DJ
909}
910
911
bdb4c075 912/* Handling frames. */
ca3bf3bd 913
bdb4c075
MG
914/* Number of registers to save in case of Windowed ABI. */
915#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 916
bdb4c075
MG
917/* Frame cache part for Windowed ABI. */
918typedef struct xtensa_windowed_frame_cache
ca3bf3bd 919{
ee967b5f
MG
920 int wb; /* WINDOWBASE of the previous frame. */
921 int callsize; /* Call size of this frame. */
08b9c608
MG
922 int ws; /* WINDOWSTART of the previous frame. It keeps track of
923 life windows only. If there is no bit set for the
924 window, that means it had been already spilled
925 because of window overflow. */
926
927 /* Addresses of spilled A-registers.
928 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 929 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
930} xtensa_windowed_frame_cache_t;
931
932/* Call0 ABI Definitions. */
933
581e13c1
MS
934#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
935 analysis. */
bdb4c075
MG
936#define C0_CLESV 12 /* Callee-saved registers are here and up. */
937#define C0_SP 1 /* Register used as SP. */
938#define C0_FP 15 /* Register used as FP. */
939#define C0_RA 0 /* Register used as return address. */
940#define C0_ARGS 2 /* Register used as first arg/retval. */
941#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
942
943/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
944 A-register where the current content of the reg came from (in terms
945 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
946 mean that the orignal content of the register was saved to the stack.
947 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
948 know where SP will end up until the entire prologue has been analyzed. */
949
950#define C0_CONST -1 /* fr_reg value if register contains a constant. */
951#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
952#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
953
954extern xtensa_isa xtensa_default_isa;
955
956typedef struct xtensa_c0reg
957{
dbab50de
MG
958 int fr_reg; /* original register from which register content
959 is derived, or C0_CONST, or C0_INEXP. */
960 int fr_ofs; /* constant offset from reg, or immediate value. */
961 int to_stk; /* offset from original SP to register (4-byte aligned),
962 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
963} xtensa_c0reg_t;
964
bdb4c075
MG
965/* Frame cache part for Call0 ABI. */
966typedef struct xtensa_call0_frame_cache
967{
dbab50de
MG
968 int c0_frmsz; /* Stack frame size. */
969 int c0_hasfp; /* Current frame uses frame pointer. */
970 int fp_regnum; /* A-register used as FP. */
971 int c0_fp; /* Actual value of frame pointer. */
972 int c0_fpalign; /* Dinamic adjustment for the stack
973 pointer. It's an AND mask. Zero,
974 if alignment was not adjusted. */
975 int c0_old_sp; /* In case of dynamic adjustment, it is
976 a register holding unaligned sp.
977 C0_INEXP, when undefined. */
978 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
979 stack offset. C0_NOSTK otherwise. */
980
981 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
982} xtensa_call0_frame_cache_t;
983
984typedef struct xtensa_frame_cache
985{
ee967b5f 986 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
987 CORE_ADDR pc; /* PC of this frame at the function entry point. */
988 CORE_ADDR ra; /* The raw return address of this frame. */
989 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
990 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
991 int call0; /* It's a call0 framework (else windowed). */
992 union
993 {
994 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
995 xtensa_call0_frame_cache_t c0; /* call0 == true. */
996 };
ca3bf3bd
DJ
997} xtensa_frame_cache_t;
998
999
1000static struct xtensa_frame_cache *
bdb4c075 1001xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
1002{
1003 xtensa_frame_cache_t *cache;
1004 int i;
1005
1006 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1007
1008 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1009
1010 cache->base = 0;
1011 cache->pc = 0;
1012 cache->ra = 0;
ca3bf3bd 1013 cache->ps = 0;
ca3bf3bd 1014 cache->prev_sp = 0;
bdb4c075
MG
1015 cache->call0 = !windowed;
1016 if (cache->call0)
1017 {
1018 cache->c0.c0_frmsz = -1;
1019 cache->c0.c0_hasfp = 0;
1020 cache->c0.fp_regnum = -1;
1021 cache->c0.c0_fp = -1;
dbab50de
MG
1022 cache->c0.c0_fpalign = 0;
1023 cache->c0.c0_old_sp = C0_INEXP;
1024 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1025
bdb4c075
MG
1026 for (i = 0; i < C0_NREGS; i++)
1027 {
1028 cache->c0.c0_rt[i].fr_reg = i;
1029 cache->c0.c0_rt[i].fr_ofs = 0;
1030 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1031 }
1032 }
1033 else
1034 {
1035 cache->wd.wb = 0;
ee967b5f 1036 cache->wd.ws = 0;
bdb4c075 1037 cache->wd.callsize = -1;
ca3bf3bd 1038
bdb4c075
MG
1039 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1040 cache->wd.aregs[i] = -1;
1041 }
ca3bf3bd
DJ
1042 return cache;
1043}
1044
1045
1046static CORE_ADDR
1047xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1048{
1049 return address & ~15;
1050}
1051
1052
1053static CORE_ADDR
1054xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1055{
ff7a4c00 1056 gdb_byte buf[8];
0dfff4cb 1057 CORE_ADDR pc;
ca3bf3bd 1058
a74ce742
PM
1059 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1060 host_address_to_string (next_frame));
ca3bf3bd 1061
6b50c0b0 1062 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1063 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1064
0dfff4cb 1065 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1066
0dfff4cb 1067 return pc;
ca3bf3bd
DJ
1068}
1069
1070
1071static struct frame_id
5142f611 1072xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1073{
1074 CORE_ADDR pc, fp;
ca3bf3bd 1075
5142f611 1076 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1077
5142f611
MG
1078 pc = get_frame_pc (this_frame);
1079 fp = get_frame_register_unsigned
1080 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1081
1082 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1083 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1084}
1085
08b9c608
MG
1086/* Returns true, if instruction to execute next is unique to Xtensa Window
1087 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1088
1089static int
1090xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1091{
1092 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1093 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1094 unsigned int code;
1095
1096 if (byte_order == BFD_ENDIAN_BIG)
1097 {
1098 /* Check, if this is L32E or S32E. */
1099 code = insn & 0xf000ff00;
1100 if ((code == 0x00009000) || (code == 0x00009400))
1101 return 1;
1102 /* Check, if this is RFWU or RFWO. */
1103 code = insn & 0xffffff00;
1104 return ((code == 0x00430000) || (code == 0x00530000));
1105 }
1106 else
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0x00ff000f;
1110 if ((code == 0x090000) || (code == 0x490000))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0x00ffffff;
1114 return ((code == 0x00003400) || (code == 0x00003500));
1115 }
1116}
1117
ee967b5f
MG
1118/* Returns the best guess about which register is a frame pointer
1119 for the function containing CURRENT_PC. */
1120
d4709618
MG
1121#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1122#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1123
1124static unsigned int
1125xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1126{
1127#define RETURN_FP goto done
1128
1129 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1130 CORE_ADDR start_addr;
1131 xtensa_isa isa;
1132 xtensa_insnbuf ins, slot;
948f8e3d 1133 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1134 CORE_ADDR ia, bt, ba;
1135 xtensa_format ifmt;
1136 int ilen, islots, is;
1137 xtensa_opcode opc;
1138 const char *opcname;
1139
1140 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1141 if (start_addr == 0)
1142 return fp_regnum;
1143
ee967b5f
MG
1144 isa = xtensa_default_isa;
1145 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1146 ins = xtensa_insnbuf_alloc (isa);
1147 slot = xtensa_insnbuf_alloc (isa);
1148 ba = 0;
1149
1150 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1151 {
1152 if (ia + xtensa_isa_maxlength (isa) > bt)
1153 {
1154 ba = ia;
1155 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1156 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1157 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1158 RETURN_FP;
ee967b5f
MG
1159 }
1160
1161 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1162 ifmt = xtensa_format_decode (isa, ins);
1163 if (ifmt == XTENSA_UNDEFINED)
1164 RETURN_FP;
1165 ilen = xtensa_format_length (isa, ifmt);
1166 if (ilen == XTENSA_UNDEFINED)
1167 RETURN_FP;
1168 islots = xtensa_format_num_slots (isa, ifmt);
1169 if (islots == XTENSA_UNDEFINED)
1170 RETURN_FP;
1171
1172 for (is = 0; is < islots; ++is)
1173 {
1174 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1175 RETURN_FP;
1176
1177 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1178 if (opc == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180
1181 opcname = xtensa_opcode_name (isa, opc);
1182
1183 if (strcasecmp (opcname, "mov.n") == 0
1184 || strcasecmp (opcname, "or") == 0)
1185 {
1186 unsigned int register_operand;
1187
1188 /* Possible candidate for setting frame pointer
581e13c1 1189 from A1. This is what we are looking for. */
ee967b5f
MG
1190
1191 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1192 is, slot, &register_operand) != 0)
1193 RETURN_FP;
1194 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1195 RETURN_FP;
1196 if (register_operand == 1) /* Mov{.n} FP A1. */
1197 {
1198 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1199 &register_operand) != 0)
1200 RETURN_FP;
1201 if (xtensa_operand_decode (isa, opc, 0,
1202 &register_operand) != 0)
1203 RETURN_FP;
1204
581e13c1
MS
1205 fp_regnum
1206 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1207 RETURN_FP;
1208 }
1209 }
1210
1211 if (
1212 /* We have problems decoding the memory. */
1213 opcname == NULL
1214 || strcasecmp (opcname, "ill") == 0
1215 || strcasecmp (opcname, "ill.n") == 0
1216 /* Hit planted breakpoint. */
1217 || strcasecmp (opcname, "break") == 0
1218 || strcasecmp (opcname, "break.n") == 0
1219 /* Flow control instructions finish prologue. */
1220 || xtensa_opcode_is_branch (isa, opc) > 0
1221 || xtensa_opcode_is_jump (isa, opc) > 0
1222 || xtensa_opcode_is_loop (isa, opc) > 0
1223 || xtensa_opcode_is_call (isa, opc) > 0
1224 || strcasecmp (opcname, "simcall") == 0
1225 || strcasecmp (opcname, "syscall") == 0)
1226 /* Can not continue analysis. */
1227 RETURN_FP;
1228 }
1229 }
1230done:
1231 xtensa_insnbuf_free(isa, slot);
1232 xtensa_insnbuf_free(isa, ins);
1233 return fp_regnum;
1234}
1235
bdb4c075
MG
1236/* The key values to identify the frame using "cache" are
1237
ee967b5f 1238 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1239 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1240 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1241
1242static void
5142f611 1243call0_frame_cache (struct frame_info *this_frame,
dbab50de 1244 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1245
08b9c608
MG
1246static void
1247xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1248 xtensa_frame_cache_t *cache,
1249 CORE_ADDR pc);
1250
ca3bf3bd 1251static struct xtensa_frame_cache *
5142f611 1252xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1253{
1254 xtensa_frame_cache_t *cache;
ca3bf3bd 1255 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1256 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1258 unsigned int fp_regnum;
98689b25 1259 int windowed, ps_regnum;
ca3bf3bd 1260
ca3bf3bd 1261 if (*this_cache)
19ba03f4 1262 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1263
98689b25
MG
1264 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1265 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1266 ps = (ps_regnum >= 0
1267 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1268
1269 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1270
ca3bf3bd 1271 /* Get pristine xtensa-frame. */
bdb4c075 1272 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1273 *this_cache = cache;
1274
bdb4c075 1275 if (windowed)
ca3bf3bd 1276 {
a08b52b5 1277 LONGEST op1;
98689b25 1278
bdb4c075 1279 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1280 wb = get_frame_register_unsigned (this_frame,
1281 gdbarch_tdep (gdbarch)->wb_regnum);
1282 ws = get_frame_register_unsigned (this_frame,
1283 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1284
a08b52b5
MF
1285 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1286 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1287 {
bdb4c075 1288 int callinc = CALLINC (ps);
5142f611
MG
1289 ra = get_frame_register_unsigned
1290 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1291
1292 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1293 cache->wd.callsize = 0;
1294 cache->wd.wb = wb;
1295 cache->wd.ws = ws;
5142f611
MG
1296 cache->prev_sp = get_frame_register_unsigned
1297 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1298
1299 /* This only can be the outermost frame since we are
1300 just about to execute ENTRY. SP hasn't been set yet.
1301 We can assume any frame size, because it does not
1302 matter, and, let's fake frame base in cache. */
98689b25 1303 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1304
1305 cache->pc = pc;
1306 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1307 cache->ps = (ps & ~PS_CALLINC_MASK)
1308 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1309
1310 return cache;
bdb4c075
MG
1311 }
1312 else
1313 {
ee967b5f 1314 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1315 ra = get_frame_register_unsigned (this_frame,
1316 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1317 cache->wd.callsize = WINSIZE (ra);
304fe255 1318 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1319 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1320 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1321
5142f611 1322 cache->pc = get_frame_func (this_frame);
f6402f18 1323 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1324 cache->ps = (ps & ~PS_CALLINC_MASK)
1325 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1326 }
bdb4c075
MG
1327
1328 if (cache->wd.ws == 0)
ca3bf3bd 1329 {
bdb4c075 1330 int i;
ca3bf3bd 1331
bdb4c075 1332 /* Set A0...A3. */
5142f611
MG
1333 sp = get_frame_register_unsigned
1334 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1335
1336 for (i = 0; i < 4; i++, sp += 4)
1337 {
1338 cache->wd.aregs[i] = sp;
1339 }
ca3bf3bd 1340
bdb4c075 1341 if (cache->wd.callsize > 4)
ca3bf3bd 1342 {
bdb4c075 1343 /* Set A4...A7/A11. */
ee967b5f
MG
1344 /* Get the SP of the frame previous to the previous one.
1345 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1346 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1347 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1348 sp -= cache->wd.callsize * 4;
1349
ee967b5f 1350 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1351 {
1352 cache->wd.aregs[i] = sp;
1353 }
ca3bf3bd
DJ
1354 }
1355 }
ca3bf3bd 1356
bdb4c075 1357 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1358 /* If RA is equal to 0 this frame is an outermost frame. Leave
1359 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1360 {
ee967b5f 1361 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1362 {
1363 /* Register window overflow already happened.
1364 We can read caller's SP from the proper spill loction. */
5142f611
MG
1365 sp = get_frame_register_unsigned
1366 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1367 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1368 }
1369 else
1370 {
1371 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1372 int regnum = arreg_number
91d8eb23 1373 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1374 cache->wd.wb);
ca3bf3bd 1375
08b9c608 1376 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1377 }
ca3bf3bd
DJ
1378 }
1379 }
08b9c608
MG
1380 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1381 {
1382 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1383
1384 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1385 /* Everything was set already, including cache->base. */
1386 return cache;
1387 }
bdb4c075
MG
1388 else /* Call0 framework. */
1389 {
dbab50de 1390 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1391 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1392 }
ca3bf3bd 1393
5142f611 1394 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1395
ca3bf3bd
DJ
1396 return cache;
1397}
1398
dbab50de
MG
1399static int xtensa_session_once_reported = 1;
1400
1401/* Report a problem with prologue analysis while doing backtracing.
1402 But, do it only once to avoid annoyng repeated messages. */
1403
4e6ca6d5
MG
1404static void
1405warning_once (void)
dbab50de
MG
1406{
1407 if (xtensa_session_once_reported == 0)
1408 warning (_("\
1409\nUnrecognised function prologue. Stack trace cannot be resolved. \
1410This message will not be repeated in this session.\n"));
1411
1412 xtensa_session_once_reported = 1;
1413}
1414
1415
ca3bf3bd 1416static void
5142f611 1417xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1418 void **this_cache,
1419 struct frame_id *this_id)
1420{
1421 struct xtensa_frame_cache *cache =
5142f611 1422 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1423
1424 if (cache->prev_sp == 0)
1425 return;
1426
5142f611 1427 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1428}
ca3bf3bd 1429
5142f611
MG
1430static struct value *
1431xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1432 void **this_cache,
5142f611 1433 int regnum)
ca3bf3bd 1434{
5142f611
MG
1435 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1436 struct xtensa_frame_cache *cache;
1437 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1438 int done = 1;
1439
5142f611
MG
1440 if (*this_cache == NULL)
1441 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1442 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1443
6b50c0b0 1444 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1445 saved_reg = cache->ra;
6b50c0b0 1446 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1447 saved_reg = cache->prev_sp;
1448 else if (!cache->call0)
ca3bf3bd 1449 {
6b50c0b0 1450 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1451 saved_reg = cache->wd.ws;
6b50c0b0 1452 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1453 saved_reg = cache->wd.wb;
6b50c0b0 1454 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1455 saved_reg = cache->ps;
ca3bf3bd 1456 else
bdb4c075 1457 done = 0;
ca3bf3bd 1458 }
ca3bf3bd
DJ
1459 else
1460 done = 0;
1461
1462 if (done)
5142f611 1463 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1464
bdb4c075 1465 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1466 {
ee967b5f
MG
1467 /* Convert A-register numbers to AR-register numbers,
1468 if we deal with A-register. */
94a0e877 1469 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1470 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1471 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1472
ee967b5f 1473 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1474 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1475 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1476 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1477 {
ee967b5f 1478 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1479
bdb4c075
MG
1480 if (areg >= 0
1481 && areg < XTENSA_NUM_SAVED_AREGS
1482 && cache->wd.aregs[areg] != -1)
5142f611
MG
1483 return frame_unwind_got_memory (this_frame, regnum,
1484 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1485 }
1486 }
bdb4c075
MG
1487 else /* Call0 ABI. */
1488 {
6b50c0b0
UW
1489 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1490 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1491 + C0_NREGS))
6b50c0b0 1492 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1493
bdb4c075
MG
1494 if (reg < C0_NREGS)
1495 {
1496 CORE_ADDR spe;
1497 int stkofs;
1498
1499 /* If register was saved in the prologue, retrieve it. */
1500 stkofs = cache->c0.c0_rt[reg].to_stk;
1501 if (stkofs != C0_NOSTK)
1502 {
1503 /* Determine SP on entry based on FP. */
1504 spe = cache->c0.c0_fp
1505 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1506
581e13c1
MS
1507 return frame_unwind_got_memory (this_frame, regnum,
1508 spe + stkofs);
bdb4c075
MG
1509 }
1510 }
1511 }
1512
1513 /* All other registers have been either saved to
1514 the stack or are still alive in the processor. */
ca3bf3bd 1515
5142f611 1516 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1517}
1518
1519
1520static const struct frame_unwind
5142f611 1521xtensa_unwind =
ca3bf3bd
DJ
1522{
1523 NORMAL_FRAME,
8fbca658 1524 default_frame_unwind_stop_reason,
ca3bf3bd 1525 xtensa_frame_this_id,
5142f611
MG
1526 xtensa_frame_prev_register,
1527 NULL,
1528 default_frame_sniffer
ca3bf3bd
DJ
1529};
1530
ca3bf3bd 1531static CORE_ADDR
5142f611 1532xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1533{
1534 struct xtensa_frame_cache *cache =
5142f611 1535 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1536
1537 return cache->base;
1538}
1539
1540static const struct frame_base
1541xtensa_frame_base =
1542{
5142f611 1543 &xtensa_unwind,
ca3bf3bd
DJ
1544 xtensa_frame_base_address,
1545 xtensa_frame_base_address,
1546 xtensa_frame_base_address
1547};
1548
1549
1550static void
1551xtensa_extract_return_value (struct type *type,
1552 struct regcache *regcache,
1553 void *dst)
1554{
ac7936df 1555 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1556 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1557 int len = TYPE_LENGTH (type);
1558 ULONGEST pc, wb;
1559 int callsize, areg;
1560 int offset = 0;
1561
1562 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1563
1564 gdb_assert(len > 0);
1565
6b50c0b0 1566 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1567 {
1568 /* First, we have to find the caller window in the register file. */
6b50c0b0 1569 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1570 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1571
bdb4c075
MG
1572 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1573 if (len > (callsize > 8 ? 8 : 16))
1574 internal_error (__FILE__, __LINE__,
581e13c1
MS
1575 _("cannot extract return value of %d bytes long"),
1576 len);
ca3bf3bd 1577
bdb4c075
MG
1578 /* Get the register offset of the return
1579 register (A2) in the caller window. */
304fe255 1580 regcache_raw_read_unsigned
6b50c0b0 1581 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1582 areg = arreg_number (gdbarch,
91d8eb23 1583 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1584 }
1585 else
1586 {
1587 /* No windowing hardware - Call0 ABI. */
94a0e877 1588 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1589 }
ca3bf3bd
DJ
1590
1591 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1592
6b50c0b0 1593 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1594 offset = 4 - len;
1595
1596 for (; len > 0; len -= 4, areg++, valbuf += 4)
1597 {
1598 if (len < 4)
1599 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1600 else
1601 regcache_raw_read (regcache, areg, valbuf);
1602 }
1603}
1604
1605
1606static void
1607xtensa_store_return_value (struct type *type,
1608 struct regcache *regcache,
1609 const void *dst)
1610{
ac7936df 1611 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1612 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1613 unsigned int areg;
1614 ULONGEST pc, wb;
1615 int callsize;
1616 int len = TYPE_LENGTH (type);
1617 int offset = 0;
1618
1619 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1620
6b50c0b0 1621 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1622 {
6b50c0b0
UW
1623 regcache_raw_read_unsigned
1624 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1625 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1626 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1627
bdb4c075
MG
1628 if (len > (callsize > 8 ? 8 : 16))
1629 internal_error (__FILE__, __LINE__,
1630 _("unimplemented for this length: %d"),
1631 TYPE_LENGTH (type));
ee967b5f
MG
1632 areg = arreg_number (gdbarch,
1633 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1634
bdb4c075 1635 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1636 callsize, (int) wb);
bdb4c075
MG
1637 }
1638 else
1639 {
94a0e877 1640 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1641 }
ca3bf3bd 1642
6b50c0b0 1643 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1644 offset = 4 - len;
1645
ca3bf3bd
DJ
1646 for (; len > 0; len -= 4, areg++, valbuf += 4)
1647 {
1648 if (len < 4)
1649 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1650 else
1651 regcache_raw_write (regcache, areg, valbuf);
1652 }
1653}
1654
1655
bdb4c075 1656static enum return_value_convention
ca3bf3bd 1657xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1658 struct value *function,
ca3bf3bd
DJ
1659 struct type *valtype,
1660 struct regcache *regcache,
1661 gdb_byte *readbuf,
1662 const gdb_byte *writebuf)
1663{
bdb4c075 1664 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1665
1666 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1667 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1668 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1669 && TYPE_LENGTH (valtype) > 16);
1670
1671 if (struct_return)
1672 return RETURN_VALUE_STRUCT_CONVENTION;
1673
1674 DEBUGTRACE ("xtensa_return_value(...)\n");
1675
1676 if (writebuf != NULL)
1677 {
1678 xtensa_store_return_value (valtype, regcache, writebuf);
1679 }
1680
1681 if (readbuf != NULL)
1682 {
1683 gdb_assert (!struct_return);
1684 xtensa_extract_return_value (valtype, regcache, readbuf);
1685 }
1686 return RETURN_VALUE_REGISTER_CONVENTION;
1687}
1688
1689
1690/* DUMMY FRAME */
1691
1692static CORE_ADDR
1693xtensa_push_dummy_call (struct gdbarch *gdbarch,
1694 struct value *function,
1695 struct regcache *regcache,
1696 CORE_ADDR bp_addr,
1697 int nargs,
1698 struct value **args,
1699 CORE_ADDR sp,
1700 int struct_return,
1701 CORE_ADDR struct_addr)
1702{
e17a4113 1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd
DJ
1704 int i;
1705 int size, onstack_size;
ff7a4c00 1706 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1707 CORE_ADDR ra, ps;
1708 struct argument_info
1709 {
1710 const bfd_byte *contents;
1711 int length;
1712 int onstack; /* onstack == 0 => in reg */
1713 int align; /* alignment */
1714 union
1715 {
581e13c1
MS
1716 int offset; /* stack offset if on stack. */
1717 int regno; /* regno if in register. */
ca3bf3bd
DJ
1718 } u;
1719 };
1720
1721 struct argument_info *arg_info =
1722 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1723
1724 CORE_ADDR osp = sp;
1725
1726 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1727
1728 if (xtensa_debug_level > 3)
1729 {
1730 int i;
1731 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1732 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1733 "struct_addr=0x%x\n",
1734 (int) sp, (int) struct_return, (int) struct_addr);
1735
1736 for (i = 0; i < nargs; i++)
1737 {
1738 struct value *arg = args[i];
1739 struct type *arg_type = check_typedef (value_type (arg));
3329c4b5
PM
1740 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1741 host_address_to_string (arg),
1742 TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1743 switch (TYPE_CODE (arg_type))
1744 {
1745 case TYPE_CODE_INT:
1746 fprintf_unfiltered (gdb_stdlog, "int");
1747 break;
1748 case TYPE_CODE_STRUCT:
1749 fprintf_unfiltered (gdb_stdlog, "struct");
1750 break;
1751 default:
1752 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1753 break;
1754 }
3329c4b5
PM
1755 fprintf_unfiltered (gdb_stdlog, " %s\n",
1756 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1757 }
1758 }
1759
1760 /* First loop: collect information.
1761 Cast into type_long. (This shouldn't happen often for C because
1762 GDB already does this earlier.) It's possible that GDB could
1763 do it all the time but it's harmless to leave this code here. */
1764
1765 size = 0;
1766 onstack_size = 0;
1767 i = 0;
1768
1769 if (struct_return)
1770 size = REGISTER_SIZE;
1771
1772 for (i = 0; i < nargs; i++)
1773 {
1774 struct argument_info *info = &arg_info[i];
1775 struct value *arg = args[i];
1776 struct type *arg_type = check_typedef (value_type (arg));
1777
1778 switch (TYPE_CODE (arg_type))
1779 {
1780 case TYPE_CODE_INT:
1781 case TYPE_CODE_BOOL:
1782 case TYPE_CODE_CHAR:
1783 case TYPE_CODE_RANGE:
1784 case TYPE_CODE_ENUM:
1785
1786 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1787 if (TYPE_LENGTH (arg_type)
1788 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1789 {
0dfff4cb 1790 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1791 arg = value_cast (arg_type, arg);
1792 }
bdb4c075
MG
1793 /* Aligment is equal to the type length for the basic types. */
1794 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1795 break;
1796
1797 case TYPE_CODE_FLT:
1798
1799 /* Align doubles correctly. */
0dfff4cb
UW
1800 if (TYPE_LENGTH (arg_type)
1801 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1802 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1803 else
0dfff4cb 1804 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1805 break;
1806
1807 case TYPE_CODE_STRUCT:
1808 default:
0dfff4cb 1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1810 break;
1811 }
1812 info->length = TYPE_LENGTH (arg_type);
1813 info->contents = value_contents (arg);
1814
1815 /* Align size and onstack_size. */
1816 size = (size + info->align - 1) & ~(info->align - 1);
1817 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1818
91d8eb23 1819 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1820 {
1821 info->onstack = 1;
1822 info->u.offset = onstack_size;
1823 onstack_size += info->length;
1824 }
1825 else
1826 {
1827 info->onstack = 0;
91d8eb23 1828 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1829 }
1830 size += info->length;
1831 }
1832
1833 /* Adjust the stack pointer and align it. */
1834 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1835
bdb4c075 1836 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1837 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1838 && (sp != osp))
ca3bf3bd
DJ
1839 {
1840 read_memory (osp - 16, buf, 16);
1841 write_memory (sp - 16, buf, 16);
1842 }
1843
1844 /* Second Loop: Load arguments. */
1845
1846 if (struct_return)
1847 {
e17a4113 1848 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
91d8eb23 1849 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1850 }
1851
1852 for (i = 0; i < nargs; i++)
1853 {
1854 struct argument_info *info = &arg_info[i];
1855
1856 if (info->onstack)
1857 {
1858 int n = info->length;
1859 CORE_ADDR offset = sp + info->u.offset;
1860
1861 /* Odd-sized structs are aligned to the lower side of a memory
1862 word in big-endian mode and require a shift. This only
1863 applies for structures smaller than one word. */
1864
4c6b5505 1865 if (n < REGISTER_SIZE
6b50c0b0 1866 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1867 offset += (REGISTER_SIZE - n);
1868
1869 write_memory (offset, info->contents, info->length);
1870
1871 }
1872 else
1873 {
1874 int n = info->length;
1875 const bfd_byte *cp = info->contents;
1876 int r = info->u.regno;
1877
1878 /* Odd-sized structs are aligned to the lower side of registers in
1879 big-endian mode and require a shift. The odd-sized leftover will
1880 be at the end. Note that this is only true for structures smaller
1881 than REGISTER_SIZE; for larger odd-sized structures the excess
1882 will be left-aligned in the register on both endiannesses. */
1883
e17a4113 1884 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1885 {
e17a4113
UW
1886 ULONGEST v;
1887 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1888 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1889
e17a4113 1890 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
ca3bf3bd
DJ
1891 regcache_cooked_write (regcache, r, buf);
1892
1893 cp += REGISTER_SIZE;
1894 n -= REGISTER_SIZE;
1895 r++;
1896 }
1897 else
1898 while (n > 0)
1899 {
ca3bf3bd
DJ
1900 regcache_cooked_write (regcache, r, cp);
1901
ca3bf3bd
DJ
1902 cp += REGISTER_SIZE;
1903 n -= REGISTER_SIZE;
1904 r++;
1905 }
1906 }
1907 }
1908
ca3bf3bd 1909 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1910 The return address for the current function (in A0) is
ca3bf3bd
DJ
1911 saved in the dummy frame, so we can savely overwrite A0 here. */
1912
6b50c0b0 1913 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1914 {
98689b25 1915 ULONGEST val;
68d6df83 1916
bdb4c075 1917 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1918 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1919 ps = (unsigned long) val & ~0x00030000;
304fe255 1920 regcache_cooked_write_unsigned
6b50c0b0 1921 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1922 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1923 gdbarch_ps_regnum (gdbarch),
bdb4c075 1924 ps | 0x00010000);
94a0e877
MG
1925
1926 /* All the registers have been saved. After executing
1927 dummy call, they all will be restored. So it's safe
1928 to modify WINDOWSTART register to make it look like there
1929 is only one register window corresponding to WINDOWEBASE. */
1930
1931 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1932 regcache_cooked_write_unsigned
1933 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1934 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1935 }
1936 else
1937 {
1938 /* Simulate CALL0: write RA into A0 register. */
304fe255 1939 regcache_cooked_write_unsigned
94a0e877 1940 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1941 }
ca3bf3bd
DJ
1942
1943 /* Set new stack pointer and return it. */
304fe255 1944 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1945 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1946 /* Make dummy frame ID unique by adding a constant. */
1947 return sp + SP_ALIGNMENT;
1948}
1949
cd6c3b4f
YQ
1950/* Implement the breakpoint_kind_from_pc gdbarch method. */
1951
d19280ad
YQ
1952static int
1953xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1954{
1955 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1956 return 2;
1957 else
1958 return 4;
1959}
ca3bf3bd
DJ
1960
1961/* Return a breakpoint for the current location of PC. We always use
1962 the density version if we have density instructions (regardless of the
1963 current instruction at PC), and use regular instructions otherwise. */
1964
1965#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1966#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1967#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1968#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1969
cd6c3b4f
YQ
1970/* Implement the sw_breakpoint_from_kind gdbarch method. */
1971
d19280ad
YQ
1972static const gdb_byte *
1973xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1974{
d19280ad 1975 *size = kind;
ca3bf3bd 1976
d19280ad 1977 if (kind == 4)
ca3bf3bd 1978 {
d19280ad
YQ
1979 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1980 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1981
67d57894 1982 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1983 return big_breakpoint;
ca3bf3bd 1984 else
d19280ad 1985 return little_breakpoint;
ca3bf3bd
DJ
1986 }
1987 else
1988 {
d19280ad
YQ
1989 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1990 static unsigned char density_little_breakpoint[]
1991 = DENSITY_LITTLE_BREAKPOINT;
1992
67d57894 1993 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1994 return density_big_breakpoint;
ca3bf3bd 1995 else
d19280ad 1996 return density_little_breakpoint;
ca3bf3bd
DJ
1997 }
1998}
1999
bdb4c075
MG
2000/* Call0 ABI support routines. */
2001
f976a05d
MG
2002/* Return true, if PC points to "ret" or "ret.n". */
2003
2004static int
2005call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2006{
2007#define RETURN_RET goto done
2008 xtensa_isa isa;
2009 xtensa_insnbuf ins, slot;
948f8e3d 2010 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
2011 CORE_ADDR ia, bt, ba;
2012 xtensa_format ifmt;
2013 int ilen, islots, is;
2014 xtensa_opcode opc;
2015 const char *opcname;
2016 int found_ret = 0;
2017
2018 isa = xtensa_default_isa;
2019 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2020 ins = xtensa_insnbuf_alloc (isa);
2021 slot = xtensa_insnbuf_alloc (isa);
2022 ba = 0;
2023
2024 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2025 {
2026 if (ia + xtensa_isa_maxlength (isa) > bt)
2027 {
2028 ba = ia;
2029 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2030 ? ba + XTENSA_ISA_BSZ : finish_pc;
2031 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2032 RETURN_RET;
2033 }
2034
2035 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2036 ifmt = xtensa_format_decode (isa, ins);
2037 if (ifmt == XTENSA_UNDEFINED)
2038 RETURN_RET;
2039 ilen = xtensa_format_length (isa, ifmt);
2040 if (ilen == XTENSA_UNDEFINED)
2041 RETURN_RET;
2042 islots = xtensa_format_num_slots (isa, ifmt);
2043 if (islots == XTENSA_UNDEFINED)
2044 RETURN_RET;
2045
2046 for (is = 0; is < islots; ++is)
2047 {
2048 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2049 RETURN_RET;
2050
2051 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2052 if (opc == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054
2055 opcname = xtensa_opcode_name (isa, opc);
2056
2057 if ((strcasecmp (opcname, "ret.n") == 0)
2058 || (strcasecmp (opcname, "ret") == 0))
2059 {
2060 found_ret = 1;
2061 RETURN_RET;
2062 }
2063 }
2064 }
2065 done:
2066 xtensa_insnbuf_free(isa, slot);
2067 xtensa_insnbuf_free(isa, ins);
2068 return found_ret;
2069}
2070
bdb4c075
MG
2071/* Call0 opcode class. Opcodes are preclassified according to what they
2072 mean for Call0 prologue analysis, and their number of significant operands.
2073 The purpose of this is to simplify prologue analysis by separating
2074 instruction decoding (libisa) from the semantics of prologue analysis. */
2075
68d6df83
MG
2076typedef enum
2077{
bdb4c075
MG
2078 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2079 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2080 c0opc_flow, /* Flow control insn. */
2081 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2082 c0opc_break, /* Debugger software breakpoints. */
2083 c0opc_add, /* Adding two registers. */
2084 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2085 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2086 c0opc_sub, /* Subtracting a register from a register. */
2087 c0opc_mov, /* Moving a register to a register. */
2088 c0opc_movi, /* Moving an immediate to a register. */
2089 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2090 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2091 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2092 c0opc_l32e, /* L32E instruction. */
2093 c0opc_s32e, /* S32E instruction. */
2094 c0opc_rfwo, /* RFWO instruction. */
2095 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2096 c0opc_NrOf /* Number of opcode classifications. */
2097} xtensa_insn_kind;
2098
08b9c608
MG
2099/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2100
2101static int
2102rwx_special_register (const char *opcname)
2103{
2104 char ch = *opcname++;
2105
2106 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2107 return 0;
2108 if (*opcname++ != 's')
2109 return 0;
2110 if (*opcname++ != 'r')
2111 return 0;
2112 if (*opcname++ != '.')
2113 return 0;
2114
2115 return 1;
2116}
bdb4c075
MG
2117
2118/* Classify an opcode based on what it means for Call0 prologue analysis. */
2119
2120static xtensa_insn_kind
2121call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2122{
2123 const char *opcname;
2124 xtensa_insn_kind opclass = c0opc_uninteresting;
2125
2126 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2127
2128 /* Get opcode name and handle special classifications. */
2129
2130 opcname = xtensa_opcode_name (isa, opc);
2131
2132 if (opcname == NULL
2133 || strcasecmp (opcname, "ill") == 0
2134 || strcasecmp (opcname, "ill.n") == 0)
2135 opclass = c0opc_illegal;
2136 else if (strcasecmp (opcname, "break") == 0
2137 || strcasecmp (opcname, "break.n") == 0)
2138 opclass = c0opc_break;
2139 else if (strcasecmp (opcname, "entry") == 0)
2140 opclass = c0opc_entry;
08b9c608
MG
2141 else if (strcasecmp (opcname, "rfwo") == 0)
2142 opclass = c0opc_rfwo;
2143 else if (strcasecmp (opcname, "rfwu") == 0)
2144 opclass = c0opc_rfwu;
bdb4c075
MG
2145 else if (xtensa_opcode_is_branch (isa, opc) > 0
2146 || xtensa_opcode_is_jump (isa, opc) > 0
2147 || xtensa_opcode_is_loop (isa, opc) > 0
2148 || xtensa_opcode_is_call (isa, opc) > 0
2149 || strcasecmp (opcname, "simcall") == 0
2150 || strcasecmp (opcname, "syscall") == 0)
2151 opclass = c0opc_flow;
2152
2153 /* Also, classify specific opcodes that need to be tracked. */
2154 else if (strcasecmp (opcname, "add") == 0
2155 || strcasecmp (opcname, "add.n") == 0)
2156 opclass = c0opc_add;
dbab50de
MG
2157 else if (strcasecmp (opcname, "and") == 0)
2158 opclass = c0opc_and;
bdb4c075
MG
2159 else if (strcasecmp (opcname, "addi") == 0
2160 || strcasecmp (opcname, "addi.n") == 0
2161 || strcasecmp (opcname, "addmi") == 0)
2162 opclass = c0opc_addi;
2163 else if (strcasecmp (opcname, "sub") == 0)
2164 opclass = c0opc_sub;
2165 else if (strcasecmp (opcname, "mov.n") == 0
2166 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2167 opclass = c0opc_mov;
2168 else if (strcasecmp (opcname, "movi") == 0
2169 || strcasecmp (opcname, "movi.n") == 0)
2170 opclass = c0opc_movi;
2171 else if (strcasecmp (opcname, "l32r") == 0)
2172 opclass = c0opc_l32r;
2173 else if (strcasecmp (opcname, "s32i") == 0
2174 || strcasecmp (opcname, "s32i.n") == 0)
2175 opclass = c0opc_s32i;
08b9c608
MG
2176 else if (strcasecmp (opcname, "l32e") == 0)
2177 opclass = c0opc_l32e;
2178 else if (strcasecmp (opcname, "s32e") == 0)
2179 opclass = c0opc_s32e;
2180 else if (rwx_special_register (opcname))
2181 opclass = c0opc_rwxsr;
bdb4c075
MG
2182
2183 return opclass;
2184}
2185
2186/* Tracks register movement/mutation for a given operation, which may
2187 be within a bundle. Updates the destination register tracking info
2188 accordingly. The pc is needed only for pc-relative load instructions
2189 (eg. l32r). The SP register number is needed to identify stores to
dbab50de
MG
2190 the stack frame. Returns 0, if analysis was succesfull, non-zero
2191 otherwise. */
bdb4c075 2192
dbab50de
MG
2193static int
2194call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2195 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2196 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2197{
e17a4113 2198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2199 unsigned litbase, litaddr, litval;
bdb4c075
MG
2200
2201 switch (opclass)
2202 {
2203 case c0opc_addi:
2204 /* 3 operands: dst, src, imm. */
2205 gdb_assert (nods == 3);
2206 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2207 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2208 break;
2209 case c0opc_add:
2210 /* 3 operands: dst, src1, src2. */
08b9c608 2211 gdb_assert (nods == 3);
bdb4c075
MG
2212 if (src[odv[1]].fr_reg == C0_CONST)
2213 {
2214 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2215 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2216 }
2217 else if (src[odv[2]].fr_reg == C0_CONST)
2218 {
2219 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2220 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2221 }
2222 else dst[odv[0]].fr_reg = C0_INEXP;
2223 break;
dbab50de
MG
2224 case c0opc_and:
2225 /* 3 operands: dst, src1, src2. */
2226 gdb_assert (nods == 3);
2227 if (cache->c0.c0_fpalign == 0)
2228 {
2229 /* Handle dynamic stack alignment. */
2230 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2231 {
2232 if (src[odv[2]].fr_reg == C0_CONST)
2233 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2234 break;
2235 }
2236 else if ((src[odv[0]].fr_reg == spreg)
2237 && (src[odv[2]].fr_reg == spreg))
2238 {
2239 if (src[odv[1]].fr_reg == C0_CONST)
2240 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2241 break;
2242 }
2243 /* else fall through. */
2244 }
2245 if (src[odv[1]].fr_reg == C0_CONST)
2246 {
2247 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2248 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2249 }
2250 else if (src[odv[2]].fr_reg == C0_CONST)
2251 {
2252 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2253 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2254 }
2255 else dst[odv[0]].fr_reg = C0_INEXP;
2256 break;
bdb4c075
MG
2257 case c0opc_sub:
2258 /* 3 operands: dst, src1, src2. */
2259 gdb_assert (nods == 3);
2260 if (src[odv[2]].fr_reg == C0_CONST)
2261 {
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2264 }
2265 else dst[odv[0]].fr_reg = C0_INEXP;
2266 break;
2267 case c0opc_mov:
2268 /* 2 operands: dst, src [, src]. */
2269 gdb_assert (nods == 2);
dbab50de
MG
2270 /* First, check if it's a special case of saving unaligned SP
2271 to a spare register in case of dynamic stack adjustment.
2272 But, only do it one time. The second time could be initializing
2273 frame pointer. We don't want to overwrite the first one. */
2274 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2275 cache->c0.c0_old_sp = odv[0];
2276
bdb4c075
MG
2277 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2278 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2279 break;
2280 case c0opc_movi:
2281 /* 2 operands: dst, imm. */
2282 gdb_assert (nods == 2);
2283 dst[odv[0]].fr_reg = C0_CONST;
2284 dst[odv[0]].fr_ofs = odv[1];
2285 break;
2286 case c0opc_l32r:
2287 /* 2 operands: dst, literal offset. */
2288 gdb_assert (nods == 2);
dbab50de
MG
2289 /* litbase = xtensa_get_litbase (pc); can be also used. */
2290 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2291 ? 0 : xtensa_read_register
2292 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2293 litaddr = litbase & 1
2294 ? (litbase & ~1) + (signed)odv[1]
2295 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2296 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2297 dst[odv[0]].fr_reg = C0_CONST;
2298 dst[odv[0]].fr_ofs = litval;
2299 break;
2300 case c0opc_s32i:
2301 /* 3 operands: value, base, offset. */
2302 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2303 /* First, check if it's a spill for saved unaligned SP,
2304 when dynamic stack adjustment was applied to this frame. */
2305 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2306 && (odv[1] == spreg) /* SP usage indicates spill. */
2307 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2308 cache->c0.c0_sp_ofs = odv[2];
2309
bdb4c075
MG
2310 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2311 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2312 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2313 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2314 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2315 {
2316 /* ISA encoding guarantees alignment. But, check it anyway. */
2317 gdb_assert ((odv[2] & 3) == 0);
2318 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2319 }
2320 break;
dbab50de
MG
2321 /* If we end up inside Window Overflow / Underflow interrupt handler
2322 report an error because these handlers should have been handled
2323 already in a different way. */
2324 case c0opc_l32e:
2325 case c0opc_s32e:
2326 case c0opc_rfwo:
2327 case c0opc_rfwu:
2328 return 1;
bdb4c075 2329 default:
dbab50de 2330 return 1;
bdb4c075 2331 }
dbab50de 2332 return 0;
bdb4c075
MG
2333}
2334
dbab50de 2335/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2336 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2337 in the prologue up to the PC or just beyond the prologue, whichever is
2338 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2339 prologue. The prologue may overlap non-prologue instructions but is
2340 guaranteed to end by the first flow-control instruction (jump, branch,
2341 call or return). Since an optimized function may move information around
2342 and change the stack frame arbitrarily during the prologue, the information
2343 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2344 May be used to skip the prologue or identify the ABI, w/o tracking.
2345
2346 Returns: Address of first instruction after prologue, or PC (whichever
2347 is first), or 0, if decoding failed (in libisa).
2348 Input args:
2349 start Start address of function/prologue.
2350 pc Program counter to stop at. Use 0 to continue to end of prologue.
2351 If 0, avoids infinite run-on in corrupt code memory by bounding
2352 the scan to the end of the function if that can be determined.
dbab50de 2353 nregs Number of general registers to track.
bdb4c075 2354 InOut args:
dbab50de 2355 cache Xtensa frame cache.
bdb4c075
MG
2356
2357 Note that these may produce useful results even if decoding fails
2358 because they begin with default assumptions that analysis may change. */
2359
2360static CORE_ADDR
e17a4113 2361call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2362 CORE_ADDR start, CORE_ADDR pc,
2363 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2364{
2365 CORE_ADDR ia; /* Current insn address in prologue. */
2366 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2367 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2368 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2369 xtensa_isa isa; /* libisa ISA handle. */
2370 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2371 xtensa_format ifmt; /* libisa instruction format. */
2372 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2373 xtensa_opcode opc; /* Opcode in current slot. */
2374 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2375 int nods; /* Opcode number of operands. */
2376 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2377 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2378 int j; /* General loop counter. */
2379 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2380 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2381 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2382
2383 struct symtab_and_line prologue_sal;
2384
2385 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2386 (int)start, (int)pc);
2387
2388 /* Try to limit the scan to the end of the function if a non-zero pc
2389 arg was not supplied to avoid probing beyond the end of valid memory.
2390 If memory is full of garbage that classifies as c0opc_uninteresting.
2391 If this fails (eg. if no symbols) pc ends up 0 as it was.
26c4b26f 2392 Initialize the Call0 frame and register tracking info.
bdb4c075
MG
2393 Assume it's Call0 until an 'entry' instruction is encountered.
2394 Assume we may be in the prologue until we hit a flow control instr. */
2395
2396 rtmp = NULL;
8179e739 2397 body_pc = UINT_MAX;
bdb4c075
MG
2398 end_pc = 0;
2399
2400 /* Find out, if we have an information about the prologue from DWARF. */
2401 prologue_sal = find_pc_line (start, 0);
2402 if (prologue_sal.line != 0) /* Found debug info. */
2403 body_pc = prologue_sal.end;
2404
2405 /* If we are going to analyze the prologue in general without knowing about
2406 the current PC, make the best assumtion for the end of the prologue. */
2407 if (pc == 0)
2408 {
2409 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2410 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2411 }
2412 else
325fac50 2413 body_pc = std::min (pc, body_pc);
bdb4c075 2414
dbab50de
MG
2415 cache->call0 = 1;
2416 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075
MG
2417
2418 isa = xtensa_default_isa;
2ff5e605 2419 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2420 ins = xtensa_insnbuf_alloc (isa);
2421 slot = xtensa_insnbuf_alloc (isa);
2422
2423 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2424 {
2425 /* (Re)fill instruction buffer from memory if necessary, but do not
2426 read memory beyond PC to be sure we stay within text section
2427 (this protection only works if a non-zero pc is supplied). */
2428
2429 if (ia + xtensa_isa_maxlength (isa) > bt)
2430 {
2431 ba = ia;
2ff5e605 2432 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2433 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2434 error (_("Unable to read target memory ..."));
bdb4c075
MG
2435 }
2436
2437 /* Decode format information. */
2438
2439 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2440 ifmt = xtensa_format_decode (isa, ins);
2441 if (ifmt == XTENSA_UNDEFINED)
2442 {
2443 fail = 1;
2444 goto done;
2445 }
2446 ilen = xtensa_format_length (isa, ifmt);
2447 if (ilen == XTENSA_UNDEFINED)
2448 {
2449 fail = 1;
2450 goto done;
2451 }
2452 islots = xtensa_format_num_slots (isa, ifmt);
2453 if (islots == XTENSA_UNDEFINED)
2454 {
2455 fail = 1;
2456 goto done;
2457 }
2458
2459 /* Analyze a bundle or a single instruction, using a snapshot of
2460 the register tracking info as input for the entire bundle so that
2461 register changes do not take effect within this bundle. */
ca3bf3bd 2462
bdb4c075 2463 for (j = 0; j < nregs; ++j)
dbab50de 2464 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2465
2466 for (is = 0; is < islots; ++is)
2467 {
2468 /* Decode a slot and classify the opcode. */
2469
2470 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2471 if (fail)
2472 goto done;
2473
2474 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2475 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2476 (unsigned)ia, opc);
2477 if (opc == XTENSA_UNDEFINED)
2478 opclass = c0opc_illegal;
2479 else
2480 opclass = call0_classify_opcode (isa, opc);
2481
2482 /* Decide whether to track this opcode, ignore it, or bail out. */
2483
2484 switch (opclass)
2485 {
2486 case c0opc_illegal:
2487 case c0opc_break:
2488 fail = 1;
2489 goto done;
2490
2491 case c0opc_uninteresting:
2492 continue;
2493
dbab50de
MG
2494 case c0opc_flow: /* Flow control instructions stop analysis. */
2495 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2496 goto done;
2497
2498 case c0opc_entry:
dbab50de 2499 cache->call0 = 0;
bdb4c075
MG
2500 ia += ilen; /* Skip over 'entry' insn. */
2501 goto done;
2502
2503 default:
dbab50de 2504 cache->call0 = 1;
bdb4c075
MG
2505 }
2506
2507 /* Only expected opcodes should get this far. */
bdb4c075
MG
2508
2509 /* Extract and decode the operands. */
2510 nods = xtensa_opcode_num_operands (isa, opc);
2511 if (nods == XTENSA_UNDEFINED)
2512 {
2513 fail = 1;
2514 goto done;
2515 }
2516
2517 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2518 {
2519 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2520 is, slot, &odv[j]);
2521 if (fail)
2522 goto done;
2523
2524 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2525 if (fail)
2526 goto done;
2527 }
2528
2529 /* Check operands to verify use of 'mov' assembler macro. */
2530 if (opclass == c0opc_mov && nods == 3)
2531 {
2532 if (odv[2] == odv[1])
dbab50de
MG
2533 {
2534 nods = 2;
2535 if ((odv[0] == 1) && (odv[1] != 1))
2536 /* OR A1, An, An , where n != 1.
2537 This means we are inside epilogue already. */
2538 goto done;
2539 }
bdb4c075
MG
2540 else
2541 {
2542 opclass = c0opc_uninteresting;
2543 continue;
2544 }
2545 }
2546
2547 /* Track register movement and modification for this operation. */
dbab50de
MG
2548 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2549 opclass, nods, odv, ia, 1, cache);
2550 if (fail)
2551 goto done;
bdb4c075
MG
2552 }
2553 }
2554done:
2555 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2556 (unsigned)ia, fail ? "failed" : "succeeded");
2557 xtensa_insnbuf_free(isa, slot);
2558 xtensa_insnbuf_free(isa, ins);
d4709618 2559 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2560}
2561
5142f611 2562/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2563
2564static void
5142f611 2565call0_frame_cache (struct frame_info *this_frame,
dbab50de 2566 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2567{
5142f611 2568 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2570 CORE_ADDR start_pc; /* The beginning of the function. */
2571 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2572 CORE_ADDR sp, fp, ra;
dbab50de 2573 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2574
dbab50de
MG
2575 sp = get_frame_register_unsigned
2576 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2577 fp = sp; /* Assume FP == SP until proven otherwise. */
2578
bdb4c075
MG
2579 /* Find the beginning of the prologue of the function containing the PC
2580 and analyze it up to the PC or the end of the prologue. */
2581
2582 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2583 {
dbab50de 2584 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2585
2586 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2587 {
2588 warning_once ();
2589 ra = 0;
2590 goto finish_frame_analysis;
2591 }
bdb4c075
MG
2592 }
2593
bdb4c075
MG
2594 /* Get the frame information and FP (if used) at the current PC.
2595 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2596 than DWARF info. We don't not know for sure, if PC is in the prologue,
2597 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2598 certainly rely on the prologue analysis. */
2599
2600 if (body_pc <= pc)
2601 {
2602 /* Prologue analysis was successful up to the PC.
2603 It includes the cases when PC == START_PC. */
2604 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2605 /* c0_hasfp == true means there is a frame pointer because
2606 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2607 was derived from SP. Otherwise, it would be C0_FP. */
2608 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2609 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2610 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2611 }
2612 else /* No data from the prologue analysis. */
2613 {
2614 c0_hasfp = 0;
6b50c0b0 2615 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2616 c0_frmsz = 0;
2617 start_pc = pc;
2618 }
2619
dbab50de
MG
2620 if (cache->c0.c0_fpalign)
2621 {
2622 /* This frame has a special prologue with a dynamic stack adjustment
2623 to force an alignment, which is bigger than standard 16 bytes. */
2624
2625 CORE_ADDR unaligned_sp;
2626
2627 if (cache->c0.c0_old_sp == C0_INEXP)
2628 /* This can't be. Prologue code should be consistent.
2629 Unaligned stack pointer should be saved in a spare register. */
2630 {
2631 warning_once ();
2632 ra = 0;
2633 goto finish_frame_analysis;
2634 }
2635
2636 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2637 /* Saved unaligned value of SP is kept in a register. */
2638 unaligned_sp = get_frame_register_unsigned
2639 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2640 else
2641 /* Get the value from stack. */
2642 unaligned_sp = (CORE_ADDR)
2643 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2644
2645 prev_sp = unaligned_sp + c0_frmsz;
2646 }
2647 else
2648 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2649
2650 /* Frame size from debug info or prologue tracking does not account for
2651 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2652 if (c0_hasfp)
2653 {
5142f611 2654 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2655
bdb4c075
MG
2656 /* Update the stack frame size. */
2657 c0_frmsz += fp - sp;
2658 }
2659
2660 /* Get the return address (RA) from the stack if saved,
2661 or try to get it from a register. */
2662
2663 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2664 if (to_stk != C0_NOSTK)
2665 ra = (CORE_ADDR)
e17a4113
UW
2666 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2667 4, byte_order);
bdb4c075
MG
2668
2669 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2670 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2671 {
dbab50de
MG
2672 /* Special case for terminating backtrace at a function that wants to
2673 be seen as the outermost one. Such a function will clear it's RA (A0)
2674 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2675 ra = 0;
2676 }
2677 else
2678 {
dbab50de
MG
2679 /* RA was copied to another register or (before any function call) may
2680 still be in the original RA register. This is not always reliable:
2681 even in a leaf function, register tracking stops after prologue, and
2682 even in prologue, non-prologue instructions (not tracked) may overwrite
2683 RA or any register it was copied to. If likely in prologue or before
2684 any call, use retracking info and hope for the best (compiler should
2685 have saved RA in stack if not in a leaf function). If not in prologue,
2686 too bad. */
bdb4c075
MG
2687
2688 int i;
1448a0a2
PM
2689 for (i = 0;
2690 (i < C0_NREGS)
2691 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2692 ++i);
2693 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2694 i = C0_RA;
5142f611 2695 if (i < C0_NREGS)
bdb4c075 2696 {
5142f611
MG
2697 ra = get_frame_register_unsigned
2698 (this_frame,
2699 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2700 }
2701 else ra = 0;
2702 }
2703
dbab50de 2704 finish_frame_analysis:
bdb4c075
MG
2705 cache->pc = start_pc;
2706 cache->ra = ra;
2707 /* RA == 0 marks the outermost frame. Do not go past it. */
2708 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2709 cache->c0.fp_regnum = fp_regnum;
2710 cache->c0.c0_frmsz = c0_frmsz;
2711 cache->c0.c0_hasfp = c0_hasfp;
2712 cache->c0.c0_fp = fp;
2713}
2714
08b9c608
MG
2715static CORE_ADDR a0_saved;
2716static CORE_ADDR a7_saved;
2717static CORE_ADDR a11_saved;
2718static int a0_was_saved;
2719static int a7_was_saved;
2720static int a11_was_saved;
2721
68d6df83 2722/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2723static void
2724execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2725{
2726 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2727 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2728 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2729 unsigned int spilled_value
2730 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2731
2732 if ((at == 0) && !a0_was_saved)
2733 {
2734 a0_saved = xtensa_read_register (atreg);
2735 a0_was_saved = 1;
2736 }
2737 else if ((at == 7) && !a7_was_saved)
2738 {
2739 a7_saved = xtensa_read_register (atreg);
2740 a7_was_saved = 1;
2741 }
2742 else if ((at == 11) && !a11_was_saved)
2743 {
2744 a11_saved = xtensa_read_register (atreg);
2745 a11_was_saved = 1;
2746 }
2747
2748 xtensa_write_register (atreg, spilled_value);
2749}
2750
68d6df83 2751/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2752static void
2753execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2754{
2755 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2756 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2757 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2758 ULONGEST spilled_value = xtensa_read_register (atreg);
2759
2760 write_memory_unsigned_integer (addr, 4,
2761 gdbarch_byte_order (gdbarch),
2762 spilled_value);
2763}
2764
2765#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2766
68d6df83
MG
2767typedef enum
2768{
08b9c608
MG
2769 xtWindowOverflow,
2770 xtWindowUnderflow,
2771 xtNoExceptionHandler
2772} xtensa_exception_handler_t;
2773
68d6df83 2774/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2775 Return type of Xtensa Window Interrupt Handler on success. */
2776static xtensa_exception_handler_t
2777execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2778{
2779 xtensa_isa isa;
2780 xtensa_insnbuf ins, slot;
948f8e3d 2781 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2782 CORE_ADDR ia, bt, ba;
2783 xtensa_format ifmt;
2784 int ilen, islots, is;
2785 xtensa_opcode opc;
2786 int insn_num = 0;
08b9c608
MG
2787 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2788
19afdd07 2789 uint32_t at, as, offset;
08b9c608
MG
2790
2791 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2792 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2793
2794 isa = xtensa_default_isa;
2795 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2796 ins = xtensa_insnbuf_alloc (isa);
2797 slot = xtensa_insnbuf_alloc (isa);
2798 ba = 0;
2799 ia = current_pc;
2800 bt = ia;
2801
2802 a0_was_saved = 0;
2803 a7_was_saved = 0;
2804 a11_was_saved = 0;
2805
2806 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2807 {
2808 if (ia + xtensa_isa_maxlength (isa) > bt)
2809 {
2810 ba = ia;
2811 bt = (ba + XTENSA_ISA_BSZ);
2812 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2813 return xtNoExceptionHandler;
2814 }
2815 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2816 ifmt = xtensa_format_decode (isa, ins);
2817 if (ifmt == XTENSA_UNDEFINED)
2818 return xtNoExceptionHandler;
2819 ilen = xtensa_format_length (isa, ifmt);
2820 if (ilen == XTENSA_UNDEFINED)
2821 return xtNoExceptionHandler;
2822 islots = xtensa_format_num_slots (isa, ifmt);
2823 if (islots == XTENSA_UNDEFINED)
2824 return xtNoExceptionHandler;
2825 for (is = 0; is < islots; ++is)
2826 {
2827 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2828 return xtNoExceptionHandler;
2829 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2830 if (opc == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 switch (call0_classify_opcode (isa, opc))
2833 {
2834 case c0opc_illegal:
2835 case c0opc_flow:
2836 case c0opc_entry:
2837 case c0opc_break:
2838 /* We expect none of them here. */
2839 return xtNoExceptionHandler;
2840 case c0opc_l32e:
2841 func = execute_l32e;
2842 break;
2843 case c0opc_s32e:
2844 func = execute_s32e;
2845 break;
2846 case c0opc_rfwo: /* RFWO. */
2847 /* Here, we return from WindowOverflow handler and,
2848 if we stopped at the very beginning, which means
2849 A0 was saved, we have to restore it now. */
2850 if (a0_was_saved)
2851 {
2852 int arreg = arreg_number (gdbarch,
2853 gdbarch_tdep (gdbarch)->a0_base,
2854 wb);
2855 xtensa_write_register (arreg, a0_saved);
2856 }
2857 return xtWindowOverflow;
2858 case c0opc_rfwu: /* RFWU. */
2859 /* Here, we return from WindowUnderflow handler.
2860 Let's see if either A7 or A11 has to be restored. */
2861 if (WindowUnderflow12)
2862 {
2863 if (a11_was_saved)
2864 {
2865 int arreg = arreg_number (gdbarch,
2866 gdbarch_tdep (gdbarch)->a0_base + 11,
2867 wb);
2868 xtensa_write_register (arreg, a11_saved);
2869 }
2870 }
2871 else if (a7_was_saved)
2872 {
2873 int arreg = arreg_number (gdbarch,
2874 gdbarch_tdep (gdbarch)->a0_base + 7,
2875 wb);
2876 xtensa_write_register (arreg, a7_saved);
2877 }
2878 return xtWindowUnderflow;
2879 default: /* Simply skip this insns. */
2880 continue;
2881 }
2882
2883 /* Decode arguments for L32E / S32E and simulate their execution. */
2884 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2885 return xtNoExceptionHandler;
2886 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2887 return xtNoExceptionHandler;
2888 if (xtensa_operand_decode (isa, opc, 0, &at))
2889 return xtNoExceptionHandler;
2890 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2891 return xtNoExceptionHandler;
2892 if (xtensa_operand_decode (isa, opc, 1, &as))
2893 return xtNoExceptionHandler;
2894 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_decode (isa, opc, 2, &offset))
2897 return xtNoExceptionHandler;
2898
2899 (*func) (gdbarch, at, as, offset, wb);
2900 }
2901
2902 ia += ilen;
2903 }
2904 return xtNoExceptionHandler;
2905}
2906
2907/* Handle Window Overflow / Underflow exception frames. */
2908
2909static void
2910xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2911 xtensa_frame_cache_t *cache,
2912 CORE_ADDR pc)
2913{
2914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2915 CORE_ADDR ps, wb, ws, ra;
2916 int epc1_regnum, i, regnum;
2917 xtensa_exception_handler_t eh_type;
2918
2919 /* Read PS, WB, and WS from the hardware. Note that PS register
2920 must be present, if Windowed ABI is supported. */
2921 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2922 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2923 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2924
2925 /* Execute all the remaining instructions from Window Interrupt Handler
2926 by simulating them on the remote protocol level. On return, set the
2927 type of Xtensa Window Interrupt Handler, or report an error. */
2928 eh_type = execute_code (gdbarch, pc, wb);
2929 if (eh_type == xtNoExceptionHandler)
2930 error (_("\
2931Unable to decode Xtensa Window Interrupt Handler's code."));
2932
2933 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2934 cache->call0 = 0; /* It's Windowed ABI. */
2935
2936 /* All registers for the cached frame will be alive. */
2937 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2938 cache->wd.aregs[i] = -1;
2939
2940 if (eh_type == xtWindowOverflow)
2941 cache->wd.ws = ws ^ (1 << wb);
2942 else /* eh_type == xtWindowUnderflow. */
2943 cache->wd.ws = ws | (1 << wb);
2944
2945 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2946 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2947 cache->wd.wb);
2948 ra = xtensa_read_register (regnum);
2949 cache->wd.callsize = WINSIZE (ra);
2950 cache->prev_sp = xtensa_read_register (regnum + 1);
2951 /* Set regnum to a frame pointer of the frame being cached. */
2952 regnum = xtensa_scan_prologue (gdbarch, pc);
2953 regnum = arreg_number (gdbarch,
2954 gdbarch_tdep (gdbarch)->a0_base + regnum,
2955 cache->wd.wb);
2956 cache->base = get_frame_register_unsigned (this_frame, regnum);
2957
2958 /* Read PC of interrupted function from EPC1 register. */
2959 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2960 if (epc1_regnum < 0)
2961 error(_("Unable to read Xtensa register EPC1"));
2962 cache->ra = xtensa_read_register (epc1_regnum);
2963 cache->pc = get_frame_func (this_frame);
2964}
2965
bdb4c075
MG
2966
2967/* Skip function prologue.
2968
2969 Return the pc of the first instruction after prologue. GDB calls this to
2970 find the address of the first line of the function or (if there is no line
2971 number information) to skip the prologue for planting breakpoints on
2972 function entries. Use debug info (if present) or prologue analysis to skip
2973 the prologue to achieve reliable debugging behavior. For windowed ABI,
2974 only the 'entry' instruction is skipped. It is not strictly necessary to
2975 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2976 backtrace at any point in the prologue, however certain potential hazards
2977 are avoided and a more "normal" debugging experience is ensured by
2978 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2979 For example, if we don't skip the prologue:
2980 - Some args may not yet have been saved to the stack where the debug
2981 info expects to find them (true anyway when only 'entry' is skipped);
2982 - Software breakpoints ('break' instrs) may not have been unplanted
2983 when the prologue analysis is done on initializing the frame cache,
2984 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2985
2986 If we have debug info ( line-number info, in particular ) we simply skip
2987 the code associated with the first function line effectively skipping
bdb4c075 2988 the prologue code. It works even in cases like
ca3bf3bd
DJ
2989
2990 int main()
2991 { int local_var = 1;
2992 ....
2993 }
2994
2995 because, for this source code, both Xtensa compilers will generate two
2996 separate entries ( with the same line number ) in dwarf line-number
2997 section to make sure there is a boundary between the prologue code and
2998 the rest of the function.
2999
bdb4c075
MG
3000 If there is no debug info, we need to analyze the code. */
3001
3002/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 3003
63807e1d 3004static CORE_ADDR
6093d2eb 3005xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 3006{
bdb4c075
MG
3007 struct symtab_and_line prologue_sal;
3008 CORE_ADDR body_pc;
3009
ca3bf3bd
DJ
3010 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3011
bdb4c075
MG
3012#if DONT_SKIP_PROLOGUE
3013 return start_pc;
3014#endif
3015
3016 /* Try to find first body line from debug info. */
3017
3018 prologue_sal = find_pc_line (start_pc, 0);
3019 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3020 {
f976a05d
MG
3021 /* In Call0, it is possible to have a function with only one instruction
3022 ('ret') resulting from a one-line optimized function that does nothing.
3023 In that case, prologue_sal.end may actually point to the start of the
3024 next function in the text section, causing a breakpoint to be set at
3025 the wrong place. Check, if the end address is within a different
3026 function, and if so return the start PC. We know we have symbol
3027 information. */
ca3bf3bd 3028
bdb4c075
MG
3029 CORE_ADDR end_func;
3030
f976a05d
MG
3031 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3032 && call0_ret (start_pc, prologue_sal.end))
3033 return start_pc;
3034
bdb4c075
MG
3035 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3036 if (end_func != start_pc)
ca3bf3bd
DJ
3037 return start_pc;
3038
bdb4c075 3039 return prologue_sal.end;
ca3bf3bd 3040 }
ca3bf3bd 3041
bdb4c075 3042 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3043 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3044 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3045 return body_pc != 0 ? body_pc : start_pc;
3046}
ca3bf3bd
DJ
3047
3048/* Verify the current configuration. */
ca3bf3bd
DJ
3049static void
3050xtensa_verify_config (struct gdbarch *gdbarch)
3051{
d7e74731
PA
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053 string_file log;
ca3bf3bd
DJ
3054
3055 /* Verify that we got a reasonable number of AREGS. */
3056 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
d7e74731 3057 log.printf (_("\
bdb4c075 3058\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
d7e74731 3059 tdep->num_aregs);
ca3bf3bd
DJ
3060
3061 /* Verify that certain registers exist. */
bdb4c075 3062
ca3bf3bd 3063 if (tdep->pc_regnum == -1)
d7e74731 3064 log.printf (_("\n\tpc_regnum: No PC register"));
bdb4c075 3065 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
d7e74731 3066 log.printf (_("\n\tps_regnum: No PS register"));
bdb4c075
MG
3067
3068 if (tdep->isa_use_windowed_registers)
3069 {
3070 if (tdep->wb_regnum == -1)
d7e74731 3071 log.printf (_("\n\twb_regnum: No WB register"));
bdb4c075 3072 if (tdep->ws_regnum == -1)
d7e74731 3073 log.printf (_("\n\tws_regnum: No WS register"));
bdb4c075 3074 if (tdep->ar_base == -1)
d7e74731 3075 log.printf (_("\n\tar_base: No AR registers"));
bdb4c075
MG
3076 }
3077
ca3bf3bd 3078 if (tdep->a0_base == -1)
d7e74731 3079 log.printf (_("\n\ta0_base: No Ax registers"));
ca3bf3bd 3080
d7e74731 3081 if (!log.empty ())
ca3bf3bd 3082 internal_error (__FILE__, __LINE__,
d7e74731 3083 _("the following are invalid: %s"), log.c_str ());
ca3bf3bd
DJ
3084}
3085
94a0e877
MG
3086
3087/* Derive specific register numbers from the array of registers. */
3088
63807e1d 3089static void
94a0e877
MG
3090xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3091{
3092 xtensa_register_t* rmap;
3093 int n, max_size = 4;
3094
3095 tdep->num_regs = 0;
3096 tdep->num_nopriv_regs = 0;
3097
3098/* Special registers 0..255 (core). */
3099#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
f74f865e
MF
3100/* User registers 0..255. */
3101#define XTENSA_DBREGN_UREG(n) (0x0300+(n))
94a0e877
MG
3102
3103 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3104 {
3105 if (rmap->target_number == 0x0020)
3106 tdep->pc_regnum = n;
3107 else if (rmap->target_number == 0x0100)
3108 tdep->ar_base = n;
3109 else if (rmap->target_number == 0x0000)
3110 tdep->a0_base = n;
3111 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3112 tdep->wb_regnum = n;
3113 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3114 tdep->ws_regnum = n;
3115 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3116 tdep->debugcause_regnum = n;
3117 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3118 tdep->exccause_regnum = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3120 tdep->excvaddr_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3122 tdep->lbeg_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3124 tdep->lend_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3126 tdep->lcount_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3128 tdep->sar_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3130 tdep->litbase_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3132 tdep->ps_regnum = n;
f74f865e
MF
3133 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3134 tdep->threadptr_regnum = n;
94a0e877
MG
3135#if 0
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3137 tdep->interrupt_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3139 tdep->interrupt2_regnum = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3141 tdep->cpenable_regnum = n;
3142#endif
3143
3144 if (rmap->byte_size > max_size)
3145 max_size = rmap->byte_size;
3146 if (rmap->mask != 0 && tdep->num_regs == 0)
3147 tdep->num_regs = n;
94a0e877 3148 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
37d9e062
MF
3149 && tdep->num_nopriv_regs == 0)
3150 tdep->num_nopriv_regs = n;
94a0e877 3151 }
37d9e062
MF
3152 if (tdep->num_regs == 0)
3153 tdep->num_regs = tdep->num_nopriv_regs;
94a0e877
MG
3154
3155 /* Number of pseudo registers. */
3156 tdep->num_pseudo_regs = n - tdep->num_regs;
3157
3158 /* Empirically determined maximum sizes. */
3159 tdep->max_register_raw_size = max_size;
3160 tdep->max_register_virtual_size = max_size;
3161}
3162
ca3bf3bd
DJ
3163/* Module "constructor" function. */
3164
94a0e877
MG
3165extern struct gdbarch_tdep xtensa_tdep;
3166
ca3bf3bd
DJ
3167static struct gdbarch *
3168xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3169{
3170 struct gdbarch_tdep *tdep;
3171 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3172
3173 DEBUGTRACE ("gdbarch_init()\n");
3174
a4398628
MF
3175 if (!xtensa_default_isa)
3176 xtensa_default_isa = xtensa_isa_init (0, 0);
3177
ca3bf3bd 3178 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3179 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3180
94a0e877 3181 tdep = &xtensa_tdep;
ca3bf3bd 3182 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3183 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3184
3185 /* Verify our configuration. */
3186 xtensa_verify_config (gdbarch);
dbab50de 3187 xtensa_session_once_reported = 0;
ca3bf3bd 3188
53375380
PA
3189 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3190 set_gdbarch_wchar_signed (gdbarch, 0);
3191
bdb4c075 3192 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3193 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3194 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3195
3196 /* Set target information. */
3197 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3198 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3199 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3200 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3201 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3202
ba2b1c56 3203 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3204 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3205 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3206
3207 /* We provide our own function to get register information. */
3208 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3209 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3210
581e13c1 3211 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3212 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3213
3214 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3215
3216 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3217
3218 /* Advance PC across any prologue instructions to reach "real" code. */
3219 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3220
3221 /* Stack grows downward. */
3222 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3223
3224 /* Set breakpoints. */
04180708
YQ
3225 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3226 xtensa_breakpoint_kind_from_pc);
3227 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3228 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3229
3230 /* After breakpoint instruction or illegal instruction, pc still
3231 points at break instruction, so don't decrement. */
3232 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3233
3234 /* We don't skip args. */
3235 set_gdbarch_frame_args_skip (gdbarch, 0);
3236
3237 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3238
3239 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3240
5142f611 3241 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3242
3243 /* Frame handling. */
3244 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3245 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3246 dwarf2_append_unwinders (gdbarch);
ca3bf3bd 3247
ca3bf3bd
DJ
3248 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3249
3250 xtensa_add_reggroups (gdbarch);
3251 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3252
97094034
AA
3253 set_gdbarch_iterate_over_regset_sections
3254 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3255
ee967b5f
MG
3256 set_solib_svr4_fetch_link_map_offsets
3257 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3258
40045d91
MF
3259 /* Hook in the ABI-specific overrides, if they have been registered. */
3260 gdbarch_init_osabi (info, gdbarch);
3261
ca3bf3bd
DJ
3262 return gdbarch;
3263}
3264
ca3bf3bd 3265static void
6b50c0b0 3266xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3267{
3268 error (_("xtensa_dump_tdep(): not implemented"));
3269}
3270
ca3bf3bd
DJ
3271void
3272_initialize_xtensa_tdep (void)
3273{
ca3bf3bd
DJ
3274 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3275 xtensa_init_reggroups ();
3276
ccce17b0
YQ
3277 add_setshow_zuinteger_cmd ("xtensa",
3278 class_maintenance,
3279 &xtensa_debug_level,
581e13c1
MS
3280 _("Set Xtensa debugging."),
3281 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3282When non-zero, Xtensa-specific debugging is enabled. \
3283Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3284 NULL,
3285 NULL,
3286 &setdebuglist, &showdebuglist);
ca3bf3bd 3287}
This page took 1.56595 seconds and 4 git commands to generate.