Fix PR gdb/21954: make 'unset environment' work again
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
61baf725 3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "floatformat.h"
33#include "regcache.h"
34#include "reggroups.h"
35#include "regset.h"
36
37#include "dummy-frame.h"
fa8f86ff 38#include "dwarf2.h"
ca3bf3bd
DJ
39#include "dwarf2-frame.h"
40#include "dwarf2loc.h"
ca3bf3bd
DJ
41#include "frame-base.h"
42#include "frame-unwind.h"
43
44#include "arch-utils.h"
45#include "gdbarch.h"
46#include "remote.h"
47#include "serial.h"
48
49#include "command.h"
50#include "gdbcmd.h"
ca3bf3bd 51
bdb4c075 52#include "xtensa-isa.h"
ca3bf3bd 53#include "xtensa-tdep.h"
94a0e877 54#include "xtensa-config.h"
325fac50 55#include <algorithm>
ca3bf3bd
DJ
56
57
ccce17b0 58static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
59
60#define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64#define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68#define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72#define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
78#define SP_ALIGNMENT 16
79
80
bdb4c075
MG
81/* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
83#define ARGS_NUM_REGS 6
84#define REGISTER_SIZE 4
ca3bf3bd 85
ca3bf3bd 86
bdb4c075
MG
87/* Extract the call size from the return address or PS register. */
88#define PS_CALLINC_SHIFT 16
89#define PS_CALLINC_MASK 0x00030000
90#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 92
98689b25
MG
93/* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96#define TX_PS 0x20
97
bdb4c075 98/* ABI-independent macros. */
91d8eb23
MD
99#define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102#define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 106
ca3bf3bd
DJ
107/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
91d8eb23
MD
110#define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 112 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 113
bdb4c075 114#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
115
116/* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
bdb4c075
MG
120#define PS_WOE (1<<18)
121#define PS_EXC (1<<4)
122
0dd5cbc5
AH
123/* Big enough to hold the size of the largest register in bytes. */
124#define XTENSA_MAX_REGISTER_SIZE 64
125
b801de47 126static int
98689b25
MG
127windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
128{
129 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
130 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
131 return 0;
132
133 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
134}
135
581e13c1
MS
136/* Convert a live A-register number to the corresponding AR-register
137 number. */
91d8eb23 138static int
ee967b5f 139arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
140{
141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 142 int arreg;
91d8eb23 143
ee967b5f
MG
144 arreg = a_regnum - tdep->a0_base;
145 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
146 arreg &= tdep->num_aregs - 1;
91d8eb23 147
ee967b5f
MG
148 return arreg + tdep->ar_base;
149}
150
151/* Convert a live AR-register number to the corresponding A-register order
152 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
153static int
154areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
155{
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 int areg;
158
159 areg = ar_regnum - tdep->ar_base;
160 if (areg < 0 || areg >= tdep->num_aregs)
161 return -1;
162 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
163 return (areg > 15) ? -1 : areg;
91d8eb23
MD
164}
165
68d6df83 166/* Read Xtensa register directly from the hardware. */
b801de47 167static unsigned long
08b9c608
MG
168xtensa_read_register (int regnum)
169{
170 ULONGEST value;
171
172 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
173 return (unsigned long) value;
174}
175
68d6df83 176/* Write Xtensa register directly to the hardware. */
b801de47 177static void
08b9c608
MG
178xtensa_write_register (int regnum, ULONGEST value)
179{
180 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
181}
182
ca3bf3bd
DJ
183/* Return the window size of the previous call to the function from which we
184 have just returned.
185
186 This function is used to extract the return value after a called function
bdb4c075 187 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
188 value (from the perspective of the caller) depends on what call
189 instruction was used. For now, we are assuming that the call instruction
190 precedes the current address, so we simply analyze the call instruction.
191 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
192 method to call the inferior function. */
193
194static int
91d8eb23 195extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 196{
e17a4113 197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 198 int winsize = 4;
ca3bf3bd 199 int insn;
ff7a4c00 200 gdb_byte buf[4];
ca3bf3bd
DJ
201
202 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
203
204 /* Read the previous instruction (should be a call[x]{4|8|12}. */
205 read_memory (pc-3, buf, 3);
e17a4113 206 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
207
208 /* Decode call instruction:
209 Little Endian
210 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
211 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
212 Big Endian
213 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
214 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
215
e17a4113 216 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
217 {
218 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 219 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
220 }
221 else
222 {
223 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 224 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
225 }
226 return winsize;
227}
228
229
230/* REGISTER INFORMATION */
231
08b9c608
MG
232/* Find register by name. */
233static int
a121b7c1 234xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
08b9c608
MG
235{
236 int i;
237
238 for (i = 0; i < gdbarch_num_regs (gdbarch)
239 + gdbarch_num_pseudo_regs (gdbarch);
240 i++)
241
242 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
243 return i;
244
245 return -1;
246}
247
ca3bf3bd 248/* Returns the name of a register. */
ca3bf3bd 249static const char *
d93859e2 250xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
251{
252 /* Return the name stored in the register map. */
d93859e2
UW
253 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
254 + gdbarch_num_pseudo_regs (gdbarch))
255 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 256
ca3bf3bd
DJ
257 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
258 return 0;
259}
260
ca3bf3bd
DJ
261/* Return the type of a register. Create a new type, if necessary. */
262
ca3bf3bd
DJ
263static struct type *
264xtensa_register_type (struct gdbarch *gdbarch, int regnum)
265{
df4df182
UW
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267
ca3bf3bd 268 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
269 if ((regnum >= tdep->ar_base
270 && regnum < tdep->ar_base + tdep->num_aregs)
271 || (regnum >= tdep->a0_base
272 && regnum < tdep->a0_base + 16))
0dfff4cb 273 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 274
6b50c0b0 275 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 276 || regnum == tdep->a0_base + 1)
fde6c819 277 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
278
279 /* Return the stored type for all other registers. */
6b50c0b0
UW
280 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
281 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 282 {
df4df182 283 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 284
bdb4c075 285 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
286
287 if (reg->ctype == 0)
288 {
289 struct ctype_cache *tp;
290 int size = reg->byte_size;
291
bdb4c075
MG
292 /* We always use the memory representation,
293 even if the register width is smaller. */
ca3bf3bd
DJ
294 switch (size)
295 {
296 case 1:
df4df182 297 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
298 break;
299
300 case 2:
df4df182 301 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
302 break;
303
304 case 4:
df4df182 305 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
306 break;
307
308 case 8:
df4df182 309 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
310 break;
311
312 case 16:
df4df182 313 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
314 break;
315
316 default:
df4df182 317 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
318 if (tp->size == size)
319 break;
320
321 if (tp == NULL)
322 {
1448a0a2 323 char *name = xstrprintf ("int%d", size * 8);
8d749320
SM
324
325 tp = XNEW (struct ctype_cache);
df4df182
UW
326 tp->next = tdep->type_entries;
327 tdep->type_entries = tp;
ca3bf3bd 328 tp->size = size;
e9bb382b 329 tp->virtual_type
1448a0a2
PM
330 = arch_integer_type (gdbarch, size * 8, 1, name);
331 xfree (name);
ca3bf3bd
DJ
332 }
333
334 reg->ctype = tp->virtual_type;
335 }
336 }
337 return reg->ctype;
338 }
339
ca3bf3bd
DJ
340 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
341 return 0;
342}
343
344
bdb4c075 345/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
346 The debugging information enumerates registers starting from 0 for A0
347 to n for An. So, we only have to add the base number for A0. */
348
349static int
d3f73121 350xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
351{
352 int i;
353
354 if (regnum >= 0 && regnum < 16)
d3f73121 355 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 356
f57d151a 357 for (i = 0;
d3f73121 358 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 359 i++)
d3f73121 360 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
361 return i;
362
0fde2c53 363 return -1;
ca3bf3bd
DJ
364}
365
366
bdb4c075
MG
367/* Write the bits of a masked register to the various registers.
368 Only the masked areas of these registers are modified; the other
369 fields are untouched. The size of masked registers is always less
370 than or equal to 32 bits. */
ca3bf3bd
DJ
371
372static void
9c9acae0
UW
373xtensa_register_write_masked (struct regcache *regcache,
374 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd 375{
0dd5cbc5 376 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
377 const xtensa_mask_t *mask = reg->mask;
378
379 int shift = 0; /* Shift for next mask (mod 32). */
380 int start, size; /* Start bit and size of current mask. */
381
382 unsigned int *ptr = value;
383 unsigned int regval, m, mem = 0;
384
385 int bytesize = reg->byte_size;
386 int bitsize = bytesize * 8;
387 int i, r;
388
389 DEBUGTRACE ("xtensa_register_write_masked ()\n");
390
391 /* Copy the masked register to host byte-order. */
6b50c0b0 392 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
393 for (i = 0; i < bytesize; i++)
394 {
395 mem >>= 8;
396 mem |= (buffer[bytesize - i - 1] << 24);
397 if ((i & 3) == 3)
398 *ptr++ = mem;
399 }
400 else
401 for (i = 0; i < bytesize; i++)
402 {
403 mem >>= 8;
404 mem |= (buffer[i] << 24);
405 if ((i & 3) == 3)
406 *ptr++ = mem;
407 }
408
409 /* We might have to shift the final value:
410 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
411 bytesize & 3 == x -> shift (4-x) * 8. */
412
413 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 ptr = value;
415 mem = *ptr;
416
417 /* Write the bits to the masked areas of the other registers. */
418 for (i = 0; i < mask->count; i++)
419 {
420 start = mask->mask[i].bit_start;
421 size = mask->mask[i].bit_size;
422 regval = mem >> shift;
423
424 if ((shift += size) > bitsize)
425 error (_("size of all masks is larger than the register"));
426
427 if (shift >= 32)
428 {
429 mem = *(++ptr);
430 shift -= 32;
431 bitsize -= 32;
432
433 if (shift > 0)
434 regval |= mem << (size - shift);
435 }
436
437 /* Make sure we have a valid register. */
438 r = mask->mask[i].reg_num;
439 if (r >= 0 && size > 0)
440 {
441 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
442 ULONGEST old_val;
443 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
444 m = 0xffffffff >> (32 - size) << start;
445 regval <<= start;
9c9acae0
UW
446 regval = (regval & m) | (old_val & ~m);
447 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
448 }
449 }
450}
451
452
bdb4c075
MG
453/* Read a tie state or mapped registers. Read the masked areas
454 of the registers and assemble them into a single value. */
ca3bf3bd 455
05d1431c 456static enum register_status
9c9acae0
UW
457xtensa_register_read_masked (struct regcache *regcache,
458 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd 459{
0dd5cbc5 460 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
461 const xtensa_mask_t *mask = reg->mask;
462
463 int shift = 0;
464 int start, size;
465
466 unsigned int *ptr = value;
467 unsigned int regval, mem = 0;
468
469 int bytesize = reg->byte_size;
470 int bitsize = bytesize * 8;
471 int i;
472
473 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
474 reg->name == 0 ? "" : reg->name);
475
476 /* Assemble the register from the masked areas of other registers. */
477 for (i = 0; i < mask->count; i++)
478 {
479 int r = mask->mask[i].reg_num;
9c9acae0
UW
480 if (r >= 0)
481 {
05d1431c 482 enum register_status status;
9c9acae0 483 ULONGEST val;
05d1431c
PA
484
485 status = regcache_cooked_read_unsigned (regcache, r, &val);
486 if (status != REG_VALID)
487 return status;
9c9acae0
UW
488 regval = (unsigned int) val;
489 }
490 else
491 regval = 0;
492
ca3bf3bd
DJ
493 start = mask->mask[i].bit_start;
494 size = mask->mask[i].bit_size;
495
496 regval >>= start;
497
498 if (size < 32)
499 regval &= (0xffffffff >> (32 - size));
500
501 mem |= regval << shift;
502
503 if ((shift += size) > bitsize)
504 error (_("size of all masks is larger than the register"));
505
506 if (shift >= 32)
507 {
508 *ptr++ = mem;
509 bitsize -= 32;
510 shift -= 32;
511
512 if (shift == 0)
513 mem = 0;
514 else
515 mem = regval >> (size - shift);
516 }
517 }
518
519 if (shift > 0)
520 *ptr = mem;
521
522 /* Copy value to target byte order. */
523 ptr = value;
524 mem = *ptr;
525
6b50c0b0 526 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
527 for (i = 0; i < bytesize; i++)
528 {
529 if ((i & 3) == 0)
530 mem = *ptr++;
531 buffer[bytesize - i - 1] = mem & 0xff;
532 mem >>= 8;
533 }
534 else
535 for (i = 0; i < bytesize; i++)
536 {
537 if ((i & 3) == 0)
538 mem = *ptr++;
539 buffer[i] = mem & 0xff;
540 mem >>= 8;
541 }
05d1431c
PA
542
543 return REG_VALID;
ca3bf3bd
DJ
544}
545
546
547/* Read pseudo registers. */
548
05d1431c 549static enum register_status
ca3bf3bd
DJ
550xtensa_pseudo_register_read (struct gdbarch *gdbarch,
551 struct regcache *regcache,
552 int regnum,
553 gdb_byte *buffer)
554{
e17a4113
UW
555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
556
ca3bf3bd 557 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 558 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 559
bdb4c075 560 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 561 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 562 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 563 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 564 {
c185f580 565 ULONGEST value;
05d1431c 566 enum register_status status;
ca3bf3bd 567
c185f580
AH
568 status = regcache_raw_read_unsigned (regcache,
569 gdbarch_tdep (gdbarch)->wb_regnum,
570 &value);
05d1431c
PA
571 if (status != REG_VALID)
572 return status;
c185f580 573 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
574 }
575
bdb4c075 576 /* We can always read non-pseudo registers. */
6b50c0b0 577 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
05d1431c 578 return regcache_raw_read (regcache, regnum, buffer);
94a0e877
MG
579
580 /* We have to find out how to deal with priveleged registers.
581 Let's treat them as pseudo-registers, but we cannot read/write them. */
582
0d0bf81a
MF
583 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
584 || regnum < gdbarch_tdep (gdbarch)->a0_base)
94a0e877
MG
585 {
586 buffer[0] = (gdb_byte)0;
587 buffer[1] = (gdb_byte)0;
588 buffer[2] = (gdb_byte)0;
589 buffer[3] = (gdb_byte)0;
05d1431c 590 return REG_VALID;
94a0e877 591 }
ca3bf3bd 592 /* Pseudo registers. */
f57d151a 593 else if (regnum >= 0
6b50c0b0
UW
594 && regnum < gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 596 {
6b50c0b0 597 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 598 xtensa_register_type_t type = reg->type;
6b50c0b0 599 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 600
bdb4c075 601 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
602 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
603 {
604 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
605 {
606 warning (_("cannot read register %s"),
d93859e2 607 xtensa_register_name (gdbarch, regnum));
05d1431c 608 return REG_VALID;
ca3bf3bd
DJ
609 }
610 }
611
612 /* Some targets cannot read TIE register files. */
613 else if (type == xtRegisterTypeTieRegfile)
614 {
615 /* Use 'fetch' to get register? */
616 if (flags & xtTargetFlagsUseFetchStore)
617 {
618 warning (_("cannot read register"));
05d1431c 619 return REG_VALID;
ca3bf3bd
DJ
620 }
621
622 /* On some targets (esp. simulators), we can always read the reg. */
623 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
624 {
625 warning (_("cannot read register"));
05d1431c 626 return REG_VALID;
ca3bf3bd
DJ
627 }
628 }
629
630 /* We can always read mapped registers. */
631 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 632 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
633
634 /* Assume that we can read the register. */
05d1431c 635 return regcache_raw_read (regcache, regnum, buffer);
ca3bf3bd 636 }
ca3bf3bd
DJ
637 else
638 internal_error (__FILE__, __LINE__,
639 _("invalid register number %d"), regnum);
640}
641
642
643/* Write pseudo registers. */
644
645static void
646xtensa_pseudo_register_write (struct gdbarch *gdbarch,
647 struct regcache *regcache,
648 int regnum,
649 const gdb_byte *buffer)
650{
e17a4113
UW
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652
ca3bf3bd 653 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 654 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 655
bdb4c075 656 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0 657 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 658 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 659 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 660 {
c185f580
AH
661 ULONGEST value;
662 regcache_raw_read_unsigned (regcache,
663 gdbarch_tdep (gdbarch)->wb_regnum, &value);
664 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
665 }
666
667 /* We can always write 'core' registers.
668 Note: We might have converted Ax->ARy. */
6b50c0b0 669 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
670 regcache_raw_write (regcache, regnum, buffer);
671
94a0e877
MG
672 /* We have to find out how to deal with priveleged registers.
673 Let's treat them as pseudo-registers, but we cannot read/write them. */
674
675 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
676 {
677 return;
678 }
ca3bf3bd 679 /* Pseudo registers. */
f57d151a 680 else if (regnum >= 0
6b50c0b0
UW
681 && regnum < gdbarch_num_regs (gdbarch)
682 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 683 {
6b50c0b0 684 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 685 xtensa_register_type_t type = reg->type;
6b50c0b0 686 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 687
bdb4c075
MG
688 /* On most targets, we cannot write registers
689 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
690 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
691 {
692 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
693 {
694 warning (_("cannot write register %s"),
d93859e2 695 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
696 return;
697 }
698 }
699
700 /* Some targets cannot read TIE register files. */
701 else if (type == xtRegisterTypeTieRegfile)
702 {
703 /* Use 'store' to get register? */
704 if (flags & xtTargetFlagsUseFetchStore)
705 {
706 warning (_("cannot write register"));
707 return;
708 }
709
710 /* On some targets (esp. simulators), we can always write
711 the register. */
ca3bf3bd
DJ
712 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
713 {
714 warning (_("cannot write register"));
715 return;
716 }
717 }
718
719 /* We can always write mapped registers. */
720 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
721 {
9c9acae0 722 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
723 return;
724 }
725
726 /* Assume that we can write the register. */
727 regcache_raw_write (regcache, regnum, buffer);
728 }
ca3bf3bd
DJ
729 else
730 internal_error (__FILE__, __LINE__,
731 _("invalid register number %d"), regnum);
732}
733
ca3bf3bd
DJ
734static struct reggroup *xtensa_ar_reggroup;
735static struct reggroup *xtensa_user_reggroup;
736static struct reggroup *xtensa_vectra_reggroup;
7b871568 737static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
738
739static void
740xtensa_init_reggroups (void)
741{
98689b25
MG
742 int i;
743 char cpname[] = "cp0";
744
ca3bf3bd
DJ
745 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
746 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
747 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 748
98689b25
MG
749 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
750 {
b801de47 751 cpname[2] = '0' + i;
98689b25
MG
752 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
753 }
7b871568 754}
ca3bf3bd
DJ
755
756static void
757xtensa_add_reggroups (struct gdbarch *gdbarch)
758{
7b871568
MG
759 int i;
760
761 /* Predefined groups. */
ca3bf3bd
DJ
762 reggroup_add (gdbarch, all_reggroup);
763 reggroup_add (gdbarch, save_reggroup);
764 reggroup_add (gdbarch, restore_reggroup);
765 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
766 reggroup_add (gdbarch, vector_reggroup);
767 reggroup_add (gdbarch, general_reggroup);
768 reggroup_add (gdbarch, float_reggroup);
769
770 /* Xtensa-specific groups. */
771 reggroup_add (gdbarch, xtensa_ar_reggroup);
772 reggroup_add (gdbarch, xtensa_user_reggroup);
773 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 774
7b871568
MG
775 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
776 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
777}
778
7b871568
MG
779static int
780xtensa_coprocessor_register_group (struct reggroup *group)
781{
782 int i;
783
784 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
785 if (group == xtensa_cp[i])
786 return i;
787
788 return -1;
789}
ca3bf3bd
DJ
790
791#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
792 | XTENSA_REGISTER_FLAGS_WRITABLE \
793 | XTENSA_REGISTER_FLAGS_VOLATILE)
794
795#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
796 | XTENSA_REGISTER_FLAGS_WRITABLE)
797
798static int
799xtensa_register_reggroup_p (struct gdbarch *gdbarch,
800 int regnum,
801 struct reggroup *group)
802{
6b50c0b0 803 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
804 xtensa_register_type_t type = reg->type;
805 xtensa_register_group_t rg = reg->group;
7b871568 806 int cp_number;
ca3bf3bd 807
57041825
MG
808 if (group == save_reggroup)
809 /* Every single register should be included into the list of registers
810 to be watched for changes while using -data-list-changed-registers. */
811 return 1;
812
ca3bf3bd
DJ
813 /* First, skip registers that are not visible to this target
814 (unknown and unmapped registers when not using ISS). */
815
816 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
817 return 0;
818 if (group == all_reggroup)
819 return 1;
820 if (group == xtensa_ar_reggroup)
821 return rg & xtRegisterGroupAddrReg;
822 if (group == xtensa_user_reggroup)
823 return rg & xtRegisterGroupUser;
824 if (group == float_reggroup)
825 return rg & xtRegisterGroupFloat;
826 if (group == general_reggroup)
827 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
828 if (group == system_reggroup)
829 return rg & xtRegisterGroupState;
830 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
831 return rg & xtRegisterGroupVectra;
57041825 832 if (group == restore_reggroup)
6b50c0b0 833 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 834 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
835 cp_number = xtensa_coprocessor_register_group (group);
836 if (cp_number >= 0)
7b871568 837 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
838 else
839 return 1;
840}
841
842
ca3bf3bd
DJ
843/* Supply register REGNUM from the buffer specified by GREGS and LEN
844 in the general-purpose register set REGSET to register cache
bdb4c075 845 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
846
847static void
848xtensa_supply_gregset (const struct regset *regset,
849 struct regcache *rc,
850 int regnum,
851 const void *gregs,
852 size_t len)
853{
19ba03f4 854 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
6b50c0b0 855 struct gdbarch *gdbarch = get_regcache_arch (rc);
ca3bf3bd
DJ
856 int i;
857
cce7e648 858 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 859
6b50c0b0
UW
860 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
862 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
863 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
864 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
865 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 866 (char *) &regs->windowbase);
6b50c0b0
UW
867 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 869 (char *) &regs->windowstart);
6b50c0b0
UW
870 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 872 (char *) &regs->lbeg);
6b50c0b0
UW
873 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
874 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 875 (char *) &regs->lend);
6b50c0b0
UW
876 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
877 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 878 (char *) &regs->lcount);
6b50c0b0
UW
879 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
880 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 881 (char *) &regs->sar);
6b50c0b0
UW
882 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
883 && regnum < gdbarch_tdep (gdbarch)->ar_base
884 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
885 regcache_raw_supply (rc, regnum,
886 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 887 (gdbarch)->ar_base]);
ca3bf3bd
DJ
888 else if (regnum == -1)
889 {
6b50c0b0
UW
890 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
891 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 892 (char *) &regs->ar[i]);
ca3bf3bd
DJ
893 }
894}
895
896
897/* Xtensa register set. */
898
899static struct regset
900xtensa_gregset =
901{
902 NULL,
903 xtensa_supply_gregset
904};
905
906
97094034 907/* Iterate over supported core file register note sections. */
ca3bf3bd 908
97094034
AA
909static void
910xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
911 iterate_over_regset_sections_cb *cb,
912 void *cb_data,
913 const struct regcache *regcache)
ca3bf3bd 914{
97094034 915 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 916
97094034
AA
917 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
918 NULL, cb_data);
ca3bf3bd
DJ
919}
920
921
bdb4c075 922/* Handling frames. */
ca3bf3bd 923
bdb4c075
MG
924/* Number of registers to save in case of Windowed ABI. */
925#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 926
bdb4c075
MG
927/* Frame cache part for Windowed ABI. */
928typedef struct xtensa_windowed_frame_cache
ca3bf3bd 929{
ee967b5f
MG
930 int wb; /* WINDOWBASE of the previous frame. */
931 int callsize; /* Call size of this frame. */
08b9c608
MG
932 int ws; /* WINDOWSTART of the previous frame. It keeps track of
933 life windows only. If there is no bit set for the
934 window, that means it had been already spilled
935 because of window overflow. */
936
937 /* Addresses of spilled A-registers.
938 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 939 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
940} xtensa_windowed_frame_cache_t;
941
942/* Call0 ABI Definitions. */
943
581e13c1
MS
944#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
945 analysis. */
bdb4c075
MG
946#define C0_CLESV 12 /* Callee-saved registers are here and up. */
947#define C0_SP 1 /* Register used as SP. */
948#define C0_FP 15 /* Register used as FP. */
949#define C0_RA 0 /* Register used as return address. */
950#define C0_ARGS 2 /* Register used as first arg/retval. */
951#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
952
953/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
959
960#define C0_CONST -1 /* fr_reg value if register contains a constant. */
961#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
963
964extern xtensa_isa xtensa_default_isa;
965
966typedef struct xtensa_c0reg
967{
dbab50de
MG
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
973} xtensa_c0reg_t;
974
bdb4c075
MG
975/* Frame cache part for Call0 ABI. */
976typedef struct xtensa_call0_frame_cache
977{
dbab50de
MG
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
990
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
992} xtensa_call0_frame_cache_t;
993
994typedef struct xtensa_frame_cache
995{
ee967b5f 996 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
1001 int call0; /* It's a call0 framework (else windowed). */
1002 union
1003 {
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1006 };
ca3bf3bd
DJ
1007} xtensa_frame_cache_t;
1008
1009
1010static struct xtensa_frame_cache *
bdb4c075 1011xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
1012{
1013 xtensa_frame_cache_t *cache;
1014 int i;
1015
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1017
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1019
1020 cache->base = 0;
1021 cache->pc = 0;
1022 cache->ra = 0;
ca3bf3bd 1023 cache->ps = 0;
ca3bf3bd 1024 cache->prev_sp = 0;
bdb4c075
MG
1025 cache->call0 = !windowed;
1026 if (cache->call0)
1027 {
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
dbab50de
MG
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1035
bdb4c075
MG
1036 for (i = 0; i < C0_NREGS; i++)
1037 {
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1041 }
1042 }
1043 else
1044 {
1045 cache->wd.wb = 0;
ee967b5f 1046 cache->wd.ws = 0;
bdb4c075 1047 cache->wd.callsize = -1;
ca3bf3bd 1048
bdb4c075
MG
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1051 }
ca3bf3bd
DJ
1052 return cache;
1053}
1054
1055
1056static CORE_ADDR
1057xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1058{
1059 return address & ~15;
1060}
1061
1062
1063static CORE_ADDR
1064xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065{
ff7a4c00 1066 gdb_byte buf[8];
0dfff4cb 1067 CORE_ADDR pc;
ca3bf3bd 1068
a74ce742
PM
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
ca3bf3bd 1071
6b50c0b0 1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1074
0dfff4cb 1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1076
0dfff4cb 1077 return pc;
ca3bf3bd
DJ
1078}
1079
1080
1081static struct frame_id
5142f611 1082xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1083{
1084 CORE_ADDR pc, fp;
ca3bf3bd 1085
5142f611 1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1087
5142f611
MG
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1091
1092 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1094}
1095
08b9c608
MG
1096/* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1098
1099static int
1100xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1101{
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1104 unsigned int code;
1105
1106 if (byte_order == BFD_ENDIAN_BIG)
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1115 }
1116 else
1117 {
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1121 return 1;
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1125 }
1126}
1127
ee967b5f
MG
1128/* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1130
d4709618
MG
1131#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1133
1134static unsigned int
1135xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1136{
1137#define RETURN_FP goto done
1138
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1141 xtensa_isa isa;
1142 xtensa_insnbuf ins, slot;
948f8e3d 1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1144 CORE_ADDR ia, bt, ba;
1145 xtensa_format ifmt;
1146 int ilen, islots, is;
1147 xtensa_opcode opc;
1148 const char *opcname;
1149
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1152 return fp_regnum;
1153
ee967b5f
MG
1154 isa = xtensa_default_isa;
1155 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1156 ins = xtensa_insnbuf_alloc (isa);
1157 slot = xtensa_insnbuf_alloc (isa);
1158 ba = 0;
1159
1160 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1161 {
1162 if (ia + xtensa_isa_maxlength (isa) > bt)
1163 {
1164 ba = ia;
1165 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1166 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1167 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1168 RETURN_FP;
ee967b5f
MG
1169 }
1170
1171 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1172 ifmt = xtensa_format_decode (isa, ins);
1173 if (ifmt == XTENSA_UNDEFINED)
1174 RETURN_FP;
1175 ilen = xtensa_format_length (isa, ifmt);
1176 if (ilen == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178 islots = xtensa_format_num_slots (isa, ifmt);
1179 if (islots == XTENSA_UNDEFINED)
1180 RETURN_FP;
1181
1182 for (is = 0; is < islots; ++is)
1183 {
1184 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1185 RETURN_FP;
1186
1187 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1188 if (opc == XTENSA_UNDEFINED)
1189 RETURN_FP;
1190
1191 opcname = xtensa_opcode_name (isa, opc);
1192
1193 if (strcasecmp (opcname, "mov.n") == 0
1194 || strcasecmp (opcname, "or") == 0)
1195 {
1196 unsigned int register_operand;
1197
1198 /* Possible candidate for setting frame pointer
581e13c1 1199 from A1. This is what we are looking for. */
ee967b5f
MG
1200
1201 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1202 is, slot, &register_operand) != 0)
1203 RETURN_FP;
1204 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1205 RETURN_FP;
1206 if (register_operand == 1) /* Mov{.n} FP A1. */
1207 {
1208 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1209 &register_operand) != 0)
1210 RETURN_FP;
1211 if (xtensa_operand_decode (isa, opc, 0,
1212 &register_operand) != 0)
1213 RETURN_FP;
1214
581e13c1
MS
1215 fp_regnum
1216 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1217 RETURN_FP;
1218 }
1219 }
1220
1221 if (
1222 /* We have problems decoding the memory. */
1223 opcname == NULL
1224 || strcasecmp (opcname, "ill") == 0
1225 || strcasecmp (opcname, "ill.n") == 0
1226 /* Hit planted breakpoint. */
1227 || strcasecmp (opcname, "break") == 0
1228 || strcasecmp (opcname, "break.n") == 0
1229 /* Flow control instructions finish prologue. */
1230 || xtensa_opcode_is_branch (isa, opc) > 0
1231 || xtensa_opcode_is_jump (isa, opc) > 0
1232 || xtensa_opcode_is_loop (isa, opc) > 0
1233 || xtensa_opcode_is_call (isa, opc) > 0
1234 || strcasecmp (opcname, "simcall") == 0
1235 || strcasecmp (opcname, "syscall") == 0)
1236 /* Can not continue analysis. */
1237 RETURN_FP;
1238 }
1239 }
1240done:
1241 xtensa_insnbuf_free(isa, slot);
1242 xtensa_insnbuf_free(isa, ins);
1243 return fp_regnum;
1244}
1245
bdb4c075
MG
1246/* The key values to identify the frame using "cache" are
1247
ee967b5f 1248 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1249 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1250 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1251
1252static void
5142f611 1253call0_frame_cache (struct frame_info *this_frame,
dbab50de 1254 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1255
08b9c608
MG
1256static void
1257xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1258 xtensa_frame_cache_t *cache,
1259 CORE_ADDR pc);
1260
ca3bf3bd 1261static struct xtensa_frame_cache *
5142f611 1262xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1263{
1264 xtensa_frame_cache_t *cache;
ca3bf3bd 1265 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1268 unsigned int fp_regnum;
98689b25 1269 int windowed, ps_regnum;
ca3bf3bd 1270
ca3bf3bd 1271 if (*this_cache)
19ba03f4 1272 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1273
98689b25
MG
1274 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1275 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1276 ps = (ps_regnum >= 0
1277 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1278
1279 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1280
ca3bf3bd 1281 /* Get pristine xtensa-frame. */
bdb4c075 1282 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1283 *this_cache = cache;
1284
bdb4c075 1285 if (windowed)
ca3bf3bd 1286 {
a08b52b5 1287 LONGEST op1;
98689b25 1288
bdb4c075 1289 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1290 wb = get_frame_register_unsigned (this_frame,
1291 gdbarch_tdep (gdbarch)->wb_regnum);
1292 ws = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1294
a08b52b5
MF
1295 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1296 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1297 {
bdb4c075 1298 int callinc = CALLINC (ps);
5142f611
MG
1299 ra = get_frame_register_unsigned
1300 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1301
1302 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1303 cache->wd.callsize = 0;
1304 cache->wd.wb = wb;
1305 cache->wd.ws = ws;
5142f611
MG
1306 cache->prev_sp = get_frame_register_unsigned
1307 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1308
1309 /* This only can be the outermost frame since we are
1310 just about to execute ENTRY. SP hasn't been set yet.
1311 We can assume any frame size, because it does not
1312 matter, and, let's fake frame base in cache. */
98689b25 1313 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1314
1315 cache->pc = pc;
1316 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1317 cache->ps = (ps & ~PS_CALLINC_MASK)
1318 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1319
1320 return cache;
bdb4c075
MG
1321 }
1322 else
1323 {
ee967b5f 1324 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1325 ra = get_frame_register_unsigned (this_frame,
1326 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1327 cache->wd.callsize = WINSIZE (ra);
304fe255 1328 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1329 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1330 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1331
5142f611 1332 cache->pc = get_frame_func (this_frame);
f6402f18 1333 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1334 cache->ps = (ps & ~PS_CALLINC_MASK)
1335 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1336 }
bdb4c075
MG
1337
1338 if (cache->wd.ws == 0)
ca3bf3bd 1339 {
bdb4c075 1340 int i;
ca3bf3bd 1341
bdb4c075 1342 /* Set A0...A3. */
5142f611
MG
1343 sp = get_frame_register_unsigned
1344 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1345
1346 for (i = 0; i < 4; i++, sp += 4)
1347 {
1348 cache->wd.aregs[i] = sp;
1349 }
ca3bf3bd 1350
bdb4c075 1351 if (cache->wd.callsize > 4)
ca3bf3bd 1352 {
bdb4c075 1353 /* Set A4...A7/A11. */
ee967b5f
MG
1354 /* Get the SP of the frame previous to the previous one.
1355 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1356 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1357 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1358 sp -= cache->wd.callsize * 4;
1359
ee967b5f 1360 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1361 {
1362 cache->wd.aregs[i] = sp;
1363 }
ca3bf3bd
DJ
1364 }
1365 }
ca3bf3bd 1366
bdb4c075 1367 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1368 /* If RA is equal to 0 this frame is an outermost frame. Leave
1369 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1370 {
ee967b5f 1371 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1372 {
1373 /* Register window overflow already happened.
1374 We can read caller's SP from the proper spill loction. */
5142f611
MG
1375 sp = get_frame_register_unsigned
1376 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1377 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1378 }
1379 else
1380 {
1381 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1382 int regnum = arreg_number
91d8eb23 1383 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1384 cache->wd.wb);
ca3bf3bd 1385
08b9c608 1386 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1387 }
ca3bf3bd
DJ
1388 }
1389 }
08b9c608
MG
1390 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1391 {
1392 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1393
1394 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1395 /* Everything was set already, including cache->base. */
1396 return cache;
1397 }
bdb4c075
MG
1398 else /* Call0 framework. */
1399 {
dbab50de 1400 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1401 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1402 }
ca3bf3bd 1403
5142f611 1404 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1405
ca3bf3bd
DJ
1406 return cache;
1407}
1408
dbab50de
MG
1409static int xtensa_session_once_reported = 1;
1410
1411/* Report a problem with prologue analysis while doing backtracing.
1412 But, do it only once to avoid annoyng repeated messages. */
1413
4e6ca6d5
MG
1414static void
1415warning_once (void)
dbab50de
MG
1416{
1417 if (xtensa_session_once_reported == 0)
1418 warning (_("\
1419\nUnrecognised function prologue. Stack trace cannot be resolved. \
1420This message will not be repeated in this session.\n"));
1421
1422 xtensa_session_once_reported = 1;
1423}
1424
1425
ca3bf3bd 1426static void
5142f611 1427xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1428 void **this_cache,
1429 struct frame_id *this_id)
1430{
1431 struct xtensa_frame_cache *cache =
5142f611 1432 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1433
1434 if (cache->prev_sp == 0)
1435 return;
1436
5142f611 1437 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1438}
ca3bf3bd 1439
5142f611
MG
1440static struct value *
1441xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1442 void **this_cache,
5142f611 1443 int regnum)
ca3bf3bd 1444{
5142f611
MG
1445 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1446 struct xtensa_frame_cache *cache;
1447 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1448 int done = 1;
1449
5142f611
MG
1450 if (*this_cache == NULL)
1451 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1452 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1453
6b50c0b0 1454 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1455 saved_reg = cache->ra;
6b50c0b0 1456 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1457 saved_reg = cache->prev_sp;
1458 else if (!cache->call0)
ca3bf3bd 1459 {
6b50c0b0 1460 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1461 saved_reg = cache->wd.ws;
6b50c0b0 1462 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1463 saved_reg = cache->wd.wb;
6b50c0b0 1464 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1465 saved_reg = cache->ps;
ca3bf3bd 1466 else
bdb4c075 1467 done = 0;
ca3bf3bd 1468 }
ca3bf3bd
DJ
1469 else
1470 done = 0;
1471
1472 if (done)
5142f611 1473 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1474
bdb4c075 1475 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1476 {
ee967b5f
MG
1477 /* Convert A-register numbers to AR-register numbers,
1478 if we deal with A-register. */
94a0e877 1479 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1480 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1481 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1482
ee967b5f 1483 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1484 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1485 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1486 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1487 {
ee967b5f 1488 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1489
bdb4c075
MG
1490 if (areg >= 0
1491 && areg < XTENSA_NUM_SAVED_AREGS
1492 && cache->wd.aregs[areg] != -1)
5142f611
MG
1493 return frame_unwind_got_memory (this_frame, regnum,
1494 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1495 }
1496 }
bdb4c075
MG
1497 else /* Call0 ABI. */
1498 {
6b50c0b0
UW
1499 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1500 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1501 + C0_NREGS))
6b50c0b0 1502 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1503
bdb4c075
MG
1504 if (reg < C0_NREGS)
1505 {
1506 CORE_ADDR spe;
1507 int stkofs;
1508
1509 /* If register was saved in the prologue, retrieve it. */
1510 stkofs = cache->c0.c0_rt[reg].to_stk;
1511 if (stkofs != C0_NOSTK)
1512 {
1513 /* Determine SP on entry based on FP. */
1514 spe = cache->c0.c0_fp
1515 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1516
581e13c1
MS
1517 return frame_unwind_got_memory (this_frame, regnum,
1518 spe + stkofs);
bdb4c075
MG
1519 }
1520 }
1521 }
1522
1523 /* All other registers have been either saved to
1524 the stack or are still alive in the processor. */
ca3bf3bd 1525
5142f611 1526 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1527}
1528
1529
1530static const struct frame_unwind
5142f611 1531xtensa_unwind =
ca3bf3bd
DJ
1532{
1533 NORMAL_FRAME,
8fbca658 1534 default_frame_unwind_stop_reason,
ca3bf3bd 1535 xtensa_frame_this_id,
5142f611
MG
1536 xtensa_frame_prev_register,
1537 NULL,
1538 default_frame_sniffer
ca3bf3bd
DJ
1539};
1540
ca3bf3bd 1541static CORE_ADDR
5142f611 1542xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1543{
1544 struct xtensa_frame_cache *cache =
5142f611 1545 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1546
1547 return cache->base;
1548}
1549
1550static const struct frame_base
1551xtensa_frame_base =
1552{
5142f611 1553 &xtensa_unwind,
ca3bf3bd
DJ
1554 xtensa_frame_base_address,
1555 xtensa_frame_base_address,
1556 xtensa_frame_base_address
1557};
1558
1559
1560static void
1561xtensa_extract_return_value (struct type *type,
1562 struct regcache *regcache,
1563 void *dst)
1564{
6b50c0b0 1565 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1566 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1567 int len = TYPE_LENGTH (type);
1568 ULONGEST pc, wb;
1569 int callsize, areg;
1570 int offset = 0;
1571
1572 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1573
1574 gdb_assert(len > 0);
1575
6b50c0b0 1576 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1577 {
1578 /* First, we have to find the caller window in the register file. */
6b50c0b0 1579 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1580 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1581
bdb4c075
MG
1582 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1583 if (len > (callsize > 8 ? 8 : 16))
1584 internal_error (__FILE__, __LINE__,
581e13c1
MS
1585 _("cannot extract return value of %d bytes long"),
1586 len);
ca3bf3bd 1587
bdb4c075
MG
1588 /* Get the register offset of the return
1589 register (A2) in the caller window. */
304fe255 1590 regcache_raw_read_unsigned
6b50c0b0 1591 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1592 areg = arreg_number (gdbarch,
91d8eb23 1593 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1594 }
1595 else
1596 {
1597 /* No windowing hardware - Call0 ABI. */
94a0e877 1598 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1599 }
ca3bf3bd
DJ
1600
1601 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1602
6b50c0b0 1603 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1604 offset = 4 - len;
1605
1606 for (; len > 0; len -= 4, areg++, valbuf += 4)
1607 {
1608 if (len < 4)
1609 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1610 else
1611 regcache_raw_read (regcache, areg, valbuf);
1612 }
1613}
1614
1615
1616static void
1617xtensa_store_return_value (struct type *type,
1618 struct regcache *regcache,
1619 const void *dst)
1620{
6b50c0b0 1621 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1622 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1623 unsigned int areg;
1624 ULONGEST pc, wb;
1625 int callsize;
1626 int len = TYPE_LENGTH (type);
1627 int offset = 0;
1628
1629 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1630
6b50c0b0 1631 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1632 {
6b50c0b0
UW
1633 regcache_raw_read_unsigned
1634 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1635 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1636 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1637
bdb4c075
MG
1638 if (len > (callsize > 8 ? 8 : 16))
1639 internal_error (__FILE__, __LINE__,
1640 _("unimplemented for this length: %d"),
1641 TYPE_LENGTH (type));
ee967b5f
MG
1642 areg = arreg_number (gdbarch,
1643 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1644
bdb4c075 1645 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1646 callsize, (int) wb);
bdb4c075
MG
1647 }
1648 else
1649 {
94a0e877 1650 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1651 }
ca3bf3bd 1652
6b50c0b0 1653 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1654 offset = 4 - len;
1655
ca3bf3bd
DJ
1656 for (; len > 0; len -= 4, areg++, valbuf += 4)
1657 {
1658 if (len < 4)
1659 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1660 else
1661 regcache_raw_write (regcache, areg, valbuf);
1662 }
1663}
1664
1665
bdb4c075 1666static enum return_value_convention
ca3bf3bd 1667xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1668 struct value *function,
ca3bf3bd
DJ
1669 struct type *valtype,
1670 struct regcache *regcache,
1671 gdb_byte *readbuf,
1672 const gdb_byte *writebuf)
1673{
bdb4c075 1674 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1675
1676 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1677 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1678 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1679 && TYPE_LENGTH (valtype) > 16);
1680
1681 if (struct_return)
1682 return RETURN_VALUE_STRUCT_CONVENTION;
1683
1684 DEBUGTRACE ("xtensa_return_value(...)\n");
1685
1686 if (writebuf != NULL)
1687 {
1688 xtensa_store_return_value (valtype, regcache, writebuf);
1689 }
1690
1691 if (readbuf != NULL)
1692 {
1693 gdb_assert (!struct_return);
1694 xtensa_extract_return_value (valtype, regcache, readbuf);
1695 }
1696 return RETURN_VALUE_REGISTER_CONVENTION;
1697}
1698
1699
1700/* DUMMY FRAME */
1701
1702static CORE_ADDR
1703xtensa_push_dummy_call (struct gdbarch *gdbarch,
1704 struct value *function,
1705 struct regcache *regcache,
1706 CORE_ADDR bp_addr,
1707 int nargs,
1708 struct value **args,
1709 CORE_ADDR sp,
1710 int struct_return,
1711 CORE_ADDR struct_addr)
1712{
e17a4113 1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd
DJ
1714 int i;
1715 int size, onstack_size;
ff7a4c00 1716 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1717 CORE_ADDR ra, ps;
1718 struct argument_info
1719 {
1720 const bfd_byte *contents;
1721 int length;
1722 int onstack; /* onstack == 0 => in reg */
1723 int align; /* alignment */
1724 union
1725 {
581e13c1
MS
1726 int offset; /* stack offset if on stack. */
1727 int regno; /* regno if in register. */
ca3bf3bd
DJ
1728 } u;
1729 };
1730
1731 struct argument_info *arg_info =
1732 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1733
1734 CORE_ADDR osp = sp;
1735
1736 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1737
1738 if (xtensa_debug_level > 3)
1739 {
1740 int i;
1741 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1742 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1743 "struct_addr=0x%x\n",
1744 (int) sp, (int) struct_return, (int) struct_addr);
1745
1746 for (i = 0; i < nargs; i++)
1747 {
1748 struct value *arg = args[i];
1749 struct type *arg_type = check_typedef (value_type (arg));
3329c4b5
PM
1750 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1751 host_address_to_string (arg),
1752 TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1753 switch (TYPE_CODE (arg_type))
1754 {
1755 case TYPE_CODE_INT:
1756 fprintf_unfiltered (gdb_stdlog, "int");
1757 break;
1758 case TYPE_CODE_STRUCT:
1759 fprintf_unfiltered (gdb_stdlog, "struct");
1760 break;
1761 default:
1762 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1763 break;
1764 }
3329c4b5
PM
1765 fprintf_unfiltered (gdb_stdlog, " %s\n",
1766 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1767 }
1768 }
1769
1770 /* First loop: collect information.
1771 Cast into type_long. (This shouldn't happen often for C because
1772 GDB already does this earlier.) It's possible that GDB could
1773 do it all the time but it's harmless to leave this code here. */
1774
1775 size = 0;
1776 onstack_size = 0;
1777 i = 0;
1778
1779 if (struct_return)
1780 size = REGISTER_SIZE;
1781
1782 for (i = 0; i < nargs; i++)
1783 {
1784 struct argument_info *info = &arg_info[i];
1785 struct value *arg = args[i];
1786 struct type *arg_type = check_typedef (value_type (arg));
1787
1788 switch (TYPE_CODE (arg_type))
1789 {
1790 case TYPE_CODE_INT:
1791 case TYPE_CODE_BOOL:
1792 case TYPE_CODE_CHAR:
1793 case TYPE_CODE_RANGE:
1794 case TYPE_CODE_ENUM:
1795
1796 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1797 if (TYPE_LENGTH (arg_type)
1798 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1799 {
0dfff4cb 1800 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1801 arg = value_cast (arg_type, arg);
1802 }
bdb4c075
MG
1803 /* Aligment is equal to the type length for the basic types. */
1804 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1805 break;
1806
1807 case TYPE_CODE_FLT:
1808
1809 /* Align doubles correctly. */
0dfff4cb
UW
1810 if (TYPE_LENGTH (arg_type)
1811 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1812 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1813 else
0dfff4cb 1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1815 break;
1816
1817 case TYPE_CODE_STRUCT:
1818 default:
0dfff4cb 1819 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1820 break;
1821 }
1822 info->length = TYPE_LENGTH (arg_type);
1823 info->contents = value_contents (arg);
1824
1825 /* Align size and onstack_size. */
1826 size = (size + info->align - 1) & ~(info->align - 1);
1827 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1828
91d8eb23 1829 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1830 {
1831 info->onstack = 1;
1832 info->u.offset = onstack_size;
1833 onstack_size += info->length;
1834 }
1835 else
1836 {
1837 info->onstack = 0;
91d8eb23 1838 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1839 }
1840 size += info->length;
1841 }
1842
1843 /* Adjust the stack pointer and align it. */
1844 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1845
bdb4c075 1846 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1847 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1848 && (sp != osp))
ca3bf3bd
DJ
1849 {
1850 read_memory (osp - 16, buf, 16);
1851 write_memory (sp - 16, buf, 16);
1852 }
1853
1854 /* Second Loop: Load arguments. */
1855
1856 if (struct_return)
1857 {
e17a4113 1858 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
91d8eb23 1859 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1860 }
1861
1862 for (i = 0; i < nargs; i++)
1863 {
1864 struct argument_info *info = &arg_info[i];
1865
1866 if (info->onstack)
1867 {
1868 int n = info->length;
1869 CORE_ADDR offset = sp + info->u.offset;
1870
1871 /* Odd-sized structs are aligned to the lower side of a memory
1872 word in big-endian mode and require a shift. This only
1873 applies for structures smaller than one word. */
1874
4c6b5505 1875 if (n < REGISTER_SIZE
6b50c0b0 1876 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1877 offset += (REGISTER_SIZE - n);
1878
1879 write_memory (offset, info->contents, info->length);
1880
1881 }
1882 else
1883 {
1884 int n = info->length;
1885 const bfd_byte *cp = info->contents;
1886 int r = info->u.regno;
1887
1888 /* Odd-sized structs are aligned to the lower side of registers in
1889 big-endian mode and require a shift. The odd-sized leftover will
1890 be at the end. Note that this is only true for structures smaller
1891 than REGISTER_SIZE; for larger odd-sized structures the excess
1892 will be left-aligned in the register on both endiannesses. */
1893
e17a4113 1894 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1895 {
e17a4113
UW
1896 ULONGEST v;
1897 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1898 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1899
e17a4113 1900 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
ca3bf3bd
DJ
1901 regcache_cooked_write (regcache, r, buf);
1902
1903 cp += REGISTER_SIZE;
1904 n -= REGISTER_SIZE;
1905 r++;
1906 }
1907 else
1908 while (n > 0)
1909 {
ca3bf3bd
DJ
1910 regcache_cooked_write (regcache, r, cp);
1911
ca3bf3bd
DJ
1912 cp += REGISTER_SIZE;
1913 n -= REGISTER_SIZE;
1914 r++;
1915 }
1916 }
1917 }
1918
ca3bf3bd 1919 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1920 The return address for the current function (in A0) is
ca3bf3bd
DJ
1921 saved in the dummy frame, so we can savely overwrite A0 here. */
1922
6b50c0b0 1923 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1924 {
98689b25 1925 ULONGEST val;
68d6df83 1926
bdb4c075 1927 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1928 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1929 ps = (unsigned long) val & ~0x00030000;
304fe255 1930 regcache_cooked_write_unsigned
6b50c0b0 1931 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1932 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1933 gdbarch_ps_regnum (gdbarch),
bdb4c075 1934 ps | 0x00010000);
94a0e877
MG
1935
1936 /* All the registers have been saved. After executing
1937 dummy call, they all will be restored. So it's safe
1938 to modify WINDOWSTART register to make it look like there
1939 is only one register window corresponding to WINDOWEBASE. */
1940
1941 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1942 regcache_cooked_write_unsigned
1943 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1944 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1945 }
1946 else
1947 {
1948 /* Simulate CALL0: write RA into A0 register. */
304fe255 1949 regcache_cooked_write_unsigned
94a0e877 1950 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1951 }
ca3bf3bd
DJ
1952
1953 /* Set new stack pointer and return it. */
304fe255 1954 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1955 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1956 /* Make dummy frame ID unique by adding a constant. */
1957 return sp + SP_ALIGNMENT;
1958}
1959
cd6c3b4f
YQ
1960/* Implement the breakpoint_kind_from_pc gdbarch method. */
1961
d19280ad
YQ
1962static int
1963xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1964{
1965 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1966 return 2;
1967 else
1968 return 4;
1969}
ca3bf3bd
DJ
1970
1971/* Return a breakpoint for the current location of PC. We always use
1972 the density version if we have density instructions (regardless of the
1973 current instruction at PC), and use regular instructions otherwise. */
1974
1975#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1976#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1977#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1978#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1979
cd6c3b4f
YQ
1980/* Implement the sw_breakpoint_from_kind gdbarch method. */
1981
d19280ad
YQ
1982static const gdb_byte *
1983xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1984{
d19280ad 1985 *size = kind;
ca3bf3bd 1986
d19280ad 1987 if (kind == 4)
ca3bf3bd 1988 {
d19280ad
YQ
1989 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1990 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1991
67d57894 1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1993 return big_breakpoint;
ca3bf3bd 1994 else
d19280ad 1995 return little_breakpoint;
ca3bf3bd
DJ
1996 }
1997 else
1998 {
d19280ad
YQ
1999 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
2000 static unsigned char density_little_breakpoint[]
2001 = DENSITY_LITTLE_BREAKPOINT;
2002
67d57894 2003 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 2004 return density_big_breakpoint;
ca3bf3bd 2005 else
d19280ad 2006 return density_little_breakpoint;
ca3bf3bd
DJ
2007 }
2008}
2009
bdb4c075
MG
2010/* Call0 ABI support routines. */
2011
f976a05d
MG
2012/* Return true, if PC points to "ret" or "ret.n". */
2013
2014static int
2015call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2016{
2017#define RETURN_RET goto done
2018 xtensa_isa isa;
2019 xtensa_insnbuf ins, slot;
948f8e3d 2020 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
2021 CORE_ADDR ia, bt, ba;
2022 xtensa_format ifmt;
2023 int ilen, islots, is;
2024 xtensa_opcode opc;
2025 const char *opcname;
2026 int found_ret = 0;
2027
2028 isa = xtensa_default_isa;
2029 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2030 ins = xtensa_insnbuf_alloc (isa);
2031 slot = xtensa_insnbuf_alloc (isa);
2032 ba = 0;
2033
2034 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2035 {
2036 if (ia + xtensa_isa_maxlength (isa) > bt)
2037 {
2038 ba = ia;
2039 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2040 ? ba + XTENSA_ISA_BSZ : finish_pc;
2041 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2042 RETURN_RET;
2043 }
2044
2045 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2046 ifmt = xtensa_format_decode (isa, ins);
2047 if (ifmt == XTENSA_UNDEFINED)
2048 RETURN_RET;
2049 ilen = xtensa_format_length (isa, ifmt);
2050 if (ilen == XTENSA_UNDEFINED)
2051 RETURN_RET;
2052 islots = xtensa_format_num_slots (isa, ifmt);
2053 if (islots == XTENSA_UNDEFINED)
2054 RETURN_RET;
2055
2056 for (is = 0; is < islots; ++is)
2057 {
2058 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2059 RETURN_RET;
2060
2061 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2062 if (opc == XTENSA_UNDEFINED)
2063 RETURN_RET;
2064
2065 opcname = xtensa_opcode_name (isa, opc);
2066
2067 if ((strcasecmp (opcname, "ret.n") == 0)
2068 || (strcasecmp (opcname, "ret") == 0))
2069 {
2070 found_ret = 1;
2071 RETURN_RET;
2072 }
2073 }
2074 }
2075 done:
2076 xtensa_insnbuf_free(isa, slot);
2077 xtensa_insnbuf_free(isa, ins);
2078 return found_ret;
2079}
2080
bdb4c075
MG
2081/* Call0 opcode class. Opcodes are preclassified according to what they
2082 mean for Call0 prologue analysis, and their number of significant operands.
2083 The purpose of this is to simplify prologue analysis by separating
2084 instruction decoding (libisa) from the semantics of prologue analysis. */
2085
68d6df83
MG
2086typedef enum
2087{
bdb4c075
MG
2088 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2089 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2090 c0opc_flow, /* Flow control insn. */
2091 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2092 c0opc_break, /* Debugger software breakpoints. */
2093 c0opc_add, /* Adding two registers. */
2094 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2095 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2096 c0opc_sub, /* Subtracting a register from a register. */
2097 c0opc_mov, /* Moving a register to a register. */
2098 c0opc_movi, /* Moving an immediate to a register. */
2099 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2100 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2101 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2102 c0opc_l32e, /* L32E instruction. */
2103 c0opc_s32e, /* S32E instruction. */
2104 c0opc_rfwo, /* RFWO instruction. */
2105 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2106 c0opc_NrOf /* Number of opcode classifications. */
2107} xtensa_insn_kind;
2108
08b9c608
MG
2109/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2110
2111static int
2112rwx_special_register (const char *opcname)
2113{
2114 char ch = *opcname++;
2115
2116 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2117 return 0;
2118 if (*opcname++ != 's')
2119 return 0;
2120 if (*opcname++ != 'r')
2121 return 0;
2122 if (*opcname++ != '.')
2123 return 0;
2124
2125 return 1;
2126}
bdb4c075
MG
2127
2128/* Classify an opcode based on what it means for Call0 prologue analysis. */
2129
2130static xtensa_insn_kind
2131call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2132{
2133 const char *opcname;
2134 xtensa_insn_kind opclass = c0opc_uninteresting;
2135
2136 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2137
2138 /* Get opcode name and handle special classifications. */
2139
2140 opcname = xtensa_opcode_name (isa, opc);
2141
2142 if (opcname == NULL
2143 || strcasecmp (opcname, "ill") == 0
2144 || strcasecmp (opcname, "ill.n") == 0)
2145 opclass = c0opc_illegal;
2146 else if (strcasecmp (opcname, "break") == 0
2147 || strcasecmp (opcname, "break.n") == 0)
2148 opclass = c0opc_break;
2149 else if (strcasecmp (opcname, "entry") == 0)
2150 opclass = c0opc_entry;
08b9c608
MG
2151 else if (strcasecmp (opcname, "rfwo") == 0)
2152 opclass = c0opc_rfwo;
2153 else if (strcasecmp (opcname, "rfwu") == 0)
2154 opclass = c0opc_rfwu;
bdb4c075
MG
2155 else if (xtensa_opcode_is_branch (isa, opc) > 0
2156 || xtensa_opcode_is_jump (isa, opc) > 0
2157 || xtensa_opcode_is_loop (isa, opc) > 0
2158 || xtensa_opcode_is_call (isa, opc) > 0
2159 || strcasecmp (opcname, "simcall") == 0
2160 || strcasecmp (opcname, "syscall") == 0)
2161 opclass = c0opc_flow;
2162
2163 /* Also, classify specific opcodes that need to be tracked. */
2164 else if (strcasecmp (opcname, "add") == 0
2165 || strcasecmp (opcname, "add.n") == 0)
2166 opclass = c0opc_add;
dbab50de
MG
2167 else if (strcasecmp (opcname, "and") == 0)
2168 opclass = c0opc_and;
bdb4c075
MG
2169 else if (strcasecmp (opcname, "addi") == 0
2170 || strcasecmp (opcname, "addi.n") == 0
2171 || strcasecmp (opcname, "addmi") == 0)
2172 opclass = c0opc_addi;
2173 else if (strcasecmp (opcname, "sub") == 0)
2174 opclass = c0opc_sub;
2175 else if (strcasecmp (opcname, "mov.n") == 0
2176 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2177 opclass = c0opc_mov;
2178 else if (strcasecmp (opcname, "movi") == 0
2179 || strcasecmp (opcname, "movi.n") == 0)
2180 opclass = c0opc_movi;
2181 else if (strcasecmp (opcname, "l32r") == 0)
2182 opclass = c0opc_l32r;
2183 else if (strcasecmp (opcname, "s32i") == 0
2184 || strcasecmp (opcname, "s32i.n") == 0)
2185 opclass = c0opc_s32i;
08b9c608
MG
2186 else if (strcasecmp (opcname, "l32e") == 0)
2187 opclass = c0opc_l32e;
2188 else if (strcasecmp (opcname, "s32e") == 0)
2189 opclass = c0opc_s32e;
2190 else if (rwx_special_register (opcname))
2191 opclass = c0opc_rwxsr;
bdb4c075
MG
2192
2193 return opclass;
2194}
2195
2196/* Tracks register movement/mutation for a given operation, which may
2197 be within a bundle. Updates the destination register tracking info
2198 accordingly. The pc is needed only for pc-relative load instructions
2199 (eg. l32r). The SP register number is needed to identify stores to
dbab50de
MG
2200 the stack frame. Returns 0, if analysis was succesfull, non-zero
2201 otherwise. */
bdb4c075 2202
dbab50de
MG
2203static int
2204call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2205 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2206 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2207{
e17a4113 2208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2209 unsigned litbase, litaddr, litval;
bdb4c075
MG
2210
2211 switch (opclass)
2212 {
2213 case c0opc_addi:
2214 /* 3 operands: dst, src, imm. */
2215 gdb_assert (nods == 3);
2216 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2217 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2218 break;
2219 case c0opc_add:
2220 /* 3 operands: dst, src1, src2. */
08b9c608 2221 gdb_assert (nods == 3);
bdb4c075
MG
2222 if (src[odv[1]].fr_reg == C0_CONST)
2223 {
2224 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2226 }
2227 else if (src[odv[2]].fr_reg == C0_CONST)
2228 {
2229 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2230 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2231 }
2232 else dst[odv[0]].fr_reg = C0_INEXP;
2233 break;
dbab50de
MG
2234 case c0opc_and:
2235 /* 3 operands: dst, src1, src2. */
2236 gdb_assert (nods == 3);
2237 if (cache->c0.c0_fpalign == 0)
2238 {
2239 /* Handle dynamic stack alignment. */
2240 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2241 {
2242 if (src[odv[2]].fr_reg == C0_CONST)
2243 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2244 break;
2245 }
2246 else if ((src[odv[0]].fr_reg == spreg)
2247 && (src[odv[2]].fr_reg == spreg))
2248 {
2249 if (src[odv[1]].fr_reg == C0_CONST)
2250 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2251 break;
2252 }
2253 /* else fall through. */
2254 }
2255 if (src[odv[1]].fr_reg == C0_CONST)
2256 {
2257 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2259 }
2260 else if (src[odv[2]].fr_reg == C0_CONST)
2261 {
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2264 }
2265 else dst[odv[0]].fr_reg = C0_INEXP;
2266 break;
bdb4c075
MG
2267 case c0opc_sub:
2268 /* 3 operands: dst, src1, src2. */
2269 gdb_assert (nods == 3);
2270 if (src[odv[2]].fr_reg == C0_CONST)
2271 {
2272 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2273 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2274 }
2275 else dst[odv[0]].fr_reg = C0_INEXP;
2276 break;
2277 case c0opc_mov:
2278 /* 2 operands: dst, src [, src]. */
2279 gdb_assert (nods == 2);
dbab50de
MG
2280 /* First, check if it's a special case of saving unaligned SP
2281 to a spare register in case of dynamic stack adjustment.
2282 But, only do it one time. The second time could be initializing
2283 frame pointer. We don't want to overwrite the first one. */
2284 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2285 cache->c0.c0_old_sp = odv[0];
2286
bdb4c075
MG
2287 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2288 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2289 break;
2290 case c0opc_movi:
2291 /* 2 operands: dst, imm. */
2292 gdb_assert (nods == 2);
2293 dst[odv[0]].fr_reg = C0_CONST;
2294 dst[odv[0]].fr_ofs = odv[1];
2295 break;
2296 case c0opc_l32r:
2297 /* 2 operands: dst, literal offset. */
2298 gdb_assert (nods == 2);
dbab50de
MG
2299 /* litbase = xtensa_get_litbase (pc); can be also used. */
2300 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2301 ? 0 : xtensa_read_register
2302 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2303 litaddr = litbase & 1
2304 ? (litbase & ~1) + (signed)odv[1]
2305 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2306 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2307 dst[odv[0]].fr_reg = C0_CONST;
2308 dst[odv[0]].fr_ofs = litval;
2309 break;
2310 case c0opc_s32i:
2311 /* 3 operands: value, base, offset. */
2312 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2313 /* First, check if it's a spill for saved unaligned SP,
2314 when dynamic stack adjustment was applied to this frame. */
2315 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2316 && (odv[1] == spreg) /* SP usage indicates spill. */
2317 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2318 cache->c0.c0_sp_ofs = odv[2];
2319
bdb4c075
MG
2320 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2321 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2322 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2323 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2324 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2325 {
2326 /* ISA encoding guarantees alignment. But, check it anyway. */
2327 gdb_assert ((odv[2] & 3) == 0);
2328 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2329 }
2330 break;
dbab50de
MG
2331 /* If we end up inside Window Overflow / Underflow interrupt handler
2332 report an error because these handlers should have been handled
2333 already in a different way. */
2334 case c0opc_l32e:
2335 case c0opc_s32e:
2336 case c0opc_rfwo:
2337 case c0opc_rfwu:
2338 return 1;
bdb4c075 2339 default:
dbab50de 2340 return 1;
bdb4c075 2341 }
dbab50de 2342 return 0;
bdb4c075
MG
2343}
2344
dbab50de 2345/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2346 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2347 in the prologue up to the PC or just beyond the prologue, whichever is
2348 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2349 prologue. The prologue may overlap non-prologue instructions but is
2350 guaranteed to end by the first flow-control instruction (jump, branch,
2351 call or return). Since an optimized function may move information around
2352 and change the stack frame arbitrarily during the prologue, the information
2353 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2354 May be used to skip the prologue or identify the ABI, w/o tracking.
2355
2356 Returns: Address of first instruction after prologue, or PC (whichever
2357 is first), or 0, if decoding failed (in libisa).
2358 Input args:
2359 start Start address of function/prologue.
2360 pc Program counter to stop at. Use 0 to continue to end of prologue.
2361 If 0, avoids infinite run-on in corrupt code memory by bounding
2362 the scan to the end of the function if that can be determined.
dbab50de 2363 nregs Number of general registers to track.
bdb4c075 2364 InOut args:
dbab50de 2365 cache Xtensa frame cache.
bdb4c075
MG
2366
2367 Note that these may produce useful results even if decoding fails
2368 because they begin with default assumptions that analysis may change. */
2369
2370static CORE_ADDR
e17a4113 2371call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2372 CORE_ADDR start, CORE_ADDR pc,
2373 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2374{
2375 CORE_ADDR ia; /* Current insn address in prologue. */
2376 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2377 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2378 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2379 xtensa_isa isa; /* libisa ISA handle. */
2380 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2381 xtensa_format ifmt; /* libisa instruction format. */
2382 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2383 xtensa_opcode opc; /* Opcode in current slot. */
2384 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2385 int nods; /* Opcode number of operands. */
2386 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2387 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2388 int j; /* General loop counter. */
2389 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2390 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2391 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2392
2393 struct symtab_and_line prologue_sal;
2394
2395 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2396 (int)start, (int)pc);
2397
2398 /* Try to limit the scan to the end of the function if a non-zero pc
2399 arg was not supplied to avoid probing beyond the end of valid memory.
2400 If memory is full of garbage that classifies as c0opc_uninteresting.
2401 If this fails (eg. if no symbols) pc ends up 0 as it was.
26c4b26f 2402 Initialize the Call0 frame and register tracking info.
bdb4c075
MG
2403 Assume it's Call0 until an 'entry' instruction is encountered.
2404 Assume we may be in the prologue until we hit a flow control instr. */
2405
2406 rtmp = NULL;
8179e739 2407 body_pc = UINT_MAX;
bdb4c075
MG
2408 end_pc = 0;
2409
2410 /* Find out, if we have an information about the prologue from DWARF. */
2411 prologue_sal = find_pc_line (start, 0);
2412 if (prologue_sal.line != 0) /* Found debug info. */
2413 body_pc = prologue_sal.end;
2414
2415 /* If we are going to analyze the prologue in general without knowing about
2416 the current PC, make the best assumtion for the end of the prologue. */
2417 if (pc == 0)
2418 {
2419 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2420 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2421 }
2422 else
325fac50 2423 body_pc = std::min (pc, body_pc);
bdb4c075 2424
dbab50de
MG
2425 cache->call0 = 1;
2426 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075
MG
2427
2428 isa = xtensa_default_isa;
2ff5e605 2429 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2430 ins = xtensa_insnbuf_alloc (isa);
2431 slot = xtensa_insnbuf_alloc (isa);
2432
2433 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2434 {
2435 /* (Re)fill instruction buffer from memory if necessary, but do not
2436 read memory beyond PC to be sure we stay within text section
2437 (this protection only works if a non-zero pc is supplied). */
2438
2439 if (ia + xtensa_isa_maxlength (isa) > bt)
2440 {
2441 ba = ia;
2ff5e605 2442 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2443 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2444 error (_("Unable to read target memory ..."));
bdb4c075
MG
2445 }
2446
2447 /* Decode format information. */
2448
2449 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2450 ifmt = xtensa_format_decode (isa, ins);
2451 if (ifmt == XTENSA_UNDEFINED)
2452 {
2453 fail = 1;
2454 goto done;
2455 }
2456 ilen = xtensa_format_length (isa, ifmt);
2457 if (ilen == XTENSA_UNDEFINED)
2458 {
2459 fail = 1;
2460 goto done;
2461 }
2462 islots = xtensa_format_num_slots (isa, ifmt);
2463 if (islots == XTENSA_UNDEFINED)
2464 {
2465 fail = 1;
2466 goto done;
2467 }
2468
2469 /* Analyze a bundle or a single instruction, using a snapshot of
2470 the register tracking info as input for the entire bundle so that
2471 register changes do not take effect within this bundle. */
ca3bf3bd 2472
bdb4c075 2473 for (j = 0; j < nregs; ++j)
dbab50de 2474 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2475
2476 for (is = 0; is < islots; ++is)
2477 {
2478 /* Decode a slot and classify the opcode. */
2479
2480 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2481 if (fail)
2482 goto done;
2483
2484 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2485 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2486 (unsigned)ia, opc);
2487 if (opc == XTENSA_UNDEFINED)
2488 opclass = c0opc_illegal;
2489 else
2490 opclass = call0_classify_opcode (isa, opc);
2491
2492 /* Decide whether to track this opcode, ignore it, or bail out. */
2493
2494 switch (opclass)
2495 {
2496 case c0opc_illegal:
2497 case c0opc_break:
2498 fail = 1;
2499 goto done;
2500
2501 case c0opc_uninteresting:
2502 continue;
2503
dbab50de
MG
2504 case c0opc_flow: /* Flow control instructions stop analysis. */
2505 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2506 goto done;
2507
2508 case c0opc_entry:
dbab50de 2509 cache->call0 = 0;
bdb4c075
MG
2510 ia += ilen; /* Skip over 'entry' insn. */
2511 goto done;
2512
2513 default:
dbab50de 2514 cache->call0 = 1;
bdb4c075
MG
2515 }
2516
2517 /* Only expected opcodes should get this far. */
bdb4c075
MG
2518
2519 /* Extract and decode the operands. */
2520 nods = xtensa_opcode_num_operands (isa, opc);
2521 if (nods == XTENSA_UNDEFINED)
2522 {
2523 fail = 1;
2524 goto done;
2525 }
2526
2527 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2528 {
2529 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2530 is, slot, &odv[j]);
2531 if (fail)
2532 goto done;
2533
2534 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2535 if (fail)
2536 goto done;
2537 }
2538
2539 /* Check operands to verify use of 'mov' assembler macro. */
2540 if (opclass == c0opc_mov && nods == 3)
2541 {
2542 if (odv[2] == odv[1])
dbab50de
MG
2543 {
2544 nods = 2;
2545 if ((odv[0] == 1) && (odv[1] != 1))
2546 /* OR A1, An, An , where n != 1.
2547 This means we are inside epilogue already. */
2548 goto done;
2549 }
bdb4c075
MG
2550 else
2551 {
2552 opclass = c0opc_uninteresting;
2553 continue;
2554 }
2555 }
2556
2557 /* Track register movement and modification for this operation. */
dbab50de
MG
2558 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2559 opclass, nods, odv, ia, 1, cache);
2560 if (fail)
2561 goto done;
bdb4c075
MG
2562 }
2563 }
2564done:
2565 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2566 (unsigned)ia, fail ? "failed" : "succeeded");
2567 xtensa_insnbuf_free(isa, slot);
2568 xtensa_insnbuf_free(isa, ins);
d4709618 2569 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2570}
2571
5142f611 2572/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2573
2574static void
5142f611 2575call0_frame_cache (struct frame_info *this_frame,
dbab50de 2576 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2577{
5142f611 2578 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2580 CORE_ADDR start_pc; /* The beginning of the function. */
2581 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2582 CORE_ADDR sp, fp, ra;
dbab50de 2583 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2584
dbab50de
MG
2585 sp = get_frame_register_unsigned
2586 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2587 fp = sp; /* Assume FP == SP until proven otherwise. */
2588
bdb4c075
MG
2589 /* Find the beginning of the prologue of the function containing the PC
2590 and analyze it up to the PC or the end of the prologue. */
2591
2592 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2593 {
dbab50de 2594 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2595
2596 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2597 {
2598 warning_once ();
2599 ra = 0;
2600 goto finish_frame_analysis;
2601 }
bdb4c075
MG
2602 }
2603
bdb4c075
MG
2604 /* Get the frame information and FP (if used) at the current PC.
2605 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2606 than DWARF info. We don't not know for sure, if PC is in the prologue,
2607 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2608 certainly rely on the prologue analysis. */
2609
2610 if (body_pc <= pc)
2611 {
2612 /* Prologue analysis was successful up to the PC.
2613 It includes the cases when PC == START_PC. */
2614 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2615 /* c0_hasfp == true means there is a frame pointer because
2616 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2617 was derived from SP. Otherwise, it would be C0_FP. */
2618 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2619 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2620 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2621 }
2622 else /* No data from the prologue analysis. */
2623 {
2624 c0_hasfp = 0;
6b50c0b0 2625 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2626 c0_frmsz = 0;
2627 start_pc = pc;
2628 }
2629
dbab50de
MG
2630 if (cache->c0.c0_fpalign)
2631 {
2632 /* This frame has a special prologue with a dynamic stack adjustment
2633 to force an alignment, which is bigger than standard 16 bytes. */
2634
2635 CORE_ADDR unaligned_sp;
2636
2637 if (cache->c0.c0_old_sp == C0_INEXP)
2638 /* This can't be. Prologue code should be consistent.
2639 Unaligned stack pointer should be saved in a spare register. */
2640 {
2641 warning_once ();
2642 ra = 0;
2643 goto finish_frame_analysis;
2644 }
2645
2646 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2647 /* Saved unaligned value of SP is kept in a register. */
2648 unaligned_sp = get_frame_register_unsigned
2649 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2650 else
2651 /* Get the value from stack. */
2652 unaligned_sp = (CORE_ADDR)
2653 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2654
2655 prev_sp = unaligned_sp + c0_frmsz;
2656 }
2657 else
2658 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2659
2660 /* Frame size from debug info or prologue tracking does not account for
2661 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2662 if (c0_hasfp)
2663 {
5142f611 2664 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2665
bdb4c075
MG
2666 /* Update the stack frame size. */
2667 c0_frmsz += fp - sp;
2668 }
2669
2670 /* Get the return address (RA) from the stack if saved,
2671 or try to get it from a register. */
2672
2673 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2674 if (to_stk != C0_NOSTK)
2675 ra = (CORE_ADDR)
e17a4113
UW
2676 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2677 4, byte_order);
bdb4c075
MG
2678
2679 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2680 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2681 {
dbab50de
MG
2682 /* Special case for terminating backtrace at a function that wants to
2683 be seen as the outermost one. Such a function will clear it's RA (A0)
2684 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2685 ra = 0;
2686 }
2687 else
2688 {
dbab50de
MG
2689 /* RA was copied to another register or (before any function call) may
2690 still be in the original RA register. This is not always reliable:
2691 even in a leaf function, register tracking stops after prologue, and
2692 even in prologue, non-prologue instructions (not tracked) may overwrite
2693 RA or any register it was copied to. If likely in prologue or before
2694 any call, use retracking info and hope for the best (compiler should
2695 have saved RA in stack if not in a leaf function). If not in prologue,
2696 too bad. */
bdb4c075
MG
2697
2698 int i;
1448a0a2
PM
2699 for (i = 0;
2700 (i < C0_NREGS)
2701 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2702 ++i);
2703 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2704 i = C0_RA;
5142f611 2705 if (i < C0_NREGS)
bdb4c075 2706 {
5142f611
MG
2707 ra = get_frame_register_unsigned
2708 (this_frame,
2709 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2710 }
2711 else ra = 0;
2712 }
2713
dbab50de 2714 finish_frame_analysis:
bdb4c075
MG
2715 cache->pc = start_pc;
2716 cache->ra = ra;
2717 /* RA == 0 marks the outermost frame. Do not go past it. */
2718 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2719 cache->c0.fp_regnum = fp_regnum;
2720 cache->c0.c0_frmsz = c0_frmsz;
2721 cache->c0.c0_hasfp = c0_hasfp;
2722 cache->c0.c0_fp = fp;
2723}
2724
08b9c608
MG
2725static CORE_ADDR a0_saved;
2726static CORE_ADDR a7_saved;
2727static CORE_ADDR a11_saved;
2728static int a0_was_saved;
2729static int a7_was_saved;
2730static int a11_was_saved;
2731
68d6df83 2732/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2733static void
2734execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2735{
2736 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2737 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2738 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2739 unsigned int spilled_value
2740 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2741
2742 if ((at == 0) && !a0_was_saved)
2743 {
2744 a0_saved = xtensa_read_register (atreg);
2745 a0_was_saved = 1;
2746 }
2747 else if ((at == 7) && !a7_was_saved)
2748 {
2749 a7_saved = xtensa_read_register (atreg);
2750 a7_was_saved = 1;
2751 }
2752 else if ((at == 11) && !a11_was_saved)
2753 {
2754 a11_saved = xtensa_read_register (atreg);
2755 a11_was_saved = 1;
2756 }
2757
2758 xtensa_write_register (atreg, spilled_value);
2759}
2760
68d6df83 2761/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2762static void
2763execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2764{
2765 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2766 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2767 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2768 ULONGEST spilled_value = xtensa_read_register (atreg);
2769
2770 write_memory_unsigned_integer (addr, 4,
2771 gdbarch_byte_order (gdbarch),
2772 spilled_value);
2773}
2774
2775#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2776
68d6df83
MG
2777typedef enum
2778{
08b9c608
MG
2779 xtWindowOverflow,
2780 xtWindowUnderflow,
2781 xtNoExceptionHandler
2782} xtensa_exception_handler_t;
2783
68d6df83 2784/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2785 Return type of Xtensa Window Interrupt Handler on success. */
2786static xtensa_exception_handler_t
2787execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2788{
2789 xtensa_isa isa;
2790 xtensa_insnbuf ins, slot;
948f8e3d 2791 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2792 CORE_ADDR ia, bt, ba;
2793 xtensa_format ifmt;
2794 int ilen, islots, is;
2795 xtensa_opcode opc;
2796 int insn_num = 0;
08b9c608
MG
2797 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2798
19afdd07 2799 uint32_t at, as, offset;
08b9c608
MG
2800
2801 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2802 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2803
2804 isa = xtensa_default_isa;
2805 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2806 ins = xtensa_insnbuf_alloc (isa);
2807 slot = xtensa_insnbuf_alloc (isa);
2808 ba = 0;
2809 ia = current_pc;
2810 bt = ia;
2811
2812 a0_was_saved = 0;
2813 a7_was_saved = 0;
2814 a11_was_saved = 0;
2815
2816 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2817 {
2818 if (ia + xtensa_isa_maxlength (isa) > bt)
2819 {
2820 ba = ia;
2821 bt = (ba + XTENSA_ISA_BSZ);
2822 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2823 return xtNoExceptionHandler;
2824 }
2825 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2826 ifmt = xtensa_format_decode (isa, ins);
2827 if (ifmt == XTENSA_UNDEFINED)
2828 return xtNoExceptionHandler;
2829 ilen = xtensa_format_length (isa, ifmt);
2830 if (ilen == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 islots = xtensa_format_num_slots (isa, ifmt);
2833 if (islots == XTENSA_UNDEFINED)
2834 return xtNoExceptionHandler;
2835 for (is = 0; is < islots; ++is)
2836 {
2837 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2838 return xtNoExceptionHandler;
2839 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2840 if (opc == XTENSA_UNDEFINED)
2841 return xtNoExceptionHandler;
2842 switch (call0_classify_opcode (isa, opc))
2843 {
2844 case c0opc_illegal:
2845 case c0opc_flow:
2846 case c0opc_entry:
2847 case c0opc_break:
2848 /* We expect none of them here. */
2849 return xtNoExceptionHandler;
2850 case c0opc_l32e:
2851 func = execute_l32e;
2852 break;
2853 case c0opc_s32e:
2854 func = execute_s32e;
2855 break;
2856 case c0opc_rfwo: /* RFWO. */
2857 /* Here, we return from WindowOverflow handler and,
2858 if we stopped at the very beginning, which means
2859 A0 was saved, we have to restore it now. */
2860 if (a0_was_saved)
2861 {
2862 int arreg = arreg_number (gdbarch,
2863 gdbarch_tdep (gdbarch)->a0_base,
2864 wb);
2865 xtensa_write_register (arreg, a0_saved);
2866 }
2867 return xtWindowOverflow;
2868 case c0opc_rfwu: /* RFWU. */
2869 /* Here, we return from WindowUnderflow handler.
2870 Let's see if either A7 or A11 has to be restored. */
2871 if (WindowUnderflow12)
2872 {
2873 if (a11_was_saved)
2874 {
2875 int arreg = arreg_number (gdbarch,
2876 gdbarch_tdep (gdbarch)->a0_base + 11,
2877 wb);
2878 xtensa_write_register (arreg, a11_saved);
2879 }
2880 }
2881 else if (a7_was_saved)
2882 {
2883 int arreg = arreg_number (gdbarch,
2884 gdbarch_tdep (gdbarch)->a0_base + 7,
2885 wb);
2886 xtensa_write_register (arreg, a7_saved);
2887 }
2888 return xtWindowUnderflow;
2889 default: /* Simply skip this insns. */
2890 continue;
2891 }
2892
2893 /* Decode arguments for L32E / S32E and simulate their execution. */
2894 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2897 return xtNoExceptionHandler;
2898 if (xtensa_operand_decode (isa, opc, 0, &at))
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 1, &as))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 2, &offset))
2907 return xtNoExceptionHandler;
2908
2909 (*func) (gdbarch, at, as, offset, wb);
2910 }
2911
2912 ia += ilen;
2913 }
2914 return xtNoExceptionHandler;
2915}
2916
2917/* Handle Window Overflow / Underflow exception frames. */
2918
2919static void
2920xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2921 xtensa_frame_cache_t *cache,
2922 CORE_ADDR pc)
2923{
2924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2925 CORE_ADDR ps, wb, ws, ra;
2926 int epc1_regnum, i, regnum;
2927 xtensa_exception_handler_t eh_type;
2928
2929 /* Read PS, WB, and WS from the hardware. Note that PS register
2930 must be present, if Windowed ABI is supported. */
2931 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2932 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2933 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2934
2935 /* Execute all the remaining instructions from Window Interrupt Handler
2936 by simulating them on the remote protocol level. On return, set the
2937 type of Xtensa Window Interrupt Handler, or report an error. */
2938 eh_type = execute_code (gdbarch, pc, wb);
2939 if (eh_type == xtNoExceptionHandler)
2940 error (_("\
2941Unable to decode Xtensa Window Interrupt Handler's code."));
2942
2943 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2944 cache->call0 = 0; /* It's Windowed ABI. */
2945
2946 /* All registers for the cached frame will be alive. */
2947 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2948 cache->wd.aregs[i] = -1;
2949
2950 if (eh_type == xtWindowOverflow)
2951 cache->wd.ws = ws ^ (1 << wb);
2952 else /* eh_type == xtWindowUnderflow. */
2953 cache->wd.ws = ws | (1 << wb);
2954
2955 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2956 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2957 cache->wd.wb);
2958 ra = xtensa_read_register (regnum);
2959 cache->wd.callsize = WINSIZE (ra);
2960 cache->prev_sp = xtensa_read_register (regnum + 1);
2961 /* Set regnum to a frame pointer of the frame being cached. */
2962 regnum = xtensa_scan_prologue (gdbarch, pc);
2963 regnum = arreg_number (gdbarch,
2964 gdbarch_tdep (gdbarch)->a0_base + regnum,
2965 cache->wd.wb);
2966 cache->base = get_frame_register_unsigned (this_frame, regnum);
2967
2968 /* Read PC of interrupted function from EPC1 register. */
2969 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2970 if (epc1_regnum < 0)
2971 error(_("Unable to read Xtensa register EPC1"));
2972 cache->ra = xtensa_read_register (epc1_regnum);
2973 cache->pc = get_frame_func (this_frame);
2974}
2975
bdb4c075
MG
2976
2977/* Skip function prologue.
2978
2979 Return the pc of the first instruction after prologue. GDB calls this to
2980 find the address of the first line of the function or (if there is no line
2981 number information) to skip the prologue for planting breakpoints on
2982 function entries. Use debug info (if present) or prologue analysis to skip
2983 the prologue to achieve reliable debugging behavior. For windowed ABI,
2984 only the 'entry' instruction is skipped. It is not strictly necessary to
2985 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2986 backtrace at any point in the prologue, however certain potential hazards
2987 are avoided and a more "normal" debugging experience is ensured by
2988 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2989 For example, if we don't skip the prologue:
2990 - Some args may not yet have been saved to the stack where the debug
2991 info expects to find them (true anyway when only 'entry' is skipped);
2992 - Software breakpoints ('break' instrs) may not have been unplanted
2993 when the prologue analysis is done on initializing the frame cache,
2994 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2995
2996 If we have debug info ( line-number info, in particular ) we simply skip
2997 the code associated with the first function line effectively skipping
bdb4c075 2998 the prologue code. It works even in cases like
ca3bf3bd
DJ
2999
3000 int main()
3001 { int local_var = 1;
3002 ....
3003 }
3004
3005 because, for this source code, both Xtensa compilers will generate two
3006 separate entries ( with the same line number ) in dwarf line-number
3007 section to make sure there is a boundary between the prologue code and
3008 the rest of the function.
3009
bdb4c075
MG
3010 If there is no debug info, we need to analyze the code. */
3011
3012/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 3013
63807e1d 3014static CORE_ADDR
6093d2eb 3015xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 3016{
bdb4c075
MG
3017 struct symtab_and_line prologue_sal;
3018 CORE_ADDR body_pc;
3019
ca3bf3bd
DJ
3020 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3021
bdb4c075
MG
3022#if DONT_SKIP_PROLOGUE
3023 return start_pc;
3024#endif
3025
3026 /* Try to find first body line from debug info. */
3027
3028 prologue_sal = find_pc_line (start_pc, 0);
3029 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3030 {
f976a05d
MG
3031 /* In Call0, it is possible to have a function with only one instruction
3032 ('ret') resulting from a one-line optimized function that does nothing.
3033 In that case, prologue_sal.end may actually point to the start of the
3034 next function in the text section, causing a breakpoint to be set at
3035 the wrong place. Check, if the end address is within a different
3036 function, and if so return the start PC. We know we have symbol
3037 information. */
ca3bf3bd 3038
bdb4c075
MG
3039 CORE_ADDR end_func;
3040
f976a05d
MG
3041 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3042 && call0_ret (start_pc, prologue_sal.end))
3043 return start_pc;
3044
bdb4c075
MG
3045 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3046 if (end_func != start_pc)
ca3bf3bd
DJ
3047 return start_pc;
3048
bdb4c075 3049 return prologue_sal.end;
ca3bf3bd 3050 }
ca3bf3bd 3051
bdb4c075 3052 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3053 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3054 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3055 return body_pc != 0 ? body_pc : start_pc;
3056}
ca3bf3bd
DJ
3057
3058/* Verify the current configuration. */
ca3bf3bd
DJ
3059static void
3060xtensa_verify_config (struct gdbarch *gdbarch)
3061{
d7e74731
PA
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063 string_file log;
ca3bf3bd
DJ
3064
3065 /* Verify that we got a reasonable number of AREGS. */
3066 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
d7e74731 3067 log.printf (_("\
bdb4c075 3068\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
d7e74731 3069 tdep->num_aregs);
ca3bf3bd
DJ
3070
3071 /* Verify that certain registers exist. */
bdb4c075 3072
ca3bf3bd 3073 if (tdep->pc_regnum == -1)
d7e74731 3074 log.printf (_("\n\tpc_regnum: No PC register"));
bdb4c075 3075 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
d7e74731 3076 log.printf (_("\n\tps_regnum: No PS register"));
bdb4c075
MG
3077
3078 if (tdep->isa_use_windowed_registers)
3079 {
3080 if (tdep->wb_regnum == -1)
d7e74731 3081 log.printf (_("\n\twb_regnum: No WB register"));
bdb4c075 3082 if (tdep->ws_regnum == -1)
d7e74731 3083 log.printf (_("\n\tws_regnum: No WS register"));
bdb4c075 3084 if (tdep->ar_base == -1)
d7e74731 3085 log.printf (_("\n\tar_base: No AR registers"));
bdb4c075
MG
3086 }
3087
ca3bf3bd 3088 if (tdep->a0_base == -1)
d7e74731 3089 log.printf (_("\n\ta0_base: No Ax registers"));
ca3bf3bd 3090
d7e74731 3091 if (!log.empty ())
ca3bf3bd 3092 internal_error (__FILE__, __LINE__,
d7e74731 3093 _("the following are invalid: %s"), log.c_str ());
ca3bf3bd
DJ
3094}
3095
94a0e877
MG
3096
3097/* Derive specific register numbers from the array of registers. */
3098
63807e1d 3099static void
94a0e877
MG
3100xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3101{
3102 xtensa_register_t* rmap;
3103 int n, max_size = 4;
3104
3105 tdep->num_regs = 0;
3106 tdep->num_nopriv_regs = 0;
3107
3108/* Special registers 0..255 (core). */
3109#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
f74f865e
MF
3110/* User registers 0..255. */
3111#define XTENSA_DBREGN_UREG(n) (0x0300+(n))
94a0e877
MG
3112
3113 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3114 {
3115 if (rmap->target_number == 0x0020)
3116 tdep->pc_regnum = n;
3117 else if (rmap->target_number == 0x0100)
3118 tdep->ar_base = n;
3119 else if (rmap->target_number == 0x0000)
3120 tdep->a0_base = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3122 tdep->wb_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3124 tdep->ws_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3126 tdep->debugcause_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3128 tdep->exccause_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3130 tdep->excvaddr_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3132 tdep->lbeg_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3134 tdep->lend_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3136 tdep->lcount_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3138 tdep->sar_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3140 tdep->litbase_regnum = n;
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3142 tdep->ps_regnum = n;
f74f865e
MF
3143 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3144 tdep->threadptr_regnum = n;
94a0e877
MG
3145#if 0
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3147 tdep->interrupt_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3149 tdep->interrupt2_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3151 tdep->cpenable_regnum = n;
3152#endif
3153
3154 if (rmap->byte_size > max_size)
3155 max_size = rmap->byte_size;
3156 if (rmap->mask != 0 && tdep->num_regs == 0)
3157 tdep->num_regs = n;
3158 /* Find out out how to deal with priveleged registers.
3159
3160 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3161 && tdep->num_nopriv_regs == 0)
3162 tdep->num_nopriv_regs = n;
3163 */
3164 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3165 && tdep->num_regs == 0)
3166 tdep->num_regs = n;
3167 }
3168
3169 /* Number of pseudo registers. */
3170 tdep->num_pseudo_regs = n - tdep->num_regs;
3171
3172 /* Empirically determined maximum sizes. */
3173 tdep->max_register_raw_size = max_size;
3174 tdep->max_register_virtual_size = max_size;
3175}
3176
ca3bf3bd
DJ
3177/* Module "constructor" function. */
3178
94a0e877
MG
3179extern struct gdbarch_tdep xtensa_tdep;
3180
ca3bf3bd
DJ
3181static struct gdbarch *
3182xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3183{
3184 struct gdbarch_tdep *tdep;
3185 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3186
3187 DEBUGTRACE ("gdbarch_init()\n");
3188
a4398628
MF
3189 if (!xtensa_default_isa)
3190 xtensa_default_isa = xtensa_isa_init (0, 0);
3191
ca3bf3bd 3192 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3193 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3194
94a0e877 3195 tdep = &xtensa_tdep;
ca3bf3bd 3196 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3197 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3198
3199 /* Verify our configuration. */
3200 xtensa_verify_config (gdbarch);
dbab50de 3201 xtensa_session_once_reported = 0;
ca3bf3bd 3202
53375380
PA
3203 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3204 set_gdbarch_wchar_signed (gdbarch, 0);
3205
bdb4c075 3206 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3207 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3208 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3209
3210 /* Set target information. */
3211 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3212 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3213 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3214 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3215 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3216
ba2b1c56 3217 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3218 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3219 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3220
3221 /* We provide our own function to get register information. */
3222 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3223 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3224
581e13c1 3225 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3226 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3227
3228 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3229
3230 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3231
3232 /* Advance PC across any prologue instructions to reach "real" code. */
3233 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3234
3235 /* Stack grows downward. */
3236 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3237
3238 /* Set breakpoints. */
04180708
YQ
3239 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3240 xtensa_breakpoint_kind_from_pc);
3241 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3242 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3243
3244 /* After breakpoint instruction or illegal instruction, pc still
3245 points at break instruction, so don't decrement. */
3246 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3247
3248 /* We don't skip args. */
3249 set_gdbarch_frame_args_skip (gdbarch, 0);
3250
3251 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3252
3253 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3254
5142f611 3255 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3256
3257 /* Frame handling. */
3258 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3259 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3260 dwarf2_append_unwinders (gdbarch);
ca3bf3bd 3261
ca3bf3bd
DJ
3262 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3263
3264 xtensa_add_reggroups (gdbarch);
3265 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3266
97094034
AA
3267 set_gdbarch_iterate_over_regset_sections
3268 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3269
ee967b5f
MG
3270 set_solib_svr4_fetch_link_map_offsets
3271 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3272
40045d91
MF
3273 /* Hook in the ABI-specific overrides, if they have been registered. */
3274 gdbarch_init_osabi (info, gdbarch);
3275
ca3bf3bd
DJ
3276 return gdbarch;
3277}
3278
ca3bf3bd 3279static void
6b50c0b0 3280xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3281{
3282 error (_("xtensa_dump_tdep(): not implemented"));
3283}
3284
63807e1d
PA
3285/* Provide a prototype to silence -Wmissing-prototypes. */
3286extern initialize_file_ftype _initialize_xtensa_tdep;
3287
ca3bf3bd
DJ
3288void
3289_initialize_xtensa_tdep (void)
3290{
ca3bf3bd
DJ
3291 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3292 xtensa_init_reggroups ();
3293
ccce17b0
YQ
3294 add_setshow_zuinteger_cmd ("xtensa",
3295 class_maintenance,
3296 &xtensa_debug_level,
581e13c1
MS
3297 _("Set Xtensa debugging."),
3298 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3299When non-zero, Xtensa-specific debugging is enabled. \
3300Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3301 NULL,
3302 NULL,
3303 &setdebuglist, &showdebuglist);
ca3bf3bd 3304}
This page took 1.580014 seconds and 4 git commands to generate.