Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "floatformat.h"
33#include "regcache.h"
34#include "reggroups.h"
35#include "regset.h"
36
37#include "dummy-frame.h"
fa8f86ff 38#include "dwarf2.h"
ca3bf3bd
DJ
39#include "dwarf2-frame.h"
40#include "dwarf2loc.h"
ca3bf3bd
DJ
41#include "frame-base.h"
42#include "frame-unwind.h"
43
44#include "arch-utils.h"
45#include "gdbarch.h"
46#include "remote.h"
47#include "serial.h"
48
49#include "command.h"
50#include "gdbcmd.h"
ca3bf3bd 51
bdb4c075 52#include "xtensa-isa.h"
ca3bf3bd 53#include "xtensa-tdep.h"
94a0e877 54#include "xtensa-config.h"
325fac50 55#include <algorithm>
ca3bf3bd
DJ
56
57
ccce17b0 58static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
59
60#define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64#define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68#define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72#define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
78#define SP_ALIGNMENT 16
79
80
bdb4c075
MG
81/* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
83#define ARGS_NUM_REGS 6
84#define REGISTER_SIZE 4
ca3bf3bd 85
ca3bf3bd 86
bdb4c075
MG
87/* Extract the call size from the return address or PS register. */
88#define PS_CALLINC_SHIFT 16
89#define PS_CALLINC_MASK 0x00030000
90#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 92
98689b25
MG
93/* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96#define TX_PS 0x20
97
bdb4c075 98/* ABI-independent macros. */
91d8eb23
MD
99#define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102#define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 106
ca3bf3bd
DJ
107/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
91d8eb23
MD
110#define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 112 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 113
bdb4c075 114#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
115
116/* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
bdb4c075
MG
120#define PS_WOE (1<<18)
121#define PS_EXC (1<<4)
122
b801de47 123static int
98689b25
MG
124windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125{
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131}
132
581e13c1
MS
133/* Convert a live A-register number to the corresponding AR-register
134 number. */
91d8eb23 135static int
ee967b5f 136arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
137{
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 139 int arreg;
91d8eb23 140
ee967b5f
MG
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
91d8eb23 144
ee967b5f
MG
145 return arreg + tdep->ar_base;
146}
147
148/* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150static int
151areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152{
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
91d8eb23
MD
161}
162
68d6df83 163/* Read Xtensa register directly from the hardware. */
b801de47 164static unsigned long
08b9c608
MG
165xtensa_read_register (int regnum)
166{
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171}
172
68d6df83 173/* Write Xtensa register directly to the hardware. */
b801de47 174static void
08b9c608
MG
175xtensa_write_register (int regnum, ULONGEST value)
176{
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178}
179
ca3bf3bd
DJ
180/* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
bdb4c075 184 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191static int
91d8eb23 192extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 193{
e17a4113 194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 195 int winsize = 4;
ca3bf3bd 196 int insn;
ff7a4c00 197 gdb_byte buf[4];
ca3bf3bd
DJ
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
e17a4113 203 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
e17a4113 213 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
222 }
223 return winsize;
224}
225
226
227/* REGISTER INFORMATION */
228
08b9c608
MG
229/* Find register by name. */
230static int
231xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232{
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243}
244
ca3bf3bd 245/* Returns the name of a register. */
ca3bf3bd 246static const char *
d93859e2 247xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
248{
249 /* Return the name stored in the register map. */
d93859e2
UW
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 253
ca3bf3bd
DJ
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256}
257
ca3bf3bd
DJ
258/* Return the type of a register. Create a new type, if necessary. */
259
ca3bf3bd
DJ
260static struct type *
261xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262{
df4df182
UW
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
ca3bf3bd 265 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
0dfff4cb 270 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 271
6b50c0b0 272 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 273 || regnum == tdep->a0_base + 1)
fde6c819 274 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
275
276 /* Return the stored type for all other registers. */
6b50c0b0
UW
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 279 {
df4df182 280 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 281
bdb4c075 282 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
bdb4c075
MG
289 /* We always use the memory representation,
290 even if the register width is smaller. */
ca3bf3bd
DJ
291 switch (size)
292 {
293 case 1:
df4df182 294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
295 break;
296
297 case 2:
df4df182 298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
299 break;
300
301 case 4:
df4df182 302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
303 break;
304
305 case 8:
df4df182 306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
307 break;
308
309 case 16:
df4df182 310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
311 break;
312
313 default:
df4df182 314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
1448a0a2 320 char *name = xstrprintf ("int%d", size * 8);
8d749320
SM
321
322 tp = XNEW (struct ctype_cache);
df4df182
UW
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
ca3bf3bd 325 tp->size = size;
e9bb382b 326 tp->virtual_type
1448a0a2
PM
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
ca3bf3bd
DJ
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
ca3bf3bd
DJ
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339}
340
341
bdb4c075 342/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346static int
d3f73121 347xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
348{
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
d3f73121 352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 353
f57d151a 354 for (i = 0;
d3f73121 355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 356 i++)
d3f73121 357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
358 return i;
359
0fde2c53 360 return -1;
ca3bf3bd
DJ
361}
362
363
bdb4c075
MG
364/* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
ca3bf3bd
DJ
368
369static void
9c9acae0
UW
370xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd
DJ
372{
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
6b50c0b0 389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
9c9acae0
UW
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
445 }
446 }
447}
448
449
bdb4c075
MG
450/* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
ca3bf3bd 452
05d1431c 453static enum register_status
9c9acae0
UW
454xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd
DJ
456{
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
9c9acae0
UW
477 if (r >= 0)
478 {
05d1431c 479 enum register_status status;
9c9acae0 480 ULONGEST val;
05d1431c
PA
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
9c9acae0
UW
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
ca3bf3bd
DJ
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
6b50c0b0 523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
05d1431c
PA
539
540 return REG_VALID;
ca3bf3bd
DJ
541}
542
543
544/* Read pseudo registers. */
545
05d1431c 546static enum register_status
ca3bf3bd
DJ
547xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551{
e17a4113
UW
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
ca3bf3bd 554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 555 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 556
bdb4c075 557 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 561 {
ff7a4c00 562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
05d1431c 563 enum register_status status;
ca3bf3bd 564
05d1431c
PA
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
ee967b5f 570 regnum = arreg_number (gdbarch, regnum,
e17a4113 571 extract_unsigned_integer (buf, 4, byte_order));
ca3bf3bd
DJ
572 }
573
bdb4c075 574 /* We can always read non-pseudo registers. */
6b50c0b0 575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
05d1431c 576 return regcache_raw_read (regcache, regnum, buffer);
94a0e877
MG
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
05d1431c 587 return REG_VALID;
94a0e877 588 }
ca3bf3bd 589 /* Pseudo registers. */
f57d151a 590 else if (regnum >= 0
6b50c0b0
UW
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 593 {
6b50c0b0 594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 595 xtensa_register_type_t type = reg->type;
6b50c0b0 596 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 597
bdb4c075 598 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
d93859e2 604 xtensa_register_name (gdbarch, regnum));
05d1431c 605 return REG_VALID;
ca3bf3bd
DJ
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
05d1431c 616 return REG_VALID;
ca3bf3bd
DJ
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
05d1431c 623 return REG_VALID;
ca3bf3bd
DJ
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 629 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
630
631 /* Assume that we can read the register. */
05d1431c 632 return regcache_raw_read (regcache, regnum, buffer);
ca3bf3bd 633 }
ca3bf3bd
DJ
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637}
638
639
640/* Write pseudo registers. */
641
642static void
643xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647{
e17a4113
UW
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
ca3bf3bd 650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 651 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 652
bdb4c075 653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0 654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 657 {
ff7a4c00 658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
ca3bf3bd 659
304fe255 660 regcache_raw_read (regcache,
6b50c0b0 661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
ee967b5f 662 regnum = arreg_number (gdbarch, regnum,
e17a4113 663 extract_unsigned_integer (buf, 4, byte_order));
ca3bf3bd
DJ
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
6b50c0b0 668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
669 regcache_raw_write (regcache, regnum, buffer);
670
94a0e877
MG
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
ca3bf3bd 678 /* Pseudo registers. */
f57d151a 679 else if (regnum >= 0
6b50c0b0
UW
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 682 {
6b50c0b0 683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 684 xtensa_register_type_t type = reg->type;
6b50c0b0 685 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 686
bdb4c075
MG
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
d93859e2 694 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
ca3bf3bd
DJ
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
9c9acae0 721 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
ca3bf3bd
DJ
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731}
732
ca3bf3bd
DJ
733static struct reggroup *xtensa_ar_reggroup;
734static struct reggroup *xtensa_user_reggroup;
735static struct reggroup *xtensa_vectra_reggroup;
7b871568 736static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
737
738static void
739xtensa_init_reggroups (void)
740{
98689b25
MG
741 int i;
742 char cpname[] = "cp0";
743
ca3bf3bd
DJ
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 747
98689b25
MG
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
b801de47 750 cpname[2] = '0' + i;
98689b25
MG
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
7b871568 753}
ca3bf3bd
DJ
754
755static void
756xtensa_add_reggroups (struct gdbarch *gdbarch)
757{
7b871568
MG
758 int i;
759
760 /* Predefined groups. */
ca3bf3bd
DJ
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 773
7b871568
MG
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
776}
777
7b871568
MG
778static int
779xtensa_coprocessor_register_group (struct reggroup *group)
780{
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788}
ca3bf3bd
DJ
789
790#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797static int
798xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801{
6b50c0b0 802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
7b871568 805 int cp_number;
ca3bf3bd 806
57041825
MG
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
ca3bf3bd
DJ
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
57041825 831 if (group == restore_reggroup)
6b50c0b0 832 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
7b871568 836 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
837 else
838 return 1;
839}
840
841
ca3bf3bd
DJ
842/* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
bdb4c075 844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
845
846static void
847xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852{
19ba03f4 853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
6b50c0b0 854 struct gdbarch *gdbarch = get_regcache_arch (rc);
ca3bf3bd
DJ
855 int i;
856
cce7e648 857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 858
6b50c0b0
UW
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 865 (char *) &regs->windowbase);
6b50c0b0
UW
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 868 (char *) &regs->windowstart);
6b50c0b0
UW
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 871 (char *) &regs->lbeg);
6b50c0b0
UW
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 874 (char *) &regs->lend);
6b50c0b0
UW
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 877 (char *) &regs->lcount);
6b50c0b0
UW
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 880 (char *) &regs->sar);
6b50c0b0
UW
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 886 (gdbarch)->ar_base]);
ca3bf3bd
DJ
887 else if (regnum == -1)
888 {
6b50c0b0
UW
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 891 (char *) &regs->ar[i]);
ca3bf3bd
DJ
892 }
893}
894
895
896/* Xtensa register set. */
897
898static struct regset
899xtensa_gregset =
900{
901 NULL,
902 xtensa_supply_gregset
903};
904
905
97094034 906/* Iterate over supported core file register note sections. */
ca3bf3bd 907
97094034
AA
908static void
909xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
ca3bf3bd 913{
97094034 914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 915
97094034
AA
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
ca3bf3bd
DJ
918}
919
920
bdb4c075 921/* Handling frames. */
ca3bf3bd 922
bdb4c075
MG
923/* Number of registers to save in case of Windowed ABI. */
924#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 925
bdb4c075
MG
926/* Frame cache part for Windowed ABI. */
927typedef struct xtensa_windowed_frame_cache
ca3bf3bd 928{
ee967b5f
MG
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
08b9c608
MG
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
939} xtensa_windowed_frame_cache_t;
940
941/* Call0 ABI Definitions. */
942
581e13c1
MS
943#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
bdb4c075
MG
945#define C0_NREGS 16 /* Number of A-registers to track. */
946#define C0_CLESV 12 /* Callee-saved registers are here and up. */
947#define C0_SP 1 /* Register used as SP. */
948#define C0_FP 15 /* Register used as FP. */
949#define C0_RA 0 /* Register used as return address. */
950#define C0_ARGS 2 /* Register used as first arg/retval. */
951#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
952
953/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
959
960#define C0_CONST -1 /* fr_reg value if register contains a constant. */
961#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
963
964extern xtensa_isa xtensa_default_isa;
965
966typedef struct xtensa_c0reg
967{
dbab50de
MG
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
973} xtensa_c0reg_t;
974
bdb4c075
MG
975/* Frame cache part for Call0 ABI. */
976typedef struct xtensa_call0_frame_cache
977{
dbab50de
MG
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
990
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
992} xtensa_call0_frame_cache_t;
993
994typedef struct xtensa_frame_cache
995{
ee967b5f 996 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
1001 int call0; /* It's a call0 framework (else windowed). */
1002 union
1003 {
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1006 };
ca3bf3bd
DJ
1007} xtensa_frame_cache_t;
1008
1009
1010static struct xtensa_frame_cache *
bdb4c075 1011xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
1012{
1013 xtensa_frame_cache_t *cache;
1014 int i;
1015
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1017
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1019
1020 cache->base = 0;
1021 cache->pc = 0;
1022 cache->ra = 0;
ca3bf3bd 1023 cache->ps = 0;
ca3bf3bd 1024 cache->prev_sp = 0;
bdb4c075
MG
1025 cache->call0 = !windowed;
1026 if (cache->call0)
1027 {
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
dbab50de
MG
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1035
bdb4c075
MG
1036 for (i = 0; i < C0_NREGS; i++)
1037 {
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1041 }
1042 }
1043 else
1044 {
1045 cache->wd.wb = 0;
ee967b5f 1046 cache->wd.ws = 0;
bdb4c075 1047 cache->wd.callsize = -1;
ca3bf3bd 1048
bdb4c075
MG
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1051 }
ca3bf3bd
DJ
1052 return cache;
1053}
1054
1055
1056static CORE_ADDR
1057xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1058{
1059 return address & ~15;
1060}
1061
1062
1063static CORE_ADDR
1064xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065{
ff7a4c00 1066 gdb_byte buf[8];
0dfff4cb 1067 CORE_ADDR pc;
ca3bf3bd 1068
a74ce742
PM
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
ca3bf3bd 1071
6b50c0b0 1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1074
0dfff4cb 1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1076
0dfff4cb 1077 return pc;
ca3bf3bd
DJ
1078}
1079
1080
1081static struct frame_id
5142f611 1082xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1083{
1084 CORE_ADDR pc, fp;
ca3bf3bd 1085
5142f611 1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1087
5142f611
MG
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1091
1092 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1094}
1095
08b9c608
MG
1096/* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1098
1099static int
1100xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1101{
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1104 unsigned int code;
1105
1106 if (byte_order == BFD_ENDIAN_BIG)
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1115 }
1116 else
1117 {
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1121 return 1;
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1125 }
1126}
1127
ee967b5f
MG
1128/* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1130
d4709618
MG
1131#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1133
1134static unsigned int
1135xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1136{
1137#define RETURN_FP goto done
1138
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1141 xtensa_isa isa;
1142 xtensa_insnbuf ins, slot;
948f8e3d 1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1144 CORE_ADDR ia, bt, ba;
1145 xtensa_format ifmt;
1146 int ilen, islots, is;
1147 xtensa_opcode opc;
1148 const char *opcname;
1149
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1152 return fp_regnum;
1153
1154 if (!xtensa_default_isa)
1155 xtensa_default_isa = xtensa_isa_init (0, 0);
1156 isa = xtensa_default_isa;
1157 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1158 ins = xtensa_insnbuf_alloc (isa);
1159 slot = xtensa_insnbuf_alloc (isa);
1160 ba = 0;
1161
1162 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1163 {
1164 if (ia + xtensa_isa_maxlength (isa) > bt)
1165 {
1166 ba = ia;
1167 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1168 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1169 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1170 RETURN_FP;
ee967b5f
MG
1171 }
1172
1173 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1174 ifmt = xtensa_format_decode (isa, ins);
1175 if (ifmt == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177 ilen = xtensa_format_length (isa, ifmt);
1178 if (ilen == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180 islots = xtensa_format_num_slots (isa, ifmt);
1181 if (islots == XTENSA_UNDEFINED)
1182 RETURN_FP;
1183
1184 for (is = 0; is < islots; ++is)
1185 {
1186 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1187 RETURN_FP;
1188
1189 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1190 if (opc == XTENSA_UNDEFINED)
1191 RETURN_FP;
1192
1193 opcname = xtensa_opcode_name (isa, opc);
1194
1195 if (strcasecmp (opcname, "mov.n") == 0
1196 || strcasecmp (opcname, "or") == 0)
1197 {
1198 unsigned int register_operand;
1199
1200 /* Possible candidate for setting frame pointer
581e13c1 1201 from A1. This is what we are looking for. */
ee967b5f
MG
1202
1203 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1204 is, slot, &register_operand) != 0)
1205 RETURN_FP;
1206 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1207 RETURN_FP;
1208 if (register_operand == 1) /* Mov{.n} FP A1. */
1209 {
1210 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1211 &register_operand) != 0)
1212 RETURN_FP;
1213 if (xtensa_operand_decode (isa, opc, 0,
1214 &register_operand) != 0)
1215 RETURN_FP;
1216
581e13c1
MS
1217 fp_regnum
1218 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1219 RETURN_FP;
1220 }
1221 }
1222
1223 if (
1224 /* We have problems decoding the memory. */
1225 opcname == NULL
1226 || strcasecmp (opcname, "ill") == 0
1227 || strcasecmp (opcname, "ill.n") == 0
1228 /* Hit planted breakpoint. */
1229 || strcasecmp (opcname, "break") == 0
1230 || strcasecmp (opcname, "break.n") == 0
1231 /* Flow control instructions finish prologue. */
1232 || xtensa_opcode_is_branch (isa, opc) > 0
1233 || xtensa_opcode_is_jump (isa, opc) > 0
1234 || xtensa_opcode_is_loop (isa, opc) > 0
1235 || xtensa_opcode_is_call (isa, opc) > 0
1236 || strcasecmp (opcname, "simcall") == 0
1237 || strcasecmp (opcname, "syscall") == 0)
1238 /* Can not continue analysis. */
1239 RETURN_FP;
1240 }
1241 }
1242done:
1243 xtensa_insnbuf_free(isa, slot);
1244 xtensa_insnbuf_free(isa, ins);
1245 return fp_regnum;
1246}
1247
bdb4c075
MG
1248/* The key values to identify the frame using "cache" are
1249
ee967b5f 1250 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1251 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1252 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1253
1254static void
5142f611 1255call0_frame_cache (struct frame_info *this_frame,
dbab50de 1256 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1257
08b9c608
MG
1258static void
1259xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1260 xtensa_frame_cache_t *cache,
1261 CORE_ADDR pc);
1262
ca3bf3bd 1263static struct xtensa_frame_cache *
5142f611 1264xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1265{
1266 xtensa_frame_cache_t *cache;
ca3bf3bd 1267 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1270 unsigned int fp_regnum;
98689b25 1271 int windowed, ps_regnum;
ca3bf3bd 1272
ca3bf3bd 1273 if (*this_cache)
19ba03f4 1274 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1275
98689b25
MG
1276 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1277 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1278 ps = (ps_regnum >= 0
1279 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1280
1281 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1282
ca3bf3bd 1283 /* Get pristine xtensa-frame. */
bdb4c075 1284 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1285 *this_cache = cache;
1286
bdb4c075 1287 if (windowed)
ca3bf3bd 1288 {
a08b52b5 1289 LONGEST op1;
98689b25 1290
bdb4c075 1291 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1292 wb = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->wb_regnum);
1294 ws = get_frame_register_unsigned (this_frame,
1295 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1296
a08b52b5
MF
1297 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1298 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1299 {
bdb4c075 1300 int callinc = CALLINC (ps);
5142f611
MG
1301 ra = get_frame_register_unsigned
1302 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1303
1304 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1305 cache->wd.callsize = 0;
1306 cache->wd.wb = wb;
1307 cache->wd.ws = ws;
5142f611
MG
1308 cache->prev_sp = get_frame_register_unsigned
1309 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1310
1311 /* This only can be the outermost frame since we are
1312 just about to execute ENTRY. SP hasn't been set yet.
1313 We can assume any frame size, because it does not
1314 matter, and, let's fake frame base in cache. */
98689b25 1315 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1316
1317 cache->pc = pc;
1318 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1319 cache->ps = (ps & ~PS_CALLINC_MASK)
1320 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1321
1322 return cache;
bdb4c075
MG
1323 }
1324 else
1325 {
ee967b5f 1326 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1327 ra = get_frame_register_unsigned (this_frame,
1328 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1329 cache->wd.callsize = WINSIZE (ra);
304fe255 1330 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1331 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1332 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1333
5142f611 1334 cache->pc = get_frame_func (this_frame);
f6402f18 1335 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1336 cache->ps = (ps & ~PS_CALLINC_MASK)
1337 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1338 }
bdb4c075
MG
1339
1340 if (cache->wd.ws == 0)
ca3bf3bd 1341 {
bdb4c075 1342 int i;
ca3bf3bd 1343
bdb4c075 1344 /* Set A0...A3. */
5142f611
MG
1345 sp = get_frame_register_unsigned
1346 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1347
1348 for (i = 0; i < 4; i++, sp += 4)
1349 {
1350 cache->wd.aregs[i] = sp;
1351 }
ca3bf3bd 1352
bdb4c075 1353 if (cache->wd.callsize > 4)
ca3bf3bd 1354 {
bdb4c075 1355 /* Set A4...A7/A11. */
ee967b5f
MG
1356 /* Get the SP of the frame previous to the previous one.
1357 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1358 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1359 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1360 sp -= cache->wd.callsize * 4;
1361
ee967b5f 1362 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1363 {
1364 cache->wd.aregs[i] = sp;
1365 }
ca3bf3bd
DJ
1366 }
1367 }
ca3bf3bd 1368
bdb4c075 1369 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1370 /* If RA is equal to 0 this frame is an outermost frame. Leave
1371 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1372 {
ee967b5f 1373 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1374 {
1375 /* Register window overflow already happened.
1376 We can read caller's SP from the proper spill loction. */
5142f611
MG
1377 sp = get_frame_register_unsigned
1378 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1379 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1380 }
1381 else
1382 {
1383 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1384 int regnum = arreg_number
91d8eb23 1385 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1386 cache->wd.wb);
ca3bf3bd 1387
08b9c608 1388 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1389 }
ca3bf3bd
DJ
1390 }
1391 }
08b9c608
MG
1392 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1393 {
1394 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1395
1396 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1397 /* Everything was set already, including cache->base. */
1398 return cache;
1399 }
bdb4c075
MG
1400 else /* Call0 framework. */
1401 {
dbab50de 1402 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1403 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1404 }
ca3bf3bd 1405
5142f611 1406 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1407
ca3bf3bd
DJ
1408 return cache;
1409}
1410
dbab50de
MG
1411static int xtensa_session_once_reported = 1;
1412
1413/* Report a problem with prologue analysis while doing backtracing.
1414 But, do it only once to avoid annoyng repeated messages. */
1415
4e6ca6d5
MG
1416static void
1417warning_once (void)
dbab50de
MG
1418{
1419 if (xtensa_session_once_reported == 0)
1420 warning (_("\
1421\nUnrecognised function prologue. Stack trace cannot be resolved. \
1422This message will not be repeated in this session.\n"));
1423
1424 xtensa_session_once_reported = 1;
1425}
1426
1427
ca3bf3bd 1428static void
5142f611 1429xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1430 void **this_cache,
1431 struct frame_id *this_id)
1432{
1433 struct xtensa_frame_cache *cache =
5142f611 1434 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1435
1436 if (cache->prev_sp == 0)
1437 return;
1438
5142f611 1439 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1440}
ca3bf3bd 1441
5142f611
MG
1442static struct value *
1443xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1444 void **this_cache,
5142f611 1445 int regnum)
ca3bf3bd 1446{
5142f611
MG
1447 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1448 struct xtensa_frame_cache *cache;
1449 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1450 int done = 1;
1451
5142f611
MG
1452 if (*this_cache == NULL)
1453 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1454 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1455
6b50c0b0 1456 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1457 saved_reg = cache->ra;
6b50c0b0 1458 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1459 saved_reg = cache->prev_sp;
1460 else if (!cache->call0)
ca3bf3bd 1461 {
6b50c0b0 1462 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1463 saved_reg = cache->wd.ws;
6b50c0b0 1464 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1465 saved_reg = cache->wd.wb;
6b50c0b0 1466 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1467 saved_reg = cache->ps;
ca3bf3bd 1468 else
bdb4c075 1469 done = 0;
ca3bf3bd 1470 }
ca3bf3bd
DJ
1471 else
1472 done = 0;
1473
1474 if (done)
5142f611 1475 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1476
bdb4c075 1477 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1478 {
ee967b5f
MG
1479 /* Convert A-register numbers to AR-register numbers,
1480 if we deal with A-register. */
94a0e877 1481 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1482 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1483 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1484
ee967b5f 1485 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1486 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1487 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1488 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1489 {
ee967b5f 1490 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1491
bdb4c075
MG
1492 if (areg >= 0
1493 && areg < XTENSA_NUM_SAVED_AREGS
1494 && cache->wd.aregs[areg] != -1)
5142f611
MG
1495 return frame_unwind_got_memory (this_frame, regnum,
1496 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1497 }
1498 }
bdb4c075
MG
1499 else /* Call0 ABI. */
1500 {
6b50c0b0
UW
1501 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1502 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1503 + C0_NREGS))
6b50c0b0 1504 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1505
bdb4c075
MG
1506 if (reg < C0_NREGS)
1507 {
1508 CORE_ADDR spe;
1509 int stkofs;
1510
1511 /* If register was saved in the prologue, retrieve it. */
1512 stkofs = cache->c0.c0_rt[reg].to_stk;
1513 if (stkofs != C0_NOSTK)
1514 {
1515 /* Determine SP on entry based on FP. */
1516 spe = cache->c0.c0_fp
1517 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1518
581e13c1
MS
1519 return frame_unwind_got_memory (this_frame, regnum,
1520 spe + stkofs);
bdb4c075
MG
1521 }
1522 }
1523 }
1524
1525 /* All other registers have been either saved to
1526 the stack or are still alive in the processor. */
ca3bf3bd 1527
5142f611 1528 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1529}
1530
1531
1532static const struct frame_unwind
5142f611 1533xtensa_unwind =
ca3bf3bd
DJ
1534{
1535 NORMAL_FRAME,
8fbca658 1536 default_frame_unwind_stop_reason,
ca3bf3bd 1537 xtensa_frame_this_id,
5142f611
MG
1538 xtensa_frame_prev_register,
1539 NULL,
1540 default_frame_sniffer
ca3bf3bd
DJ
1541};
1542
ca3bf3bd 1543static CORE_ADDR
5142f611 1544xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1545{
1546 struct xtensa_frame_cache *cache =
5142f611 1547 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1548
1549 return cache->base;
1550}
1551
1552static const struct frame_base
1553xtensa_frame_base =
1554{
5142f611 1555 &xtensa_unwind,
ca3bf3bd
DJ
1556 xtensa_frame_base_address,
1557 xtensa_frame_base_address,
1558 xtensa_frame_base_address
1559};
1560
1561
1562static void
1563xtensa_extract_return_value (struct type *type,
1564 struct regcache *regcache,
1565 void *dst)
1566{
6b50c0b0 1567 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1568 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1569 int len = TYPE_LENGTH (type);
1570 ULONGEST pc, wb;
1571 int callsize, areg;
1572 int offset = 0;
1573
1574 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1575
1576 gdb_assert(len > 0);
1577
6b50c0b0 1578 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1579 {
1580 /* First, we have to find the caller window in the register file. */
6b50c0b0 1581 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1582 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1583
bdb4c075
MG
1584 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1585 if (len > (callsize > 8 ? 8 : 16))
1586 internal_error (__FILE__, __LINE__,
581e13c1
MS
1587 _("cannot extract return value of %d bytes long"),
1588 len);
ca3bf3bd 1589
bdb4c075
MG
1590 /* Get the register offset of the return
1591 register (A2) in the caller window. */
304fe255 1592 regcache_raw_read_unsigned
6b50c0b0 1593 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1594 areg = arreg_number (gdbarch,
91d8eb23 1595 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1596 }
1597 else
1598 {
1599 /* No windowing hardware - Call0 ABI. */
94a0e877 1600 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1601 }
ca3bf3bd
DJ
1602
1603 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1604
6b50c0b0 1605 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1606 offset = 4 - len;
1607
1608 for (; len > 0; len -= 4, areg++, valbuf += 4)
1609 {
1610 if (len < 4)
1611 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1612 else
1613 regcache_raw_read (regcache, areg, valbuf);
1614 }
1615}
1616
1617
1618static void
1619xtensa_store_return_value (struct type *type,
1620 struct regcache *regcache,
1621 const void *dst)
1622{
6b50c0b0 1623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
19ba03f4 1624 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1625 unsigned int areg;
1626 ULONGEST pc, wb;
1627 int callsize;
1628 int len = TYPE_LENGTH (type);
1629 int offset = 0;
1630
1631 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1632
6b50c0b0 1633 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1634 {
6b50c0b0
UW
1635 regcache_raw_read_unsigned
1636 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1637 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1638 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1639
bdb4c075
MG
1640 if (len > (callsize > 8 ? 8 : 16))
1641 internal_error (__FILE__, __LINE__,
1642 _("unimplemented for this length: %d"),
1643 TYPE_LENGTH (type));
ee967b5f
MG
1644 areg = arreg_number (gdbarch,
1645 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1646
bdb4c075 1647 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1648 callsize, (int) wb);
bdb4c075
MG
1649 }
1650 else
1651 {
94a0e877 1652 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1653 }
ca3bf3bd 1654
6b50c0b0 1655 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1656 offset = 4 - len;
1657
ca3bf3bd
DJ
1658 for (; len > 0; len -= 4, areg++, valbuf += 4)
1659 {
1660 if (len < 4)
1661 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1662 else
1663 regcache_raw_write (regcache, areg, valbuf);
1664 }
1665}
1666
1667
bdb4c075 1668static enum return_value_convention
ca3bf3bd 1669xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1670 struct value *function,
ca3bf3bd
DJ
1671 struct type *valtype,
1672 struct regcache *regcache,
1673 gdb_byte *readbuf,
1674 const gdb_byte *writebuf)
1675{
bdb4c075 1676 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1677
1678 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1679 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1680 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1681 && TYPE_LENGTH (valtype) > 16);
1682
1683 if (struct_return)
1684 return RETURN_VALUE_STRUCT_CONVENTION;
1685
1686 DEBUGTRACE ("xtensa_return_value(...)\n");
1687
1688 if (writebuf != NULL)
1689 {
1690 xtensa_store_return_value (valtype, regcache, writebuf);
1691 }
1692
1693 if (readbuf != NULL)
1694 {
1695 gdb_assert (!struct_return);
1696 xtensa_extract_return_value (valtype, regcache, readbuf);
1697 }
1698 return RETURN_VALUE_REGISTER_CONVENTION;
1699}
1700
1701
1702/* DUMMY FRAME */
1703
1704static CORE_ADDR
1705xtensa_push_dummy_call (struct gdbarch *gdbarch,
1706 struct value *function,
1707 struct regcache *regcache,
1708 CORE_ADDR bp_addr,
1709 int nargs,
1710 struct value **args,
1711 CORE_ADDR sp,
1712 int struct_return,
1713 CORE_ADDR struct_addr)
1714{
e17a4113 1715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd
DJ
1716 int i;
1717 int size, onstack_size;
ff7a4c00 1718 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1719 CORE_ADDR ra, ps;
1720 struct argument_info
1721 {
1722 const bfd_byte *contents;
1723 int length;
1724 int onstack; /* onstack == 0 => in reg */
1725 int align; /* alignment */
1726 union
1727 {
581e13c1
MS
1728 int offset; /* stack offset if on stack. */
1729 int regno; /* regno if in register. */
ca3bf3bd
DJ
1730 } u;
1731 };
1732
1733 struct argument_info *arg_info =
1734 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1735
1736 CORE_ADDR osp = sp;
1737
1738 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1739
1740 if (xtensa_debug_level > 3)
1741 {
1742 int i;
1743 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1744 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1745 "struct_addr=0x%x\n",
1746 (int) sp, (int) struct_return, (int) struct_addr);
1747
1748 for (i = 0; i < nargs; i++)
1749 {
1750 struct value *arg = args[i];
1751 struct type *arg_type = check_typedef (value_type (arg));
3329c4b5
PM
1752 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1753 host_address_to_string (arg),
1754 TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1755 switch (TYPE_CODE (arg_type))
1756 {
1757 case TYPE_CODE_INT:
1758 fprintf_unfiltered (gdb_stdlog, "int");
1759 break;
1760 case TYPE_CODE_STRUCT:
1761 fprintf_unfiltered (gdb_stdlog, "struct");
1762 break;
1763 default:
1764 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1765 break;
1766 }
3329c4b5
PM
1767 fprintf_unfiltered (gdb_stdlog, " %s\n",
1768 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1769 }
1770 }
1771
1772 /* First loop: collect information.
1773 Cast into type_long. (This shouldn't happen often for C because
1774 GDB already does this earlier.) It's possible that GDB could
1775 do it all the time but it's harmless to leave this code here. */
1776
1777 size = 0;
1778 onstack_size = 0;
1779 i = 0;
1780
1781 if (struct_return)
1782 size = REGISTER_SIZE;
1783
1784 for (i = 0; i < nargs; i++)
1785 {
1786 struct argument_info *info = &arg_info[i];
1787 struct value *arg = args[i];
1788 struct type *arg_type = check_typedef (value_type (arg));
1789
1790 switch (TYPE_CODE (arg_type))
1791 {
1792 case TYPE_CODE_INT:
1793 case TYPE_CODE_BOOL:
1794 case TYPE_CODE_CHAR:
1795 case TYPE_CODE_RANGE:
1796 case TYPE_CODE_ENUM:
1797
1798 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1799 if (TYPE_LENGTH (arg_type)
1800 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1801 {
0dfff4cb 1802 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1803 arg = value_cast (arg_type, arg);
1804 }
bdb4c075
MG
1805 /* Aligment is equal to the type length for the basic types. */
1806 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1807 break;
1808
1809 case TYPE_CODE_FLT:
1810
1811 /* Align doubles correctly. */
0dfff4cb
UW
1812 if (TYPE_LENGTH (arg_type)
1813 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1815 else
0dfff4cb 1816 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1817 break;
1818
1819 case TYPE_CODE_STRUCT:
1820 default:
0dfff4cb 1821 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1822 break;
1823 }
1824 info->length = TYPE_LENGTH (arg_type);
1825 info->contents = value_contents (arg);
1826
1827 /* Align size and onstack_size. */
1828 size = (size + info->align - 1) & ~(info->align - 1);
1829 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1830
91d8eb23 1831 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1832 {
1833 info->onstack = 1;
1834 info->u.offset = onstack_size;
1835 onstack_size += info->length;
1836 }
1837 else
1838 {
1839 info->onstack = 0;
91d8eb23 1840 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1841 }
1842 size += info->length;
1843 }
1844
1845 /* Adjust the stack pointer and align it. */
1846 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1847
bdb4c075 1848 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1849 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1850 && (sp != osp))
ca3bf3bd
DJ
1851 {
1852 read_memory (osp - 16, buf, 16);
1853 write_memory (sp - 16, buf, 16);
1854 }
1855
1856 /* Second Loop: Load arguments. */
1857
1858 if (struct_return)
1859 {
e17a4113 1860 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
91d8eb23 1861 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1862 }
1863
1864 for (i = 0; i < nargs; i++)
1865 {
1866 struct argument_info *info = &arg_info[i];
1867
1868 if (info->onstack)
1869 {
1870 int n = info->length;
1871 CORE_ADDR offset = sp + info->u.offset;
1872
1873 /* Odd-sized structs are aligned to the lower side of a memory
1874 word in big-endian mode and require a shift. This only
1875 applies for structures smaller than one word. */
1876
4c6b5505 1877 if (n < REGISTER_SIZE
6b50c0b0 1878 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1879 offset += (REGISTER_SIZE - n);
1880
1881 write_memory (offset, info->contents, info->length);
1882
1883 }
1884 else
1885 {
1886 int n = info->length;
1887 const bfd_byte *cp = info->contents;
1888 int r = info->u.regno;
1889
1890 /* Odd-sized structs are aligned to the lower side of registers in
1891 big-endian mode and require a shift. The odd-sized leftover will
1892 be at the end. Note that this is only true for structures smaller
1893 than REGISTER_SIZE; for larger odd-sized structures the excess
1894 will be left-aligned in the register on both endiannesses. */
1895
e17a4113 1896 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1897 {
e17a4113
UW
1898 ULONGEST v;
1899 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1900 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1901
e17a4113 1902 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
ca3bf3bd
DJ
1903 regcache_cooked_write (regcache, r, buf);
1904
1905 cp += REGISTER_SIZE;
1906 n -= REGISTER_SIZE;
1907 r++;
1908 }
1909 else
1910 while (n > 0)
1911 {
ca3bf3bd
DJ
1912 regcache_cooked_write (regcache, r, cp);
1913
ca3bf3bd
DJ
1914 cp += REGISTER_SIZE;
1915 n -= REGISTER_SIZE;
1916 r++;
1917 }
1918 }
1919 }
1920
ca3bf3bd 1921 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1922 The return address for the current function (in A0) is
ca3bf3bd
DJ
1923 saved in the dummy frame, so we can savely overwrite A0 here. */
1924
6b50c0b0 1925 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1926 {
98689b25 1927 ULONGEST val;
68d6df83 1928
bdb4c075 1929 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1930 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1931 ps = (unsigned long) val & ~0x00030000;
304fe255 1932 regcache_cooked_write_unsigned
6b50c0b0 1933 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1934 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1935 gdbarch_ps_regnum (gdbarch),
bdb4c075 1936 ps | 0x00010000);
94a0e877
MG
1937
1938 /* All the registers have been saved. After executing
1939 dummy call, they all will be restored. So it's safe
1940 to modify WINDOWSTART register to make it look like there
1941 is only one register window corresponding to WINDOWEBASE. */
1942
1943 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1944 regcache_cooked_write_unsigned
1945 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1946 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1947 }
1948 else
1949 {
1950 /* Simulate CALL0: write RA into A0 register. */
304fe255 1951 regcache_cooked_write_unsigned
94a0e877 1952 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1953 }
ca3bf3bd
DJ
1954
1955 /* Set new stack pointer and return it. */
304fe255 1956 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1957 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1958 /* Make dummy frame ID unique by adding a constant. */
1959 return sp + SP_ALIGNMENT;
1960}
1961
cd6c3b4f
YQ
1962/* Implement the breakpoint_kind_from_pc gdbarch method. */
1963
d19280ad
YQ
1964static int
1965xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1966{
1967 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1968 return 2;
1969 else
1970 return 4;
1971}
ca3bf3bd
DJ
1972
1973/* Return a breakpoint for the current location of PC. We always use
1974 the density version if we have density instructions (regardless of the
1975 current instruction at PC), and use regular instructions otherwise. */
1976
1977#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1978#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1979#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1980#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1981
cd6c3b4f
YQ
1982/* Implement the sw_breakpoint_from_kind gdbarch method. */
1983
d19280ad
YQ
1984static const gdb_byte *
1985xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1986{
d19280ad 1987 *size = kind;
ca3bf3bd 1988
d19280ad 1989 if (kind == 4)
ca3bf3bd 1990 {
d19280ad
YQ
1991 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1992 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1993
67d57894 1994 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1995 return big_breakpoint;
ca3bf3bd 1996 else
d19280ad 1997 return little_breakpoint;
ca3bf3bd
DJ
1998 }
1999 else
2000 {
d19280ad
YQ
2001 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
2002 static unsigned char density_little_breakpoint[]
2003 = DENSITY_LITTLE_BREAKPOINT;
2004
67d57894 2005 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 2006 return density_big_breakpoint;
ca3bf3bd 2007 else
d19280ad 2008 return density_little_breakpoint;
ca3bf3bd
DJ
2009 }
2010}
2011
bdb4c075
MG
2012/* Call0 ABI support routines. */
2013
f976a05d
MG
2014/* Return true, if PC points to "ret" or "ret.n". */
2015
2016static int
2017call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2018{
2019#define RETURN_RET goto done
2020 xtensa_isa isa;
2021 xtensa_insnbuf ins, slot;
948f8e3d 2022 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
2023 CORE_ADDR ia, bt, ba;
2024 xtensa_format ifmt;
2025 int ilen, islots, is;
2026 xtensa_opcode opc;
2027 const char *opcname;
2028 int found_ret = 0;
2029
2030 isa = xtensa_default_isa;
2031 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2032 ins = xtensa_insnbuf_alloc (isa);
2033 slot = xtensa_insnbuf_alloc (isa);
2034 ba = 0;
2035
2036 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2037 {
2038 if (ia + xtensa_isa_maxlength (isa) > bt)
2039 {
2040 ba = ia;
2041 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2042 ? ba + XTENSA_ISA_BSZ : finish_pc;
2043 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2044 RETURN_RET;
2045 }
2046
2047 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2048 ifmt = xtensa_format_decode (isa, ins);
2049 if (ifmt == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051 ilen = xtensa_format_length (isa, ifmt);
2052 if (ilen == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054 islots = xtensa_format_num_slots (isa, ifmt);
2055 if (islots == XTENSA_UNDEFINED)
2056 RETURN_RET;
2057
2058 for (is = 0; is < islots; ++is)
2059 {
2060 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2061 RETURN_RET;
2062
2063 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2064 if (opc == XTENSA_UNDEFINED)
2065 RETURN_RET;
2066
2067 opcname = xtensa_opcode_name (isa, opc);
2068
2069 if ((strcasecmp (opcname, "ret.n") == 0)
2070 || (strcasecmp (opcname, "ret") == 0))
2071 {
2072 found_ret = 1;
2073 RETURN_RET;
2074 }
2075 }
2076 }
2077 done:
2078 xtensa_insnbuf_free(isa, slot);
2079 xtensa_insnbuf_free(isa, ins);
2080 return found_ret;
2081}
2082
bdb4c075
MG
2083/* Call0 opcode class. Opcodes are preclassified according to what they
2084 mean for Call0 prologue analysis, and their number of significant operands.
2085 The purpose of this is to simplify prologue analysis by separating
2086 instruction decoding (libisa) from the semantics of prologue analysis. */
2087
68d6df83
MG
2088typedef enum
2089{
bdb4c075
MG
2090 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2091 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2092 c0opc_flow, /* Flow control insn. */
2093 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2094 c0opc_break, /* Debugger software breakpoints. */
2095 c0opc_add, /* Adding two registers. */
2096 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2097 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2098 c0opc_sub, /* Subtracting a register from a register. */
2099 c0opc_mov, /* Moving a register to a register. */
2100 c0opc_movi, /* Moving an immediate to a register. */
2101 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2102 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2103 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2104 c0opc_l32e, /* L32E instruction. */
2105 c0opc_s32e, /* S32E instruction. */
2106 c0opc_rfwo, /* RFWO instruction. */
2107 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2108 c0opc_NrOf /* Number of opcode classifications. */
2109} xtensa_insn_kind;
2110
08b9c608
MG
2111/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2112
2113static int
2114rwx_special_register (const char *opcname)
2115{
2116 char ch = *opcname++;
2117
2118 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2119 return 0;
2120 if (*opcname++ != 's')
2121 return 0;
2122 if (*opcname++ != 'r')
2123 return 0;
2124 if (*opcname++ != '.')
2125 return 0;
2126
2127 return 1;
2128}
bdb4c075
MG
2129
2130/* Classify an opcode based on what it means for Call0 prologue analysis. */
2131
2132static xtensa_insn_kind
2133call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2134{
2135 const char *opcname;
2136 xtensa_insn_kind opclass = c0opc_uninteresting;
2137
2138 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2139
2140 /* Get opcode name and handle special classifications. */
2141
2142 opcname = xtensa_opcode_name (isa, opc);
2143
2144 if (opcname == NULL
2145 || strcasecmp (opcname, "ill") == 0
2146 || strcasecmp (opcname, "ill.n") == 0)
2147 opclass = c0opc_illegal;
2148 else if (strcasecmp (opcname, "break") == 0
2149 || strcasecmp (opcname, "break.n") == 0)
2150 opclass = c0opc_break;
2151 else if (strcasecmp (opcname, "entry") == 0)
2152 opclass = c0opc_entry;
08b9c608
MG
2153 else if (strcasecmp (opcname, "rfwo") == 0)
2154 opclass = c0opc_rfwo;
2155 else if (strcasecmp (opcname, "rfwu") == 0)
2156 opclass = c0opc_rfwu;
bdb4c075
MG
2157 else if (xtensa_opcode_is_branch (isa, opc) > 0
2158 || xtensa_opcode_is_jump (isa, opc) > 0
2159 || xtensa_opcode_is_loop (isa, opc) > 0
2160 || xtensa_opcode_is_call (isa, opc) > 0
2161 || strcasecmp (opcname, "simcall") == 0
2162 || strcasecmp (opcname, "syscall") == 0)
2163 opclass = c0opc_flow;
2164
2165 /* Also, classify specific opcodes that need to be tracked. */
2166 else if (strcasecmp (opcname, "add") == 0
2167 || strcasecmp (opcname, "add.n") == 0)
2168 opclass = c0opc_add;
dbab50de
MG
2169 else if (strcasecmp (opcname, "and") == 0)
2170 opclass = c0opc_and;
bdb4c075
MG
2171 else if (strcasecmp (opcname, "addi") == 0
2172 || strcasecmp (opcname, "addi.n") == 0
2173 || strcasecmp (opcname, "addmi") == 0)
2174 opclass = c0opc_addi;
2175 else if (strcasecmp (opcname, "sub") == 0)
2176 opclass = c0opc_sub;
2177 else if (strcasecmp (opcname, "mov.n") == 0
2178 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2179 opclass = c0opc_mov;
2180 else if (strcasecmp (opcname, "movi") == 0
2181 || strcasecmp (opcname, "movi.n") == 0)
2182 opclass = c0opc_movi;
2183 else if (strcasecmp (opcname, "l32r") == 0)
2184 opclass = c0opc_l32r;
2185 else if (strcasecmp (opcname, "s32i") == 0
2186 || strcasecmp (opcname, "s32i.n") == 0)
2187 opclass = c0opc_s32i;
08b9c608
MG
2188 else if (strcasecmp (opcname, "l32e") == 0)
2189 opclass = c0opc_l32e;
2190 else if (strcasecmp (opcname, "s32e") == 0)
2191 opclass = c0opc_s32e;
2192 else if (rwx_special_register (opcname))
2193 opclass = c0opc_rwxsr;
bdb4c075
MG
2194
2195 return opclass;
2196}
2197
2198/* Tracks register movement/mutation for a given operation, which may
2199 be within a bundle. Updates the destination register tracking info
2200 accordingly. The pc is needed only for pc-relative load instructions
2201 (eg. l32r). The SP register number is needed to identify stores to
dbab50de
MG
2202 the stack frame. Returns 0, if analysis was succesfull, non-zero
2203 otherwise. */
bdb4c075 2204
dbab50de
MG
2205static int
2206call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2207 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2208 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2209{
e17a4113 2210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2211 unsigned litbase, litaddr, litval;
bdb4c075
MG
2212
2213 switch (opclass)
2214 {
2215 case c0opc_addi:
2216 /* 3 operands: dst, src, imm. */
2217 gdb_assert (nods == 3);
2218 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2219 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2220 break;
2221 case c0opc_add:
2222 /* 3 operands: dst, src1, src2. */
08b9c608 2223 gdb_assert (nods == 3);
bdb4c075
MG
2224 if (src[odv[1]].fr_reg == C0_CONST)
2225 {
2226 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2227 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2228 }
2229 else if (src[odv[2]].fr_reg == C0_CONST)
2230 {
2231 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2232 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2233 }
2234 else dst[odv[0]].fr_reg = C0_INEXP;
2235 break;
dbab50de
MG
2236 case c0opc_and:
2237 /* 3 operands: dst, src1, src2. */
2238 gdb_assert (nods == 3);
2239 if (cache->c0.c0_fpalign == 0)
2240 {
2241 /* Handle dynamic stack alignment. */
2242 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2243 {
2244 if (src[odv[2]].fr_reg == C0_CONST)
2245 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2246 break;
2247 }
2248 else if ((src[odv[0]].fr_reg == spreg)
2249 && (src[odv[2]].fr_reg == spreg))
2250 {
2251 if (src[odv[1]].fr_reg == C0_CONST)
2252 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2253 break;
2254 }
2255 /* else fall through. */
2256 }
2257 if (src[odv[1]].fr_reg == C0_CONST)
2258 {
2259 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2261 }
2262 else if (src[odv[2]].fr_reg == C0_CONST)
2263 {
2264 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2265 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2266 }
2267 else dst[odv[0]].fr_reg = C0_INEXP;
2268 break;
bdb4c075
MG
2269 case c0opc_sub:
2270 /* 3 operands: dst, src1, src2. */
2271 gdb_assert (nods == 3);
2272 if (src[odv[2]].fr_reg == C0_CONST)
2273 {
2274 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2275 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2276 }
2277 else dst[odv[0]].fr_reg = C0_INEXP;
2278 break;
2279 case c0opc_mov:
2280 /* 2 operands: dst, src [, src]. */
2281 gdb_assert (nods == 2);
dbab50de
MG
2282 /* First, check if it's a special case of saving unaligned SP
2283 to a spare register in case of dynamic stack adjustment.
2284 But, only do it one time. The second time could be initializing
2285 frame pointer. We don't want to overwrite the first one. */
2286 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2287 cache->c0.c0_old_sp = odv[0];
2288
bdb4c075
MG
2289 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2290 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2291 break;
2292 case c0opc_movi:
2293 /* 2 operands: dst, imm. */
2294 gdb_assert (nods == 2);
2295 dst[odv[0]].fr_reg = C0_CONST;
2296 dst[odv[0]].fr_ofs = odv[1];
2297 break;
2298 case c0opc_l32r:
2299 /* 2 operands: dst, literal offset. */
2300 gdb_assert (nods == 2);
dbab50de
MG
2301 /* litbase = xtensa_get_litbase (pc); can be also used. */
2302 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2303 ? 0 : xtensa_read_register
2304 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2305 litaddr = litbase & 1
2306 ? (litbase & ~1) + (signed)odv[1]
2307 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2308 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2309 dst[odv[0]].fr_reg = C0_CONST;
2310 dst[odv[0]].fr_ofs = litval;
2311 break;
2312 case c0opc_s32i:
2313 /* 3 operands: value, base, offset. */
2314 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2315 /* First, check if it's a spill for saved unaligned SP,
2316 when dynamic stack adjustment was applied to this frame. */
2317 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2318 && (odv[1] == spreg) /* SP usage indicates spill. */
2319 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2320 cache->c0.c0_sp_ofs = odv[2];
2321
bdb4c075
MG
2322 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2323 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2324 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2325 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2326 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2327 {
2328 /* ISA encoding guarantees alignment. But, check it anyway. */
2329 gdb_assert ((odv[2] & 3) == 0);
2330 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2331 }
2332 break;
dbab50de
MG
2333 /* If we end up inside Window Overflow / Underflow interrupt handler
2334 report an error because these handlers should have been handled
2335 already in a different way. */
2336 case c0opc_l32e:
2337 case c0opc_s32e:
2338 case c0opc_rfwo:
2339 case c0opc_rfwu:
2340 return 1;
bdb4c075 2341 default:
dbab50de 2342 return 1;
bdb4c075 2343 }
dbab50de 2344 return 0;
bdb4c075
MG
2345}
2346
dbab50de 2347/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2348 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2349 in the prologue up to the PC or just beyond the prologue, whichever is
2350 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2351 prologue. The prologue may overlap non-prologue instructions but is
2352 guaranteed to end by the first flow-control instruction (jump, branch,
2353 call or return). Since an optimized function may move information around
2354 and change the stack frame arbitrarily during the prologue, the information
2355 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2356 May be used to skip the prologue or identify the ABI, w/o tracking.
2357
2358 Returns: Address of first instruction after prologue, or PC (whichever
2359 is first), or 0, if decoding failed (in libisa).
2360 Input args:
2361 start Start address of function/prologue.
2362 pc Program counter to stop at. Use 0 to continue to end of prologue.
2363 If 0, avoids infinite run-on in corrupt code memory by bounding
2364 the scan to the end of the function if that can be determined.
dbab50de 2365 nregs Number of general registers to track.
bdb4c075 2366 InOut args:
dbab50de 2367 cache Xtensa frame cache.
bdb4c075
MG
2368
2369 Note that these may produce useful results even if decoding fails
2370 because they begin with default assumptions that analysis may change. */
2371
2372static CORE_ADDR
e17a4113 2373call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2374 CORE_ADDR start, CORE_ADDR pc,
2375 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2376{
2377 CORE_ADDR ia; /* Current insn address in prologue. */
2378 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2379 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2380 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2381 xtensa_isa isa; /* libisa ISA handle. */
2382 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2383 xtensa_format ifmt; /* libisa instruction format. */
2384 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2385 xtensa_opcode opc; /* Opcode in current slot. */
2386 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2387 int nods; /* Opcode number of operands. */
2388 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2389 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2390 int j; /* General loop counter. */
2391 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2392 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2393 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2394
2395 struct symtab_and_line prologue_sal;
2396
2397 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2398 (int)start, (int)pc);
2399
2400 /* Try to limit the scan to the end of the function if a non-zero pc
2401 arg was not supplied to avoid probing beyond the end of valid memory.
2402 If memory is full of garbage that classifies as c0opc_uninteresting.
2403 If this fails (eg. if no symbols) pc ends up 0 as it was.
2404 Intialize the Call0 frame and register tracking info.
2405 Assume it's Call0 until an 'entry' instruction is encountered.
2406 Assume we may be in the prologue until we hit a flow control instr. */
2407
2408 rtmp = NULL;
8179e739 2409 body_pc = UINT_MAX;
bdb4c075
MG
2410 end_pc = 0;
2411
2412 /* Find out, if we have an information about the prologue from DWARF. */
2413 prologue_sal = find_pc_line (start, 0);
2414 if (prologue_sal.line != 0) /* Found debug info. */
2415 body_pc = prologue_sal.end;
2416
2417 /* If we are going to analyze the prologue in general without knowing about
2418 the current PC, make the best assumtion for the end of the prologue. */
2419 if (pc == 0)
2420 {
2421 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2422 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2423 }
2424 else
325fac50 2425 body_pc = std::min (pc, body_pc);
bdb4c075 2426
dbab50de
MG
2427 cache->call0 = 1;
2428 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075 2429
94a0e877
MG
2430 if (!xtensa_default_isa)
2431 xtensa_default_isa = xtensa_isa_init (0, 0);
bdb4c075 2432 isa = xtensa_default_isa;
2ff5e605 2433 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2434 ins = xtensa_insnbuf_alloc (isa);
2435 slot = xtensa_insnbuf_alloc (isa);
2436
2437 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2438 {
2439 /* (Re)fill instruction buffer from memory if necessary, but do not
2440 read memory beyond PC to be sure we stay within text section
2441 (this protection only works if a non-zero pc is supplied). */
2442
2443 if (ia + xtensa_isa_maxlength (isa) > bt)
2444 {
2445 ba = ia;
2ff5e605 2446 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2447 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2448 error (_("Unable to read target memory ..."));
bdb4c075
MG
2449 }
2450
2451 /* Decode format information. */
2452
2453 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2454 ifmt = xtensa_format_decode (isa, ins);
2455 if (ifmt == XTENSA_UNDEFINED)
2456 {
2457 fail = 1;
2458 goto done;
2459 }
2460 ilen = xtensa_format_length (isa, ifmt);
2461 if (ilen == XTENSA_UNDEFINED)
2462 {
2463 fail = 1;
2464 goto done;
2465 }
2466 islots = xtensa_format_num_slots (isa, ifmt);
2467 if (islots == XTENSA_UNDEFINED)
2468 {
2469 fail = 1;
2470 goto done;
2471 }
2472
2473 /* Analyze a bundle or a single instruction, using a snapshot of
2474 the register tracking info as input for the entire bundle so that
2475 register changes do not take effect within this bundle. */
ca3bf3bd 2476
bdb4c075 2477 for (j = 0; j < nregs; ++j)
dbab50de 2478 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2479
2480 for (is = 0; is < islots; ++is)
2481 {
2482 /* Decode a slot and classify the opcode. */
2483
2484 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2485 if (fail)
2486 goto done;
2487
2488 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2489 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2490 (unsigned)ia, opc);
2491 if (opc == XTENSA_UNDEFINED)
2492 opclass = c0opc_illegal;
2493 else
2494 opclass = call0_classify_opcode (isa, opc);
2495
2496 /* Decide whether to track this opcode, ignore it, or bail out. */
2497
2498 switch (opclass)
2499 {
2500 case c0opc_illegal:
2501 case c0opc_break:
2502 fail = 1;
2503 goto done;
2504
2505 case c0opc_uninteresting:
2506 continue;
2507
dbab50de
MG
2508 case c0opc_flow: /* Flow control instructions stop analysis. */
2509 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2510 goto done;
2511
2512 case c0opc_entry:
dbab50de 2513 cache->call0 = 0;
bdb4c075
MG
2514 ia += ilen; /* Skip over 'entry' insn. */
2515 goto done;
2516
2517 default:
dbab50de 2518 cache->call0 = 1;
bdb4c075
MG
2519 }
2520
2521 /* Only expected opcodes should get this far. */
bdb4c075
MG
2522
2523 /* Extract and decode the operands. */
2524 nods = xtensa_opcode_num_operands (isa, opc);
2525 if (nods == XTENSA_UNDEFINED)
2526 {
2527 fail = 1;
2528 goto done;
2529 }
2530
2531 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2532 {
2533 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2534 is, slot, &odv[j]);
2535 if (fail)
2536 goto done;
2537
2538 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2539 if (fail)
2540 goto done;
2541 }
2542
2543 /* Check operands to verify use of 'mov' assembler macro. */
2544 if (opclass == c0opc_mov && nods == 3)
2545 {
2546 if (odv[2] == odv[1])
dbab50de
MG
2547 {
2548 nods = 2;
2549 if ((odv[0] == 1) && (odv[1] != 1))
2550 /* OR A1, An, An , where n != 1.
2551 This means we are inside epilogue already. */
2552 goto done;
2553 }
bdb4c075
MG
2554 else
2555 {
2556 opclass = c0opc_uninteresting;
2557 continue;
2558 }
2559 }
2560
2561 /* Track register movement and modification for this operation. */
dbab50de
MG
2562 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2563 opclass, nods, odv, ia, 1, cache);
2564 if (fail)
2565 goto done;
bdb4c075
MG
2566 }
2567 }
2568done:
2569 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2570 (unsigned)ia, fail ? "failed" : "succeeded");
2571 xtensa_insnbuf_free(isa, slot);
2572 xtensa_insnbuf_free(isa, ins);
d4709618 2573 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2574}
2575
5142f611 2576/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2577
2578static void
5142f611 2579call0_frame_cache (struct frame_info *this_frame,
dbab50de 2580 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2581{
5142f611 2582 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2584 CORE_ADDR start_pc; /* The beginning of the function. */
2585 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2586 CORE_ADDR sp, fp, ra;
dbab50de 2587 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2588
dbab50de
MG
2589 sp = get_frame_register_unsigned
2590 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2591 fp = sp; /* Assume FP == SP until proven otherwise. */
2592
bdb4c075
MG
2593 /* Find the beginning of the prologue of the function containing the PC
2594 and analyze it up to the PC or the end of the prologue. */
2595
2596 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2597 {
dbab50de 2598 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2599
2600 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2601 {
2602 warning_once ();
2603 ra = 0;
2604 goto finish_frame_analysis;
2605 }
bdb4c075
MG
2606 }
2607
bdb4c075
MG
2608 /* Get the frame information and FP (if used) at the current PC.
2609 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2610 than DWARF info. We don't not know for sure, if PC is in the prologue,
2611 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2612 certainly rely on the prologue analysis. */
2613
2614 if (body_pc <= pc)
2615 {
2616 /* Prologue analysis was successful up to the PC.
2617 It includes the cases when PC == START_PC. */
2618 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2619 /* c0_hasfp == true means there is a frame pointer because
2620 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2621 was derived from SP. Otherwise, it would be C0_FP. */
2622 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2623 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2624 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2625 }
2626 else /* No data from the prologue analysis. */
2627 {
2628 c0_hasfp = 0;
6b50c0b0 2629 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2630 c0_frmsz = 0;
2631 start_pc = pc;
2632 }
2633
dbab50de
MG
2634 if (cache->c0.c0_fpalign)
2635 {
2636 /* This frame has a special prologue with a dynamic stack adjustment
2637 to force an alignment, which is bigger than standard 16 bytes. */
2638
2639 CORE_ADDR unaligned_sp;
2640
2641 if (cache->c0.c0_old_sp == C0_INEXP)
2642 /* This can't be. Prologue code should be consistent.
2643 Unaligned stack pointer should be saved in a spare register. */
2644 {
2645 warning_once ();
2646 ra = 0;
2647 goto finish_frame_analysis;
2648 }
2649
2650 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2651 /* Saved unaligned value of SP is kept in a register. */
2652 unaligned_sp = get_frame_register_unsigned
2653 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2654 else
2655 /* Get the value from stack. */
2656 unaligned_sp = (CORE_ADDR)
2657 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2658
2659 prev_sp = unaligned_sp + c0_frmsz;
2660 }
2661 else
2662 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2663
2664 /* Frame size from debug info or prologue tracking does not account for
2665 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2666 if (c0_hasfp)
2667 {
5142f611 2668 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2669
bdb4c075
MG
2670 /* Update the stack frame size. */
2671 c0_frmsz += fp - sp;
2672 }
2673
2674 /* Get the return address (RA) from the stack if saved,
2675 or try to get it from a register. */
2676
2677 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2678 if (to_stk != C0_NOSTK)
2679 ra = (CORE_ADDR)
e17a4113
UW
2680 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2681 4, byte_order);
bdb4c075
MG
2682
2683 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2684 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2685 {
dbab50de
MG
2686 /* Special case for terminating backtrace at a function that wants to
2687 be seen as the outermost one. Such a function will clear it's RA (A0)
2688 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2689 ra = 0;
2690 }
2691 else
2692 {
dbab50de
MG
2693 /* RA was copied to another register or (before any function call) may
2694 still be in the original RA register. This is not always reliable:
2695 even in a leaf function, register tracking stops after prologue, and
2696 even in prologue, non-prologue instructions (not tracked) may overwrite
2697 RA or any register it was copied to. If likely in prologue or before
2698 any call, use retracking info and hope for the best (compiler should
2699 have saved RA in stack if not in a leaf function). If not in prologue,
2700 too bad. */
bdb4c075
MG
2701
2702 int i;
1448a0a2
PM
2703 for (i = 0;
2704 (i < C0_NREGS)
2705 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2706 ++i);
2707 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2708 i = C0_RA;
5142f611 2709 if (i < C0_NREGS)
bdb4c075 2710 {
5142f611
MG
2711 ra = get_frame_register_unsigned
2712 (this_frame,
2713 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2714 }
2715 else ra = 0;
2716 }
2717
dbab50de 2718 finish_frame_analysis:
bdb4c075
MG
2719 cache->pc = start_pc;
2720 cache->ra = ra;
2721 /* RA == 0 marks the outermost frame. Do not go past it. */
2722 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2723 cache->c0.fp_regnum = fp_regnum;
2724 cache->c0.c0_frmsz = c0_frmsz;
2725 cache->c0.c0_hasfp = c0_hasfp;
2726 cache->c0.c0_fp = fp;
2727}
2728
08b9c608
MG
2729static CORE_ADDR a0_saved;
2730static CORE_ADDR a7_saved;
2731static CORE_ADDR a11_saved;
2732static int a0_was_saved;
2733static int a7_was_saved;
2734static int a11_was_saved;
2735
68d6df83 2736/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2737static void
2738execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2739{
2740 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2741 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2742 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2743 unsigned int spilled_value
2744 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2745
2746 if ((at == 0) && !a0_was_saved)
2747 {
2748 a0_saved = xtensa_read_register (atreg);
2749 a0_was_saved = 1;
2750 }
2751 else if ((at == 7) && !a7_was_saved)
2752 {
2753 a7_saved = xtensa_read_register (atreg);
2754 a7_was_saved = 1;
2755 }
2756 else if ((at == 11) && !a11_was_saved)
2757 {
2758 a11_saved = xtensa_read_register (atreg);
2759 a11_was_saved = 1;
2760 }
2761
2762 xtensa_write_register (atreg, spilled_value);
2763}
2764
68d6df83 2765/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2766static void
2767execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2768{
2769 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2770 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2771 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2772 ULONGEST spilled_value = xtensa_read_register (atreg);
2773
2774 write_memory_unsigned_integer (addr, 4,
2775 gdbarch_byte_order (gdbarch),
2776 spilled_value);
2777}
2778
2779#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2780
68d6df83
MG
2781typedef enum
2782{
08b9c608
MG
2783 xtWindowOverflow,
2784 xtWindowUnderflow,
2785 xtNoExceptionHandler
2786} xtensa_exception_handler_t;
2787
68d6df83 2788/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2789 Return type of Xtensa Window Interrupt Handler on success. */
2790static xtensa_exception_handler_t
2791execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2792{
2793 xtensa_isa isa;
2794 xtensa_insnbuf ins, slot;
948f8e3d 2795 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2796 CORE_ADDR ia, bt, ba;
2797 xtensa_format ifmt;
2798 int ilen, islots, is;
2799 xtensa_opcode opc;
2800 int insn_num = 0;
08b9c608
MG
2801 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2802
19afdd07 2803 uint32_t at, as, offset;
08b9c608
MG
2804
2805 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2806 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2807
2808 isa = xtensa_default_isa;
2809 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2810 ins = xtensa_insnbuf_alloc (isa);
2811 slot = xtensa_insnbuf_alloc (isa);
2812 ba = 0;
2813 ia = current_pc;
2814 bt = ia;
2815
2816 a0_was_saved = 0;
2817 a7_was_saved = 0;
2818 a11_was_saved = 0;
2819
2820 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2821 {
2822 if (ia + xtensa_isa_maxlength (isa) > bt)
2823 {
2824 ba = ia;
2825 bt = (ba + XTENSA_ISA_BSZ);
2826 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2827 return xtNoExceptionHandler;
2828 }
2829 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2830 ifmt = xtensa_format_decode (isa, ins);
2831 if (ifmt == XTENSA_UNDEFINED)
2832 return xtNoExceptionHandler;
2833 ilen = xtensa_format_length (isa, ifmt);
2834 if (ilen == XTENSA_UNDEFINED)
2835 return xtNoExceptionHandler;
2836 islots = xtensa_format_num_slots (isa, ifmt);
2837 if (islots == XTENSA_UNDEFINED)
2838 return xtNoExceptionHandler;
2839 for (is = 0; is < islots; ++is)
2840 {
2841 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2842 return xtNoExceptionHandler;
2843 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2844 if (opc == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 switch (call0_classify_opcode (isa, opc))
2847 {
2848 case c0opc_illegal:
2849 case c0opc_flow:
2850 case c0opc_entry:
2851 case c0opc_break:
2852 /* We expect none of them here. */
2853 return xtNoExceptionHandler;
2854 case c0opc_l32e:
2855 func = execute_l32e;
2856 break;
2857 case c0opc_s32e:
2858 func = execute_s32e;
2859 break;
2860 case c0opc_rfwo: /* RFWO. */
2861 /* Here, we return from WindowOverflow handler and,
2862 if we stopped at the very beginning, which means
2863 A0 was saved, we have to restore it now. */
2864 if (a0_was_saved)
2865 {
2866 int arreg = arreg_number (gdbarch,
2867 gdbarch_tdep (gdbarch)->a0_base,
2868 wb);
2869 xtensa_write_register (arreg, a0_saved);
2870 }
2871 return xtWindowOverflow;
2872 case c0opc_rfwu: /* RFWU. */
2873 /* Here, we return from WindowUnderflow handler.
2874 Let's see if either A7 or A11 has to be restored. */
2875 if (WindowUnderflow12)
2876 {
2877 if (a11_was_saved)
2878 {
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base + 11,
2881 wb);
2882 xtensa_write_register (arreg, a11_saved);
2883 }
2884 }
2885 else if (a7_was_saved)
2886 {
2887 int arreg = arreg_number (gdbarch,
2888 gdbarch_tdep (gdbarch)->a0_base + 7,
2889 wb);
2890 xtensa_write_register (arreg, a7_saved);
2891 }
2892 return xtWindowUnderflow;
2893 default: /* Simply skip this insns. */
2894 continue;
2895 }
2896
2897 /* Decode arguments for L32E / S32E and simulate their execution. */
2898 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 0, &at))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 1, &as))
2907 return xtNoExceptionHandler;
2908 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2909 return xtNoExceptionHandler;
2910 if (xtensa_operand_decode (isa, opc, 2, &offset))
2911 return xtNoExceptionHandler;
2912
2913 (*func) (gdbarch, at, as, offset, wb);
2914 }
2915
2916 ia += ilen;
2917 }
2918 return xtNoExceptionHandler;
2919}
2920
2921/* Handle Window Overflow / Underflow exception frames. */
2922
2923static void
2924xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2925 xtensa_frame_cache_t *cache,
2926 CORE_ADDR pc)
2927{
2928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2929 CORE_ADDR ps, wb, ws, ra;
2930 int epc1_regnum, i, regnum;
2931 xtensa_exception_handler_t eh_type;
2932
2933 /* Read PS, WB, and WS from the hardware. Note that PS register
2934 must be present, if Windowed ABI is supported. */
2935 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2936 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2937 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2938
2939 /* Execute all the remaining instructions from Window Interrupt Handler
2940 by simulating them on the remote protocol level. On return, set the
2941 type of Xtensa Window Interrupt Handler, or report an error. */
2942 eh_type = execute_code (gdbarch, pc, wb);
2943 if (eh_type == xtNoExceptionHandler)
2944 error (_("\
2945Unable to decode Xtensa Window Interrupt Handler's code."));
2946
2947 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2948 cache->call0 = 0; /* It's Windowed ABI. */
2949
2950 /* All registers for the cached frame will be alive. */
2951 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2952 cache->wd.aregs[i] = -1;
2953
2954 if (eh_type == xtWindowOverflow)
2955 cache->wd.ws = ws ^ (1 << wb);
2956 else /* eh_type == xtWindowUnderflow. */
2957 cache->wd.ws = ws | (1 << wb);
2958
2959 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2960 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2961 cache->wd.wb);
2962 ra = xtensa_read_register (regnum);
2963 cache->wd.callsize = WINSIZE (ra);
2964 cache->prev_sp = xtensa_read_register (regnum + 1);
2965 /* Set regnum to a frame pointer of the frame being cached. */
2966 regnum = xtensa_scan_prologue (gdbarch, pc);
2967 regnum = arreg_number (gdbarch,
2968 gdbarch_tdep (gdbarch)->a0_base + regnum,
2969 cache->wd.wb);
2970 cache->base = get_frame_register_unsigned (this_frame, regnum);
2971
2972 /* Read PC of interrupted function from EPC1 register. */
2973 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2974 if (epc1_regnum < 0)
2975 error(_("Unable to read Xtensa register EPC1"));
2976 cache->ra = xtensa_read_register (epc1_regnum);
2977 cache->pc = get_frame_func (this_frame);
2978}
2979
bdb4c075
MG
2980
2981/* Skip function prologue.
2982
2983 Return the pc of the first instruction after prologue. GDB calls this to
2984 find the address of the first line of the function or (if there is no line
2985 number information) to skip the prologue for planting breakpoints on
2986 function entries. Use debug info (if present) or prologue analysis to skip
2987 the prologue to achieve reliable debugging behavior. For windowed ABI,
2988 only the 'entry' instruction is skipped. It is not strictly necessary to
2989 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2990 backtrace at any point in the prologue, however certain potential hazards
2991 are avoided and a more "normal" debugging experience is ensured by
2992 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2993 For example, if we don't skip the prologue:
2994 - Some args may not yet have been saved to the stack where the debug
2995 info expects to find them (true anyway when only 'entry' is skipped);
2996 - Software breakpoints ('break' instrs) may not have been unplanted
2997 when the prologue analysis is done on initializing the frame cache,
2998 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2999
3000 If we have debug info ( line-number info, in particular ) we simply skip
3001 the code associated with the first function line effectively skipping
bdb4c075 3002 the prologue code. It works even in cases like
ca3bf3bd
DJ
3003
3004 int main()
3005 { int local_var = 1;
3006 ....
3007 }
3008
3009 because, for this source code, both Xtensa compilers will generate two
3010 separate entries ( with the same line number ) in dwarf line-number
3011 section to make sure there is a boundary between the prologue code and
3012 the rest of the function.
3013
bdb4c075
MG
3014 If there is no debug info, we need to analyze the code. */
3015
3016/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 3017
63807e1d 3018static CORE_ADDR
6093d2eb 3019xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 3020{
bdb4c075
MG
3021 struct symtab_and_line prologue_sal;
3022 CORE_ADDR body_pc;
3023
ca3bf3bd
DJ
3024 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3025
bdb4c075
MG
3026#if DONT_SKIP_PROLOGUE
3027 return start_pc;
3028#endif
3029
3030 /* Try to find first body line from debug info. */
3031
3032 prologue_sal = find_pc_line (start_pc, 0);
3033 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3034 {
f976a05d
MG
3035 /* In Call0, it is possible to have a function with only one instruction
3036 ('ret') resulting from a one-line optimized function that does nothing.
3037 In that case, prologue_sal.end may actually point to the start of the
3038 next function in the text section, causing a breakpoint to be set at
3039 the wrong place. Check, if the end address is within a different
3040 function, and if so return the start PC. We know we have symbol
3041 information. */
ca3bf3bd 3042
bdb4c075
MG
3043 CORE_ADDR end_func;
3044
f976a05d
MG
3045 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3046 && call0_ret (start_pc, prologue_sal.end))
3047 return start_pc;
3048
bdb4c075
MG
3049 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3050 if (end_func != start_pc)
ca3bf3bd
DJ
3051 return start_pc;
3052
bdb4c075 3053 return prologue_sal.end;
ca3bf3bd 3054 }
ca3bf3bd 3055
bdb4c075 3056 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3057 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3058 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3059 return body_pc != 0 ? body_pc : start_pc;
3060}
ca3bf3bd
DJ
3061
3062/* Verify the current configuration. */
ca3bf3bd
DJ
3063static void
3064xtensa_verify_config (struct gdbarch *gdbarch)
3065{
3066 struct ui_file *log;
3067 struct cleanup *cleanups;
3068 struct gdbarch_tdep *tdep;
759ef836 3069 long length;
ca3bf3bd
DJ
3070 char *buf;
3071
3072 tdep = gdbarch_tdep (gdbarch);
3073 log = mem_fileopen ();
3074 cleanups = make_cleanup_ui_file_delete (log);
3075
3076 /* Verify that we got a reasonable number of AREGS. */
3077 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
bdb4c075
MG
3078 fprintf_unfiltered (log, _("\
3079\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3080 tdep->num_aregs);
ca3bf3bd
DJ
3081
3082 /* Verify that certain registers exist. */
bdb4c075 3083
ca3bf3bd 3084 if (tdep->pc_regnum == -1)
bdb4c075
MG
3085 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3086 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3087 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3088
3089 if (tdep->isa_use_windowed_registers)
3090 {
3091 if (tdep->wb_regnum == -1)
3092 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3093 if (tdep->ws_regnum == -1)
3094 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3095 if (tdep->ar_base == -1)
3096 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3097 }
3098
ca3bf3bd 3099 if (tdep->a0_base == -1)
bdb4c075 3100 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
ca3bf3bd 3101
759ef836 3102 buf = ui_file_xstrdup (log, &length);
ca3bf3bd 3103 make_cleanup (xfree, buf);
759ef836 3104 if (length > 0)
ca3bf3bd
DJ
3105 internal_error (__FILE__, __LINE__,
3106 _("the following are invalid: %s"), buf);
3107 do_cleanups (cleanups);
3108}
3109
94a0e877
MG
3110
3111/* Derive specific register numbers from the array of registers. */
3112
63807e1d 3113static void
94a0e877
MG
3114xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3115{
3116 xtensa_register_t* rmap;
3117 int n, max_size = 4;
3118
3119 tdep->num_regs = 0;
3120 tdep->num_nopriv_regs = 0;
3121
3122/* Special registers 0..255 (core). */
3123#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3124
3125 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3126 {
3127 if (rmap->target_number == 0x0020)
3128 tdep->pc_regnum = n;
3129 else if (rmap->target_number == 0x0100)
3130 tdep->ar_base = n;
3131 else if (rmap->target_number == 0x0000)
3132 tdep->a0_base = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3134 tdep->wb_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3136 tdep->ws_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3138 tdep->debugcause_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3140 tdep->exccause_regnum = n;
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3142 tdep->excvaddr_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3144 tdep->lbeg_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3146 tdep->lend_regnum = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3148 tdep->lcount_regnum = n;
3149 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3150 tdep->sar_regnum = n;
3151 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3152 tdep->litbase_regnum = n;
3153 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3154 tdep->ps_regnum = n;
3155#if 0
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3157 tdep->interrupt_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3159 tdep->interrupt2_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3161 tdep->cpenable_regnum = n;
3162#endif
3163
3164 if (rmap->byte_size > max_size)
3165 max_size = rmap->byte_size;
3166 if (rmap->mask != 0 && tdep->num_regs == 0)
3167 tdep->num_regs = n;
3168 /* Find out out how to deal with priveleged registers.
3169
3170 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3171 && tdep->num_nopriv_regs == 0)
3172 tdep->num_nopriv_regs = n;
3173 */
3174 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3175 && tdep->num_regs == 0)
3176 tdep->num_regs = n;
3177 }
3178
3179 /* Number of pseudo registers. */
3180 tdep->num_pseudo_regs = n - tdep->num_regs;
3181
3182 /* Empirically determined maximum sizes. */
3183 tdep->max_register_raw_size = max_size;
3184 tdep->max_register_virtual_size = max_size;
3185}
3186
ca3bf3bd
DJ
3187/* Module "constructor" function. */
3188
94a0e877
MG
3189extern struct gdbarch_tdep xtensa_tdep;
3190
ca3bf3bd
DJ
3191static struct gdbarch *
3192xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3193{
3194 struct gdbarch_tdep *tdep;
3195 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3196
3197 DEBUGTRACE ("gdbarch_init()\n");
3198
3199 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3200 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3201
94a0e877 3202 tdep = &xtensa_tdep;
ca3bf3bd 3203 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3204 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3205
3206 /* Verify our configuration. */
3207 xtensa_verify_config (gdbarch);
dbab50de 3208 xtensa_session_once_reported = 0;
ca3bf3bd 3209
bdb4c075 3210 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3211 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3212 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3213
3214 /* Set target information. */
3215 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3216 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3217 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3218 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3219 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3220
ba2b1c56 3221 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3222 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3223 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3224
3225 /* We provide our own function to get register information. */
3226 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3227 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3228
581e13c1 3229 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3230 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3231
3232 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3233
3234 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3235
3236 /* Advance PC across any prologue instructions to reach "real" code. */
3237 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3238
3239 /* Stack grows downward. */
3240 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3241
3242 /* Set breakpoints. */
04180708
YQ
3243 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3244 xtensa_breakpoint_kind_from_pc);
3245 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3246 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3247
3248 /* After breakpoint instruction or illegal instruction, pc still
3249 points at break instruction, so don't decrement. */
3250 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3251
3252 /* We don't skip args. */
3253 set_gdbarch_frame_args_skip (gdbarch, 0);
3254
3255 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3256
3257 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3258
5142f611 3259 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3260
3261 /* Frame handling. */
3262 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3263 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3264 dwarf2_append_unwinders (gdbarch);
ca3bf3bd
DJ
3265
3266 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3267
3268 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3269
3270 xtensa_add_reggroups (gdbarch);
3271 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3272
97094034
AA
3273 set_gdbarch_iterate_over_regset_sections
3274 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3275
ee967b5f
MG
3276 set_solib_svr4_fetch_link_map_offsets
3277 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3278
40045d91
MF
3279 /* Hook in the ABI-specific overrides, if they have been registered. */
3280 gdbarch_init_osabi (info, gdbarch);
3281
ca3bf3bd
DJ
3282 return gdbarch;
3283}
3284
ca3bf3bd 3285static void
6b50c0b0 3286xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3287{
3288 error (_("xtensa_dump_tdep(): not implemented"));
3289}
3290
63807e1d
PA
3291/* Provide a prototype to silence -Wmissing-prototypes. */
3292extern initialize_file_ftype _initialize_xtensa_tdep;
3293
ca3bf3bd
DJ
3294void
3295_initialize_xtensa_tdep (void)
3296{
ca3bf3bd
DJ
3297 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3298 xtensa_init_reggroups ();
3299
ccce17b0
YQ
3300 add_setshow_zuinteger_cmd ("xtensa",
3301 class_maintenance,
3302 &xtensa_debug_level,
581e13c1
MS
3303 _("Set Xtensa debugging."),
3304 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3305When non-zero, Xtensa-specific debugging is enabled. \
3306Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3307 NULL,
3308 NULL,
3309 &setdebuglist, &showdebuglist);
ca3bf3bd 3310}
This page took 1.997908 seconds and 4 git commands to generate.