More fixes for memory access errors triggered by attemps to examine corrupted binaries.
[deliverable/binutils-gdb.git] / gold / aarch64.cc
CommitLineData
053a4d68
JY
1// aarch64.cc -- aarch64 target support for gold.
2
3// Copyright (C) 2014 Free Software Foundation, Inc.
9363c7c3 4// Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
053a4d68
JY
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "aarch64.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "freebsd.h"
42#include "nacl.h"
43#include "gc.h"
44#include "icf.h"
9363c7c3 45#include "aarch64-reloc-property.h"
053a4d68
JY
46
47// The first three .got.plt entries are reserved.
48const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
49
83a01957 50
053a4d68
JY
51namespace
52{
53
54using namespace gold;
55
56template<int size, bool big_endian>
57class Output_data_plt_aarch64;
58
59template<int size, bool big_endian>
60class Output_data_plt_aarch64_standard;
61
62template<int size, bool big_endian>
63class Target_aarch64;
64
9363c7c3
JY
65template<int size, bool big_endian>
66class AArch64_relocate_functions;
67
053a4d68
JY
68// Output_data_got_aarch64 class.
69
70template<int size, bool big_endian>
71class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
72{
73 public:
74 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
75 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
9363c7c3
JY
76 : Output_data_got<size, big_endian>(),
77 symbol_table_(symtab), layout_(layout)
053a4d68
JY
78 { }
79
8e33481e
HS
80 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
81 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
82 // applied in a static link.
83 void
84 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
85 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
86
87
88 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
89 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
90 // relocation that needs to be applied in a static link.
91 void
92 add_static_reloc(unsigned int got_offset, unsigned int r_type,
93 Sized_relobj_file<size, big_endian>* relobj,
94 unsigned int index)
95 {
96 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
97 index));
98 }
99
100
053a4d68
JY
101 protected:
102 // Write out the GOT table.
103 void
104 do_write(Output_file* of) {
105 // The first entry in the GOT is the address of the .dynamic section.
106 gold_assert(this->data_size() >= size / 8);
107 Output_section* dynamic = this->layout_->dynamic_section();
108 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
109 this->replace_constant(0, dynamic_addr);
110 Output_data_got<size, big_endian>::do_write(of);
8e33481e
HS
111
112 // Handling static relocs
113 if (this->static_relocs_.empty())
114 return;
115
116 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
117
118 gold_assert(parameters->doing_static_link());
119 const off_t offset = this->offset();
120 const section_size_type oview_size =
121 convert_to_section_size_type(this->data_size());
122 unsigned char* const oview = of->get_output_view(offset, oview_size);
123
124 Output_segment* tls_segment = this->layout_->tls_segment();
125 gold_assert(tls_segment != NULL);
126
127 AArch64_address aligned_tcb_address =
83a01957 128 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
8e33481e
HS
129 tls_segment->maximum_alignment());
130
131 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
132 {
133 Static_reloc& reloc(this->static_relocs_[i]);
134 AArch64_address value;
135
136 if (!reloc.symbol_is_global())
137 {
138 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
139 const Symbol_value<size>* psymval =
140 reloc.relobj()->local_symbol(reloc.index());
141
142 // We are doing static linking. Issue an error and skip this
143 // relocation if the symbol is undefined or in a discarded_section.
144 bool is_ordinary;
145 unsigned int shndx = psymval->input_shndx(&is_ordinary);
146 if ((shndx == elfcpp::SHN_UNDEF)
147 || (is_ordinary
148 && shndx != elfcpp::SHN_UNDEF
149 && !object->is_section_included(shndx)
150 && !this->symbol_table_->is_section_folded(object, shndx)))
151 {
152 gold_error(_("undefined or discarded local symbol %u from "
153 " object %s in GOT"),
154 reloc.index(), reloc.relobj()->name().c_str());
155 continue;
156 }
157 value = psymval->value(object, 0);
158 }
159 else
160 {
161 const Symbol* gsym = reloc.symbol();
162 gold_assert(gsym != NULL);
163 if (gsym->is_forwarder())
164 gsym = this->symbol_table_->resolve_forwards(gsym);
165
166 // We are doing static linking. Issue an error and skip this
167 // relocation if the symbol is undefined or in a discarded_section
168 // unless it is a weakly_undefined symbol.
169 if ((gsym->is_defined_in_discarded_section()
170 || gsym->is_undefined())
171 && !gsym->is_weak_undefined())
172 {
173 gold_error(_("undefined or discarded symbol %s in GOT"),
174 gsym->name());
175 continue;
176 }
177
178 if (!gsym->is_weak_undefined())
179 {
180 const Sized_symbol<size>* sym =
181 static_cast<const Sized_symbol<size>*>(gsym);
182 value = sym->value();
183 }
184 else
185 value = 0;
186 }
187
188 unsigned got_offset = reloc.got_offset();
189 gold_assert(got_offset < oview_size);
190
191 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
192 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
193 Valtype x;
194 switch (reloc.r_type())
195 {
196 case elfcpp::R_AARCH64_TLS_DTPREL64:
197 x = value;
198 break;
199 case elfcpp::R_AARCH64_TLS_TPREL64:
200 x = value + aligned_tcb_address;
201 break;
202 default:
203 gold_unreachable();
204 }
205 elfcpp::Swap<size, big_endian>::writeval(wv, x);
206 }
207
208 of->write_output_view(offset, oview_size, oview);
053a4d68
JY
209 }
210
211 private:
9363c7c3
JY
212 // Symbol table of the output object.
213 Symbol_table* symbol_table_;
053a4d68
JY
214 // A pointer to the Layout class, so that we can find the .dynamic
215 // section when we write out the GOT section.
216 Layout* layout_;
8e33481e 217
8e33481e
HS
218 // This class represent dynamic relocations that need to be applied by
219 // gold because we are using TLS relocations in a static link.
220 class Static_reloc
221 {
222 public:
223 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
225 { this->u_.global.symbol = gsym; }
226
227 Static_reloc(unsigned int got_offset, unsigned int r_type,
228 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
229 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
230 {
231 this->u_.local.relobj = relobj;
232 this->u_.local.index = index;
233 }
234
235 // Return the GOT offset.
236 unsigned int
237 got_offset() const
238 { return this->got_offset_; }
239
240 // Relocation type.
241 unsigned int
242 r_type() const
243 { return this->r_type_; }
244
245 // Whether the symbol is global or not.
246 bool
247 symbol_is_global() const
248 { return this->symbol_is_global_; }
249
250 // For a relocation against a global symbol, the global symbol.
251 Symbol*
252 symbol() const
253 {
254 gold_assert(this->symbol_is_global_);
255 return this->u_.global.symbol;
256 }
257
258 // For a relocation against a local symbol, the defining object.
259 Sized_relobj_file<size, big_endian>*
260 relobj() const
261 {
262 gold_assert(!this->symbol_is_global_);
263 return this->u_.local.relobj;
264 }
265
266 // For a relocation against a local symbol, the local symbol index.
267 unsigned int
268 index() const
269 {
270 gold_assert(!this->symbol_is_global_);
271 return this->u_.local.index;
272 }
273
274 private:
275 // GOT offset of the entry to which this relocation is applied.
276 unsigned int got_offset_;
277 // Type of relocation.
278 unsigned int r_type_;
279 // Whether this relocation is against a global symbol.
280 bool symbol_is_global_;
281 // A global or local symbol.
282 union
283 {
83a01957
HS
284 struct
285 {
286 // For a global symbol, the symbol itself.
287 Symbol* symbol;
288 } global;
289 struct
290 {
291 // For a local symbol, the object defining the symbol.
292 Sized_relobj_file<size, big_endian>* relobj;
293 // For a local symbol, the symbol index.
294 unsigned int index;
295 } local;
296 } u_;
297 }; // End of inner class Static_reloc
298
299 std::vector<Static_reloc> static_relocs_;
300}; // End of Output_data_got_aarch64
301
302
303template<int size, bool big_endian>
304class AArch64_input_section;
305
306
307template<int size, bool big_endian>
308class AArch64_output_section;
309
310
311// Reloc stub class.
312
313template<int size, bool big_endian>
314class Reloc_stub
315{
316 public:
317 typedef Reloc_stub<size, big_endian> This;
318 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
319
320 // Do not change the value of the enums, they are used to index into
321 // stub_insns array.
322 typedef enum
323 {
324 ST_NONE = 0,
325
326 // Using adrp/add pair, 4 insns (including alignment) without mem access,
327 // the fastest stub. This has a limited jump distance, which is tested by
328 // aarch64_valid_for_adrp_p.
329 ST_ADRP_BRANCH = 1,
330
331 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
332 // unlimited in jump distance.
333 ST_LONG_BRANCH_ABS = 2,
334
335 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 mem
336 // access, slowest one. Only used in position independent executables.
337 ST_LONG_BRANCH_PCREL = 3,
338
339 } Stub_type;
340
341 // Branch range. This is used to calculate the section group size, as well as
342 // determine whether a stub is needed.
343 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
344 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
345
346 // Constant used to determine if an offset fits in the adrp instruction
347 // encoding.
348 static const int MAX_ADRP_IMM = (1 << 20) - 1;
349 static const int MIN_ADRP_IMM = -(1 << 20);
350
351 static const int BYTES_PER_INSN = 4;
352 static const int STUB_ADDR_ALIGN = 4;
353
354 // Determine whether the offset fits in the jump/branch instruction.
355 static bool
356 aarch64_valid_branch_offset_p(int64_t offset)
357 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
358
359 // Determine whether the offset fits in the adrp immediate field.
360 static bool
361 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
362 {
363 typedef AArch64_relocate_functions<size, big_endian> Reloc;
364 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
365 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
366 }
367
368 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
369 // needed.
370 static Stub_type
371 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
372 AArch64_address target);
373
374 Reloc_stub(Stub_type stub_type)
375 : stub_type_(stub_type), offset_(invalid_offset),
376 destination_address_(invalid_address)
377 { }
378
379 ~Reloc_stub()
380 { }
381
382 // Return offset of code stub from beginning of its containing stub table.
383 section_offset_type
384 offset() const
385 {
386 gold_assert(this->offset_ != invalid_offset);
387 return this->offset_;
388 }
389
390 // Set offset of code stub from beginning of its containing stub table.
391 void
392 set_offset(section_offset_type offset)
393 { this->offset_ = offset; }
394
395 // Return destination address.
396 AArch64_address
397 destination_address() const
398 {
399 gold_assert(this->destination_address_ != this->invalid_address);
400 return this->destination_address_;
401 }
402
403 // Set destination address.
404 void
405 set_destination_address(AArch64_address address)
406 {
407 gold_assert(address != this->invalid_address);
408 this->destination_address_ = address;
409 }
410
411 // Reset the destination address.
412 void
413 reset_destination_address()
414 { this->destination_address_ = this->invalid_address; }
415
416 // Return the stub type.
417 Stub_type
418 stub_type() const
419 { return stub_type_; }
420
421 // Return the stub size.
422 uint32_t
423 stub_size() const
424 { return this->stub_insn_number() * BYTES_PER_INSN; }
425
426 // Return the instruction number of this stub instance.
427 int
428 stub_insn_number() const
429 { return stub_insns_[this->stub_type_][0]; }
430
431 // Note the first "insn" is the number of total insns in this array.
432 const uint32_t*
433 stub_insns() const
434 { return stub_insns_[this->stub_type_]; }
435
436 // Write stub to output file.
437 void
438 write(unsigned char* view, section_size_type view_size)
439 { this->do_write(view, view_size); }
440
441 // The key class used to index the stub instance in the stub table's stub map.
442 class Key
443 {
444 public:
445 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
446 unsigned int r_sym, int32_t addend)
447 : stub_type_(stub_type), addend_(addend)
448 {
449 if (symbol != NULL)
450 {
451 this->r_sym_ = Reloc_stub::invalid_index;
452 this->u_.symbol = symbol;
453 }
454 else
455 {
456 gold_assert(relobj != NULL && r_sym != invalid_index);
457 this->r_sym_ = r_sym;
458 this->u_.relobj = relobj;
459 }
460 }
461
462 ~Key()
463 { }
464
465 // Return stub type.
466 Stub_type
467 stub_type() const
468 { return this->stub_type_; }
469
470 // Return the local symbol index or invalid_index.
471 unsigned int
472 r_sym() const
473 { return this->r_sym_; }
474
475 // Return the symbol if there is one.
476 const Symbol*
477 symbol() const
478 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
479
480 // Return the relobj if there is one.
481 const Relobj*
482 relobj() const
483 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
484
485 // Whether this equals to another key k.
486 bool
487 eq(const Key& k) const
488 {
489 return ((this->stub_type_ == k.stub_type_)
490 && (this->r_sym_ == k.r_sym_)
491 && ((this->r_sym_ != Reloc_stub::invalid_index)
492 ? (this->u_.relobj == k.u_.relobj)
493 : (this->u_.symbol == k.u_.symbol))
494 && (this->addend_ == k.addend_));
495 }
496
497 // Return a hash value.
498 size_t
499 hash_value() const
500 {
501 size_t name_hash_value = gold::string_hash<char>(
502 (this->r_sym_ != Reloc_stub::invalid_index)
503 ? this->u_.relobj->name().c_str()
504 : this->u_.symbol->name());
505 // We only have 4 stub types.
506 size_t stub_type_hash_value = 0x03 & this->stub_type_;
507 return (name_hash_value
508 ^ stub_type_hash_value
509 ^ ((this->r_sym_ & 0x3fff) << 2)
510 ^ ((this->addend_ & 0xffff) << 16));
511 }
512
513 // Functors for STL associative containers.
514 struct hash
515 {
516 size_t
517 operator()(const Key& k) const
518 { return k.hash_value(); }
519 };
520
521 struct equal_to
522 {
523 bool
524 operator()(const Key& k1, const Key& k2) const
525 { return k1.eq(k2); }
526 };
527
9726c3c1 528 private:
83a01957
HS
529 // Stub type.
530 const Stub_type stub_type_;
531 // If this is a local symbol, this is the index in the defining object.
532 // Otherwise, it is invalid_index for a global symbol.
533 unsigned int r_sym_;
534 // If r_sym_ is an invalid index, this points to a global symbol.
535 // Otherwise, it points to a relobj. We used the unsized and target
536 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
537 // Arm_relobj, in order to avoid making the stub class a template
538 // as most of the stub machinery is endianness-neutral. However, it
539 // may require a bit of casting done by users of this class.
540 union
541 {
542 const Symbol* symbol;
543 const Relobj* relobj;
544 } u_;
545 // Addend associated with a reloc.
546 int32_t addend_;
547 }; // End of inner class Reloc_stub::Key
548
549 protected:
550 // This may be overridden in the child class.
551 virtual void
552 do_write(unsigned char*, section_size_type);
553
554 private:
555 static const section_offset_type invalid_offset =
556 static_cast<section_offset_type>(-1);
557 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
558 static const AArch64_address invalid_address =
559 static_cast<AArch64_address>(-1);
560
561 static const uint32_t stub_insns_[][10];
562
563 const Stub_type stub_type_;
564 section_offset_type offset_;
565 AArch64_address destination_address_;
566}; // End of Reloc_stub
567
568
569// Write data to output file.
570
571template<int size, bool big_endian>
572void
573Reloc_stub<size, big_endian>::
574do_write(unsigned char* view, section_size_type)
575{
576 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
577 const uint32_t* insns = this->stub_insns();
578 uint32_t num_insns = this->stub_insn_number();
579 Insntype* ip = reinterpret_cast<Insntype*>(view);
580 for (uint32_t i = 1; i <= num_insns; ++i)
581 elfcpp::Swap<32, big_endian>::writeval(ip + i - 1, insns[i]);
582}
583
584
585// Stubs instructions definition.
586
587template<int size, bool big_endian>
588const uint32_t
589Reloc_stub<size, big_endian>::stub_insns_[][10] =
590 {
591 // The first element of each group is the num of the insns.
592
593 // ST_NONE
594 {0, 0},
595
596 // ST_ADRP_BRANCH
597 {
598 4,
599 0x90000010, /* adrp ip0, X */
600 /* ADR_PREL_PG_HI21(X) */
601 0x91000210, /* add ip0, ip0, :lo12:X */
602 /* ADD_ABS_LO12_NC(X) */
603 0xd61f0200, /* br ip0 */
604 0x00000000, /* alignment padding */
605 },
606
607 // ST_LONG_BRANCH_ABS
608 {
609 4,
610 0x58000050, /* ldr ip0, 0x8 */
611 0xd61f0200, /* br ip0 */
612 0x00000000, /* address field */
613 0x00000000, /* address fields */
614 },
615
616 // ST_LONG_BRANCH_PCREL
617 {
618 8,
619 0x58000090, /* ldr ip0, 0x10 */
620 0x10000011, /* adr ip1, #0 */
621 0x8b110210, /* add ip0, ip0, ip1 */
622 0xd61f0200, /* br ip0 */
623 0x00000000, /* address field */
624 0x00000000, /* address field */
625 0x00000000, /* alignment padding */
626 0x00000000, /* alignment padding */
627 }
628 };
629
630
631// Determine the stub type for a certain relocation or ST_NONE, if no stub is
632// needed.
633
634template<int size, bool big_endian>
635inline
636typename Reloc_stub<size, big_endian>::Stub_type
637Reloc_stub<size, big_endian>::stub_type_for_reloc(
638 unsigned int r_type, AArch64_address location, AArch64_address dest)
639{
640 int64_t branch_offset = 0;
641 switch(r_type)
642 {
643 case elfcpp::R_AARCH64_CALL26:
644 case elfcpp::R_AARCH64_JUMP26:
645 branch_offset = dest - location;
646 break;
647 default:
9726c3c1 648 gold_unreachable();
83a01957
HS
649 }
650
651 if (aarch64_valid_branch_offset_p(branch_offset))
652 return ST_NONE;
653
654 if (aarch64_valid_for_adrp_p(location, dest))
655 return ST_ADRP_BRANCH;
656
657 if (parameters->options().output_is_position_independent()
658 && parameters->options().output_is_executable())
659 return ST_LONG_BRANCH_PCREL;
660
661 return ST_LONG_BRANCH_ABS;
662}
663
664// A class to hold stubs for the ARM target.
665
666template<int size, bool big_endian>
667class Stub_table : public Output_data
668{
669 public:
670 typedef Target_aarch64<size, big_endian> The_target_aarch64;
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
672 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
673 typedef Reloc_stub<size, big_endian> The_reloc_stub;
674 typedef typename The_reloc_stub::Key The_reloc_stub_key;
675 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
676 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
677 typedef Stub_table<size, big_endian> The_stub_table;
678 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
679 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
680 Reloc_stub_map;
681 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
682 typedef Relocate_info<size, big_endian> The_relocate_info;
683
684 Stub_table(The_aarch64_input_section* owner)
685 : Output_data(), owner_(owner), reloc_stubs_size_(0), prev_data_size_(0)
686 { }
687
688 ~Stub_table()
689 { }
690
691 The_aarch64_input_section*
692 owner() const
693 { return owner_; }
694
695 // Whether this stub table is empty.
696 bool
697 empty() const
698 { return reloc_stubs_.empty(); }
699
700 // Return the current data size.
701 off_t
702 current_data_size() const
703 { return this->current_data_size_for_child(); }
704
705 // Add a STUB using KEY. The caller is responsible for avoiding addition
706 // if a STUB with the same key has already been added.
707 void
708 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
709
710 // Finalize stubs. No-op here, just for completeness.
711 void
712 finalize_stubs()
713 { }
714
715 // Look up a relocation stub using KEY. Return NULL if there is none.
716 The_reloc_stub*
717 find_reloc_stub(The_reloc_stub_key& key)
718 {
719 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
720 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
721 }
722
723 // Relocate stubs in this stub table.
724 void
725 relocate_stubs(const The_relocate_info*,
726 The_target_aarch64*,
727 Output_section*,
728 unsigned char*,
729 AArch64_address,
730 section_size_type);
731
732 // Update data size at the end of a relaxation pass. Return true if data size
733 // is different from that of the previous relaxation pass.
734 bool
735 update_data_size_changed_p()
736 {
737 // No addralign changed here.
738 off_t s = this->reloc_stubs_size_;
739 bool changed = (s != this->prev_data_size_);
740 this->prev_data_size_ = s;
741 return changed;
742 }
743
744 protected:
745 // Write out section contents.
746 void
747 do_write(Output_file*);
748
749 // Return the required alignment.
750 uint64_t
751 do_addralign() const
752 { return The_reloc_stub::STUB_ADDR_ALIGN; }
753
754 // Reset address and file offset.
755 void
756 do_reset_address_and_file_offset()
757 { this->set_current_data_size_for_child(this->prev_data_size_); }
758
759 // Set final data size.
760 void
761 set_final_data_size()
762 { this->set_data_size(this->current_data_size()); }
763
764 private:
765 // Relocate one stub.
766 void
767 relocate_stub(The_reloc_stub*,
768 const The_relocate_info*,
769 The_target_aarch64*,
770 Output_section*,
771 unsigned char*,
772 AArch64_address,
773 section_size_type);
774
775 private:
776 // Owner of this stub table.
777 The_aarch64_input_section* owner_;
778 // The relocation stubs.
779 Reloc_stub_map reloc_stubs_;
780 // Size of reloc stubs.
781 off_t reloc_stubs_size_;
782 // data size of this in the previous pass.
783 off_t prev_data_size_;
784}; // End of Stub_table
785
786
787// Add a STUB using KEY. The caller is responsible for avoiding addition
788// if a STUB with the same key has already been added.
789
790template<int size, bool big_endian>
791void
792Stub_table<size, big_endian>::add_reloc_stub(
793 The_reloc_stub* stub, const The_reloc_stub_key& key)
794{
795 gold_assert(stub->stub_type() == key.stub_type());
796 this->reloc_stubs_[key] = stub;
797
798 // Assign stub offset early. We can do this because we never remove
799 // reloc stubs and they are in the beginning of the stub table.
800 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
801 The_reloc_stub::STUB_ADDR_ALIGN);
802 stub->set_offset(this->reloc_stubs_size_);
803 this->reloc_stubs_size_ += stub->stub_size();
804}
805
806
807// Relocate all stubs in this stub table.
808
809template<int size, bool big_endian>
810void
811Stub_table<size, big_endian>::
812relocate_stubs(const The_relocate_info* relinfo,
813 The_target_aarch64* target_aarch64,
814 Output_section* output_section,
815 unsigned char* view,
816 AArch64_address address,
817 section_size_type view_size)
818{
819 // "view_size" is the total size of the stub_table.
820 gold_assert(address == this->address() &&
821 view_size == static_cast<section_size_type>(this->data_size()));
822 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
823 p != this->reloc_stubs_.end(); ++p)
824 relocate_stub(p->second, relinfo, target_aarch64, output_section,
825 view, address, view_size);
826}
827
828
829// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
830
831template<int size, bool big_endian>
832void
833Stub_table<size, big_endian>::
834relocate_stub(The_reloc_stub* stub,
835 const The_relocate_info* relinfo,
836 The_target_aarch64* target_aarch64,
837 Output_section* output_section,
838 unsigned char* view,
839 AArch64_address address,
840 section_size_type view_size)
841{
842 // "offset" is the offset from the beginning of the stub_table.
843 section_size_type offset = stub->offset();
844 section_size_type stub_size = stub->stub_size();
845 // "view_size" is the total size of the stub_table.
846 gold_assert(offset + stub_size <= view_size);
847
848 target_aarch64->relocate_stub(stub, relinfo, output_section,
849 view + offset, address + offset, view_size);
850}
851
852
853// Write out the stubs to file.
854
855template<int size, bool big_endian>
856void
857Stub_table<size, big_endian>::do_write(Output_file* of)
858{
859 off_t offset = this->offset();
860 const section_size_type oview_size =
861 convert_to_section_size_type(this->data_size());
862 unsigned char* const oview = of->get_output_view(offset, oview_size);
863
864 // Write relocation stubs.
865 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
866 p != this->reloc_stubs_.end(); ++p)
867 {
868 The_reloc_stub* stub = p->second;
869 AArch64_address address = this->address() + stub->offset();
870 gold_assert(address ==
871 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
872 stub->write(oview + stub->offset(), stub->stub_size());
873 }
874
875 of->write_output_view(this->offset(), oview_size, oview);
876}
877
878
879// AArch64_relobj class.
880
881template<int size, bool big_endian>
882class AArch64_relobj : public Sized_relobj_file<size, big_endian>
883{
884 public:
885 typedef AArch64_relobj<size, big_endian> This;
886 typedef Target_aarch64<size, big_endian> The_target_aarch64;
887 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
888 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
889 typedef Stub_table<size, big_endian> The_stub_table;
890 typedef std::vector<The_stub_table*> Stub_table_list;
891 static const AArch64_address invalid_address =
892 static_cast<AArch64_address>(-1);
893
894 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
895 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
896 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
897 stub_tables_()
898 { }
899
900 ~AArch64_relobj()
901 { }
902
903 // Return the stub table of the SHNDX-th section if there is one.
904 The_stub_table*
905 stub_table(unsigned int shndx) const
906 {
907 gold_assert(shndx < this->stub_tables_.size());
908 return this->stub_tables_[shndx];
909 }
910
911 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
912 void
913 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
914 {
915 gold_assert(shndx < this->stub_tables_.size());
916 this->stub_tables_[shndx] = stub_table;
917 }
918
919 // Scan all relocation sections for stub generation.
920 void
921 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
922 const Layout*);
923
924 // Whether a section is a scannable text section.
925 bool
926 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
927 const Output_section*, const Symbol_table*);
928
929 // Convert regular input section with index SHNDX to a relaxed section.
930 void
931 convert_input_section_to_relaxed_section(unsigned /* shndx */)
932 {
933 // The stubs have relocations and we need to process them after writing
934 // out the stubs. So relocation now must follow section write.
935 this->set_relocs_must_follow_section_writes();
936 }
937
938 protected:
939 // Post constructor setup.
940 void
941 do_setup()
942 {
943 // Call parent's setup method.
944 Sized_relobj_file<size, big_endian>::do_setup();
945
946 // Initialize look-up tables.
947 this->stub_tables_.resize(this->shnum());
948 }
949
950 virtual void
951 do_relocate_sections(
952 const Symbol_table* symtab, const Layout* layout,
953 const unsigned char* pshdrs, Output_file* of,
954 typename Sized_relobj_file<size, big_endian>::Views* pviews);
955
956 private:
957 // Whether a section needs to be scanned for relocation stubs.
958 bool
959 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
960 const Relobj::Output_sections&,
961 const Symbol_table*, const unsigned char*);
962
963 // List of stub tables.
964 Stub_table_list stub_tables_;
965}; // End of AArch64_relobj
966
967
968// Relocate sections.
969
970template<int size, bool big_endian>
971void
972AArch64_relobj<size, big_endian>::do_relocate_sections(
973 const Symbol_table* symtab, const Layout* layout,
974 const unsigned char* pshdrs, Output_file* of,
975 typename Sized_relobj_file<size, big_endian>::Views* pviews)
976{
977 // Call parent to relocate sections.
978 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
979 pshdrs, of, pviews);
980
981 // We do not generate stubs if doing a relocatable link.
982 if (parameters->options().relocatable())
983 return;
984
985 Relocate_info<size, big_endian> relinfo;
986 relinfo.symtab = symtab;
987 relinfo.layout = layout;
988 relinfo.object = this;
989
990 // Relocate stub tables.
991 unsigned int shnum = this->shnum();
992 The_target_aarch64* target = The_target_aarch64::current_target();
993
994 for (unsigned int i = 1; i < shnum; ++i)
995 {
996 The_aarch64_input_section* aarch64_input_section =
997 target->find_aarch64_input_section(this, i);
998 if (aarch64_input_section != NULL
999 && aarch64_input_section->is_stub_table_owner()
1000 && !aarch64_input_section->stub_table()->empty())
1001 {
1002 Output_section* os = this->output_section(i);
1003 gold_assert(os != NULL);
1004
1005 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1006 relinfo.reloc_shdr = NULL;
1007 relinfo.data_shndx = i;
1008 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1009
1010 typename Sized_relobj_file<size, big_endian>::View_size&
1011 view_struct = (*pviews)[i];
1012 gold_assert(view_struct.view != NULL);
1013
1014 The_stub_table* stub_table = aarch64_input_section->stub_table();
1015 off_t offset = stub_table->address() - view_struct.address;
1016 unsigned char* view = view_struct.view + offset;
1017 AArch64_address address = stub_table->address();
1018 section_size_type view_size = stub_table->data_size();
1019 stub_table->relocate_stubs(&relinfo, target, os, view, address,
1020 view_size);
1021 }
1022 }
1023}
1024
1025
1026// Determine if an input section is scannable for stub processing. SHDR is
1027// the header of the section and SHNDX is the section index. OS is the output
1028// section for the input section and SYMTAB is the global symbol table used to
1029// look up ICF information.
1030
1031template<int size, bool big_endian>
1032bool
1033AArch64_relobj<size, big_endian>::text_section_is_scannable(
1034 const elfcpp::Shdr<size, big_endian>& text_shdr,
1035 unsigned int text_shndx,
1036 const Output_section* os,
1037 const Symbol_table* symtab)
1038{
1039 // Skip any empty sections, unallocated sections or sections whose
1040 // type are not SHT_PROGBITS.
1041 if (text_shdr.get_sh_size() == 0
1042 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1043 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1044 return false;
1045
1046 // Skip any discarded or ICF'ed sections.
1047 if (os == NULL || symtab->is_section_folded(this, text_shndx))
1048 return false;
1049
1050 // Skip exception frame.
1051 if (strcmp(os->name(), ".eh_frame") == 0)
1052 return false ;
1053
1054 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1055 os->find_relaxed_input_section(this, text_shndx) != NULL);
1056
1057 return true;
1058}
1059
1060
1061// Determine if we want to scan the SHNDX-th section for relocation stubs.
1062// This is a helper for AArch64_relobj::scan_sections_for_stubs().
1063
1064template<int size, bool big_endian>
1065bool
1066AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
1067 const elfcpp::Shdr<size, big_endian>& shdr,
1068 const Relobj::Output_sections& out_sections,
1069 const Symbol_table* symtab,
1070 const unsigned char* pshdrs)
1071{
1072 unsigned int sh_type = shdr.get_sh_type();
1073 if (sh_type != elfcpp::SHT_RELA)
1074 return false;
1075
1076 // Ignore empty section.
1077 off_t sh_size = shdr.get_sh_size();
1078 if (sh_size == 0)
1079 return false;
1080
1081 // Ignore reloc section with unexpected symbol table. The
1082 // error will be reported in the final link.
1083 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
1084 return false;
1085
1086 gold_assert(sh_type == elfcpp::SHT_RELA);
1087 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1088
1089 // Ignore reloc section with unexpected entsize or uneven size.
1090 // The error will be reported in the final link.
1091 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
1092 return false;
1093
1094 // Ignore reloc section with bad info. This error will be
1095 // reported in the final link.
1096 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
1097 if (text_shndx >= this->shnum())
1098 return false;
1099
1100 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1101 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
1102 text_shndx * shdr_size);
1103 return this->text_section_is_scannable(text_shdr, text_shndx,
1104 out_sections[text_shndx], symtab);
1105}
1106
1107
1108// Scan relocations for stub generation.
1109
1110template<int size, bool big_endian>
1111void
1112AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
1113 The_target_aarch64* target,
1114 const Symbol_table* symtab,
1115 const Layout* layout)
1116{
1117 unsigned int shnum = this->shnum();
1118 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1119
1120 // Read the section headers.
1121 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
1122 shnum * shdr_size,
1123 true, true);
1124
1125 // To speed up processing, we set up hash tables for fast lookup of
1126 // input offsets to output addresses.
1127 this->initialize_input_to_output_maps();
1128
1129 const Relobj::Output_sections& out_sections(this->output_sections());
1130
1131 Relocate_info<size, big_endian> relinfo;
1132 relinfo.symtab = symtab;
1133 relinfo.layout = layout;
1134 relinfo.object = this;
1135
1136 // Do relocation stubs scanning.
1137 const unsigned char* p = pshdrs + shdr_size;
1138 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
1139 {
1140 const elfcpp::Shdr<size, big_endian> shdr(p);
1141 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
1142 pshdrs))
1143 {
1144 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
1145 AArch64_address output_offset =
1146 this->get_output_section_offset(index);
1147 AArch64_address output_address;
1148 if (output_offset != invalid_address)
1149 {
1150 output_address = out_sections[index]->address() + output_offset;
1151 }
1152 else
1153 {
1154 // Currently this only happens for a relaxed section.
1155 const Output_relaxed_input_section* poris =
1156 out_sections[index]->find_relaxed_input_section(this, index);
1157 gold_assert(poris != NULL);
1158 output_address = poris->address();
1159 }
1160
1161 // Get the relocations.
1162 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
1163 shdr.get_sh_size(),
1164 true, false);
1165
1166 // Get the section contents.
1167 section_size_type input_view_size = 0;
1168 const unsigned char* input_view =
1169 this->section_contents(index, &input_view_size, false);
1170
1171 relinfo.reloc_shndx = i;
1172 relinfo.data_shndx = index;
1173 unsigned int sh_type = shdr.get_sh_type();
1174 unsigned int reloc_size;
1175 gold_assert (sh_type == elfcpp::SHT_RELA);
1176 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1177
1178 Output_section* os = out_sections[index];
1179 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
1180 shdr.get_sh_size() / reloc_size,
1181 os,
1182 output_offset == invalid_address,
1183 input_view, output_address,
1184 input_view_size);
1185 }
1186 }
1187}
1188
1189
1190// A class to wrap an ordinary input section containing executable code.
1191
1192template<int size, bool big_endian>
1193class AArch64_input_section : public Output_relaxed_input_section
1194{
1195 public:
1196 typedef Stub_table<size, big_endian> The_stub_table;
1197
1198 AArch64_input_section(Relobj* relobj, unsigned int shndx)
1199 : Output_relaxed_input_section(relobj, shndx, 1),
1200 stub_table_(NULL),
1201 original_contents_(NULL), original_size_(0),
1202 original_addralign_(1)
1203 { }
1204
1205 ~AArch64_input_section()
1206 { delete[] this->original_contents_; }
1207
1208 // Initialize.
1209 void
1210 init();
1211
1212 // Set the stub_table.
1213 void
1214 set_stub_table(The_stub_table* st)
1215 { this->stub_table_ = st; }
1216
1217 // Whether this is a stub table owner.
1218 bool
1219 is_stub_table_owner() const
1220 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1221
1222 // Return the original size of the section.
1223 uint32_t
1224 original_size() const
1225 { return this->original_size_; }
1226
1227 // Return the stub table.
1228 The_stub_table*
1229 stub_table()
1230 { return stub_table_; }
1231
1232 protected:
1233 // Write out this input section.
1234 void
1235 do_write(Output_file*);
1236
1237 // Return required alignment of this.
1238 uint64_t
1239 do_addralign() const
1240 {
1241 if (this->is_stub_table_owner())
1242 return std::max(this->stub_table_->addralign(),
1243 static_cast<uint64_t>(this->original_addralign_));
1244 else
1245 return this->original_addralign_;
1246 }
1247
1248 // Finalize data size.
1249 void
1250 set_final_data_size();
1251
1252 // Reset address and file offset.
1253 void
1254 do_reset_address_and_file_offset();
1255
1256 // Output offset.
1257 bool
1258 do_output_offset(const Relobj* object, unsigned int shndx,
1259 section_offset_type offset,
1260 section_offset_type* poutput) const
1261 {
1262 if ((object == this->relobj())
1263 && (shndx == this->shndx())
1264 && (offset >= 0)
1265 && (offset <=
1266 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1267 {
1268 *poutput = offset;
1269 return true;
1270 }
1271 else
1272 return false;
1273 }
1274
1275 private:
1276 // Copying is not allowed.
1277 AArch64_input_section(const AArch64_input_section&);
1278 AArch64_input_section& operator=(const AArch64_input_section&);
1279
1280 // The relocation stubs.
1281 The_stub_table* stub_table_;
1282 // Original section contents. We have to make a copy here since the file
1283 // containing the original section may not be locked when we need to access
1284 // the contents.
1285 unsigned char* original_contents_;
1286 // Section size of the original input section.
1287 uint32_t original_size_;
1288 // Address alignment of the original input section.
1289 uint32_t original_addralign_;
1290}; // End of AArch64_input_section
1291
1292
1293// Finalize data size.
1294
1295template<int size, bool big_endian>
1296void
1297AArch64_input_section<size, big_endian>::set_final_data_size()
1298{
1299 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1300
1301 if (this->is_stub_table_owner())
1302 {
1303 this->stub_table_->finalize_data_size();
1304 off = align_address(off, this->stub_table_->addralign());
1305 off += this->stub_table_->data_size();
1306 }
1307 this->set_data_size(off);
1308}
1309
1310
1311// Reset address and file offset.
1312
1313template<int size, bool big_endian>
1314void
1315AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
1316{
1317 // Size of the original input section contents.
1318 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1319
1320 // If this is a stub table owner, account for the stub table size.
1321 if (this->is_stub_table_owner())
1322 {
1323 The_stub_table* stub_table = this->stub_table_;
1324
1325 // Reset the stub table's address and file offset. The
1326 // current data size for child will be updated after that.
1327 stub_table_->reset_address_and_file_offset();
1328 off = align_address(off, stub_table_->addralign());
1329 off += stub_table->current_data_size();
1330 }
1331
1332 this->set_current_data_size(off);
1333}
1334
1335
1336// Initialize an Arm_input_section.
1337
1338template<int size, bool big_endian>
1339void
1340AArch64_input_section<size, big_endian>::init()
1341{
1342 Relobj* relobj = this->relobj();
1343 unsigned int shndx = this->shndx();
1344
1345 // We have to cache original size, alignment and contents to avoid locking
1346 // the original file.
1347 this->original_addralign_ =
1348 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
1349
1350 // This is not efficient but we expect only a small number of relaxed
1351 // input sections for stubs.
1352 section_size_type section_size;
1353 const unsigned char* section_contents =
1354 relobj->section_contents(shndx, &section_size, false);
1355 this->original_size_ =
1356 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
1357
1358 gold_assert(this->original_contents_ == NULL);
1359 this->original_contents_ = new unsigned char[section_size];
1360 memcpy(this->original_contents_, section_contents, section_size);
1361
1362 // We want to make this look like the original input section after
1363 // output sections are finalized.
1364 Output_section* os = relobj->output_section(shndx);
1365 off_t offset = relobj->output_section_offset(shndx);
1366 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
1367 this->set_address(os->address() + offset);
1368 this->set_file_offset(os->offset() + offset);
1369 this->set_current_data_size(this->original_size_);
1370 this->finalize_data_size();
1371}
1372
1373
1374// Write data to output file.
1375
1376template<int size, bool big_endian>
1377void
1378AArch64_input_section<size, big_endian>::do_write(Output_file* of)
1379{
1380 // We have to write out the original section content.
1381 gold_assert(this->original_contents_ != NULL);
1382 of->write(this->offset(), this->original_contents_,
1383 this->original_size_);
1384
1385 // If this owns a stub table and it is not empty, write it.
1386 if (this->is_stub_table_owner() && !this->stub_table_->empty())
1387 this->stub_table_->write(of);
1388}
1389
1390
1391// Arm output section class. This is defined mainly to add a number of stub
1392// generation methods.
1393
1394template<int size, bool big_endian>
1395class AArch64_output_section : public Output_section
1396{
1397 public:
1398 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1399 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1400 typedef Stub_table<size, big_endian> The_stub_table;
1401 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1402
1403 public:
1404 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
1405 elfcpp::Elf_Xword flags)
1406 : Output_section(name, type, flags)
1407 { }
1408
1409 ~AArch64_output_section() {}
1410
1411 // Group input sections for stub generation.
1412 void
1413 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
1414 const Task*);
1415
1416 private:
1417 typedef Output_section::Input_section Input_section;
1418 typedef Output_section::Input_section_list Input_section_list;
1419
1420 // Create a stub group.
1421 void
1422 create_stub_group(Input_section_list::const_iterator,
1423 Input_section_list::const_iterator,
1424 Input_section_list::const_iterator,
1425 The_target_aarch64*,
1426 std::vector<Output_relaxed_input_section*>&,
1427 const Task*);
1428}; // End of AArch64_output_section
1429
1430
1431// Create a stub group for input sections from FIRST to LAST. OWNER points to
1432// the input section that will be the owner of the stub table.
1433
1434template<int size, bool big_endian> void
1435AArch64_output_section<size, big_endian>::create_stub_group(
1436 Input_section_list::const_iterator first,
1437 Input_section_list::const_iterator last,
1438 Input_section_list::const_iterator owner,
1439 The_target_aarch64* target,
1440 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
1441 const Task* task)
1442{
1443 // Currently we convert ordinary input sections into relaxed sections only
1444 // at this point.
1445 The_aarch64_input_section* input_section;
1446 if (owner->is_relaxed_input_section())
1447 gold_unreachable();
1448 else
1449 {
1450 gold_assert(owner->is_input_section());
1451 // Create a new relaxed input section. We need to lock the original
1452 // file.
1453 Task_lock_obj<Object> tl(task, owner->relobj());
1454 input_section =
1455 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
1456 new_relaxed_sections.push_back(input_section);
1457 }
1458
1459 // Create a stub table.
1460 The_stub_table* stub_table =
1461 target->new_stub_table(input_section);
1462
1463 input_section->set_stub_table(stub_table);
1464
1465 Input_section_list::const_iterator p = first;
1466 // Look for input sections or relaxed input sections in [first ... last].
1467 do
1468 {
1469 if (p->is_input_section() || p->is_relaxed_input_section())
1470 {
1471 // The stub table information for input sections live
1472 // in their objects.
1473 The_aarch64_relobj* aarch64_relobj =
1474 static_cast<The_aarch64_relobj*>(p->relobj());
1475 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
1476 }
1477 }
1478 while (p++ != last);
1479}
1480
1481
1482// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
1483// stub groups. We grow a stub group by adding input section until the size is
1484// just below GROUP_SIZE. The last input section will be converted into a stub
1485// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
1486// after the stub table, effectively doubling the group size.
1487//
1488// This is similar to the group_sections() function in elf32-arm.c but is
1489// implemented differently.
1490
1491template<int size, bool big_endian>
1492void AArch64_output_section<size, big_endian>::group_sections(
1493 section_size_type group_size,
1494 bool stubs_always_after_branch,
1495 Target_aarch64<size, big_endian>* target,
1496 const Task* task)
1497{
1498 typedef enum
1499 {
1500 NO_GROUP,
1501 FINDING_STUB_SECTION,
1502 HAS_STUB_SECTION
1503 } State;
1504
1505 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
1506
1507 State state = NO_GROUP;
1508 section_size_type off = 0;
1509 section_size_type group_begin_offset = 0;
1510 section_size_type group_end_offset = 0;
1511 section_size_type stub_table_end_offset = 0;
1512 Input_section_list::const_iterator group_begin =
1513 this->input_sections().end();
1514 Input_section_list::const_iterator stub_table =
1515 this->input_sections().end();
1516 Input_section_list::const_iterator group_end = this->input_sections().end();
1517 for (Input_section_list::const_iterator p = this->input_sections().begin();
1518 p != this->input_sections().end();
1519 ++p)
1520 {
1521 section_size_type section_begin_offset =
1522 align_address(off, p->addralign());
1523 section_size_type section_end_offset =
1524 section_begin_offset + p->data_size();
1525
1526 // Check to see if we should group the previously seen sections.
1527 switch (state)
1528 {
1529 case NO_GROUP:
1530 break;
1531
1532 case FINDING_STUB_SECTION:
1533 // Adding this section makes the group larger than GROUP_SIZE.
1534 if (section_end_offset - group_begin_offset >= group_size)
1535 {
1536 if (stubs_always_after_branch)
1537 {
1538 gold_assert(group_end != this->input_sections().end());
1539 this->create_stub_group(group_begin, group_end, group_end,
1540 target, new_relaxed_sections,
1541 task);
1542 state = NO_GROUP;
1543 }
1544 else
1545 {
1546 // Input sections up to stub_group_size bytes after the stub
1547 // table can be handled by it too.
1548 state = HAS_STUB_SECTION;
1549 stub_table = group_end;
1550 stub_table_end_offset = group_end_offset;
1551 }
1552 }
1553 break;
1554
1555 case HAS_STUB_SECTION:
1556 // Adding this section makes the post stub-section group larger
1557 // than GROUP_SIZE.
1558 gold_unreachable();
1559 // NOT SUPPORTED YET. For completeness only.
1560 if (section_end_offset - stub_table_end_offset >= group_size)
1561 {
1562 gold_assert(group_end != this->input_sections().end());
1563 this->create_stub_group(group_begin, group_end, stub_table,
1564 target, new_relaxed_sections, task);
1565 state = NO_GROUP;
1566 }
1567 break;
1568
1569 default:
1570 gold_unreachable();
1571 }
1572
1573 // If we see an input section and currently there is no group, start
1574 // a new one. Skip any empty sections. We look at the data size
1575 // instead of calling p->relobj()->section_size() to avoid locking.
1576 if ((p->is_input_section() || p->is_relaxed_input_section())
1577 && (p->data_size() != 0))
1578 {
1579 if (state == NO_GROUP)
1580 {
1581 state = FINDING_STUB_SECTION;
1582 group_begin = p;
1583 group_begin_offset = section_begin_offset;
1584 }
1585
1586 // Keep track of the last input section seen.
1587 group_end = p;
1588 group_end_offset = section_end_offset;
1589 }
1590
1591 off = section_end_offset;
1592 }
1593
1594 // Create a stub group for any ungrouped sections.
1595 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
1596 {
1597 gold_assert(group_end != this->input_sections().end());
1598 this->create_stub_group(group_begin, group_end,
1599 (state == FINDING_STUB_SECTION
1600 ? group_end
1601 : stub_table),
1602 target, new_relaxed_sections, task);
1603 }
8e33481e 1604
83a01957
HS
1605 if (!new_relaxed_sections.empty())
1606 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
1607
1608 // Update the section offsets
1609 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
1610 {
1611 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
1612 new_relaxed_sections[i]->relobj());
1613 unsigned int shndx = new_relaxed_sections[i]->shndx();
1614 // Tell AArch64_relobj that this input section is converted.
1615 relobj->convert_input_section_to_relaxed_section(shndx);
1616 }
1617} // End of AArch64_output_section::group_sections
3a531937 1618
053a4d68 1619
9363c7c3
JY
1620AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
1621
3a531937 1622
053a4d68
JY
1623// The aarch64 target class.
1624// See the ABI at
1625// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
1626template<int size, bool big_endian>
1627class Target_aarch64 : public Sized_target<size, big_endian>
1628{
1629 public:
83a01957 1630 typedef Target_aarch64<size, big_endian> This;
053a4d68
JY
1631 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
1632 Reloc_section;
83a01957 1633 typedef Relocate_info<size, big_endian> The_relocate_info;
053a4d68 1634 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
1635 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1636 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1637 typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
1638 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
1639 typedef Stub_table<size, big_endian> The_stub_table;
1640 typedef std::vector<The_stub_table*> Stub_table_list;
1641 typedef typename Stub_table_list::iterator Stub_table_iterator;
1642 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1643 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
1644 typedef Unordered_map<Section_id,
1645 AArch64_input_section<size, big_endian>*,
1646 Section_id_hash> AArch64_input_section_map;
8e33481e 1647 const static int TCB_SIZE = size / 8 * 2;
053a4d68
JY
1648
1649 Target_aarch64(const Target::Target_info* info = &aarch64_info)
1650 : Sized_target<size, big_endian>(info),
3a531937
JY
1651 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
1652 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
1653 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
83a01957
HS
1654 got_mod_index_offset_(-1U),
1655 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
1656 stub_tables_(), aarch64_input_section_map_()
053a4d68
JY
1657 { }
1658
1659 // Scan the relocations to determine unreferenced sections for
1660 // garbage collection.
1661 void
1662 gc_process_relocs(Symbol_table* symtab,
1663 Layout* layout,
1664 Sized_relobj_file<size, big_endian>* object,
1665 unsigned int data_shndx,
1666 unsigned int sh_type,
1667 const unsigned char* prelocs,
1668 size_t reloc_count,
1669 Output_section* output_section,
1670 bool needs_special_offset_handling,
1671 size_t local_symbol_count,
1672 const unsigned char* plocal_symbols);
1673
1674 // Scan the relocations to look for symbol adjustments.
1675 void
1676 scan_relocs(Symbol_table* symtab,
1677 Layout* layout,
1678 Sized_relobj_file<size, big_endian>* object,
1679 unsigned int data_shndx,
1680 unsigned int sh_type,
1681 const unsigned char* prelocs,
1682 size_t reloc_count,
1683 Output_section* output_section,
1684 bool needs_special_offset_handling,
1685 size_t local_symbol_count,
1686 const unsigned char* plocal_symbols);
1687
1688 // Finalize the sections.
1689 void
1690 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
1691
3a531937
JY
1692 // Return the value to use for a dynamic which requires special
1693 // treatment.
1694 uint64_t
1695 do_dynsym_value(const Symbol*) const;
1696
053a4d68
JY
1697 // Relocate a section.
1698 void
1699 relocate_section(const Relocate_info<size, big_endian>*,
1700 unsigned int sh_type,
1701 const unsigned char* prelocs,
1702 size_t reloc_count,
1703 Output_section* output_section,
1704 bool needs_special_offset_handling,
1705 unsigned char* view,
1706 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1707 section_size_type view_size,
1708 const Reloc_symbol_changes*);
1709
1710 // Scan the relocs during a relocatable link.
1711 void
1712 scan_relocatable_relocs(Symbol_table* symtab,
1713 Layout* layout,
1714 Sized_relobj_file<size, big_endian>* object,
1715 unsigned int data_shndx,
1716 unsigned int sh_type,
1717 const unsigned char* prelocs,
1718 size_t reloc_count,
1719 Output_section* output_section,
1720 bool needs_special_offset_handling,
1721 size_t local_symbol_count,
1722 const unsigned char* plocal_symbols,
1723 Relocatable_relocs*);
1724
1725 // Relocate a section during a relocatable link.
1726 void
1727 relocate_relocs(
1728 const Relocate_info<size, big_endian>*,
1729 unsigned int sh_type,
1730 const unsigned char* prelocs,
1731 size_t reloc_count,
1732 Output_section* output_section,
1733 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
1734 const Relocatable_relocs*,
1735 unsigned char* view,
1736 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1737 section_size_type view_size,
1738 unsigned char* reloc_view,
1739 section_size_type reloc_view_size);
1740
3a531937
JY
1741 // Return the symbol index to use for a target specific relocation.
1742 // The only target specific relocation is R_AARCH64_TLSDESC for a
1743 // local symbol, which is an absolute reloc.
1744 unsigned int
1745 do_reloc_symbol_index(void*, unsigned int r_type) const
1746 {
1747 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
1748 return 0;
1749 }
1750
1751 // Return the addend to use for a target specific relocation.
1752 typename elfcpp::Elf_types<size>::Elf_Addr
1753 do_reloc_addend(void* arg, unsigned int r_type,
1754 typename elfcpp::Elf_types<size>::Elf_Addr addend) const;
1755
9363c7c3
JY
1756 // Return the PLT section.
1757 uint64_t
1758 do_plt_address_for_global(const Symbol* gsym) const
1759 { return this->plt_section()->address_for_global(gsym); }
1760
1761 uint64_t
1762 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
1763 { return this->plt_section()->address_for_local(relobj, symndx); }
1764
9726c3c1
HS
1765 // This function should be defined in targets that can use relocation
1766 // types to determine (implemented in local_reloc_may_be_function_pointer
1767 // and global_reloc_may_be_function_pointer)
1768 // if a function's pointer is taken. ICF uses this in safe mode to only
1769 // fold those functions whose pointer is defintely not taken.
1770 bool
1771 do_can_check_for_function_pointers() const
1772 { return true; }
1773
053a4d68
JY
1774 // Return the number of entries in the PLT.
1775 unsigned int
1776 plt_entry_count() const;
1777
1778 //Return the offset of the first non-reserved PLT entry.
1779 unsigned int
1780 first_plt_entry_offset() const;
1781
1782 // Return the size of each PLT entry.
1783 unsigned int
1784 plt_entry_size() const;
1785
83a01957
HS
1786 // Create a stub table.
1787 The_stub_table*
1788 new_stub_table(The_aarch64_input_section*);
1789
1790 // Create an aarch64 input section.
1791 The_aarch64_input_section*
1792 new_aarch64_input_section(Relobj*, unsigned int);
1793
1794 // Find an aarch64 input section instance for a given OBJ and SHNDX.
1795 The_aarch64_input_section*
1796 find_aarch64_input_section(Relobj*, unsigned int) const;
1797
1798 // Return the thread control block size.
8e33481e
HS
1799 unsigned int
1800 tcb_size() const { return This::TCB_SIZE; }
1801
83a01957
HS
1802 // Scan a section for stub generation.
1803 void
1804 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
1805 const unsigned char*, size_t, Output_section*,
1806 bool, const unsigned char*,
1807 Address,
1808 section_size_type);
1809
1810 // Scan a relocation section for stub.
1811 template<int sh_type>
1812 void
1813 scan_reloc_section_for_stubs(
1814 const The_relocate_info* relinfo,
1815 const unsigned char* prelocs,
1816 size_t reloc_count,
1817 Output_section* output_section,
1818 bool needs_special_offset_handling,
1819 const unsigned char* view,
1820 Address view_address,
1821 section_size_type);
1822
1823 // Relocate a single stub.
1824 void
1825 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
1826 Output_section*, unsigned char*, Address,
1827 section_size_type);
1828
1829 // Get the default AArch64 target.
1830 static This*
1831 current_target()
1832 {
1833 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
1834 && parameters->target().get_size() == size
1835 && parameters->target().is_big_endian() == big_endian);
1836 return static_cast<This*>(parameters->sized_target<size, big_endian>());
1837 }
1838
9363c7c3
JY
1839 protected:
1840 void
1841 do_select_as_default_target()
1842 {
1843 gold_assert(aarch64_reloc_property_table == NULL);
1844 aarch64_reloc_property_table = new AArch64_reloc_property_table();
1845 }
1846
3a531937
JY
1847 // Add a new reloc argument, returning the index in the vector.
1848 size_t
1849 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
1850 unsigned int r_sym)
1851 {
1852 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
1853 return this->tlsdesc_reloc_info_.size() - 1;
1854 }
1855
9363c7c3 1856 virtual Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
1857 do_make_data_plt(Layout* layout,
1858 Output_data_got_aarch64<size, big_endian>* got,
1859 Output_data_space* got_plt,
1860 Output_data_space* got_irelative)
9363c7c3 1861 {
3a531937
JY
1862 return new Output_data_plt_aarch64_standard<size, big_endian>(
1863 layout, got, got_plt, got_irelative);
9363c7c3
JY
1864 }
1865
83a01957
HS
1866
1867 // do_make_elf_object to override the same function in the base class.
1868 Object*
1869 do_make_elf_object(const std::string&, Input_file*, off_t,
1870 const elfcpp::Ehdr<size, big_endian>&);
1871
9363c7c3 1872 Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
1873 make_data_plt(Layout* layout,
1874 Output_data_got_aarch64<size, big_endian>* got,
1875 Output_data_space* got_plt,
1876 Output_data_space* got_irelative)
9363c7c3 1877 {
3a531937 1878 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
9363c7c3
JY
1879 }
1880
83a01957
HS
1881 // We only need to generate stubs, and hence perform relaxation if we are
1882 // not doing relocatable linking.
1883 virtual bool
1884 do_may_relax() const
1885 { return !parameters->options().relocatable(); }
1886
1887 // Relaxation hook. This is where we do stub generation.
1888 virtual bool
1889 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
1890
1891 void
1892 group_sections(Layout* layout,
1893 section_size_type group_size,
1894 bool stubs_always_after_branch,
1895 const Task* task);
1896
1897 void
1898 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
1899 const Sized_symbol<size>*, unsigned int,
1900 const Symbol_value<size>*,
1901 typename elfcpp::Elf_types<size>::Elf_Swxword,
1902 Address Elf_Addr);
1903
1904 // Make an output section.
1905 Output_section*
1906 do_make_output_section(const char* name, elfcpp::Elf_Word type,
1907 elfcpp::Elf_Xword flags)
1908 { return new The_aarch64_output_section(name, type, flags); }
1909
053a4d68
JY
1910 private:
1911 // The class which scans relocations.
1912 class Scan
1913 {
1914 public:
1915 Scan()
1916 : issued_non_pic_error_(false)
1917 { }
1918
053a4d68
JY
1919 inline void
1920 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1921 Sized_relobj_file<size, big_endian>* object,
1922 unsigned int data_shndx,
1923 Output_section* output_section,
1924 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1925 const elfcpp::Sym<size, big_endian>& lsym,
1926 bool is_discarded);
1927
1928 inline void
1929 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1930 Sized_relobj_file<size, big_endian>* object,
1931 unsigned int data_shndx,
1932 Output_section* output_section,
1933 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1934 Symbol* gsym);
1935
1936 inline bool
1937 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
1938 Target_aarch64<size, big_endian>* ,
1939 Sized_relobj_file<size, big_endian>* ,
1940 unsigned int ,
1941 Output_section* ,
1942 const elfcpp::Rela<size, big_endian>& ,
1943 unsigned int r_type,
1944 const elfcpp::Sym<size, big_endian>&);
053a4d68
JY
1945
1946 inline bool
1947 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
1948 Target_aarch64<size, big_endian>* ,
1949 Sized_relobj_file<size, big_endian>* ,
1950 unsigned int ,
1951 Output_section* ,
1952 const elfcpp::Rela<size, big_endian>& ,
1953 unsigned int r_type,
1954 Symbol* gsym);
053a4d68
JY
1955
1956 private:
1957 static void
1958 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1959 unsigned int r_type);
1960
1961 static void
1962 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1963 unsigned int r_type, Symbol*);
1964
1965 inline bool
1966 possible_function_pointer_reloc(unsigned int r_type);
1967
1968 void
1969 check_non_pic(Relobj*, unsigned int r_type);
1970
9726c3c1
HS
1971 bool
1972 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
1973 unsigned int r_type);
1974
053a4d68
JY
1975 // Whether we have issued an error about a non-PIC compilation.
1976 bool issued_non_pic_error_;
1977 };
1978
1979 // The class which implements relocation.
1980 class Relocate
1981 {
1982 public:
1983 Relocate()
3a531937 1984 : skip_call_tls_get_addr_(false)
053a4d68
JY
1985 { }
1986
1987 ~Relocate()
1988 { }
1989
1990 // Do a relocation. Return false if the caller should not issue
1991 // any warnings about this relocation.
1992 inline bool
1993 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
1994 Output_section*,
1995 size_t relnum, const elfcpp::Rela<size, big_endian>&,
1996 unsigned int r_type, const Sized_symbol<size>*,
1997 const Symbol_value<size>*,
1998 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1999 section_size_type);
2000
8e33481e 2001 private:
83a01957
HS
2002 inline typename AArch64_relocate_functions<size, big_endian>::Status
2003 relocate_tls(const Relocate_info<size, big_endian>*,
8e33481e
HS
2004 Target_aarch64<size, big_endian>*,
2005 size_t,
2006 const elfcpp::Rela<size, big_endian>&,
2007 unsigned int r_type, const Sized_symbol<size>*,
2008 const Symbol_value<size>*,
2009 unsigned char*,
2010 typename elfcpp::Elf_types<size>::Elf_Addr);
2011
83a01957 2012 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2013 tls_gd_to_le(
83a01957 2014 const Relocate_info<size, big_endian>*,
3a531937
JY
2015 Target_aarch64<size, big_endian>*,
2016 const elfcpp::Rela<size, big_endian>&,
2017 unsigned int,
2018 unsigned char*,
2019 const Symbol_value<size>*);
2020
9726c3c1
HS
2021 inline typename AArch64_relocate_functions<size, big_endian>::Status
2022 tls_ld_to_le(
2023 const Relocate_info<size, big_endian>*,
2024 Target_aarch64<size, big_endian>*,
2025 const elfcpp::Rela<size, big_endian>&,
2026 unsigned int,
2027 unsigned char*,
2028 const Symbol_value<size>*);
2029
83a01957 2030 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2031 tls_ie_to_le(
83a01957 2032 const Relocate_info<size, big_endian>*,
3a531937
JY
2033 Target_aarch64<size, big_endian>*,
2034 const elfcpp::Rela<size, big_endian>&,
2035 unsigned int,
2036 unsigned char*,
2037 const Symbol_value<size>*);
2038
83a01957 2039 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2040 tls_desc_gd_to_le(
83a01957 2041 const Relocate_info<size, big_endian>*,
3a531937
JY
2042 Target_aarch64<size, big_endian>*,
2043 const elfcpp::Rela<size, big_endian>&,
2044 unsigned int,
2045 unsigned char*,
2046 const Symbol_value<size>*);
2047
83a01957 2048 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2049 tls_desc_gd_to_ie(
83a01957 2050 const Relocate_info<size, big_endian>*,
3a531937
JY
2051 Target_aarch64<size, big_endian>*,
2052 const elfcpp::Rela<size, big_endian>&,
2053 unsigned int,
2054 unsigned char*,
2055 const Symbol_value<size>*,
2056 typename elfcpp::Elf_types<size>::Elf_Addr,
2057 typename elfcpp::Elf_types<size>::Elf_Addr);
2058
2059 bool skip_call_tls_get_addr_;
2060
8e33481e 2061 }; // End of class Relocate
053a4d68
JY
2062
2063 // A class which returns the size required for a relocation type,
2064 // used while scanning relocs during a relocatable link.
2065 class Relocatable_size_for_reloc
2066 {
2067 public:
2068 unsigned int
2069 get_size_for_reloc(unsigned int, Relobj*);
2070 };
2071
2072 // Adjust TLS relocation type based on the options and whether this
2073 // is a local symbol.
2074 static tls::Tls_optimization
2075 optimize_tls_reloc(bool is_final, int r_type);
2076
2077 // Get the GOT section, creating it if necessary.
2078 Output_data_got_aarch64<size, big_endian>*
2079 got_section(Symbol_table*, Layout*);
2080
2081 // Get the GOT PLT section.
2082 Output_data_space*
2083 got_plt_section() const
2084 {
2085 gold_assert(this->got_plt_ != NULL);
2086 return this->got_plt_;
2087 }
2088
3a531937
JY
2089 // Get the GOT section for TLSDESC entries.
2090 Output_data_got<size, big_endian>*
2091 got_tlsdesc_section() const
2092 {
2093 gold_assert(this->got_tlsdesc_ != NULL);
2094 return this->got_tlsdesc_;
2095 }
2096
053a4d68
JY
2097 // Create the PLT section.
2098 void
2099 make_plt_section(Symbol_table* symtab, Layout* layout);
2100
2101 // Create a PLT entry for a global symbol.
2102 void
2103 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2104
3a531937
JY
2105 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2106 void
2107 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2108 Sized_relobj_file<size, big_endian>* relobj,
2109 unsigned int local_sym_index);
2110
2111 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2112 void
2113 define_tls_base_symbol(Symbol_table*, Layout*);
2114
2115 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2116 void
2117 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
2118
2119 // Create a GOT entry for the TLS module index.
2120 unsigned int
2121 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2122 Sized_relobj_file<size, big_endian>* object);
2123
053a4d68
JY
2124 // Get the PLT section.
2125 Output_data_plt_aarch64<size, big_endian>*
2126 plt_section() const
2127 {
2128 gold_assert(this->plt_ != NULL);
2129 return this->plt_;
2130 }
2131
2132 // Get the dynamic reloc section, creating it if necessary.
2133 Reloc_section*
2134 rela_dyn_section(Layout*);
2135
3a531937
JY
2136 // Get the section to use for TLSDESC relocations.
2137 Reloc_section*
2138 rela_tlsdesc_section(Layout*) const;
2139
2140 // Get the section to use for IRELATIVE relocations.
2141 Reloc_section*
2142 rela_irelative_section(Layout*);
2143
053a4d68
JY
2144 // Add a potential copy relocation.
2145 void
2146 copy_reloc(Symbol_table* symtab, Layout* layout,
2147 Sized_relobj_file<size, big_endian>* object,
2148 unsigned int shndx, Output_section* output_section,
2149 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
2150 {
2151 this->copy_relocs_.copy_reloc(symtab, layout,
2152 symtab->get_sized_symbol<size>(sym),
2153 object, shndx, output_section,
2154 reloc, this->rela_dyn_section(layout));
2155 }
2156
2157 // Information about this specific target which we pass to the
2158 // general Target structure.
2159 static const Target::Target_info aarch64_info;
2160
2161 // The types of GOT entries needed for this platform.
2162 // These values are exposed to the ABI in an incremental link.
2163 // Do not renumber existing values without changing the version
2164 // number of the .gnu_incremental_inputs section.
2165 enum Got_type
2166 {
2167 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2168 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
2169 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
2170 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
2171 };
2172
3a531937
JY
2173 // This type is used as the argument to the target specific
2174 // relocation routines. The only target specific reloc is
2175 // R_AARCh64_TLSDESC against a local symbol.
2176 struct Tlsdesc_info
2177 {
2178 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
2179 unsigned int a_r_sym)
2180 : object(a_object), r_sym(a_r_sym)
2181 { }
2182
2183 // The object in which the local symbol is defined.
2184 Sized_relobj_file<size, big_endian>* object;
2185 // The local symbol index in the object.
2186 unsigned int r_sym;
2187 };
2188
053a4d68
JY
2189 // The GOT section.
2190 Output_data_got_aarch64<size, big_endian>* got_;
2191 // The PLT section.
2192 Output_data_plt_aarch64<size, big_endian>* plt_;
2193 // The GOT PLT section.
2194 Output_data_space* got_plt_;
3a531937
JY
2195 // The GOT section for IRELATIVE relocations.
2196 Output_data_space* got_irelative_;
2197 // The GOT section for TLSDESC relocations.
2198 Output_data_got<size, big_endian>* got_tlsdesc_;
053a4d68
JY
2199 // The _GLOBAL_OFFSET_TABLE_ symbol.
2200 Symbol* global_offset_table_;
2201 // The dynamic reloc section.
2202 Reloc_section* rela_dyn_;
3a531937
JY
2203 // The section to use for IRELATIVE relocs.
2204 Reloc_section* rela_irelative_;
053a4d68
JY
2205 // Relocs saved to avoid a COPY reloc.
2206 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3a531937
JY
2207 // Offset of the GOT entry for the TLS module index.
2208 unsigned int got_mod_index_offset_;
2209 // We handle R_AARCH64_TLSDESC against a local symbol as a target
2210 // specific relocation. Here we store the object and local symbol
2211 // index for the relocation.
2212 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
2213 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2214 bool tls_base_symbol_defined_;
83a01957
HS
2215 // List of stub_tables
2216 Stub_table_list stub_tables_;
2217 AArch64_input_section_map aarch64_input_section_map_;
8e33481e 2218}; // End of Target_aarch64
053a4d68 2219
3a531937 2220
053a4d68
JY
2221template<>
2222const Target::Target_info Target_aarch64<64, false>::aarch64_info =
2223{
2224 64, // size
2225 false, // is_big_endian
2226 elfcpp::EM_AARCH64, // machine_code
2227 false, // has_make_symbol
2228 false, // has_resolve
2229 false, // has_code_fill
2230 true, // is_default_stack_executable
9726c3c1 2231 true, // can_icf_inline_merge_sections
053a4d68
JY
2232 '\0', // wrap_char
2233 "/lib/ld.so.1", // program interpreter
2234 0x400000, // default_text_segment_address
2235 0x1000, // abi_pagesize (overridable by -z max-page-size)
2236 0x1000, // common_pagesize (overridable by -z common-page-size)
2237 false, // isolate_execinstr
2238 0, // rosegment_gap
2239 elfcpp::SHN_UNDEF, // small_common_shndx
2240 elfcpp::SHN_UNDEF, // large_common_shndx
2241 0, // small_common_section_flags
2242 0, // large_common_section_flags
2243 NULL, // attributes_section
2244 NULL, // attributes_vendor
2245 "_start" // entry_symbol_name
2246};
2247
2248template<>
2249const Target::Target_info Target_aarch64<32, false>::aarch64_info =
2250{
2251 32, // size
2252 false, // is_big_endian
2253 elfcpp::EM_AARCH64, // machine_code
2254 false, // has_make_symbol
2255 false, // has_resolve
2256 false, // has_code_fill
2257 true, // is_default_stack_executable
2258 false, // can_icf_inline_merge_sections
2259 '\0', // wrap_char
2260 "/lib/ld.so.1", // program interpreter
2261 0x400000, // default_text_segment_address
2262 0x1000, // abi_pagesize (overridable by -z max-page-size)
2263 0x1000, // common_pagesize (overridable by -z common-page-size)
2264 false, // isolate_execinstr
2265 0, // rosegment_gap
2266 elfcpp::SHN_UNDEF, // small_common_shndx
2267 elfcpp::SHN_UNDEF, // large_common_shndx
2268 0, // small_common_section_flags
2269 0, // large_common_section_flags
2270 NULL, // attributes_section
2271 NULL, // attributes_vendor
2272 "_start" // entry_symbol_name
2273};
2274
2275template<>
2276const Target::Target_info Target_aarch64<64, true>::aarch64_info =
2277{
2278 64, // size
2279 true, // is_big_endian
2280 elfcpp::EM_AARCH64, // machine_code
2281 false, // has_make_symbol
2282 false, // has_resolve
2283 false, // has_code_fill
2284 true, // is_default_stack_executable
9726c3c1 2285 true, // can_icf_inline_merge_sections
053a4d68
JY
2286 '\0', // wrap_char
2287 "/lib/ld.so.1", // program interpreter
2288 0x400000, // default_text_segment_address
2289 0x1000, // abi_pagesize (overridable by -z max-page-size)
2290 0x1000, // common_pagesize (overridable by -z common-page-size)
2291 false, // isolate_execinstr
2292 0, // rosegment_gap
2293 elfcpp::SHN_UNDEF, // small_common_shndx
2294 elfcpp::SHN_UNDEF, // large_common_shndx
2295 0, // small_common_section_flags
2296 0, // large_common_section_flags
2297 NULL, // attributes_section
2298 NULL, // attributes_vendor
2299 "_start" // entry_symbol_name
2300};
2301
2302template<>
2303const Target::Target_info Target_aarch64<32, true>::aarch64_info =
2304{
2305 32, // size
2306 true, // is_big_endian
2307 elfcpp::EM_AARCH64, // machine_code
2308 false, // has_make_symbol
2309 false, // has_resolve
2310 false, // has_code_fill
2311 true, // is_default_stack_executable
2312 false, // can_icf_inline_merge_sections
2313 '\0', // wrap_char
2314 "/lib/ld.so.1", // program interpreter
2315 0x400000, // default_text_segment_address
2316 0x1000, // abi_pagesize (overridable by -z max-page-size)
2317 0x1000, // common_pagesize (overridable by -z common-page-size)
2318 false, // isolate_execinstr
2319 0, // rosegment_gap
2320 elfcpp::SHN_UNDEF, // small_common_shndx
2321 elfcpp::SHN_UNDEF, // large_common_shndx
2322 0, // small_common_section_flags
2323 0, // large_common_section_flags
2324 NULL, // attributes_section
2325 NULL, // attributes_vendor
2326 "_start" // entry_symbol_name
2327};
2328
2329// Get the GOT section, creating it if necessary.
2330
2331template<int size, bool big_endian>
2332Output_data_got_aarch64<size, big_endian>*
2333Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
9363c7c3 2334 Layout* layout)
053a4d68
JY
2335{
2336 if (this->got_ == NULL)
2337 {
2338 gold_assert(symtab != NULL && layout != NULL);
2339
2340 // When using -z now, we can treat .got.plt as a relro section.
2341 // Without -z now, it is modified after program startup by lazy
2342 // PLT relocations.
2343 bool is_got_plt_relro = parameters->options().now();
2344 Output_section_order got_order = (is_got_plt_relro
2345 ? ORDER_RELRO
2346 : ORDER_RELRO_LAST);
2347 Output_section_order got_plt_order = (is_got_plt_relro
2348 ? ORDER_RELRO
2349 : ORDER_NON_RELRO_FIRST);
2350
2351 // Layout of .got and .got.plt sections.
2352 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
2353 // ...
2354 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
2355 // .gotplt[1] reserved for ld.so (resolver)
2356 // .gotplt[2] reserved
2357
2358 // Generate .got section.
2359 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
9363c7c3 2360 layout);
053a4d68 2361 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
9363c7c3
JY
2362 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
2363 this->got_, got_order, true);
053a4d68
JY
2364 // The first word of GOT is reserved for the address of .dynamic.
2365 // We put 0 here now. The value will be replaced later in
2366 // Output_data_got_aarch64::do_write.
2367 this->got_->add_constant(0);
2368
2369 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2370 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
2371 // even if there is a .got.plt section.
2372 this->global_offset_table_ =
9363c7c3
JY
2373 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2374 Symbol_table::PREDEFINED,
2375 this->got_,
2376 0, 0, elfcpp::STT_OBJECT,
2377 elfcpp::STB_LOCAL,
2378 elfcpp::STV_HIDDEN, 0,
2379 false, false);
053a4d68
JY
2380
2381 // Generate .got.plt section.
2382 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
2383 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
9363c7c3
JY
2384 (elfcpp::SHF_ALLOC
2385 | elfcpp::SHF_WRITE),
2386 this->got_plt_, got_plt_order,
2387 is_got_plt_relro);
053a4d68
JY
2388
2389 // The first three entries are reserved.
9363c7c3
JY
2390 this->got_plt_->set_current_data_size(
2391 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
053a4d68 2392
3a531937
JY
2393 // If there are any IRELATIVE relocations, they get GOT entries
2394 // in .got.plt after the jump slot entries.
2395 this->got_irelative_ = new Output_data_space(size / 8,
2396 "** GOT IRELATIVE PLT");
2397 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2398 (elfcpp::SHF_ALLOC
2399 | elfcpp::SHF_WRITE),
2400 this->got_irelative_,
2401 got_plt_order,
2402 is_got_plt_relro);
2403
2404 // If there are any TLSDESC relocations, they get GOT entries in
2405 // .got.plt after the jump slot and IRELATIVE entries.
2406 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
2407 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2408 (elfcpp::SHF_ALLOC
2409 | elfcpp::SHF_WRITE),
2410 this->got_tlsdesc_,
2411 got_plt_order,
2412 is_got_plt_relro);
2413
053a4d68 2414 if (!is_got_plt_relro)
9363c7c3
JY
2415 {
2416 // Those bytes can go into the relro segment.
2417 layout->increase_relro(
2418 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2419 }
053a4d68
JY
2420
2421 }
2422 return this->got_;
2423}
2424
2425// Get the dynamic reloc section, creating it if necessary.
2426
2427template<int size, bool big_endian>
2428typename Target_aarch64<size, big_endian>::Reloc_section*
2429Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
2430{
2431 if (this->rela_dyn_ == NULL)
2432 {
2433 gold_assert(layout != NULL);
2434 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2435 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2436 elfcpp::SHF_ALLOC, this->rela_dyn_,
2437 ORDER_DYNAMIC_RELOCS, false);
2438 }
2439 return this->rela_dyn_;
2440}
2441
3a531937
JY
2442// Get the section to use for IRELATIVE relocs, creating it if
2443// necessary. These go in .rela.dyn, but only after all other dynamic
2444// relocations. They need to follow the other dynamic relocations so
2445// that they can refer to global variables initialized by those
2446// relocs.
2447
2448template<int size, bool big_endian>
2449typename Target_aarch64<size, big_endian>::Reloc_section*
2450Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
2451{
2452 if (this->rela_irelative_ == NULL)
2453 {
2454 // Make sure we have already created the dynamic reloc section.
2455 this->rela_dyn_section(layout);
2456 this->rela_irelative_ = new Reloc_section(false);
2457 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2458 elfcpp::SHF_ALLOC, this->rela_irelative_,
2459 ORDER_DYNAMIC_RELOCS, false);
2460 gold_assert(this->rela_dyn_->output_section()
2461 == this->rela_irelative_->output_section());
2462 }
2463 return this->rela_irelative_;
2464}
2465
2466
83a01957
HS
2467// do_make_elf_object to override the same function in the base class. We need
2468// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
2469// store backend specific information. Hence we need to have our own ELF object
2470// creation.
2471
2472template<int size, bool big_endian>
2473Object*
2474Target_aarch64<size, big_endian>::do_make_elf_object(
2475 const std::string& name,
2476 Input_file* input_file,
2477 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2478{
2479 int et = ehdr.get_e_type();
2480 // ET_EXEC files are valid input for --just-symbols/-R,
2481 // and we treat them as relocatable objects.
2482 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
2483 return Sized_target<size, big_endian>::do_make_elf_object(
2484 name, input_file, offset, ehdr);
2485 else if (et == elfcpp::ET_REL)
2486 {
2487 AArch64_relobj<size, big_endian>* obj =
2488 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
2489 obj->setup();
2490 return obj;
2491 }
2492 else if (et == elfcpp::ET_DYN)
2493 {
2494 // Keep base implementation.
2495 Sized_dynobj<size, big_endian>* obj =
2496 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2497 obj->setup();
2498 return obj;
2499 }
2500 else
2501 {
2502 gold_error(_("%s: unsupported ELF file type %d"),
2503 name.c_str(), et);
2504 return NULL;
2505 }
2506}
2507
2508
2509// Scan a relocation for stub generation.
2510
2511template<int size, bool big_endian>
2512void
2513Target_aarch64<size, big_endian>::scan_reloc_for_stub(
2514 const Relocate_info<size, big_endian>* relinfo,
2515 unsigned int r_type,
2516 const Sized_symbol<size>* gsym,
2517 unsigned int r_sym,
2518 const Symbol_value<size>* psymval,
2519 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
2520 Address address)
2521{
2522 const AArch64_relobj<size, big_endian>* aarch64_relobj =
2523 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2524
2525 Symbol_value<size> symval;
2526 if (gsym != NULL)
2527 {
2528 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
2529 get_reloc_property(r_type);
2530 if (gsym->use_plt_offset(arp->reference_flags()))
2531 {
2532 // This uses a PLT, change the symbol value.
2533 symval.set_output_value(this->plt_section()->address()
2534 + gsym->plt_offset());
2535 psymval = &symval;
2536 }
2537 else if (gsym->is_undefined())
2538 // There is no need to generate a stub symbol is undefined.
2539 return;
2540 }
2541
2542 // Get the symbol value.
2543 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
2544
2545 // Owing to pipelining, the PC relative branches below actually skip
2546 // two instructions when the branch offset is 0.
2547 Address destination = static_cast<Address>(-1);
2548 switch (r_type)
2549 {
2550 case elfcpp::R_AARCH64_CALL26:
2551 case elfcpp::R_AARCH64_JUMP26:
2552 destination = value + addend;
2553 break;
2554 default:
9726c3c1 2555 gold_unreachable();
83a01957
HS
2556 }
2557
2558 typename The_reloc_stub::Stub_type stub_type = The_reloc_stub::
2559 stub_type_for_reloc(r_type, address, destination);
2560 if (stub_type == The_reloc_stub::ST_NONE)
2561 return ;
2562
2563 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
2564 gold_assert(stub_table != NULL);
2565
2566 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
2567 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
2568 if (stub == NULL)
2569 {
2570 stub = new The_reloc_stub(stub_type);
2571 stub_table->add_reloc_stub(stub, key);
2572 }
2573 stub->set_destination_address(destination);
2574} // End of Target_aarch64::scan_reloc_for_stub
2575
2576
2577// This function scans a relocation section for stub generation.
2578// The template parameter Relocate must be a class type which provides
2579// a single function, relocate(), which implements the machine
2580// specific part of a relocation.
2581
2582// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
2583// SHT_REL or SHT_RELA.
2584
2585// PRELOCS points to the relocation data. RELOC_COUNT is the number
2586// of relocs. OUTPUT_SECTION is the output section.
2587// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
2588// mapped to output offsets.
2589
2590// VIEW is the section data, VIEW_ADDRESS is its memory address, and
2591// VIEW_SIZE is the size. These refer to the input section, unless
2592// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
2593// the output section.
2594
2595template<int size, bool big_endian>
2596template<int sh_type>
2597void inline
2598Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
2599 const Relocate_info<size, big_endian>* relinfo,
2600 const unsigned char* prelocs,
2601 size_t reloc_count,
2602 Output_section* /*output_section*/,
2603 bool /*needs_special_offset_handling*/,
2604 const unsigned char* /*view*/,
2605 Address view_address,
2606 section_size_type)
2607{
2608 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
2609
2610 const int reloc_size =
2611 Reloc_types<sh_type,size,big_endian>::reloc_size;
2612 AArch64_relobj<size, big_endian>* object =
2613 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2614 unsigned int local_count = object->local_symbol_count();
2615
2616 gold::Default_comdat_behavior default_comdat_behavior;
2617 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
2618
2619 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2620 {
2621 Reltype reloc(prelocs);
2622 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
2623 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2624 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2625 if (r_type != elfcpp::R_AARCH64_CALL26
2626 && r_type != elfcpp::R_AARCH64_JUMP26)
2627 continue;
2628
2629 section_offset_type offset =
2630 convert_to_section_size_type(reloc.get_r_offset());
2631
2632 // Get the addend.
2633 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
2634 reloc.get_r_addend();
2635
2636 const Sized_symbol<size>* sym;
2637 Symbol_value<size> symval;
2638 const Symbol_value<size> *psymval;
2639 bool is_defined_in_discarded_section;
2640 unsigned int shndx;
2641 if (r_sym < local_count)
2642 {
2643 sym = NULL;
2644 psymval = object->local_symbol(r_sym);
2645
2646 // If the local symbol belongs to a section we are discarding,
2647 // and that section is a debug section, try to find the
2648 // corresponding kept section and map this symbol to its
2649 // counterpart in the kept section. The symbol must not
2650 // correspond to a section we are folding.
2651 bool is_ordinary;
2652 shndx = psymval->input_shndx(&is_ordinary);
2653 is_defined_in_discarded_section =
2654 (is_ordinary
2655 && shndx != elfcpp::SHN_UNDEF
2656 && !object->is_section_included(shndx)
2657 && !relinfo->symtab->is_section_folded(object, shndx));
2658
2659 // We need to compute the would-be final value of this local
2660 // symbol.
2661 if (!is_defined_in_discarded_section)
2662 {
2663 typedef Sized_relobj_file<size, big_endian> ObjType;
2664 typename ObjType::Compute_final_local_value_status status =
2665 object->compute_final_local_value(r_sym, psymval, &symval,
2666 relinfo->symtab);
2667 if (status == ObjType::CFLV_OK)
2668 {
2669 // Currently we cannot handle a branch to a target in
2670 // a merged section. If this is the case, issue an error
2671 // and also free the merge symbol value.
2672 if (!symval.has_output_value())
2673 {
2674 const std::string& section_name =
2675 object->section_name(shndx);
2676 object->error(_("cannot handle branch to local %u "
2677 "in a merged section %s"),
2678 r_sym, section_name.c_str());
2679 }
2680 psymval = &symval;
2681 }
2682 else
2683 {
2684 // We cannot determine the final value.
2685 continue;
2686 }
2687 }
2688 }
2689 else
2690 {
2691 const Symbol* gsym;
2692 gsym = object->global_symbol(r_sym);
2693 gold_assert(gsym != NULL);
2694 if (gsym->is_forwarder())
2695 gsym = relinfo->symtab->resolve_forwards(gsym);
2696
2697 sym = static_cast<const Sized_symbol<size>*>(gsym);
2698 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
2699 symval.set_output_symtab_index(sym->symtab_index());
2700 else
2701 symval.set_no_output_symtab_entry();
2702
2703 // We need to compute the would-be final value of this global
2704 // symbol.
2705 const Symbol_table* symtab = relinfo->symtab;
2706 const Sized_symbol<size>* sized_symbol =
2707 symtab->get_sized_symbol<size>(gsym);
2708 Symbol_table::Compute_final_value_status status;
2709 typename elfcpp::Elf_types<size>::Elf_Addr value =
2710 symtab->compute_final_value<size>(sized_symbol, &status);
2711
2712 // Skip this if the symbol has not output section.
2713 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
2714 continue;
2715 symval.set_output_value(value);
2716
2717 if (gsym->type() == elfcpp::STT_TLS)
2718 symval.set_is_tls_symbol();
2719 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2720 symval.set_is_ifunc_symbol();
2721 psymval = &symval;
2722
2723 is_defined_in_discarded_section =
2724 (gsym->is_defined_in_discarded_section()
2725 && gsym->is_undefined());
2726 shndx = 0;
2727 }
2728
2729 Symbol_value<size> symval2;
2730 if (is_defined_in_discarded_section)
2731 {
2732 if (comdat_behavior == CB_UNDETERMINED)
2733 {
2734 std::string name = object->section_name(relinfo->data_shndx);
2735 comdat_behavior = default_comdat_behavior.get(name.c_str());
2736 }
2737 if (comdat_behavior == CB_PRETEND)
2738 {
2739 bool found;
2740 typename elfcpp::Elf_types<size>::Elf_Addr value =
2741 object->map_to_kept_section(shndx, &found);
2742 if (found)
2743 symval2.set_output_value(value + psymval->input_value());
2744 else
2745 symval2.set_output_value(0);
2746 }
2747 else
2748 {
2749 if (comdat_behavior == CB_WARNING)
2750 gold_warning_at_location(relinfo, i, offset,
2751 _("relocation refers to discarded "
2752 "section"));
2753 symval2.set_output_value(0);
2754 }
2755 symval2.set_no_output_symtab_entry();
2756 psymval = &symval2;
2757 }
2758
2759 // If symbol is a section symbol, we don't know the actual type of
2760 // destination. Give up.
2761 if (psymval->is_section_symbol())
2762 continue;
2763
2764 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2765 addend, view_address + offset);
2766 } // End of iterating relocs in a section
2767} // End of Target_aarch64::scan_reloc_section_for_stubs
2768
2769
2770// Scan an input section for stub generation.
2771
2772template<int size, bool big_endian>
2773void
2774Target_aarch64<size, big_endian>::scan_section_for_stubs(
2775 const Relocate_info<size, big_endian>* relinfo,
2776 unsigned int sh_type,
2777 const unsigned char* prelocs,
2778 size_t reloc_count,
2779 Output_section* output_section,
2780 bool needs_special_offset_handling,
2781 const unsigned char* view,
2782 Address view_address,
2783 section_size_type view_size)
2784{
2785 gold_assert(sh_type == elfcpp::SHT_RELA);
2786 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
2787 relinfo,
2788 prelocs,
2789 reloc_count,
2790 output_section,
2791 needs_special_offset_handling,
2792 view,
2793 view_address,
2794 view_size);
2795}
2796
2797
2798// Relocate a single stub.
2799
2800template<int size, bool big_endian>
2801void Target_aarch64<size, big_endian>::
2802relocate_stub(The_reloc_stub* stub,
2803 const The_relocate_info*,
2804 Output_section*,
2805 unsigned char* view,
2806 Address address,
2807 section_size_type)
2808{
2809 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
2810 typedef typename The_reloc_functions::Status The_reloc_functions_status;
2811 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2812
2813 Insntype* ip = reinterpret_cast<Insntype*>(view);
2814 int insn_number = stub->stub_insn_number();
2815 const uint32_t* insns = stub->stub_insns();
2816 // Check the insns are really those stub insns.
2817 for (int i = 0; i < insn_number; ++i)
2818 {
2819 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
2820 gold_assert(((uint32_t)insn == insns[i+1]));
2821 }
2822
2823 Address dest = stub->destination_address();
2824
2825 switch(stub->stub_type())
2826 {
2827 case The_reloc_stub::ST_ADRP_BRANCH:
2828 {
2829 // 1st reloc is ADR_PREL_PG_HI21
2830 The_reloc_functions_status status =
2831 The_reloc_functions::adrp(view, dest, address);
2832 // An error should never arise in the above step. If so, please
2833 // check 'aarch64_valid_for_adrp_p'.
2834 gold_assert(status == The_reloc_functions::STATUS_OKAY);
2835
2836 // 2nd reloc is ADD_ABS_LO12_NC
2837 const AArch64_reloc_property* arp =
2838 aarch64_reloc_property_table->get_reloc_property(
2839 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
2840 gold_assert(arp != NULL);
2841 status = The_reloc_functions::template
2842 rela_general<32>(view + 4, dest, 0, arp);
2843 // An error should never arise, it is an "_NC" relocation.
2844 gold_assert(status == The_reloc_functions::STATUS_OKAY);
2845 }
2846 break;
2847
2848 case The_reloc_stub::ST_LONG_BRANCH_ABS:
2849 // 1st reloc is R_AARCH64_PREL64, at offset 8
2850 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
2851 break;
2852
2853 case The_reloc_stub::ST_LONG_BRANCH_PCREL:
2854 {
2855 // "PC" calculation is the 2nd insn in the stub.
2856 uint64_t offset = dest - (address + 4);
2857 // Offset is placed at offset 4 and 5.
2858 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
2859 }
2860 break;
2861
2862 default:
9726c3c1 2863 gold_unreachable();
83a01957
HS
2864 }
2865}
2866
2867
053a4d68
JY
2868// A class to handle the PLT data.
2869// This is an abstract base class that handles most of the linker details
2870// but does not know the actual contents of PLT entries. The derived
2871// classes below fill in those details.
2872
2873template<int size, bool big_endian>
2874class Output_data_plt_aarch64 : public Output_section_data
2875{
2876 public:
2877 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2878 Reloc_section;
2879 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2880
2881 Output_data_plt_aarch64(Layout* layout,
9363c7c3 2882 uint64_t addralign,
3a531937
JY
2883 Output_data_got_aarch64<size, big_endian>* got,
2884 Output_data_space* got_plt,
2885 Output_data_space* got_irelative)
9726c3c1 2886 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3a531937
JY
2887 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
2888 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
053a4d68
JY
2889 { this->init(layout); }
2890
2891 // Initialize the PLT section.
2892 void
2893 init(Layout* layout);
2894
2895 // Add an entry to the PLT.
2896 void
9726c3c1
HS
2897 add_entry(Symbol_table*, Layout*, Symbol* gsym);
2898
2899 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
2900 unsigned int
2901 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
2902 Sized_relobj_file<size, big_endian>* relobj,
2903 unsigned int local_sym_index);
2904
2905 // Add the relocation for a PLT entry.
2906 void
2907 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
2908 unsigned int got_offset);
053a4d68 2909
3a531937
JY
2910 // Add the reserved TLSDESC_PLT entry to the PLT.
2911 void
2912 reserve_tlsdesc_entry(unsigned int got_offset)
2913 { this->tlsdesc_got_offset_ = got_offset; }
2914
2915 // Return true if a TLSDESC_PLT entry has been reserved.
2916 bool
2917 has_tlsdesc_entry() const
2918 { return this->tlsdesc_got_offset_ != -1U; }
2919
2920 // Return the GOT offset for the reserved TLSDESC_PLT entry.
2921 unsigned int
2922 get_tlsdesc_got_offset() const
2923 { return this->tlsdesc_got_offset_; }
2924
2925 // Return the PLT offset of the reserved TLSDESC_PLT entry.
2926 unsigned int
2927 get_tlsdesc_plt_offset() const
2928 {
2929 return (this->first_plt_entry_offset() +
2930 (this->count_ + this->irelative_count_)
2931 * this->get_plt_entry_size());
2932 }
2933
053a4d68
JY
2934 // Return the .rela.plt section data.
2935 Reloc_section*
2936 rela_plt()
2937 { return this->rel_; }
2938
3a531937
JY
2939 // Return where the TLSDESC relocations should go.
2940 Reloc_section*
2941 rela_tlsdesc(Layout*);
2942
2943 // Return where the IRELATIVE relocations should go in the PLT
2944 // relocations.
2945 Reloc_section*
2946 rela_irelative(Symbol_table*, Layout*);
2947
9363c7c3
JY
2948 // Return whether we created a section for IRELATIVE relocations.
2949 bool
2950 has_irelative_section() const
2951 { return this->irelative_rel_ != NULL; }
2952
053a4d68
JY
2953 // Return the number of PLT entries.
2954 unsigned int
2955 entry_count() const
3a531937 2956 { return this->count_ + this->irelative_count_; }
053a4d68
JY
2957
2958 // Return the offset of the first non-reserved PLT entry.
2959 unsigned int
3a531937 2960 first_plt_entry_offset() const
053a4d68
JY
2961 { return this->do_first_plt_entry_offset(); }
2962
2963 // Return the size of a PLT entry.
2964 unsigned int
2965 get_plt_entry_size() const
2966 { return this->do_get_plt_entry_size(); }
2967
3a531937
JY
2968 // Return the reserved tlsdesc entry size.
2969 unsigned int
2970 get_plt_tlsdesc_entry_size() const
2971 { return this->do_get_plt_tlsdesc_entry_size(); }
2972
9363c7c3
JY
2973 // Return the PLT address to use for a global symbol.
2974 uint64_t
2975 address_for_global(const Symbol*);
2976
2977 // Return the PLT address to use for a local symbol.
2978 uint64_t
2979 address_for_local(const Relobj*, unsigned int symndx);
2980
053a4d68
JY
2981 protected:
2982 // Fill in the first PLT entry.
2983 void
2984 fill_first_plt_entry(unsigned char* pov,
2985 Address got_address,
2986 Address plt_address)
2987 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
2988
2989 // Fill in a normal PLT entry.
2990 void
2991 fill_plt_entry(unsigned char* pov,
2992 Address got_address,
2993 Address plt_address,
2994 unsigned int got_offset,
2995 unsigned int plt_offset)
2996 {
2997 this->do_fill_plt_entry(pov, got_address, plt_address,
2998 got_offset, plt_offset);
2999 }
3000
3a531937
JY
3001 // Fill in the reserved TLSDESC PLT entry.
3002 void
3003 fill_tlsdesc_entry(unsigned char* pov,
3004 Address gotplt_address,
3005 Address plt_address,
3006 Address got_base,
3007 unsigned int tlsdesc_got_offset,
3008 unsigned int plt_offset)
3009 {
3010 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3011 tlsdesc_got_offset, plt_offset);
3012 }
3013
053a4d68
JY
3014 virtual unsigned int
3015 do_first_plt_entry_offset() const = 0;
3016
3017 virtual unsigned int
3018 do_get_plt_entry_size() const = 0;
3019
3a531937
JY
3020 virtual unsigned int
3021 do_get_plt_tlsdesc_entry_size() const = 0;
3022
053a4d68
JY
3023 virtual void
3024 do_fill_first_plt_entry(unsigned char* pov,
3025 Address got_addr,
3026 Address plt_addr) = 0;
3027
3028 virtual void
3029 do_fill_plt_entry(unsigned char* pov,
3030 Address got_address,
3031 Address plt_address,
3032 unsigned int got_offset,
3033 unsigned int plt_offset) = 0;
3034
3a531937
JY
3035 virtual void
3036 do_fill_tlsdesc_entry(unsigned char* pov,
3037 Address gotplt_address,
3038 Address plt_address,
3039 Address got_base,
3040 unsigned int tlsdesc_got_offset,
3041 unsigned int plt_offset) = 0;
3042
053a4d68
JY
3043 void
3044 do_adjust_output_section(Output_section* os);
3045
3046 // Write to a map file.
3047 void
3048 do_print_to_mapfile(Mapfile* mapfile) const
3049 { mapfile->print_output_data(this, _("** PLT")); }
3050
3051 private:
3052 // Set the final size.
3053 void
3054 set_final_data_size();
3055
3056 // Write out the PLT data.
3057 void
3058 do_write(Output_file*);
3059
3060 // The reloc section.
3061 Reloc_section* rel_;
3a531937
JY
3062
3063 // The TLSDESC relocs, if necessary. These must follow the regular
3064 // PLT relocs.
3065 Reloc_section* tlsdesc_rel_;
3066
9363c7c3
JY
3067 // The IRELATIVE relocs, if necessary. These must follow the
3068 // regular PLT relocations.
3069 Reloc_section* irelative_rel_;
3a531937 3070
053a4d68
JY
3071 // The .got section.
3072 Output_data_got_aarch64<size, big_endian>* got_;
3a531937 3073
053a4d68
JY
3074 // The .got.plt section.
3075 Output_data_space* got_plt_;
3a531937
JY
3076
3077 // The part of the .got.plt section used for IRELATIVE relocs.
3078 Output_data_space* got_irelative_;
3079
053a4d68
JY
3080 // The number of PLT entries.
3081 unsigned int count_;
3a531937
JY
3082
3083 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
3084 // follow the regular PLT entries.
3085 unsigned int irelative_count_;
3086
3087 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
3088 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
3089 // indicates an offset is not allocated.
3090 unsigned int tlsdesc_got_offset_;
053a4d68
JY
3091};
3092
3093// Initialize the PLT section.
3094
3095template<int size, bool big_endian>
3096void
3097Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
3098{
3099 this->rel_ = new Reloc_section(false);
3100 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3101 elfcpp::SHF_ALLOC, this->rel_,
3102 ORDER_DYNAMIC_PLT_RELOCS, false);
3103}
3104
3105template<int size, bool big_endian>
3106void
3107Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
3108 Output_section* os)
3109{
3110 os->set_entsize(this->get_plt_entry_size());
3111}
3112
3113// Add an entry to the PLT.
3114
3115template<int size, bool big_endian>
3116void
9726c3c1
HS
3117Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
3118 Layout* layout, Symbol* gsym)
053a4d68
JY
3119{
3120 gold_assert(!gsym->has_plt_offset());
9363c7c3 3121
9726c3c1
HS
3122 unsigned int* pcount;
3123 unsigned int plt_reserved;
3124 Output_section_data_build* got;
9363c7c3 3125
9726c3c1
HS
3126 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3127 && gsym->can_use_relative_reloc(false))
3128 {
3129 pcount = &this->irelative_count_;
3130 plt_reserved = 0;
3131 got = this->got_irelative_;
3132 }
3133 else
3134 {
3135 pcount = &this->count_;
3136 plt_reserved = this->first_plt_entry_offset();
3137 got = this->got_plt_;
3138 }
9363c7c3 3139
9726c3c1
HS
3140 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
3141 + plt_reserved);
3142
3143 ++*pcount;
3144
3145 section_offset_type got_offset = got->current_data_size();
9363c7c3
JY
3146
3147 // Every PLT entry needs a GOT entry which points back to the PLT
3148 // entry (this will be changed by the dynamic linker, normally
3149 // lazily when the function is called).
9726c3c1 3150 got->set_current_data_size(got_offset + size / 8);
9363c7c3
JY
3151
3152 // Every PLT entry needs a reloc.
9726c3c1 3153 this->add_relocation(symtab, layout, gsym, got_offset);
9363c7c3
JY
3154
3155 // Note that we don't need to save the symbol. The contents of the
3156 // PLT are independent of which symbols are used. The symbols only
3157 // appear in the relocations.
3158}
3159
9726c3c1
HS
3160// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
3161// the PLT offset.
3162
3163template<int size, bool big_endian>
3164unsigned int
3165Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
3166 Symbol_table* symtab,
3167 Layout* layout,
3168 Sized_relobj_file<size, big_endian>* relobj,
3169 unsigned int local_sym_index)
3170{
3171 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
3172 ++this->irelative_count_;
3173
3174 section_offset_type got_offset = this->got_irelative_->current_data_size();
3175
3176 // Every PLT entry needs a GOT entry which points back to the PLT
3177 // entry.
3178 this->got_irelative_->set_current_data_size(got_offset + size / 8);
3179
3180 // Every PLT entry needs a reloc.
3181 Reloc_section* rela = this->rela_irelative(symtab, layout);
3182 rela->add_symbolless_local_addend(relobj, local_sym_index,
3183 elfcpp::R_AARCH64_IRELATIVE,
3184 this->got_irelative_, got_offset, 0);
3185
3186 return plt_offset;
3187}
3188
3189// Add the relocation for a PLT entry.
3190
3191template<int size, bool big_endian>
3192void
3193Output_data_plt_aarch64<size, big_endian>::add_relocation(
3194 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
3195{
3196 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3197 && gsym->can_use_relative_reloc(false))
3198 {
3199 Reloc_section* rela = this->rela_irelative(symtab, layout);
3200 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
3201 this->got_irelative_, got_offset, 0);
3202 }
3203 else
3204 {
3205 gsym->set_needs_dynsym_entry();
3206 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
3207 got_offset, 0);
3208 }
3209}
3210
3a531937
JY
3211// Return where the TLSDESC relocations should go, creating it if
3212// necessary. These follow the JUMP_SLOT relocations.
3213
3214template<int size, bool big_endian>
3215typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3216Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
3217{
3218 if (this->tlsdesc_rel_ == NULL)
3219 {
3220 this->tlsdesc_rel_ = new Reloc_section(false);
3221 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3222 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
3223 ORDER_DYNAMIC_PLT_RELOCS, false);
3224 gold_assert(this->tlsdesc_rel_->output_section()
3225 == this->rel_->output_section());
3226 }
3227 return this->tlsdesc_rel_;
3228}
3229
3230// Return where the IRELATIVE relocations should go in the PLT. These
3231// follow the JUMP_SLOT and the TLSDESC relocations.
3232
3233template<int size, bool big_endian>
3234typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3235Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
3236 Layout* layout)
3237{
3238 if (this->irelative_rel_ == NULL)
3239 {
3240 // Make sure we have a place for the TLSDESC relocations, in
3241 // case we see any later on.
3242 this->rela_tlsdesc(layout);
3243 this->irelative_rel_ = new Reloc_section(false);
3244 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3245 elfcpp::SHF_ALLOC, this->irelative_rel_,
3246 ORDER_DYNAMIC_PLT_RELOCS, false);
3247 gold_assert(this->irelative_rel_->output_section()
3248 == this->rel_->output_section());
3249
3250 if (parameters->doing_static_link())
3251 {
3252 // A statically linked executable will only have a .rela.plt
3253 // section to hold R_AARCH64_IRELATIVE relocs for
3254 // STT_GNU_IFUNC symbols. The library will use these
3255 // symbols to locate the IRELATIVE relocs at program startup
3256 // time.
3257 symtab->define_in_output_data("__rela_iplt_start", NULL,
3258 Symbol_table::PREDEFINED,
3259 this->irelative_rel_, 0, 0,
3260 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3261 elfcpp::STV_HIDDEN, 0, false, true);
3262 symtab->define_in_output_data("__rela_iplt_end", NULL,
3263 Symbol_table::PREDEFINED,
3264 this->irelative_rel_, 0, 0,
3265 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3266 elfcpp::STV_HIDDEN, 0, true, true);
3267 }
3268 }
3269 return this->irelative_rel_;
3270}
3271
9363c7c3
JY
3272// Return the PLT address to use for a global symbol.
3273
3274template<int size, bool big_endian>
3275uint64_t
3276Output_data_plt_aarch64<size, big_endian>::address_for_global(
3277 const Symbol* gsym)
3278{
3279 uint64_t offset = 0;
3280 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3281 && gsym->can_use_relative_reloc(false))
3282 offset = (this->first_plt_entry_offset() +
3283 this->count_ * this->get_plt_entry_size());
3284 return this->address() + offset + gsym->plt_offset();
3285}
3286
3287// Return the PLT address to use for a local symbol. These are always
3288// IRELATIVE relocs.
3289
3290template<int size, bool big_endian>
3291uint64_t
3292Output_data_plt_aarch64<size, big_endian>::address_for_local(
3293 const Relobj* object,
3294 unsigned int r_sym)
3295{
3296 return (this->address()
3297 + this->first_plt_entry_offset()
3298 + this->count_ * this->get_plt_entry_size()
3299 + object->local_plt_offset(r_sym));
053a4d68
JY
3300}
3301
3302// Set the final size.
9363c7c3 3303
053a4d68
JY
3304template<int size, bool big_endian>
3305void
3306Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
3307{
3a531937
JY
3308 unsigned int count = this->count_ + this->irelative_count_;
3309 unsigned int extra_size = 0;
3310 if (this->has_tlsdesc_entry())
3311 extra_size += this->get_plt_tlsdesc_entry_size();
053a4d68 3312 this->set_data_size(this->first_plt_entry_offset()
3a531937
JY
3313 + count * this->get_plt_entry_size()
3314 + extra_size);
053a4d68
JY
3315}
3316
3317template<int size, bool big_endian>
3318class Output_data_plt_aarch64_standard :
3319 public Output_data_plt_aarch64<size, big_endian>
3320{
3321 public:
3322 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3a531937
JY
3323 Output_data_plt_aarch64_standard(
3324 Layout* layout,
3325 Output_data_got_aarch64<size, big_endian>* got,
3326 Output_data_space* got_plt,
3327 Output_data_space* got_irelative)
053a4d68 3328 : Output_data_plt_aarch64<size, big_endian>(layout,
9363c7c3 3329 size == 32 ? 4 : 8,
3a531937
JY
3330 got, got_plt,
3331 got_irelative)
053a4d68
JY
3332 { }
3333
3334 protected:
3335 // Return the offset of the first non-reserved PLT entry.
3336 virtual unsigned int
3337 do_first_plt_entry_offset() const
3338 { return this->first_plt_entry_size; }
3339
3340 // Return the size of a PLT entry
3341 virtual unsigned int
3342 do_get_plt_entry_size() const
3343 { return this->plt_entry_size; }
3344
3a531937
JY
3345 // Return the size of a tlsdesc entry
3346 virtual unsigned int
3347 do_get_plt_tlsdesc_entry_size() const
3348 { return this->plt_tlsdesc_entry_size; }
3349
053a4d68
JY
3350 virtual void
3351 do_fill_first_plt_entry(unsigned char* pov,
9363c7c3
JY
3352 Address got_address,
3353 Address plt_address);
053a4d68
JY
3354
3355 virtual void
3356 do_fill_plt_entry(unsigned char* pov,
9363c7c3
JY
3357 Address got_address,
3358 Address plt_address,
3359 unsigned int got_offset,
3360 unsigned int plt_offset);
053a4d68 3361
3a531937
JY
3362 virtual void
3363 do_fill_tlsdesc_entry(unsigned char* pov,
3364 Address gotplt_address,
3365 Address plt_address,
3366 Address got_base,
3367 unsigned int tlsdesc_got_offset,
3368 unsigned int plt_offset);
3369
053a4d68
JY
3370 private:
3371 // The size of the first plt entry size.
3372 static const int first_plt_entry_size = 32;
3373 // The size of the plt entry size.
3374 static const int plt_entry_size = 16;
3a531937
JY
3375 // The size of the plt tlsdesc entry size.
3376 static const int plt_tlsdesc_entry_size = 32;
053a4d68
JY
3377 // Template for the first PLT entry.
3378 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
3379 // Template for subsequent PLT entries.
3380 static const uint32_t plt_entry[plt_entry_size / 4];
3a531937
JY
3381 // The reserved TLSDESC entry in the PLT for an executable.
3382 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
053a4d68
JY
3383};
3384
3385// The first entry in the PLT for an executable.
3386
3387template<>
3388const uint32_t
3389Output_data_plt_aarch64_standard<32, false>::
3390 first_plt_entry[first_plt_entry_size / 4] =
3391{
3392 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3393 0x90000010, /* adrp x16, PLT_GOT+0x8 */
3394 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
3395 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
3396 0xd61f0220, /* br x17 */
3397 0xd503201f, /* nop */
3398 0xd503201f, /* nop */
3399 0xd503201f, /* nop */
3400};
3401
83a01957 3402
053a4d68
JY
3403template<>
3404const uint32_t
3405Output_data_plt_aarch64_standard<32, true>::
3406 first_plt_entry[first_plt_entry_size / 4] =
3407{
3408 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3409 0x90000010, /* adrp x16, PLT_GOT+0x8 */
3410 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
3411 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
3412 0xd61f0220, /* br x17 */
3413 0xd503201f, /* nop */
3414 0xd503201f, /* nop */
3415 0xd503201f, /* nop */
3416};
3417
83a01957 3418
053a4d68
JY
3419template<>
3420const uint32_t
3421Output_data_plt_aarch64_standard<64, false>::
3422 first_plt_entry[first_plt_entry_size / 4] =
3423{
3424 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3425 0x90000010, /* adrp x16, PLT_GOT+16 */
3426 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
3427 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
3428 0xd61f0220, /* br x17 */
3429 0xd503201f, /* nop */
3430 0xd503201f, /* nop */
3431 0xd503201f, /* nop */
3432};
3433
83a01957 3434
053a4d68
JY
3435template<>
3436const uint32_t
3437Output_data_plt_aarch64_standard<64, true>::
3438 first_plt_entry[first_plt_entry_size / 4] =
3439{
3440 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3441 0x90000010, /* adrp x16, PLT_GOT+16 */
3442 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
3443 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
3444 0xd61f0220, /* br x17 */
3445 0xd503201f, /* nop */
3446 0xd503201f, /* nop */
3447 0xd503201f, /* nop */
3448};
3449
83a01957 3450
053a4d68
JY
3451template<>
3452const uint32_t
3453Output_data_plt_aarch64_standard<32, false>::
3454 plt_entry[plt_entry_size / 4] =
3455{
3456 0x90000010, /* adrp x16, PLTGOT + n * 4 */
3457 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
3458 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
3459 0xd61f0220, /* br x17. */
3460};
3461
83a01957 3462
053a4d68
JY
3463template<>
3464const uint32_t
3465Output_data_plt_aarch64_standard<32, true>::
3466 plt_entry[plt_entry_size / 4] =
3467{
3468 0x90000010, /* adrp x16, PLTGOT + n * 4 */
3469 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
3470 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
3471 0xd61f0220, /* br x17. */
3472};
3473
83a01957 3474
053a4d68
JY
3475template<>
3476const uint32_t
3477Output_data_plt_aarch64_standard<64, false>::
3478 plt_entry[plt_entry_size / 4] =
3479{
3480 0x90000010, /* adrp x16, PLTGOT + n * 8 */
3481 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
3482 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
3483 0xd61f0220, /* br x17. */
3484};
3485
83a01957 3486
053a4d68
JY
3487template<>
3488const uint32_t
3489Output_data_plt_aarch64_standard<64, true>::
3490 plt_entry[plt_entry_size / 4] =
3491{
3492 0x90000010, /* adrp x16, PLTGOT + n * 8 */
3493 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
3494 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
3495 0xd61f0220, /* br x17. */
3496};
3497
83a01957 3498
053a4d68
JY
3499template<int size, bool big_endian>
3500void
3501Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
3502 unsigned char* pov,
9363c7c3
JY
3503 Address got_address,
3504 Address plt_address)
053a4d68
JY
3505{
3506 // PLT0 of the small PLT looks like this in ELF64 -
3507 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
3508 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
3509 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
3510 // symbol resolver
3511 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
3512 // GOTPLT entry for this.
3513 // br x17
3514 // PLT0 will be slightly different in ELF32 due to different got entry
3515 // size.
3516 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
9363c7c3
JY
3517 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
3518
3519 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
3520 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
3521 // FIXME: This only works for 64bit
3522 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
3523 gotplt_2nd_ent, plt_address + 4);
3524
3525 // Fill in R_AARCH64_LDST8_LO12
3526 elfcpp::Swap<32, big_endian>::writeval(
3527 pov + 8,
3528 ((this->first_plt_entry[2] & 0xffc003ff)
3529 | ((gotplt_2nd_ent & 0xff8) << 7)));
3530
3531 // Fill in R_AARCH64_ADD_ABS_LO12
3532 elfcpp::Swap<32, big_endian>::writeval(
3533 pov + 12,
3534 ((this->first_plt_entry[3] & 0xffc003ff)
3535 | ((gotplt_2nd_ent & 0xfff) << 10)));
053a4d68
JY
3536}
3537
83a01957 3538
053a4d68 3539// Subsequent entries in the PLT for an executable.
9363c7c3 3540// FIXME: This only works for 64bit
053a4d68
JY
3541
3542template<int size, bool big_endian>
3543void
3544Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
3545 unsigned char* pov,
9363c7c3
JY
3546 Address got_address,
3547 Address plt_address,
3548 unsigned int got_offset,
3549 unsigned int plt_offset)
053a4d68
JY
3550{
3551 memcpy(pov, this->plt_entry, this->plt_entry_size);
9363c7c3
JY
3552
3553 Address gotplt_entry_address = got_address + got_offset;
3554 Address plt_entry_address = plt_address + plt_offset;
3555
3556 // Fill in R_AARCH64_PCREL_ADR_HI21
3557 AArch64_relocate_functions<size, big_endian>::adrp(
3558 pov,
3559 gotplt_entry_address,
3560 plt_entry_address);
3561
3562 // Fill in R_AARCH64_LDST64_ABS_LO12
3563 elfcpp::Swap<32, big_endian>::writeval(
3564 pov + 4,
3565 ((this->plt_entry[1] & 0xffc003ff)
3566 | ((gotplt_entry_address & 0xff8) << 7)));
3567
3568 // Fill in R_AARCH64_ADD_ABS_LO12
3569 elfcpp::Swap<32, big_endian>::writeval(
3570 pov + 8,
3571 ((this->plt_entry[2] & 0xffc003ff)
3572 | ((gotplt_entry_address & 0xfff) <<10)));
3573
053a4d68
JY
3574}
3575
3a531937
JY
3576
3577template<>
3578const uint32_t
3579Output_data_plt_aarch64_standard<32, false>::
3580 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3581{
3582 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3583 0x90000002, /* adrp x2, 0 */
3584 0x90000003, /* adrp x3, 0 */
3585 0xb9400042, /* ldr w2, [w2, #0] */
3586 0x11000063, /* add w3, w3, 0 */
3587 0xd61f0040, /* br x2 */
3588 0xd503201f, /* nop */
3589 0xd503201f, /* nop */
3590};
3591
3592template<>
3593const uint32_t
3594Output_data_plt_aarch64_standard<32, true>::
3595 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3596{
3597 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3598 0x90000002, /* adrp x2, 0 */
3599 0x90000003, /* adrp x3, 0 */
3600 0xb9400042, /* ldr w2, [w2, #0] */
3601 0x11000063, /* add w3, w3, 0 */
3602 0xd61f0040, /* br x2 */
3603 0xd503201f, /* nop */
3604 0xd503201f, /* nop */
3605};
3606
3607template<>
3608const uint32_t
3609Output_data_plt_aarch64_standard<64, false>::
3610 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3611{
3612 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3613 0x90000002, /* adrp x2, 0 */
3614 0x90000003, /* adrp x3, 0 */
3615 0xf9400042, /* ldr x2, [x2, #0] */
3616 0x91000063, /* add x3, x3, 0 */
3617 0xd61f0040, /* br x2 */
3618 0xd503201f, /* nop */
3619 0xd503201f, /* nop */
3620};
3621
3622template<>
3623const uint32_t
3624Output_data_plt_aarch64_standard<64, true>::
3625 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3626{
3627 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3628 0x90000002, /* adrp x2, 0 */
3629 0x90000003, /* adrp x3, 0 */
3630 0xf9400042, /* ldr x2, [x2, #0] */
3631 0x91000063, /* add x3, x3, 0 */
3632 0xd61f0040, /* br x2 */
3633 0xd503201f, /* nop */
3634 0xd503201f, /* nop */
3635};
3636
3637template<int size, bool big_endian>
3638void
3639Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
3640 unsigned char* pov,
3641 Address gotplt_address,
3642 Address plt_address,
3643 Address got_base,
3644 unsigned int tlsdesc_got_offset,
3645 unsigned int plt_offset)
3646{
3647 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
3648
3649 // move DT_TLSDESC_GOT address into x2
3650 // move .got.plt address into x3
3651 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
3652 Address plt_entry_address = plt_address + plt_offset;
3653
3654 // R_AARCH64_ADR_PREL_PG_HI21
3655 AArch64_relocate_functions<size, big_endian>::adrp(
3656 pov + 4,
3657 tlsdesc_got_entry,
3658 plt_entry_address + 4);
3659
3660 // R_AARCH64_ADR_PREL_PG_HI21
3661 AArch64_relocate_functions<size, big_endian>::adrp(
3662 pov + 8,
3663 gotplt_address,
3664 plt_entry_address + 8);
3665
3666 // R_AARCH64_LDST64_ABS_LO12
3667 elfcpp::Swap<32, big_endian>::writeval(
3668 pov + 12,
3669 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
3670 | ((tlsdesc_got_entry & 0xff8) << 7)));
3671
3672 // R_AARCH64_ADD_ABS_LO12
3673 elfcpp::Swap<32, big_endian>::writeval(
3674 pov + 16,
3675 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
3676 | ((gotplt_address & 0xfff) << 10)));
3677}
3678
053a4d68
JY
3679// Write out the PLT. This uses the hand-coded instructions above,
3680// and adjusts them as needed. This is specified by the AMD64 ABI.
3681
3682template<int size, bool big_endian>
3683void
3684Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
3685{
3686 const off_t offset = this->offset();
3687 const section_size_type oview_size =
3688 convert_to_section_size_type(this->data_size());
3689 unsigned char* const oview = of->get_output_view(offset, oview_size);
3690
3691 const off_t got_file_offset = this->got_plt_->offset();
9726c3c1
HS
3692 gold_assert(got_file_offset + this->got_plt_->data_size()
3693 == this->got_irelative_->offset());
3694
053a4d68 3695 const section_size_type got_size =
9726c3c1
HS
3696 convert_to_section_size_type(this->got_plt_->data_size()
3697 + this->got_irelative_->data_size());
053a4d68
JY
3698 unsigned char* const got_view = of->get_output_view(got_file_offset,
3699 got_size);
3700
3701 unsigned char* pov = oview;
3702
3703 // The base address of the .plt section.
3704 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
053a4d68 3705 // The base address of the PLT portion of the .got section.
3a531937
JY
3706 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
3707 = this->got_plt_->address();
053a4d68 3708
3a531937 3709 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
053a4d68
JY
3710 pov += this->first_plt_entry_offset();
3711
3712 // The first three entries in .got.plt are reserved.
3713 unsigned char* got_pov = got_view;
3714 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
3715 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3716
3717 unsigned int plt_offset = this->first_plt_entry_offset();
3718 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3a531937 3719 const unsigned int count = this->count_ + this->irelative_count_;
053a4d68
JY
3720 for (unsigned int plt_index = 0;
3721 plt_index < count;
3722 ++plt_index,
3723 pov += this->get_plt_entry_size(),
3724 got_pov += size / 8,
3725 plt_offset += this->get_plt_entry_size(),
3726 got_offset += size / 8)
3727 {
3728 // Set and adjust the PLT entry itself.
3a531937 3729 this->fill_plt_entry(pov, gotplt_address, plt_address,
9363c7c3 3730 got_offset, plt_offset);
053a4d68 3731
9363c7c3
JY
3732 // Set the entry in the GOT, which points to plt0.
3733 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
053a4d68
JY
3734 }
3735
3a531937
JY
3736 if (this->has_tlsdesc_entry())
3737 {
3738 // Set and adjust the reserved TLSDESC PLT entry.
3739 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
3740 // The base address of the .base section.
3741 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
3742 this->got_->address();
3743 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3744 tlsdesc_got_offset, plt_offset);
3745 pov += this->get_plt_tlsdesc_entry_size();
3746 }
3747
053a4d68
JY
3748 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
3749 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
3750
3751 of->write_output_view(offset, oview_size, oview);
3752 of->write_output_view(got_file_offset, got_size, got_view);
3753}
3754
9363c7c3
JY
3755// Telling how to update the immediate field of an instruction.
3756struct AArch64_howto
3757{
3758 // The immediate field mask.
3759 elfcpp::Elf_Xword dst_mask;
3760
3761 // The offset to apply relocation immediate
3762 int doffset;
3763
3764 // The second part offset, if the immediate field has two parts.
3765 // -1 if the immediate field has only one part.
3766 int doffset2;
3767};
3768
3769static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
3770{
3771 {0, -1, -1}, // DATA
3772 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
3773 {0xffffe0, 5, -1}, // LD [23:5]-imm19
3774 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
3775 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
3776 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
3777 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
3778 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
3779 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
3780 {0x3ffffff, 0, -1}, // B [25:0]-imm26
3781 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
3782};
3783
3784// AArch64 relocate function class
3785
3786template<int size, bool big_endian>
3787class AArch64_relocate_functions
3788{
3789 public:
3790 typedef enum
3791 {
3792 STATUS_OKAY, // No error during relocation.
3793 STATUS_OVERFLOW, // Relocation overflow.
3794 STATUS_BAD_RELOC, // Relocation cannot be applied.
3795 } Status;
3796
9363c7c3
JY
3797 typedef AArch64_relocate_functions<size, big_endian> This;
3798 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
3799 typedef Relocate_info<size, big_endian> The_relocate_info;
3800 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
3801 typedef Reloc_stub<size, big_endian> The_reloc_stub;
3802 typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
3803 typedef Stub_table<size, big_endian> The_stub_table;
3804 typedef elfcpp::Rela<size, big_endian> The_rela;
9726c3c1 3805 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
9363c7c3
JY
3806
3807 // Return the page address of the address.
3808 // Page(address) = address & ~0xFFF
3809
9726c3c1 3810 static inline AArch64_valtype
9363c7c3
JY
3811 Page(Address address)
3812 {
3813 return (address & (~static_cast<Address>(0xFFF)));
3814 }
3815
83a01957 3816 private:
9363c7c3
JY
3817 // Update instruction (pointed by view) with selected bits (immed).
3818 // val = (val & ~dst_mask) | (immed << doffset)
3819
3820 template<int valsize>
3821 static inline void
3822 update_view(unsigned char* view,
9726c3c1 3823 AArch64_valtype immed,
9363c7c3
JY
3824 elfcpp::Elf_Xword doffset,
3825 elfcpp::Elf_Xword dst_mask)
3826 {
3827 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3828 Valtype* wv = reinterpret_cast<Valtype*>(view);
3829 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3830
3831 // Clear immediate fields.
3832 val &= ~dst_mask;
3833 elfcpp::Swap<valsize, big_endian>::writeval(wv,
3834 static_cast<Valtype>(val | (immed << doffset)));
3835 }
3836
3837 // Update two parts of an instruction (pointed by view) with selected
3838 // bits (immed1 and immed2).
3839 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
3840
3841 template<int valsize>
3842 static inline void
3843 update_view_two_parts(
3844 unsigned char* view,
9726c3c1
HS
3845 AArch64_valtype immed1,
3846 AArch64_valtype immed2,
9363c7c3
JY
3847 elfcpp::Elf_Xword doffset1,
3848 elfcpp::Elf_Xword doffset2,
3849 elfcpp::Elf_Xword dst_mask)
3850 {
3851 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3852 Valtype* wv = reinterpret_cast<Valtype*>(view);
3853 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3854 val &= ~dst_mask;
3855 elfcpp::Swap<valsize, big_endian>::writeval(wv,
3856 static_cast<Valtype>(val | (immed1 << doffset1) |
3857 (immed2 << doffset2)));
3858 }
3859
9726c3c1 3860 // Update adr or adrp instruction with immed.
9363c7c3
JY
3861 // In adr and adrp: [30:29] immlo [23:5] immhi
3862
3863 static inline void
9726c3c1 3864 update_adr(unsigned char* view, AArch64_valtype immed)
9363c7c3
JY
3865 {
3866 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
9363c7c3
JY
3867 This::template update_view_two_parts<32>(
3868 view,
3869 immed & 0x3,
3870 (immed & 0x1ffffc) >> 2,
3871 29,
3872 5,
3873 dst_mask);
3874 }
3875
3a531937
JY
3876 // Update movz/movn instruction with bits immed.
3877 // Set instruction to movz if is_movz is true, otherwise set instruction
3878 // to movn.
9726c3c1 3879
3a531937
JY
3880 static inline void
3881 update_movnz(unsigned char* view,
9726c3c1 3882 AArch64_valtype immed,
3a531937
JY
3883 bool is_movz)
3884 {
3885 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3886 Valtype* wv = reinterpret_cast<Valtype*>(view);
3887 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3888
3889 const elfcpp::Elf_Xword doffset =
3890 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
3891 const elfcpp::Elf_Xword dst_mask =
3892 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
3893
3894 // Clear immediate fields and opc code.
9726c3c1 3895 val &= ~(dst_mask | (0x3 << 29));
3a531937
JY
3896
3897 // Set instruction to movz or movn.
3898 // movz: [30:29] is 10 movn: [30:29] is 00
3899 if (is_movz)
9726c3c1 3900 val |= (0x2 << 29);
3a531937
JY
3901
3902 elfcpp::Swap<32, big_endian>::writeval(wv,
3903 static_cast<Valtype>(val | (immed << doffset)));
3904 }
3905
9726c3c1
HS
3906 // Update selected bits in text.
3907
3908 template<int valsize>
3909 static inline typename This::Status
3910 reloc_common(unsigned char* view, Address x,
3911 const AArch64_reloc_property* reloc_property)
3912 {
3913 // Select bits from X.
3914 Address immed = reloc_property->select_x_value(x);
3915
3916 // Update view.
3917 const AArch64_reloc_property::Reloc_inst inst =
3918 reloc_property->reloc_inst();
3919 // If it is a data relocation or instruction has 2 parts of immediate
3920 // fields, you should not call pcrela_general.
3921 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
3922 aarch64_howto[inst].doffset != -1);
3923 This::template update_view<valsize>(view, immed,
3924 aarch64_howto[inst].doffset,
3925 aarch64_howto[inst].dst_mask);
3926
3927 // Do check overflow or alignment if needed.
3928 return (reloc_property->checkup_x_value(x)
3929 ? This::STATUS_OKAY
3930 : This::STATUS_OVERFLOW);
3931 }
3932
9363c7c3
JY
3933 public:
3934
3935 // Do a simple rela relocation at unaligned addresses.
3936
3937 template<int valsize>
3938 static inline typename This::Status
3939 rela_ua(unsigned char* view,
3940 const Sized_relobj_file<size, big_endian>* object,
3941 const Symbol_value<size>* psymval,
9726c3c1 3942 AArch64_valtype addend,
9363c7c3
JY
3943 const AArch64_reloc_property* reloc_property)
3944 {
3945 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3946 Valtype;
3947 typename elfcpp::Elf_types<size>::Elf_Addr x =
3948 psymval->value(object, addend);
3949 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3950 static_cast<Valtype>(x));
3951 return (reloc_property->checkup_x_value(x)
3952 ? This::STATUS_OKAY
3953 : This::STATUS_OVERFLOW);
3954 }
3955
3956 // Do a simple pc-relative relocation at unaligned addresses.
3957
3958 template<int valsize>
3959 static inline typename This::Status
3960 pcrela_ua(unsigned char* view,
3961 const Sized_relobj_file<size, big_endian>* object,
3962 const Symbol_value<size>* psymval,
9726c3c1 3963 AArch64_valtype addend,
9363c7c3
JY
3964 Address address,
3965 const AArch64_reloc_property* reloc_property)
3966 {
3967 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3968 Valtype;
3a531937 3969 Address x = psymval->value(object, addend) - address;
9363c7c3
JY
3970 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3971 static_cast<Valtype>(x));
3972 return (reloc_property->checkup_x_value(x)
3973 ? This::STATUS_OKAY
3974 : This::STATUS_OVERFLOW);
3975 }
3976
3977 // Do a simple rela relocation at aligned addresses.
3978
3979 template<int valsize>
3980 static inline typename This::Status
3981 rela(
3982 unsigned char* view,
3983 const Sized_relobj_file<size, big_endian>* object,
3984 const Symbol_value<size>* psymval,
9726c3c1 3985 AArch64_valtype addend,
9363c7c3
JY
3986 const AArch64_reloc_property* reloc_property)
3987 {
9726c3c1 3988 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
9363c7c3 3989 Valtype* wv = reinterpret_cast<Valtype*>(view);
3a531937 3990 Address x = psymval->value(object, addend);
9726c3c1 3991 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
9363c7c3
JY
3992 return (reloc_property->checkup_x_value(x)
3993 ? This::STATUS_OKAY
3994 : This::STATUS_OVERFLOW);
3995 }
3996
3997 // Do relocate. Update selected bits in text.
3998 // new_val = (val & ~dst_mask) | (immed << doffset)
3999
4000 template<int valsize>
4001 static inline typename This::Status
4002 rela_general(unsigned char* view,
4003 const Sized_relobj_file<size, big_endian>* object,
4004 const Symbol_value<size>* psymval,
9726c3c1 4005 AArch64_valtype addend,
9363c7c3
JY
4006 const AArch64_reloc_property* reloc_property)
4007 {
4008 // Calculate relocation.
83a01957 4009 Address x = psymval->value(object, addend);
9726c3c1 4010 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
4011 }
4012
4013 // Do relocate. Update selected bits in text.
4014 // new val = (val & ~dst_mask) | (immed << doffset)
4015
4016 template<int valsize>
4017 static inline typename This::Status
4018 rela_general(
4019 unsigned char* view,
9726c3c1
HS
4020 AArch64_valtype s,
4021 AArch64_valtype addend,
9363c7c3
JY
4022 const AArch64_reloc_property* reloc_property)
4023 {
4024 // Calculate relocation.
4025 Address x = s + addend;
9726c3c1 4026 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
4027 }
4028
4029 // Do address relative relocate. Update selected bits in text.
4030 // new val = (val & ~dst_mask) | (immed << doffset)
4031
4032 template<int valsize>
4033 static inline typename This::Status
4034 pcrela_general(
4035 unsigned char* view,
4036 const Sized_relobj_file<size, big_endian>* object,
4037 const Symbol_value<size>* psymval,
9726c3c1 4038 AArch64_valtype addend,
9363c7c3
JY
4039 Address address,
4040 const AArch64_reloc_property* reloc_property)
4041 {
4042 // Calculate relocation.
3a531937 4043 Address x = psymval->value(object, addend) - address;
9726c3c1
HS
4044 return This::template reloc_common<valsize>(view, x, reloc_property);
4045 }
9363c7c3 4046
9363c7c3 4047
9726c3c1 4048 // Calculate (S + A) - address, update adr instruction.
9363c7c3 4049
9726c3c1
HS
4050 static inline typename This::Status
4051 adr(unsigned char* view,
4052 const Sized_relobj_file<size, big_endian>* object,
4053 const Symbol_value<size>* psymval,
4054 Address addend,
4055 Address address,
4056 const AArch64_reloc_property* /* reloc_property */)
4057 {
4058 AArch64_valtype x = psymval->value(object, addend) - address;
4059 // Pick bits [20:0] of X.
4060 AArch64_valtype immed = x & 0x1fffff;
4061 update_adr(view, immed);
4062 // Check -2^20 <= X < 2^20
4063 return (size == 64 && Bits<21>::has_overflow((x))
4064 ? This::STATUS_OVERFLOW
4065 : This::STATUS_OKAY);
9363c7c3
JY
4066 }
4067
4068 // Calculate PG(S+A) - PG(address), update adrp instruction.
4069 // R_AARCH64_ADR_PREL_PG_HI21
4070
4071 static inline typename This::Status
4072 adrp(
4073 unsigned char* view,
4074 Address sa,
4075 Address address)
4076 {
9726c3c1
HS
4077 AArch64_valtype x = This::Page(sa) - This::Page(address);
4078 // Pick [32:12] of X.
4079 AArch64_valtype immed = (x >> 12) & 0x1fffff;
4080 update_adr(view, immed);
83a01957
HS
4081 // Check -2^32 <= X < 2^32
4082 return (size == 64 && Bits<33>::has_overflow((x))
9363c7c3
JY
4083 ? This::STATUS_OVERFLOW
4084 : This::STATUS_OKAY);
4085 }
4086
4087 // Calculate PG(S+A) - PG(address), update adrp instruction.
4088 // R_AARCH64_ADR_PREL_PG_HI21
4089
4090 static inline typename This::Status
4091 adrp(unsigned char* view,
4092 const Sized_relobj_file<size, big_endian>* object,
4093 const Symbol_value<size>* psymval,
4094 Address addend,
4095 Address address,
4096 const AArch64_reloc_property* reloc_property)
4097 {
4098 Address sa = psymval->value(object, addend);
9726c3c1
HS
4099 AArch64_valtype x = This::Page(sa) - This::Page(address);
4100 // Pick [32:12] of X.
4101 AArch64_valtype immed = (x >> 12) & 0x1fffff;
4102 update_adr(view, immed);
9363c7c3
JY
4103 return (reloc_property->checkup_x_value(x)
4104 ? This::STATUS_OKAY
4105 : This::STATUS_OVERFLOW);
4106 }
4107
3a531937
JY
4108 // Update mov[n/z] instruction. Check overflow if needed.
4109 // If X >=0, set the instruction to movz and its immediate value to the
4110 // selected bits S.
4111 // If X < 0, set the instruction to movn and its immediate value to
4112 // NOT (selected bits of).
4113
4114 static inline typename This::Status
4115 movnz(unsigned char* view,
9726c3c1 4116 AArch64_valtype x,
3a531937
JY
4117 const AArch64_reloc_property* reloc_property)
4118 {
4119 // Select bits from X.
9726c3c1
HS
4120 Address immed;
4121 bool is_movz;
4122 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
4123 if (static_cast<SignedW>(x) >= 0)
4124 {
4125 immed = reloc_property->select_x_value(x);
4126 is_movz = true;
4127 }
4128 else
3a531937 4129 {
9726c3c1 4130 immed = reloc_property->select_x_value(~x);;
3a531937
JY
4131 is_movz = false;
4132 }
4133
4134 // Update movnz instruction.
4135 update_movnz(view, immed, is_movz);
4136
4137 // Do check overflow or alignment if needed.
4138 return (reloc_property->checkup_x_value(x)
4139 ? This::STATUS_OKAY
4140 : This::STATUS_OVERFLOW);
4141 }
4142
83a01957
HS
4143 static inline bool
4144 maybe_apply_stub(unsigned int,
4145 const The_relocate_info*,
4146 const The_rela&,
4147 unsigned char*,
4148 Address,
4149 const Sized_symbol<size>*,
4150 const Symbol_value<size>*,
4151 const Sized_relobj_file<size, big_endian>*);
4152
3a531937
JY
4153}; // End of AArch64_relocate_functions
4154
4155
83a01957
HS
4156// For a certain relocation type (usually jump/branch), test to see if the
4157// destination needs a stub to fulfil. If so, re-route the destination of the
4158// original instruction to the stub, note, at this time, the stub has already
4159// been generated.
4160
4161template<int size, bool big_endian>
4162bool
4163AArch64_relocate_functions<size, big_endian>::
4164maybe_apply_stub(unsigned int r_type,
4165 const The_relocate_info* relinfo,
4166 const The_rela& rela,
4167 unsigned char* view,
4168 Address address,
4169 const Sized_symbol<size>* gsym,
4170 const Symbol_value<size>* psymval,
4171 const Sized_relobj_file<size, big_endian>* object)
4172{
4173 if (parameters->options().relocatable())
4174 return false;
4175
4176 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
4177 Address branch_target = psymval->value(object, 0) + addend;
4178 The_reloc_stub_type stub_type = The_reloc_stub::
4179 stub_type_for_reloc(r_type, address, branch_target);
4180 if (stub_type == The_reloc_stub::ST_NONE)
4181 return false;
4182
4183 const The_aarch64_relobj* aarch64_relobj =
4184 static_cast<const The_aarch64_relobj*>(object);
4185 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
4186 gold_assert(stub_table != NULL);
4187
4188 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4189 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4190 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4191 gold_assert(stub != NULL);
4192
4193 Address new_branch_target = stub_table->address() + stub->offset();
4194 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
4195 new_branch_target - address;
4196 const AArch64_reloc_property* arp =
4197 aarch64_reloc_property_table->get_reloc_property(r_type);
4198 gold_assert(arp != NULL);
aed56ec5 4199 typename This::Status status = This::template
83a01957
HS
4200 rela_general<32>(view, branch_offset, 0, arp);
4201 if (status != This::STATUS_OKAY)
4202 gold_error(_("Stub is too far away, try a smaller value "
4203 "for '--stub-group-size'. For example, 0x2000000."));
4204 return true;
4205}
4206
4207
4208// Group input sections for stub generation.
4209//
4210// We group input sections in an output section so that the total size,
4211// including any padding space due to alignment is smaller than GROUP_SIZE
4212// unless the only input section in group is bigger than GROUP_SIZE already.
4213// Then an ARM stub table is created to follow the last input section
4214// in group. For each group an ARM stub table is created an is placed
4215// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
4216// extend the group after the stub table.
4217
4218template<int size, bool big_endian>
4219void
4220Target_aarch64<size, big_endian>::group_sections(
4221 Layout* layout,
4222 section_size_type group_size,
4223 bool stubs_always_after_branch,
4224 const Task* task)
4225{
4226 // Group input sections and insert stub table
4227 Layout::Section_list section_list;
4228 layout->get_executable_sections(&section_list);
4229 for (Layout::Section_list::const_iterator p = section_list.begin();
4230 p != section_list.end();
4231 ++p)
4232 {
4233 AArch64_output_section<size, big_endian>* output_section =
4234 static_cast<AArch64_output_section<size, big_endian>*>(*p);
4235 output_section->group_sections(group_size, stubs_always_after_branch,
4236 this, task);
4237 }
4238}
4239
4240
4241// Find the AArch64_input_section object corresponding to the SHNDX-th input
4242// section of RELOBJ.
4243
4244template<int size, bool big_endian>
4245AArch64_input_section<size, big_endian>*
4246Target_aarch64<size, big_endian>::find_aarch64_input_section(
4247 Relobj* relobj, unsigned int shndx) const
4248{
4249 Section_id sid(relobj, shndx);
4250 typename AArch64_input_section_map::const_iterator p =
4251 this->aarch64_input_section_map_.find(sid);
4252 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
4253}
4254
4255
4256// Make a new AArch64_input_section object.
4257
4258template<int size, bool big_endian>
4259AArch64_input_section<size, big_endian>*
4260Target_aarch64<size, big_endian>::new_aarch64_input_section(
4261 Relobj* relobj, unsigned int shndx)
4262{
4263 Section_id sid(relobj, shndx);
4264
4265 AArch64_input_section<size, big_endian>* input_section =
4266 new AArch64_input_section<size, big_endian>(relobj, shndx);
4267 input_section->init();
4268
4269 // Register new AArch64_input_section in map for look-up.
4270 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
4271 this->aarch64_input_section_map_.insert(
4272 std::make_pair(sid, input_section));
4273
4274 // Make sure that it we have not created another AArch64_input_section
4275 // for this input section already.
4276 gold_assert(ins.second);
4277
4278 return input_section;
4279}
4280
4281
4282// Relaxation hook. This is where we do stub generation.
4283
4284template<int size, bool big_endian>
4285bool
4286Target_aarch64<size, big_endian>::do_relax(
4287 int pass,
4288 const Input_objects* input_objects,
4289 Symbol_table* symtab,
4290 Layout* layout ,
4291 const Task* task)
4292{
4293 gold_assert(!parameters->options().relocatable());
4294 if (pass == 1)
4295 {
4296 section_size_type stub_group_size =
4297 parameters->options().stub_group_size();
4298 if (stub_group_size == 1)
4299 {
4300 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
4301 // will fail to link. The user will have to relink with an explicit
4302 // group size option.
4303 stub_group_size = The_reloc_stub::MAX_BRANCH_OFFSET - 4096 * 4;
4304 }
4305 group_sections(layout, stub_group_size, true, task);
4306 }
4307 else
4308 {
4309 // If this is not the first pass, addresses and file offsets have
4310 // been reset at this point, set them here.
4311 for (Stub_table_iterator sp = this->stub_tables_.begin();
4312 sp != this->stub_tables_.end(); ++sp)
4313 {
4314 The_stub_table* stt = *sp;
4315 The_aarch64_input_section* owner = stt->owner();
4316 off_t off = align_address(owner->original_size(),
4317 stt->addralign());
4318 stt->set_address_and_file_offset(owner->address() + off,
4319 owner->offset() + off);
4320 }
4321 }
4322
4323 // Scan relocs for relocation stubs
4324 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
4325 op != input_objects->relobj_end();
4326 ++op)
4327 {
4328 The_aarch64_relobj* aarch64_relobj =
4329 static_cast<The_aarch64_relobj*>(*op);
4330 // Lock the object so we can read from it. This is only called
4331 // single-threaded from Layout::finalize, so it is OK to lock.
4332 Task_lock_obj<Object> tl(task, aarch64_relobj);
4333 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
4334 }
4335
4336 bool any_stub_table_changed = false;
4337 for (Stub_table_iterator siter = this->stub_tables_.begin();
4338 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
4339 {
4340 The_stub_table* stub_table = *siter;
4341 if (stub_table->update_data_size_changed_p())
4342 {
4343 The_aarch64_input_section* owner = stub_table->owner();
4344 uint64_t address = owner->address();
4345 off_t offset = owner->offset();
4346 owner->reset_address_and_file_offset();
4347 owner->set_address_and_file_offset(address, offset);
4348
4349 any_stub_table_changed = true;
4350 }
4351 }
4352
4353 // Do not continue relaxation.
4354 bool continue_relaxation = any_stub_table_changed;
4355 if (!continue_relaxation)
4356 for (Stub_table_iterator sp = this->stub_tables_.begin();
4357 (sp != this->stub_tables_.end());
4358 ++sp)
4359 (*sp)->finalize_stubs();
4360
4361 return continue_relaxation;
4362}
4363
4364
4365// Make a new Stub_table.
4366
4367template<int size, bool big_endian>
4368Stub_table<size, big_endian>*
4369Target_aarch64<size, big_endian>::new_stub_table(
4370 AArch64_input_section<size, big_endian>* owner)
4371{
4372 Stub_table<size, big_endian>* stub_table =
4373 new Stub_table<size, big_endian>(owner);
4374 stub_table->set_address(align_address(
4375 owner->address() + owner->data_size(), 8));
4376 stub_table->set_file_offset(owner->offset() + owner->data_size());
4377 stub_table->finalize_data_size();
4378
4379 this->stub_tables_.push_back(stub_table);
4380
4381 return stub_table;
4382}
4383
4384
3a531937
JY
4385template<int size, bool big_endian>
4386typename elfcpp::Elf_types<size>::Elf_Addr
4387Target_aarch64<size, big_endian>::do_reloc_addend(
4388 void* arg, unsigned int r_type,
4389 typename elfcpp::Elf_types<size>::Elf_Addr) const
4390{
4391 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
4392 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4393 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4394 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4395 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4396 gold_assert(psymval->is_tls_symbol());
4397 // The value of a TLS symbol is the offset in the TLS segment.
4398 return psymval->value(ti.object, 0);
4399}
9363c7c3 4400
053a4d68
JY
4401// Return the number of entries in the PLT.
4402
4403template<int size, bool big_endian>
4404unsigned int
4405Target_aarch64<size, big_endian>::plt_entry_count() const
4406{
4407 if (this->plt_ == NULL)
4408 return 0;
4409 return this->plt_->entry_count();
4410}
4411
4412// Return the offset of the first non-reserved PLT entry.
4413
4414template<int size, bool big_endian>
4415unsigned int
4416Target_aarch64<size, big_endian>::first_plt_entry_offset() const
4417{
4418 return this->plt_->first_plt_entry_offset();
4419}
4420
4421// Return the size of each PLT entry.
4422
4423template<int size, bool big_endian>
4424unsigned int
4425Target_aarch64<size, big_endian>::plt_entry_size() const
4426{
4427 return this->plt_->get_plt_entry_size();
4428}
4429
3a531937 4430// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
053a4d68
JY
4431
4432template<int size, bool big_endian>
3a531937
JY
4433void
4434Target_aarch64<size, big_endian>::define_tls_base_symbol(
4435 Symbol_table* symtab, Layout* layout)
053a4d68 4436{
3a531937
JY
4437 if (this->tls_base_symbol_defined_)
4438 return;
4439
4440 Output_segment* tls_segment = layout->tls_segment();
4441 if (tls_segment != NULL)
4442 {
4443 bool is_exec = parameters->options().output_is_executable();
4444 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
4445 Symbol_table::PREDEFINED,
4446 tls_segment, 0, 0,
4447 elfcpp::STT_TLS,
4448 elfcpp::STB_LOCAL,
4449 elfcpp::STV_HIDDEN, 0,
4450 (is_exec
4451 ? Symbol::SEGMENT_END
4452 : Symbol::SEGMENT_START),
4453 true);
4454 }
4455 this->tls_base_symbol_defined_ = true;
053a4d68
JY
4456}
4457
3a531937 4458// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
053a4d68
JY
4459
4460template<int size, bool big_endian>
3a531937
JY
4461void
4462Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
4463 Symbol_table* symtab, Layout* layout)
053a4d68 4464{
3a531937
JY
4465 if (this->plt_ == NULL)
4466 this->make_plt_section(symtab, layout);
4467
4468 if (!this->plt_->has_tlsdesc_entry())
053a4d68 4469 {
3a531937
JY
4470 // Allocate the TLSDESC_GOT entry.
4471 Output_data_got_aarch64<size, big_endian>* got =
4472 this->got_section(symtab, layout);
4473 unsigned int got_offset = got->add_constant(0);
4474
4475 // Allocate the TLSDESC_PLT entry.
4476 this->plt_->reserve_tlsdesc_entry(got_offset);
053a4d68 4477 }
053a4d68
JY
4478}
4479
3a531937 4480// Create a GOT entry for the TLS module index.
053a4d68
JY
4481
4482template<int size, bool big_endian>
3a531937
JY
4483unsigned int
4484Target_aarch64<size, big_endian>::got_mod_index_entry(
4485 Symbol_table* symtab, Layout* layout,
4486 Sized_relobj_file<size, big_endian>* object)
4487{
4488 if (this->got_mod_index_offset_ == -1U)
4489 {
4490 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4491 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4492 Output_data_got_aarch64<size, big_endian>* got =
4493 this->got_section(symtab, layout);
4494 unsigned int got_offset = got->add_constant(0);
4495 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
4496 got_offset, 0);
4497 got->add_constant(0);
4498 this->got_mod_index_offset_ = got_offset;
4499 }
4500 return this->got_mod_index_offset_;
4501}
4502
4503// Optimize the TLS relocation type based on what we know about the
4504// symbol. IS_FINAL is true if the final address of this symbol is
4505// known at link time.
4506
4507template<int size, bool big_endian>
4508tls::Tls_optimization
4509Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
4510 int r_type)
4511{
4512 // If we are generating a shared library, then we can't do anything
4513 // in the linker
4514 if (parameters->options().shared())
4515 return tls::TLSOPT_NONE;
4516
4517 switch (r_type)
4518 {
4519 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4520 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4521 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
4522 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
4523 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4524 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4525 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4526 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
4527 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
4528 case elfcpp::R_AARCH64_TLSDESC_LDR:
4529 case elfcpp::R_AARCH64_TLSDESC_ADD:
4530 case elfcpp::R_AARCH64_TLSDESC_CALL:
4531 // These are General-Dynamic which permits fully general TLS
4532 // access. Since we know that we are generating an executable,
4533 // we can convert this to Initial-Exec. If we also know that
4534 // this is a local symbol, we can further switch to Local-Exec.
4535 if (is_final)
4536 return tls::TLSOPT_TO_LE;
4537 return tls::TLSOPT_TO_IE;
4538
9726c3c1
HS
4539 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4540 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4541 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4542 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4543 // These are Local-Dynamic, which refer to local symbols in the
4544 // dynamic TLS block. Since we know that we generating an
4545 // executable, we can switch to Local-Exec.
4546 return tls::TLSOPT_TO_LE;
4547
3a531937
JY
4548 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4549 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4550 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4551 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4552 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4553 // These are Initial-Exec relocs which get the thread offset
4554 // from the GOT. If we know that we are linking against the
4555 // local symbol, we can switch to Local-Exec, which links the
4556 // thread offset into the instruction.
4557 if (is_final)
4558 return tls::TLSOPT_TO_LE;
4559 return tls::TLSOPT_NONE;
4560
4561 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
4562 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
4563 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4564 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
4565 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4566 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4567 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4568 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4569 // When we already have Local-Exec, there is nothing further we
4570 // can do.
4571 return tls::TLSOPT_NONE;
4572
4573 default:
4574 gold_unreachable();
4575 }
4576}
4577
4578// Returns true if this relocation type could be that of a function pointer.
4579
4580template<int size, bool big_endian>
4581inline bool
4582Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
4583 unsigned int r_type)
4584{
4585 switch (r_type)
4586 {
9726c3c1
HS
4587 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
4588 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
4589 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
4590 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
4591 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
3a531937
JY
4592 {
4593 return true;
4594 }
4595 }
4596 return false;
4597}
4598
4599// For safe ICF, scan a relocation for a local symbol to check if it
4600// corresponds to a function pointer being taken. In that case mark
4601// the function whose pointer was taken as not foldable.
4602
4603template<int size, bool big_endian>
4604inline bool
4605Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
4606 Symbol_table* ,
053a4d68
JY
4607 Layout* ,
4608 Target_aarch64<size, big_endian>* ,
4609 Sized_relobj_file<size, big_endian>* ,
4610 unsigned int ,
4611 Output_section* ,
4612 const elfcpp::Rela<size, big_endian>& ,
4613 unsigned int r_type,
4614 const elfcpp::Sym<size, big_endian>&)
4615{
9726c3c1 4616 // When building a shared library, do not fold any local symbols.
053a4d68 4617 return (parameters->options().shared()
9363c7c3 4618 || possible_function_pointer_reloc(r_type));
053a4d68
JY
4619}
4620
4621// For safe ICF, scan a relocation for a global symbol to check if it
4622// corresponds to a function pointer being taken. In that case mark
4623// the function whose pointer was taken as not foldable.
4624
4625template<int size, bool big_endian>
4626inline bool
4627Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
4628 Symbol_table* ,
4629 Layout* ,
4630 Target_aarch64<size, big_endian>* ,
4631 Sized_relobj_file<size, big_endian>* ,
4632 unsigned int ,
4633 Output_section* ,
4634 const elfcpp::Rela<size, big_endian>& ,
4635 unsigned int r_type,
4636 Symbol* gsym)
4637{
4638 // When building a shared library, do not fold symbols whose visibility
4639 // is hidden, internal or protected.
4640 return ((parameters->options().shared()
9363c7c3
JY
4641 && (gsym->visibility() == elfcpp::STV_INTERNAL
4642 || gsym->visibility() == elfcpp::STV_PROTECTED
4643 || gsym->visibility() == elfcpp::STV_HIDDEN))
4644 || possible_function_pointer_reloc(r_type));
053a4d68
JY
4645}
4646
4647// Report an unsupported relocation against a local symbol.
4648
4649template<int size, bool big_endian>
4650void
4651Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
4652 Sized_relobj_file<size, big_endian>* object,
4653 unsigned int r_type)
4654{
4655 gold_error(_("%s: unsupported reloc %u against local symbol"),
4656 object->name().c_str(), r_type);
4657}
4658
4659// We are about to emit a dynamic relocation of type R_TYPE. If the
4660// dynamic linker does not support it, issue an error.
4661
4662template<int size, bool big_endian>
4663void
4664Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
9363c7c3 4665 unsigned int r_type)
053a4d68
JY
4666{
4667 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
4668
4669 switch (r_type)
4670 {
4671 // These are the relocation types supported by glibc for AARCH64.
4672 case elfcpp::R_AARCH64_NONE:
4673 case elfcpp::R_AARCH64_COPY:
4674 case elfcpp::R_AARCH64_GLOB_DAT:
4675 case elfcpp::R_AARCH64_JUMP_SLOT:
4676 case elfcpp::R_AARCH64_RELATIVE:
4677 case elfcpp::R_AARCH64_TLS_DTPREL64:
4678 case elfcpp::R_AARCH64_TLS_DTPMOD64:
4679 case elfcpp::R_AARCH64_TLS_TPREL64:
4680 case elfcpp::R_AARCH64_TLSDESC:
4681 case elfcpp::R_AARCH64_IRELATIVE:
4682 case elfcpp::R_AARCH64_ABS32:
4683 case elfcpp::R_AARCH64_ABS64:
4684 return;
4685
4686 default:
4687 break;
4688 }
4689
4690 // This prevents us from issuing more than one error per reloc
4691 // section. But we can still wind up issuing more than one
4692 // error per object file.
4693 if (this->issued_non_pic_error_)
4694 return;
4695 gold_assert(parameters->options().output_is_position_independent());
4696 object->error(_("requires unsupported dynamic reloc; "
9363c7c3 4697 "recompile with -fPIC"));
053a4d68
JY
4698 this->issued_non_pic_error_ = true;
4699 return;
4700}
4701
9726c3c1
HS
4702// Return whether we need to make a PLT entry for a relocation of the
4703// given type against a STT_GNU_IFUNC symbol.
4704
4705template<int size, bool big_endian>
4706bool
4707Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4708 Sized_relobj_file<size, big_endian>* object,
4709 unsigned int r_type)
4710{
4711 const AArch64_reloc_property* arp =
4712 aarch64_reloc_property_table->get_reloc_property(r_type);
4713 gold_assert(arp != NULL);
4714
4715 int flags = arp->reference_flags();
4716 if (flags & Symbol::TLS_REF)
4717 {
4718 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
4719 object->name().c_str(), arp->name().c_str());
4720 return false;
4721 }
4722 return flags != 0;
4723}
4724
053a4d68
JY
4725// Scan a relocation for a local symbol.
4726
4727template<int size, bool big_endian>
4728inline void
4729Target_aarch64<size, big_endian>::Scan::local(
8e33481e
HS
4730 Symbol_table* symtab,
4731 Layout* layout,
4732 Target_aarch64<size, big_endian>* target,
9363c7c3 4733 Sized_relobj_file<size, big_endian>* object,
8e33481e
HS
4734 unsigned int data_shndx,
4735 Output_section* output_section,
4736 const elfcpp::Rela<size, big_endian>& rela,
053a4d68 4737 unsigned int r_type,
9726c3c1 4738 const elfcpp::Sym<size, big_endian>& lsym,
053a4d68
JY
4739 bool is_discarded)
4740{
4741 if (is_discarded)
4742 return;
4743
8e33481e 4744 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3a531937
JY
4745 Reloc_section;
4746 Output_data_got_aarch64<size, big_endian>* got =
4747 target->got_section(symtab, layout);
4748 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8e33481e 4749
9726c3c1
HS
4750 // A local STT_GNU_IFUNC symbol may require a PLT entry.
4751 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4752 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4753 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4754
053a4d68
JY
4755 switch (r_type)
4756 {
9363c7c3
JY
4757 case elfcpp::R_AARCH64_ABS32:
4758 case elfcpp::R_AARCH64_ABS16:
8e33481e
HS
4759 if (parameters->options().output_is_position_independent())
4760 {
4761 gold_error(_("%s: unsupported reloc %u in pos independent link."),
4762 object->name().c_str(), r_type);
4763 }
4764 break;
4765
4766 case elfcpp::R_AARCH64_ABS64:
9363c7c3
JY
4767 // If building a shared library or pie, we need to mark this as a dynmic
4768 // reloction, so that the dynamic loader can relocate it.
9363c7c3
JY
4769 if (parameters->options().output_is_position_independent())
4770 {
8e33481e 4771 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8e33481e
HS
4772 rela_dyn->add_local_relative(object, r_sym,
4773 elfcpp::R_AARCH64_RELATIVE,
4774 output_section,
4775 data_shndx,
4776 rela.get_r_offset(),
4777 rela.get_r_addend(),
9726c3c1 4778 is_ifunc);
9363c7c3
JY
4779 }
4780 break;
4781
8e33481e
HS
4782 case elfcpp::R_AARCH64_PREL64:
4783 case elfcpp::R_AARCH64_PREL32:
4784 case elfcpp::R_AARCH64_PREL16:
4785 break;
4786
3a531937
JY
4787 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
4788 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
4789 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
4790 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
4791 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
4792 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
4793 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
4794 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
4795 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 4796 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
3a531937 4797 break;
053a4d68 4798
8e33481e
HS
4799 // Control flow, pc-relative. We don't need to do anything for a relative
4800 // addressing relocation against a local symbol if it does not reference
4801 // the GOT.
4802 case elfcpp::R_AARCH64_TSTBR14:
4803 case elfcpp::R_AARCH64_CONDBR19:
4804 case elfcpp::R_AARCH64_JUMP26:
4805 case elfcpp::R_AARCH64_CALL26:
4806 break;
4807
4808 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4809 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4810 {
3a531937
JY
4811 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4812 optimize_tls_reloc(!parameters->options().shared(), r_type);
4813 if (tlsopt == tls::TLSOPT_TO_LE)
4814 break;
4815
8e33481e
HS
4816 layout->set_has_static_tls();
4817 // Create a GOT entry for the tp-relative offset.
8e33481e
HS
4818 if (!parameters->doing_static_link())
4819 {
4820 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
4821 target->rela_dyn_section(layout),
4822 elfcpp::R_AARCH64_TLS_TPREL64);
4823 }
4824 else if (!object->local_has_got_offset(r_sym,
4825 GOT_TYPE_TLS_OFFSET))
4826 {
4827 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
4828 unsigned int got_offset =
4829 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
4830 const elfcpp::Elf_Xword addend = rela.get_r_addend();
4831 gold_assert(addend == 0);
4832 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
4833 object, r_sym);
4834 }
4835 }
4836 break;
4837
3a531937
JY
4838 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4839 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4840 {
4841 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4842 optimize_tls_reloc(!parameters->options().shared(), r_type);
4843 if (tlsopt == tls::TLSOPT_TO_LE)
4844 {
4845 layout->set_has_static_tls();
4846 break;
4847 }
4848 gold_assert(tlsopt == tls::TLSOPT_NONE);
4849
4850 got->add_local_pair_with_rel(object,r_sym, data_shndx,
4851 GOT_TYPE_TLS_PAIR,
4852 target->rela_dyn_section(layout),
4853 elfcpp::R_AARCH64_TLS_DTPMOD64);
4854 }
4855 break;
4856
8e33481e
HS
4857 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4858 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4859 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4860 {
4861 layout->set_has_static_tls();
4862 bool output_is_shared = parameters->options().shared();
4863 if (output_is_shared)
3a531937 4864 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
8e33481e
HS
4865 object->name().c_str(), r_type);
4866 }
9363c7c3
JY
4867 break;
4868
9726c3c1
HS
4869 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4870 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4871 {
4872 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4873 optimize_tls_reloc(!parameters->options().shared(), r_type);
4874 if (tlsopt == tls::TLSOPT_NONE)
4875 {
4876 // Create a GOT entry for the module index.
4877 target->got_mod_index_entry(symtab, layout, object);
4878 }
4879 else if (tlsopt != tls::TLSOPT_TO_LE)
4880 unsupported_reloc_local(object, r_type);
4881 }
4882 break;
4883
4884 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4885 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4886 break;
4887
3a531937
JY
4888 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4889 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4890 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4891 {
4892 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4893 optimize_tls_reloc(!parameters->options().shared(), r_type);
4894 target->define_tls_base_symbol(symtab, layout);
4895 if (tlsopt == tls::TLSOPT_NONE)
4896 {
4897 // Create reserved PLT and GOT entries for the resolver.
4898 target->reserve_tlsdesc_entries(symtab, layout);
4899
4900 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
4901 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
4902 // entry needs to be in an area in .got.plt, not .got. Call
4903 // got_section to make sure the section has been created.
4904 target->got_section(symtab, layout);
4905 Output_data_got<size, big_endian>* got =
4906 target->got_tlsdesc_section();
4907 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4908 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
4909 {
4910 unsigned int got_offset = got->add_constant(0);
4911 got->add_constant(0);
4912 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
4913 got_offset);
4914 Reloc_section* rt = target->rela_tlsdesc_section(layout);
4915 // We store the arguments we need in a vector, and use
4916 // the index into the vector as the parameter to pass
4917 // to the target specific routines.
4918 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
4919 void* arg = reinterpret_cast<void*>(intarg);
4920 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
4921 got, got_offset, 0);
4922 }
4923 }
4924 else if (tlsopt != tls::TLSOPT_TO_LE)
4925 unsupported_reloc_local(object, r_type);
4926 }
4927 break;
4928
4929 case elfcpp::R_AARCH64_TLSDESC_CALL:
4930 break;
4931
9363c7c3
JY
4932 default:
4933 unsupported_reloc_local(object, r_type);
053a4d68
JY
4934 }
4935}
4936
4937
4938// Report an unsupported relocation against a global symbol.
4939
4940template<int size, bool big_endian>
4941void
4942Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
4943 Sized_relobj_file<size, big_endian>* object,
4944 unsigned int r_type,
4945 Symbol* gsym)
4946{
4947 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4948 object->name().c_str(), r_type, gsym->demangled_name().c_str());
4949}
4950
4951template<int size, bool big_endian>
4952inline void
4953Target_aarch64<size, big_endian>::Scan::global(
9363c7c3
JY
4954 Symbol_table* symtab,
4955 Layout* layout,
4956 Target_aarch64<size, big_endian>* target,
8e33481e
HS
4957 Sized_relobj_file<size, big_endian> * object,
4958 unsigned int data_shndx,
4959 Output_section* output_section,
4960 const elfcpp::Rela<size, big_endian>& rela,
9363c7c3
JY
4961 unsigned int r_type,
4962 Symbol* gsym)
053a4d68 4963{
9726c3c1
HS
4964 // A STT_GNU_IFUNC symbol may require a PLT entry.
4965 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4966 && this->reloc_needs_plt_for_ifunc(object, r_type))
4967 target->make_plt_entry(symtab, layout, gsym);
4968
8e33481e
HS
4969 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4970 Reloc_section;
3a531937
JY
4971 const AArch64_reloc_property* arp =
4972 aarch64_reloc_property_table->get_reloc_property(r_type);
4973 gold_assert(arp != NULL);
4974
9363c7c3
JY
4975 switch (r_type)
4976 {
8e33481e
HS
4977 case elfcpp::R_AARCH64_ABS16:
4978 case elfcpp::R_AARCH64_ABS32:
9363c7c3 4979 case elfcpp::R_AARCH64_ABS64:
8e33481e
HS
4980 {
4981 // Make a PLT entry if necessary.
4982 if (gsym->needs_plt_entry())
4983 {
4984 target->make_plt_entry(symtab, layout, gsym);
4985 // Since this is not a PC-relative relocation, we may be
4986 // taking the address of a function. In that case we need to
4987 // set the entry in the dynamic symbol table to the address of
4988 // the PLT entry.
4989 if (gsym->is_from_dynobj() && !parameters->options().shared())
4990 gsym->set_needs_dynsym_value();
4991 }
4992 // Make a dynamic relocation if necessary.
8e33481e
HS
4993 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
4994 {
4995 if (!parameters->options().output_is_position_independent()
4996 && gsym->may_need_copy_reloc())
4997 {
3a531937
JY
4998 target->copy_reloc(symtab, layout, object,
4999 data_shndx, output_section, gsym, rela);
8e33481e 5000 }
9726c3c1
HS
5001 else if (r_type == elfcpp::R_AARCH64_ABS64
5002 && gsym->type() == elfcpp::STT_GNU_IFUNC
5003 && gsym->can_use_relative_reloc(false)
5004 && !gsym->is_from_dynobj()
5005 && !gsym->is_undefined()
5006 && !gsym->is_preemptible())
5007 {
5008 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
5009 // symbol. This makes a function address in a PIE executable
5010 // match the address in a shared library that it links against.
5011 Reloc_section* rela_dyn =
5012 target->rela_irelative_section(layout);
5013 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
5014 rela_dyn->add_symbolless_global_addend(gsym, r_type,
5015 output_section, object,
5016 data_shndx,
5017 rela.get_r_offset(),
5018 rela.get_r_addend());
5019 }
8e33481e
HS
5020 else if (r_type == elfcpp::R_AARCH64_ABS64
5021 && gsym->can_use_relative_reloc(false))
5022 {
5023 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5024 rela_dyn->add_global_relative(gsym,
5025 elfcpp::R_AARCH64_RELATIVE,
5026 output_section,
5027 object,
5028 data_shndx,
5029 rela.get_r_offset(),
5030 rela.get_r_addend(),
5031 false);
5032 }
5033 else
5034 {
5035 check_non_pic(object, r_type);
5036 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
5037 rela_dyn = target->rela_dyn_section(layout);
5038 rela_dyn->add_global(
5039 gsym, r_type, output_section, object,
5040 data_shndx, rela.get_r_offset(),rela.get_r_addend());
5041 }
5042 }
5043 }
5044 break;
5045
5046 case elfcpp::R_AARCH64_PREL16:
5047 case elfcpp::R_AARCH64_PREL32:
5048 case elfcpp::R_AARCH64_PREL64:
9363c7c3
JY
5049 // This is used to fill the GOT absolute address.
5050 if (gsym->needs_plt_entry())
5051 {
5052 target->make_plt_entry(symtab, layout, gsym);
5053 }
5054 break;
5055
3a531937
JY
5056 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
5057 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
5058 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
5059 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5060 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
5061 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
5062 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
5063 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
5064 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 5065 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
9363c7c3 5066 {
3a531937
JY
5067 if (gsym->needs_plt_entry())
5068 target->make_plt_entry(symtab, layout, gsym);
5069 // Make a dynamic relocation if necessary.
5070 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5071 {
5072 if (parameters->options().output_is_executable()
5073 && gsym->may_need_copy_reloc())
5074 {
5075 target->copy_reloc(symtab, layout, object,
5076 data_shndx, output_section, gsym, rela);
5077 }
5078 }
9363c7c3
JY
5079 break;
5080 }
5081
5082 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5083 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5084 {
5085 // This pair of relocations is used to access a specific GOT entry.
5086 // Note a GOT entry is an *address* to a symbol.
5087 // The symbol requires a GOT entry
5088 Output_data_got_aarch64<size, big_endian>* got =
5089 target->got_section(symtab, layout);
5090 if (gsym->final_value_is_known())
5091 {
9726c3c1
HS
5092 // For a STT_GNU_IFUNC symbol we want the PLT address.
5093 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5094 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5095 else
5096 got->add_global(gsym, GOT_TYPE_STANDARD);
9363c7c3
JY
5097 }
5098 else
5099 {
9726c3c1
HS
5100 // If this symbol is not fully resolved, we need to add a dynamic
5101 // relocation for it.
9363c7c3 5102 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9726c3c1
HS
5103
5104 // Use a GLOB_DAT rather than a RELATIVE reloc if:
5105 //
5106 // 1) The symbol may be defined in some other module.
5107 // 2) We are building a shared library and this is a protected
5108 // symbol; using GLOB_DAT means that the dynamic linker can use
5109 // the address of the PLT in the main executable when appropriate
5110 // so that function address comparisons work.
5111 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
5112 // again so that function address comparisons work.
9363c7c3
JY
5113 if (gsym->is_from_dynobj()
5114 || gsym->is_undefined()
5115 || gsym->is_preemptible()
5116 || (gsym->visibility() == elfcpp::STV_PROTECTED
9726c3c1
HS
5117 && parameters->options().shared())
5118 || (gsym->type() == elfcpp::STT_GNU_IFUNC
5119 && parameters->options().output_is_position_independent()))
9363c7c3
JY
5120 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
5121 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
5122 else
5123 {
9726c3c1
HS
5124 // For a STT_GNU_IFUNC symbol we want to write the PLT
5125 // offset into the GOT, so that function pointer
5126 // comparisons work correctly.
5127 bool is_new;
5128 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
5129 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
5130 else
5131 {
5132 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5133 // Tell the dynamic linker to use the PLT address
5134 // when resolving relocations.
5135 if (gsym->is_from_dynobj()
5136 && !parameters->options().shared())
5137 gsym->set_needs_dynsym_value();
5138 }
5139 if (is_new)
3a531937
JY
5140 {
5141 rela_dyn->add_global_relative(
5142 gsym, elfcpp::R_AARCH64_RELATIVE,
5143 got,
5144 gsym->got_offset(GOT_TYPE_STANDARD),
5145 0,
5146 false);
5147 }
9363c7c3
JY
5148 }
5149 }
5150 break;
5151 }
5152
8e33481e
HS
5153 case elfcpp::R_AARCH64_TSTBR14:
5154 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
5155 case elfcpp::R_AARCH64_JUMP26:
5156 case elfcpp::R_AARCH64_CALL26:
5157 {
5158 if (gsym->final_value_is_known())
5159 break;
5160
5161 if (gsym->is_defined() &&
5162 !gsym->is_from_dynobj() &&
5163 !gsym->is_preemptible())
5164 break;
5165
5166 // Make plt entry for function call.
9363c7c3
JY
5167 target->make_plt_entry(symtab, layout, gsym);
5168 break;
5169 }
5170
3a531937
JY
5171 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5172 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
5173 {
5174 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5175 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5176 if (tlsopt == tls::TLSOPT_TO_LE)
5177 {
5178 layout->set_has_static_tls();
5179 break;
5180 }
5181 gold_assert(tlsopt == tls::TLSOPT_NONE);
5182
5183 // General dynamic.
5184 Output_data_got_aarch64<size, big_endian>* got =
5185 target->got_section(symtab, layout);
5186 // Create 2 consecutive entries for module index and offset.
5187 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
5188 target->rela_dyn_section(layout),
5189 elfcpp::R_AARCH64_TLS_DTPMOD64,
5190 elfcpp::R_AARCH64_TLS_DTPREL64);
5191 }
5192 break;
5193
9726c3c1
HS
5194 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5195 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
5196 {
5197 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5198 optimize_tls_reloc(!parameters->options().shared(), r_type);
5199 if (tlsopt == tls::TLSOPT_NONE)
5200 {
5201 // Create a GOT entry for the module index.
5202 target->got_mod_index_entry(symtab, layout, object);
5203 }
5204 else if (tlsopt != tls::TLSOPT_TO_LE)
5205 unsupported_reloc_local(object, r_type);
5206 }
5207 break;
5208
5209 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5210 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC: // Other local dynamic
5211 break;
5212
8e33481e 5213 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 5214 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
8e33481e 5215 {
9726c3c1 5216 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
3a531937
JY
5217 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5218 if (tlsopt == tls::TLSOPT_TO_LE)
5219 break;
5220
8e33481e
HS
5221 layout->set_has_static_tls();
5222 // Create a GOT entry for the tp-relative offset.
5223 Output_data_got_aarch64<size, big_endian>* got
5224 = target->got_section(symtab, layout);
5225 if (!parameters->doing_static_link())
5226 {
5227 got->add_global_with_rel(
5228 gsym, GOT_TYPE_TLS_OFFSET,
5229 target->rela_dyn_section(layout),
5230 elfcpp::R_AARCH64_TLS_TPREL64);
5231 }
5232 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
5233 {
5234 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
5235 unsigned int got_offset =
5236 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
5237 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5238 gold_assert(addend == 0);
5239 got->add_static_reloc(got_offset,
5240 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
5241 }
5242 }
5243 break;
5244
5245 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5246 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
3a531937 5247 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
8e33481e
HS
5248 layout->set_has_static_tls();
5249 if (parameters->options().shared())
5250 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
5251 object->name().c_str(), r_type);
5252 break;
5253
3a531937
JY
5254 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5255 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5256 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
5257 {
5258 target->define_tls_base_symbol(symtab, layout);
5259 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5260 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5261 if (tlsopt == tls::TLSOPT_NONE)
5262 {
5263 // Create reserved PLT and GOT entries for the resolver.
5264 target->reserve_tlsdesc_entries(symtab, layout);
5265
5266 // Create a double GOT entry with an R_AARCH64_TLSDESC
5267 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
5268 // entry needs to be in an area in .got.plt, not .got. Call
5269 // got_section to make sure the section has been created.
5270 target->got_section(symtab, layout);
5271 Output_data_got<size, big_endian>* got =
5272 target->got_tlsdesc_section();
5273 Reloc_section* rt = target->rela_tlsdesc_section(layout);
5274 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
5275 elfcpp::R_AARCH64_TLSDESC, 0);
5276 }
5277 else if (tlsopt == tls::TLSOPT_TO_IE)
5278 {
5279 // Create a GOT entry for the tp-relative offset.
5280 Output_data_got<size, big_endian>* got
5281 = target->got_section(symtab, layout);
5282 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
5283 target->rela_dyn_section(layout),
5284 elfcpp::R_AARCH64_TLS_TPREL64);
5285 }
5286 else if (tlsopt != tls::TLSOPT_TO_LE)
5287 unsupported_reloc_global(object, r_type, gsym);
5288 }
5289 break;
5290
5291 case elfcpp::R_AARCH64_TLSDESC_CALL:
5292 break;
5293
9363c7c3 5294 default:
8e33481e 5295 gold_error(_("%s: unsupported reloc type in global scan"),
3a531937
JY
5296 aarch64_reloc_property_table->
5297 reloc_name_in_error_message(r_type).c_str());
9363c7c3 5298 }
053a4d68 5299 return;
9363c7c3
JY
5300} // End of Scan::global
5301
3a531937 5302
9363c7c3
JY
5303// Create the PLT section.
5304template<int size, bool big_endian>
5305void
5306Target_aarch64<size, big_endian>::make_plt_section(
5307 Symbol_table* symtab, Layout* layout)
5308{
5309 if (this->plt_ == NULL)
5310 {
5311 // Create the GOT section first.
5312 this->got_section(symtab, layout);
5313
3a531937
JY
5314 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
5315 this->got_irelative_);
9363c7c3
JY
5316
5317 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
5318 (elfcpp::SHF_ALLOC
5319 | elfcpp::SHF_EXECINSTR),
5320 this->plt_, ORDER_PLT, false);
5321
5322 // Make the sh_info field of .rela.plt point to .plt.
5323 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
5324 rela_plt_os->set_info_section(this->plt_->output_section());
5325 }
5326}
5327
3a531937
JY
5328// Return the section for TLSDESC relocations.
5329
5330template<int size, bool big_endian>
5331typename Target_aarch64<size, big_endian>::Reloc_section*
5332Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
5333{
5334 return this->plt_section()->rela_tlsdesc(layout);
5335}
5336
9363c7c3
JY
5337// Create a PLT entry for a global symbol.
5338
5339template<int size, bool big_endian>
5340void
5341Target_aarch64<size, big_endian>::make_plt_entry(
5342 Symbol_table* symtab,
5343 Layout* layout,
5344 Symbol* gsym)
5345{
5346 if (gsym->has_plt_offset())
5347 return;
5348
5349 if (this->plt_ == NULL)
5350 this->make_plt_section(symtab, layout);
5351
9726c3c1
HS
5352 this->plt_->add_entry(symtab, layout, gsym);
5353}
5354
5355// Make a PLT entry for a local STT_GNU_IFUNC symbol.
5356
5357template<int size, bool big_endian>
5358void
5359Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
5360 Symbol_table* symtab, Layout* layout,
5361 Sized_relobj_file<size, big_endian>* relobj,
5362 unsigned int local_sym_index)
5363{
5364 if (relobj->local_has_plt_offset(local_sym_index))
5365 return;
5366 if (this->plt_ == NULL)
5367 this->make_plt_section(symtab, layout);
5368 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
5369 relobj,
5370 local_sym_index);
5371 relobj->set_local_plt_offset(local_sym_index, plt_offset);
053a4d68
JY
5372}
5373
5374template<int size, bool big_endian>
5375void
5376Target_aarch64<size, big_endian>::gc_process_relocs(
5377 Symbol_table* symtab,
5378 Layout* layout,
5379 Sized_relobj_file<size, big_endian>* object,
5380 unsigned int data_shndx,
5381 unsigned int sh_type,
5382 const unsigned char* prelocs,
5383 size_t reloc_count,
5384 Output_section* output_section,
5385 bool needs_special_offset_handling,
5386 size_t local_symbol_count,
5387 const unsigned char* plocal_symbols)
5388{
5389 if (sh_type == elfcpp::SHT_REL)
5390 {
5391 return;
5392 }
5393
9363c7c3
JY
5394 gold::gc_process_relocs<
5395 size, big_endian,
5396 Target_aarch64<size, big_endian>,
5397 elfcpp::SHT_RELA,
5398 typename Target_aarch64<size, big_endian>::Scan,
5399 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
053a4d68
JY
5400 symtab,
5401 layout,
5402 this,
5403 object,
5404 data_shndx,
5405 prelocs,
5406 reloc_count,
5407 output_section,
5408 needs_special_offset_handling,
5409 local_symbol_count,
5410 plocal_symbols);
5411}
5412
5413// Scan relocations for a section.
5414
5415template<int size, bool big_endian>
5416void
5417Target_aarch64<size, big_endian>::scan_relocs(
5418 Symbol_table* symtab,
5419 Layout* layout,
5420 Sized_relobj_file<size, big_endian>* object,
5421 unsigned int data_shndx,
5422 unsigned int sh_type,
5423 const unsigned char* prelocs,
5424 size_t reloc_count,
5425 Output_section* output_section,
5426 bool needs_special_offset_handling,
5427 size_t local_symbol_count,
5428 const unsigned char* plocal_symbols)
5429{
5430 if (sh_type == elfcpp::SHT_REL)
5431 {
5432 gold_error(_("%s: unsupported REL reloc section"),
5433 object->name().c_str());
5434 return;
5435 }
9363c7c3 5436 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
053a4d68
JY
5437 symtab,
5438 layout,
5439 this,
5440 object,
5441 data_shndx,
5442 prelocs,
5443 reloc_count,
5444 output_section,
5445 needs_special_offset_handling,
5446 local_symbol_count,
5447 plocal_symbols);
5448}
5449
3a531937
JY
5450// Return the value to use for a dynamic which requires special
5451// treatment. This is how we support equality comparisons of function
5452// pointers across shared library boundaries, as described in the
5453// processor specific ABI supplement.
5454
83a01957 5455template<int size, bool big_endian>
3a531937 5456uint64_t
83a01957 5457Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
3a531937
JY
5458{
5459 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5460 return this->plt_address_for_global(gsym);
5461}
5462
83a01957 5463
053a4d68
JY
5464// Finalize the sections.
5465
5466template<int size, bool big_endian>
5467void
5468Target_aarch64<size, big_endian>::do_finalize_sections(
9363c7c3 5469 Layout* layout,
053a4d68 5470 const Input_objects*,
9363c7c3 5471 Symbol_table* symtab)
053a4d68 5472{
9363c7c3
JY
5473 const Reloc_section* rel_plt = (this->plt_ == NULL
5474 ? NULL
5475 : this->plt_->rela_plt());
5476 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
5477 this->rela_dyn_, true, false);
5478
3a531937
JY
5479 // Emit any relocs we saved in an attempt to avoid generating COPY
5480 // relocs.
5481 if (this->copy_relocs_.any_saved_relocs())
5482 this->copy_relocs_.emit(this->rela_dyn_section(layout));
5483
5484 // Fill in some more dynamic tags.
5485 Output_data_dynamic* const odyn = layout->dynamic_data();
5486 if (odyn != NULL)
5487 {
5488 if (this->plt_ != NULL
5489 && this->plt_->output_section() != NULL
5490 && this->plt_ ->has_tlsdesc_entry())
5491 {
5492 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
5493 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
5494 this->got_->finalize_data_size();
5495 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
5496 this->plt_, plt_offset);
5497 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
5498 this->got_, got_offset);
5499 }
5500 }
5501
9363c7c3
JY
5502 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
5503 // the .got.plt section.
5504 Symbol* sym = this->global_offset_table_;
5505 if (sym != NULL)
5506 {
5507 uint64_t data_size = this->got_plt_->current_data_size();
5508 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
5509
5510 // If the .got section is more than 0x8000 bytes, we add
5511 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
5512 // bit relocations have a greater chance of working.
5513 if (data_size >= 0x8000)
5514 symtab->get_sized_symbol<size>(sym)->set_value(
5515 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
5516 }
5517
5518 if (parameters->doing_static_link()
5519 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
5520 {
5521 // If linking statically, make sure that the __rela_iplt symbols
5522 // were defined if necessary, even if we didn't create a PLT.
5523 static const Define_symbol_in_segment syms[] =
5524 {
5525 {
5526 "__rela_iplt_start", // name
5527 elfcpp::PT_LOAD, // segment_type
5528 elfcpp::PF_W, // segment_flags_set
5529 elfcpp::PF(0), // segment_flags_clear
5530 0, // value
5531 0, // size
5532 elfcpp::STT_NOTYPE, // type
5533 elfcpp::STB_GLOBAL, // binding
5534 elfcpp::STV_HIDDEN, // visibility
5535 0, // nonvis
5536 Symbol::SEGMENT_START, // offset_from_base
5537 true // only_if_ref
5538 },
5539 {
5540 "__rela_iplt_end", // name
5541 elfcpp::PT_LOAD, // segment_type
5542 elfcpp::PF_W, // segment_flags_set
5543 elfcpp::PF(0), // segment_flags_clear
5544 0, // value
5545 0, // size
5546 elfcpp::STT_NOTYPE, // type
5547 elfcpp::STB_GLOBAL, // binding
5548 elfcpp::STV_HIDDEN, // visibility
5549 0, // nonvis
5550 Symbol::SEGMENT_START, // offset_from_base
5551 true // only_if_ref
5552 }
5553 };
5554
5555 symtab->define_symbols(layout, 2, syms,
5556 layout->script_options()->saw_sections_clause());
5557 }
5558
053a4d68
JY
5559 return;
5560}
5561
5562// Perform a relocation.
5563
5564template<int size, bool big_endian>
5565inline bool
5566Target_aarch64<size, big_endian>::Relocate::relocate(
9363c7c3
JY
5567 const Relocate_info<size, big_endian>* relinfo,
5568 Target_aarch64<size, big_endian>* target,
053a4d68 5569 Output_section* ,
9363c7c3
JY
5570 size_t relnum,
5571 const elfcpp::Rela<size, big_endian>& rela,
5572 unsigned int r_type,
5573 const Sized_symbol<size>* gsym,
5574 const Symbol_value<size>* psymval,
5575 unsigned char* view,
5576 typename elfcpp::Elf_types<size>::Elf_Addr address,
053a4d68
JY
5577 section_size_type /* view_size */)
5578{
9363c7c3
JY
5579 if (view == NULL)
5580 return true;
5581
5582 typedef AArch64_relocate_functions<size, big_endian> Reloc;
5583
5584 const AArch64_reloc_property* reloc_property =
5585 aarch64_reloc_property_table->get_reloc_property(r_type);
5586
5587 if (reloc_property == NULL)
5588 {
5589 std::string reloc_name =
5590 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
5591 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5592 _("cannot relocate %s in object file"),
5593 reloc_name.c_str());
5594 return true;
5595 }
5596
5597 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
5598
5599 // Pick the value to use for symbols defined in the PLT.
5600 Symbol_value<size> symval;
5601 if (gsym != NULL
5602 && gsym->use_plt_offset(reloc_property->reference_flags()))
5603 {
5604 symval.set_output_value(target->plt_address_for_global(gsym));
5605 psymval = &symval;
5606 }
5607 else if (gsym == NULL && psymval->is_ifunc_symbol())
5608 {
5609 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5610 if (object->local_has_plt_offset(r_sym))
5611 {
5612 symval.set_output_value(target->plt_address_for_local(object, r_sym));
5613 psymval = &symval;
5614 }
5615 }
5616
5617 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5618
5619 // Get the GOT offset if needed.
5620 // For aarch64, the GOT pointer points to the start of the GOT section.
5621 bool have_got_offset = false;
5622 int got_offset = 0;
5623 int got_base = (target->got_ != NULL
5624 ? (target->got_->current_data_size() >= 0x8000
5625 ? 0x8000 : 0)
5626 : 0);
5627 switch (r_type)
5628 {
5629 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
5630 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
5631 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
5632 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
5633 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
5634 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
5635 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
5636 case elfcpp::R_AARCH64_GOTREL64:
5637 case elfcpp::R_AARCH64_GOTREL32:
5638 case elfcpp::R_AARCH64_GOT_LD_PREL19:
5639 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
5640 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5641 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5642 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
5643 if (gsym != NULL)
5644 {
5645 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5646 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
5647 }
5648 else
5649 {
5650 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5651 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5652 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
5653 - got_base);
5654 }
5655 have_got_offset = true;
5656 break;
8e33481e 5657
9363c7c3
JY
5658 default:
5659 break;
5660 }
5661
5662 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
5663 typename elfcpp::Elf_types<size>::Elf_Addr value;
5664 switch (r_type)
5665 {
5666 case elfcpp::R_AARCH64_NONE:
5667 break;
5668
5669 case elfcpp::R_AARCH64_ABS64:
5670 reloc_status = Reloc::template rela_ua<64>(
5671 view, object, psymval, addend, reloc_property);
5672 break;
5673
5674 case elfcpp::R_AARCH64_ABS32:
5675 reloc_status = Reloc::template rela_ua<32>(
5676 view, object, psymval, addend, reloc_property);
5677 break;
5678
5679 case elfcpp::R_AARCH64_ABS16:
5680 reloc_status = Reloc::template rela_ua<16>(
5681 view, object, psymval, addend, reloc_property);
5682 break;
5683
5684 case elfcpp::R_AARCH64_PREL64:
5685 reloc_status = Reloc::template pcrela_ua<64>(
5686 view, object, psymval, addend, address, reloc_property);
83a01957 5687 break;
9363c7c3
JY
5688
5689 case elfcpp::R_AARCH64_PREL32:
5690 reloc_status = Reloc::template pcrela_ua<32>(
5691 view, object, psymval, addend, address, reloc_property);
83a01957 5692 break;
9363c7c3
JY
5693
5694 case elfcpp::R_AARCH64_PREL16:
5695 reloc_status = Reloc::template pcrela_ua<16>(
5696 view, object, psymval, addend, address, reloc_property);
83a01957 5697 break;
9363c7c3 5698
9726c3c1
HS
5699 case elfcpp::R_AARCH64_LD_PREL_LO19:
5700 reloc_status = Reloc::template pcrela_general<32>(
5701 view, object, psymval, addend, address, reloc_property);
5702 break;
5703
5704 case elfcpp::R_AARCH64_ADR_PREL_LO21:
5705 reloc_status = Reloc::adr(view, object, psymval, addend,
5706 address, reloc_property);
5707 break;
5708
9363c7c3
JY
5709 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5710 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5711 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
5712 reloc_property);
5713 break;
5714
5715 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
5716 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
5717 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
5718 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
5719 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
5720 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5721 reloc_status = Reloc::template rela_general<32>(
5722 view, object, psymval, addend, reloc_property);
5723 break;
5724
3a531937
JY
5725 case elfcpp::R_AARCH64_CALL26:
5726 if (this->skip_call_tls_get_addr_)
5727 {
5728 // Double check that the TLSGD insn has been optimized away.
5729 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
5730 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
5731 reinterpret_cast<Insntype*>(view));
5732 gold_assert((insn & 0xff000000) == 0x91000000);
5733
5734 reloc_status = Reloc::STATUS_OKAY;
5735 this->skip_call_tls_get_addr_ = false;
5736 // Return false to stop further processing this reloc.
5737 return false;
5738 }
83a01957
HS
5739 // Fallthrough
5740 case elfcpp::R_AARCH64_JUMP26:
5741 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
5742 gsym, psymval, object))
5743 break;
5744 // Fallthrough
8e33481e
HS
5745 case elfcpp::R_AARCH64_TSTBR14:
5746 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
5747 reloc_status = Reloc::template pcrela_general<32>(
5748 view, object, psymval, addend, address, reloc_property);
5749 break;
5750
5751 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5752 gold_assert(have_got_offset);
5753 value = target->got_->address() + got_base + got_offset;
5754 reloc_status = Reloc::adrp(view, value + addend, address);
5755 break;
5756
5757 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5758 gold_assert(have_got_offset);
5759 value = target->got_->address() + got_base + got_offset;
5760 reloc_status = Reloc::template rela_general<32>(
5761 view, value, addend, reloc_property);
5762 break;
5763
3a531937
JY
5764 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5765 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
9726c3c1
HS
5766 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5767 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5768 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5769 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8e33481e
HS
5770 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5771 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8e33481e
HS
5772 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5773 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5774 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3a531937
JY
5775 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5776 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5777 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5778 case elfcpp::R_AARCH64_TLSDESC_CALL:
8e33481e
HS
5779 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
5780 gsym, psymval, view, address);
5781 break;
5782
3a531937
JY
5783 // These are dynamic relocations, which are unexpected when linking.
5784 case elfcpp::R_AARCH64_COPY:
5785 case elfcpp::R_AARCH64_GLOB_DAT:
5786 case elfcpp::R_AARCH64_JUMP_SLOT:
5787 case elfcpp::R_AARCH64_RELATIVE:
5788 case elfcpp::R_AARCH64_IRELATIVE:
5789 case elfcpp::R_AARCH64_TLS_DTPREL64:
5790 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5791 case elfcpp::R_AARCH64_TLS_TPREL64:
5792 case elfcpp::R_AARCH64_TLSDESC:
9363c7c3 5793 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3a531937 5794 _("unexpected reloc %u in object file"),
9363c7c3
JY
5795 r_type);
5796 break;
3a531937
JY
5797
5798 default:
5799 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5800 _("unsupported reloc %s"),
5801 reloc_property->name().c_str());
5802 break;
9363c7c3
JY
5803 }
5804
5805 // Report any errors.
5806 switch (reloc_status)
5807 {
5808 case Reloc::STATUS_OKAY:
5809 break;
5810 case Reloc::STATUS_OVERFLOW:
5811 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5812 _("relocation overflow in %s"),
5813 reloc_property->name().c_str());
5814 break;
5815 case Reloc::STATUS_BAD_RELOC:
5816 gold_error_at_location(
5817 relinfo,
5818 relnum,
5819 rela.get_r_offset(),
5820 _("unexpected opcode while processing relocation %s"),
5821 reloc_property->name().c_str());
5822 break;
5823 default:
5824 gold_unreachable();
5825 }
5826
053a4d68
JY
5827 return true;
5828}
5829
3a531937 5830
8e33481e
HS
5831template<int size, bool big_endian>
5832inline
83a01957 5833typename AArch64_relocate_functions<size, big_endian>::Status
8e33481e 5834Target_aarch64<size, big_endian>::Relocate::relocate_tls(
83a01957 5835 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
5836 Target_aarch64<size, big_endian>* target,
5837 size_t relnum,
5838 const elfcpp::Rela<size, big_endian>& rela,
5839 unsigned int r_type, const Sized_symbol<size>* gsym,
5840 const Symbol_value<size>* psymval,
5841 unsigned char* view,
8e33481e
HS
5842 typename elfcpp::Elf_types<size>::Elf_Addr address)
5843{
83a01957 5844 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937 5845 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
8e33481e 5846
3a531937
JY
5847 Output_segment* tls_segment = relinfo->layout->tls_segment();
5848 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5849 const AArch64_reloc_property* reloc_property =
5850 aarch64_reloc_property_table->get_reloc_property(r_type);
8e33481e
HS
5851 gold_assert(reloc_property != NULL);
5852
3a531937
JY
5853 const bool is_final = (gsym == NULL
5854 ? !parameters->options().shared()
5855 : gsym->final_value_is_known());
5856 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5857 optimize_tls_reloc(is_final, r_type);
5858
83a01957 5859 Sized_relobj_file<size, big_endian>* object = relinfo->object;
3a531937 5860 int tls_got_offset_type;
8e33481e
HS
5861 switch (r_type)
5862 {
3a531937
JY
5863 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5864 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
5865 {
5866 if (tlsopt == tls::TLSOPT_TO_LE)
5867 {
5868 if (tls_segment == NULL)
5869 {
5870 gold_assert(parameters->errors()->error_count() > 0
5871 || issue_undefined_symbol_error(gsym));
5872 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5873 }
5874 return tls_gd_to_le(relinfo, target, rela, r_type, view,
5875 psymval);
5876 }
5877 else if (tlsopt == tls::TLSOPT_NONE)
5878 {
5879 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
5880 // Firstly get the address for the got entry.
5881 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5882 if (gsym != NULL)
5883 {
5884 gold_assert(gsym->has_got_offset(tls_got_offset_type));
5885 got_entry_address = target->got_->address() +
5886 gsym->got_offset(tls_got_offset_type);
5887 }
5888 else
5889 {
5890 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5891 gold_assert(
5892 object->local_has_got_offset(r_sym, tls_got_offset_type));
5893 got_entry_address = target->got_->address() +
5894 object->local_got_offset(r_sym, tls_got_offset_type);
5895 }
5896
5897 // Relocate the address into adrp/ld, adrp/add pair.
5898 switch (r_type)
5899 {
5900 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5901 return aarch64_reloc_funcs::adrp(
5902 view, got_entry_address + addend, address);
5903
5904 break;
5905
5906 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5907 return aarch64_reloc_funcs::template rela_general<32>(
5908 view, got_entry_address, addend, reloc_property);
5909 break;
5910
5911 default:
9726c3c1 5912 gold_unreachable();
3a531937
JY
5913 }
5914 }
5915 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5916 _("unsupported gd_to_ie relaxation on %u"),
5917 r_type);
5918 }
5919 break;
5920
9726c3c1
HS
5921 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5922 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
5923 {
5924 if (tlsopt == tls::TLSOPT_TO_LE)
5925 {
5926 if (tls_segment == NULL)
5927 {
5928 gold_assert(parameters->errors()->error_count() > 0
5929 || issue_undefined_symbol_error(gsym));
5930 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5931 }
5932 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
5933 psymval);
5934 }
5935
5936 gold_assert(tlsopt == tls::TLSOPT_NONE);
5937 // Relocate the field with the offset of the GOT entry for
5938 // the module index.
5939 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5940 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
5941 target->got_->address());
5942
5943 switch (r_type)
5944 {
5945 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5946 return aarch64_reloc_funcs::adrp(
5947 view, got_entry_address + addend, address);
5948 break;
5949
5950 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5951 return aarch64_reloc_funcs::template rela_general<32>(
5952 view, got_entry_address, addend, reloc_property);
5953 break;
5954
5955 default:
5956 gold_unreachable();
5957 }
5958 }
5959 break;
5960
5961 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5962 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC: // Other local-dynamic
5963 {
5964 AArch64_address value = psymval->value(object, 0);
5965 if (tlsopt == tls::TLSOPT_TO_LE)
5966 {
5967 if (tls_segment == NULL)
5968 {
5969 gold_assert(parameters->errors()->error_count() > 0
5970 || issue_undefined_symbol_error(gsym));
5971 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5972 }
5973 // If building executable, _TLS_MODULE_BASE_ points to segment
5974 // end. Thus we must subtract it from value.
5975 value -= tls_segment->memsz();
5976 }
5977 switch (r_type)
5978 {
5979 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5980 return aarch64_reloc_funcs::movnz(view, value + addend,
5981 reloc_property);
5982 break;
5983
5984 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5985 return aarch64_reloc_funcs::template rela_general<32>(
5986 view, value, addend, reloc_property);
5987 break;
5988
5989 default:
5990 gold_unreachable();
5991 }
5992 // We should never reach here.
5993 }
5994 break;
5995
8e33481e 5996 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 5997 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
8e33481e 5998 {
3a531937
JY
5999 if (tlsopt == tls::TLSOPT_TO_LE)
6000 {
6001 if (tls_segment == NULL)
6002 {
6003 gold_assert(parameters->errors()->error_count() > 0
6004 || issue_undefined_symbol_error(gsym));
6005 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6006 }
6007 return tls_ie_to_le(relinfo, target, rela, r_type, view,
6008 psymval);
6009 }
6010 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
6011
6012 // Firstly get the address for the got entry.
8e33481e
HS
6013 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6014 if (gsym != NULL)
6015 {
3a531937 6016 gold_assert(gsym->has_got_offset(tls_got_offset_type));
8e33481e 6017 got_entry_address = target->got_->address() +
3a531937 6018 gsym->got_offset(tls_got_offset_type);
8e33481e
HS
6019 }
6020 else
6021 {
6022 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6023 gold_assert(
3a531937 6024 object->local_has_got_offset(r_sym, tls_got_offset_type));
8e33481e 6025 got_entry_address = target->got_->address() +
3a531937 6026 object->local_got_offset(r_sym, tls_got_offset_type);
8e33481e 6027 }
3a531937
JY
6028 // Relocate the address into adrp/ld, adrp/add pair.
6029 switch (r_type)
8e33481e 6030 {
3a531937
JY
6031 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6032 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6033 address);
6034 break;
6035 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6036 return aarch64_reloc_funcs::template rela_general<32>(
6037 view, got_entry_address, addend, reloc_property);
6038 default:
9726c3c1 6039 gold_unreachable();
8e33481e 6040 }
8e33481e 6041 }
3a531937 6042 // We shall never reach here.
8e33481e
HS
6043 break;
6044
6045 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6046 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6047 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6048 {
8e33481e 6049 gold_assert(tls_segment != NULL);
3a531937 6050 AArch64_address value = psymval->value(object, 0);
8e33481e
HS
6051
6052 if (!parameters->options().shared())
6053 {
3a531937
JY
6054 AArch64_address aligned_tcb_size =
6055 align_address(target->tcb_size(),
6056 tls_segment->maximum_alignment());
8e33481e
HS
6057 return aarch64_reloc_funcs::template
6058 rela_general<32>(view,
6059 value + aligned_tcb_size,
6060 addend,
6061 reloc_property);
6062 }
6063 else
6064 gold_error(_("%s: unsupported reloc %u "
6065 "in non-static TLSLE mode."),
6066 object->name().c_str(), r_type);
6067 }
6068 break;
6069
3a531937
JY
6070 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6071 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6072 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6073 case elfcpp::R_AARCH64_TLSDESC_CALL:
6074 {
6075 if (tlsopt == tls::TLSOPT_TO_LE)
6076 {
6077 if (tls_segment == NULL)
6078 {
6079 gold_assert(parameters->errors()->error_count() > 0
6080 || issue_undefined_symbol_error(gsym));
6081 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6082 }
6083 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
6084 view, psymval);
6085 }
6086 else
6087 {
6088 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
6089 ? GOT_TYPE_TLS_OFFSET
6090 : GOT_TYPE_TLS_DESC);
6091 unsigned int got_tlsdesc_offset = 0;
6092 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
6093 && tlsopt == tls::TLSOPT_NONE)
6094 {
6095 // We created GOT entries in the .got.tlsdesc portion of the
6096 // .got.plt section, but the offset stored in the symbol is the
6097 // offset within .got.tlsdesc.
6098 got_tlsdesc_offset = (target->got_->data_size()
6099 + target->got_plt_section()->data_size());
6100 }
6101 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6102 if (gsym != NULL)
6103 {
6104 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6105 got_entry_address = target->got_->address()
6106 + got_tlsdesc_offset
6107 + gsym->got_offset(tls_got_offset_type);
6108 }
6109 else
6110 {
6111 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6112 gold_assert(
6113 object->local_has_got_offset(r_sym, tls_got_offset_type));
6114 got_entry_address = target->got_->address() +
6115 got_tlsdesc_offset +
6116 object->local_got_offset(r_sym, tls_got_offset_type);
6117 }
6118 if (tlsopt == tls::TLSOPT_TO_IE)
6119 {
6120 if (tls_segment == NULL)
6121 {
6122 gold_assert(parameters->errors()->error_count() > 0
6123 || issue_undefined_symbol_error(gsym));
6124 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6125 }
6126 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
6127 view, psymval, got_entry_address,
6128 address);
6129 }
6130
6131 // Now do tlsdesc relocation.
6132 switch (r_type)
6133 {
6134 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6135 return aarch64_reloc_funcs::adrp(view,
6136 got_entry_address + addend,
6137 address);
6138 break;
6139 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6140 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6141 return aarch64_reloc_funcs::template rela_general<32>(
6142 view, got_entry_address, addend, reloc_property);
6143 break;
6144 case elfcpp::R_AARCH64_TLSDESC_CALL:
6145 return aarch64_reloc_funcs::STATUS_OKAY;
6146 break;
6147 default:
6148 gold_unreachable();
6149 }
6150 }
6151 }
6152 break;
6153
8e33481e
HS
6154 default:
6155 gold_error(_("%s: unsupported TLS reloc %u."),
6156 object->name().c_str(), r_type);
6157 }
6158 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
3a531937
JY
6159} // End of relocate_tls.
6160
6161
6162template<int size, bool big_endian>
6163inline
83a01957 6164typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6165Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
83a01957 6166 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6167 Target_aarch64<size, big_endian>* target,
6168 const elfcpp::Rela<size, big_endian>& rela,
6169 unsigned int r_type,
6170 unsigned char* view,
6171 const Symbol_value<size>* psymval)
6172{
83a01957 6173 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6174 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6175 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6176
6177 Insntype* ip = reinterpret_cast<Insntype*>(view);
6178 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6179 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6180 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6181
6182 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
6183 {
6184 // This is the 2nd relocs, optimization should already have been
6185 // done.
6186 gold_assert((insn1 & 0xfff00000) == 0x91400000);
6187 return aarch64_reloc_funcs::STATUS_OKAY;
6188 }
6189
6190 // The original sequence is -
6191 // 90000000 adrp x0, 0 <main>
6192 // 91000000 add x0, x0, #0x0
6193 // 94000000 bl 0 <__tls_get_addr>
6194 // optimized to sequence -
6195 // d53bd040 mrs x0, tpidr_el0
6196 // 91400000 add x0, x0, #0x0, lsl #12
6197 // 91000000 add x0, x0, #0x0
6198
6199 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6200 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
6201 // have to change "bl tls_get_addr", which does not have a corresponding tls
6202 // relocation type. So before proceeding, we need to make sure compiler
6203 // does not change the sequence.
6204 if(!(insn1 == 0x90000000 // adrp x0,0
6205 && insn2 == 0x91000000 // add x0, x0, #0x0
6206 && insn3 == 0x94000000)) // bl 0
6207 {
6208 // Ideally we should give up gd_to_le relaxation and do gd access.
6209 // However the gd_to_le relaxation decision has been made early
6210 // in the scan stage, where we did not allocate any GOT entry for
6211 // this symbol. Therefore we have to exit and report error now.
6212 gold_error(_("unexpected reloc insn sequence while relaxing "
6213 "tls gd to le for reloc %u."), r_type);
6214 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6215 }
6216
6217 // Write new insns.
6218 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
6219 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
6220 insn3 = 0x91000000; // add x0, x0, #0x0
6221 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6222 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6223 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6224
6225 // Calculate tprel value.
6226 Output_segment* tls_segment = relinfo->layout->tls_segment();
6227 gold_assert(tls_segment != NULL);
6228 AArch64_address value = psymval->value(relinfo->object, 0);
6229 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6230 AArch64_address aligned_tcb_size =
6231 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6232 AArch64_address x = value + aligned_tcb_size;
6233
6234 // After new insns are written, apply TLSLE relocs.
6235 const AArch64_reloc_property* rp1 =
6236 aarch64_reloc_property_table->get_reloc_property(
6237 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6238 const AArch64_reloc_property* rp2 =
6239 aarch64_reloc_property_table->get_reloc_property(
6240 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6241 gold_assert(rp1 != NULL && rp2 != NULL);
6242
6243 typename aarch64_reloc_funcs::Status s1 =
6244 aarch64_reloc_funcs::template rela_general<32>(view + 4,
6245 x,
6246 addend,
6247 rp1);
6248 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6249 return s1;
6250
6251 typename aarch64_reloc_funcs::Status s2 =
6252 aarch64_reloc_funcs::template rela_general<32>(view + 8,
6253 x,
6254 addend,
6255 rp2);
6256
6257 this->skip_call_tls_get_addr_ = true;
6258 return s2;
6259} // End of tls_gd_to_le
6260
6261
9726c3c1
HS
6262template<int size, bool big_endian>
6263inline
6264typename AArch64_relocate_functions<size, big_endian>::Status
6265Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
6266 const Relocate_info<size, big_endian>* relinfo,
6267 Target_aarch64<size, big_endian>* target,
6268 const elfcpp::Rela<size, big_endian>& rela,
6269 unsigned int r_type,
6270 unsigned char* view,
6271 const Symbol_value<size>* psymval)
6272{
6273 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6274 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6275 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6276
6277 Insntype* ip = reinterpret_cast<Insntype*>(view);
6278 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6279 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6280 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6281
6282 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
6283 {
6284 // This is the 2nd relocs, optimization should already have been
6285 // done.
6286 gold_assert((insn1 & 0xfff00000) == 0x91400000);
6287 return aarch64_reloc_funcs::STATUS_OKAY;
6288 }
6289
6290 // The original sequence is -
6291 // 90000000 adrp x0, 0 <main>
6292 // 91000000 add x0, x0, #0x0
6293 // 94000000 bl 0 <__tls_get_addr>
6294 // optimized to sequence -
6295 // d53bd040 mrs x0, tpidr_el0
6296 // 91400000 add x0, x0, #0x0, lsl #12
6297 // 91000000 add x0, x0, #0x0
6298
6299 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6300 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
6301 // have to change "bl tls_get_addr", which does not have a corresponding tls
6302 // relocation type. So before proceeding, we need to make sure compiler
6303 // does not change the sequence.
6304 if(!(insn1 == 0x90000000 // adrp x0,0
6305 && insn2 == 0x91000000 // add x0, x0, #0x0
6306 && insn3 == 0x94000000)) // bl 0
6307 {
6308 // Ideally we should give up gd_to_le relaxation and do gd access.
6309 // However the gd_to_le relaxation decision has been made early
6310 // in the scan stage, where we did not allocate any GOT entry for
6311 // this symbol. Therefore we have to exit and report error now.
6312 gold_error(_("unexpected reloc insn sequence while relaxing "
6313 "tls gd to le for reloc %u."), r_type);
6314 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6315 }
6316
6317 // Write new insns.
6318 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
6319 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
6320 insn3 = 0x91000000; // add x0, x0, #0x0
6321 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6322 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6323 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6324
6325 // Calculate tprel value.
6326 Output_segment* tls_segment = relinfo->layout->tls_segment();
6327 gold_assert(tls_segment != NULL);
6328 AArch64_address value = psymval->value(relinfo->object, 0);
6329 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6330 AArch64_address aligned_tcb_size =
6331 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6332 AArch64_address x = value + aligned_tcb_size;
6333
6334 // After new insns are written, apply TLSLE relocs.
6335 const AArch64_reloc_property* rp1 =
6336 aarch64_reloc_property_table->get_reloc_property(
6337 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6338 const AArch64_reloc_property* rp2 =
6339 aarch64_reloc_property_table->get_reloc_property(
6340 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6341 gold_assert(rp1 != NULL && rp2 != NULL);
6342
6343 typename aarch64_reloc_funcs::Status s1 =
6344 aarch64_reloc_funcs::template rela_general<32>(view + 4,
6345 x,
6346 addend,
6347 rp1);
6348 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6349 return s1;
6350
6351 typename aarch64_reloc_funcs::Status s2 =
6352 aarch64_reloc_funcs::template rela_general<32>(view + 8,
6353 x,
6354 addend,
6355 rp2);
6356
6357 this->skip_call_tls_get_addr_ = true;
6358 return s2;
6359
6360} // End of tls_ld_to_le
6361
3a531937
JY
6362template<int size, bool big_endian>
6363inline
83a01957 6364typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6365Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
83a01957 6366 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6367 Target_aarch64<size, big_endian>* target,
6368 const elfcpp::Rela<size, big_endian>& rela,
6369 unsigned int r_type,
6370 unsigned char* view,
6371 const Symbol_value<size>* psymval)
6372{
6373 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6374 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6375 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6376
6377 AArch64_address value = psymval->value(relinfo->object, 0);
6378 Output_segment* tls_segment = relinfo->layout->tls_segment();
6379 AArch64_address aligned_tcb_address =
6380 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6381 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6382 AArch64_address x = value + addend + aligned_tcb_address;
6383 // "x" is the offset to tp, we can only do this if x is within
6384 // range [0, 2^32-1]
6385 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
6386 {
6387 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
6388 r_type);
6389 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6390 }
6391
6392 Insntype* ip = reinterpret_cast<Insntype*>(view);
6393 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6394 unsigned int regno;
6395 Insntype newinsn;
6396 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
6397 {
6398 // Generate movz.
6399 regno = (insn & 0x1f);
6400 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
6401 }
6402 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
6403 {
6404 // Generate movk.
6405 regno = (insn & 0x1f);
6406 gold_assert(regno == ((insn >> 5) & 0x1f));
6407 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
6408 }
6409 else
9726c3c1 6410 gold_unreachable();
3a531937
JY
6411
6412 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6413 return aarch64_reloc_funcs::STATUS_OKAY;
6414} // End of tls_ie_to_le
6415
6416
6417template<int size, bool big_endian>
6418inline
83a01957 6419typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6420Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
83a01957 6421 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6422 Target_aarch64<size, big_endian>* target,
6423 const elfcpp::Rela<size, big_endian>& rela,
6424 unsigned int r_type,
6425 unsigned char* view,
6426 const Symbol_value<size>* psymval)
6427{
6428 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6429 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6430 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6431
6432 // TLSDESC-GD sequence is like:
6433 // adrp x0, :tlsdesc:v1
6434 // ldr x1, [x0, #:tlsdesc_lo12:v1]
6435 // add x0, x0, :tlsdesc_lo12:v1
6436 // .tlsdesccall v1
6437 // blr x1
6438 // After desc_gd_to_le optimization, the sequence will be like:
6439 // movz x0, #0x0, lsl #16
6440 // movk x0, #0x10
6441 // nop
6442 // nop
6443
6444 // Calculate tprel value.
6445 Output_segment* tls_segment = relinfo->layout->tls_segment();
6446 gold_assert(tls_segment != NULL);
6447 Insntype* ip = reinterpret_cast<Insntype*>(view);
6448 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6449 AArch64_address value = psymval->value(relinfo->object, addend);
6450 AArch64_address aligned_tcb_size =
6451 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6452 AArch64_address x = value + aligned_tcb_size;
6453 // x is the offset to tp, we can only do this if x is within range
6454 // [0, 2^32-1]. If x is out of range, fail and exit.
6455 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
6456 {
6457 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
6458 "We Can't do gd_to_le relaxation.\n"), r_type);
6459 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6460 }
6461 Insntype newinsn;
6462 switch (r_type)
6463 {
6464 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6465 case elfcpp::R_AARCH64_TLSDESC_CALL:
6466 // Change to nop
6467 newinsn = 0xd503201f;
6468 break;
6469
6470 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6471 // Change to movz.
6472 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
6473 break;
6474
6475 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6476 // Change to movk.
6477 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
6478 break;
6479
6480 default:
6481 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
6482 r_type);
6483 gold_unreachable();
6484 }
6485 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6486 return aarch64_reloc_funcs::STATUS_OKAY;
6487} // End of tls_desc_gd_to_le
6488
6489
6490template<int size, bool big_endian>
6491inline
83a01957 6492typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6493Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
83a01957 6494 const Relocate_info<size, big_endian>* /* relinfo */,
3a531937
JY
6495 Target_aarch64<size, big_endian>* /* target */,
6496 const elfcpp::Rela<size, big_endian>& rela,
6497 unsigned int r_type,
6498 unsigned char* view,
6499 const Symbol_value<size>* /* psymval */,
6500 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
6501 typename elfcpp::Elf_types<size>::Elf_Addr address)
6502{
6503 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6504 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6505
6506 // TLSDESC-GD sequence is like:
6507 // adrp x0, :tlsdesc:v1
6508 // ldr x1, [x0, #:tlsdesc_lo12:v1]
6509 // add x0, x0, :tlsdesc_lo12:v1
6510 // .tlsdesccall v1
6511 // blr x1
6512 // After desc_gd_to_ie optimization, the sequence will be like:
6513 // adrp x0, :tlsie:v1
6514 // ldr x0, [x0, :tlsie_lo12:v1]
6515 // nop
6516 // nop
6517
6518 Insntype* ip = reinterpret_cast<Insntype*>(view);
6519 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6520 Insntype newinsn;
6521 switch (r_type)
6522 {
6523 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6524 case elfcpp::R_AARCH64_TLSDESC_CALL:
6525 // Change to nop
6526 newinsn = 0xd503201f;
6527 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6528 break;
6529
6530 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6531 {
6532 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6533 address);
6534 }
6535 break;
6536
6537 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6538 {
6539 const AArch64_reloc_property* reloc_property =
6540 aarch64_reloc_property_table->get_reloc_property(
6541 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6542 return aarch64_reloc_funcs::template rela_general<32>(
6543 view, got_entry_address, addend, reloc_property);
6544 }
6545 break;
8e33481e 6546
3a531937
JY
6547 default:
6548 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
6549 r_type);
6550 gold_unreachable();
6551 }
6552 return aarch64_reloc_funcs::STATUS_OKAY;
6553} // End of tls_desc_gd_to_ie
8e33481e 6554
053a4d68
JY
6555// Relocate section data.
6556
6557template<int size, bool big_endian>
6558void
6559Target_aarch64<size, big_endian>::relocate_section(
9363c7c3 6560 const Relocate_info<size, big_endian>* relinfo,
053a4d68 6561 unsigned int sh_type,
9363c7c3
JY
6562 const unsigned char* prelocs,
6563 size_t reloc_count,
6564 Output_section* output_section,
6565 bool needs_special_offset_handling,
6566 unsigned char* view,
6567 typename elfcpp::Elf_types<size>::Elf_Addr address,
6568 section_size_type view_size,
6569 const Reloc_symbol_changes* reloc_symbol_changes)
053a4d68 6570{
053a4d68 6571 gold_assert(sh_type == elfcpp::SHT_RELA);
9363c7c3
JY
6572 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
6573 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
6574 AArch64_relocate, gold::Default_comdat_behavior>(
6575 relinfo,
6576 this,
6577 prelocs,
6578 reloc_count,
6579 output_section,
6580 needs_special_offset_handling,
6581 view,
6582 address,
6583 view_size,
6584 reloc_symbol_changes);
053a4d68
JY
6585}
6586
6587// Return the size of a relocation while scanning during a relocatable
6588// link.
6589
6590template<int size, bool big_endian>
6591unsigned int
6592Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
6593get_size_for_reloc(
6594 unsigned int ,
6595 Relobj* )
6596{
6597 // We will never support SHT_REL relocations.
6598 gold_unreachable();
6599 return 0;
6600}
6601
6602// Scan the relocs during a relocatable link.
6603
6604template<int size, bool big_endian>
6605void
6606Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8e33481e
HS
6607 Symbol_table* symtab,
6608 Layout* layout,
6609 Sized_relobj_file<size, big_endian>* object,
6610 unsigned int data_shndx,
053a4d68 6611 unsigned int sh_type,
8e33481e
HS
6612 const unsigned char* prelocs,
6613 size_t reloc_count,
6614 Output_section* output_section,
6615 bool needs_special_offset_handling,
6616 size_t local_symbol_count,
6617 const unsigned char* plocal_symbols,
6618 Relocatable_relocs* rr)
053a4d68 6619{
053a4d68 6620 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
6621
6622 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
6623 Relocatable_size_for_reloc> Scan_relocatable_relocs;
6624
6625 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6626 Scan_relocatable_relocs>(
6627 symtab,
6628 layout,
6629 object,
6630 data_shndx,
6631 prelocs,
6632 reloc_count,
6633 output_section,
6634 needs_special_offset_handling,
6635 local_symbol_count,
6636 plocal_symbols,
6637 rr);
053a4d68
JY
6638}
6639
6640// Relocate a section during a relocatable link.
6641
6642template<int size, bool big_endian>
6643void
6644Target_aarch64<size, big_endian>::relocate_relocs(
8e33481e 6645 const Relocate_info<size, big_endian>* relinfo,
053a4d68 6646 unsigned int sh_type,
8e33481e
HS
6647 const unsigned char* prelocs,
6648 size_t reloc_count,
6649 Output_section* output_section,
6650 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6651 const Relocatable_relocs* rr,
6652 unsigned char* view,
6653 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
6654 section_size_type view_size,
6655 unsigned char* reloc_view,
6656 section_size_type reloc_view_size)
053a4d68 6657{
053a4d68 6658 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
6659
6660 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
6661 relinfo,
6662 prelocs,
6663 reloc_count,
6664 output_section,
6665 offset_in_output_section,
6666 rr,
6667 view,
6668 view_address,
6669 view_size,
6670 reloc_view,
6671 reloc_view_size);
053a4d68
JY
6672}
6673
83a01957 6674
053a4d68
JY
6675// The selector for aarch64 object files.
6676
6677template<int size, bool big_endian>
6678class Target_selector_aarch64 : public Target_selector
6679{
6680 public:
9363c7c3 6681 Target_selector_aarch64();
053a4d68
JY
6682
6683 virtual Target*
6684 do_instantiate_target()
6685 { return new Target_aarch64<size, big_endian>(); }
6686};
6687
9363c7c3
JY
6688template<>
6689Target_selector_aarch64<32, true>::Target_selector_aarch64()
6690 : Target_selector(elfcpp::EM_AARCH64, 32, true,
6691 "elf32-bigaarch64", "aarch64_elf32_be_vec")
6692{ }
6693
6694template<>
6695Target_selector_aarch64<32, false>::Target_selector_aarch64()
6696 : Target_selector(elfcpp::EM_AARCH64, 32, false,
6697 "elf32-littleaarch64", "aarch64_elf32_le_vec")
6698{ }
6699
6700template<>
6701Target_selector_aarch64<64, true>::Target_selector_aarch64()
6702 : Target_selector(elfcpp::EM_AARCH64, 64, true,
6703 "elf64-bigaarch64", "aarch64_elf64_be_vec")
6704{ }
6705
6706template<>
6707Target_selector_aarch64<64, false>::Target_selector_aarch64()
6708 : Target_selector(elfcpp::EM_AARCH64, 64, false,
6709 "elf64-littleaarch64", "aarch64_elf64_le_vec")
6710{ }
6711
053a4d68
JY
6712Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
6713Target_selector_aarch64<32, false> target_selector_aarch64elf32;
6714Target_selector_aarch64<64, true> target_selector_aarch64elfb;
6715Target_selector_aarch64<64, false> target_selector_aarch64elf;
6716
053a4d68 6717} // End anonymous namespace.
This page took 0.351447 seconds and 4 git commands to generate.