Reapply: List inferiors/threads/pspaces in ascending order
[deliverable/binutils-gdb.git] / gold / aarch64.cc
CommitLineData
053a4d68
JY
1// aarch64.cc -- aarch64 target support for gold.
2
6f2750fe 3// Copyright (C) 2014-2016 Free Software Foundation, Inc.
9363c7c3 4// Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
053a4d68
JY
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
5019d64a 26#include <map>
a48d0c12 27#include <set>
053a4d68
JY
28
29#include "elfcpp.h"
30#include "dwarf.h"
31#include "parameters.h"
32#include "reloc.h"
33#include "aarch64.h"
34#include "object.h"
35#include "symtab.h"
36#include "layout.h"
37#include "output.h"
38#include "copy-relocs.h"
39#include "target.h"
40#include "target-reloc.h"
41#include "target-select.h"
42#include "tls.h"
43#include "freebsd.h"
44#include "nacl.h"
45#include "gc.h"
46#include "icf.h"
9363c7c3 47#include "aarch64-reloc-property.h"
053a4d68
JY
48
49// The first three .got.plt entries are reserved.
50const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
83a01957 52
053a4d68
JY
53namespace
54{
55
56using namespace gold;
57
58template<int size, bool big_endian>
59class Output_data_plt_aarch64;
60
61template<int size, bool big_endian>
62class Output_data_plt_aarch64_standard;
63
64template<int size, bool big_endian>
65class Target_aarch64;
66
9363c7c3
JY
67template<int size, bool big_endian>
68class AArch64_relocate_functions;
69
5019d64a
HS
70// Utility class dealing with insns. This is ported from macros in
71// bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72// class is used in erratum sequence scanning.
73
74template<bool big_endian>
75class AArch64_insn_utilities
76{
77public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
2f0c79aa
HS
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
5019d64a
HS
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
2f0c79aa
HS
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
0ef3814f
HS
105 static bool
106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
5019d64a
HS
109 static bool
110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static unsigned int
114 aarch64_rm(const Insntype insn)
115 { return aarch64_bits(insn, 16, 5); }
116
117 static unsigned int
118 aarch64_rn(const Insntype insn)
119 { return aarch64_bits(insn, 5, 5); }
120
121 static unsigned int
122 aarch64_rd(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
126 aarch64_rt(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
130 aarch64_rt2(const Insntype insn)
131 { return aarch64_bits(insn, 10, 5); }
132
0ef3814f
HS
133 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134 static Insntype
135 aarch64_adr_encode_imm(Insntype adr, int imm21)
136 {
137 gold_assert(is_adr(adr));
138 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139 const int mask19 = (1 << 19) - 1;
140 const int mask2 = 3;
141 adr &= ~((mask19 << 5) | (mask2 << 29));
142 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143 return adr;
144 }
145
146 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149 static int64_t
150 aarch64_adrp_decode_imm(const Insntype adrp)
151 {
152 const int mask19 = (1 << 19) - 1;
153 const int mask2 = 3;
154 gold_assert(is_adrp(adrp));
155 // 21-bit imm encoded in adrp.
156 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157 // Retrieve msb of 21-bit-signed imm for sign extension.
158 uint64_t msbt = (imm >> 20) & 1;
159 // Real value is imm multipled by 4k. Value now has 33-bit information.
160 int64_t value = imm << 12;
161 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162 // with value.
163 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164 }
165
5019d64a
HS
166 static bool
167 aarch64_b(const Insntype insn)
168 { return (insn & 0xFC000000) == 0x14000000; }
169
170 static bool
171 aarch64_bl(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x94000000; }
173
174 static bool
175 aarch64_blr(const Insntype insn)
176 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178 static bool
179 aarch64_br(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
183 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184 static bool
185 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187 static bool
188 aarch64_ldst(Insntype insn)
189 { return (insn & 0x0a000000) == 0x08000000; }
190
191 static bool
192 aarch64_ldst_ex(Insntype insn)
193 { return (insn & 0x3f000000) == 0x08000000; }
194
195 static bool
196 aarch64_ldst_pcrel(Insntype insn)
197 { return (insn & 0x3b000000) == 0x18000000; }
198
199 static bool
200 aarch64_ldst_nap(Insntype insn)
201 { return (insn & 0x3b800000) == 0x28000000; }
202
203 static bool
204 aarch64_ldstp_pi(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28800000; }
206
207 static bool
208 aarch64_ldstp_o(Insntype insn)
209 { return (insn & 0x3b800000) == 0x29000000; }
210
211 static bool
212 aarch64_ldstp_pre(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29800000; }
214
215 static bool
216 aarch64_ldst_ui(Insntype insn)
217 { return (insn & 0x3b200c00) == 0x38000000; }
218
219 static bool
220 aarch64_ldst_piimm(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000400; }
222
223 static bool
224 aarch64_ldst_u(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000800; }
226
227 static bool
228 aarch64_ldst_preimm(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000c00; }
230
231 static bool
232 aarch64_ldst_ro(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38200800; }
234
235 static bool
236 aarch64_ldst_uimm(Insntype insn)
237 { return (insn & 0x3b000000) == 0x39000000; }
238
239 static bool
240 aarch64_ldst_simd_m(Insntype insn)
241 { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243 static bool
244 aarch64_ldst_simd_m_pi(Insntype insn)
245 { return (insn & 0xbfa00000) == 0x0c800000; }
246
247 static bool
248 aarch64_ldst_simd_s(Insntype insn)
249 { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251 static bool
252 aarch64_ldst_simd_s_pi(Insntype insn)
253 { return (insn & 0xbf800000) == 0x0d800000; }
254
255 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258 // instructions PAIR is TRUE, RT and RT2 are returned.
259 static bool
260 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261 bool *pair, bool *load)
262 {
263 uint32_t opcode;
264 unsigned int r;
265 uint32_t opc = 0;
266 uint32_t v = 0;
267 uint32_t opc_v = 0;
268
269 /* Bail out quickly if INSN doesn't fall into the the load-store
270 encoding space. */
271 if (!aarch64_ldst (insn))
272 return false;
273
274 *pair = false;
275 *load = false;
276 if (aarch64_ldst_ex (insn))
277 {
278 *rt = aarch64_rt (insn);
279 *rt2 = *rt;
280 if (aarch64_bit (insn, 21) == 1)
281 {
282 *pair = true;
283 *rt2 = aarch64_rt2 (insn);
284 }
285 *load = aarch64_ld (insn);
286 return true;
287 }
288 else if (aarch64_ldst_nap (insn)
289 || aarch64_ldstp_pi (insn)
290 || aarch64_ldstp_o (insn)
291 || aarch64_ldstp_pre (insn))
292 {
293 *pair = true;
294 *rt = aarch64_rt (insn);
295 *rt2 = aarch64_rt2 (insn);
296 *load = aarch64_ld (insn);
297 return true;
298 }
299 else if (aarch64_ldst_pcrel (insn)
300 || aarch64_ldst_ui (insn)
301 || aarch64_ldst_piimm (insn)
302 || aarch64_ldst_u (insn)
303 || aarch64_ldst_preimm (insn)
304 || aarch64_ldst_ro (insn)
305 || aarch64_ldst_uimm (insn))
306 {
307 *rt = aarch64_rt (insn);
308 *rt2 = *rt;
309 if (aarch64_ldst_pcrel (insn))
310 *load = true;
311 opc = aarch64_bits (insn, 22, 2);
312 v = aarch64_bit (insn, 26);
313 opc_v = opc | (v << 2);
314 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
315 || opc_v == 5 || opc_v == 7);
316 return true;
317 }
318 else if (aarch64_ldst_simd_m (insn)
319 || aarch64_ldst_simd_m_pi (insn))
320 {
321 *rt = aarch64_rt (insn);
322 *load = aarch64_bit (insn, 22);
323 opcode = (insn >> 12) & 0xf;
324 switch (opcode)
325 {
326 case 0:
327 case 2:
328 *rt2 = *rt + 3;
329 break;
330
331 case 4:
332 case 6:
333 *rt2 = *rt + 2;
334 break;
335
336 case 7:
337 *rt2 = *rt;
338 break;
339
340 case 8:
341 case 10:
342 *rt2 = *rt + 1;
343 break;
344
345 default:
346 return false;
347 }
348 return true;
349 }
350 else if (aarch64_ldst_simd_s (insn)
351 || aarch64_ldst_simd_s_pi (insn))
352 {
353 *rt = aarch64_rt (insn);
354 r = (insn >> 21) & 1;
355 *load = aarch64_bit (insn, 22);
356 opcode = (insn >> 13) & 0x7;
357 switch (opcode)
358 {
359 case 0:
360 case 2:
361 case 4:
362 *rt2 = *rt + r;
363 break;
364
365 case 1:
366 case 3:
367 case 5:
368 *rt2 = *rt + (r == 0 ? 2 : 3);
369 break;
370
371 case 6:
372 *rt2 = *rt + r;
373 break;
374
375 case 7:
376 *rt2 = *rt + (r == 0 ? 2 : 3);
377 break;
378
379 default:
380 return false;
381 }
382 return true;
383 }
384 return false;
2f0c79aa
HS
385 } // End of "aarch64_mem_op_p".
386
387 // Return true if INSN is mac insn.
388 static bool
389 aarch64_mac(Insntype insn)
390 { return (insn & 0xff000000) == 0x9b000000; }
391
392 // Return true if INSN is multiply-accumulate.
393 // (This is similar to implementaton in elfnn-aarch64.c.)
394 static bool
395 aarch64_mlxl(Insntype insn)
396 {
397 uint32_t op31 = aarch64_op31(insn);
398 if (aarch64_mac(insn)
399 && (op31 == 0 || op31 == 1 || op31 == 5)
400 /* Exclude MUL instructions which are encoded as a multiple-accumulate
401 with RA = XZR. */
402 && aarch64_ra(insn) != AARCH64_ZR)
403 {
404 return true;
405 }
406 return false;
5019d64a 407 }
2f0c79aa
HS
408}; // End of "AArch64_insn_utilities".
409
410
411// Insn length in byte.
412
413template<bool big_endian>
414const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417// Zero register encoding - 31.
418
419template<bool big_endian>
420const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
5019d64a
HS
421
422
053a4d68
JY
423// Output_data_got_aarch64 class.
424
425template<int size, bool big_endian>
426class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427{
428 public:
429 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
9363c7c3
JY
431 : Output_data_got<size, big_endian>(),
432 symbol_table_(symtab), layout_(layout)
053a4d68
JY
433 { }
434
8e33481e
HS
435 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
436 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437 // applied in a static link.
438 void
439 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
444 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
445 // relocation that needs to be applied in a static link.
446 void
447 add_static_reloc(unsigned int got_offset, unsigned int r_type,
448 Sized_relobj_file<size, big_endian>* relobj,
449 unsigned int index)
450 {
451 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452 index));
453 }
454
455
053a4d68
JY
456 protected:
457 // Write out the GOT table.
458 void
459 do_write(Output_file* of) {
460 // The first entry in the GOT is the address of the .dynamic section.
461 gold_assert(this->data_size() >= size / 8);
462 Output_section* dynamic = this->layout_->dynamic_section();
463 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464 this->replace_constant(0, dynamic_addr);
465 Output_data_got<size, big_endian>::do_write(of);
8e33481e
HS
466
467 // Handling static relocs
468 if (this->static_relocs_.empty())
469 return;
470
471 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473 gold_assert(parameters->doing_static_link());
474 const off_t offset = this->offset();
475 const section_size_type oview_size =
476 convert_to_section_size_type(this->data_size());
477 unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479 Output_segment* tls_segment = this->layout_->tls_segment();
480 gold_assert(tls_segment != NULL);
481
482 AArch64_address aligned_tcb_address =
83a01957 483 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
8e33481e
HS
484 tls_segment->maximum_alignment());
485
486 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487 {
488 Static_reloc& reloc(this->static_relocs_[i]);
489 AArch64_address value;
490
491 if (!reloc.symbol_is_global())
492 {
493 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494 const Symbol_value<size>* psymval =
495 reloc.relobj()->local_symbol(reloc.index());
496
497 // We are doing static linking. Issue an error and skip this
498 // relocation if the symbol is undefined or in a discarded_section.
499 bool is_ordinary;
500 unsigned int shndx = psymval->input_shndx(&is_ordinary);
501 if ((shndx == elfcpp::SHN_UNDEF)
502 || (is_ordinary
503 && shndx != elfcpp::SHN_UNDEF
504 && !object->is_section_included(shndx)
505 && !this->symbol_table_->is_section_folded(object, shndx)))
506 {
507 gold_error(_("undefined or discarded local symbol %u from "
508 " object %s in GOT"),
509 reloc.index(), reloc.relobj()->name().c_str());
510 continue;
511 }
512 value = psymval->value(object, 0);
513 }
514 else
515 {
516 const Symbol* gsym = reloc.symbol();
517 gold_assert(gsym != NULL);
518 if (gsym->is_forwarder())
519 gsym = this->symbol_table_->resolve_forwards(gsym);
520
521 // We are doing static linking. Issue an error and skip this
522 // relocation if the symbol is undefined or in a discarded_section
523 // unless it is a weakly_undefined symbol.
524 if ((gsym->is_defined_in_discarded_section()
525 || gsym->is_undefined())
526 && !gsym->is_weak_undefined())
527 {
528 gold_error(_("undefined or discarded symbol %s in GOT"),
529 gsym->name());
530 continue;
531 }
532
533 if (!gsym->is_weak_undefined())
534 {
535 const Sized_symbol<size>* sym =
536 static_cast<const Sized_symbol<size>*>(gsym);
537 value = sym->value();
538 }
539 else
540 value = 0;
541 }
542
543 unsigned got_offset = reloc.got_offset();
544 gold_assert(got_offset < oview_size);
545
546 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548 Valtype x;
549 switch (reloc.r_type())
550 {
551 case elfcpp::R_AARCH64_TLS_DTPREL64:
552 x = value;
553 break;
554 case elfcpp::R_AARCH64_TLS_TPREL64:
555 x = value + aligned_tcb_address;
556 break;
557 default:
558 gold_unreachable();
559 }
560 elfcpp::Swap<size, big_endian>::writeval(wv, x);
561 }
562
563 of->write_output_view(offset, oview_size, oview);
053a4d68
JY
564 }
565
566 private:
9363c7c3
JY
567 // Symbol table of the output object.
568 Symbol_table* symbol_table_;
053a4d68
JY
569 // A pointer to the Layout class, so that we can find the .dynamic
570 // section when we write out the GOT section.
571 Layout* layout_;
8e33481e 572
8e33481e
HS
573 // This class represent dynamic relocations that need to be applied by
574 // gold because we are using TLS relocations in a static link.
575 class Static_reloc
576 {
577 public:
578 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580 { this->u_.global.symbol = gsym; }
581
582 Static_reloc(unsigned int got_offset, unsigned int r_type,
583 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585 {
586 this->u_.local.relobj = relobj;
587 this->u_.local.index = index;
588 }
589
590 // Return the GOT offset.
591 unsigned int
592 got_offset() const
593 { return this->got_offset_; }
594
595 // Relocation type.
596 unsigned int
597 r_type() const
598 { return this->r_type_; }
599
600 // Whether the symbol is global or not.
601 bool
602 symbol_is_global() const
603 { return this->symbol_is_global_; }
604
605 // For a relocation against a global symbol, the global symbol.
606 Symbol*
607 symbol() const
608 {
609 gold_assert(this->symbol_is_global_);
610 return this->u_.global.symbol;
611 }
612
613 // For a relocation against a local symbol, the defining object.
614 Sized_relobj_file<size, big_endian>*
615 relobj() const
616 {
617 gold_assert(!this->symbol_is_global_);
618 return this->u_.local.relobj;
619 }
620
621 // For a relocation against a local symbol, the local symbol index.
622 unsigned int
623 index() const
624 {
625 gold_assert(!this->symbol_is_global_);
626 return this->u_.local.index;
627 }
628
629 private:
630 // GOT offset of the entry to which this relocation is applied.
631 unsigned int got_offset_;
632 // Type of relocation.
633 unsigned int r_type_;
634 // Whether this relocation is against a global symbol.
635 bool symbol_is_global_;
636 // A global or local symbol.
637 union
638 {
83a01957
HS
639 struct
640 {
641 // For a global symbol, the symbol itself.
642 Symbol* symbol;
643 } global;
644 struct
645 {
646 // For a local symbol, the object defining the symbol.
647 Sized_relobj_file<size, big_endian>* relobj;
648 // For a local symbol, the symbol index.
649 unsigned int index;
650 } local;
651 } u_;
652 }; // End of inner class Static_reloc
653
654 std::vector<Static_reloc> static_relocs_;
655}; // End of Output_data_got_aarch64
656
657
658template<int size, bool big_endian>
659class AArch64_input_section;
660
661
662template<int size, bool big_endian>
663class AArch64_output_section;
664
665
83a01957 666template<int size, bool big_endian>
a48d0c12
HS
667class AArch64_relobj;
668
669
670// Stub type enum constants.
671
672enum
83a01957 673{
a48d0c12 674 ST_NONE = 0,
83a01957 675
a48d0c12
HS
676 // Using adrp/add pair, 4 insns (including alignment) without mem access,
677 // the fastest stub. This has a limited jump distance, which is tested by
678 // aarch64_valid_for_adrp_p.
679 ST_ADRP_BRANCH = 1,
83a01957 680
a48d0c12
HS
681 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682 // unlimited in jump distance.
683 ST_LONG_BRANCH_ABS = 2,
83a01957 684
a48d0c12
HS
685 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686 // mem access, slowest one. Only used in position independent executables.
687 ST_LONG_BRANCH_PCREL = 3,
83a01957 688
a48d0c12
HS
689 // Stub for erratum 843419 handling.
690 ST_E_843419 = 4,
83a01957 691
2f0c79aa
HS
692 // Stub for erratum 835769 handling.
693 ST_E_835769 = 5,
694
a48d0c12 695 // Number of total stub types.
2f0c79aa 696 ST_NUMBER = 6
a48d0c12 697};
83a01957 698
83a01957 699
a48d0c12
HS
700// Struct that wraps insns for a particular stub. All stub templates are
701// created/initialized as constants by Stub_template_repertoire.
83a01957 702
a48d0c12
HS
703template<bool big_endian>
704struct Stub_template
705{
706 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707 const int insn_num;
708};
83a01957 709
83a01957 710
a48d0c12
HS
711// Simple singleton class that creates/initializes/stores all types of stub
712// templates.
713
714template<bool big_endian>
715class Stub_template_repertoire
716{
717public:
718 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720 // Single static method to get stub template for a given stub type.
721 static const Stub_template<big_endian>*
722 get_stub_template(int type)
83a01957 723 {
a48d0c12
HS
724 static Stub_template_repertoire<big_endian> singleton;
725 return singleton.stub_templates_[type];
83a01957
HS
726 }
727
a48d0c12
HS
728private:
729 // Constructor - creates/initializes all stub templates.
730 Stub_template_repertoire();
731 ~Stub_template_repertoire()
83a01957
HS
732 { }
733
a48d0c12
HS
734 // Disallowing copy ctor and copy assignment operator.
735 Stub_template_repertoire(Stub_template_repertoire&);
736 Stub_template_repertoire& operator=(Stub_template_repertoire&);
83a01957 737
a48d0c12
HS
738 // Data that stores all insn templates.
739 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740}; // End of "class Stub_template_repertoire".
741
742
743// Constructor - creates/initilizes all stub templates.
744
745template<bool big_endian>
746Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747{
748 // Insn array definitions.
749 const static Insntype ST_NONE_INSNS[] = {};
750
751 const static Insntype ST_ADRP_BRANCH_INSNS[] =
752 {
753 0x90000010, /* adrp ip0, X */
754 /* ADR_PREL_PG_HI21(X) */
755 0x91000210, /* add ip0, ip0, :lo12:X */
756 /* ADD_ABS_LO12_NC(X) */
757 0xd61f0200, /* br ip0 */
758 0x00000000, /* alignment padding */
759 };
760
761 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762 {
763 0x58000050, /* ldr ip0, 0x8 */
764 0xd61f0200, /* br ip0 */
765 0x00000000, /* address field */
766 0x00000000, /* address fields */
767 };
768
769 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770 {
771 0x58000090, /* ldr ip0, 0x10 */
772 0x10000011, /* adr ip1, #0 */
773 0x8b110210, /* add ip0, ip0, ip1 */
774 0xd61f0200, /* br ip0 */
775 0x00000000, /* address field */
776 0x00000000, /* address field */
777 0x00000000, /* alignment padding */
778 0x00000000, /* alignment padding */
779 };
780
781 const static Insntype ST_E_843419_INSNS[] =
782 {
783 0x00000000, /* Placeholder for erratum insn. */
784 0x14000000, /* b <label> */
785 };
786
2f0c79aa
HS
787 // ST_E_835769 has the same stub template as ST_E_843419.
788 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
a48d0c12
HS
790#define install_insn_template(T) \
791 const static Stub_template<big_endian> template_##T = { \
792 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793 this->stub_templates_[T] = &template_##T
794
795 install_insn_template(ST_NONE);
796 install_insn_template(ST_ADRP_BRANCH);
797 install_insn_template(ST_LONG_BRANCH_ABS);
798 install_insn_template(ST_LONG_BRANCH_PCREL);
799 install_insn_template(ST_E_843419);
2f0c79aa 800 install_insn_template(ST_E_835769);
a48d0c12
HS
801
802#undef install_insn_template
803}
804
805
806// Base class for stubs.
807
808template<int size, bool big_endian>
809class Stub_base
810{
811public:
812 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815 static const AArch64_address invalid_address =
816 static_cast<AArch64_address>(-1);
817
818 static const section_offset_type invalid_offset =
819 static_cast<section_offset_type>(-1);
820
821 Stub_base(int type)
822 : destination_address_(invalid_address),
823 offset_(invalid_offset),
824 type_(type)
825 {}
826
827 ~Stub_base()
828 {}
829
830 // Get stub type.
831 int
832 type() const
833 { return this->type_; }
834
835 // Get stub template that provides stub insn information.
836 const Stub_template<big_endian>*
837 stub_template() const
83a01957 838 {
a48d0c12
HS
839 return Stub_template_repertoire<big_endian>::
840 get_stub_template(this->type());
83a01957
HS
841 }
842
a48d0c12 843 // Get destination address.
83a01957
HS
844 AArch64_address
845 destination_address() const
846 {
847 gold_assert(this->destination_address_ != this->invalid_address);
848 return this->destination_address_;
849 }
850
851 // Set destination address.
852 void
853 set_destination_address(AArch64_address address)
854 {
855 gold_assert(address != this->invalid_address);
856 this->destination_address_ = address;
857 }
858
859 // Reset the destination address.
860 void
861 reset_destination_address()
862 { this->destination_address_ = this->invalid_address; }
863
a48d0c12
HS
864 // Get offset of code stub. For Reloc_stub, it is the offset from the
865 // beginning of its containing stub table; for Erratum_stub, it is the offset
866 // from the end of reloc_stubs.
867 section_offset_type
868 offset() const
869 {
870 gold_assert(this->offset_ != this->invalid_offset);
871 return this->offset_;
872 }
83a01957 873
a48d0c12
HS
874 // Set stub offset.
875 void
876 set_offset(section_offset_type offset)
877 { this->offset_ = offset; }
83a01957 878
a48d0c12
HS
879 // Return the stub insn.
880 const Insntype*
881 insns() const
882 { return this->stub_template()->insns; }
83a01957 883
a48d0c12
HS
884 // Return num of stub insns.
885 unsigned int
886 insn_num() const
887 { return this->stub_template()->insn_num; }
888
889 // Get size of the stub.
890 int
891 stub_size() const
892 {
893 return this->insn_num() *
894 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895 }
83a01957
HS
896
897 // Write stub to output file.
898 void
899 write(unsigned char* view, section_size_type view_size)
900 { this->do_write(view, view_size); }
901
a48d0c12
HS
902protected:
903 // Abstract method to be implemented by sub-classes.
904 virtual void
905 do_write(unsigned char*, section_size_type) = 0;
906
907private:
908 // The last insn of a stub is a jump to destination insn. This field records
909 // the destination address.
910 AArch64_address destination_address_;
911 // The stub offset. Note this has difference interpretations between an
912 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913 // beginning of the containing stub_table, whereas for Erratum_stub, this is
914 // the offset from the end of reloc_stubs.
915 section_offset_type offset_;
916 // Stub type.
917 const int type_;
918}; // End of "Stub_base".
919
920
921// Erratum stub class. An erratum stub differs from a reloc stub in that for
922// each erratum occurrence, we generate an erratum stub. We never share erratum
923// stubs, whereas for reloc stubs, different branches insns share a single reloc
924// stub as long as the branch targets are the same. (More to the point, reloc
925// stubs can be shared because they're used to reach a specific target, whereas
926// erratum stubs branch back to the original control flow.)
927
928template<int size, bool big_endian>
929class Erratum_stub : public Stub_base<size, big_endian>
930{
931public:
932 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
56b06706 934 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
a48d0c12
HS
935 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
5d7908e0 937 static const int STUB_ADDR_ALIGN;
a48d0c12
HS
938
939 static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
941 Erratum_stub(The_aarch64_relobj* relobj, int type,
942 unsigned shndx, unsigned int sh_offset)
943 : Stub_base<size, big_endian>(type), relobj_(relobj),
944 shndx_(shndx), sh_offset_(sh_offset),
945 erratum_insn_(invalid_insn),
946 erratum_address_(this->invalid_address)
947 {}
948
949 ~Erratum_stub() {}
950
951 // Return the object that contains the erratum.
952 The_aarch64_relobj*
953 relobj()
954 { return this->relobj_; }
955
956 // Get section index of the erratum.
957 unsigned int
958 shndx() const
959 { return this->shndx_; }
960
961 // Get section offset of the erratum.
962 unsigned int
963 sh_offset() const
964 { return this->sh_offset_; }
965
966 // Get the erratum insn. This is the insn located at erratum_insn_address.
967 Insntype
968 erratum_insn() const
969 {
970 gold_assert(this->erratum_insn_ != this->invalid_insn);
971 return this->erratum_insn_;
972 }
973
974 // Set the insn that the erratum happens to.
975 void
976 set_erratum_insn(Insntype insn)
977 { this->erratum_insn_ = insn; }
978
56b06706
HS
979 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981 // is no longer the one we want to write out to the stub, update erratum_insn_
982 // with relocated version. Also note that in this case xn must not be "PC", so
983 // it is safe to move the erratum insn from the origin place to the stub. For
984 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985 // relocation spot (assertion added though).
986 void
987 update_erratum_insn(Insntype insn)
988 {
989 gold_assert(this->erratum_insn_ != this->invalid_insn);
990 switch (this->type())
991 {
992 case ST_E_843419:
993 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995 gold_assert(Insn_utilities::aarch64_rd(insn) ==
996 Insn_utilities::aarch64_rd(this->erratum_insn()));
997 gold_assert(Insn_utilities::aarch64_rn(insn) ==
998 Insn_utilities::aarch64_rn(this->erratum_insn()));
999 // Update plain ld/st insn with relocated insn.
1000 this->erratum_insn_ = insn;
1001 break;
1002 case ST_E_835769:
1003 gold_assert(insn == this->erratum_insn());
1004 break;
1005 default:
1006 gold_unreachable();
1007 }
1008 }
1009
1010
a48d0c12
HS
1011 // Return the address where an erratum must be done.
1012 AArch64_address
1013 erratum_address() const
1014 {
1015 gold_assert(this->erratum_address_ != this->invalid_address);
1016 return this->erratum_address_;
1017 }
1018
1019 // Set the address where an erratum must be done.
1020 void
1021 set_erratum_address(AArch64_address addr)
1022 { this->erratum_address_ = addr; }
1023
1024 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025 // sh_offset). We do not include 'type' in the calculation, becuase there is
1026 // at most one stub type at (obj, shndx, sh_offset).
1027 bool
1028 operator<(const Erratum_stub<size, big_endian>& k) const
1029 {
1030 if (this == &k)
1031 return false;
1032 // We group stubs by relobj.
1033 if (this->relobj_ != k.relobj_)
1034 return this->relobj_ < k.relobj_;
1035 // Then by section index.
1036 if (this->shndx_ != k.shndx_)
1037 return this->shndx_ < k.shndx_;
1038 // Lastly by section offset.
1039 return this->sh_offset_ < k.sh_offset_;
1040 }
1041
1042protected:
1043 virtual void
1044 do_write(unsigned char*, section_size_type);
1045
1046private:
1047 // The object that needs to be fixed.
1048 The_aarch64_relobj* relobj_;
1049 // The shndx in the object that needs to be fixed.
1050 const unsigned int shndx_;
1051 // The section offset in the obejct that needs to be fixed.
1052 const unsigned int sh_offset_;
1053 // The insn to be fixed.
1054 Insntype erratum_insn_;
1055 // The address of the above insn.
1056 AArch64_address erratum_address_;
1057}; // End of "Erratum_stub".
1058
0ef3814f
HS
1059
1060// Erratum sub class to wrap additional info needed by 843419. In fixing this
1061// erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062// adrp's code position (two or three insns before erratum insn itself).
1063
1064template<int size, bool big_endian>
1065class E843419_stub : public Erratum_stub<size, big_endian>
1066{
1067public:
1068 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
1070 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, unsigned int sh_offset,
1072 unsigned int adrp_sh_offset)
1073 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074 adrp_sh_offset_(adrp_sh_offset)
1075 {}
1076
1077 unsigned int
1078 adrp_sh_offset() const
1079 { return this->adrp_sh_offset_; }
1080
1081private:
1082 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083 // can can obtain it from its parent.)
1084 const unsigned int adrp_sh_offset_;
1085};
1086
1087
5d7908e0
CC
1088template<int size, bool big_endian>
1089const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
a48d0c12
HS
1090
1091// Comparator used in set definition.
1092template<int size, bool big_endian>
1093struct Erratum_stub_less
1094{
1095 bool
1096 operator()(const Erratum_stub<size, big_endian>* s1,
1097 const Erratum_stub<size, big_endian>* s2) const
1098 { return *s1 < *s2; }
1099};
1100
1101// Erratum_stub implementation for writing stub to output file.
1102
1103template<int size, bool big_endian>
1104void
1105Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106{
1107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108 const Insntype* insns = this->insns();
1109 uint32_t num_insns = this->insn_num();
1110 Insntype* ip = reinterpret_cast<Insntype*>(view);
2f0c79aa
HS
1111 // For current implemented erratum 843419 and 835769, the first insn in the
1112 // stub is always a copy of the problematic insn (in 843419, the mem access
1113 // insn, in 835769, the mac insn), followed by a jump-back.
a48d0c12
HS
1114 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115 for (uint32_t i = 1; i < num_insns; ++i)
1116 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117}
1118
1119
1120// Reloc stub class.
1121
1122template<int size, bool big_endian>
1123class Reloc_stub : public Stub_base<size, big_endian>
1124{
1125 public:
1126 typedef Reloc_stub<size, big_endian> This;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129 // Branch range. This is used to calculate the section group size, as well as
1130 // determine whether a stub is needed.
1131 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134 // Constant used to determine if an offset fits in the adrp instruction
1135 // encoding.
1136 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137 static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139 static const int BYTES_PER_INSN = 4;
5d7908e0 1140 static const int STUB_ADDR_ALIGN;
a48d0c12
HS
1141
1142 // Determine whether the offset fits in the jump/branch instruction.
1143 static bool
1144 aarch64_valid_branch_offset_p(int64_t offset)
1145 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147 // Determine whether the offset fits in the adrp immediate field.
1148 static bool
1149 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150 {
1151 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154 }
1155
1156 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157 // needed.
1158 static int
1159 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160 AArch64_address target);
1161
1162 Reloc_stub(int type)
1163 : Stub_base<size, big_endian>(type)
1164 { }
1165
1166 ~Reloc_stub()
1167 { }
1168
83a01957
HS
1169 // The key class used to index the stub instance in the stub table's stub map.
1170 class Key
1171 {
1172 public:
a48d0c12 1173 Key(int type, const Symbol* symbol, const Relobj* relobj,
83a01957 1174 unsigned int r_sym, int32_t addend)
a48d0c12 1175 : type_(type), addend_(addend)
83a01957
HS
1176 {
1177 if (symbol != NULL)
1178 {
1179 this->r_sym_ = Reloc_stub::invalid_index;
1180 this->u_.symbol = symbol;
1181 }
1182 else
1183 {
1184 gold_assert(relobj != NULL && r_sym != invalid_index);
1185 this->r_sym_ = r_sym;
1186 this->u_.relobj = relobj;
1187 }
1188 }
1189
1190 ~Key()
1191 { }
1192
1193 // Return stub type.
a48d0c12
HS
1194 int
1195 type() const
1196 { return this->type_; }
83a01957
HS
1197
1198 // Return the local symbol index or invalid_index.
1199 unsigned int
1200 r_sym() const
1201 { return this->r_sym_; }
1202
1203 // Return the symbol if there is one.
1204 const Symbol*
1205 symbol() const
1206 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208 // Return the relobj if there is one.
1209 const Relobj*
1210 relobj() const
1211 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213 // Whether this equals to another key k.
1214 bool
1215 eq(const Key& k) const
1216 {
a48d0c12 1217 return ((this->type_ == k.type_)
83a01957
HS
1218 && (this->r_sym_ == k.r_sym_)
1219 && ((this->r_sym_ != Reloc_stub::invalid_index)
1220 ? (this->u_.relobj == k.u_.relobj)
1221 : (this->u_.symbol == k.u_.symbol))
1222 && (this->addend_ == k.addend_));
1223 }
1224
1225 // Return a hash value.
1226 size_t
1227 hash_value() const
1228 {
1229 size_t name_hash_value = gold::string_hash<char>(
1230 (this->r_sym_ != Reloc_stub::invalid_index)
1231 ? this->u_.relobj->name().c_str()
1232 : this->u_.symbol->name());
1233 // We only have 4 stub types.
a48d0c12 1234 size_t stub_type_hash_value = 0x03 & this->type_;
83a01957
HS
1235 return (name_hash_value
1236 ^ stub_type_hash_value
1237 ^ ((this->r_sym_ & 0x3fff) << 2)
1238 ^ ((this->addend_ & 0xffff) << 16));
1239 }
1240
1241 // Functors for STL associative containers.
1242 struct hash
1243 {
1244 size_t
1245 operator()(const Key& k) const
1246 { return k.hash_value(); }
1247 };
1248
1249 struct equal_to
1250 {
1251 bool
1252 operator()(const Key& k1, const Key& k2) const
1253 { return k1.eq(k2); }
1254 };
1255
9726c3c1 1256 private:
83a01957 1257 // Stub type.
a48d0c12 1258 const int type_;
83a01957
HS
1259 // If this is a local symbol, this is the index in the defining object.
1260 // Otherwise, it is invalid_index for a global symbol.
1261 unsigned int r_sym_;
1262 // If r_sym_ is an invalid index, this points to a global symbol.
1263 // Otherwise, it points to a relobj. We used the unsized and target
1264 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265 // Arm_relobj, in order to avoid making the stub class a template
1266 // as most of the stub machinery is endianness-neutral. However, it
1267 // may require a bit of casting done by users of this class.
1268 union
1269 {
1270 const Symbol* symbol;
1271 const Relobj* relobj;
1272 } u_;
1273 // Addend associated with a reloc.
1274 int32_t addend_;
1275 }; // End of inner class Reloc_stub::Key
1276
1277 protected:
1278 // This may be overridden in the child class.
1279 virtual void
1280 do_write(unsigned char*, section_size_type);
1281
1282 private:
83a01957 1283 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
83a01957
HS
1284}; // End of Reloc_stub
1285
5d7908e0
CC
1286template<int size, bool big_endian>
1287const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
83a01957
HS
1288
1289// Write data to output file.
1290
1291template<int size, bool big_endian>
1292void
1293Reloc_stub<size, big_endian>::
1294do_write(unsigned char* view, section_size_type)
1295{
1296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
a48d0c12
HS
1297 const uint32_t* insns = this->insns();
1298 uint32_t num_insns = this->insn_num();
83a01957 1299 Insntype* ip = reinterpret_cast<Insntype*>(view);
a48d0c12
HS
1300 for (uint32_t i = 0; i < num_insns; ++i)
1301 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
83a01957
HS
1302}
1303
1304
83a01957
HS
1305// Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306// needed.
1307
1308template<int size, bool big_endian>
a48d0c12 1309inline int
83a01957
HS
1310Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311 unsigned int r_type, AArch64_address location, AArch64_address dest)
1312{
1313 int64_t branch_offset = 0;
1314 switch(r_type)
1315 {
1316 case elfcpp::R_AARCH64_CALL26:
1317 case elfcpp::R_AARCH64_JUMP26:
1318 branch_offset = dest - location;
1319 break;
1320 default:
9726c3c1 1321 gold_unreachable();
83a01957
HS
1322 }
1323
1324 if (aarch64_valid_branch_offset_p(branch_offset))
1325 return ST_NONE;
1326
1327 if (aarch64_valid_for_adrp_p(location, dest))
1328 return ST_ADRP_BRANCH;
1329
1330 if (parameters->options().output_is_position_independent()
1331 && parameters->options().output_is_executable())
1332 return ST_LONG_BRANCH_PCREL;
1333
1334 return ST_LONG_BRANCH_ABS;
1335}
1336
1337// A class to hold stubs for the ARM target.
1338
1339template<int size, bool big_endian>
1340class Stub_table : public Output_data
1341{
1342 public:
1343 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1344 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
a48d0c12 1345 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
83a01957
HS
1346 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1347 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1348 typedef typename The_reloc_stub::Key The_reloc_stub_key;
a48d0c12
HS
1349 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1350 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
83a01957
HS
1351 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1352 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1353 typedef Stub_table<size, big_endian> The_stub_table;
1354 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1355 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1356 Reloc_stub_map;
1357 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1358 typedef Relocate_info<size, big_endian> The_relocate_info;
1359
a48d0c12
HS
1360 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1361 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1362
83a01957 1363 Stub_table(The_aarch64_input_section* owner)
a48d0c12
HS
1364 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1365 erratum_stubs_size_(0), prev_data_size_(0)
83a01957
HS
1366 { }
1367
1368 ~Stub_table()
1369 { }
1370
1371 The_aarch64_input_section*
1372 owner() const
1373 { return owner_; }
1374
1375 // Whether this stub table is empty.
1376 bool
1377 empty() const
a48d0c12 1378 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
83a01957
HS
1379
1380 // Return the current data size.
1381 off_t
1382 current_data_size() const
1383 { return this->current_data_size_for_child(); }
1384
1385 // Add a STUB using KEY. The caller is responsible for avoiding addition
1386 // if a STUB with the same key has already been added.
1387 void
1388 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1389
a48d0c12
HS
1390 // Add an erratum stub into the erratum stub set. The set is ordered by
1391 // (relobj, shndx, sh_offset).
1392 void
1393 add_erratum_stub(The_erratum_stub* stub);
1394
1395 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1396 The_erratum_stub*
1397 find_erratum_stub(The_aarch64_relobj* a64relobj,
1398 unsigned int shndx, unsigned int sh_offset);
1399
1400 // Find all the erratums for a given input section. The return value is a pair
1401 // of iterators [begin, end).
1402 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1403 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1404 unsigned int shndx);
1405
1406 // Compute the erratum stub address.
1407 AArch64_address
1408 erratum_stub_address(The_erratum_stub* stub) const
1409 {
1410 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1411 The_erratum_stub::STUB_ADDR_ALIGN);
1412 r += stub->offset();
1413 return r;
1414 }
1415
83a01957
HS
1416 // Finalize stubs. No-op here, just for completeness.
1417 void
1418 finalize_stubs()
1419 { }
1420
1421 // Look up a relocation stub using KEY. Return NULL if there is none.
1422 The_reloc_stub*
1423 find_reloc_stub(The_reloc_stub_key& key)
1424 {
1425 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1426 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1427 }
1428
1429 // Relocate stubs in this stub table.
1430 void
1431 relocate_stubs(const The_relocate_info*,
1432 The_target_aarch64*,
1433 Output_section*,
1434 unsigned char*,
1435 AArch64_address,
1436 section_size_type);
1437
1438 // Update data size at the end of a relaxation pass. Return true if data size
1439 // is different from that of the previous relaxation pass.
1440 bool
1441 update_data_size_changed_p()
1442 {
1443 // No addralign changed here.
a48d0c12
HS
1444 off_t s = align_address(this->reloc_stubs_size_,
1445 The_erratum_stub::STUB_ADDR_ALIGN)
1446 + this->erratum_stubs_size_;
83a01957
HS
1447 bool changed = (s != this->prev_data_size_);
1448 this->prev_data_size_ = s;
1449 return changed;
1450 }
1451
1452 protected:
1453 // Write out section contents.
1454 void
1455 do_write(Output_file*);
1456
1457 // Return the required alignment.
1458 uint64_t
1459 do_addralign() const
a48d0c12
HS
1460 {
1461 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1462 The_erratum_stub::STUB_ADDR_ALIGN);
1463 }
83a01957
HS
1464
1465 // Reset address and file offset.
1466 void
1467 do_reset_address_and_file_offset()
1468 { this->set_current_data_size_for_child(this->prev_data_size_); }
1469
1470 // Set final data size.
1471 void
1472 set_final_data_size()
1473 { this->set_data_size(this->current_data_size()); }
1474
1475 private:
1476 // Relocate one stub.
1477 void
1478 relocate_stub(The_reloc_stub*,
1479 const The_relocate_info*,
1480 The_target_aarch64*,
1481 Output_section*,
1482 unsigned char*,
1483 AArch64_address,
1484 section_size_type);
1485
1486 private:
1487 // Owner of this stub table.
1488 The_aarch64_input_section* owner_;
1489 // The relocation stubs.
1490 Reloc_stub_map reloc_stubs_;
a48d0c12
HS
1491 // The erratum stubs.
1492 Erratum_stub_set erratum_stubs_;
83a01957
HS
1493 // Size of reloc stubs.
1494 off_t reloc_stubs_size_;
a48d0c12
HS
1495 // Size of erratum stubs.
1496 off_t erratum_stubs_size_;
83a01957
HS
1497 // data size of this in the previous pass.
1498 off_t prev_data_size_;
1499}; // End of Stub_table
1500
1501
a48d0c12
HS
1502// Add an erratum stub into the erratum stub set. The set is ordered by
1503// (relobj, shndx, sh_offset).
1504
1505template<int size, bool big_endian>
1506void
1507Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1508{
1509 std::pair<Erratum_stub_set_iter, bool> ret =
1510 this->erratum_stubs_.insert(stub);
1511 gold_assert(ret.second);
1512 this->erratum_stubs_size_ = align_address(
1513 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1514 stub->set_offset(this->erratum_stubs_size_);
1515 this->erratum_stubs_size_ += stub->stub_size();
1516}
1517
1518
56b06706 1519// Find if such erratum exists for given (obj, shndx, sh_offset).
a48d0c12
HS
1520
1521template<int size, bool big_endian>
1522Erratum_stub<size, big_endian>*
1523Stub_table<size, big_endian>::find_erratum_stub(
1524 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1525{
1526 // A dummy object used as key to search in the set.
1527 The_erratum_stub key(a64relobj, ST_NONE,
1528 shndx, sh_offset);
1529 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1530 if (i != this->erratum_stubs_.end())
1531 {
1532 The_erratum_stub* stub(*i);
1533 gold_assert(stub->erratum_insn() != 0);
1534 return stub;
1535 }
1536 return NULL;
1537}
1538
1539
1540// Find all the errata for a given input section. The return value is a pair of
1541// iterators [begin, end).
1542
1543template<int size, bool big_endian>
1544std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1545 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1546Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1547 The_aarch64_relobj* a64relobj, unsigned int shndx)
1548{
1549 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1550 Erratum_stub_set_iter start, end;
1551 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1552 start = this->erratum_stubs_.lower_bound(&low_key);
1553 if (start == this->erratum_stubs_.end())
1554 return Result_pair(this->erratum_stubs_.end(),
1555 this->erratum_stubs_.end());
1556 end = start;
1557 while (end != this->erratum_stubs_.end() &&
1558 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1559 ++end;
1560 return Result_pair(start, end);
1561}
1562
1563
83a01957
HS
1564// Add a STUB using KEY. The caller is responsible for avoiding addition
1565// if a STUB with the same key has already been added.
1566
1567template<int size, bool big_endian>
1568void
1569Stub_table<size, big_endian>::add_reloc_stub(
1570 The_reloc_stub* stub, const The_reloc_stub_key& key)
1571{
a48d0c12 1572 gold_assert(stub->type() == key.type());
83a01957
HS
1573 this->reloc_stubs_[key] = stub;
1574
1575 // Assign stub offset early. We can do this because we never remove
1576 // reloc stubs and they are in the beginning of the stub table.
1577 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1578 The_reloc_stub::STUB_ADDR_ALIGN);
1579 stub->set_offset(this->reloc_stubs_size_);
1580 this->reloc_stubs_size_ += stub->stub_size();
1581}
1582
1583
1584// Relocate all stubs in this stub table.
1585
1586template<int size, bool big_endian>
1587void
1588Stub_table<size, big_endian>::
1589relocate_stubs(const The_relocate_info* relinfo,
1590 The_target_aarch64* target_aarch64,
1591 Output_section* output_section,
1592 unsigned char* view,
1593 AArch64_address address,
1594 section_size_type view_size)
1595{
1596 // "view_size" is the total size of the stub_table.
1597 gold_assert(address == this->address() &&
1598 view_size == static_cast<section_size_type>(this->data_size()));
1599 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1600 p != this->reloc_stubs_.end(); ++p)
1601 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1602 view, address, view_size);
a48d0c12
HS
1603
1604 // Just for convenience.
1605 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1606
1607 // Now 'relocate' erratum stubs.
1608 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1609 i != this->erratum_stubs_.end(); ++i)
1610 {
1611 AArch64_address stub_address = this->erratum_stub_address(*i);
1612 // The address of "b" in the stub that is to be "relocated".
1613 AArch64_address stub_b_insn_address;
1614 // Branch offset that is to be filled in "b" insn.
1615 int b_offset = 0;
1616 switch ((*i)->type())
1617 {
1618 case ST_E_843419:
2f0c79aa 1619 case ST_E_835769:
56b06706
HS
1620 // The 1st insn of the erratum could be a relocation spot,
1621 // in this case we need to fix it with
1622 // "(*i)->erratum_insn()".
1623 elfcpp::Swap<32, big_endian>::writeval(
1624 view + (stub_address - this->address()),
1625 (*i)->erratum_insn());
a48d0c12
HS
1626 // For the erratum, the 2nd insn is a b-insn to be patched
1627 // (relocated).
1628 stub_b_insn_address = stub_address + 1 * BPI;
1629 b_offset = (*i)->destination_address() - stub_b_insn_address;
1630 AArch64_relocate_functions<size, big_endian>::construct_b(
1631 view + (stub_b_insn_address - this->address()),
1632 ((unsigned int)(b_offset)) & 0xfffffff);
1633 break;
1634 default:
1635 gold_unreachable();
1636 break;
1637 }
1638 }
83a01957
HS
1639}
1640
1641
1642// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1643
1644template<int size, bool big_endian>
1645void
1646Stub_table<size, big_endian>::
1647relocate_stub(The_reloc_stub* stub,
1648 const The_relocate_info* relinfo,
1649 The_target_aarch64* target_aarch64,
1650 Output_section* output_section,
1651 unsigned char* view,
1652 AArch64_address address,
1653 section_size_type view_size)
1654{
1655 // "offset" is the offset from the beginning of the stub_table.
1656 section_size_type offset = stub->offset();
1657 section_size_type stub_size = stub->stub_size();
1658 // "view_size" is the total size of the stub_table.
1659 gold_assert(offset + stub_size <= view_size);
1660
1661 target_aarch64->relocate_stub(stub, relinfo, output_section,
1662 view + offset, address + offset, view_size);
1663}
1664
1665
1666// Write out the stubs to file.
1667
1668template<int size, bool big_endian>
1669void
1670Stub_table<size, big_endian>::do_write(Output_file* of)
1671{
1672 off_t offset = this->offset();
1673 const section_size_type oview_size =
1674 convert_to_section_size_type(this->data_size());
1675 unsigned char* const oview = of->get_output_view(offset, oview_size);
1676
1677 // Write relocation stubs.
1678 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1679 p != this->reloc_stubs_.end(); ++p)
1680 {
1681 The_reloc_stub* stub = p->second;
1682 AArch64_address address = this->address() + stub->offset();
1683 gold_assert(address ==
1684 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1685 stub->write(oview + stub->offset(), stub->stub_size());
1686 }
1687
a48d0c12
HS
1688 // Write erratum stubs.
1689 unsigned int erratum_stub_start_offset =
1690 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1691 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1692 p != this->erratum_stubs_.end(); ++p)
1693 {
1694 The_erratum_stub* stub(*p);
1695 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1696 stub->stub_size());
1697 }
1698
83a01957
HS
1699 of->write_output_view(this->offset(), oview_size, oview);
1700}
1701
1702
1703// AArch64_relobj class.
1704
1705template<int size, bool big_endian>
1706class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1707{
1708 public:
1709 typedef AArch64_relobj<size, big_endian> This;
1710 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1711 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1712 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1713 typedef Stub_table<size, big_endian> The_stub_table;
a48d0c12
HS
1714 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1715 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
83a01957
HS
1716 typedef std::vector<The_stub_table*> Stub_table_list;
1717 static const AArch64_address invalid_address =
1718 static_cast<AArch64_address>(-1);
1719
1720 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1721 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1722 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1723 stub_tables_()
1724 { }
1725
1726 ~AArch64_relobj()
1727 { }
1728
1729 // Return the stub table of the SHNDX-th section if there is one.
1730 The_stub_table*
1731 stub_table(unsigned int shndx) const
1732 {
1733 gold_assert(shndx < this->stub_tables_.size());
1734 return this->stub_tables_[shndx];
1735 }
1736
1737 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1738 void
1739 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1740 {
1741 gold_assert(shndx < this->stub_tables_.size());
1742 this->stub_tables_[shndx] = stub_table;
1743 }
1744
2f0c79aa 1745 // Entrance to errata scanning.
5019d64a 1746 void
2f0c79aa
HS
1747 scan_errata(unsigned int shndx,
1748 const elfcpp::Shdr<size, big_endian>&,
1749 Output_section*, const Symbol_table*,
1750 The_target_aarch64*);
5019d64a
HS
1751
1752 // Scan all relocation sections for stub generation.
83a01957
HS
1753 void
1754 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1755 const Layout*);
1756
1757 // Whether a section is a scannable text section.
1758 bool
1759 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1760 const Output_section*, const Symbol_table*);
1761
1762 // Convert regular input section with index SHNDX to a relaxed section.
1763 void
1764 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1765 {
1766 // The stubs have relocations and we need to process them after writing
1767 // out the stubs. So relocation now must follow section write.
1768 this->set_relocs_must_follow_section_writes();
1769 }
1770
5019d64a
HS
1771 // Structure for mapping symbol position.
1772 struct Mapping_symbol_position
1773 {
1774 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1775 shndx_(shndx), offset_(offset)
1776 {}
1777
1778 // "<" comparator used in ordered_map container.
1779 bool
1780 operator<(const Mapping_symbol_position& p) const
1781 {
1782 return (this->shndx_ < p.shndx_
1783 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1784 }
1785
1786 // Section index.
1787 unsigned int shndx_;
1788
1789 // Section offset.
1790 AArch64_address offset_;
1791 };
1792
1793 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1794
83a01957
HS
1795 protected:
1796 // Post constructor setup.
1797 void
1798 do_setup()
1799 {
1800 // Call parent's setup method.
1801 Sized_relobj_file<size, big_endian>::do_setup();
1802
1803 // Initialize look-up tables.
1804 this->stub_tables_.resize(this->shnum());
1805 }
1806
1807 virtual void
1808 do_relocate_sections(
1809 const Symbol_table* symtab, const Layout* layout,
1810 const unsigned char* pshdrs, Output_file* of,
1811 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1812
5019d64a
HS
1813 // Count local symbols and (optionally) record mapping info.
1814 virtual void
1815 do_count_local_symbols(Stringpool_template<char>*,
1816 Stringpool_template<char>*);
1817
83a01957 1818 private:
a48d0c12
HS
1819 // Fix all errata in the object.
1820 void
1821 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1822
0ef3814f
HS
1823 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1824 // applied.
1825 bool
1826 try_fix_erratum_843419_optimized(
1827 The_erratum_stub*,
1828 typename Sized_relobj_file<size, big_endian>::View_size&);
1829
83a01957
HS
1830 // Whether a section needs to be scanned for relocation stubs.
1831 bool
1832 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1833 const Relobj::Output_sections&,
1834 const Symbol_table*, const unsigned char*);
1835
1836 // List of stub tables.
1837 Stub_table_list stub_tables_;
5019d64a
HS
1838
1839 // Mapping symbol information sorted by (section index, section_offset).
1840 Mapping_symbol_info mapping_symbol_info_;
83a01957
HS
1841}; // End of AArch64_relobj
1842
1843
5019d64a
HS
1844// Override to record mapping symbol information.
1845template<int size, bool big_endian>
1846void
1847AArch64_relobj<size, big_endian>::do_count_local_symbols(
1848 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1849{
1850 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1851
1852 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1853 // processing if not fixing erratum.
2f0c79aa
HS
1854 if (!parameters->options().fix_cortex_a53_843419()
1855 && !parameters->options().fix_cortex_a53_835769())
5019d64a
HS
1856 return;
1857
1858 const unsigned int loccount = this->local_symbol_count();
1859 if (loccount == 0)
1860 return;
1861
1862 // Read the symbol table section header.
1863 const unsigned int symtab_shndx = this->symtab_shndx();
1864 elfcpp::Shdr<size, big_endian>
1865 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1866 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1867
1868 // Read the local symbols.
1869 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1870 gold_assert(loccount == symtabshdr.get_sh_info());
1871 off_t locsize = loccount * sym_size;
1872 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1873 locsize, true, true);
1874
1875 // For mapping symbol processing, we need to read the symbol names.
1876 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1877 if (strtab_shndx >= this->shnum())
1878 {
1879 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1880 return;
1881 }
1882
1883 elfcpp::Shdr<size, big_endian>
1884 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1885 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1886 {
1887 this->error(_("symbol table name section has wrong type: %u"),
1888 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1889 return;
1890 }
1891
1892 const char* pnames =
1893 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1894 strtabshdr.get_sh_size(),
1895 false, false));
1896
1897 // Skip the first dummy symbol.
1898 psyms += sym_size;
1899 typename Sized_relobj_file<size, big_endian>::Local_values*
1900 plocal_values = this->local_values();
1901 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902 {
1903 elfcpp::Sym<size, big_endian> sym(psyms);
1904 Symbol_value<size>& lv((*plocal_values)[i]);
1905 AArch64_address input_value = lv.input_value();
1906
b91deca9
HS
1907 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1908 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1909 // symbols.
1910 // Mapping symbols could be one of the following 4 forms -
1911 // a) $x
1912 // b) $x.<any...>
1913 // c) $d
1914 // d) $d.<any...>
5019d64a
HS
1915 const char* sym_name = pnames + sym.get_st_name();
1916 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
b91deca9 1917 && (sym_name[2] == '\0' || sym_name[2] == '.'))
5019d64a
HS
1918 {
1919 bool is_ordinary;
1920 unsigned int input_shndx =
1921 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1922 gold_assert(is_ordinary);
1923
1924 Mapping_symbol_position msp(input_shndx, input_value);
1925 // Insert mapping_symbol_info into map whose ordering is defined by
1926 // (shndx, offset_within_section).
1927 this->mapping_symbol_info_[msp] = sym_name[1];
1928 }
1929 }
1930}
1931
1932
a48d0c12
HS
1933// Fix all errata in the object.
1934
1935template<int size, bool big_endian>
1936void
1937AArch64_relobj<size, big_endian>::fix_errata(
1938 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1939{
1940 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1941 unsigned int shnum = this->shnum();
1942 for (unsigned int i = 1; i < shnum; ++i)
1943 {
1944 The_stub_table* stub_table = this->stub_table(i);
1945 if (!stub_table)
1946 continue;
1947 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1948 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1949 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1950 while (p != end)
1951 {
1952 The_erratum_stub* stub = *p;
1953 typename Sized_relobj_file<size, big_endian>::View_size&
1954 pview((*pviews)[i]);
1955
1956 // Double check data before fix.
56b06706
HS
1957 gold_assert(pview.address + stub->sh_offset()
1958 == stub->erratum_address());
1959
1960 // Update previously recorded erratum insn with relocated
1961 // version.
a48d0c12
HS
1962 Insntype* ip =
1963 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1964 Insntype insn_to_fix = ip[0];
56b06706 1965 stub->update_erratum_insn(insn_to_fix);
a48d0c12 1966
0ef3814f
HS
1967 // First try to see if erratum is 843419 and if it can be fixed
1968 // without using branch-to-stub.
1969 if (!try_fix_erratum_843419_optimized(stub, pview))
1970 {
1971 // Replace the erratum insn with a branch-to-stub.
1972 AArch64_address stub_address =
1973 stub_table->erratum_stub_address(stub);
1974 unsigned int b_offset = stub_address - stub->erratum_address();
1975 AArch64_relocate_functions<size, big_endian>::construct_b(
1976 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1977 }
a48d0c12
HS
1978 ++p;
1979 }
1980 }
1981}
1982
1983
0ef3814f
HS
1984// This is an optimization for 843419. This erratum requires the sequence begin
1985// with 'adrp', when final value calculated by adrp fits in adr, we can just
1986// replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1987// in this case, we do not delete the erratum stub (too late to do so), it is
1988// merely generated without ever being called.)
1989
1990template<int size, bool big_endian>
1991bool
1992AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1993 The_erratum_stub* stub,
1994 typename Sized_relobj_file<size, big_endian>::View_size& pview)
1995{
1996 if (stub->type() != ST_E_843419)
1997 return false;
1998
1999 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2000 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2001 E843419_stub<size, big_endian>* e843419_stub =
2002 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2003 AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2004 Insntype* adrp_view = reinterpret_cast<Insntype*>(
2005 pview.view + e843419_stub->adrp_sh_offset());
2006 Insntype adrp_insn = adrp_view[0];
2007 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2008 // Get adrp 33-bit signed imm value.
2009 int64_t adrp_imm = Insn_utilities::
2010 aarch64_adrp_decode_imm(adrp_insn);
2011 // adrp - final value transferred to target register is calculated as:
2012 // PC[11:0] = Zeros(12)
2013 // adrp_dest_value = PC + adrp_imm;
2014 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2015 // adr -final value transferred to target register is calucalted as:
2016 // PC + adr_imm
2017 // So we have:
2018 // PC + adr_imm = adrp_dest_value
2019 // ==>
2020 // adr_imm = adrp_dest_value - PC
2021 int64_t adr_imm = adrp_dest_value - pc;
2022 // Check if imm fits in adr (21-bit signed).
2023 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2024 {
2025 // Convert 'adrp' into 'adr'.
f945ba50 2026 Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
0ef3814f
HS
2027 adr_insn = Insn_utilities::
2028 aarch64_adr_encode_imm(adr_insn, adr_imm);
2029 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2030 return true;
2031 }
2032 return false;
2033}
2034
2035
83a01957
HS
2036// Relocate sections.
2037
2038template<int size, bool big_endian>
2039void
2040AArch64_relobj<size, big_endian>::do_relocate_sections(
2041 const Symbol_table* symtab, const Layout* layout,
2042 const unsigned char* pshdrs, Output_file* of,
2043 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2044{
2045 // Call parent to relocate sections.
2046 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2047 pshdrs, of, pviews);
2048
2049 // We do not generate stubs if doing a relocatable link.
2050 if (parameters->options().relocatable())
2051 return;
2052
2f0c79aa
HS
2053 if (parameters->options().fix_cortex_a53_843419()
2054 || parameters->options().fix_cortex_a53_835769())
a48d0c12
HS
2055 this->fix_errata(pviews);
2056
83a01957
HS
2057 Relocate_info<size, big_endian> relinfo;
2058 relinfo.symtab = symtab;
2059 relinfo.layout = layout;
2060 relinfo.object = this;
2061
2062 // Relocate stub tables.
2063 unsigned int shnum = this->shnum();
2064 The_target_aarch64* target = The_target_aarch64::current_target();
2065
2066 for (unsigned int i = 1; i < shnum; ++i)
2067 {
2068 The_aarch64_input_section* aarch64_input_section =
2069 target->find_aarch64_input_section(this, i);
2070 if (aarch64_input_section != NULL
2071 && aarch64_input_section->is_stub_table_owner()
2072 && !aarch64_input_section->stub_table()->empty())
2073 {
2074 Output_section* os = this->output_section(i);
2075 gold_assert(os != NULL);
2076
2077 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2078 relinfo.reloc_shdr = NULL;
2079 relinfo.data_shndx = i;
2080 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2081
2082 typename Sized_relobj_file<size, big_endian>::View_size&
2083 view_struct = (*pviews)[i];
2084 gold_assert(view_struct.view != NULL);
2085
2086 The_stub_table* stub_table = aarch64_input_section->stub_table();
2087 off_t offset = stub_table->address() - view_struct.address;
2088 unsigned char* view = view_struct.view + offset;
2089 AArch64_address address = stub_table->address();
2090 section_size_type view_size = stub_table->data_size();
2091 stub_table->relocate_stubs(&relinfo, target, os, view, address,
2092 view_size);
2093 }
2094 }
2095}
2096
2097
2098// Determine if an input section is scannable for stub processing. SHDR is
2099// the header of the section and SHNDX is the section index. OS is the output
2100// section for the input section and SYMTAB is the global symbol table used to
2101// look up ICF information.
2102
2103template<int size, bool big_endian>
2104bool
2105AArch64_relobj<size, big_endian>::text_section_is_scannable(
2106 const elfcpp::Shdr<size, big_endian>& text_shdr,
2107 unsigned int text_shndx,
2108 const Output_section* os,
2109 const Symbol_table* symtab)
2110{
2111 // Skip any empty sections, unallocated sections or sections whose
2112 // type are not SHT_PROGBITS.
2113 if (text_shdr.get_sh_size() == 0
2114 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2115 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2116 return false;
2117
2118 // Skip any discarded or ICF'ed sections.
2119 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2120 return false;
2121
2122 // Skip exception frame.
2123 if (strcmp(os->name(), ".eh_frame") == 0)
2124 return false ;
2125
2126 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2127 os->find_relaxed_input_section(this, text_shndx) != NULL);
2128
2129 return true;
2130}
2131
2132
2133// Determine if we want to scan the SHNDX-th section for relocation stubs.
2134// This is a helper for AArch64_relobj::scan_sections_for_stubs().
2135
2136template<int size, bool big_endian>
2137bool
2138AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2139 const elfcpp::Shdr<size, big_endian>& shdr,
2140 const Relobj::Output_sections& out_sections,
2141 const Symbol_table* symtab,
2142 const unsigned char* pshdrs)
2143{
2144 unsigned int sh_type = shdr.get_sh_type();
2145 if (sh_type != elfcpp::SHT_RELA)
2146 return false;
2147
2148 // Ignore empty section.
2149 off_t sh_size = shdr.get_sh_size();
2150 if (sh_size == 0)
2151 return false;
2152
2153 // Ignore reloc section with unexpected symbol table. The
2154 // error will be reported in the final link.
2155 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2156 return false;
2157
2158 gold_assert(sh_type == elfcpp::SHT_RELA);
2159 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2160
2161 // Ignore reloc section with unexpected entsize or uneven size.
2162 // The error will be reported in the final link.
2163 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2164 return false;
2165
2166 // Ignore reloc section with bad info. This error will be
2167 // reported in the final link.
2168 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2169 if (text_shndx >= this->shnum())
2170 return false;
2171
2172 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2173 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2174 text_shndx * shdr_size);
2175 return this->text_section_is_scannable(text_shdr, text_shndx,
2176 out_sections[text_shndx], symtab);
2177}
2178
2179
2f0c79aa 2180// Scan section SHNDX for erratum 843419 and 835769.
5019d64a
HS
2181
2182template<int size, bool big_endian>
2183void
2f0c79aa 2184AArch64_relobj<size, big_endian>::scan_errata(
5019d64a
HS
2185 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2186 Output_section* os, const Symbol_table* symtab,
2187 The_target_aarch64* target)
2188{
2189 if (shdr.get_sh_size() == 0
2190 || (shdr.get_sh_flags() &
2191 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2192 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2193 return;
2194
2195 if (!os || symtab->is_section_folded(this, shndx)) return;
2196
2197 AArch64_address output_offset = this->get_output_section_offset(shndx);
2198 AArch64_address output_address;
2199 if (output_offset != invalid_address)
2200 output_address = os->address() + output_offset;
2201 else
2202 {
2203 const Output_relaxed_input_section* poris =
2204 os->find_relaxed_input_section(this, shndx);
2205 if (!poris) return;
2206 output_address = poris->address();
2207 }
2208
2209 section_size_type input_view_size = 0;
2210 const unsigned char* input_view =
2211 this->section_contents(shndx, &input_view_size, false);
2212
2213 Mapping_symbol_position section_start(shndx, 0);
2214 // Find the first mapping symbol record within section shndx.
2215 typename Mapping_symbol_info::const_iterator p =
2216 this->mapping_symbol_info_.lower_bound(section_start);
5019d64a
HS
2217 while (p != this->mapping_symbol_info_.end() &&
2218 p->first.shndx_ == shndx)
2219 {
2220 typename Mapping_symbol_info::const_iterator prev = p;
2221 ++p;
2222 if (prev->second == 'x')
2223 {
2224 section_size_type span_start =
2225 convert_to_section_size_type(prev->first.offset_);
2226 section_size_type span_end;
2227 if (p != this->mapping_symbol_info_.end()
2228 && p->first.shndx_ == shndx)
2229 span_end = convert_to_section_size_type(p->first.offset_);
2230 else
2231 span_end = convert_to_section_size_type(shdr.get_sh_size());
2f0c79aa
HS
2232
2233 // Here we do not share the scanning code of both errata. For 843419,
2234 // only the last few insns of each page are examined, which is fast,
2235 // whereas, for 835769, every insn pair needs to be checked.
2236
2237 if (parameters->options().fix_cortex_a53_843419())
2238 target->scan_erratum_843419_span(
2239 this, shndx, span_start, span_end,
2240 const_cast<unsigned char*>(input_view), output_address);
2241
2242 if (parameters->options().fix_cortex_a53_835769())
2243 target->scan_erratum_835769_span(
5019d64a
HS
2244 this, shndx, span_start, span_end,
2245 const_cast<unsigned char*>(input_view), output_address);
2246 }
2247 }
2248}
2249
2250
83a01957
HS
2251// Scan relocations for stub generation.
2252
2253template<int size, bool big_endian>
2254void
2255AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2256 The_target_aarch64* target,
2257 const Symbol_table* symtab,
2258 const Layout* layout)
2259{
2260 unsigned int shnum = this->shnum();
2261 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2262
2263 // Read the section headers.
2264 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2265 shnum * shdr_size,
2266 true, true);
2267
2268 // To speed up processing, we set up hash tables for fast lookup of
2269 // input offsets to output addresses.
2270 this->initialize_input_to_output_maps();
2271
2272 const Relobj::Output_sections& out_sections(this->output_sections());
2273
2274 Relocate_info<size, big_endian> relinfo;
2275 relinfo.symtab = symtab;
2276 relinfo.layout = layout;
2277 relinfo.object = this;
2278
2279 // Do relocation stubs scanning.
2280 const unsigned char* p = pshdrs + shdr_size;
2281 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2282 {
2283 const elfcpp::Shdr<size, big_endian> shdr(p);
2f0c79aa
HS
2284 if (parameters->options().fix_cortex_a53_843419()
2285 || parameters->options().fix_cortex_a53_835769())
2286 scan_errata(i, shdr, out_sections[i], symtab, target);
83a01957
HS
2287 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2288 pshdrs))
2289 {
2290 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2291 AArch64_address output_offset =
2292 this->get_output_section_offset(index);
2293 AArch64_address output_address;
2294 if (output_offset != invalid_address)
2295 {
2296 output_address = out_sections[index]->address() + output_offset;
2297 }
2298 else
2299 {
2300 // Currently this only happens for a relaxed section.
2301 const Output_relaxed_input_section* poris =
2302 out_sections[index]->find_relaxed_input_section(this, index);
2303 gold_assert(poris != NULL);
2304 output_address = poris->address();
2305 }
2306
2307 // Get the relocations.
2308 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2309 shdr.get_sh_size(),
2310 true, false);
2311
2312 // Get the section contents.
2313 section_size_type input_view_size = 0;
2314 const unsigned char* input_view =
2315 this->section_contents(index, &input_view_size, false);
2316
2317 relinfo.reloc_shndx = i;
2318 relinfo.data_shndx = index;
2319 unsigned int sh_type = shdr.get_sh_type();
2320 unsigned int reloc_size;
2321 gold_assert (sh_type == elfcpp::SHT_RELA);
2322 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2323
2324 Output_section* os = out_sections[index];
2325 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2326 shdr.get_sh_size() / reloc_size,
2327 os,
2328 output_offset == invalid_address,
2329 input_view, output_address,
2330 input_view_size);
2331 }
2332 }
2333}
2334
2335
2336// A class to wrap an ordinary input section containing executable code.
2337
2338template<int size, bool big_endian>
2339class AArch64_input_section : public Output_relaxed_input_section
2340{
2341 public:
2342 typedef Stub_table<size, big_endian> The_stub_table;
2343
2344 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2345 : Output_relaxed_input_section(relobj, shndx, 1),
2346 stub_table_(NULL),
2347 original_contents_(NULL), original_size_(0),
2348 original_addralign_(1)
2349 { }
2350
2351 ~AArch64_input_section()
2352 { delete[] this->original_contents_; }
2353
2354 // Initialize.
2355 void
2356 init();
2357
2358 // Set the stub_table.
2359 void
2360 set_stub_table(The_stub_table* st)
2361 { this->stub_table_ = st; }
2362
2363 // Whether this is a stub table owner.
2364 bool
2365 is_stub_table_owner() const
2366 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2367
2368 // Return the original size of the section.
2369 uint32_t
2370 original_size() const
2371 { return this->original_size_; }
2372
2373 // Return the stub table.
2374 The_stub_table*
2375 stub_table()
2376 { return stub_table_; }
2377
2378 protected:
2379 // Write out this input section.
2380 void
2381 do_write(Output_file*);
2382
2383 // Return required alignment of this.
2384 uint64_t
2385 do_addralign() const
2386 {
2387 if (this->is_stub_table_owner())
2388 return std::max(this->stub_table_->addralign(),
2389 static_cast<uint64_t>(this->original_addralign_));
2390 else
2391 return this->original_addralign_;
2392 }
2393
2394 // Finalize data size.
2395 void
2396 set_final_data_size();
2397
2398 // Reset address and file offset.
2399 void
2400 do_reset_address_and_file_offset();
2401
2402 // Output offset.
2403 bool
2404 do_output_offset(const Relobj* object, unsigned int shndx,
2405 section_offset_type offset,
2406 section_offset_type* poutput) const
2407 {
2408 if ((object == this->relobj())
2409 && (shndx == this->shndx())
2410 && (offset >= 0)
2411 && (offset <=
2412 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2413 {
2414 *poutput = offset;
2415 return true;
2416 }
2417 else
2418 return false;
2419 }
2420
2421 private:
2422 // Copying is not allowed.
2423 AArch64_input_section(const AArch64_input_section&);
2424 AArch64_input_section& operator=(const AArch64_input_section&);
2425
2426 // The relocation stubs.
2427 The_stub_table* stub_table_;
2428 // Original section contents. We have to make a copy here since the file
2429 // containing the original section may not be locked when we need to access
2430 // the contents.
2431 unsigned char* original_contents_;
2432 // Section size of the original input section.
2433 uint32_t original_size_;
2434 // Address alignment of the original input section.
2435 uint32_t original_addralign_;
2436}; // End of AArch64_input_section
2437
2438
2439// Finalize data size.
2440
2441template<int size, bool big_endian>
2442void
2443AArch64_input_section<size, big_endian>::set_final_data_size()
2444{
2445 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2446
2447 if (this->is_stub_table_owner())
2448 {
2449 this->stub_table_->finalize_data_size();
2450 off = align_address(off, this->stub_table_->addralign());
2451 off += this->stub_table_->data_size();
2452 }
2453 this->set_data_size(off);
2454}
2455
2456
2457// Reset address and file offset.
2458
2459template<int size, bool big_endian>
2460void
2461AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2462{
2463 // Size of the original input section contents.
2464 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2465
2466 // If this is a stub table owner, account for the stub table size.
2467 if (this->is_stub_table_owner())
2468 {
2469 The_stub_table* stub_table = this->stub_table_;
2470
2471 // Reset the stub table's address and file offset. The
2472 // current data size for child will be updated after that.
2473 stub_table_->reset_address_and_file_offset();
2474 off = align_address(off, stub_table_->addralign());
2475 off += stub_table->current_data_size();
2476 }
2477
2478 this->set_current_data_size(off);
2479}
2480
2481
2482// Initialize an Arm_input_section.
2483
2484template<int size, bool big_endian>
2485void
2486AArch64_input_section<size, big_endian>::init()
2487{
2488 Relobj* relobj = this->relobj();
2489 unsigned int shndx = this->shndx();
2490
2491 // We have to cache original size, alignment and contents to avoid locking
2492 // the original file.
2493 this->original_addralign_ =
2494 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2495
2496 // This is not efficient but we expect only a small number of relaxed
2497 // input sections for stubs.
2498 section_size_type section_size;
2499 const unsigned char* section_contents =
2500 relobj->section_contents(shndx, &section_size, false);
2501 this->original_size_ =
2502 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2503
2504 gold_assert(this->original_contents_ == NULL);
2505 this->original_contents_ = new unsigned char[section_size];
2506 memcpy(this->original_contents_, section_contents, section_size);
2507
2508 // We want to make this look like the original input section after
2509 // output sections are finalized.
2510 Output_section* os = relobj->output_section(shndx);
2511 off_t offset = relobj->output_section_offset(shndx);
2512 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2513 this->set_address(os->address() + offset);
2514 this->set_file_offset(os->offset() + offset);
2515 this->set_current_data_size(this->original_size_);
2516 this->finalize_data_size();
2517}
2518
2519
2520// Write data to output file.
2521
2522template<int size, bool big_endian>
2523void
2524AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2525{
2526 // We have to write out the original section content.
2527 gold_assert(this->original_contents_ != NULL);
2528 of->write(this->offset(), this->original_contents_,
2529 this->original_size_);
2530
2531 // If this owns a stub table and it is not empty, write it.
2532 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2533 this->stub_table_->write(of);
2534}
2535
2536
2537// Arm output section class. This is defined mainly to add a number of stub
2538// generation methods.
2539
2540template<int size, bool big_endian>
2541class AArch64_output_section : public Output_section
2542{
2543 public:
2544 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2545 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2546 typedef Stub_table<size, big_endian> The_stub_table;
2547 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2548
2549 public:
2550 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2551 elfcpp::Elf_Xword flags)
2552 : Output_section(name, type, flags)
2553 { }
2554
2555 ~AArch64_output_section() {}
2556
2557 // Group input sections for stub generation.
2558 void
2559 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2560 const Task*);
2561
2562 private:
2563 typedef Output_section::Input_section Input_section;
2564 typedef Output_section::Input_section_list Input_section_list;
2565
2566 // Create a stub group.
2567 void
2568 create_stub_group(Input_section_list::const_iterator,
2569 Input_section_list::const_iterator,
2570 Input_section_list::const_iterator,
2571 The_target_aarch64*,
2572 std::vector<Output_relaxed_input_section*>&,
2573 const Task*);
2574}; // End of AArch64_output_section
2575
2576
2577// Create a stub group for input sections from FIRST to LAST. OWNER points to
2578// the input section that will be the owner of the stub table.
2579
2580template<int size, bool big_endian> void
2581AArch64_output_section<size, big_endian>::create_stub_group(
2582 Input_section_list::const_iterator first,
2583 Input_section_list::const_iterator last,
2584 Input_section_list::const_iterator owner,
2585 The_target_aarch64* target,
2586 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2587 const Task* task)
2588{
2589 // Currently we convert ordinary input sections into relaxed sections only
2590 // at this point.
2591 The_aarch64_input_section* input_section;
2592 if (owner->is_relaxed_input_section())
2593 gold_unreachable();
2594 else
2595 {
2596 gold_assert(owner->is_input_section());
2597 // Create a new relaxed input section. We need to lock the original
2598 // file.
2599 Task_lock_obj<Object> tl(task, owner->relobj());
2600 input_section =
2601 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2602 new_relaxed_sections.push_back(input_section);
2603 }
2604
2605 // Create a stub table.
2606 The_stub_table* stub_table =
2607 target->new_stub_table(input_section);
2608
2609 input_section->set_stub_table(stub_table);
2610
2611 Input_section_list::const_iterator p = first;
2612 // Look for input sections or relaxed input sections in [first ... last].
2613 do
2614 {
2615 if (p->is_input_section() || p->is_relaxed_input_section())
2616 {
2617 // The stub table information for input sections live
2618 // in their objects.
2619 The_aarch64_relobj* aarch64_relobj =
2620 static_cast<The_aarch64_relobj*>(p->relobj());
2621 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2622 }
2623 }
2624 while (p++ != last);
2625}
2626
2627
2628// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2629// stub groups. We grow a stub group by adding input section until the size is
2630// just below GROUP_SIZE. The last input section will be converted into a stub
2631// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2632// after the stub table, effectively doubling the group size.
2633//
2634// This is similar to the group_sections() function in elf32-arm.c but is
2635// implemented differently.
2636
2637template<int size, bool big_endian>
2638void AArch64_output_section<size, big_endian>::group_sections(
2639 section_size_type group_size,
2640 bool stubs_always_after_branch,
2641 Target_aarch64<size, big_endian>* target,
2642 const Task* task)
2643{
2644 typedef enum
2645 {
2646 NO_GROUP,
2647 FINDING_STUB_SECTION,
2648 HAS_STUB_SECTION
2649 } State;
2650
2651 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2652
2653 State state = NO_GROUP;
2654 section_size_type off = 0;
2655 section_size_type group_begin_offset = 0;
2656 section_size_type group_end_offset = 0;
2657 section_size_type stub_table_end_offset = 0;
2658 Input_section_list::const_iterator group_begin =
2659 this->input_sections().end();
2660 Input_section_list::const_iterator stub_table =
2661 this->input_sections().end();
2662 Input_section_list::const_iterator group_end = this->input_sections().end();
2663 for (Input_section_list::const_iterator p = this->input_sections().begin();
2664 p != this->input_sections().end();
2665 ++p)
2666 {
2667 section_size_type section_begin_offset =
2668 align_address(off, p->addralign());
2669 section_size_type section_end_offset =
2670 section_begin_offset + p->data_size();
2671
2672 // Check to see if we should group the previously seen sections.
2673 switch (state)
2674 {
2675 case NO_GROUP:
2676 break;
2677
2678 case FINDING_STUB_SECTION:
2679 // Adding this section makes the group larger than GROUP_SIZE.
2680 if (section_end_offset - group_begin_offset >= group_size)
2681 {
2682 if (stubs_always_after_branch)
2683 {
2684 gold_assert(group_end != this->input_sections().end());
2685 this->create_stub_group(group_begin, group_end, group_end,
2686 target, new_relaxed_sections,
2687 task);
2688 state = NO_GROUP;
2689 }
2690 else
2691 {
2692 // Input sections up to stub_group_size bytes after the stub
2693 // table can be handled by it too.
2694 state = HAS_STUB_SECTION;
2695 stub_table = group_end;
2696 stub_table_end_offset = group_end_offset;
2697 }
2698 }
2699 break;
2700
2701 case HAS_STUB_SECTION:
2702 // Adding this section makes the post stub-section group larger
2703 // than GROUP_SIZE.
2704 gold_unreachable();
2705 // NOT SUPPORTED YET. For completeness only.
2706 if (section_end_offset - stub_table_end_offset >= group_size)
2707 {
2708 gold_assert(group_end != this->input_sections().end());
2709 this->create_stub_group(group_begin, group_end, stub_table,
2710 target, new_relaxed_sections, task);
2711 state = NO_GROUP;
2712 }
2713 break;
2714
2715 default:
2716 gold_unreachable();
2717 }
2718
2719 // If we see an input section and currently there is no group, start
2720 // a new one. Skip any empty sections. We look at the data size
2721 // instead of calling p->relobj()->section_size() to avoid locking.
2722 if ((p->is_input_section() || p->is_relaxed_input_section())
2723 && (p->data_size() != 0))
2724 {
2725 if (state == NO_GROUP)
2726 {
2727 state = FINDING_STUB_SECTION;
2728 group_begin = p;
2729 group_begin_offset = section_begin_offset;
2730 }
2731
2732 // Keep track of the last input section seen.
2733 group_end = p;
2734 group_end_offset = section_end_offset;
2735 }
2736
2737 off = section_end_offset;
2738 }
2739
2740 // Create a stub group for any ungrouped sections.
2741 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2742 {
2743 gold_assert(group_end != this->input_sections().end());
2744 this->create_stub_group(group_begin, group_end,
2745 (state == FINDING_STUB_SECTION
2746 ? group_end
2747 : stub_table),
2748 target, new_relaxed_sections, task);
2749 }
8e33481e 2750
83a01957
HS
2751 if (!new_relaxed_sections.empty())
2752 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2753
2754 // Update the section offsets
2755 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2756 {
2757 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2758 new_relaxed_sections[i]->relobj());
2759 unsigned int shndx = new_relaxed_sections[i]->shndx();
2760 // Tell AArch64_relobj that this input section is converted.
2761 relobj->convert_input_section_to_relaxed_section(shndx);
2762 }
2763} // End of AArch64_output_section::group_sections
3a531937 2764
053a4d68 2765
9363c7c3
JY
2766AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2767
3a531937 2768
053a4d68
JY
2769// The aarch64 target class.
2770// See the ABI at
2771// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2772template<int size, bool big_endian>
2773class Target_aarch64 : public Sized_target<size, big_endian>
2774{
2775 public:
83a01957 2776 typedef Target_aarch64<size, big_endian> This;
053a4d68
JY
2777 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2778 Reloc_section;
83a01957 2779 typedef Relocate_info<size, big_endian> The_relocate_info;
053a4d68 2780 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
2781 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2782 typedef Reloc_stub<size, big_endian> The_reloc_stub;
a48d0c12 2783 typedef Erratum_stub<size, big_endian> The_erratum_stub;
83a01957
HS
2784 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2785 typedef Stub_table<size, big_endian> The_stub_table;
2786 typedef std::vector<The_stub_table*> Stub_table_list;
2787 typedef typename Stub_table_list::iterator Stub_table_iterator;
2788 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2789 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2790 typedef Unordered_map<Section_id,
2791 AArch64_input_section<size, big_endian>*,
2792 Section_id_hash> AArch64_input_section_map;
5019d64a 2793 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
8e33481e 2794 const static int TCB_SIZE = size / 8 * 2;
053a4d68
JY
2795
2796 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2797 : Sized_target<size, big_endian>(info),
3a531937
JY
2798 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2799 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2800 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
83a01957
HS
2801 got_mod_index_offset_(-1U),
2802 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
0bf32ea9 2803 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
053a4d68
JY
2804 { }
2805
2806 // Scan the relocations to determine unreferenced sections for
2807 // garbage collection.
2808 void
2809 gc_process_relocs(Symbol_table* symtab,
2810 Layout* layout,
2811 Sized_relobj_file<size, big_endian>* object,
2812 unsigned int data_shndx,
2813 unsigned int sh_type,
2814 const unsigned char* prelocs,
2815 size_t reloc_count,
2816 Output_section* output_section,
2817 bool needs_special_offset_handling,
2818 size_t local_symbol_count,
2819 const unsigned char* plocal_symbols);
2820
2821 // Scan the relocations to look for symbol adjustments.
2822 void
2823 scan_relocs(Symbol_table* symtab,
2824 Layout* layout,
2825 Sized_relobj_file<size, big_endian>* object,
2826 unsigned int data_shndx,
2827 unsigned int sh_type,
2828 const unsigned char* prelocs,
2829 size_t reloc_count,
2830 Output_section* output_section,
2831 bool needs_special_offset_handling,
2832 size_t local_symbol_count,
2833 const unsigned char* plocal_symbols);
2834
2835 // Finalize the sections.
2836 void
2837 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2838
3a531937
JY
2839 // Return the value to use for a dynamic which requires special
2840 // treatment.
2841 uint64_t
2842 do_dynsym_value(const Symbol*) const;
2843
053a4d68
JY
2844 // Relocate a section.
2845 void
2846 relocate_section(const Relocate_info<size, big_endian>*,
2847 unsigned int sh_type,
2848 const unsigned char* prelocs,
2849 size_t reloc_count,
2850 Output_section* output_section,
2851 bool needs_special_offset_handling,
2852 unsigned char* view,
2853 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2854 section_size_type view_size,
2855 const Reloc_symbol_changes*);
2856
2857 // Scan the relocs during a relocatable link.
2858 void
2859 scan_relocatable_relocs(Symbol_table* symtab,
2860 Layout* layout,
2861 Sized_relobj_file<size, big_endian>* object,
2862 unsigned int data_shndx,
2863 unsigned int sh_type,
2864 const unsigned char* prelocs,
2865 size_t reloc_count,
2866 Output_section* output_section,
2867 bool needs_special_offset_handling,
2868 size_t local_symbol_count,
2869 const unsigned char* plocal_symbols,
2870 Relocatable_relocs*);
2871
2872 // Relocate a section during a relocatable link.
2873 void
2874 relocate_relocs(
2875 const Relocate_info<size, big_endian>*,
2876 unsigned int sh_type,
2877 const unsigned char* prelocs,
2878 size_t reloc_count,
2879 Output_section* output_section,
2880 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
053a4d68
JY
2881 unsigned char* view,
2882 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2883 section_size_type view_size,
2884 unsigned char* reloc_view,
2885 section_size_type reloc_view_size);
2886
3a531937
JY
2887 // Return the symbol index to use for a target specific relocation.
2888 // The only target specific relocation is R_AARCH64_TLSDESC for a
2889 // local symbol, which is an absolute reloc.
2890 unsigned int
2891 do_reloc_symbol_index(void*, unsigned int r_type) const
2892 {
2893 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2894 return 0;
2895 }
2896
2897 // Return the addend to use for a target specific relocation.
7fa5525f
RÁE
2898 uint64_t
2899 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3a531937 2900
9363c7c3
JY
2901 // Return the PLT section.
2902 uint64_t
2903 do_plt_address_for_global(const Symbol* gsym) const
2904 { return this->plt_section()->address_for_global(gsym); }
2905
2906 uint64_t
2907 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2908 { return this->plt_section()->address_for_local(relobj, symndx); }
2909
9726c3c1
HS
2910 // This function should be defined in targets that can use relocation
2911 // types to determine (implemented in local_reloc_may_be_function_pointer
2912 // and global_reloc_may_be_function_pointer)
2913 // if a function's pointer is taken. ICF uses this in safe mode to only
2914 // fold those functions whose pointer is defintely not taken.
2915 bool
2916 do_can_check_for_function_pointers() const
2917 { return true; }
2918
053a4d68
JY
2919 // Return the number of entries in the PLT.
2920 unsigned int
2921 plt_entry_count() const;
2922
2923 //Return the offset of the first non-reserved PLT entry.
2924 unsigned int
2925 first_plt_entry_offset() const;
2926
2927 // Return the size of each PLT entry.
2928 unsigned int
2929 plt_entry_size() const;
2930
83a01957
HS
2931 // Create a stub table.
2932 The_stub_table*
2933 new_stub_table(The_aarch64_input_section*);
2934
2935 // Create an aarch64 input section.
2936 The_aarch64_input_section*
2937 new_aarch64_input_section(Relobj*, unsigned int);
2938
2939 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2940 The_aarch64_input_section*
2941 find_aarch64_input_section(Relobj*, unsigned int) const;
2942
2943 // Return the thread control block size.
8e33481e
HS
2944 unsigned int
2945 tcb_size() const { return This::TCB_SIZE; }
2946
83a01957
HS
2947 // Scan a section for stub generation.
2948 void
2949 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2950 const unsigned char*, size_t, Output_section*,
2951 bool, const unsigned char*,
2952 Address,
2953 section_size_type);
2954
2955 // Scan a relocation section for stub.
2956 template<int sh_type>
2957 void
2958 scan_reloc_section_for_stubs(
2959 const The_relocate_info* relinfo,
2960 const unsigned char* prelocs,
2961 size_t reloc_count,
2962 Output_section* output_section,
2963 bool needs_special_offset_handling,
2964 const unsigned char* view,
2965 Address view_address,
2966 section_size_type);
2967
2968 // Relocate a single stub.
2969 void
2970 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2971 Output_section*, unsigned char*, Address,
2972 section_size_type);
2973
2974 // Get the default AArch64 target.
2975 static This*
2976 current_target()
2977 {
2978 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2979 && parameters->target().get_size() == size
2980 && parameters->target().is_big_endian() == big_endian);
2981 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2982 }
2983
5019d64a 2984
2f0c79aa 2985 // Scan erratum 843419 for a part of a section.
5019d64a
HS
2986 void
2987 scan_erratum_843419_span(
2988 AArch64_relobj<size, big_endian>*,
2f0c79aa
HS
2989 unsigned int,
2990 const section_size_type,
2991 const section_size_type,
2992 unsigned char*,
2993 Address);
2994
2995 // Scan erratum 835769 for a part of a section.
2996 void
2997 scan_erratum_835769_span(
2998 AArch64_relobj<size, big_endian>*,
2999 unsigned int,
5019d64a
HS
3000 const section_size_type,
3001 const section_size_type,
3002 unsigned char*,
3003 Address);
3004
9363c7c3
JY
3005 protected:
3006 void
3007 do_select_as_default_target()
3008 {
3009 gold_assert(aarch64_reloc_property_table == NULL);
3010 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3011 }
3012
3a531937
JY
3013 // Add a new reloc argument, returning the index in the vector.
3014 size_t
3015 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3016 unsigned int r_sym)
3017 {
3018 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3019 return this->tlsdesc_reloc_info_.size() - 1;
3020 }
3021
9363c7c3 3022 virtual Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
3023 do_make_data_plt(Layout* layout,
3024 Output_data_got_aarch64<size, big_endian>* got,
3025 Output_data_space* got_plt,
3026 Output_data_space* got_irelative)
9363c7c3 3027 {
3a531937
JY
3028 return new Output_data_plt_aarch64_standard<size, big_endian>(
3029 layout, got, got_plt, got_irelative);
9363c7c3
JY
3030 }
3031
83a01957
HS
3032
3033 // do_make_elf_object to override the same function in the base class.
3034 Object*
3035 do_make_elf_object(const std::string&, Input_file*, off_t,
3036 const elfcpp::Ehdr<size, big_endian>&);
3037
9363c7c3 3038 Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
3039 make_data_plt(Layout* layout,
3040 Output_data_got_aarch64<size, big_endian>* got,
3041 Output_data_space* got_plt,
3042 Output_data_space* got_irelative)
9363c7c3 3043 {
3a531937 3044 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
9363c7c3
JY
3045 }
3046
83a01957
HS
3047 // We only need to generate stubs, and hence perform relaxation if we are
3048 // not doing relocatable linking.
3049 virtual bool
3050 do_may_relax() const
3051 { return !parameters->options().relocatable(); }
3052
3053 // Relaxation hook. This is where we do stub generation.
3054 virtual bool
3055 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3056
3057 void
3058 group_sections(Layout* layout,
3059 section_size_type group_size,
3060 bool stubs_always_after_branch,
3061 const Task* task);
3062
3063 void
3064 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3065 const Sized_symbol<size>*, unsigned int,
3066 const Symbol_value<size>*,
3067 typename elfcpp::Elf_types<size>::Elf_Swxword,
3068 Address Elf_Addr);
3069
3070 // Make an output section.
3071 Output_section*
3072 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3073 elfcpp::Elf_Xword flags)
3074 { return new The_aarch64_output_section(name, type, flags); }
3075
053a4d68
JY
3076 private:
3077 // The class which scans relocations.
3078 class Scan
3079 {
3080 public:
3081 Scan()
3082 : issued_non_pic_error_(false)
3083 { }
3084
053a4d68
JY
3085 inline void
3086 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3087 Sized_relobj_file<size, big_endian>* object,
3088 unsigned int data_shndx,
3089 Output_section* output_section,
3090 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3091 const elfcpp::Sym<size, big_endian>& lsym,
3092 bool is_discarded);
3093
3094 inline void
3095 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3096 Sized_relobj_file<size, big_endian>* object,
3097 unsigned int data_shndx,
3098 Output_section* output_section,
3099 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3100 Symbol* gsym);
3101
3102 inline bool
3103 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
3104 Target_aarch64<size, big_endian>* ,
3105 Sized_relobj_file<size, big_endian>* ,
3106 unsigned int ,
3107 Output_section* ,
3108 const elfcpp::Rela<size, big_endian>& ,
3109 unsigned int r_type,
3110 const elfcpp::Sym<size, big_endian>&);
053a4d68
JY
3111
3112 inline bool
3113 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
3114 Target_aarch64<size, big_endian>* ,
3115 Sized_relobj_file<size, big_endian>* ,
3116 unsigned int ,
3117 Output_section* ,
3118 const elfcpp::Rela<size, big_endian>& ,
3119 unsigned int r_type,
3120 Symbol* gsym);
053a4d68
JY
3121
3122 private:
3123 static void
3124 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3125 unsigned int r_type);
3126
3127 static void
3128 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3129 unsigned int r_type, Symbol*);
3130
3131 inline bool
3132 possible_function_pointer_reloc(unsigned int r_type);
3133
3134 void
3135 check_non_pic(Relobj*, unsigned int r_type);
3136
9726c3c1
HS
3137 bool
3138 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3139 unsigned int r_type);
3140
053a4d68
JY
3141 // Whether we have issued an error about a non-PIC compilation.
3142 bool issued_non_pic_error_;
3143 };
3144
3145 // The class which implements relocation.
3146 class Relocate
3147 {
3148 public:
3149 Relocate()
3a531937 3150 : skip_call_tls_get_addr_(false)
053a4d68
JY
3151 { }
3152
3153 ~Relocate()
3154 { }
3155
3156 // Do a relocation. Return false if the caller should not issue
3157 // any warnings about this relocation.
3158 inline bool
91a65d2f
AM
3159 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3160 Target_aarch64*, Output_section*, size_t, const unsigned char*,
3161 const Sized_symbol<size>*, const Symbol_value<size>*,
053a4d68
JY
3162 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3163 section_size_type);
3164
8e33481e 3165 private:
83a01957
HS
3166 inline typename AArch64_relocate_functions<size, big_endian>::Status
3167 relocate_tls(const Relocate_info<size, big_endian>*,
8e33481e
HS
3168 Target_aarch64<size, big_endian>*,
3169 size_t,
3170 const elfcpp::Rela<size, big_endian>&,
3171 unsigned int r_type, const Sized_symbol<size>*,
3172 const Symbol_value<size>*,
3173 unsigned char*,
3174 typename elfcpp::Elf_types<size>::Elf_Addr);
3175
83a01957 3176 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3177 tls_gd_to_le(
83a01957 3178 const Relocate_info<size, big_endian>*,
3a531937
JY
3179 Target_aarch64<size, big_endian>*,
3180 const elfcpp::Rela<size, big_endian>&,
3181 unsigned int,
3182 unsigned char*,
3183 const Symbol_value<size>*);
3184
9726c3c1
HS
3185 inline typename AArch64_relocate_functions<size, big_endian>::Status
3186 tls_ld_to_le(
3187 const Relocate_info<size, big_endian>*,
3188 Target_aarch64<size, big_endian>*,
3189 const elfcpp::Rela<size, big_endian>&,
3190 unsigned int,
3191 unsigned char*,
3192 const Symbol_value<size>*);
3193
83a01957 3194 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3195 tls_ie_to_le(
83a01957 3196 const Relocate_info<size, big_endian>*,
3a531937
JY
3197 Target_aarch64<size, big_endian>*,
3198 const elfcpp::Rela<size, big_endian>&,
3199 unsigned int,
3200 unsigned char*,
3201 const Symbol_value<size>*);
3202
83a01957 3203 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3204 tls_desc_gd_to_le(
83a01957 3205 const Relocate_info<size, big_endian>*,
3a531937
JY
3206 Target_aarch64<size, big_endian>*,
3207 const elfcpp::Rela<size, big_endian>&,
3208 unsigned int,
3209 unsigned char*,
3210 const Symbol_value<size>*);
3211
83a01957 3212 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3213 tls_desc_gd_to_ie(
83a01957 3214 const Relocate_info<size, big_endian>*,
3a531937
JY
3215 Target_aarch64<size, big_endian>*,
3216 const elfcpp::Rela<size, big_endian>&,
3217 unsigned int,
3218 unsigned char*,
3219 const Symbol_value<size>*,
3220 typename elfcpp::Elf_types<size>::Elf_Addr,
3221 typename elfcpp::Elf_types<size>::Elf_Addr);
3222
3223 bool skip_call_tls_get_addr_;
3224
8e33481e 3225 }; // End of class Relocate
053a4d68
JY
3226
3227 // A class which returns the size required for a relocation type,
3228 // used while scanning relocs during a relocatable link.
3229 class Relocatable_size_for_reloc
3230 {
3231 public:
3232 unsigned int
3233 get_size_for_reloc(unsigned int, Relobj*);
3234 };
3235
3236 // Adjust TLS relocation type based on the options and whether this
3237 // is a local symbol.
3238 static tls::Tls_optimization
3239 optimize_tls_reloc(bool is_final, int r_type);
3240
3241 // Get the GOT section, creating it if necessary.
3242 Output_data_got_aarch64<size, big_endian>*
3243 got_section(Symbol_table*, Layout*);
3244
3245 // Get the GOT PLT section.
3246 Output_data_space*
3247 got_plt_section() const
3248 {
3249 gold_assert(this->got_plt_ != NULL);
3250 return this->got_plt_;
3251 }
3252
3a531937
JY
3253 // Get the GOT section for TLSDESC entries.
3254 Output_data_got<size, big_endian>*
3255 got_tlsdesc_section() const
3256 {
3257 gold_assert(this->got_tlsdesc_ != NULL);
3258 return this->got_tlsdesc_;
3259 }
3260
053a4d68
JY
3261 // Create the PLT section.
3262 void
3263 make_plt_section(Symbol_table* symtab, Layout* layout);
3264
3265 // Create a PLT entry for a global symbol.
3266 void
3267 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3268
3a531937
JY
3269 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3270 void
3271 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3272 Sized_relobj_file<size, big_endian>* relobj,
3273 unsigned int local_sym_index);
3274
3275 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3276 void
3277 define_tls_base_symbol(Symbol_table*, Layout*);
3278
3279 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3280 void
3281 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3282
3283 // Create a GOT entry for the TLS module index.
3284 unsigned int
3285 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3286 Sized_relobj_file<size, big_endian>* object);
3287
053a4d68
JY
3288 // Get the PLT section.
3289 Output_data_plt_aarch64<size, big_endian>*
3290 plt_section() const
3291 {
3292 gold_assert(this->plt_ != NULL);
3293 return this->plt_;
3294 }
3295
0ef3814f
HS
3296 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3297 // ST_E_843419, we need an additional field for adrp offset.
2f0c79aa
HS
3298 void create_erratum_stub(
3299 AArch64_relobj<size, big_endian>* relobj,
3300 unsigned int shndx,
3301 section_size_type erratum_insn_offset,
3302 Address erratum_address,
3303 typename Insn_utilities::Insntype erratum_insn,
0ef3814f
HS
3304 int erratum_type,
3305 unsigned int e843419_adrp_offset=0);
2f0c79aa 3306
5019d64a
HS
3307 // Return whether this is a 3-insn erratum sequence.
3308 bool is_erratum_843419_sequence(
3309 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3310 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3311 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3312
2f0c79aa
HS
3313 // Return whether this is a 835769 sequence.
3314 // (Similarly implemented as in elfnn-aarch64.c.)
3315 bool is_erratum_835769_sequence(
3316 typename elfcpp::Swap<32,big_endian>::Valtype,
3317 typename elfcpp::Swap<32,big_endian>::Valtype);
3318
053a4d68
JY
3319 // Get the dynamic reloc section, creating it if necessary.
3320 Reloc_section*
3321 rela_dyn_section(Layout*);
3322
3a531937
JY
3323 // Get the section to use for TLSDESC relocations.
3324 Reloc_section*
3325 rela_tlsdesc_section(Layout*) const;
3326
3327 // Get the section to use for IRELATIVE relocations.
3328 Reloc_section*
3329 rela_irelative_section(Layout*);
3330
053a4d68
JY
3331 // Add a potential copy relocation.
3332 void
3333 copy_reloc(Symbol_table* symtab, Layout* layout,
3334 Sized_relobj_file<size, big_endian>* object,
3335 unsigned int shndx, Output_section* output_section,
3336 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3337 {
859d7987 3338 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
053a4d68
JY
3339 this->copy_relocs_.copy_reloc(symtab, layout,
3340 symtab->get_sized_symbol<size>(sym),
3341 object, shndx, output_section,
859d7987
CC
3342 r_type, reloc.get_r_offset(),
3343 reloc.get_r_addend(),
3344 this->rela_dyn_section(layout));
053a4d68
JY
3345 }
3346
3347 // Information about this specific target which we pass to the
3348 // general Target structure.
3349 static const Target::Target_info aarch64_info;
3350
3351 // The types of GOT entries needed for this platform.
3352 // These values are exposed to the ABI in an incremental link.
3353 // Do not renumber existing values without changing the version
3354 // number of the .gnu_incremental_inputs section.
3355 enum Got_type
3356 {
3357 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3358 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3359 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3360 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3361 };
3362
3a531937
JY
3363 // This type is used as the argument to the target specific
3364 // relocation routines. The only target specific reloc is
3365 // R_AARCh64_TLSDESC against a local symbol.
3366 struct Tlsdesc_info
3367 {
3368 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3369 unsigned int a_r_sym)
3370 : object(a_object), r_sym(a_r_sym)
3371 { }
3372
3373 // The object in which the local symbol is defined.
3374 Sized_relobj_file<size, big_endian>* object;
3375 // The local symbol index in the object.
3376 unsigned int r_sym;
3377 };
3378
053a4d68
JY
3379 // The GOT section.
3380 Output_data_got_aarch64<size, big_endian>* got_;
3381 // The PLT section.
3382 Output_data_plt_aarch64<size, big_endian>* plt_;
3383 // The GOT PLT section.
3384 Output_data_space* got_plt_;
3a531937
JY
3385 // The GOT section for IRELATIVE relocations.
3386 Output_data_space* got_irelative_;
3387 // The GOT section for TLSDESC relocations.
3388 Output_data_got<size, big_endian>* got_tlsdesc_;
053a4d68
JY
3389 // The _GLOBAL_OFFSET_TABLE_ symbol.
3390 Symbol* global_offset_table_;
3391 // The dynamic reloc section.
3392 Reloc_section* rela_dyn_;
3a531937
JY
3393 // The section to use for IRELATIVE relocs.
3394 Reloc_section* rela_irelative_;
053a4d68
JY
3395 // Relocs saved to avoid a COPY reloc.
3396 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3a531937
JY
3397 // Offset of the GOT entry for the TLS module index.
3398 unsigned int got_mod_index_offset_;
3399 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3400 // specific relocation. Here we store the object and local symbol
3401 // index for the relocation.
3402 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3403 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3404 bool tls_base_symbol_defined_;
83a01957
HS
3405 // List of stub_tables
3406 Stub_table_list stub_tables_;
0bf32ea9
JY
3407 // Actual stub group size
3408 section_size_type stub_group_size_;
83a01957 3409 AArch64_input_section_map aarch64_input_section_map_;
8e33481e 3410}; // End of Target_aarch64
053a4d68 3411
3a531937 3412
053a4d68
JY
3413template<>
3414const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3415{
3416 64, // size
3417 false, // is_big_endian
3418 elfcpp::EM_AARCH64, // machine_code
3419 false, // has_make_symbol
3420 false, // has_resolve
3421 false, // has_code_fill
3422 true, // is_default_stack_executable
9726c3c1 3423 true, // can_icf_inline_merge_sections
053a4d68
JY
3424 '\0', // wrap_char
3425 "/lib/ld.so.1", // program interpreter
3426 0x400000, // default_text_segment_address
3b0357da 3427 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3428 0x1000, // common_pagesize (overridable by -z common-page-size)
3429 false, // isolate_execinstr
3430 0, // rosegment_gap
3431 elfcpp::SHN_UNDEF, // small_common_shndx
3432 elfcpp::SHN_UNDEF, // large_common_shndx
3433 0, // small_common_section_flags
3434 0, // large_common_section_flags
3435 NULL, // attributes_section
3436 NULL, // attributes_vendor
8d9743bd
MK
3437 "_start", // entry_symbol_name
3438 32, // hash_entry_size
053a4d68
JY
3439};
3440
3441template<>
3442const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3443{
3444 32, // size
3445 false, // is_big_endian
3446 elfcpp::EM_AARCH64, // machine_code
3447 false, // has_make_symbol
3448 false, // has_resolve
3449 false, // has_code_fill
3450 true, // is_default_stack_executable
3451 false, // can_icf_inline_merge_sections
3452 '\0', // wrap_char
3453 "/lib/ld.so.1", // program interpreter
3454 0x400000, // default_text_segment_address
3b0357da 3455 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3456 0x1000, // common_pagesize (overridable by -z common-page-size)
3457 false, // isolate_execinstr
3458 0, // rosegment_gap
3459 elfcpp::SHN_UNDEF, // small_common_shndx
3460 elfcpp::SHN_UNDEF, // large_common_shndx
3461 0, // small_common_section_flags
3462 0, // large_common_section_flags
3463 NULL, // attributes_section
3464 NULL, // attributes_vendor
8d9743bd
MK
3465 "_start", // entry_symbol_name
3466 32, // hash_entry_size
053a4d68
JY
3467};
3468
3469template<>
3470const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3471{
3472 64, // size
3473 true, // is_big_endian
3474 elfcpp::EM_AARCH64, // machine_code
3475 false, // has_make_symbol
3476 false, // has_resolve
3477 false, // has_code_fill
3478 true, // is_default_stack_executable
9726c3c1 3479 true, // can_icf_inline_merge_sections
053a4d68
JY
3480 '\0', // wrap_char
3481 "/lib/ld.so.1", // program interpreter
3482 0x400000, // default_text_segment_address
3b0357da 3483 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3484 0x1000, // common_pagesize (overridable by -z common-page-size)
3485 false, // isolate_execinstr
3486 0, // rosegment_gap
3487 elfcpp::SHN_UNDEF, // small_common_shndx
3488 elfcpp::SHN_UNDEF, // large_common_shndx
3489 0, // small_common_section_flags
3490 0, // large_common_section_flags
3491 NULL, // attributes_section
3492 NULL, // attributes_vendor
8d9743bd
MK
3493 "_start", // entry_symbol_name
3494 32, // hash_entry_size
053a4d68
JY
3495};
3496
3497template<>
3498const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3499{
3500 32, // size
3501 true, // is_big_endian
3502 elfcpp::EM_AARCH64, // machine_code
3503 false, // has_make_symbol
3504 false, // has_resolve
3505 false, // has_code_fill
3506 true, // is_default_stack_executable
3507 false, // can_icf_inline_merge_sections
3508 '\0', // wrap_char
3509 "/lib/ld.so.1", // program interpreter
3510 0x400000, // default_text_segment_address
3b0357da 3511 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3512 0x1000, // common_pagesize (overridable by -z common-page-size)
3513 false, // isolate_execinstr
3514 0, // rosegment_gap
3515 elfcpp::SHN_UNDEF, // small_common_shndx
3516 elfcpp::SHN_UNDEF, // large_common_shndx
3517 0, // small_common_section_flags
3518 0, // large_common_section_flags
3519 NULL, // attributes_section
3520 NULL, // attributes_vendor
8d9743bd
MK
3521 "_start", // entry_symbol_name
3522 32, // hash_entry_size
053a4d68
JY
3523};
3524
3525// Get the GOT section, creating it if necessary.
3526
3527template<int size, bool big_endian>
3528Output_data_got_aarch64<size, big_endian>*
3529Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
9363c7c3 3530 Layout* layout)
053a4d68
JY
3531{
3532 if (this->got_ == NULL)
3533 {
3534 gold_assert(symtab != NULL && layout != NULL);
3535
3536 // When using -z now, we can treat .got.plt as a relro section.
3537 // Without -z now, it is modified after program startup by lazy
3538 // PLT relocations.
3539 bool is_got_plt_relro = parameters->options().now();
3540 Output_section_order got_order = (is_got_plt_relro
3541 ? ORDER_RELRO
3542 : ORDER_RELRO_LAST);
3543 Output_section_order got_plt_order = (is_got_plt_relro
3544 ? ORDER_RELRO
3545 : ORDER_NON_RELRO_FIRST);
3546
3547 // Layout of .got and .got.plt sections.
3548 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3549 // ...
3550 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3551 // .gotplt[1] reserved for ld.so (resolver)
3552 // .gotplt[2] reserved
3553
3554 // Generate .got section.
3555 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
9363c7c3 3556 layout);
053a4d68 3557 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
9363c7c3
JY
3558 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3559 this->got_, got_order, true);
053a4d68
JY
3560 // The first word of GOT is reserved for the address of .dynamic.
3561 // We put 0 here now. The value will be replaced later in
3562 // Output_data_got_aarch64::do_write.
3563 this->got_->add_constant(0);
3564
3565 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3566 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3567 // even if there is a .got.plt section.
3568 this->global_offset_table_ =
9363c7c3
JY
3569 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3570 Symbol_table::PREDEFINED,
3571 this->got_,
3572 0, 0, elfcpp::STT_OBJECT,
3573 elfcpp::STB_LOCAL,
3574 elfcpp::STV_HIDDEN, 0,
3575 false, false);
053a4d68
JY
3576
3577 // Generate .got.plt section.
3578 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3579 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
9363c7c3
JY
3580 (elfcpp::SHF_ALLOC
3581 | elfcpp::SHF_WRITE),
3582 this->got_plt_, got_plt_order,
3583 is_got_plt_relro);
053a4d68
JY
3584
3585 // The first three entries are reserved.
9363c7c3
JY
3586 this->got_plt_->set_current_data_size(
3587 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
053a4d68 3588
3a531937
JY
3589 // If there are any IRELATIVE relocations, they get GOT entries
3590 // in .got.plt after the jump slot entries.
3591 this->got_irelative_ = new Output_data_space(size / 8,
3592 "** GOT IRELATIVE PLT");
3593 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3594 (elfcpp::SHF_ALLOC
3595 | elfcpp::SHF_WRITE),
3596 this->got_irelative_,
3597 got_plt_order,
3598 is_got_plt_relro);
3599
3600 // If there are any TLSDESC relocations, they get GOT entries in
3601 // .got.plt after the jump slot and IRELATIVE entries.
3602 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3603 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3604 (elfcpp::SHF_ALLOC
3605 | elfcpp::SHF_WRITE),
3606 this->got_tlsdesc_,
3607 got_plt_order,
3608 is_got_plt_relro);
3609
053a4d68 3610 if (!is_got_plt_relro)
9363c7c3
JY
3611 {
3612 // Those bytes can go into the relro segment.
3613 layout->increase_relro(
3614 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3615 }
053a4d68
JY
3616
3617 }
3618 return this->got_;
3619}
3620
3621// Get the dynamic reloc section, creating it if necessary.
3622
3623template<int size, bool big_endian>
3624typename Target_aarch64<size, big_endian>::Reloc_section*
3625Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3626{
3627 if (this->rela_dyn_ == NULL)
3628 {
3629 gold_assert(layout != NULL);
3630 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3631 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3632 elfcpp::SHF_ALLOC, this->rela_dyn_,
3633 ORDER_DYNAMIC_RELOCS, false);
3634 }
3635 return this->rela_dyn_;
3636}
3637
3a531937
JY
3638// Get the section to use for IRELATIVE relocs, creating it if
3639// necessary. These go in .rela.dyn, but only after all other dynamic
3640// relocations. They need to follow the other dynamic relocations so
3641// that they can refer to global variables initialized by those
3642// relocs.
3643
3644template<int size, bool big_endian>
3645typename Target_aarch64<size, big_endian>::Reloc_section*
3646Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3647{
3648 if (this->rela_irelative_ == NULL)
3649 {
3650 // Make sure we have already created the dynamic reloc section.
3651 this->rela_dyn_section(layout);
3652 this->rela_irelative_ = new Reloc_section(false);
3653 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3654 elfcpp::SHF_ALLOC, this->rela_irelative_,
3655 ORDER_DYNAMIC_RELOCS, false);
3656 gold_assert(this->rela_dyn_->output_section()
3657 == this->rela_irelative_->output_section());
3658 }
3659 return this->rela_irelative_;
3660}
3661
3662
83a01957
HS
3663// do_make_elf_object to override the same function in the base class. We need
3664// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3665// store backend specific information. Hence we need to have our own ELF object
3666// creation.
3667
3668template<int size, bool big_endian>
3669Object*
3670Target_aarch64<size, big_endian>::do_make_elf_object(
3671 const std::string& name,
3672 Input_file* input_file,
3673 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3674{
3675 int et = ehdr.get_e_type();
3676 // ET_EXEC files are valid input for --just-symbols/-R,
3677 // and we treat them as relocatable objects.
3678 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3679 return Sized_target<size, big_endian>::do_make_elf_object(
3680 name, input_file, offset, ehdr);
3681 else if (et == elfcpp::ET_REL)
3682 {
3683 AArch64_relobj<size, big_endian>* obj =
3684 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3685 obj->setup();
3686 return obj;
3687 }
3688 else if (et == elfcpp::ET_DYN)
3689 {
3690 // Keep base implementation.
3691 Sized_dynobj<size, big_endian>* obj =
3692 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3693 obj->setup();
3694 return obj;
3695 }
3696 else
3697 {
3698 gold_error(_("%s: unsupported ELF file type %d"),
3699 name.c_str(), et);
3700 return NULL;
3701 }
3702}
3703
3704
3705// Scan a relocation for stub generation.
3706
3707template<int size, bool big_endian>
3708void
3709Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3710 const Relocate_info<size, big_endian>* relinfo,
3711 unsigned int r_type,
3712 const Sized_symbol<size>* gsym,
3713 unsigned int r_sym,
3714 const Symbol_value<size>* psymval,
3715 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3716 Address address)
3717{
3718 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3719 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3720
3721 Symbol_value<size> symval;
3722 if (gsym != NULL)
3723 {
3724 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3725 get_reloc_property(r_type);
3726 if (gsym->use_plt_offset(arp->reference_flags()))
3727 {
3728 // This uses a PLT, change the symbol value.
3729 symval.set_output_value(this->plt_section()->address()
3730 + gsym->plt_offset());
3731 psymval = &symval;
3732 }
3733 else if (gsym->is_undefined())
3734 // There is no need to generate a stub symbol is undefined.
3735 return;
3736 }
3737
3738 // Get the symbol value.
3739 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3740
3741 // Owing to pipelining, the PC relative branches below actually skip
3742 // two instructions when the branch offset is 0.
3743 Address destination = static_cast<Address>(-1);
3744 switch (r_type)
3745 {
3746 case elfcpp::R_AARCH64_CALL26:
3747 case elfcpp::R_AARCH64_JUMP26:
3748 destination = value + addend;
3749 break;
3750 default:
9726c3c1 3751 gold_unreachable();
83a01957
HS
3752 }
3753
a48d0c12 3754 int stub_type = The_reloc_stub::
83a01957 3755 stub_type_for_reloc(r_type, address, destination);
a48d0c12 3756 if (stub_type == ST_NONE)
5019d64a 3757 return;
83a01957
HS
3758
3759 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3760 gold_assert(stub_table != NULL);
3761
3762 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3763 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3764 if (stub == NULL)
3765 {
3766 stub = new The_reloc_stub(stub_type);
3767 stub_table->add_reloc_stub(stub, key);
3768 }
3769 stub->set_destination_address(destination);
3770} // End of Target_aarch64::scan_reloc_for_stub
3771
3772
3773// This function scans a relocation section for stub generation.
3774// The template parameter Relocate must be a class type which provides
3775// a single function, relocate(), which implements the machine
3776// specific part of a relocation.
3777
3778// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3779// SHT_REL or SHT_RELA.
3780
3781// PRELOCS points to the relocation data. RELOC_COUNT is the number
3782// of relocs. OUTPUT_SECTION is the output section.
3783// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3784// mapped to output offsets.
3785
3786// VIEW is the section data, VIEW_ADDRESS is its memory address, and
3787// VIEW_SIZE is the size. These refer to the input section, unless
3788// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3789// the output section.
3790
3791template<int size, bool big_endian>
3792template<int sh_type>
3793void inline
3794Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3795 const Relocate_info<size, big_endian>* relinfo,
3796 const unsigned char* prelocs,
3797 size_t reloc_count,
3798 Output_section* /*output_section*/,
3799 bool /*needs_special_offset_handling*/,
3800 const unsigned char* /*view*/,
3801 Address view_address,
3802 section_size_type)
3803{
3804 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3805
3806 const int reloc_size =
3807 Reloc_types<sh_type,size,big_endian>::reloc_size;
3808 AArch64_relobj<size, big_endian>* object =
3809 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3810 unsigned int local_count = object->local_symbol_count();
3811
3812 gold::Default_comdat_behavior default_comdat_behavior;
3813 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3814
3815 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3816 {
3817 Reltype reloc(prelocs);
3818 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3819 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3820 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3821 if (r_type != elfcpp::R_AARCH64_CALL26
3822 && r_type != elfcpp::R_AARCH64_JUMP26)
3823 continue;
3824
3825 section_offset_type offset =
3826 convert_to_section_size_type(reloc.get_r_offset());
3827
3828 // Get the addend.
3829 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3830 reloc.get_r_addend();
3831
3832 const Sized_symbol<size>* sym;
3833 Symbol_value<size> symval;
3834 const Symbol_value<size> *psymval;
3835 bool is_defined_in_discarded_section;
3836 unsigned int shndx;
3837 if (r_sym < local_count)
3838 {
3839 sym = NULL;
3840 psymval = object->local_symbol(r_sym);
3841
3842 // If the local symbol belongs to a section we are discarding,
3843 // and that section is a debug section, try to find the
3844 // corresponding kept section and map this symbol to its
3845 // counterpart in the kept section. The symbol must not
3846 // correspond to a section we are folding.
3847 bool is_ordinary;
3848 shndx = psymval->input_shndx(&is_ordinary);
3849 is_defined_in_discarded_section =
3850 (is_ordinary
3851 && shndx != elfcpp::SHN_UNDEF
3852 && !object->is_section_included(shndx)
3853 && !relinfo->symtab->is_section_folded(object, shndx));
3854
3855 // We need to compute the would-be final value of this local
3856 // symbol.
3857 if (!is_defined_in_discarded_section)
3858 {
3859 typedef Sized_relobj_file<size, big_endian> ObjType;
3860 typename ObjType::Compute_final_local_value_status status =
3861 object->compute_final_local_value(r_sym, psymval, &symval,
3862 relinfo->symtab);
3863 if (status == ObjType::CFLV_OK)
3864 {
3865 // Currently we cannot handle a branch to a target in
3866 // a merged section. If this is the case, issue an error
3867 // and also free the merge symbol value.
3868 if (!symval.has_output_value())
3869 {
3870 const std::string& section_name =
3871 object->section_name(shndx);
3872 object->error(_("cannot handle branch to local %u "
3873 "in a merged section %s"),
3874 r_sym, section_name.c_str());
3875 }
3876 psymval = &symval;
3877 }
3878 else
3879 {
3880 // We cannot determine the final value.
3881 continue;
3882 }
3883 }
3884 }
3885 else
3886 {
3887 const Symbol* gsym;
3888 gsym = object->global_symbol(r_sym);
3889 gold_assert(gsym != NULL);
3890 if (gsym->is_forwarder())
3891 gsym = relinfo->symtab->resolve_forwards(gsym);
3892
3893 sym = static_cast<const Sized_symbol<size>*>(gsym);
3894 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3895 symval.set_output_symtab_index(sym->symtab_index());
3896 else
3897 symval.set_no_output_symtab_entry();
3898
3899 // We need to compute the would-be final value of this global
3900 // symbol.
3901 const Symbol_table* symtab = relinfo->symtab;
3902 const Sized_symbol<size>* sized_symbol =
3903 symtab->get_sized_symbol<size>(gsym);
3904 Symbol_table::Compute_final_value_status status;
3905 typename elfcpp::Elf_types<size>::Elf_Addr value =
3906 symtab->compute_final_value<size>(sized_symbol, &status);
3907
3908 // Skip this if the symbol has not output section.
3909 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3910 continue;
3911 symval.set_output_value(value);
3912
3913 if (gsym->type() == elfcpp::STT_TLS)
3914 symval.set_is_tls_symbol();
3915 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3916 symval.set_is_ifunc_symbol();
3917 psymval = &symval;
3918
3919 is_defined_in_discarded_section =
3920 (gsym->is_defined_in_discarded_section()
3921 && gsym->is_undefined());
3922 shndx = 0;
3923 }
3924
3925 Symbol_value<size> symval2;
3926 if (is_defined_in_discarded_section)
3927 {
3928 if (comdat_behavior == CB_UNDETERMINED)
3929 {
3930 std::string name = object->section_name(relinfo->data_shndx);
3931 comdat_behavior = default_comdat_behavior.get(name.c_str());
3932 }
3933 if (comdat_behavior == CB_PRETEND)
3934 {
3935 bool found;
3936 typename elfcpp::Elf_types<size>::Elf_Addr value =
3937 object->map_to_kept_section(shndx, &found);
3938 if (found)
3939 symval2.set_output_value(value + psymval->input_value());
3940 else
3941 symval2.set_output_value(0);
3942 }
3943 else
3944 {
3945 if (comdat_behavior == CB_WARNING)
3946 gold_warning_at_location(relinfo, i, offset,
3947 _("relocation refers to discarded "
3948 "section"));
3949 symval2.set_output_value(0);
3950 }
3951 symval2.set_no_output_symtab_entry();
3952 psymval = &symval2;
3953 }
3954
3955 // If symbol is a section symbol, we don't know the actual type of
3956 // destination. Give up.
3957 if (psymval->is_section_symbol())
3958 continue;
3959
3960 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3961 addend, view_address + offset);
3962 } // End of iterating relocs in a section
3963} // End of Target_aarch64::scan_reloc_section_for_stubs
3964
3965
3966// Scan an input section for stub generation.
3967
3968template<int size, bool big_endian>
3969void
3970Target_aarch64<size, big_endian>::scan_section_for_stubs(
3971 const Relocate_info<size, big_endian>* relinfo,
3972 unsigned int sh_type,
3973 const unsigned char* prelocs,
3974 size_t reloc_count,
3975 Output_section* output_section,
3976 bool needs_special_offset_handling,
3977 const unsigned char* view,
3978 Address view_address,
3979 section_size_type view_size)
3980{
3981 gold_assert(sh_type == elfcpp::SHT_RELA);
3982 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3983 relinfo,
3984 prelocs,
3985 reloc_count,
3986 output_section,
3987 needs_special_offset_handling,
3988 view,
3989 view_address,
3990 view_size);
3991}
3992
3993
3994// Relocate a single stub.
3995
3996template<int size, bool big_endian>
3997void Target_aarch64<size, big_endian>::
3998relocate_stub(The_reloc_stub* stub,
3999 const The_relocate_info*,
4000 Output_section*,
4001 unsigned char* view,
4002 Address address,
4003 section_size_type)
4004{
4005 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4006 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4007 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4008
4009 Insntype* ip = reinterpret_cast<Insntype*>(view);
a48d0c12
HS
4010 int insn_number = stub->insn_num();
4011 const uint32_t* insns = stub->insns();
83a01957
HS
4012 // Check the insns are really those stub insns.
4013 for (int i = 0; i < insn_number; ++i)
4014 {
4015 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
a48d0c12 4016 gold_assert(((uint32_t)insn == insns[i]));
83a01957
HS
4017 }
4018
4019 Address dest = stub->destination_address();
4020
a48d0c12 4021 switch(stub->type())
83a01957 4022 {
a48d0c12 4023 case ST_ADRP_BRANCH:
83a01957
HS
4024 {
4025 // 1st reloc is ADR_PREL_PG_HI21
4026 The_reloc_functions_status status =
4027 The_reloc_functions::adrp(view, dest, address);
4028 // An error should never arise in the above step. If so, please
4029 // check 'aarch64_valid_for_adrp_p'.
4030 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4031
4032 // 2nd reloc is ADD_ABS_LO12_NC
4033 const AArch64_reloc_property* arp =
4034 aarch64_reloc_property_table->get_reloc_property(
4035 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4036 gold_assert(arp != NULL);
4037 status = The_reloc_functions::template
4038 rela_general<32>(view + 4, dest, 0, arp);
4039 // An error should never arise, it is an "_NC" relocation.
4040 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4041 }
4042 break;
4043
a48d0c12 4044 case ST_LONG_BRANCH_ABS:
83a01957
HS
4045 // 1st reloc is R_AARCH64_PREL64, at offset 8
4046 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4047 break;
4048
a48d0c12 4049 case ST_LONG_BRANCH_PCREL:
83a01957
HS
4050 {
4051 // "PC" calculation is the 2nd insn in the stub.
4052 uint64_t offset = dest - (address + 4);
4053 // Offset is placed at offset 4 and 5.
4054 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4055 }
4056 break;
4057
4058 default:
9726c3c1 4059 gold_unreachable();
83a01957
HS
4060 }
4061}
4062
4063
053a4d68
JY
4064// A class to handle the PLT data.
4065// This is an abstract base class that handles most of the linker details
4066// but does not know the actual contents of PLT entries. The derived
4067// classes below fill in those details.
4068
4069template<int size, bool big_endian>
4070class Output_data_plt_aarch64 : public Output_section_data
4071{
4072 public:
4073 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4074 Reloc_section;
4075 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4076
4077 Output_data_plt_aarch64(Layout* layout,
9363c7c3 4078 uint64_t addralign,
3a531937
JY
4079 Output_data_got_aarch64<size, big_endian>* got,
4080 Output_data_space* got_plt,
4081 Output_data_space* got_irelative)
9726c3c1 4082 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3a531937
JY
4083 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4084 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
053a4d68
JY
4085 { this->init(layout); }
4086
4087 // Initialize the PLT section.
4088 void
4089 init(Layout* layout);
4090
4091 // Add an entry to the PLT.
4092 void
9726c3c1
HS
4093 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4094
4095 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4096 unsigned int
4097 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4098 Sized_relobj_file<size, big_endian>* relobj,
4099 unsigned int local_sym_index);
4100
4101 // Add the relocation for a PLT entry.
4102 void
4103 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4104 unsigned int got_offset);
053a4d68 4105
3a531937
JY
4106 // Add the reserved TLSDESC_PLT entry to the PLT.
4107 void
4108 reserve_tlsdesc_entry(unsigned int got_offset)
4109 { this->tlsdesc_got_offset_ = got_offset; }
4110
4111 // Return true if a TLSDESC_PLT entry has been reserved.
4112 bool
4113 has_tlsdesc_entry() const
4114 { return this->tlsdesc_got_offset_ != -1U; }
4115
4116 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4117 unsigned int
4118 get_tlsdesc_got_offset() const
4119 { return this->tlsdesc_got_offset_; }
4120
4121 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4122 unsigned int
4123 get_tlsdesc_plt_offset() const
4124 {
4125 return (this->first_plt_entry_offset() +
4126 (this->count_ + this->irelative_count_)
4127 * this->get_plt_entry_size());
4128 }
4129
053a4d68
JY
4130 // Return the .rela.plt section data.
4131 Reloc_section*
4132 rela_plt()
4133 { return this->rel_; }
4134
3a531937
JY
4135 // Return where the TLSDESC relocations should go.
4136 Reloc_section*
4137 rela_tlsdesc(Layout*);
4138
4139 // Return where the IRELATIVE relocations should go in the PLT
4140 // relocations.
4141 Reloc_section*
4142 rela_irelative(Symbol_table*, Layout*);
4143
9363c7c3
JY
4144 // Return whether we created a section for IRELATIVE relocations.
4145 bool
4146 has_irelative_section() const
4147 { return this->irelative_rel_ != NULL; }
4148
053a4d68
JY
4149 // Return the number of PLT entries.
4150 unsigned int
4151 entry_count() const
3a531937 4152 { return this->count_ + this->irelative_count_; }
053a4d68
JY
4153
4154 // Return the offset of the first non-reserved PLT entry.
4155 unsigned int
3a531937 4156 first_plt_entry_offset() const
053a4d68
JY
4157 { return this->do_first_plt_entry_offset(); }
4158
4159 // Return the size of a PLT entry.
4160 unsigned int
4161 get_plt_entry_size() const
4162 { return this->do_get_plt_entry_size(); }
4163
3a531937
JY
4164 // Return the reserved tlsdesc entry size.
4165 unsigned int
4166 get_plt_tlsdesc_entry_size() const
4167 { return this->do_get_plt_tlsdesc_entry_size(); }
4168
9363c7c3
JY
4169 // Return the PLT address to use for a global symbol.
4170 uint64_t
4171 address_for_global(const Symbol*);
4172
4173 // Return the PLT address to use for a local symbol.
4174 uint64_t
4175 address_for_local(const Relobj*, unsigned int symndx);
4176
053a4d68
JY
4177 protected:
4178 // Fill in the first PLT entry.
4179 void
4180 fill_first_plt_entry(unsigned char* pov,
4181 Address got_address,
4182 Address plt_address)
4183 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4184
4185 // Fill in a normal PLT entry.
4186 void
4187 fill_plt_entry(unsigned char* pov,
4188 Address got_address,
4189 Address plt_address,
4190 unsigned int got_offset,
4191 unsigned int plt_offset)
4192 {
4193 this->do_fill_plt_entry(pov, got_address, plt_address,
4194 got_offset, plt_offset);
4195 }
4196
3a531937
JY
4197 // Fill in the reserved TLSDESC PLT entry.
4198 void
4199 fill_tlsdesc_entry(unsigned char* pov,
4200 Address gotplt_address,
4201 Address plt_address,
4202 Address got_base,
4203 unsigned int tlsdesc_got_offset,
4204 unsigned int plt_offset)
4205 {
4206 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4207 tlsdesc_got_offset, plt_offset);
4208 }
4209
053a4d68
JY
4210 virtual unsigned int
4211 do_first_plt_entry_offset() const = 0;
4212
4213 virtual unsigned int
4214 do_get_plt_entry_size() const = 0;
4215
3a531937
JY
4216 virtual unsigned int
4217 do_get_plt_tlsdesc_entry_size() const = 0;
4218
053a4d68
JY
4219 virtual void
4220 do_fill_first_plt_entry(unsigned char* pov,
4221 Address got_addr,
4222 Address plt_addr) = 0;
4223
4224 virtual void
4225 do_fill_plt_entry(unsigned char* pov,
4226 Address got_address,
4227 Address plt_address,
4228 unsigned int got_offset,
4229 unsigned int plt_offset) = 0;
4230
3a531937
JY
4231 virtual void
4232 do_fill_tlsdesc_entry(unsigned char* pov,
4233 Address gotplt_address,
4234 Address plt_address,
4235 Address got_base,
4236 unsigned int tlsdesc_got_offset,
4237 unsigned int plt_offset) = 0;
4238
053a4d68
JY
4239 void
4240 do_adjust_output_section(Output_section* os);
4241
4242 // Write to a map file.
4243 void
4244 do_print_to_mapfile(Mapfile* mapfile) const
4245 { mapfile->print_output_data(this, _("** PLT")); }
4246
4247 private:
4248 // Set the final size.
4249 void
4250 set_final_data_size();
4251
4252 // Write out the PLT data.
4253 void
4254 do_write(Output_file*);
4255
4256 // The reloc section.
4257 Reloc_section* rel_;
3a531937
JY
4258
4259 // The TLSDESC relocs, if necessary. These must follow the regular
4260 // PLT relocs.
4261 Reloc_section* tlsdesc_rel_;
4262
9363c7c3
JY
4263 // The IRELATIVE relocs, if necessary. These must follow the
4264 // regular PLT relocations.
4265 Reloc_section* irelative_rel_;
3a531937 4266
053a4d68
JY
4267 // The .got section.
4268 Output_data_got_aarch64<size, big_endian>* got_;
3a531937 4269
053a4d68
JY
4270 // The .got.plt section.
4271 Output_data_space* got_plt_;
3a531937
JY
4272
4273 // The part of the .got.plt section used for IRELATIVE relocs.
4274 Output_data_space* got_irelative_;
4275
053a4d68
JY
4276 // The number of PLT entries.
4277 unsigned int count_;
3a531937 4278
fa89cc82 4279 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
3a531937
JY
4280 // follow the regular PLT entries.
4281 unsigned int irelative_count_;
4282
4283 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4284 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4285 // indicates an offset is not allocated.
4286 unsigned int tlsdesc_got_offset_;
053a4d68
JY
4287};
4288
4289// Initialize the PLT section.
4290
4291template<int size, bool big_endian>
4292void
4293Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4294{
4295 this->rel_ = new Reloc_section(false);
4296 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4297 elfcpp::SHF_ALLOC, this->rel_,
4298 ORDER_DYNAMIC_PLT_RELOCS, false);
4299}
4300
4301template<int size, bool big_endian>
4302void
4303Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4304 Output_section* os)
4305{
4306 os->set_entsize(this->get_plt_entry_size());
4307}
4308
4309// Add an entry to the PLT.
4310
4311template<int size, bool big_endian>
4312void
9726c3c1
HS
4313Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4314 Layout* layout, Symbol* gsym)
053a4d68
JY
4315{
4316 gold_assert(!gsym->has_plt_offset());
9363c7c3 4317
9726c3c1
HS
4318 unsigned int* pcount;
4319 unsigned int plt_reserved;
4320 Output_section_data_build* got;
9363c7c3 4321
9726c3c1
HS
4322 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4323 && gsym->can_use_relative_reloc(false))
4324 {
4325 pcount = &this->irelative_count_;
4326 plt_reserved = 0;
4327 got = this->got_irelative_;
4328 }
4329 else
4330 {
4331 pcount = &this->count_;
4332 plt_reserved = this->first_plt_entry_offset();
4333 got = this->got_plt_;
4334 }
9363c7c3 4335
9726c3c1
HS
4336 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4337 + plt_reserved);
4338
4339 ++*pcount;
4340
4341 section_offset_type got_offset = got->current_data_size();
9363c7c3
JY
4342
4343 // Every PLT entry needs a GOT entry which points back to the PLT
4344 // entry (this will be changed by the dynamic linker, normally
4345 // lazily when the function is called).
9726c3c1 4346 got->set_current_data_size(got_offset + size / 8);
9363c7c3
JY
4347
4348 // Every PLT entry needs a reloc.
9726c3c1 4349 this->add_relocation(symtab, layout, gsym, got_offset);
9363c7c3
JY
4350
4351 // Note that we don't need to save the symbol. The contents of the
4352 // PLT are independent of which symbols are used. The symbols only
4353 // appear in the relocations.
4354}
4355
9726c3c1
HS
4356// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4357// the PLT offset.
4358
4359template<int size, bool big_endian>
4360unsigned int
4361Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4362 Symbol_table* symtab,
4363 Layout* layout,
4364 Sized_relobj_file<size, big_endian>* relobj,
4365 unsigned int local_sym_index)
4366{
4367 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4368 ++this->irelative_count_;
4369
4370 section_offset_type got_offset = this->got_irelative_->current_data_size();
4371
4372 // Every PLT entry needs a GOT entry which points back to the PLT
4373 // entry.
4374 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4375
4376 // Every PLT entry needs a reloc.
4377 Reloc_section* rela = this->rela_irelative(symtab, layout);
4378 rela->add_symbolless_local_addend(relobj, local_sym_index,
4379 elfcpp::R_AARCH64_IRELATIVE,
4380 this->got_irelative_, got_offset, 0);
4381
4382 return plt_offset;
4383}
4384
4385// Add the relocation for a PLT entry.
4386
4387template<int size, bool big_endian>
4388void
4389Output_data_plt_aarch64<size, big_endian>::add_relocation(
4390 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4391{
4392 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4393 && gsym->can_use_relative_reloc(false))
4394 {
4395 Reloc_section* rela = this->rela_irelative(symtab, layout);
4396 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4397 this->got_irelative_, got_offset, 0);
4398 }
4399 else
4400 {
4401 gsym->set_needs_dynsym_entry();
4402 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4403 got_offset, 0);
4404 }
4405}
4406
3a531937
JY
4407// Return where the TLSDESC relocations should go, creating it if
4408// necessary. These follow the JUMP_SLOT relocations.
4409
4410template<int size, bool big_endian>
4411typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4412Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4413{
4414 if (this->tlsdesc_rel_ == NULL)
4415 {
4416 this->tlsdesc_rel_ = new Reloc_section(false);
4417 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4418 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4419 ORDER_DYNAMIC_PLT_RELOCS, false);
4420 gold_assert(this->tlsdesc_rel_->output_section()
4421 == this->rel_->output_section());
4422 }
4423 return this->tlsdesc_rel_;
4424}
4425
4426// Return where the IRELATIVE relocations should go in the PLT. These
4427// follow the JUMP_SLOT and the TLSDESC relocations.
4428
4429template<int size, bool big_endian>
4430typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4431Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4432 Layout* layout)
4433{
4434 if (this->irelative_rel_ == NULL)
4435 {
4436 // Make sure we have a place for the TLSDESC relocations, in
4437 // case we see any later on.
4438 this->rela_tlsdesc(layout);
4439 this->irelative_rel_ = new Reloc_section(false);
4440 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4441 elfcpp::SHF_ALLOC, this->irelative_rel_,
4442 ORDER_DYNAMIC_PLT_RELOCS, false);
4443 gold_assert(this->irelative_rel_->output_section()
4444 == this->rel_->output_section());
4445
4446 if (parameters->doing_static_link())
4447 {
4448 // A statically linked executable will only have a .rela.plt
4449 // section to hold R_AARCH64_IRELATIVE relocs for
4450 // STT_GNU_IFUNC symbols. The library will use these
4451 // symbols to locate the IRELATIVE relocs at program startup
4452 // time.
4453 symtab->define_in_output_data("__rela_iplt_start", NULL,
4454 Symbol_table::PREDEFINED,
4455 this->irelative_rel_, 0, 0,
4456 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4457 elfcpp::STV_HIDDEN, 0, false, true);
4458 symtab->define_in_output_data("__rela_iplt_end", NULL,
4459 Symbol_table::PREDEFINED,
4460 this->irelative_rel_, 0, 0,
4461 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4462 elfcpp::STV_HIDDEN, 0, true, true);
4463 }
4464 }
4465 return this->irelative_rel_;
4466}
4467
9363c7c3
JY
4468// Return the PLT address to use for a global symbol.
4469
4470template<int size, bool big_endian>
4471uint64_t
4472Output_data_plt_aarch64<size, big_endian>::address_for_global(
4473 const Symbol* gsym)
4474{
4475 uint64_t offset = 0;
4476 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4477 && gsym->can_use_relative_reloc(false))
4478 offset = (this->first_plt_entry_offset() +
4479 this->count_ * this->get_plt_entry_size());
4480 return this->address() + offset + gsym->plt_offset();
4481}
4482
4483// Return the PLT address to use for a local symbol. These are always
4484// IRELATIVE relocs.
4485
4486template<int size, bool big_endian>
4487uint64_t
4488Output_data_plt_aarch64<size, big_endian>::address_for_local(
4489 const Relobj* object,
4490 unsigned int r_sym)
4491{
4492 return (this->address()
4493 + this->first_plt_entry_offset()
4494 + this->count_ * this->get_plt_entry_size()
4495 + object->local_plt_offset(r_sym));
053a4d68
JY
4496}
4497
4498// Set the final size.
9363c7c3 4499
053a4d68
JY
4500template<int size, bool big_endian>
4501void
4502Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4503{
3a531937
JY
4504 unsigned int count = this->count_ + this->irelative_count_;
4505 unsigned int extra_size = 0;
4506 if (this->has_tlsdesc_entry())
4507 extra_size += this->get_plt_tlsdesc_entry_size();
053a4d68 4508 this->set_data_size(this->first_plt_entry_offset()
3a531937
JY
4509 + count * this->get_plt_entry_size()
4510 + extra_size);
053a4d68
JY
4511}
4512
4513template<int size, bool big_endian>
4514class Output_data_plt_aarch64_standard :
4515 public Output_data_plt_aarch64<size, big_endian>
4516{
4517 public:
4518 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3a531937
JY
4519 Output_data_plt_aarch64_standard(
4520 Layout* layout,
4521 Output_data_got_aarch64<size, big_endian>* got,
4522 Output_data_space* got_plt,
4523 Output_data_space* got_irelative)
053a4d68 4524 : Output_data_plt_aarch64<size, big_endian>(layout,
9363c7c3 4525 size == 32 ? 4 : 8,
3a531937
JY
4526 got, got_plt,
4527 got_irelative)
053a4d68
JY
4528 { }
4529
4530 protected:
4531 // Return the offset of the first non-reserved PLT entry.
4532 virtual unsigned int
4533 do_first_plt_entry_offset() const
4534 { return this->first_plt_entry_size; }
4535
4536 // Return the size of a PLT entry
4537 virtual unsigned int
4538 do_get_plt_entry_size() const
4539 { return this->plt_entry_size; }
4540
3a531937
JY
4541 // Return the size of a tlsdesc entry
4542 virtual unsigned int
4543 do_get_plt_tlsdesc_entry_size() const
4544 { return this->plt_tlsdesc_entry_size; }
4545
053a4d68
JY
4546 virtual void
4547 do_fill_first_plt_entry(unsigned char* pov,
9363c7c3
JY
4548 Address got_address,
4549 Address plt_address);
053a4d68
JY
4550
4551 virtual void
4552 do_fill_plt_entry(unsigned char* pov,
9363c7c3
JY
4553 Address got_address,
4554 Address plt_address,
4555 unsigned int got_offset,
4556 unsigned int plt_offset);
053a4d68 4557
3a531937
JY
4558 virtual void
4559 do_fill_tlsdesc_entry(unsigned char* pov,
4560 Address gotplt_address,
4561 Address plt_address,
4562 Address got_base,
4563 unsigned int tlsdesc_got_offset,
4564 unsigned int plt_offset);
4565
053a4d68
JY
4566 private:
4567 // The size of the first plt entry size.
4568 static const int first_plt_entry_size = 32;
4569 // The size of the plt entry size.
4570 static const int plt_entry_size = 16;
3a531937
JY
4571 // The size of the plt tlsdesc entry size.
4572 static const int plt_tlsdesc_entry_size = 32;
053a4d68
JY
4573 // Template for the first PLT entry.
4574 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4575 // Template for subsequent PLT entries.
4576 static const uint32_t plt_entry[plt_entry_size / 4];
3a531937
JY
4577 // The reserved TLSDESC entry in the PLT for an executable.
4578 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
053a4d68
JY
4579};
4580
4581// The first entry in the PLT for an executable.
4582
4583template<>
4584const uint32_t
4585Output_data_plt_aarch64_standard<32, false>::
4586 first_plt_entry[first_plt_entry_size / 4] =
4587{
4588 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4589 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4590 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4591 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4592 0xd61f0220, /* br x17 */
4593 0xd503201f, /* nop */
4594 0xd503201f, /* nop */
4595 0xd503201f, /* nop */
4596};
4597
83a01957 4598
053a4d68
JY
4599template<>
4600const uint32_t
4601Output_data_plt_aarch64_standard<32, true>::
4602 first_plt_entry[first_plt_entry_size / 4] =
4603{
4604 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4605 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4606 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4607 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4608 0xd61f0220, /* br x17 */
4609 0xd503201f, /* nop */
4610 0xd503201f, /* nop */
4611 0xd503201f, /* nop */
4612};
4613
83a01957 4614
053a4d68
JY
4615template<>
4616const uint32_t
4617Output_data_plt_aarch64_standard<64, false>::
4618 first_plt_entry[first_plt_entry_size / 4] =
4619{
4620 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4621 0x90000010, /* adrp x16, PLT_GOT+16 */
4622 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4623 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4624 0xd61f0220, /* br x17 */
4625 0xd503201f, /* nop */
4626 0xd503201f, /* nop */
4627 0xd503201f, /* nop */
4628};
4629
83a01957 4630
053a4d68
JY
4631template<>
4632const uint32_t
4633Output_data_plt_aarch64_standard<64, true>::
4634 first_plt_entry[first_plt_entry_size / 4] =
4635{
4636 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4637 0x90000010, /* adrp x16, PLT_GOT+16 */
4638 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4639 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4640 0xd61f0220, /* br x17 */
4641 0xd503201f, /* nop */
4642 0xd503201f, /* nop */
4643 0xd503201f, /* nop */
4644};
4645
83a01957 4646
053a4d68
JY
4647template<>
4648const uint32_t
4649Output_data_plt_aarch64_standard<32, false>::
4650 plt_entry[plt_entry_size / 4] =
4651{
4652 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4653 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4654 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4655 0xd61f0220, /* br x17. */
4656};
4657
83a01957 4658
053a4d68
JY
4659template<>
4660const uint32_t
4661Output_data_plt_aarch64_standard<32, true>::
4662 plt_entry[plt_entry_size / 4] =
4663{
4664 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4665 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4666 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4667 0xd61f0220, /* br x17. */
4668};
4669
83a01957 4670
053a4d68
JY
4671template<>
4672const uint32_t
4673Output_data_plt_aarch64_standard<64, false>::
4674 plt_entry[plt_entry_size / 4] =
4675{
4676 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4677 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4678 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4679 0xd61f0220, /* br x17. */
4680};
4681
83a01957 4682
053a4d68
JY
4683template<>
4684const uint32_t
4685Output_data_plt_aarch64_standard<64, true>::
4686 plt_entry[plt_entry_size / 4] =
4687{
4688 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4689 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4690 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4691 0xd61f0220, /* br x17. */
4692};
4693
83a01957 4694
053a4d68
JY
4695template<int size, bool big_endian>
4696void
4697Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4698 unsigned char* pov,
9363c7c3
JY
4699 Address got_address,
4700 Address plt_address)
053a4d68
JY
4701{
4702 // PLT0 of the small PLT looks like this in ELF64 -
4703 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4704 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4705 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4706 // symbol resolver
4707 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4708 // GOTPLT entry for this.
4709 // br x17
4710 // PLT0 will be slightly different in ELF32 due to different got entry
4711 // size.
4712 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
9363c7c3
JY
4713 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4714
4715 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4716 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4717 // FIXME: This only works for 64bit
4718 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4719 gotplt_2nd_ent, plt_address + 4);
4720
4721 // Fill in R_AARCH64_LDST8_LO12
4722 elfcpp::Swap<32, big_endian>::writeval(
4723 pov + 8,
4724 ((this->first_plt_entry[2] & 0xffc003ff)
4725 | ((gotplt_2nd_ent & 0xff8) << 7)));
4726
4727 // Fill in R_AARCH64_ADD_ABS_LO12
4728 elfcpp::Swap<32, big_endian>::writeval(
4729 pov + 12,
4730 ((this->first_plt_entry[3] & 0xffc003ff)
4731 | ((gotplt_2nd_ent & 0xfff) << 10)));
053a4d68
JY
4732}
4733
83a01957 4734
053a4d68 4735// Subsequent entries in the PLT for an executable.
9363c7c3 4736// FIXME: This only works for 64bit
053a4d68
JY
4737
4738template<int size, bool big_endian>
4739void
4740Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4741 unsigned char* pov,
9363c7c3
JY
4742 Address got_address,
4743 Address plt_address,
4744 unsigned int got_offset,
4745 unsigned int plt_offset)
053a4d68
JY
4746{
4747 memcpy(pov, this->plt_entry, this->plt_entry_size);
9363c7c3
JY
4748
4749 Address gotplt_entry_address = got_address + got_offset;
4750 Address plt_entry_address = plt_address + plt_offset;
4751
4752 // Fill in R_AARCH64_PCREL_ADR_HI21
4753 AArch64_relocate_functions<size, big_endian>::adrp(
4754 pov,
4755 gotplt_entry_address,
4756 plt_entry_address);
4757
4758 // Fill in R_AARCH64_LDST64_ABS_LO12
4759 elfcpp::Swap<32, big_endian>::writeval(
4760 pov + 4,
4761 ((this->plt_entry[1] & 0xffc003ff)
4762 | ((gotplt_entry_address & 0xff8) << 7)));
4763
4764 // Fill in R_AARCH64_ADD_ABS_LO12
4765 elfcpp::Swap<32, big_endian>::writeval(
4766 pov + 8,
4767 ((this->plt_entry[2] & 0xffc003ff)
4768 | ((gotplt_entry_address & 0xfff) <<10)));
4769
053a4d68
JY
4770}
4771
3a531937
JY
4772
4773template<>
4774const uint32_t
4775Output_data_plt_aarch64_standard<32, false>::
4776 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4777{
4778 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4779 0x90000002, /* adrp x2, 0 */
4780 0x90000003, /* adrp x3, 0 */
4781 0xb9400042, /* ldr w2, [w2, #0] */
4782 0x11000063, /* add w3, w3, 0 */
4783 0xd61f0040, /* br x2 */
4784 0xd503201f, /* nop */
4785 0xd503201f, /* nop */
4786};
4787
4788template<>
4789const uint32_t
4790Output_data_plt_aarch64_standard<32, true>::
4791 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4792{
4793 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4794 0x90000002, /* adrp x2, 0 */
4795 0x90000003, /* adrp x3, 0 */
4796 0xb9400042, /* ldr w2, [w2, #0] */
4797 0x11000063, /* add w3, w3, 0 */
4798 0xd61f0040, /* br x2 */
4799 0xd503201f, /* nop */
4800 0xd503201f, /* nop */
4801};
4802
4803template<>
4804const uint32_t
4805Output_data_plt_aarch64_standard<64, false>::
4806 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4807{
4808 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4809 0x90000002, /* adrp x2, 0 */
4810 0x90000003, /* adrp x3, 0 */
4811 0xf9400042, /* ldr x2, [x2, #0] */
4812 0x91000063, /* add x3, x3, 0 */
4813 0xd61f0040, /* br x2 */
4814 0xd503201f, /* nop */
4815 0xd503201f, /* nop */
4816};
4817
4818template<>
4819const uint32_t
4820Output_data_plt_aarch64_standard<64, true>::
4821 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4822{
4823 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4824 0x90000002, /* adrp x2, 0 */
4825 0x90000003, /* adrp x3, 0 */
4826 0xf9400042, /* ldr x2, [x2, #0] */
4827 0x91000063, /* add x3, x3, 0 */
4828 0xd61f0040, /* br x2 */
4829 0xd503201f, /* nop */
4830 0xd503201f, /* nop */
4831};
4832
4833template<int size, bool big_endian>
4834void
4835Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4836 unsigned char* pov,
4837 Address gotplt_address,
4838 Address plt_address,
4839 Address got_base,
4840 unsigned int tlsdesc_got_offset,
4841 unsigned int plt_offset)
4842{
4843 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4844
4845 // move DT_TLSDESC_GOT address into x2
4846 // move .got.plt address into x3
4847 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4848 Address plt_entry_address = plt_address + plt_offset;
4849
4850 // R_AARCH64_ADR_PREL_PG_HI21
4851 AArch64_relocate_functions<size, big_endian>::adrp(
4852 pov + 4,
4853 tlsdesc_got_entry,
4854 plt_entry_address + 4);
4855
4856 // R_AARCH64_ADR_PREL_PG_HI21
4857 AArch64_relocate_functions<size, big_endian>::adrp(
4858 pov + 8,
4859 gotplt_address,
4860 plt_entry_address + 8);
4861
4862 // R_AARCH64_LDST64_ABS_LO12
4863 elfcpp::Swap<32, big_endian>::writeval(
4864 pov + 12,
4865 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4866 | ((tlsdesc_got_entry & 0xff8) << 7)));
4867
4868 // R_AARCH64_ADD_ABS_LO12
4869 elfcpp::Swap<32, big_endian>::writeval(
4870 pov + 16,
4871 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4872 | ((gotplt_address & 0xfff) << 10)));
4873}
4874
053a4d68
JY
4875// Write out the PLT. This uses the hand-coded instructions above,
4876// and adjusts them as needed. This is specified by the AMD64 ABI.
4877
4878template<int size, bool big_endian>
4879void
4880Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4881{
4882 const off_t offset = this->offset();
4883 const section_size_type oview_size =
4884 convert_to_section_size_type(this->data_size());
4885 unsigned char* const oview = of->get_output_view(offset, oview_size);
4886
4887 const off_t got_file_offset = this->got_plt_->offset();
9726c3c1
HS
4888 gold_assert(got_file_offset + this->got_plt_->data_size()
4889 == this->got_irelative_->offset());
4890
053a4d68 4891 const section_size_type got_size =
9726c3c1
HS
4892 convert_to_section_size_type(this->got_plt_->data_size()
4893 + this->got_irelative_->data_size());
053a4d68
JY
4894 unsigned char* const got_view = of->get_output_view(got_file_offset,
4895 got_size);
4896
4897 unsigned char* pov = oview;
4898
4899 // The base address of the .plt section.
4900 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
053a4d68 4901 // The base address of the PLT portion of the .got section.
3a531937
JY
4902 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4903 = this->got_plt_->address();
053a4d68 4904
3a531937 4905 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
053a4d68
JY
4906 pov += this->first_plt_entry_offset();
4907
4908 // The first three entries in .got.plt are reserved.
4909 unsigned char* got_pov = got_view;
4910 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4911 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4912
4913 unsigned int plt_offset = this->first_plt_entry_offset();
4914 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3a531937 4915 const unsigned int count = this->count_ + this->irelative_count_;
053a4d68
JY
4916 for (unsigned int plt_index = 0;
4917 plt_index < count;
4918 ++plt_index,
4919 pov += this->get_plt_entry_size(),
4920 got_pov += size / 8,
4921 plt_offset += this->get_plt_entry_size(),
4922 got_offset += size / 8)
4923 {
4924 // Set and adjust the PLT entry itself.
3a531937 4925 this->fill_plt_entry(pov, gotplt_address, plt_address,
9363c7c3 4926 got_offset, plt_offset);
053a4d68 4927
9363c7c3
JY
4928 // Set the entry in the GOT, which points to plt0.
4929 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
053a4d68
JY
4930 }
4931
3a531937
JY
4932 if (this->has_tlsdesc_entry())
4933 {
4934 // Set and adjust the reserved TLSDESC PLT entry.
4935 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4936 // The base address of the .base section.
4937 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4938 this->got_->address();
4939 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4940 tlsdesc_got_offset, plt_offset);
4941 pov += this->get_plt_tlsdesc_entry_size();
4942 }
4943
053a4d68
JY
4944 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4945 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4946
4947 of->write_output_view(offset, oview_size, oview);
4948 of->write_output_view(got_file_offset, got_size, got_view);
4949}
4950
9363c7c3
JY
4951// Telling how to update the immediate field of an instruction.
4952struct AArch64_howto
4953{
4954 // The immediate field mask.
4955 elfcpp::Elf_Xword dst_mask;
4956
4957 // The offset to apply relocation immediate
4958 int doffset;
4959
4960 // The second part offset, if the immediate field has two parts.
4961 // -1 if the immediate field has only one part.
4962 int doffset2;
4963};
4964
4965static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4966{
4967 {0, -1, -1}, // DATA
4968 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4969 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4970 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4971 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4972 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4973 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4974 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4975 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4976 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4977 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4978};
4979
4980// AArch64 relocate function class
4981
4982template<int size, bool big_endian>
4983class AArch64_relocate_functions
4984{
4985 public:
4986 typedef enum
4987 {
4988 STATUS_OKAY, // No error during relocation.
4989 STATUS_OVERFLOW, // Relocation overflow.
4990 STATUS_BAD_RELOC, // Relocation cannot be applied.
4991 } Status;
4992
9363c7c3
JY
4993 typedef AArch64_relocate_functions<size, big_endian> This;
4994 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
4995 typedef Relocate_info<size, big_endian> The_relocate_info;
4996 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4997 typedef Reloc_stub<size, big_endian> The_reloc_stub;
83a01957
HS
4998 typedef Stub_table<size, big_endian> The_stub_table;
4999 typedef elfcpp::Rela<size, big_endian> The_rela;
9726c3c1 5000 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
9363c7c3
JY
5001
5002 // Return the page address of the address.
5003 // Page(address) = address & ~0xFFF
5004
9726c3c1 5005 static inline AArch64_valtype
9363c7c3
JY
5006 Page(Address address)
5007 {
5008 return (address & (~static_cast<Address>(0xFFF)));
5009 }
5010
83a01957 5011 private:
9363c7c3
JY
5012 // Update instruction (pointed by view) with selected bits (immed).
5013 // val = (val & ~dst_mask) | (immed << doffset)
5014
5015 template<int valsize>
5016 static inline void
5017 update_view(unsigned char* view,
9726c3c1 5018 AArch64_valtype immed,
9363c7c3
JY
5019 elfcpp::Elf_Xword doffset,
5020 elfcpp::Elf_Xword dst_mask)
5021 {
5022 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5023 Valtype* wv = reinterpret_cast<Valtype*>(view);
5024 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5025
5026 // Clear immediate fields.
5027 val &= ~dst_mask;
5028 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5029 static_cast<Valtype>(val | (immed << doffset)));
5030 }
5031
5032 // Update two parts of an instruction (pointed by view) with selected
5033 // bits (immed1 and immed2).
5034 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5035
5036 template<int valsize>
5037 static inline void
5038 update_view_two_parts(
5039 unsigned char* view,
9726c3c1
HS
5040 AArch64_valtype immed1,
5041 AArch64_valtype immed2,
9363c7c3
JY
5042 elfcpp::Elf_Xword doffset1,
5043 elfcpp::Elf_Xword doffset2,
5044 elfcpp::Elf_Xword dst_mask)
5045 {
5046 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5047 Valtype* wv = reinterpret_cast<Valtype*>(view);
5048 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5049 val &= ~dst_mask;
5050 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5051 static_cast<Valtype>(val | (immed1 << doffset1) |
5052 (immed2 << doffset2)));
5053 }
5054
9726c3c1 5055 // Update adr or adrp instruction with immed.
9363c7c3
JY
5056 // In adr and adrp: [30:29] immlo [23:5] immhi
5057
5058 static inline void
9726c3c1 5059 update_adr(unsigned char* view, AArch64_valtype immed)
9363c7c3
JY
5060 {
5061 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
9363c7c3
JY
5062 This::template update_view_two_parts<32>(
5063 view,
5064 immed & 0x3,
5065 (immed & 0x1ffffc) >> 2,
5066 29,
5067 5,
5068 dst_mask);
5069 }
5070
3a531937
JY
5071 // Update movz/movn instruction with bits immed.
5072 // Set instruction to movz if is_movz is true, otherwise set instruction
5073 // to movn.
9726c3c1 5074
3a531937
JY
5075 static inline void
5076 update_movnz(unsigned char* view,
9726c3c1 5077 AArch64_valtype immed,
3a531937
JY
5078 bool is_movz)
5079 {
5080 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5081 Valtype* wv = reinterpret_cast<Valtype*>(view);
5082 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5083
5084 const elfcpp::Elf_Xword doffset =
5085 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5086 const elfcpp::Elf_Xword dst_mask =
5087 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5088
5089 // Clear immediate fields and opc code.
9726c3c1 5090 val &= ~(dst_mask | (0x3 << 29));
3a531937
JY
5091
5092 // Set instruction to movz or movn.
5093 // movz: [30:29] is 10 movn: [30:29] is 00
5094 if (is_movz)
9726c3c1 5095 val |= (0x2 << 29);
3a531937
JY
5096
5097 elfcpp::Swap<32, big_endian>::writeval(wv,
5098 static_cast<Valtype>(val | (immed << doffset)));
5099 }
5100
9726c3c1
HS
5101 // Update selected bits in text.
5102
5103 template<int valsize>
5104 static inline typename This::Status
5105 reloc_common(unsigned char* view, Address x,
5106 const AArch64_reloc_property* reloc_property)
5107 {
5108 // Select bits from X.
5109 Address immed = reloc_property->select_x_value(x);
5110
5111 // Update view.
5112 const AArch64_reloc_property::Reloc_inst inst =
5113 reloc_property->reloc_inst();
5114 // If it is a data relocation or instruction has 2 parts of immediate
5115 // fields, you should not call pcrela_general.
5116 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5117 aarch64_howto[inst].doffset != -1);
5118 This::template update_view<valsize>(view, immed,
5119 aarch64_howto[inst].doffset,
5120 aarch64_howto[inst].dst_mask);
5121
5122 // Do check overflow or alignment if needed.
5123 return (reloc_property->checkup_x_value(x)
5124 ? This::STATUS_OKAY
5125 : This::STATUS_OVERFLOW);
5126 }
5127
9363c7c3
JY
5128 public:
5129
a48d0c12
HS
5130 // Construct a B insn. Note, although we group it here with other relocation
5131 // operation, there is actually no 'relocation' involved here.
5132 static inline void
5133 construct_b(unsigned char* view, unsigned int branch_offset)
5134 {
5135 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5136 26, 0, 0xffffffff);
5137 }
5138
9363c7c3
JY
5139 // Do a simple rela relocation at unaligned addresses.
5140
5141 template<int valsize>
5142 static inline typename This::Status
5143 rela_ua(unsigned char* view,
5144 const Sized_relobj_file<size, big_endian>* object,
5145 const Symbol_value<size>* psymval,
9726c3c1 5146 AArch64_valtype addend,
9363c7c3
JY
5147 const AArch64_reloc_property* reloc_property)
5148 {
5149 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5150 Valtype;
5151 typename elfcpp::Elf_types<size>::Elf_Addr x =
5152 psymval->value(object, addend);
5153 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5154 static_cast<Valtype>(x));
5155 return (reloc_property->checkup_x_value(x)
5156 ? This::STATUS_OKAY
5157 : This::STATUS_OVERFLOW);
5158 }
5159
5160 // Do a simple pc-relative relocation at unaligned addresses.
5161
5162 template<int valsize>
5163 static inline typename This::Status
5164 pcrela_ua(unsigned char* view,
5165 const Sized_relobj_file<size, big_endian>* object,
5166 const Symbol_value<size>* psymval,
9726c3c1 5167 AArch64_valtype addend,
9363c7c3
JY
5168 Address address,
5169 const AArch64_reloc_property* reloc_property)
5170 {
5171 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5172 Valtype;
3a531937 5173 Address x = psymval->value(object, addend) - address;
9363c7c3
JY
5174 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5175 static_cast<Valtype>(x));
5176 return (reloc_property->checkup_x_value(x)
5177 ? This::STATUS_OKAY
5178 : This::STATUS_OVERFLOW);
5179 }
5180
5181 // Do a simple rela relocation at aligned addresses.
5182
5183 template<int valsize>
5184 static inline typename This::Status
5185 rela(
5186 unsigned char* view,
5187 const Sized_relobj_file<size, big_endian>* object,
5188 const Symbol_value<size>* psymval,
9726c3c1 5189 AArch64_valtype addend,
9363c7c3
JY
5190 const AArch64_reloc_property* reloc_property)
5191 {
9726c3c1 5192 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
9363c7c3 5193 Valtype* wv = reinterpret_cast<Valtype*>(view);
3a531937 5194 Address x = psymval->value(object, addend);
9726c3c1 5195 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
9363c7c3
JY
5196 return (reloc_property->checkup_x_value(x)
5197 ? This::STATUS_OKAY
5198 : This::STATUS_OVERFLOW);
5199 }
5200
5201 // Do relocate. Update selected bits in text.
5202 // new_val = (val & ~dst_mask) | (immed << doffset)
5203
5204 template<int valsize>
5205 static inline typename This::Status
5206 rela_general(unsigned char* view,
5207 const Sized_relobj_file<size, big_endian>* object,
5208 const Symbol_value<size>* psymval,
9726c3c1 5209 AArch64_valtype addend,
9363c7c3
JY
5210 const AArch64_reloc_property* reloc_property)
5211 {
5212 // Calculate relocation.
83a01957 5213 Address x = psymval->value(object, addend);
9726c3c1 5214 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
5215 }
5216
5217 // Do relocate. Update selected bits in text.
5218 // new val = (val & ~dst_mask) | (immed << doffset)
5219
5220 template<int valsize>
5221 static inline typename This::Status
5222 rela_general(
5223 unsigned char* view,
9726c3c1
HS
5224 AArch64_valtype s,
5225 AArch64_valtype addend,
9363c7c3
JY
5226 const AArch64_reloc_property* reloc_property)
5227 {
5228 // Calculate relocation.
5229 Address x = s + addend;
9726c3c1 5230 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
5231 }
5232
5233 // Do address relative relocate. Update selected bits in text.
5234 // new val = (val & ~dst_mask) | (immed << doffset)
5235
5236 template<int valsize>
5237 static inline typename This::Status
5238 pcrela_general(
5239 unsigned char* view,
5240 const Sized_relobj_file<size, big_endian>* object,
5241 const Symbol_value<size>* psymval,
9726c3c1 5242 AArch64_valtype addend,
9363c7c3
JY
5243 Address address,
5244 const AArch64_reloc_property* reloc_property)
5245 {
5246 // Calculate relocation.
3a531937 5247 Address x = psymval->value(object, addend) - address;
9726c3c1
HS
5248 return This::template reloc_common<valsize>(view, x, reloc_property);
5249 }
9363c7c3 5250
9363c7c3 5251
9726c3c1 5252 // Calculate (S + A) - address, update adr instruction.
9363c7c3 5253
9726c3c1
HS
5254 static inline typename This::Status
5255 adr(unsigned char* view,
5256 const Sized_relobj_file<size, big_endian>* object,
5257 const Symbol_value<size>* psymval,
5258 Address addend,
5259 Address address,
5260 const AArch64_reloc_property* /* reloc_property */)
5261 {
5262 AArch64_valtype x = psymval->value(object, addend) - address;
5263 // Pick bits [20:0] of X.
5264 AArch64_valtype immed = x & 0x1fffff;
5265 update_adr(view, immed);
5266 // Check -2^20 <= X < 2^20
5267 return (size == 64 && Bits<21>::has_overflow((x))
5268 ? This::STATUS_OVERFLOW
5269 : This::STATUS_OKAY);
9363c7c3
JY
5270 }
5271
5272 // Calculate PG(S+A) - PG(address), update adrp instruction.
5273 // R_AARCH64_ADR_PREL_PG_HI21
5274
5275 static inline typename This::Status
5276 adrp(
5277 unsigned char* view,
5278 Address sa,
5279 Address address)
5280 {
9726c3c1
HS
5281 AArch64_valtype x = This::Page(sa) - This::Page(address);
5282 // Pick [32:12] of X.
5283 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5284 update_adr(view, immed);
83a01957
HS
5285 // Check -2^32 <= X < 2^32
5286 return (size == 64 && Bits<33>::has_overflow((x))
9363c7c3
JY
5287 ? This::STATUS_OVERFLOW
5288 : This::STATUS_OKAY);
5289 }
5290
5291 // Calculate PG(S+A) - PG(address), update adrp instruction.
5292 // R_AARCH64_ADR_PREL_PG_HI21
5293
5294 static inline typename This::Status
5295 adrp(unsigned char* view,
5296 const Sized_relobj_file<size, big_endian>* object,
5297 const Symbol_value<size>* psymval,
5298 Address addend,
5299 Address address,
5300 const AArch64_reloc_property* reloc_property)
5301 {
5302 Address sa = psymval->value(object, addend);
9726c3c1
HS
5303 AArch64_valtype x = This::Page(sa) - This::Page(address);
5304 // Pick [32:12] of X.
5305 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5306 update_adr(view, immed);
9363c7c3
JY
5307 return (reloc_property->checkup_x_value(x)
5308 ? This::STATUS_OKAY
5309 : This::STATUS_OVERFLOW);
5310 }
5311
3a531937
JY
5312 // Update mov[n/z] instruction. Check overflow if needed.
5313 // If X >=0, set the instruction to movz and its immediate value to the
5314 // selected bits S.
5315 // If X < 0, set the instruction to movn and its immediate value to
5316 // NOT (selected bits of).
5317
5318 static inline typename This::Status
5319 movnz(unsigned char* view,
9726c3c1 5320 AArch64_valtype x,
3a531937
JY
5321 const AArch64_reloc_property* reloc_property)
5322 {
5323 // Select bits from X.
9726c3c1
HS
5324 Address immed;
5325 bool is_movz;
5326 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5327 if (static_cast<SignedW>(x) >= 0)
5328 {
5329 immed = reloc_property->select_x_value(x);
5330 is_movz = true;
5331 }
5332 else
3a531937 5333 {
9726c3c1 5334 immed = reloc_property->select_x_value(~x);;
3a531937
JY
5335 is_movz = false;
5336 }
5337
5338 // Update movnz instruction.
5339 update_movnz(view, immed, is_movz);
5340
5341 // Do check overflow or alignment if needed.
5342 return (reloc_property->checkup_x_value(x)
5343 ? This::STATUS_OKAY
5344 : This::STATUS_OVERFLOW);
5345 }
5346
83a01957
HS
5347 static inline bool
5348 maybe_apply_stub(unsigned int,
5349 const The_relocate_info*,
5350 const The_rela&,
5351 unsigned char*,
5352 Address,
5353 const Sized_symbol<size>*,
5354 const Symbol_value<size>*,
0bf32ea9
JY
5355 const Sized_relobj_file<size, big_endian>*,
5356 section_size_type);
83a01957 5357
3a531937
JY
5358}; // End of AArch64_relocate_functions
5359
5360
83a01957
HS
5361// For a certain relocation type (usually jump/branch), test to see if the
5362// destination needs a stub to fulfil. If so, re-route the destination of the
5363// original instruction to the stub, note, at this time, the stub has already
5364// been generated.
5365
5366template<int size, bool big_endian>
5367bool
5368AArch64_relocate_functions<size, big_endian>::
5369maybe_apply_stub(unsigned int r_type,
5370 const The_relocate_info* relinfo,
5371 const The_rela& rela,
5372 unsigned char* view,
5373 Address address,
5374 const Sized_symbol<size>* gsym,
5375 const Symbol_value<size>* psymval,
0bf32ea9
JY
5376 const Sized_relobj_file<size, big_endian>* object,
5377 section_size_type current_group_size)
83a01957
HS
5378{
5379 if (parameters->options().relocatable())
5380 return false;
5381
5382 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5383 Address branch_target = psymval->value(object, 0) + addend;
a48d0c12
HS
5384 int stub_type =
5385 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5386 if (stub_type == ST_NONE)
83a01957
HS
5387 return false;
5388
5389 const The_aarch64_relobj* aarch64_relobj =
5390 static_cast<const The_aarch64_relobj*>(object);
5391 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5392 gold_assert(stub_table != NULL);
5393
5394 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5395 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5396 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5397 gold_assert(stub != NULL);
5398
5399 Address new_branch_target = stub_table->address() + stub->offset();
5400 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5401 new_branch_target - address;
5402 const AArch64_reloc_property* arp =
5403 aarch64_reloc_property_table->get_reloc_property(r_type);
5404 gold_assert(arp != NULL);
aed56ec5 5405 typename This::Status status = This::template
83a01957
HS
5406 rela_general<32>(view, branch_offset, 0, arp);
5407 if (status != This::STATUS_OKAY)
5408 gold_error(_("Stub is too far away, try a smaller value "
0bf32ea9 5409 "for '--stub-group-size'. The current value is 0x%lx."),
add6016b 5410 static_cast<unsigned long>(current_group_size));
83a01957
HS
5411 return true;
5412}
5413
5414
5415// Group input sections for stub generation.
5416//
5417// We group input sections in an output section so that the total size,
5418// including any padding space due to alignment is smaller than GROUP_SIZE
5419// unless the only input section in group is bigger than GROUP_SIZE already.
5420// Then an ARM stub table is created to follow the last input section
5421// in group. For each group an ARM stub table is created an is placed
5422// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5423// extend the group after the stub table.
5424
5425template<int size, bool big_endian>
5426void
5427Target_aarch64<size, big_endian>::group_sections(
5428 Layout* layout,
5429 section_size_type group_size,
5430 bool stubs_always_after_branch,
5431 const Task* task)
5432{
5433 // Group input sections and insert stub table
5434 Layout::Section_list section_list;
5435 layout->get_executable_sections(&section_list);
5436 for (Layout::Section_list::const_iterator p = section_list.begin();
5437 p != section_list.end();
5438 ++p)
5439 {
5440 AArch64_output_section<size, big_endian>* output_section =
5441 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5442 output_section->group_sections(group_size, stubs_always_after_branch,
5443 this, task);
5444 }
5445}
5446
5447
5448// Find the AArch64_input_section object corresponding to the SHNDX-th input
5449// section of RELOBJ.
5450
5451template<int size, bool big_endian>
5452AArch64_input_section<size, big_endian>*
5453Target_aarch64<size, big_endian>::find_aarch64_input_section(
5454 Relobj* relobj, unsigned int shndx) const
5455{
5456 Section_id sid(relobj, shndx);
5457 typename AArch64_input_section_map::const_iterator p =
5458 this->aarch64_input_section_map_.find(sid);
5459 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5460}
5461
5462
5463// Make a new AArch64_input_section object.
5464
5465template<int size, bool big_endian>
5466AArch64_input_section<size, big_endian>*
5467Target_aarch64<size, big_endian>::new_aarch64_input_section(
5468 Relobj* relobj, unsigned int shndx)
5469{
5470 Section_id sid(relobj, shndx);
5471
5472 AArch64_input_section<size, big_endian>* input_section =
5473 new AArch64_input_section<size, big_endian>(relobj, shndx);
5474 input_section->init();
5475
5476 // Register new AArch64_input_section in map for look-up.
5477 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5478 this->aarch64_input_section_map_.insert(
5479 std::make_pair(sid, input_section));
5480
5481 // Make sure that it we have not created another AArch64_input_section
5482 // for this input section already.
5483 gold_assert(ins.second);
5484
5485 return input_section;
5486}
5487
5488
5489// Relaxation hook. This is where we do stub generation.
5490
5491template<int size, bool big_endian>
5492bool
5493Target_aarch64<size, big_endian>::do_relax(
5494 int pass,
5495 const Input_objects* input_objects,
5496 Symbol_table* symtab,
5497 Layout* layout ,
5498 const Task* task)
5499{
5500 gold_assert(!parameters->options().relocatable());
5501 if (pass == 1)
5502 {
0bf32ea9
JY
5503 // We don't handle negative stub_group_size right now.
5504 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5505 if (this->stub_group_size_ == 1)
83a01957
HS
5506 {
5507 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5508 // will fail to link. The user will have to relink with an explicit
5509 // group size option.
0bf32ea9
JY
5510 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5511 4096 * 4;
83a01957 5512 }
0bf32ea9 5513 group_sections(layout, this->stub_group_size_, true, task);
83a01957
HS
5514 }
5515 else
5516 {
5517 // If this is not the first pass, addresses and file offsets have
5518 // been reset at this point, set them here.
5519 for (Stub_table_iterator sp = this->stub_tables_.begin();
5520 sp != this->stub_tables_.end(); ++sp)
5521 {
5522 The_stub_table* stt = *sp;
5523 The_aarch64_input_section* owner = stt->owner();
5524 off_t off = align_address(owner->original_size(),
5525 stt->addralign());
5526 stt->set_address_and_file_offset(owner->address() + off,
5527 owner->offset() + off);
5528 }
5529 }
5530
5531 // Scan relocs for relocation stubs
5532 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5533 op != input_objects->relobj_end();
5534 ++op)
5535 {
5536 The_aarch64_relobj* aarch64_relobj =
5537 static_cast<The_aarch64_relobj*>(*op);
5538 // Lock the object so we can read from it. This is only called
5539 // single-threaded from Layout::finalize, so it is OK to lock.
5540 Task_lock_obj<Object> tl(task, aarch64_relobj);
5541 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5542 }
5543
5544 bool any_stub_table_changed = false;
5545 for (Stub_table_iterator siter = this->stub_tables_.begin();
5546 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5547 {
5548 The_stub_table* stub_table = *siter;
5549 if (stub_table->update_data_size_changed_p())
5550 {
5551 The_aarch64_input_section* owner = stub_table->owner();
5552 uint64_t address = owner->address();
5553 off_t offset = owner->offset();
5554 owner->reset_address_and_file_offset();
5555 owner->set_address_and_file_offset(address, offset);
5556
5557 any_stub_table_changed = true;
5558 }
5559 }
5560
5561 // Do not continue relaxation.
5562 bool continue_relaxation = any_stub_table_changed;
5563 if (!continue_relaxation)
5564 for (Stub_table_iterator sp = this->stub_tables_.begin();
5565 (sp != this->stub_tables_.end());
5566 ++sp)
5567 (*sp)->finalize_stubs();
5568
5569 return continue_relaxation;
5570}
5571
5572
5573// Make a new Stub_table.
5574
5575template<int size, bool big_endian>
5576Stub_table<size, big_endian>*
5577Target_aarch64<size, big_endian>::new_stub_table(
5578 AArch64_input_section<size, big_endian>* owner)
5579{
5580 Stub_table<size, big_endian>* stub_table =
5581 new Stub_table<size, big_endian>(owner);
5582 stub_table->set_address(align_address(
5583 owner->address() + owner->data_size(), 8));
5584 stub_table->set_file_offset(owner->offset() + owner->data_size());
5585 stub_table->finalize_data_size();
5586
5587 this->stub_tables_.push_back(stub_table);
5588
5589 return stub_table;
5590}
5591
5592
3a531937 5593template<int size, bool big_endian>
7fa5525f 5594uint64_t
3a531937 5595Target_aarch64<size, big_endian>::do_reloc_addend(
7fa5525f 5596 void* arg, unsigned int r_type, uint64_t) const
3a531937
JY
5597{
5598 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5599 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5600 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5601 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5602 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5603 gold_assert(psymval->is_tls_symbol());
5604 // The value of a TLS symbol is the offset in the TLS segment.
5605 return psymval->value(ti.object, 0);
5606}
9363c7c3 5607
053a4d68
JY
5608// Return the number of entries in the PLT.
5609
5610template<int size, bool big_endian>
5611unsigned int
5612Target_aarch64<size, big_endian>::plt_entry_count() const
5613{
5614 if (this->plt_ == NULL)
5615 return 0;
5616 return this->plt_->entry_count();
5617}
5618
5619// Return the offset of the first non-reserved PLT entry.
5620
5621template<int size, bool big_endian>
5622unsigned int
5623Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5624{
5625 return this->plt_->first_plt_entry_offset();
5626}
5627
5628// Return the size of each PLT entry.
5629
5630template<int size, bool big_endian>
5631unsigned int
5632Target_aarch64<size, big_endian>::plt_entry_size() const
5633{
5634 return this->plt_->get_plt_entry_size();
5635}
5636
3a531937 5637// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
053a4d68
JY
5638
5639template<int size, bool big_endian>
3a531937
JY
5640void
5641Target_aarch64<size, big_endian>::define_tls_base_symbol(
5642 Symbol_table* symtab, Layout* layout)
053a4d68 5643{
3a531937
JY
5644 if (this->tls_base_symbol_defined_)
5645 return;
5646
5647 Output_segment* tls_segment = layout->tls_segment();
5648 if (tls_segment != NULL)
5649 {
6b0ad2eb 5650 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
3a531937
JY
5651 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5652 Symbol_table::PREDEFINED,
5653 tls_segment, 0, 0,
5654 elfcpp::STT_TLS,
5655 elfcpp::STB_LOCAL,
5656 elfcpp::STV_HIDDEN, 0,
6b0ad2eb 5657 Symbol::SEGMENT_START,
3a531937
JY
5658 true);
5659 }
5660 this->tls_base_symbol_defined_ = true;
053a4d68
JY
5661}
5662
3a531937 5663// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
053a4d68
JY
5664
5665template<int size, bool big_endian>
3a531937
JY
5666void
5667Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5668 Symbol_table* symtab, Layout* layout)
053a4d68 5669{
3a531937
JY
5670 if (this->plt_ == NULL)
5671 this->make_plt_section(symtab, layout);
5672
5673 if (!this->plt_->has_tlsdesc_entry())
053a4d68 5674 {
3a531937
JY
5675 // Allocate the TLSDESC_GOT entry.
5676 Output_data_got_aarch64<size, big_endian>* got =
5677 this->got_section(symtab, layout);
5678 unsigned int got_offset = got->add_constant(0);
5679
5680 // Allocate the TLSDESC_PLT entry.
5681 this->plt_->reserve_tlsdesc_entry(got_offset);
053a4d68 5682 }
053a4d68
JY
5683}
5684
3a531937 5685// Create a GOT entry for the TLS module index.
053a4d68
JY
5686
5687template<int size, bool big_endian>
3a531937
JY
5688unsigned int
5689Target_aarch64<size, big_endian>::got_mod_index_entry(
5690 Symbol_table* symtab, Layout* layout,
5691 Sized_relobj_file<size, big_endian>* object)
5692{
5693 if (this->got_mod_index_offset_ == -1U)
5694 {
5695 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5696 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5697 Output_data_got_aarch64<size, big_endian>* got =
5698 this->got_section(symtab, layout);
5699 unsigned int got_offset = got->add_constant(0);
5700 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5701 got_offset, 0);
5702 got->add_constant(0);
5703 this->got_mod_index_offset_ = got_offset;
5704 }
5705 return this->got_mod_index_offset_;
5706}
5707
5708// Optimize the TLS relocation type based on what we know about the
5709// symbol. IS_FINAL is true if the final address of this symbol is
5710// known at link time.
5711
5712template<int size, bool big_endian>
5713tls::Tls_optimization
5714Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5715 int r_type)
5716{
5717 // If we are generating a shared library, then we can't do anything
5718 // in the linker
5719 if (parameters->options().shared())
5720 return tls::TLSOPT_NONE;
5721
5722 switch (r_type)
5723 {
5724 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5725 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5726 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5727 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5728 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5729 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5730 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5731 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5732 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5733 case elfcpp::R_AARCH64_TLSDESC_LDR:
5734 case elfcpp::R_AARCH64_TLSDESC_ADD:
5735 case elfcpp::R_AARCH64_TLSDESC_CALL:
5736 // These are General-Dynamic which permits fully general TLS
5737 // access. Since we know that we are generating an executable,
5738 // we can convert this to Initial-Exec. If we also know that
5739 // this is a local symbol, we can further switch to Local-Exec.
5740 if (is_final)
5741 return tls::TLSOPT_TO_LE;
5742 return tls::TLSOPT_TO_IE;
5743
9726c3c1
HS
5744 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5745 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5746 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5747 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
5748 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5749 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
5750 // These are Local-Dynamic, which refer to local symbols in the
5751 // dynamic TLS block. Since we know that we generating an
5752 // executable, we can switch to Local-Exec.
5753 return tls::TLSOPT_TO_LE;
5754
3a531937
JY
5755 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5756 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5757 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5758 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5759 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5760 // These are Initial-Exec relocs which get the thread offset
5761 // from the GOT. If we know that we are linking against the
5762 // local symbol, we can switch to Local-Exec, which links the
5763 // thread offset into the instruction.
5764 if (is_final)
5765 return tls::TLSOPT_TO_LE;
5766 return tls::TLSOPT_NONE;
5767
5768 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5769 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5770 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5771 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5772 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5773 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5774 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5775 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5776 // When we already have Local-Exec, there is nothing further we
5777 // can do.
5778 return tls::TLSOPT_NONE;
5779
5780 default:
5781 gold_unreachable();
5782 }
5783}
5784
5785// Returns true if this relocation type could be that of a function pointer.
5786
5787template<int size, bool big_endian>
5788inline bool
5789Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5790 unsigned int r_type)
5791{
5792 switch (r_type)
5793 {
9726c3c1
HS
5794 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5795 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5796 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5797 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5798 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
3a531937
JY
5799 {
5800 return true;
5801 }
5802 }
5803 return false;
5804}
5805
5806// For safe ICF, scan a relocation for a local symbol to check if it
5807// corresponds to a function pointer being taken. In that case mark
5808// the function whose pointer was taken as not foldable.
5809
5810template<int size, bool big_endian>
5811inline bool
5812Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5813 Symbol_table* ,
053a4d68
JY
5814 Layout* ,
5815 Target_aarch64<size, big_endian>* ,
5816 Sized_relobj_file<size, big_endian>* ,
5817 unsigned int ,
5818 Output_section* ,
5819 const elfcpp::Rela<size, big_endian>& ,
5820 unsigned int r_type,
5821 const elfcpp::Sym<size, big_endian>&)
5822{
9726c3c1 5823 // When building a shared library, do not fold any local symbols.
053a4d68 5824 return (parameters->options().shared()
9363c7c3 5825 || possible_function_pointer_reloc(r_type));
053a4d68
JY
5826}
5827
5828// For safe ICF, scan a relocation for a global symbol to check if it
5829// corresponds to a function pointer being taken. In that case mark
5830// the function whose pointer was taken as not foldable.
5831
5832template<int size, bool big_endian>
5833inline bool
5834Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5835 Symbol_table* ,
5836 Layout* ,
5837 Target_aarch64<size, big_endian>* ,
5838 Sized_relobj_file<size, big_endian>* ,
5839 unsigned int ,
5840 Output_section* ,
5841 const elfcpp::Rela<size, big_endian>& ,
5842 unsigned int r_type,
5843 Symbol* gsym)
5844{
5845 // When building a shared library, do not fold symbols whose visibility
5846 // is hidden, internal or protected.
5847 return ((parameters->options().shared()
9363c7c3
JY
5848 && (gsym->visibility() == elfcpp::STV_INTERNAL
5849 || gsym->visibility() == elfcpp::STV_PROTECTED
5850 || gsym->visibility() == elfcpp::STV_HIDDEN))
5851 || possible_function_pointer_reloc(r_type));
053a4d68
JY
5852}
5853
5854// Report an unsupported relocation against a local symbol.
5855
5856template<int size, bool big_endian>
5857void
5858Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5859 Sized_relobj_file<size, big_endian>* object,
5860 unsigned int r_type)
5861{
5862 gold_error(_("%s: unsupported reloc %u against local symbol"),
5863 object->name().c_str(), r_type);
5864}
5865
5866// We are about to emit a dynamic relocation of type R_TYPE. If the
5867// dynamic linker does not support it, issue an error.
5868
5869template<int size, bool big_endian>
5870void
5871Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
9363c7c3 5872 unsigned int r_type)
053a4d68
JY
5873{
5874 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5875
5876 switch (r_type)
5877 {
5878 // These are the relocation types supported by glibc for AARCH64.
5879 case elfcpp::R_AARCH64_NONE:
5880 case elfcpp::R_AARCH64_COPY:
5881 case elfcpp::R_AARCH64_GLOB_DAT:
5882 case elfcpp::R_AARCH64_JUMP_SLOT:
5883 case elfcpp::R_AARCH64_RELATIVE:
5884 case elfcpp::R_AARCH64_TLS_DTPREL64:
5885 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5886 case elfcpp::R_AARCH64_TLS_TPREL64:
5887 case elfcpp::R_AARCH64_TLSDESC:
5888 case elfcpp::R_AARCH64_IRELATIVE:
5889 case elfcpp::R_AARCH64_ABS32:
5890 case elfcpp::R_AARCH64_ABS64:
5891 return;
5892
5893 default:
5894 break;
5895 }
5896
5897 // This prevents us from issuing more than one error per reloc
5898 // section. But we can still wind up issuing more than one
5899 // error per object file.
5900 if (this->issued_non_pic_error_)
5901 return;
5902 gold_assert(parameters->options().output_is_position_independent());
5903 object->error(_("requires unsupported dynamic reloc; "
9363c7c3 5904 "recompile with -fPIC"));
053a4d68
JY
5905 this->issued_non_pic_error_ = true;
5906 return;
5907}
5908
9726c3c1
HS
5909// Return whether we need to make a PLT entry for a relocation of the
5910// given type against a STT_GNU_IFUNC symbol.
5911
5912template<int size, bool big_endian>
5913bool
5914Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5915 Sized_relobj_file<size, big_endian>* object,
5916 unsigned int r_type)
5917{
5918 const AArch64_reloc_property* arp =
5919 aarch64_reloc_property_table->get_reloc_property(r_type);
5920 gold_assert(arp != NULL);
5921
5922 int flags = arp->reference_flags();
5923 if (flags & Symbol::TLS_REF)
5924 {
5925 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5926 object->name().c_str(), arp->name().c_str());
5927 return false;
5928 }
5929 return flags != 0;
5930}
5931
053a4d68
JY
5932// Scan a relocation for a local symbol.
5933
5934template<int size, bool big_endian>
5935inline void
5936Target_aarch64<size, big_endian>::Scan::local(
8e33481e
HS
5937 Symbol_table* symtab,
5938 Layout* layout,
5939 Target_aarch64<size, big_endian>* target,
9363c7c3 5940 Sized_relobj_file<size, big_endian>* object,
8e33481e
HS
5941 unsigned int data_shndx,
5942 Output_section* output_section,
5943 const elfcpp::Rela<size, big_endian>& rela,
053a4d68 5944 unsigned int r_type,
9726c3c1 5945 const elfcpp::Sym<size, big_endian>& lsym,
053a4d68
JY
5946 bool is_discarded)
5947{
5948 if (is_discarded)
5949 return;
5950
8e33481e 5951 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3a531937
JY
5952 Reloc_section;
5953 Output_data_got_aarch64<size, big_endian>* got =
5954 target->got_section(symtab, layout);
5955 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8e33481e 5956
9726c3c1
HS
5957 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5958 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5959 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5960 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5961
053a4d68
JY
5962 switch (r_type)
5963 {
9363c7c3
JY
5964 case elfcpp::R_AARCH64_ABS32:
5965 case elfcpp::R_AARCH64_ABS16:
8e33481e
HS
5966 if (parameters->options().output_is_position_independent())
5967 {
5968 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5969 object->name().c_str(), r_type);
5970 }
5971 break;
5972
5973 case elfcpp::R_AARCH64_ABS64:
9363c7c3
JY
5974 // If building a shared library or pie, we need to mark this as a dynmic
5975 // reloction, so that the dynamic loader can relocate it.
9363c7c3
JY
5976 if (parameters->options().output_is_position_independent())
5977 {
8e33481e 5978 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8e33481e
HS
5979 rela_dyn->add_local_relative(object, r_sym,
5980 elfcpp::R_AARCH64_RELATIVE,
5981 output_section,
5982 data_shndx,
5983 rela.get_r_offset(),
5984 rela.get_r_addend(),
9726c3c1 5985 is_ifunc);
9363c7c3
JY
5986 }
5987 break;
5988
8e33481e
HS
5989 case elfcpp::R_AARCH64_PREL64:
5990 case elfcpp::R_AARCH64_PREL32:
5991 case elfcpp::R_AARCH64_PREL16:
5992 break;
5993
4d2f5d58
HS
5994 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5995 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5996 // This pair of relocations is used to access a specific GOT entry.
5997 {
5998 bool is_new = false;
5999 // This symbol requires a GOT entry.
6000 if (is_ifunc)
6001 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6002 else
6003 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6004 if (is_new && parameters->options().output_is_position_independent())
6005 target->rela_dyn_section(layout)->
6006 add_local_relative(object,
6007 r_sym,
6008 elfcpp::R_AARCH64_RELATIVE,
6009 got,
6010 object->local_got_offset(r_sym,
6011 GOT_TYPE_STANDARD),
6012 0,
6013 false);
6014 }
6015 break;
6016
3a531937
JY
6017 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6018 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6019 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6020 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6021 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6022 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6023 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6024 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6025 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 6026 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
3a531937 6027 break;
053a4d68 6028
8e33481e
HS
6029 // Control flow, pc-relative. We don't need to do anything for a relative
6030 // addressing relocation against a local symbol if it does not reference
6031 // the GOT.
6032 case elfcpp::R_AARCH64_TSTBR14:
6033 case elfcpp::R_AARCH64_CONDBR19:
6034 case elfcpp::R_AARCH64_JUMP26:
6035 case elfcpp::R_AARCH64_CALL26:
6036 break;
6037
6038 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6039 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6040 {
3a531937
JY
6041 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6042 optimize_tls_reloc(!parameters->options().shared(), r_type);
6043 if (tlsopt == tls::TLSOPT_TO_LE)
6044 break;
6045
8e33481e
HS
6046 layout->set_has_static_tls();
6047 // Create a GOT entry for the tp-relative offset.
8e33481e
HS
6048 if (!parameters->doing_static_link())
6049 {
6050 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6051 target->rela_dyn_section(layout),
6052 elfcpp::R_AARCH64_TLS_TPREL64);
6053 }
6054 else if (!object->local_has_got_offset(r_sym,
6055 GOT_TYPE_TLS_OFFSET))
6056 {
6057 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6058 unsigned int got_offset =
6059 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6060 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6061 gold_assert(addend == 0);
6062 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6063 object, r_sym);
6064 }
6065 }
6066 break;
6067
3a531937
JY
6068 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6069 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6070 {
6071 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6072 optimize_tls_reloc(!parameters->options().shared(), r_type);
6073 if (tlsopt == tls::TLSOPT_TO_LE)
6074 {
6075 layout->set_has_static_tls();
6076 break;
6077 }
6078 gold_assert(tlsopt == tls::TLSOPT_NONE);
6079
6080 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6081 GOT_TYPE_TLS_PAIR,
6082 target->rela_dyn_section(layout),
6083 elfcpp::R_AARCH64_TLS_DTPMOD64);
6084 }
6085 break;
6086
1a920511
JY
6087 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6088 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6089 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6090 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6091 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
6092 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6093 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6094 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6095 {
6096 layout->set_has_static_tls();
6097 bool output_is_shared = parameters->options().shared();
6098 if (output_is_shared)
3a531937 6099 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
8e33481e
HS
6100 object->name().c_str(), r_type);
6101 }
9363c7c3
JY
6102 break;
6103
9726c3c1
HS
6104 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6105 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6106 {
6107 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6108 optimize_tls_reloc(!parameters->options().shared(), r_type);
6109 if (tlsopt == tls::TLSOPT_NONE)
6110 {
6111 // Create a GOT entry for the module index.
6112 target->got_mod_index_entry(symtab, layout, object);
6113 }
6114 else if (tlsopt != tls::TLSOPT_TO_LE)
6115 unsupported_reloc_local(object, r_type);
6116 }
6117 break;
6118
6119 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6120 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
6121 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6122 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
6123 break;
6124
3a531937
JY
6125 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6126 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6127 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6128 {
6129 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6130 optimize_tls_reloc(!parameters->options().shared(), r_type);
6131 target->define_tls_base_symbol(symtab, layout);
6132 if (tlsopt == tls::TLSOPT_NONE)
6133 {
6134 // Create reserved PLT and GOT entries for the resolver.
6135 target->reserve_tlsdesc_entries(symtab, layout);
6136
6137 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6138 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6139 // entry needs to be in an area in .got.plt, not .got. Call
6140 // got_section to make sure the section has been created.
6141 target->got_section(symtab, layout);
6142 Output_data_got<size, big_endian>* got =
6143 target->got_tlsdesc_section();
6144 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6145 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6146 {
6147 unsigned int got_offset = got->add_constant(0);
6148 got->add_constant(0);
6149 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6150 got_offset);
6151 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6152 // We store the arguments we need in a vector, and use
6153 // the index into the vector as the parameter to pass
6154 // to the target specific routines.
6155 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6156 void* arg = reinterpret_cast<void*>(intarg);
6157 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6158 got, got_offset, 0);
6159 }
6160 }
6161 else if (tlsopt != tls::TLSOPT_TO_LE)
6162 unsupported_reloc_local(object, r_type);
6163 }
6164 break;
6165
6166 case elfcpp::R_AARCH64_TLSDESC_CALL:
6167 break;
6168
9363c7c3
JY
6169 default:
6170 unsupported_reloc_local(object, r_type);
053a4d68
JY
6171 }
6172}
6173
6174
6175// Report an unsupported relocation against a global symbol.
6176
6177template<int size, bool big_endian>
6178void
6179Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6180 Sized_relobj_file<size, big_endian>* object,
6181 unsigned int r_type,
6182 Symbol* gsym)
6183{
6184 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6185 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6186}
6187
6188template<int size, bool big_endian>
6189inline void
6190Target_aarch64<size, big_endian>::Scan::global(
9363c7c3
JY
6191 Symbol_table* symtab,
6192 Layout* layout,
6193 Target_aarch64<size, big_endian>* target,
8e33481e
HS
6194 Sized_relobj_file<size, big_endian> * object,
6195 unsigned int data_shndx,
6196 Output_section* output_section,
6197 const elfcpp::Rela<size, big_endian>& rela,
9363c7c3
JY
6198 unsigned int r_type,
6199 Symbol* gsym)
053a4d68 6200{
9726c3c1
HS
6201 // A STT_GNU_IFUNC symbol may require a PLT entry.
6202 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6203 && this->reloc_needs_plt_for_ifunc(object, r_type))
6204 target->make_plt_entry(symtab, layout, gsym);
6205
8e33481e
HS
6206 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6207 Reloc_section;
3a531937
JY
6208 const AArch64_reloc_property* arp =
6209 aarch64_reloc_property_table->get_reloc_property(r_type);
6210 gold_assert(arp != NULL);
6211
9363c7c3
JY
6212 switch (r_type)
6213 {
8e33481e
HS
6214 case elfcpp::R_AARCH64_ABS16:
6215 case elfcpp::R_AARCH64_ABS32:
9363c7c3 6216 case elfcpp::R_AARCH64_ABS64:
8e33481e
HS
6217 {
6218 // Make a PLT entry if necessary.
6219 if (gsym->needs_plt_entry())
6220 {
6221 target->make_plt_entry(symtab, layout, gsym);
6222 // Since this is not a PC-relative relocation, we may be
6223 // taking the address of a function. In that case we need to
6224 // set the entry in the dynamic symbol table to the address of
6225 // the PLT entry.
6226 if (gsym->is_from_dynobj() && !parameters->options().shared())
6227 gsym->set_needs_dynsym_value();
6228 }
6229 // Make a dynamic relocation if necessary.
8e33481e
HS
6230 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6231 {
6232 if (!parameters->options().output_is_position_independent()
6233 && gsym->may_need_copy_reloc())
6234 {
3a531937
JY
6235 target->copy_reloc(symtab, layout, object,
6236 data_shndx, output_section, gsym, rela);
8e33481e 6237 }
9726c3c1
HS
6238 else if (r_type == elfcpp::R_AARCH64_ABS64
6239 && gsym->type() == elfcpp::STT_GNU_IFUNC
6240 && gsym->can_use_relative_reloc(false)
6241 && !gsym->is_from_dynobj()
6242 && !gsym->is_undefined()
6243 && !gsym->is_preemptible())
6244 {
6245 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6246 // symbol. This makes a function address in a PIE executable
6247 // match the address in a shared library that it links against.
6248 Reloc_section* rela_dyn =
6249 target->rela_irelative_section(layout);
6250 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6251 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6252 output_section, object,
6253 data_shndx,
6254 rela.get_r_offset(),
6255 rela.get_r_addend());
6256 }
8e33481e
HS
6257 else if (r_type == elfcpp::R_AARCH64_ABS64
6258 && gsym->can_use_relative_reloc(false))
6259 {
6260 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6261 rela_dyn->add_global_relative(gsym,
6262 elfcpp::R_AARCH64_RELATIVE,
6263 output_section,
6264 object,
6265 data_shndx,
6266 rela.get_r_offset(),
6267 rela.get_r_addend(),
6268 false);
6269 }
6270 else
6271 {
6272 check_non_pic(object, r_type);
6273 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6274 rela_dyn = target->rela_dyn_section(layout);
6275 rela_dyn->add_global(
6276 gsym, r_type, output_section, object,
6277 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6278 }
6279 }
6280 }
6281 break;
6282
6283 case elfcpp::R_AARCH64_PREL16:
6284 case elfcpp::R_AARCH64_PREL32:
6285 case elfcpp::R_AARCH64_PREL64:
9363c7c3
JY
6286 // This is used to fill the GOT absolute address.
6287 if (gsym->needs_plt_entry())
6288 {
6289 target->make_plt_entry(symtab, layout, gsym);
6290 }
6291 break;
6292
3a531937
JY
6293 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6294 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6295 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6296 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6297 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6298 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6299 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6300 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6301 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 6302 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
9363c7c3 6303 {
3a531937
JY
6304 if (gsym->needs_plt_entry())
6305 target->make_plt_entry(symtab, layout, gsym);
6306 // Make a dynamic relocation if necessary.
6307 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6308 {
6309 if (parameters->options().output_is_executable()
6310 && gsym->may_need_copy_reloc())
6311 {
6312 target->copy_reloc(symtab, layout, object,
6313 data_shndx, output_section, gsym, rela);
6314 }
6315 }
9363c7c3
JY
6316 break;
6317 }
6318
6319 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6320 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6321 {
6322 // This pair of relocations is used to access a specific GOT entry.
6323 // Note a GOT entry is an *address* to a symbol.
6324 // The symbol requires a GOT entry
6325 Output_data_got_aarch64<size, big_endian>* got =
6326 target->got_section(symtab, layout);
6327 if (gsym->final_value_is_known())
6328 {
9726c3c1
HS
6329 // For a STT_GNU_IFUNC symbol we want the PLT address.
6330 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6331 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6332 else
6333 got->add_global(gsym, GOT_TYPE_STANDARD);
9363c7c3
JY
6334 }
6335 else
6336 {
9726c3c1
HS
6337 // If this symbol is not fully resolved, we need to add a dynamic
6338 // relocation for it.
9363c7c3 6339 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9726c3c1
HS
6340
6341 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6342 //
6343 // 1) The symbol may be defined in some other module.
6344 // 2) We are building a shared library and this is a protected
6345 // symbol; using GLOB_DAT means that the dynamic linker can use
6346 // the address of the PLT in the main executable when appropriate
6347 // so that function address comparisons work.
6348 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6349 // again so that function address comparisons work.
9363c7c3
JY
6350 if (gsym->is_from_dynobj()
6351 || gsym->is_undefined()
6352 || gsym->is_preemptible()
6353 || (gsym->visibility() == elfcpp::STV_PROTECTED
9726c3c1
HS
6354 && parameters->options().shared())
6355 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6356 && parameters->options().output_is_position_independent()))
9363c7c3
JY
6357 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6358 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6359 else
6360 {
9726c3c1
HS
6361 // For a STT_GNU_IFUNC symbol we want to write the PLT
6362 // offset into the GOT, so that function pointer
6363 // comparisons work correctly.
6364 bool is_new;
6365 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6366 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6367 else
6368 {
6369 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6370 // Tell the dynamic linker to use the PLT address
6371 // when resolving relocations.
6372 if (gsym->is_from_dynobj()
6373 && !parameters->options().shared())
6374 gsym->set_needs_dynsym_value();
6375 }
6376 if (is_new)
3a531937
JY
6377 {
6378 rela_dyn->add_global_relative(
6379 gsym, elfcpp::R_AARCH64_RELATIVE,
6380 got,
6381 gsym->got_offset(GOT_TYPE_STANDARD),
6382 0,
6383 false);
6384 }
9363c7c3
JY
6385 }
6386 }
6387 break;
6388 }
6389
8e33481e
HS
6390 case elfcpp::R_AARCH64_TSTBR14:
6391 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
6392 case elfcpp::R_AARCH64_JUMP26:
6393 case elfcpp::R_AARCH64_CALL26:
6394 {
6395 if (gsym->final_value_is_known())
6396 break;
6397
6398 if (gsym->is_defined() &&
6399 !gsym->is_from_dynobj() &&
6400 !gsym->is_preemptible())
6401 break;
6402
6403 // Make plt entry for function call.
9363c7c3
JY
6404 target->make_plt_entry(symtab, layout, gsym);
6405 break;
6406 }
6407
3a531937
JY
6408 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6409 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6410 {
6411 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6412 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6413 if (tlsopt == tls::TLSOPT_TO_LE)
6414 {
6415 layout->set_has_static_tls();
6416 break;
6417 }
6418 gold_assert(tlsopt == tls::TLSOPT_NONE);
6419
6420 // General dynamic.
6421 Output_data_got_aarch64<size, big_endian>* got =
6422 target->got_section(symtab, layout);
6423 // Create 2 consecutive entries for module index and offset.
6424 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6425 target->rela_dyn_section(layout),
6426 elfcpp::R_AARCH64_TLS_DTPMOD64,
6427 elfcpp::R_AARCH64_TLS_DTPREL64);
6428 }
6429 break;
6430
9726c3c1
HS
6431 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6432 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6433 {
6434 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6435 optimize_tls_reloc(!parameters->options().shared(), r_type);
6436 if (tlsopt == tls::TLSOPT_NONE)
6437 {
6438 // Create a GOT entry for the module index.
6439 target->got_mod_index_entry(symtab, layout, object);
6440 }
6441 else if (tlsopt != tls::TLSOPT_TO_LE)
6442 unsupported_reloc_local(object, r_type);
6443 }
6444 break;
6445
6446 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6b0ad2eb
JY
6447 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6448 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6449 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
9726c3c1
HS
6450 break;
6451
8e33481e 6452 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 6453 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
8e33481e 6454 {
9726c3c1 6455 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
3a531937
JY
6456 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6457 if (tlsopt == tls::TLSOPT_TO_LE)
6458 break;
6459
8e33481e
HS
6460 layout->set_has_static_tls();
6461 // Create a GOT entry for the tp-relative offset.
6462 Output_data_got_aarch64<size, big_endian>* got
6463 = target->got_section(symtab, layout);
6464 if (!parameters->doing_static_link())
6465 {
6466 got->add_global_with_rel(
6467 gsym, GOT_TYPE_TLS_OFFSET,
6468 target->rela_dyn_section(layout),
6469 elfcpp::R_AARCH64_TLS_TPREL64);
6470 }
6471 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6472 {
6473 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6474 unsigned int got_offset =
6475 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6476 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6477 gold_assert(addend == 0);
6478 got->add_static_reloc(got_offset,
6479 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6480 }
6481 }
6482 break;
6483
1a920511
JY
6484 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6485 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6486 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6487 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6488 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
6489 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6490 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
3a531937 6491 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
8e33481e
HS
6492 layout->set_has_static_tls();
6493 if (parameters->options().shared())
6494 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6495 object->name().c_str(), r_type);
6496 break;
6497
3a531937
JY
6498 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6499 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6500 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6501 {
6502 target->define_tls_base_symbol(symtab, layout);
6503 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6504 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6505 if (tlsopt == tls::TLSOPT_NONE)
6506 {
6507 // Create reserved PLT and GOT entries for the resolver.
6508 target->reserve_tlsdesc_entries(symtab, layout);
6509
6510 // Create a double GOT entry with an R_AARCH64_TLSDESC
6511 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6512 // entry needs to be in an area in .got.plt, not .got. Call
6513 // got_section to make sure the section has been created.
6514 target->got_section(symtab, layout);
6515 Output_data_got<size, big_endian>* got =
6516 target->got_tlsdesc_section();
6517 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6518 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6519 elfcpp::R_AARCH64_TLSDESC, 0);
6520 }
6521 else if (tlsopt == tls::TLSOPT_TO_IE)
6522 {
6523 // Create a GOT entry for the tp-relative offset.
6524 Output_data_got<size, big_endian>* got
6525 = target->got_section(symtab, layout);
6526 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6527 target->rela_dyn_section(layout),
6528 elfcpp::R_AARCH64_TLS_TPREL64);
6529 }
6530 else if (tlsopt != tls::TLSOPT_TO_LE)
6531 unsupported_reloc_global(object, r_type, gsym);
6532 }
6533 break;
6534
6535 case elfcpp::R_AARCH64_TLSDESC_CALL:
6536 break;
6537
9363c7c3 6538 default:
8e33481e 6539 gold_error(_("%s: unsupported reloc type in global scan"),
3a531937
JY
6540 aarch64_reloc_property_table->
6541 reloc_name_in_error_message(r_type).c_str());
9363c7c3 6542 }
053a4d68 6543 return;
9363c7c3
JY
6544} // End of Scan::global
6545
3a531937 6546
9363c7c3
JY
6547// Create the PLT section.
6548template<int size, bool big_endian>
6549void
6550Target_aarch64<size, big_endian>::make_plt_section(
6551 Symbol_table* symtab, Layout* layout)
6552{
6553 if (this->plt_ == NULL)
6554 {
6555 // Create the GOT section first.
6556 this->got_section(symtab, layout);
6557
3a531937
JY
6558 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6559 this->got_irelative_);
9363c7c3
JY
6560
6561 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6562 (elfcpp::SHF_ALLOC
6563 | elfcpp::SHF_EXECINSTR),
6564 this->plt_, ORDER_PLT, false);
6565
6566 // Make the sh_info field of .rela.plt point to .plt.
6567 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6568 rela_plt_os->set_info_section(this->plt_->output_section());
6569 }
6570}
6571
3a531937
JY
6572// Return the section for TLSDESC relocations.
6573
6574template<int size, bool big_endian>
6575typename Target_aarch64<size, big_endian>::Reloc_section*
6576Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6577{
6578 return this->plt_section()->rela_tlsdesc(layout);
6579}
6580
9363c7c3
JY
6581// Create a PLT entry for a global symbol.
6582
6583template<int size, bool big_endian>
6584void
6585Target_aarch64<size, big_endian>::make_plt_entry(
6586 Symbol_table* symtab,
6587 Layout* layout,
6588 Symbol* gsym)
6589{
6590 if (gsym->has_plt_offset())
6591 return;
6592
6593 if (this->plt_ == NULL)
6594 this->make_plt_section(symtab, layout);
6595
9726c3c1
HS
6596 this->plt_->add_entry(symtab, layout, gsym);
6597}
6598
6599// Make a PLT entry for a local STT_GNU_IFUNC symbol.
6600
6601template<int size, bool big_endian>
6602void
6603Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6604 Symbol_table* symtab, Layout* layout,
6605 Sized_relobj_file<size, big_endian>* relobj,
6606 unsigned int local_sym_index)
6607{
6608 if (relobj->local_has_plt_offset(local_sym_index))
6609 return;
6610 if (this->plt_ == NULL)
6611 this->make_plt_section(symtab, layout);
6612 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6613 relobj,
6614 local_sym_index);
6615 relobj->set_local_plt_offset(local_sym_index, plt_offset);
053a4d68
JY
6616}
6617
6618template<int size, bool big_endian>
6619void
6620Target_aarch64<size, big_endian>::gc_process_relocs(
6621 Symbol_table* symtab,
6622 Layout* layout,
6623 Sized_relobj_file<size, big_endian>* object,
6624 unsigned int data_shndx,
6625 unsigned int sh_type,
6626 const unsigned char* prelocs,
6627 size_t reloc_count,
6628 Output_section* output_section,
6629 bool needs_special_offset_handling,
6630 size_t local_symbol_count,
6631 const unsigned char* plocal_symbols)
6632{
6633 if (sh_type == elfcpp::SHT_REL)
6634 {
6635 return;
6636 }
6637
9363c7c3
JY
6638 gold::gc_process_relocs<
6639 size, big_endian,
6640 Target_aarch64<size, big_endian>,
6641 elfcpp::SHT_RELA,
6642 typename Target_aarch64<size, big_endian>::Scan,
6643 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
053a4d68
JY
6644 symtab,
6645 layout,
6646 this,
6647 object,
6648 data_shndx,
6649 prelocs,
6650 reloc_count,
6651 output_section,
6652 needs_special_offset_handling,
6653 local_symbol_count,
6654 plocal_symbols);
6655}
6656
6657// Scan relocations for a section.
6658
6659template<int size, bool big_endian>
6660void
6661Target_aarch64<size, big_endian>::scan_relocs(
6662 Symbol_table* symtab,
6663 Layout* layout,
6664 Sized_relobj_file<size, big_endian>* object,
6665 unsigned int data_shndx,
6666 unsigned int sh_type,
6667 const unsigned char* prelocs,
6668 size_t reloc_count,
6669 Output_section* output_section,
6670 bool needs_special_offset_handling,
6671 size_t local_symbol_count,
6672 const unsigned char* plocal_symbols)
6673{
6674 if (sh_type == elfcpp::SHT_REL)
6675 {
6676 gold_error(_("%s: unsupported REL reloc section"),
6677 object->name().c_str());
6678 return;
6679 }
9363c7c3 6680 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
053a4d68
JY
6681 symtab,
6682 layout,
6683 this,
6684 object,
6685 data_shndx,
6686 prelocs,
6687 reloc_count,
6688 output_section,
6689 needs_special_offset_handling,
6690 local_symbol_count,
6691 plocal_symbols);
6692}
6693
3a531937
JY
6694// Return the value to use for a dynamic which requires special
6695// treatment. This is how we support equality comparisons of function
6696// pointers across shared library boundaries, as described in the
6697// processor specific ABI supplement.
6698
83a01957 6699template<int size, bool big_endian>
3a531937 6700uint64_t
83a01957 6701Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
3a531937
JY
6702{
6703 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6704 return this->plt_address_for_global(gsym);
6705}
6706
83a01957 6707
053a4d68
JY
6708// Finalize the sections.
6709
6710template<int size, bool big_endian>
6711void
6712Target_aarch64<size, big_endian>::do_finalize_sections(
9363c7c3 6713 Layout* layout,
053a4d68 6714 const Input_objects*,
9363c7c3 6715 Symbol_table* symtab)
053a4d68 6716{
9363c7c3
JY
6717 const Reloc_section* rel_plt = (this->plt_ == NULL
6718 ? NULL
6719 : this->plt_->rela_plt());
6720 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6721 this->rela_dyn_, true, false);
6722
3a531937
JY
6723 // Emit any relocs we saved in an attempt to avoid generating COPY
6724 // relocs.
6725 if (this->copy_relocs_.any_saved_relocs())
6726 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6727
6728 // Fill in some more dynamic tags.
6729 Output_data_dynamic* const odyn = layout->dynamic_data();
6730 if (odyn != NULL)
6731 {
6732 if (this->plt_ != NULL
6733 && this->plt_->output_section() != NULL
6734 && this->plt_ ->has_tlsdesc_entry())
6735 {
6736 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6737 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6738 this->got_->finalize_data_size();
6739 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6740 this->plt_, plt_offset);
6741 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6742 this->got_, got_offset);
6743 }
6744 }
6745
9363c7c3
JY
6746 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6747 // the .got.plt section.
6748 Symbol* sym = this->global_offset_table_;
6749 if (sym != NULL)
6750 {
6751 uint64_t data_size = this->got_plt_->current_data_size();
6752 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6753
6754 // If the .got section is more than 0x8000 bytes, we add
6755 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6756 // bit relocations have a greater chance of working.
6757 if (data_size >= 0x8000)
6758 symtab->get_sized_symbol<size>(sym)->set_value(
6759 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6760 }
6761
6762 if (parameters->doing_static_link()
6763 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6764 {
6765 // If linking statically, make sure that the __rela_iplt symbols
6766 // were defined if necessary, even if we didn't create a PLT.
6767 static const Define_symbol_in_segment syms[] =
6768 {
6769 {
6770 "__rela_iplt_start", // name
6771 elfcpp::PT_LOAD, // segment_type
6772 elfcpp::PF_W, // segment_flags_set
6773 elfcpp::PF(0), // segment_flags_clear
6774 0, // value
6775 0, // size
6776 elfcpp::STT_NOTYPE, // type
6777 elfcpp::STB_GLOBAL, // binding
6778 elfcpp::STV_HIDDEN, // visibility
6779 0, // nonvis
6780 Symbol::SEGMENT_START, // offset_from_base
6781 true // only_if_ref
6782 },
6783 {
6784 "__rela_iplt_end", // name
6785 elfcpp::PT_LOAD, // segment_type
6786 elfcpp::PF_W, // segment_flags_set
6787 elfcpp::PF(0), // segment_flags_clear
6788 0, // value
6789 0, // size
6790 elfcpp::STT_NOTYPE, // type
6791 elfcpp::STB_GLOBAL, // binding
6792 elfcpp::STV_HIDDEN, // visibility
6793 0, // nonvis
6794 Symbol::SEGMENT_START, // offset_from_base
6795 true // only_if_ref
6796 }
6797 };
6798
6799 symtab->define_symbols(layout, 2, syms,
6800 layout->script_options()->saw_sections_clause());
6801 }
6802
053a4d68
JY
6803 return;
6804}
6805
6806// Perform a relocation.
6807
6808template<int size, bool big_endian>
6809inline bool
6810Target_aarch64<size, big_endian>::Relocate::relocate(
9363c7c3 6811 const Relocate_info<size, big_endian>* relinfo,
91a65d2f 6812 unsigned int,
9363c7c3 6813 Target_aarch64<size, big_endian>* target,
053a4d68 6814 Output_section* ,
9363c7c3 6815 size_t relnum,
91a65d2f 6816 const unsigned char* preloc,
9363c7c3
JY
6817 const Sized_symbol<size>* gsym,
6818 const Symbol_value<size>* psymval,
6819 unsigned char* view,
6820 typename elfcpp::Elf_types<size>::Elf_Addr address,
053a4d68
JY
6821 section_size_type /* view_size */)
6822{
9363c7c3
JY
6823 if (view == NULL)
6824 return true;
6825
6826 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6827
91a65d2f
AM
6828 const elfcpp::Rela<size, big_endian> rela(preloc);
6829 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
9363c7c3
JY
6830 const AArch64_reloc_property* reloc_property =
6831 aarch64_reloc_property_table->get_reloc_property(r_type);
6832
6833 if (reloc_property == NULL)
6834 {
6835 std::string reloc_name =
6836 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6837 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6838 _("cannot relocate %s in object file"),
6839 reloc_name.c_str());
6840 return true;
6841 }
6842
6843 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6844
6845 // Pick the value to use for symbols defined in the PLT.
6846 Symbol_value<size> symval;
6847 if (gsym != NULL
6848 && gsym->use_plt_offset(reloc_property->reference_flags()))
6849 {
6850 symval.set_output_value(target->plt_address_for_global(gsym));
6851 psymval = &symval;
6852 }
6853 else if (gsym == NULL && psymval->is_ifunc_symbol())
6854 {
6855 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6856 if (object->local_has_plt_offset(r_sym))
6857 {
6858 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6859 psymval = &symval;
6860 }
6861 }
6862
6863 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6864
6865 // Get the GOT offset if needed.
6866 // For aarch64, the GOT pointer points to the start of the GOT section.
6867 bool have_got_offset = false;
6868 int got_offset = 0;
6869 int got_base = (target->got_ != NULL
6870 ? (target->got_->current_data_size() >= 0x8000
6871 ? 0x8000 : 0)
6872 : 0);
6873 switch (r_type)
6874 {
6875 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6876 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6877 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6878 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6879 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6880 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6881 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6882 case elfcpp::R_AARCH64_GOTREL64:
6883 case elfcpp::R_AARCH64_GOTREL32:
6884 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6885 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6886 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6887 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6888 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6889 if (gsym != NULL)
6890 {
6891 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6892 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6893 }
6894 else
6895 {
6896 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6897 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6898 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6899 - got_base);
6900 }
6901 have_got_offset = true;
6902 break;
8e33481e 6903
9363c7c3
JY
6904 default:
6905 break;
6906 }
6907
6908 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6909 typename elfcpp::Elf_types<size>::Elf_Addr value;
6910 switch (r_type)
6911 {
6912 case elfcpp::R_AARCH64_NONE:
6913 break;
6914
6915 case elfcpp::R_AARCH64_ABS64:
0eccf19f
CC
6916 if (!parameters->options().apply_dynamic_relocs()
6917 && parameters->options().output_is_position_independent()
6918 && gsym != NULL
6919 && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6920 && !gsym->can_use_relative_reloc(false))
6921 // We have generated an absolute dynamic relocation, so do not
6922 // apply the relocation statically. (Works around bugs in older
6923 // Android dynamic linkers.)
6924 break;
9363c7c3
JY
6925 reloc_status = Reloc::template rela_ua<64>(
6926 view, object, psymval, addend, reloc_property);
6927 break;
6928
6929 case elfcpp::R_AARCH64_ABS32:
0eccf19f
CC
6930 if (!parameters->options().apply_dynamic_relocs()
6931 && parameters->options().output_is_position_independent()
6932 && gsym != NULL
6933 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6934 // We have generated an absolute dynamic relocation, so do not
6935 // apply the relocation statically. (Works around bugs in older
6936 // Android dynamic linkers.)
6937 break;
9363c7c3
JY
6938 reloc_status = Reloc::template rela_ua<32>(
6939 view, object, psymval, addend, reloc_property);
6940 break;
6941
6942 case elfcpp::R_AARCH64_ABS16:
0eccf19f
CC
6943 if (!parameters->options().apply_dynamic_relocs()
6944 && parameters->options().output_is_position_independent()
6945 && gsym != NULL
6946 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6947 // We have generated an absolute dynamic relocation, so do not
6948 // apply the relocation statically. (Works around bugs in older
6949 // Android dynamic linkers.)
6950 break;
9363c7c3
JY
6951 reloc_status = Reloc::template rela_ua<16>(
6952 view, object, psymval, addend, reloc_property);
6953 break;
6954
6955 case elfcpp::R_AARCH64_PREL64:
6956 reloc_status = Reloc::template pcrela_ua<64>(
6957 view, object, psymval, addend, address, reloc_property);
83a01957 6958 break;
9363c7c3
JY
6959
6960 case elfcpp::R_AARCH64_PREL32:
6961 reloc_status = Reloc::template pcrela_ua<32>(
6962 view, object, psymval, addend, address, reloc_property);
83a01957 6963 break;
9363c7c3
JY
6964
6965 case elfcpp::R_AARCH64_PREL16:
6966 reloc_status = Reloc::template pcrela_ua<16>(
6967 view, object, psymval, addend, address, reloc_property);
83a01957 6968 break;
9363c7c3 6969
9726c3c1
HS
6970 case elfcpp::R_AARCH64_LD_PREL_LO19:
6971 reloc_status = Reloc::template pcrela_general<32>(
6972 view, object, psymval, addend, address, reloc_property);
6973 break;
6974
6975 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6976 reloc_status = Reloc::adr(view, object, psymval, addend,
6977 address, reloc_property);
6978 break;
6979
9363c7c3
JY
6980 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6981 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6982 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6983 reloc_property);
6984 break;
6985
6986 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6987 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6988 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6989 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6990 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6991 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6992 reloc_status = Reloc::template rela_general<32>(
6993 view, object, psymval, addend, reloc_property);
6994 break;
6995
3a531937
JY
6996 case elfcpp::R_AARCH64_CALL26:
6997 if (this->skip_call_tls_get_addr_)
6998 {
6999 // Double check that the TLSGD insn has been optimized away.
7000 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7001 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7002 reinterpret_cast<Insntype*>(view));
7003 gold_assert((insn & 0xff000000) == 0x91000000);
7004
7005 reloc_status = Reloc::STATUS_OKAY;
7006 this->skip_call_tls_get_addr_ = false;
7007 // Return false to stop further processing this reloc.
7008 return false;
7009 }
83a01957
HS
7010 // Fallthrough
7011 case elfcpp::R_AARCH64_JUMP26:
7012 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
0bf32ea9
JY
7013 gsym, psymval, object,
7014 target->stub_group_size_))
83a01957
HS
7015 break;
7016 // Fallthrough
8e33481e
HS
7017 case elfcpp::R_AARCH64_TSTBR14:
7018 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
7019 reloc_status = Reloc::template pcrela_general<32>(
7020 view, object, psymval, addend, address, reloc_property);
7021 break;
7022
7023 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7024 gold_assert(have_got_offset);
7025 value = target->got_->address() + got_base + got_offset;
7026 reloc_status = Reloc::adrp(view, value + addend, address);
7027 break;
7028
7029 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7030 gold_assert(have_got_offset);
7031 value = target->got_->address() + got_base + got_offset;
7032 reloc_status = Reloc::template rela_general<32>(
7033 view, value, addend, reloc_property);
7034 break;
7035
3a531937
JY
7036 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7037 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
9726c3c1
HS
7038 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7039 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7040 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7041 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
7042 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7043 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8e33481e
HS
7044 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7045 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1a920511
JY
7046 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7047 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7048 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7049 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7050 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
7051 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7052 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7053 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3a531937
JY
7054 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7055 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7056 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7057 case elfcpp::R_AARCH64_TLSDESC_CALL:
8e33481e
HS
7058 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7059 gsym, psymval, view, address);
7060 break;
7061
3a531937
JY
7062 // These are dynamic relocations, which are unexpected when linking.
7063 case elfcpp::R_AARCH64_COPY:
7064 case elfcpp::R_AARCH64_GLOB_DAT:
7065 case elfcpp::R_AARCH64_JUMP_SLOT:
7066 case elfcpp::R_AARCH64_RELATIVE:
7067 case elfcpp::R_AARCH64_IRELATIVE:
7068 case elfcpp::R_AARCH64_TLS_DTPREL64:
7069 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7070 case elfcpp::R_AARCH64_TLS_TPREL64:
7071 case elfcpp::R_AARCH64_TLSDESC:
9363c7c3 7072 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3a531937 7073 _("unexpected reloc %u in object file"),
9363c7c3
JY
7074 r_type);
7075 break;
3a531937
JY
7076
7077 default:
7078 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7079 _("unsupported reloc %s"),
7080 reloc_property->name().c_str());
7081 break;
9363c7c3
JY
7082 }
7083
7084 // Report any errors.
7085 switch (reloc_status)
7086 {
7087 case Reloc::STATUS_OKAY:
7088 break;
7089 case Reloc::STATUS_OVERFLOW:
7090 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7091 _("relocation overflow in %s"),
7092 reloc_property->name().c_str());
7093 break;
7094 case Reloc::STATUS_BAD_RELOC:
7095 gold_error_at_location(
7096 relinfo,
7097 relnum,
7098 rela.get_r_offset(),
7099 _("unexpected opcode while processing relocation %s"),
7100 reloc_property->name().c_str());
7101 break;
7102 default:
7103 gold_unreachable();
7104 }
7105
053a4d68
JY
7106 return true;
7107}
7108
3a531937 7109
8e33481e
HS
7110template<int size, bool big_endian>
7111inline
83a01957 7112typename AArch64_relocate_functions<size, big_endian>::Status
8e33481e 7113Target_aarch64<size, big_endian>::Relocate::relocate_tls(
83a01957 7114 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7115 Target_aarch64<size, big_endian>* target,
7116 size_t relnum,
7117 const elfcpp::Rela<size, big_endian>& rela,
7118 unsigned int r_type, const Sized_symbol<size>* gsym,
7119 const Symbol_value<size>* psymval,
7120 unsigned char* view,
8e33481e
HS
7121 typename elfcpp::Elf_types<size>::Elf_Addr address)
7122{
83a01957 7123 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937 7124 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
8e33481e 7125
3a531937
JY
7126 Output_segment* tls_segment = relinfo->layout->tls_segment();
7127 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7128 const AArch64_reloc_property* reloc_property =
7129 aarch64_reloc_property_table->get_reloc_property(r_type);
8e33481e
HS
7130 gold_assert(reloc_property != NULL);
7131
3a531937
JY
7132 const bool is_final = (gsym == NULL
7133 ? !parameters->options().shared()
7134 : gsym->final_value_is_known());
7135 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7136 optimize_tls_reloc(is_final, r_type);
7137
83a01957 7138 Sized_relobj_file<size, big_endian>* object = relinfo->object;
3a531937 7139 int tls_got_offset_type;
8e33481e
HS
7140 switch (r_type)
7141 {
3a531937
JY
7142 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7143 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7144 {
7145 if (tlsopt == tls::TLSOPT_TO_LE)
7146 {
7147 if (tls_segment == NULL)
7148 {
7149 gold_assert(parameters->errors()->error_count() > 0
7150 || issue_undefined_symbol_error(gsym));
7151 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7152 }
7153 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7154 psymval);
7155 }
7156 else if (tlsopt == tls::TLSOPT_NONE)
7157 {
7158 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7159 // Firstly get the address for the got entry.
7160 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7161 if (gsym != NULL)
7162 {
7163 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7164 got_entry_address = target->got_->address() +
7165 gsym->got_offset(tls_got_offset_type);
7166 }
7167 else
7168 {
7169 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7170 gold_assert(
7171 object->local_has_got_offset(r_sym, tls_got_offset_type));
7172 got_entry_address = target->got_->address() +
7173 object->local_got_offset(r_sym, tls_got_offset_type);
7174 }
7175
7176 // Relocate the address into adrp/ld, adrp/add pair.
7177 switch (r_type)
7178 {
7179 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7180 return aarch64_reloc_funcs::adrp(
7181 view, got_entry_address + addend, address);
7182
7183 break;
7184
7185 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7186 return aarch64_reloc_funcs::template rela_general<32>(
7187 view, got_entry_address, addend, reloc_property);
7188 break;
7189
7190 default:
9726c3c1 7191 gold_unreachable();
3a531937
JY
7192 }
7193 }
7194 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7195 _("unsupported gd_to_ie relaxation on %u"),
7196 r_type);
7197 }
7198 break;
7199
9726c3c1
HS
7200 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7201 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7202 {
7203 if (tlsopt == tls::TLSOPT_TO_LE)
7204 {
7205 if (tls_segment == NULL)
7206 {
7207 gold_assert(parameters->errors()->error_count() > 0
7208 || issue_undefined_symbol_error(gsym));
7209 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7210 }
7211 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7212 psymval);
7213 }
7214
7215 gold_assert(tlsopt == tls::TLSOPT_NONE);
7216 // Relocate the field with the offset of the GOT entry for
7217 // the module index.
7218 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7219 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7220 target->got_->address());
7221
7222 switch (r_type)
7223 {
7224 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7225 return aarch64_reloc_funcs::adrp(
7226 view, got_entry_address + addend, address);
7227 break;
7228
7229 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7230 return aarch64_reloc_funcs::template rela_general<32>(
7231 view, got_entry_address, addend, reloc_property);
7232 break;
7233
7234 default:
7235 gold_unreachable();
7236 }
7237 }
7238 break;
7239
7240 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6b0ad2eb
JY
7241 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7242 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7243 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
9726c3c1
HS
7244 {
7245 AArch64_address value = psymval->value(object, 0);
7246 if (tlsopt == tls::TLSOPT_TO_LE)
7247 {
7248 if (tls_segment == NULL)
7249 {
7250 gold_assert(parameters->errors()->error_count() > 0
7251 || issue_undefined_symbol_error(gsym));
7252 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7253 }
9726c3c1
HS
7254 }
7255 switch (r_type)
7256 {
7257 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7258 return aarch64_reloc_funcs::movnz(view, value + addend,
7259 reloc_property);
7260 break;
7261
7262 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
7263 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7264 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
7265 return aarch64_reloc_funcs::template rela_general<32>(
7266 view, value, addend, reloc_property);
7267 break;
7268
7269 default:
7270 gold_unreachable();
7271 }
7272 // We should never reach here.
7273 }
7274 break;
7275
8e33481e 7276 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 7277 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
8e33481e 7278 {
3a531937
JY
7279 if (tlsopt == tls::TLSOPT_TO_LE)
7280 {
7281 if (tls_segment == NULL)
7282 {
7283 gold_assert(parameters->errors()->error_count() > 0
7284 || issue_undefined_symbol_error(gsym));
7285 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7286 }
7287 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7288 psymval);
7289 }
7290 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7291
7292 // Firstly get the address for the got entry.
8e33481e
HS
7293 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7294 if (gsym != NULL)
7295 {
3a531937 7296 gold_assert(gsym->has_got_offset(tls_got_offset_type));
8e33481e 7297 got_entry_address = target->got_->address() +
3a531937 7298 gsym->got_offset(tls_got_offset_type);
8e33481e
HS
7299 }
7300 else
7301 {
7302 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7303 gold_assert(
3a531937 7304 object->local_has_got_offset(r_sym, tls_got_offset_type));
8e33481e 7305 got_entry_address = target->got_->address() +
3a531937 7306 object->local_got_offset(r_sym, tls_got_offset_type);
8e33481e 7307 }
3a531937
JY
7308 // Relocate the address into adrp/ld, adrp/add pair.
7309 switch (r_type)
8e33481e 7310 {
3a531937
JY
7311 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7312 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7313 address);
7314 break;
7315 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7316 return aarch64_reloc_funcs::template rela_general<32>(
7317 view, got_entry_address, addend, reloc_property);
7318 default:
9726c3c1 7319 gold_unreachable();
8e33481e 7320 }
8e33481e 7321 }
3a531937 7322 // We shall never reach here.
8e33481e
HS
7323 break;
7324
1a920511
JY
7325 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7326 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7327 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7328 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7329 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
7330 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7331 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7332 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7333 {
8e33481e 7334 gold_assert(tls_segment != NULL);
3a531937 7335 AArch64_address value = psymval->value(object, 0);
8e33481e
HS
7336
7337 if (!parameters->options().shared())
7338 {
3a531937
JY
7339 AArch64_address aligned_tcb_size =
7340 align_address(target->tcb_size(),
7341 tls_segment->maximum_alignment());
1a920511
JY
7342 value += aligned_tcb_size;
7343 switch (r_type)
7344 {
7345 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7346 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7347 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7348 return aarch64_reloc_funcs::movnz(view, value + addend,
7349 reloc_property);
7350 default:
7351 return aarch64_reloc_funcs::template
7352 rela_general<32>(view,
7353 value,
7354 addend,
7355 reloc_property);
7356 }
8e33481e
HS
7357 }
7358 else
7359 gold_error(_("%s: unsupported reloc %u "
7360 "in non-static TLSLE mode."),
7361 object->name().c_str(), r_type);
7362 }
7363 break;
7364
3a531937
JY
7365 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7366 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7367 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7368 case elfcpp::R_AARCH64_TLSDESC_CALL:
7369 {
7370 if (tlsopt == tls::TLSOPT_TO_LE)
7371 {
7372 if (tls_segment == NULL)
7373 {
7374 gold_assert(parameters->errors()->error_count() > 0
7375 || issue_undefined_symbol_error(gsym));
7376 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7377 }
7378 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7379 view, psymval);
7380 }
7381 else
7382 {
7383 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7384 ? GOT_TYPE_TLS_OFFSET
7385 : GOT_TYPE_TLS_DESC);
7386 unsigned int got_tlsdesc_offset = 0;
7387 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7388 && tlsopt == tls::TLSOPT_NONE)
7389 {
7390 // We created GOT entries in the .got.tlsdesc portion of the
7391 // .got.plt section, but the offset stored in the symbol is the
7392 // offset within .got.tlsdesc.
7393 got_tlsdesc_offset = (target->got_->data_size()
7394 + target->got_plt_section()->data_size());
7395 }
7396 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7397 if (gsym != NULL)
7398 {
7399 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7400 got_entry_address = target->got_->address()
7401 + got_tlsdesc_offset
7402 + gsym->got_offset(tls_got_offset_type);
7403 }
7404 else
7405 {
7406 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7407 gold_assert(
7408 object->local_has_got_offset(r_sym, tls_got_offset_type));
7409 got_entry_address = target->got_->address() +
7410 got_tlsdesc_offset +
7411 object->local_got_offset(r_sym, tls_got_offset_type);
7412 }
7413 if (tlsopt == tls::TLSOPT_TO_IE)
7414 {
7415 if (tls_segment == NULL)
7416 {
7417 gold_assert(parameters->errors()->error_count() > 0
7418 || issue_undefined_symbol_error(gsym));
7419 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7420 }
7421 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7422 view, psymval, got_entry_address,
7423 address);
7424 }
7425
7426 // Now do tlsdesc relocation.
7427 switch (r_type)
7428 {
7429 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7430 return aarch64_reloc_funcs::adrp(view,
7431 got_entry_address + addend,
7432 address);
7433 break;
7434 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7435 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7436 return aarch64_reloc_funcs::template rela_general<32>(
7437 view, got_entry_address, addend, reloc_property);
7438 break;
7439 case elfcpp::R_AARCH64_TLSDESC_CALL:
7440 return aarch64_reloc_funcs::STATUS_OKAY;
7441 break;
7442 default:
7443 gold_unreachable();
7444 }
7445 }
7446 }
7447 break;
7448
8e33481e
HS
7449 default:
7450 gold_error(_("%s: unsupported TLS reloc %u."),
7451 object->name().c_str(), r_type);
7452 }
7453 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
3a531937
JY
7454} // End of relocate_tls.
7455
7456
7457template<int size, bool big_endian>
7458inline
83a01957 7459typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7460Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
83a01957 7461 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7462 Target_aarch64<size, big_endian>* target,
7463 const elfcpp::Rela<size, big_endian>& rela,
7464 unsigned int r_type,
7465 unsigned char* view,
7466 const Symbol_value<size>* psymval)
7467{
83a01957 7468 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7469 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7470 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7471
7472 Insntype* ip = reinterpret_cast<Insntype*>(view);
7473 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7474 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7475 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7476
7477 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7478 {
7479 // This is the 2nd relocs, optimization should already have been
7480 // done.
7481 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7482 return aarch64_reloc_funcs::STATUS_OKAY;
7483 }
7484
7485 // The original sequence is -
7486 // 90000000 adrp x0, 0 <main>
7487 // 91000000 add x0, x0, #0x0
7488 // 94000000 bl 0 <__tls_get_addr>
7489 // optimized to sequence -
7490 // d53bd040 mrs x0, tpidr_el0
7491 // 91400000 add x0, x0, #0x0, lsl #12
7492 // 91000000 add x0, x0, #0x0
7493
7494 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7495 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7496 // have to change "bl tls_get_addr", which does not have a corresponding tls
7497 // relocation type. So before proceeding, we need to make sure compiler
7498 // does not change the sequence.
7499 if(!(insn1 == 0x90000000 // adrp x0,0
7500 && insn2 == 0x91000000 // add x0, x0, #0x0
7501 && insn3 == 0x94000000)) // bl 0
7502 {
7503 // Ideally we should give up gd_to_le relaxation and do gd access.
7504 // However the gd_to_le relaxation decision has been made early
7505 // in the scan stage, where we did not allocate any GOT entry for
7506 // this symbol. Therefore we have to exit and report error now.
7507 gold_error(_("unexpected reloc insn sequence while relaxing "
7508 "tls gd to le for reloc %u."), r_type);
7509 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7510 }
7511
7512 // Write new insns.
7513 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7514 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7515 insn3 = 0x91000000; // add x0, x0, #0x0
7516 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7517 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7518 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7519
7520 // Calculate tprel value.
7521 Output_segment* tls_segment = relinfo->layout->tls_segment();
7522 gold_assert(tls_segment != NULL);
7523 AArch64_address value = psymval->value(relinfo->object, 0);
7524 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7525 AArch64_address aligned_tcb_size =
7526 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7527 AArch64_address x = value + aligned_tcb_size;
7528
7529 // After new insns are written, apply TLSLE relocs.
7530 const AArch64_reloc_property* rp1 =
7531 aarch64_reloc_property_table->get_reloc_property(
7532 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7533 const AArch64_reloc_property* rp2 =
7534 aarch64_reloc_property_table->get_reloc_property(
7535 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7536 gold_assert(rp1 != NULL && rp2 != NULL);
7537
7538 typename aarch64_reloc_funcs::Status s1 =
7539 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7540 x,
7541 addend,
7542 rp1);
7543 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7544 return s1;
7545
7546 typename aarch64_reloc_funcs::Status s2 =
7547 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7548 x,
7549 addend,
7550 rp2);
7551
7552 this->skip_call_tls_get_addr_ = true;
7553 return s2;
7554} // End of tls_gd_to_le
7555
7556
9726c3c1
HS
7557template<int size, bool big_endian>
7558inline
7559typename AArch64_relocate_functions<size, big_endian>::Status
7560Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7561 const Relocate_info<size, big_endian>* relinfo,
7562 Target_aarch64<size, big_endian>* target,
7563 const elfcpp::Rela<size, big_endian>& rela,
7564 unsigned int r_type,
7565 unsigned char* view,
7566 const Symbol_value<size>* psymval)
7567{
7568 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7569 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7570 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7571
7572 Insntype* ip = reinterpret_cast<Insntype*>(view);
7573 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7574 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7575 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7576
7577 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7578 {
7579 // This is the 2nd relocs, optimization should already have been
7580 // done.
7581 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7582 return aarch64_reloc_funcs::STATUS_OKAY;
7583 }
7584
7585 // The original sequence is -
7586 // 90000000 adrp x0, 0 <main>
7587 // 91000000 add x0, x0, #0x0
7588 // 94000000 bl 0 <__tls_get_addr>
7589 // optimized to sequence -
7590 // d53bd040 mrs x0, tpidr_el0
7591 // 91400000 add x0, x0, #0x0, lsl #12
7592 // 91000000 add x0, x0, #0x0
7593
7594 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7595 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7596 // have to change "bl tls_get_addr", which does not have a corresponding tls
7597 // relocation type. So before proceeding, we need to make sure compiler
7598 // does not change the sequence.
7599 if(!(insn1 == 0x90000000 // adrp x0,0
7600 && insn2 == 0x91000000 // add x0, x0, #0x0
7601 && insn3 == 0x94000000)) // bl 0
7602 {
7603 // Ideally we should give up gd_to_le relaxation and do gd access.
7604 // However the gd_to_le relaxation decision has been made early
7605 // in the scan stage, where we did not allocate any GOT entry for
7606 // this symbol. Therefore we have to exit and report error now.
7607 gold_error(_("unexpected reloc insn sequence while relaxing "
7608 "tls gd to le for reloc %u."), r_type);
7609 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7610 }
7611
7612 // Write new insns.
7613 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7614 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7615 insn3 = 0x91000000; // add x0, x0, #0x0
7616 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7617 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7618 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7619
7620 // Calculate tprel value.
7621 Output_segment* tls_segment = relinfo->layout->tls_segment();
7622 gold_assert(tls_segment != NULL);
7623 AArch64_address value = psymval->value(relinfo->object, 0);
7624 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7625 AArch64_address aligned_tcb_size =
7626 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7627 AArch64_address x = value + aligned_tcb_size;
7628
7629 // After new insns are written, apply TLSLE relocs.
7630 const AArch64_reloc_property* rp1 =
7631 aarch64_reloc_property_table->get_reloc_property(
7632 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7633 const AArch64_reloc_property* rp2 =
7634 aarch64_reloc_property_table->get_reloc_property(
7635 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7636 gold_assert(rp1 != NULL && rp2 != NULL);
7637
7638 typename aarch64_reloc_funcs::Status s1 =
7639 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7640 x,
7641 addend,
7642 rp1);
7643 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7644 return s1;
7645
7646 typename aarch64_reloc_funcs::Status s2 =
7647 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7648 x,
7649 addend,
7650 rp2);
7651
7652 this->skip_call_tls_get_addr_ = true;
7653 return s2;
7654
7655} // End of tls_ld_to_le
7656
3a531937
JY
7657template<int size, bool big_endian>
7658inline
83a01957 7659typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7660Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
83a01957 7661 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7662 Target_aarch64<size, big_endian>* target,
7663 const elfcpp::Rela<size, big_endian>& rela,
7664 unsigned int r_type,
7665 unsigned char* view,
7666 const Symbol_value<size>* psymval)
7667{
7668 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7669 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7670 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7671
7672 AArch64_address value = psymval->value(relinfo->object, 0);
7673 Output_segment* tls_segment = relinfo->layout->tls_segment();
7674 AArch64_address aligned_tcb_address =
7675 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7676 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7677 AArch64_address x = value + addend + aligned_tcb_address;
7678 // "x" is the offset to tp, we can only do this if x is within
7679 // range [0, 2^32-1]
7680 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7681 {
7682 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7683 r_type);
7684 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7685 }
7686
7687 Insntype* ip = reinterpret_cast<Insntype*>(view);
7688 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7689 unsigned int regno;
7690 Insntype newinsn;
7691 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7692 {
7693 // Generate movz.
7694 regno = (insn & 0x1f);
7695 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7696 }
7697 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7698 {
7699 // Generate movk.
7700 regno = (insn & 0x1f);
7701 gold_assert(regno == ((insn >> 5) & 0x1f));
7702 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7703 }
7704 else
9726c3c1 7705 gold_unreachable();
3a531937
JY
7706
7707 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7708 return aarch64_reloc_funcs::STATUS_OKAY;
7709} // End of tls_ie_to_le
7710
7711
7712template<int size, bool big_endian>
7713inline
83a01957 7714typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7715Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
83a01957 7716 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7717 Target_aarch64<size, big_endian>* target,
7718 const elfcpp::Rela<size, big_endian>& rela,
7719 unsigned int r_type,
7720 unsigned char* view,
7721 const Symbol_value<size>* psymval)
7722{
7723 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7724 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7725 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7726
7727 // TLSDESC-GD sequence is like:
7728 // adrp x0, :tlsdesc:v1
7729 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7730 // add x0, x0, :tlsdesc_lo12:v1
7731 // .tlsdesccall v1
7732 // blr x1
7733 // After desc_gd_to_le optimization, the sequence will be like:
7734 // movz x0, #0x0, lsl #16
7735 // movk x0, #0x10
7736 // nop
7737 // nop
7738
7739 // Calculate tprel value.
7740 Output_segment* tls_segment = relinfo->layout->tls_segment();
7741 gold_assert(tls_segment != NULL);
7742 Insntype* ip = reinterpret_cast<Insntype*>(view);
7743 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7744 AArch64_address value = psymval->value(relinfo->object, addend);
7745 AArch64_address aligned_tcb_size =
7746 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7747 AArch64_address x = value + aligned_tcb_size;
7748 // x is the offset to tp, we can only do this if x is within range
7749 // [0, 2^32-1]. If x is out of range, fail and exit.
7750 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7751 {
7752 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7753 "We Can't do gd_to_le relaxation.\n"), r_type);
7754 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7755 }
7756 Insntype newinsn;
7757 switch (r_type)
7758 {
7759 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7760 case elfcpp::R_AARCH64_TLSDESC_CALL:
7761 // Change to nop
7762 newinsn = 0xd503201f;
7763 break;
7764
7765 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7766 // Change to movz.
7767 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7768 break;
7769
7770 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7771 // Change to movk.
7772 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7773 break;
7774
7775 default:
7776 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7777 r_type);
7778 gold_unreachable();
7779 }
7780 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7781 return aarch64_reloc_funcs::STATUS_OKAY;
7782} // End of tls_desc_gd_to_le
7783
7784
7785template<int size, bool big_endian>
7786inline
83a01957 7787typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7788Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
83a01957 7789 const Relocate_info<size, big_endian>* /* relinfo */,
3a531937
JY
7790 Target_aarch64<size, big_endian>* /* target */,
7791 const elfcpp::Rela<size, big_endian>& rela,
7792 unsigned int r_type,
7793 unsigned char* view,
7794 const Symbol_value<size>* /* psymval */,
7795 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7796 typename elfcpp::Elf_types<size>::Elf_Addr address)
7797{
7798 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7799 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7800
7801 // TLSDESC-GD sequence is like:
7802 // adrp x0, :tlsdesc:v1
7803 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7804 // add x0, x0, :tlsdesc_lo12:v1
7805 // .tlsdesccall v1
7806 // blr x1
7807 // After desc_gd_to_ie optimization, the sequence will be like:
7808 // adrp x0, :tlsie:v1
7809 // ldr x0, [x0, :tlsie_lo12:v1]
7810 // nop
7811 // nop
7812
7813 Insntype* ip = reinterpret_cast<Insntype*>(view);
7814 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7815 Insntype newinsn;
7816 switch (r_type)
7817 {
7818 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7819 case elfcpp::R_AARCH64_TLSDESC_CALL:
7820 // Change to nop
7821 newinsn = 0xd503201f;
7822 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7823 break;
7824
7825 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7826 {
7827 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7828 address);
7829 }
7830 break;
7831
7832 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7833 {
bb779192
HS
7834 // Set ldr target register to be x0.
7835 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7836 insn &= 0xffffffe0;
7837 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7838 // Do relocation.
3a531937
JY
7839 const AArch64_reloc_property* reloc_property =
7840 aarch64_reloc_property_table->get_reloc_property(
7841 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7842 return aarch64_reloc_funcs::template rela_general<32>(
7843 view, got_entry_address, addend, reloc_property);
7844 }
7845 break;
8e33481e 7846
3a531937
JY
7847 default:
7848 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7849 r_type);
7850 gold_unreachable();
7851 }
7852 return aarch64_reloc_funcs::STATUS_OKAY;
7853} // End of tls_desc_gd_to_ie
8e33481e 7854
053a4d68
JY
7855// Relocate section data.
7856
7857template<int size, bool big_endian>
7858void
7859Target_aarch64<size, big_endian>::relocate_section(
9363c7c3 7860 const Relocate_info<size, big_endian>* relinfo,
053a4d68 7861 unsigned int sh_type,
9363c7c3
JY
7862 const unsigned char* prelocs,
7863 size_t reloc_count,
7864 Output_section* output_section,
7865 bool needs_special_offset_handling,
7866 unsigned char* view,
7867 typename elfcpp::Elf_types<size>::Elf_Addr address,
7868 section_size_type view_size,
7869 const Reloc_symbol_changes* reloc_symbol_changes)
053a4d68 7870{
053a4d68 7871 gold_assert(sh_type == elfcpp::SHT_RELA);
9363c7c3
JY
7872 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7873 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7874 AArch64_relocate, gold::Default_comdat_behavior>(
7875 relinfo,
7876 this,
7877 prelocs,
7878 reloc_count,
7879 output_section,
7880 needs_special_offset_handling,
7881 view,
7882 address,
7883 view_size,
7884 reloc_symbol_changes);
053a4d68
JY
7885}
7886
7887// Return the size of a relocation while scanning during a relocatable
7888// link.
7889
7890template<int size, bool big_endian>
7891unsigned int
7892Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7893get_size_for_reloc(
7894 unsigned int ,
7895 Relobj* )
7896{
7897 // We will never support SHT_REL relocations.
7898 gold_unreachable();
7899 return 0;
7900}
7901
7902// Scan the relocs during a relocatable link.
7903
7904template<int size, bool big_endian>
7905void
7906Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8e33481e
HS
7907 Symbol_table* symtab,
7908 Layout* layout,
7909 Sized_relobj_file<size, big_endian>* object,
7910 unsigned int data_shndx,
053a4d68 7911 unsigned int sh_type,
8e33481e
HS
7912 const unsigned char* prelocs,
7913 size_t reloc_count,
7914 Output_section* output_section,
7915 bool needs_special_offset_handling,
7916 size_t local_symbol_count,
7917 const unsigned char* plocal_symbols,
7918 Relocatable_relocs* rr)
053a4d68 7919{
053a4d68 7920 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
7921
7922 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7923 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7924
7925 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7926 Scan_relocatable_relocs>(
7927 symtab,
7928 layout,
7929 object,
7930 data_shndx,
7931 prelocs,
7932 reloc_count,
7933 output_section,
7934 needs_special_offset_handling,
7935 local_symbol_count,
7936 plocal_symbols,
7937 rr);
053a4d68
JY
7938}
7939
7940// Relocate a section during a relocatable link.
7941
7942template<int size, bool big_endian>
7943void
7944Target_aarch64<size, big_endian>::relocate_relocs(
8e33481e 7945 const Relocate_info<size, big_endian>* relinfo,
053a4d68 7946 unsigned int sh_type,
8e33481e
HS
7947 const unsigned char* prelocs,
7948 size_t reloc_count,
7949 Output_section* output_section,
7950 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8e33481e
HS
7951 unsigned char* view,
7952 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7953 section_size_type view_size,
7954 unsigned char* reloc_view,
7955 section_size_type reloc_view_size)
053a4d68 7956{
053a4d68 7957 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
7958
7959 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7960 relinfo,
7961 prelocs,
7962 reloc_count,
7963 output_section,
7964 offset_in_output_section,
8e33481e
HS
7965 view,
7966 view_address,
7967 view_size,
7968 reloc_view,
7969 reloc_view_size);
053a4d68
JY
7970}
7971
83a01957 7972
5019d64a
HS
7973// Return whether this is a 3-insn erratum sequence.
7974
7975template<int size, bool big_endian>
7976bool
7977Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7978 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7979 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7980 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7981{
7982 unsigned rt1, rt2;
7983 bool load, pair;
7984
7985 // The 2nd insn is a single register load or store; or register pair
7986 // store.
7987 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7988 && (!pair || (pair && !load)))
7989 {
7990 // The 3rd insn is a load or store instruction from the "Load/store
7991 // register (unsigned immediate)" encoding class, using Rn as the
7992 // base address register.
7993 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7994 && (Insn_utilities::aarch64_rn(insn3)
7995 == Insn_utilities::aarch64_rd(insn1)))
7996 return true;
7997 }
7998 return false;
7999}
8000
8001
2f0c79aa
HS
8002// Return whether this is a 835769 sequence.
8003// (Similarly implemented as in elfnn-aarch64.c.)
8004
8005template<int size, bool big_endian>
8006bool
8007Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8008 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8009 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8010{
8011 uint32_t rt;
8012 uint32_t rt2;
8013 uint32_t rn;
8014 uint32_t rm;
8015 uint32_t ra;
8016 bool pair;
8017 bool load;
8018
8019 if (Insn_utilities::aarch64_mlxl(insn2)
8020 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8021 {
8022 /* Any SIMD memory op is independent of the subsequent MLA
8023 by definition of the erratum. */
8024 if (Insn_utilities::aarch64_bit(insn1, 26))
8025 return true;
8026
8027 /* If not SIMD, check for integer memory ops and MLA relationship. */
8028 rn = Insn_utilities::aarch64_rn(insn2);
8029 ra = Insn_utilities::aarch64_ra(insn2);
8030 rm = Insn_utilities::aarch64_rm(insn2);
8031
8032 /* If this is a load and there's a true(RAW) dependency, we are safe
8033 and this is not an erratum sequence. */
8034 if (load &&
8035 (rt == rn || rt == rm || rt == ra
8036 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8037 return false;
8038
8039 /* We conservatively put out stubs for all other cases (including
8040 writebacks). */
8041 return true;
8042 }
8043
8044 return false;
8045}
8046
8047
8048// Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8049
8050template<int size, bool big_endian>
8051void
8052Target_aarch64<size, big_endian>::create_erratum_stub(
8053 AArch64_relobj<size, big_endian>* relobj,
8054 unsigned int shndx,
8055 section_size_type erratum_insn_offset,
8056 Address erratum_address,
8057 typename Insn_utilities::Insntype erratum_insn,
0ef3814f
HS
8058 int erratum_type,
8059 unsigned int e843419_adrp_offset)
2f0c79aa
HS
8060{
8061 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8062 The_stub_table* stub_table = relobj->stub_table(shndx);
8063 gold_assert(stub_table != NULL);
8064 if (stub_table->find_erratum_stub(relobj,
8065 shndx,
8066 erratum_insn_offset) == NULL)
8067 {
8068 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
0ef3814f
HS
8069 The_erratum_stub* stub;
8070 if (erratum_type == ST_E_835769)
8071 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8072 erratum_insn_offset);
8073 else if (erratum_type == ST_E_843419)
8074 stub = new E843419_stub<size, big_endian>(
8075 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8076 else
8077 gold_unreachable();
2f0c79aa
HS
8078 stub->set_erratum_insn(erratum_insn);
8079 stub->set_erratum_address(erratum_address);
8080 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8081 // always the next insn after erratum insn.
8082 stub->set_destination_address(erratum_address + BPI);
8083 stub_table->add_erratum_stub(stub);
8084 }
8085}
8086
8087
8088// Scan erratum for section SHNDX range [output_address + span_start,
8089// output_address + span_end). Note here we do not share the code with
8090// scan_erratum_843419_span function, because for 843419 we optimize by only
8091// scanning the last few insns of a page, whereas for 835769, we need to scan
8092// every insn.
8093
8094template<int size, bool big_endian>
8095void
8096Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8097 AArch64_relobj<size, big_endian>* relobj,
8098 unsigned int shndx,
8099 const section_size_type span_start,
8100 const section_size_type span_end,
8101 unsigned char* input_view,
8102 Address output_address)
8103{
8104 typedef typename Insn_utilities::Insntype Insntype;
8105
8106 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8107
8108 // Adjust output_address and view to the start of span.
8109 output_address += span_start;
8110 input_view += span_start;
8111
8112 section_size_type span_length = span_end - span_start;
8113 section_size_type offset = 0;
8114 for (offset = 0; offset + BPI < span_length; offset += BPI)
8115 {
8116 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8117 Insntype insn1 = ip[0];
8118 Insntype insn2 = ip[1];
8119 if (is_erratum_835769_sequence(insn1, insn2))
8120 {
8121 Insntype erratum_insn = insn2;
8122 // "span_start + offset" is the offset for insn1. So for insn2, it is
8123 // "span_start + offset + BPI".
8124 section_size_type erratum_insn_offset = span_start + offset + BPI;
8125 Address erratum_address = output_address + offset + BPI;
73854cdd 8126 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
2f0c79aa
HS
8127 "section %d, offset 0x%08x."),
8128 relobj->name().c_str(), shndx,
8129 (unsigned int)(span_start + offset));
8130
8131 this->create_erratum_stub(relobj, shndx,
8132 erratum_insn_offset, erratum_address,
8133 erratum_insn, ST_E_835769);
8134 offset += BPI; // Skip mac insn.
8135 }
8136 }
8137} // End of "Target_aarch64::scan_erratum_835769_span".
8138
8139
5019d64a
HS
8140// Scan erratum for section SHNDX range
8141// [output_address + span_start, output_address + span_end).
8142
8143template<int size, bool big_endian>
8144void
8145Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8146 AArch64_relobj<size, big_endian>* relobj,
8147 unsigned int shndx,
8148 const section_size_type span_start,
8149 const section_size_type span_end,
8150 unsigned char* input_view,
8151 Address output_address)
8152{
8153 typedef typename Insn_utilities::Insntype Insntype;
8154
8155 // Adjust output_address and view to the start of span.
8156 output_address += span_start;
8157 input_view += span_start;
8158
8159 if ((output_address & 0x03) != 0)
8160 return;
8161
8162 section_size_type offset = 0;
8163 section_size_type span_length = span_end - span_start;
8164 // The first instruction must be ending at 0xFF8 or 0xFFC.
8165 unsigned int page_offset = output_address & 0xFFF;
8166 // Make sure starting position, that is "output_address+offset",
8167 // starts at page position 0xff8 or 0xffc.
8168 if (page_offset < 0xff8)
8169 offset = 0xff8 - page_offset;
8170 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8171 {
8172 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8173 Insntype insn1 = ip[0];
8174 if (Insn_utilities::is_adrp(insn1))
8175 {
8176 Insntype insn2 = ip[1];
8177 Insntype insn3 = ip[2];
a48d0c12
HS
8178 Insntype erratum_insn;
8179 unsigned insn_offset;
5019d64a
HS
8180 bool do_report = false;
8181 if (is_erratum_843419_sequence(insn1, insn2, insn3))
a48d0c12
HS
8182 {
8183 do_report = true;
8184 erratum_insn = insn3;
8185 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8186 }
5019d64a
HS
8187 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8188 {
8189 // Optionally we can have an insn between ins2 and ins3
8190 Insntype insn_opt = ip[2];
8191 // And insn_opt must not be a branch.
8192 if (!Insn_utilities::aarch64_b(insn_opt)
8193 && !Insn_utilities::aarch64_bl(insn_opt)
8194 && !Insn_utilities::aarch64_blr(insn_opt)
8195 && !Insn_utilities::aarch64_br(insn_opt))
8196 {
8197 // And insn_opt must not write to dest reg in insn1. However
8198 // we do a conservative scan, which means we may fix/report
8199 // more than necessary, but it doesn't hurt.
8200
8201 Insntype insn4 = ip[3];
8202 if (is_erratum_843419_sequence(insn1, insn2, insn4))
a48d0c12
HS
8203 {
8204 do_report = true;
8205 erratum_insn = insn4;
8206 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8207 }
5019d64a
HS
8208 }
8209 }
8210 if (do_report)
8211 {
73854cdd 8212 gold_info(_("Erratum 843419 found and fixed at \"%s\", "
a48d0c12
HS
8213 "section %d, offset 0x%08x."),
8214 relobj->name().c_str(), shndx,
8215 (unsigned int)(span_start + offset));
2f0c79aa 8216 unsigned int erratum_insn_offset =
a48d0c12 8217 span_start + offset + insn_offset;
2f0c79aa
HS
8218 Address erratum_address =
8219 output_address + offset + insn_offset;
8220 create_erratum_stub(relobj, shndx,
8221 erratum_insn_offset, erratum_address,
0ef3814f
HS
8222 erratum_insn, ST_E_843419,
8223 span_start + offset);
5019d64a
HS
8224 }
8225 }
8226
8227 // Advance to next candidate instruction. We only consider instruction
8228 // sequences starting at a page offset of 0xff8 or 0xffc.
8229 page_offset = (output_address + offset) & 0xfff;
8230 if (page_offset == 0xff8)
8231 offset += 4;
8232 else // (page_offset == 0xffc), we move to next page's 0xff8.
8233 offset += 0xffc;
8234 }
a48d0c12 8235} // End of "Target_aarch64::scan_erratum_843419_span".
5019d64a
HS
8236
8237
053a4d68
JY
8238// The selector for aarch64 object files.
8239
8240template<int size, bool big_endian>
8241class Target_selector_aarch64 : public Target_selector
8242{
8243 public:
9363c7c3 8244 Target_selector_aarch64();
053a4d68
JY
8245
8246 virtual Target*
8247 do_instantiate_target()
8248 { return new Target_aarch64<size, big_endian>(); }
8249};
8250
9363c7c3
JY
8251template<>
8252Target_selector_aarch64<32, true>::Target_selector_aarch64()
8253 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8254 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8255{ }
8256
8257template<>
8258Target_selector_aarch64<32, false>::Target_selector_aarch64()
8259 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8260 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8261{ }
8262
8263template<>
8264Target_selector_aarch64<64, true>::Target_selector_aarch64()
8265 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8266 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8267{ }
8268
8269template<>
8270Target_selector_aarch64<64, false>::Target_selector_aarch64()
8271 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8272 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8273{ }
8274
053a4d68
JY
8275Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8276Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8277Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8278Target_selector_aarch64<64, false> target_selector_aarch64elf;
8279
053a4d68 8280} // End anonymous namespace.
This page took 0.461801 seconds and 4 git commands to generate.