Make host_address_to_string/gdb_print_host_address cast parameter to 'void *'
[deliverable/binutils-gdb.git] / gold / aarch64.cc
CommitLineData
053a4d68
JY
1// aarch64.cc -- aarch64 target support for gold.
2
b90efa5b 3// Copyright (C) 2014-2015 Free Software Foundation, Inc.
9363c7c3 4// Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
053a4d68
JY
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
5019d64a 26#include <map>
a48d0c12 27#include <set>
053a4d68
JY
28
29#include "elfcpp.h"
30#include "dwarf.h"
31#include "parameters.h"
32#include "reloc.h"
33#include "aarch64.h"
34#include "object.h"
35#include "symtab.h"
36#include "layout.h"
37#include "output.h"
38#include "copy-relocs.h"
39#include "target.h"
40#include "target-reloc.h"
41#include "target-select.h"
42#include "tls.h"
43#include "freebsd.h"
44#include "nacl.h"
45#include "gc.h"
46#include "icf.h"
9363c7c3 47#include "aarch64-reloc-property.h"
053a4d68
JY
48
49// The first three .got.plt entries are reserved.
50const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
83a01957 52
053a4d68
JY
53namespace
54{
55
56using namespace gold;
57
58template<int size, bool big_endian>
59class Output_data_plt_aarch64;
60
61template<int size, bool big_endian>
62class Output_data_plt_aarch64_standard;
63
64template<int size, bool big_endian>
65class Target_aarch64;
66
9363c7c3
JY
67template<int size, bool big_endian>
68class AArch64_relocate_functions;
69
5019d64a
HS
70// Utility class dealing with insns. This is ported from macros in
71// bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72// class is used in erratum sequence scanning.
73
74template<bool big_endian>
75class AArch64_insn_utilities
76{
77public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
2f0c79aa
HS
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
5019d64a
HS
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
2f0c79aa
HS
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
0ef3814f
HS
105 static bool
106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
5019d64a
HS
109 static bool
110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static unsigned int
114 aarch64_rm(const Insntype insn)
115 { return aarch64_bits(insn, 16, 5); }
116
117 static unsigned int
118 aarch64_rn(const Insntype insn)
119 { return aarch64_bits(insn, 5, 5); }
120
121 static unsigned int
122 aarch64_rd(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
126 aarch64_rt(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
130 aarch64_rt2(const Insntype insn)
131 { return aarch64_bits(insn, 10, 5); }
132
0ef3814f
HS
133 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134 static Insntype
135 aarch64_adr_encode_imm(Insntype adr, int imm21)
136 {
137 gold_assert(is_adr(adr));
138 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139 const int mask19 = (1 << 19) - 1;
140 const int mask2 = 3;
141 adr &= ~((mask19 << 5) | (mask2 << 29));
142 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143 return adr;
144 }
145
146 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149 static int64_t
150 aarch64_adrp_decode_imm(const Insntype adrp)
151 {
152 const int mask19 = (1 << 19) - 1;
153 const int mask2 = 3;
154 gold_assert(is_adrp(adrp));
155 // 21-bit imm encoded in adrp.
156 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157 // Retrieve msb of 21-bit-signed imm for sign extension.
158 uint64_t msbt = (imm >> 20) & 1;
159 // Real value is imm multipled by 4k. Value now has 33-bit information.
160 int64_t value = imm << 12;
161 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162 // with value.
163 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164 }
165
5019d64a
HS
166 static bool
167 aarch64_b(const Insntype insn)
168 { return (insn & 0xFC000000) == 0x14000000; }
169
170 static bool
171 aarch64_bl(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x94000000; }
173
174 static bool
175 aarch64_blr(const Insntype insn)
176 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178 static bool
179 aarch64_br(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
183 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184 static bool
185 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187 static bool
188 aarch64_ldst(Insntype insn)
189 { return (insn & 0x0a000000) == 0x08000000; }
190
191 static bool
192 aarch64_ldst_ex(Insntype insn)
193 { return (insn & 0x3f000000) == 0x08000000; }
194
195 static bool
196 aarch64_ldst_pcrel(Insntype insn)
197 { return (insn & 0x3b000000) == 0x18000000; }
198
199 static bool
200 aarch64_ldst_nap(Insntype insn)
201 { return (insn & 0x3b800000) == 0x28000000; }
202
203 static bool
204 aarch64_ldstp_pi(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28800000; }
206
207 static bool
208 aarch64_ldstp_o(Insntype insn)
209 { return (insn & 0x3b800000) == 0x29000000; }
210
211 static bool
212 aarch64_ldstp_pre(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29800000; }
214
215 static bool
216 aarch64_ldst_ui(Insntype insn)
217 { return (insn & 0x3b200c00) == 0x38000000; }
218
219 static bool
220 aarch64_ldst_piimm(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000400; }
222
223 static bool
224 aarch64_ldst_u(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000800; }
226
227 static bool
228 aarch64_ldst_preimm(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000c00; }
230
231 static bool
232 aarch64_ldst_ro(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38200800; }
234
235 static bool
236 aarch64_ldst_uimm(Insntype insn)
237 { return (insn & 0x3b000000) == 0x39000000; }
238
239 static bool
240 aarch64_ldst_simd_m(Insntype insn)
241 { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243 static bool
244 aarch64_ldst_simd_m_pi(Insntype insn)
245 { return (insn & 0xbfa00000) == 0x0c800000; }
246
247 static bool
248 aarch64_ldst_simd_s(Insntype insn)
249 { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251 static bool
252 aarch64_ldst_simd_s_pi(Insntype insn)
253 { return (insn & 0xbf800000) == 0x0d800000; }
254
255 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258 // instructions PAIR is TRUE, RT and RT2 are returned.
259 static bool
260 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261 bool *pair, bool *load)
262 {
263 uint32_t opcode;
264 unsigned int r;
265 uint32_t opc = 0;
266 uint32_t v = 0;
267 uint32_t opc_v = 0;
268
269 /* Bail out quickly if INSN doesn't fall into the the load-store
270 encoding space. */
271 if (!aarch64_ldst (insn))
272 return false;
273
274 *pair = false;
275 *load = false;
276 if (aarch64_ldst_ex (insn))
277 {
278 *rt = aarch64_rt (insn);
279 *rt2 = *rt;
280 if (aarch64_bit (insn, 21) == 1)
281 {
282 *pair = true;
283 *rt2 = aarch64_rt2 (insn);
284 }
285 *load = aarch64_ld (insn);
286 return true;
287 }
288 else if (aarch64_ldst_nap (insn)
289 || aarch64_ldstp_pi (insn)
290 || aarch64_ldstp_o (insn)
291 || aarch64_ldstp_pre (insn))
292 {
293 *pair = true;
294 *rt = aarch64_rt (insn);
295 *rt2 = aarch64_rt2 (insn);
296 *load = aarch64_ld (insn);
297 return true;
298 }
299 else if (aarch64_ldst_pcrel (insn)
300 || aarch64_ldst_ui (insn)
301 || aarch64_ldst_piimm (insn)
302 || aarch64_ldst_u (insn)
303 || aarch64_ldst_preimm (insn)
304 || aarch64_ldst_ro (insn)
305 || aarch64_ldst_uimm (insn))
306 {
307 *rt = aarch64_rt (insn);
308 *rt2 = *rt;
309 if (aarch64_ldst_pcrel (insn))
310 *load = true;
311 opc = aarch64_bits (insn, 22, 2);
312 v = aarch64_bit (insn, 26);
313 opc_v = opc | (v << 2);
314 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
315 || opc_v == 5 || opc_v == 7);
316 return true;
317 }
318 else if (aarch64_ldst_simd_m (insn)
319 || aarch64_ldst_simd_m_pi (insn))
320 {
321 *rt = aarch64_rt (insn);
322 *load = aarch64_bit (insn, 22);
323 opcode = (insn >> 12) & 0xf;
324 switch (opcode)
325 {
326 case 0:
327 case 2:
328 *rt2 = *rt + 3;
329 break;
330
331 case 4:
332 case 6:
333 *rt2 = *rt + 2;
334 break;
335
336 case 7:
337 *rt2 = *rt;
338 break;
339
340 case 8:
341 case 10:
342 *rt2 = *rt + 1;
343 break;
344
345 default:
346 return false;
347 }
348 return true;
349 }
350 else if (aarch64_ldst_simd_s (insn)
351 || aarch64_ldst_simd_s_pi (insn))
352 {
353 *rt = aarch64_rt (insn);
354 r = (insn >> 21) & 1;
355 *load = aarch64_bit (insn, 22);
356 opcode = (insn >> 13) & 0x7;
357 switch (opcode)
358 {
359 case 0:
360 case 2:
361 case 4:
362 *rt2 = *rt + r;
363 break;
364
365 case 1:
366 case 3:
367 case 5:
368 *rt2 = *rt + (r == 0 ? 2 : 3);
369 break;
370
371 case 6:
372 *rt2 = *rt + r;
373 break;
374
375 case 7:
376 *rt2 = *rt + (r == 0 ? 2 : 3);
377 break;
378
379 default:
380 return false;
381 }
382 return true;
383 }
384 return false;
2f0c79aa
HS
385 } // End of "aarch64_mem_op_p".
386
387 // Return true if INSN is mac insn.
388 static bool
389 aarch64_mac(Insntype insn)
390 { return (insn & 0xff000000) == 0x9b000000; }
391
392 // Return true if INSN is multiply-accumulate.
393 // (This is similar to implementaton in elfnn-aarch64.c.)
394 static bool
395 aarch64_mlxl(Insntype insn)
396 {
397 uint32_t op31 = aarch64_op31(insn);
398 if (aarch64_mac(insn)
399 && (op31 == 0 || op31 == 1 || op31 == 5)
400 /* Exclude MUL instructions which are encoded as a multiple-accumulate
401 with RA = XZR. */
402 && aarch64_ra(insn) != AARCH64_ZR)
403 {
404 return true;
405 }
406 return false;
5019d64a 407 }
2f0c79aa
HS
408}; // End of "AArch64_insn_utilities".
409
410
411// Insn length in byte.
412
413template<bool big_endian>
414const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417// Zero register encoding - 31.
418
419template<bool big_endian>
420const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
5019d64a
HS
421
422
053a4d68
JY
423// Output_data_got_aarch64 class.
424
425template<int size, bool big_endian>
426class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427{
428 public:
429 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
9363c7c3
JY
431 : Output_data_got<size, big_endian>(),
432 symbol_table_(symtab), layout_(layout)
053a4d68
JY
433 { }
434
8e33481e
HS
435 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
436 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437 // applied in a static link.
438 void
439 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
444 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
445 // relocation that needs to be applied in a static link.
446 void
447 add_static_reloc(unsigned int got_offset, unsigned int r_type,
448 Sized_relobj_file<size, big_endian>* relobj,
449 unsigned int index)
450 {
451 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452 index));
453 }
454
455
053a4d68
JY
456 protected:
457 // Write out the GOT table.
458 void
459 do_write(Output_file* of) {
460 // The first entry in the GOT is the address of the .dynamic section.
461 gold_assert(this->data_size() >= size / 8);
462 Output_section* dynamic = this->layout_->dynamic_section();
463 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464 this->replace_constant(0, dynamic_addr);
465 Output_data_got<size, big_endian>::do_write(of);
8e33481e
HS
466
467 // Handling static relocs
468 if (this->static_relocs_.empty())
469 return;
470
471 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473 gold_assert(parameters->doing_static_link());
474 const off_t offset = this->offset();
475 const section_size_type oview_size =
476 convert_to_section_size_type(this->data_size());
477 unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479 Output_segment* tls_segment = this->layout_->tls_segment();
480 gold_assert(tls_segment != NULL);
481
482 AArch64_address aligned_tcb_address =
83a01957 483 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
8e33481e
HS
484 tls_segment->maximum_alignment());
485
486 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487 {
488 Static_reloc& reloc(this->static_relocs_[i]);
489 AArch64_address value;
490
491 if (!reloc.symbol_is_global())
492 {
493 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494 const Symbol_value<size>* psymval =
495 reloc.relobj()->local_symbol(reloc.index());
496
497 // We are doing static linking. Issue an error and skip this
498 // relocation if the symbol is undefined or in a discarded_section.
499 bool is_ordinary;
500 unsigned int shndx = psymval->input_shndx(&is_ordinary);
501 if ((shndx == elfcpp::SHN_UNDEF)
502 || (is_ordinary
503 && shndx != elfcpp::SHN_UNDEF
504 && !object->is_section_included(shndx)
505 && !this->symbol_table_->is_section_folded(object, shndx)))
506 {
507 gold_error(_("undefined or discarded local symbol %u from "
508 " object %s in GOT"),
509 reloc.index(), reloc.relobj()->name().c_str());
510 continue;
511 }
512 value = psymval->value(object, 0);
513 }
514 else
515 {
516 const Symbol* gsym = reloc.symbol();
517 gold_assert(gsym != NULL);
518 if (gsym->is_forwarder())
519 gsym = this->symbol_table_->resolve_forwards(gsym);
520
521 // We are doing static linking. Issue an error and skip this
522 // relocation if the symbol is undefined or in a discarded_section
523 // unless it is a weakly_undefined symbol.
524 if ((gsym->is_defined_in_discarded_section()
525 || gsym->is_undefined())
526 && !gsym->is_weak_undefined())
527 {
528 gold_error(_("undefined or discarded symbol %s in GOT"),
529 gsym->name());
530 continue;
531 }
532
533 if (!gsym->is_weak_undefined())
534 {
535 const Sized_symbol<size>* sym =
536 static_cast<const Sized_symbol<size>*>(gsym);
537 value = sym->value();
538 }
539 else
540 value = 0;
541 }
542
543 unsigned got_offset = reloc.got_offset();
544 gold_assert(got_offset < oview_size);
545
546 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548 Valtype x;
549 switch (reloc.r_type())
550 {
551 case elfcpp::R_AARCH64_TLS_DTPREL64:
552 x = value;
553 break;
554 case elfcpp::R_AARCH64_TLS_TPREL64:
555 x = value + aligned_tcb_address;
556 break;
557 default:
558 gold_unreachable();
559 }
560 elfcpp::Swap<size, big_endian>::writeval(wv, x);
561 }
562
563 of->write_output_view(offset, oview_size, oview);
053a4d68
JY
564 }
565
566 private:
9363c7c3
JY
567 // Symbol table of the output object.
568 Symbol_table* symbol_table_;
053a4d68
JY
569 // A pointer to the Layout class, so that we can find the .dynamic
570 // section when we write out the GOT section.
571 Layout* layout_;
8e33481e 572
8e33481e
HS
573 // This class represent dynamic relocations that need to be applied by
574 // gold because we are using TLS relocations in a static link.
575 class Static_reloc
576 {
577 public:
578 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580 { this->u_.global.symbol = gsym; }
581
582 Static_reloc(unsigned int got_offset, unsigned int r_type,
583 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585 {
586 this->u_.local.relobj = relobj;
587 this->u_.local.index = index;
588 }
589
590 // Return the GOT offset.
591 unsigned int
592 got_offset() const
593 { return this->got_offset_; }
594
595 // Relocation type.
596 unsigned int
597 r_type() const
598 { return this->r_type_; }
599
600 // Whether the symbol is global or not.
601 bool
602 symbol_is_global() const
603 { return this->symbol_is_global_; }
604
605 // For a relocation against a global symbol, the global symbol.
606 Symbol*
607 symbol() const
608 {
609 gold_assert(this->symbol_is_global_);
610 return this->u_.global.symbol;
611 }
612
613 // For a relocation against a local symbol, the defining object.
614 Sized_relobj_file<size, big_endian>*
615 relobj() const
616 {
617 gold_assert(!this->symbol_is_global_);
618 return this->u_.local.relobj;
619 }
620
621 // For a relocation against a local symbol, the local symbol index.
622 unsigned int
623 index() const
624 {
625 gold_assert(!this->symbol_is_global_);
626 return this->u_.local.index;
627 }
628
629 private:
630 // GOT offset of the entry to which this relocation is applied.
631 unsigned int got_offset_;
632 // Type of relocation.
633 unsigned int r_type_;
634 // Whether this relocation is against a global symbol.
635 bool symbol_is_global_;
636 // A global or local symbol.
637 union
638 {
83a01957
HS
639 struct
640 {
641 // For a global symbol, the symbol itself.
642 Symbol* symbol;
643 } global;
644 struct
645 {
646 // For a local symbol, the object defining the symbol.
647 Sized_relobj_file<size, big_endian>* relobj;
648 // For a local symbol, the symbol index.
649 unsigned int index;
650 } local;
651 } u_;
652 }; // End of inner class Static_reloc
653
654 std::vector<Static_reloc> static_relocs_;
655}; // End of Output_data_got_aarch64
656
657
658template<int size, bool big_endian>
659class AArch64_input_section;
660
661
662template<int size, bool big_endian>
663class AArch64_output_section;
664
665
83a01957 666template<int size, bool big_endian>
a48d0c12
HS
667class AArch64_relobj;
668
669
670// Stub type enum constants.
671
672enum
83a01957 673{
a48d0c12 674 ST_NONE = 0,
83a01957 675
a48d0c12
HS
676 // Using adrp/add pair, 4 insns (including alignment) without mem access,
677 // the fastest stub. This has a limited jump distance, which is tested by
678 // aarch64_valid_for_adrp_p.
679 ST_ADRP_BRANCH = 1,
83a01957 680
a48d0c12
HS
681 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682 // unlimited in jump distance.
683 ST_LONG_BRANCH_ABS = 2,
83a01957 684
a48d0c12
HS
685 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686 // mem access, slowest one. Only used in position independent executables.
687 ST_LONG_BRANCH_PCREL = 3,
83a01957 688
a48d0c12
HS
689 // Stub for erratum 843419 handling.
690 ST_E_843419 = 4,
83a01957 691
2f0c79aa
HS
692 // Stub for erratum 835769 handling.
693 ST_E_835769 = 5,
694
a48d0c12 695 // Number of total stub types.
2f0c79aa 696 ST_NUMBER = 6
a48d0c12 697};
83a01957 698
83a01957 699
a48d0c12
HS
700// Struct that wraps insns for a particular stub. All stub templates are
701// created/initialized as constants by Stub_template_repertoire.
83a01957 702
a48d0c12
HS
703template<bool big_endian>
704struct Stub_template
705{
706 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707 const int insn_num;
708};
83a01957 709
83a01957 710
a48d0c12
HS
711// Simple singleton class that creates/initializes/stores all types of stub
712// templates.
713
714template<bool big_endian>
715class Stub_template_repertoire
716{
717public:
718 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720 // Single static method to get stub template for a given stub type.
721 static const Stub_template<big_endian>*
722 get_stub_template(int type)
83a01957 723 {
a48d0c12
HS
724 static Stub_template_repertoire<big_endian> singleton;
725 return singleton.stub_templates_[type];
83a01957
HS
726 }
727
a48d0c12
HS
728private:
729 // Constructor - creates/initializes all stub templates.
730 Stub_template_repertoire();
731 ~Stub_template_repertoire()
83a01957
HS
732 { }
733
a48d0c12
HS
734 // Disallowing copy ctor and copy assignment operator.
735 Stub_template_repertoire(Stub_template_repertoire&);
736 Stub_template_repertoire& operator=(Stub_template_repertoire&);
83a01957 737
a48d0c12
HS
738 // Data that stores all insn templates.
739 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740}; // End of "class Stub_template_repertoire".
741
742
743// Constructor - creates/initilizes all stub templates.
744
745template<bool big_endian>
746Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747{
748 // Insn array definitions.
749 const static Insntype ST_NONE_INSNS[] = {};
750
751 const static Insntype ST_ADRP_BRANCH_INSNS[] =
752 {
753 0x90000010, /* adrp ip0, X */
754 /* ADR_PREL_PG_HI21(X) */
755 0x91000210, /* add ip0, ip0, :lo12:X */
756 /* ADD_ABS_LO12_NC(X) */
757 0xd61f0200, /* br ip0 */
758 0x00000000, /* alignment padding */
759 };
760
761 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762 {
763 0x58000050, /* ldr ip0, 0x8 */
764 0xd61f0200, /* br ip0 */
765 0x00000000, /* address field */
766 0x00000000, /* address fields */
767 };
768
769 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770 {
771 0x58000090, /* ldr ip0, 0x10 */
772 0x10000011, /* adr ip1, #0 */
773 0x8b110210, /* add ip0, ip0, ip1 */
774 0xd61f0200, /* br ip0 */
775 0x00000000, /* address field */
776 0x00000000, /* address field */
777 0x00000000, /* alignment padding */
778 0x00000000, /* alignment padding */
779 };
780
781 const static Insntype ST_E_843419_INSNS[] =
782 {
783 0x00000000, /* Placeholder for erratum insn. */
784 0x14000000, /* b <label> */
785 };
786
2f0c79aa
HS
787 // ST_E_835769 has the same stub template as ST_E_843419.
788 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
a48d0c12
HS
790#define install_insn_template(T) \
791 const static Stub_template<big_endian> template_##T = { \
792 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793 this->stub_templates_[T] = &template_##T
794
795 install_insn_template(ST_NONE);
796 install_insn_template(ST_ADRP_BRANCH);
797 install_insn_template(ST_LONG_BRANCH_ABS);
798 install_insn_template(ST_LONG_BRANCH_PCREL);
799 install_insn_template(ST_E_843419);
2f0c79aa 800 install_insn_template(ST_E_835769);
a48d0c12
HS
801
802#undef install_insn_template
803}
804
805
806// Base class for stubs.
807
808template<int size, bool big_endian>
809class Stub_base
810{
811public:
812 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815 static const AArch64_address invalid_address =
816 static_cast<AArch64_address>(-1);
817
818 static const section_offset_type invalid_offset =
819 static_cast<section_offset_type>(-1);
820
821 Stub_base(int type)
822 : destination_address_(invalid_address),
823 offset_(invalid_offset),
824 type_(type)
825 {}
826
827 ~Stub_base()
828 {}
829
830 // Get stub type.
831 int
832 type() const
833 { return this->type_; }
834
835 // Get stub template that provides stub insn information.
836 const Stub_template<big_endian>*
837 stub_template() const
83a01957 838 {
a48d0c12
HS
839 return Stub_template_repertoire<big_endian>::
840 get_stub_template(this->type());
83a01957
HS
841 }
842
a48d0c12 843 // Get destination address.
83a01957
HS
844 AArch64_address
845 destination_address() const
846 {
847 gold_assert(this->destination_address_ != this->invalid_address);
848 return this->destination_address_;
849 }
850
851 // Set destination address.
852 void
853 set_destination_address(AArch64_address address)
854 {
855 gold_assert(address != this->invalid_address);
856 this->destination_address_ = address;
857 }
858
859 // Reset the destination address.
860 void
861 reset_destination_address()
862 { this->destination_address_ = this->invalid_address; }
863
a48d0c12
HS
864 // Get offset of code stub. For Reloc_stub, it is the offset from the
865 // beginning of its containing stub table; for Erratum_stub, it is the offset
866 // from the end of reloc_stubs.
867 section_offset_type
868 offset() const
869 {
870 gold_assert(this->offset_ != this->invalid_offset);
871 return this->offset_;
872 }
83a01957 873
a48d0c12
HS
874 // Set stub offset.
875 void
876 set_offset(section_offset_type offset)
877 { this->offset_ = offset; }
83a01957 878
a48d0c12
HS
879 // Return the stub insn.
880 const Insntype*
881 insns() const
882 { return this->stub_template()->insns; }
83a01957 883
a48d0c12
HS
884 // Return num of stub insns.
885 unsigned int
886 insn_num() const
887 { return this->stub_template()->insn_num; }
888
889 // Get size of the stub.
890 int
891 stub_size() const
892 {
893 return this->insn_num() *
894 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895 }
83a01957
HS
896
897 // Write stub to output file.
898 void
899 write(unsigned char* view, section_size_type view_size)
900 { this->do_write(view, view_size); }
901
a48d0c12
HS
902protected:
903 // Abstract method to be implemented by sub-classes.
904 virtual void
905 do_write(unsigned char*, section_size_type) = 0;
906
907private:
908 // The last insn of a stub is a jump to destination insn. This field records
909 // the destination address.
910 AArch64_address destination_address_;
911 // The stub offset. Note this has difference interpretations between an
912 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913 // beginning of the containing stub_table, whereas for Erratum_stub, this is
914 // the offset from the end of reloc_stubs.
915 section_offset_type offset_;
916 // Stub type.
917 const int type_;
918}; // End of "Stub_base".
919
920
921// Erratum stub class. An erratum stub differs from a reloc stub in that for
922// each erratum occurrence, we generate an erratum stub. We never share erratum
923// stubs, whereas for reloc stubs, different branches insns share a single reloc
924// stub as long as the branch targets are the same. (More to the point, reloc
925// stubs can be shared because they're used to reach a specific target, whereas
926// erratum stubs branch back to the original control flow.)
927
928template<int size, bool big_endian>
929class Erratum_stub : public Stub_base<size, big_endian>
930{
931public:
932 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
56b06706 934 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
a48d0c12
HS
935 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
5d7908e0 937 static const int STUB_ADDR_ALIGN;
a48d0c12
HS
938
939 static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
941 Erratum_stub(The_aarch64_relobj* relobj, int type,
942 unsigned shndx, unsigned int sh_offset)
943 : Stub_base<size, big_endian>(type), relobj_(relobj),
944 shndx_(shndx), sh_offset_(sh_offset),
945 erratum_insn_(invalid_insn),
946 erratum_address_(this->invalid_address)
947 {}
948
949 ~Erratum_stub() {}
950
951 // Return the object that contains the erratum.
952 The_aarch64_relobj*
953 relobj()
954 { return this->relobj_; }
955
956 // Get section index of the erratum.
957 unsigned int
958 shndx() const
959 { return this->shndx_; }
960
961 // Get section offset of the erratum.
962 unsigned int
963 sh_offset() const
964 { return this->sh_offset_; }
965
966 // Get the erratum insn. This is the insn located at erratum_insn_address.
967 Insntype
968 erratum_insn() const
969 {
970 gold_assert(this->erratum_insn_ != this->invalid_insn);
971 return this->erratum_insn_;
972 }
973
974 // Set the insn that the erratum happens to.
975 void
976 set_erratum_insn(Insntype insn)
977 { this->erratum_insn_ = insn; }
978
56b06706
HS
979 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981 // is no longer the one we want to write out to the stub, update erratum_insn_
982 // with relocated version. Also note that in this case xn must not be "PC", so
983 // it is safe to move the erratum insn from the origin place to the stub. For
984 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985 // relocation spot (assertion added though).
986 void
987 update_erratum_insn(Insntype insn)
988 {
989 gold_assert(this->erratum_insn_ != this->invalid_insn);
990 switch (this->type())
991 {
992 case ST_E_843419:
993 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995 gold_assert(Insn_utilities::aarch64_rd(insn) ==
996 Insn_utilities::aarch64_rd(this->erratum_insn()));
997 gold_assert(Insn_utilities::aarch64_rn(insn) ==
998 Insn_utilities::aarch64_rn(this->erratum_insn()));
999 // Update plain ld/st insn with relocated insn.
1000 this->erratum_insn_ = insn;
1001 break;
1002 case ST_E_835769:
1003 gold_assert(insn == this->erratum_insn());
1004 break;
1005 default:
1006 gold_unreachable();
1007 }
1008 }
1009
1010
a48d0c12
HS
1011 // Return the address where an erratum must be done.
1012 AArch64_address
1013 erratum_address() const
1014 {
1015 gold_assert(this->erratum_address_ != this->invalid_address);
1016 return this->erratum_address_;
1017 }
1018
1019 // Set the address where an erratum must be done.
1020 void
1021 set_erratum_address(AArch64_address addr)
1022 { this->erratum_address_ = addr; }
1023
1024 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025 // sh_offset). We do not include 'type' in the calculation, becuase there is
1026 // at most one stub type at (obj, shndx, sh_offset).
1027 bool
1028 operator<(const Erratum_stub<size, big_endian>& k) const
1029 {
1030 if (this == &k)
1031 return false;
1032 // We group stubs by relobj.
1033 if (this->relobj_ != k.relobj_)
1034 return this->relobj_ < k.relobj_;
1035 // Then by section index.
1036 if (this->shndx_ != k.shndx_)
1037 return this->shndx_ < k.shndx_;
1038 // Lastly by section offset.
1039 return this->sh_offset_ < k.sh_offset_;
1040 }
1041
1042protected:
1043 virtual void
1044 do_write(unsigned char*, section_size_type);
1045
1046private:
1047 // The object that needs to be fixed.
1048 The_aarch64_relobj* relobj_;
1049 // The shndx in the object that needs to be fixed.
1050 const unsigned int shndx_;
1051 // The section offset in the obejct that needs to be fixed.
1052 const unsigned int sh_offset_;
1053 // The insn to be fixed.
1054 Insntype erratum_insn_;
1055 // The address of the above insn.
1056 AArch64_address erratum_address_;
1057}; // End of "Erratum_stub".
1058
0ef3814f
HS
1059
1060// Erratum sub class to wrap additional info needed by 843419. In fixing this
1061// erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062// adrp's code position (two or three insns before erratum insn itself).
1063
1064template<int size, bool big_endian>
1065class E843419_stub : public Erratum_stub<size, big_endian>
1066{
1067public:
1068 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
1070 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, unsigned int sh_offset,
1072 unsigned int adrp_sh_offset)
1073 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074 adrp_sh_offset_(adrp_sh_offset)
1075 {}
1076
1077 unsigned int
1078 adrp_sh_offset() const
1079 { return this->adrp_sh_offset_; }
1080
1081private:
1082 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083 // can can obtain it from its parent.)
1084 const unsigned int adrp_sh_offset_;
1085};
1086
1087
5d7908e0
CC
1088template<int size, bool big_endian>
1089const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
a48d0c12
HS
1090
1091// Comparator used in set definition.
1092template<int size, bool big_endian>
1093struct Erratum_stub_less
1094{
1095 bool
1096 operator()(const Erratum_stub<size, big_endian>* s1,
1097 const Erratum_stub<size, big_endian>* s2) const
1098 { return *s1 < *s2; }
1099};
1100
1101// Erratum_stub implementation for writing stub to output file.
1102
1103template<int size, bool big_endian>
1104void
1105Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106{
1107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108 const Insntype* insns = this->insns();
1109 uint32_t num_insns = this->insn_num();
1110 Insntype* ip = reinterpret_cast<Insntype*>(view);
2f0c79aa
HS
1111 // For current implemented erratum 843419 and 835769, the first insn in the
1112 // stub is always a copy of the problematic insn (in 843419, the mem access
1113 // insn, in 835769, the mac insn), followed by a jump-back.
a48d0c12
HS
1114 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115 for (uint32_t i = 1; i < num_insns; ++i)
1116 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117}
1118
1119
1120// Reloc stub class.
1121
1122template<int size, bool big_endian>
1123class Reloc_stub : public Stub_base<size, big_endian>
1124{
1125 public:
1126 typedef Reloc_stub<size, big_endian> This;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129 // Branch range. This is used to calculate the section group size, as well as
1130 // determine whether a stub is needed.
1131 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134 // Constant used to determine if an offset fits in the adrp instruction
1135 // encoding.
1136 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137 static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139 static const int BYTES_PER_INSN = 4;
5d7908e0 1140 static const int STUB_ADDR_ALIGN;
a48d0c12
HS
1141
1142 // Determine whether the offset fits in the jump/branch instruction.
1143 static bool
1144 aarch64_valid_branch_offset_p(int64_t offset)
1145 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147 // Determine whether the offset fits in the adrp immediate field.
1148 static bool
1149 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150 {
1151 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154 }
1155
1156 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157 // needed.
1158 static int
1159 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160 AArch64_address target);
1161
1162 Reloc_stub(int type)
1163 : Stub_base<size, big_endian>(type)
1164 { }
1165
1166 ~Reloc_stub()
1167 { }
1168
83a01957
HS
1169 // The key class used to index the stub instance in the stub table's stub map.
1170 class Key
1171 {
1172 public:
a48d0c12 1173 Key(int type, const Symbol* symbol, const Relobj* relobj,
83a01957 1174 unsigned int r_sym, int32_t addend)
a48d0c12 1175 : type_(type), addend_(addend)
83a01957
HS
1176 {
1177 if (symbol != NULL)
1178 {
1179 this->r_sym_ = Reloc_stub::invalid_index;
1180 this->u_.symbol = symbol;
1181 }
1182 else
1183 {
1184 gold_assert(relobj != NULL && r_sym != invalid_index);
1185 this->r_sym_ = r_sym;
1186 this->u_.relobj = relobj;
1187 }
1188 }
1189
1190 ~Key()
1191 { }
1192
1193 // Return stub type.
a48d0c12
HS
1194 int
1195 type() const
1196 { return this->type_; }
83a01957
HS
1197
1198 // Return the local symbol index or invalid_index.
1199 unsigned int
1200 r_sym() const
1201 { return this->r_sym_; }
1202
1203 // Return the symbol if there is one.
1204 const Symbol*
1205 symbol() const
1206 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208 // Return the relobj if there is one.
1209 const Relobj*
1210 relobj() const
1211 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213 // Whether this equals to another key k.
1214 bool
1215 eq(const Key& k) const
1216 {
a48d0c12 1217 return ((this->type_ == k.type_)
83a01957
HS
1218 && (this->r_sym_ == k.r_sym_)
1219 && ((this->r_sym_ != Reloc_stub::invalid_index)
1220 ? (this->u_.relobj == k.u_.relobj)
1221 : (this->u_.symbol == k.u_.symbol))
1222 && (this->addend_ == k.addend_));
1223 }
1224
1225 // Return a hash value.
1226 size_t
1227 hash_value() const
1228 {
1229 size_t name_hash_value = gold::string_hash<char>(
1230 (this->r_sym_ != Reloc_stub::invalid_index)
1231 ? this->u_.relobj->name().c_str()
1232 : this->u_.symbol->name());
1233 // We only have 4 stub types.
a48d0c12 1234 size_t stub_type_hash_value = 0x03 & this->type_;
83a01957
HS
1235 return (name_hash_value
1236 ^ stub_type_hash_value
1237 ^ ((this->r_sym_ & 0x3fff) << 2)
1238 ^ ((this->addend_ & 0xffff) << 16));
1239 }
1240
1241 // Functors for STL associative containers.
1242 struct hash
1243 {
1244 size_t
1245 operator()(const Key& k) const
1246 { return k.hash_value(); }
1247 };
1248
1249 struct equal_to
1250 {
1251 bool
1252 operator()(const Key& k1, const Key& k2) const
1253 { return k1.eq(k2); }
1254 };
1255
9726c3c1 1256 private:
83a01957 1257 // Stub type.
a48d0c12 1258 const int type_;
83a01957
HS
1259 // If this is a local symbol, this is the index in the defining object.
1260 // Otherwise, it is invalid_index for a global symbol.
1261 unsigned int r_sym_;
1262 // If r_sym_ is an invalid index, this points to a global symbol.
1263 // Otherwise, it points to a relobj. We used the unsized and target
1264 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265 // Arm_relobj, in order to avoid making the stub class a template
1266 // as most of the stub machinery is endianness-neutral. However, it
1267 // may require a bit of casting done by users of this class.
1268 union
1269 {
1270 const Symbol* symbol;
1271 const Relobj* relobj;
1272 } u_;
1273 // Addend associated with a reloc.
1274 int32_t addend_;
1275 }; // End of inner class Reloc_stub::Key
1276
1277 protected:
1278 // This may be overridden in the child class.
1279 virtual void
1280 do_write(unsigned char*, section_size_type);
1281
1282 private:
83a01957 1283 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
83a01957
HS
1284}; // End of Reloc_stub
1285
5d7908e0
CC
1286template<int size, bool big_endian>
1287const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
83a01957
HS
1288
1289// Write data to output file.
1290
1291template<int size, bool big_endian>
1292void
1293Reloc_stub<size, big_endian>::
1294do_write(unsigned char* view, section_size_type)
1295{
1296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
a48d0c12
HS
1297 const uint32_t* insns = this->insns();
1298 uint32_t num_insns = this->insn_num();
83a01957 1299 Insntype* ip = reinterpret_cast<Insntype*>(view);
a48d0c12
HS
1300 for (uint32_t i = 0; i < num_insns; ++i)
1301 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
83a01957
HS
1302}
1303
1304
83a01957
HS
1305// Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306// needed.
1307
1308template<int size, bool big_endian>
a48d0c12 1309inline int
83a01957
HS
1310Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311 unsigned int r_type, AArch64_address location, AArch64_address dest)
1312{
1313 int64_t branch_offset = 0;
1314 switch(r_type)
1315 {
1316 case elfcpp::R_AARCH64_CALL26:
1317 case elfcpp::R_AARCH64_JUMP26:
1318 branch_offset = dest - location;
1319 break;
1320 default:
9726c3c1 1321 gold_unreachable();
83a01957
HS
1322 }
1323
1324 if (aarch64_valid_branch_offset_p(branch_offset))
1325 return ST_NONE;
1326
1327 if (aarch64_valid_for_adrp_p(location, dest))
1328 return ST_ADRP_BRANCH;
1329
1330 if (parameters->options().output_is_position_independent()
1331 && parameters->options().output_is_executable())
1332 return ST_LONG_BRANCH_PCREL;
1333
1334 return ST_LONG_BRANCH_ABS;
1335}
1336
1337// A class to hold stubs for the ARM target.
1338
1339template<int size, bool big_endian>
1340class Stub_table : public Output_data
1341{
1342 public:
1343 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1344 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
a48d0c12 1345 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
83a01957
HS
1346 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1347 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1348 typedef typename The_reloc_stub::Key The_reloc_stub_key;
a48d0c12
HS
1349 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1350 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
83a01957
HS
1351 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1352 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1353 typedef Stub_table<size, big_endian> The_stub_table;
1354 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1355 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1356 Reloc_stub_map;
1357 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1358 typedef Relocate_info<size, big_endian> The_relocate_info;
1359
a48d0c12
HS
1360 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1361 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1362
83a01957 1363 Stub_table(The_aarch64_input_section* owner)
a48d0c12
HS
1364 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1365 erratum_stubs_size_(0), prev_data_size_(0)
83a01957
HS
1366 { }
1367
1368 ~Stub_table()
1369 { }
1370
1371 The_aarch64_input_section*
1372 owner() const
1373 { return owner_; }
1374
1375 // Whether this stub table is empty.
1376 bool
1377 empty() const
a48d0c12 1378 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
83a01957
HS
1379
1380 // Return the current data size.
1381 off_t
1382 current_data_size() const
1383 { return this->current_data_size_for_child(); }
1384
1385 // Add a STUB using KEY. The caller is responsible for avoiding addition
1386 // if a STUB with the same key has already been added.
1387 void
1388 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1389
a48d0c12
HS
1390 // Add an erratum stub into the erratum stub set. The set is ordered by
1391 // (relobj, shndx, sh_offset).
1392 void
1393 add_erratum_stub(The_erratum_stub* stub);
1394
1395 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1396 The_erratum_stub*
1397 find_erratum_stub(The_aarch64_relobj* a64relobj,
1398 unsigned int shndx, unsigned int sh_offset);
1399
1400 // Find all the erratums for a given input section. The return value is a pair
1401 // of iterators [begin, end).
1402 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1403 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1404 unsigned int shndx);
1405
1406 // Compute the erratum stub address.
1407 AArch64_address
1408 erratum_stub_address(The_erratum_stub* stub) const
1409 {
1410 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1411 The_erratum_stub::STUB_ADDR_ALIGN);
1412 r += stub->offset();
1413 return r;
1414 }
1415
83a01957
HS
1416 // Finalize stubs. No-op here, just for completeness.
1417 void
1418 finalize_stubs()
1419 { }
1420
1421 // Look up a relocation stub using KEY. Return NULL if there is none.
1422 The_reloc_stub*
1423 find_reloc_stub(The_reloc_stub_key& key)
1424 {
1425 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1426 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1427 }
1428
1429 // Relocate stubs in this stub table.
1430 void
1431 relocate_stubs(const The_relocate_info*,
1432 The_target_aarch64*,
1433 Output_section*,
1434 unsigned char*,
1435 AArch64_address,
1436 section_size_type);
1437
1438 // Update data size at the end of a relaxation pass. Return true if data size
1439 // is different from that of the previous relaxation pass.
1440 bool
1441 update_data_size_changed_p()
1442 {
1443 // No addralign changed here.
a48d0c12
HS
1444 off_t s = align_address(this->reloc_stubs_size_,
1445 The_erratum_stub::STUB_ADDR_ALIGN)
1446 + this->erratum_stubs_size_;
83a01957
HS
1447 bool changed = (s != this->prev_data_size_);
1448 this->prev_data_size_ = s;
1449 return changed;
1450 }
1451
1452 protected:
1453 // Write out section contents.
1454 void
1455 do_write(Output_file*);
1456
1457 // Return the required alignment.
1458 uint64_t
1459 do_addralign() const
a48d0c12
HS
1460 {
1461 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1462 The_erratum_stub::STUB_ADDR_ALIGN);
1463 }
83a01957
HS
1464
1465 // Reset address and file offset.
1466 void
1467 do_reset_address_and_file_offset()
1468 { this->set_current_data_size_for_child(this->prev_data_size_); }
1469
1470 // Set final data size.
1471 void
1472 set_final_data_size()
1473 { this->set_data_size(this->current_data_size()); }
1474
1475 private:
1476 // Relocate one stub.
1477 void
1478 relocate_stub(The_reloc_stub*,
1479 const The_relocate_info*,
1480 The_target_aarch64*,
1481 Output_section*,
1482 unsigned char*,
1483 AArch64_address,
1484 section_size_type);
1485
1486 private:
1487 // Owner of this stub table.
1488 The_aarch64_input_section* owner_;
1489 // The relocation stubs.
1490 Reloc_stub_map reloc_stubs_;
a48d0c12
HS
1491 // The erratum stubs.
1492 Erratum_stub_set erratum_stubs_;
83a01957
HS
1493 // Size of reloc stubs.
1494 off_t reloc_stubs_size_;
a48d0c12
HS
1495 // Size of erratum stubs.
1496 off_t erratum_stubs_size_;
83a01957
HS
1497 // data size of this in the previous pass.
1498 off_t prev_data_size_;
1499}; // End of Stub_table
1500
1501
a48d0c12
HS
1502// Add an erratum stub into the erratum stub set. The set is ordered by
1503// (relobj, shndx, sh_offset).
1504
1505template<int size, bool big_endian>
1506void
1507Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1508{
1509 std::pair<Erratum_stub_set_iter, bool> ret =
1510 this->erratum_stubs_.insert(stub);
1511 gold_assert(ret.second);
1512 this->erratum_stubs_size_ = align_address(
1513 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1514 stub->set_offset(this->erratum_stubs_size_);
1515 this->erratum_stubs_size_ += stub->stub_size();
1516}
1517
1518
56b06706 1519// Find if such erratum exists for given (obj, shndx, sh_offset).
a48d0c12
HS
1520
1521template<int size, bool big_endian>
1522Erratum_stub<size, big_endian>*
1523Stub_table<size, big_endian>::find_erratum_stub(
1524 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1525{
1526 // A dummy object used as key to search in the set.
1527 The_erratum_stub key(a64relobj, ST_NONE,
1528 shndx, sh_offset);
1529 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1530 if (i != this->erratum_stubs_.end())
1531 {
1532 The_erratum_stub* stub(*i);
1533 gold_assert(stub->erratum_insn() != 0);
1534 return stub;
1535 }
1536 return NULL;
1537}
1538
1539
1540// Find all the errata for a given input section. The return value is a pair of
1541// iterators [begin, end).
1542
1543template<int size, bool big_endian>
1544std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1545 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1546Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1547 The_aarch64_relobj* a64relobj, unsigned int shndx)
1548{
1549 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1550 Erratum_stub_set_iter start, end;
1551 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1552 start = this->erratum_stubs_.lower_bound(&low_key);
1553 if (start == this->erratum_stubs_.end())
1554 return Result_pair(this->erratum_stubs_.end(),
1555 this->erratum_stubs_.end());
1556 end = start;
1557 while (end != this->erratum_stubs_.end() &&
1558 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1559 ++end;
1560 return Result_pair(start, end);
1561}
1562
1563
83a01957
HS
1564// Add a STUB using KEY. The caller is responsible for avoiding addition
1565// if a STUB with the same key has already been added.
1566
1567template<int size, bool big_endian>
1568void
1569Stub_table<size, big_endian>::add_reloc_stub(
1570 The_reloc_stub* stub, const The_reloc_stub_key& key)
1571{
a48d0c12 1572 gold_assert(stub->type() == key.type());
83a01957
HS
1573 this->reloc_stubs_[key] = stub;
1574
1575 // Assign stub offset early. We can do this because we never remove
1576 // reloc stubs and they are in the beginning of the stub table.
1577 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1578 The_reloc_stub::STUB_ADDR_ALIGN);
1579 stub->set_offset(this->reloc_stubs_size_);
1580 this->reloc_stubs_size_ += stub->stub_size();
1581}
1582
1583
1584// Relocate all stubs in this stub table.
1585
1586template<int size, bool big_endian>
1587void
1588Stub_table<size, big_endian>::
1589relocate_stubs(const The_relocate_info* relinfo,
1590 The_target_aarch64* target_aarch64,
1591 Output_section* output_section,
1592 unsigned char* view,
1593 AArch64_address address,
1594 section_size_type view_size)
1595{
1596 // "view_size" is the total size of the stub_table.
1597 gold_assert(address == this->address() &&
1598 view_size == static_cast<section_size_type>(this->data_size()));
1599 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1600 p != this->reloc_stubs_.end(); ++p)
1601 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1602 view, address, view_size);
a48d0c12
HS
1603
1604 // Just for convenience.
1605 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1606
1607 // Now 'relocate' erratum stubs.
1608 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1609 i != this->erratum_stubs_.end(); ++i)
1610 {
1611 AArch64_address stub_address = this->erratum_stub_address(*i);
1612 // The address of "b" in the stub that is to be "relocated".
1613 AArch64_address stub_b_insn_address;
1614 // Branch offset that is to be filled in "b" insn.
1615 int b_offset = 0;
1616 switch ((*i)->type())
1617 {
1618 case ST_E_843419:
2f0c79aa 1619 case ST_E_835769:
56b06706
HS
1620 // The 1st insn of the erratum could be a relocation spot,
1621 // in this case we need to fix it with
1622 // "(*i)->erratum_insn()".
1623 elfcpp::Swap<32, big_endian>::writeval(
1624 view + (stub_address - this->address()),
1625 (*i)->erratum_insn());
a48d0c12
HS
1626 // For the erratum, the 2nd insn is a b-insn to be patched
1627 // (relocated).
1628 stub_b_insn_address = stub_address + 1 * BPI;
1629 b_offset = (*i)->destination_address() - stub_b_insn_address;
1630 AArch64_relocate_functions<size, big_endian>::construct_b(
1631 view + (stub_b_insn_address - this->address()),
1632 ((unsigned int)(b_offset)) & 0xfffffff);
1633 break;
1634 default:
1635 gold_unreachable();
1636 break;
1637 }
1638 }
83a01957
HS
1639}
1640
1641
1642// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1643
1644template<int size, bool big_endian>
1645void
1646Stub_table<size, big_endian>::
1647relocate_stub(The_reloc_stub* stub,
1648 const The_relocate_info* relinfo,
1649 The_target_aarch64* target_aarch64,
1650 Output_section* output_section,
1651 unsigned char* view,
1652 AArch64_address address,
1653 section_size_type view_size)
1654{
1655 // "offset" is the offset from the beginning of the stub_table.
1656 section_size_type offset = stub->offset();
1657 section_size_type stub_size = stub->stub_size();
1658 // "view_size" is the total size of the stub_table.
1659 gold_assert(offset + stub_size <= view_size);
1660
1661 target_aarch64->relocate_stub(stub, relinfo, output_section,
1662 view + offset, address + offset, view_size);
1663}
1664
1665
1666// Write out the stubs to file.
1667
1668template<int size, bool big_endian>
1669void
1670Stub_table<size, big_endian>::do_write(Output_file* of)
1671{
1672 off_t offset = this->offset();
1673 const section_size_type oview_size =
1674 convert_to_section_size_type(this->data_size());
1675 unsigned char* const oview = of->get_output_view(offset, oview_size);
1676
1677 // Write relocation stubs.
1678 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1679 p != this->reloc_stubs_.end(); ++p)
1680 {
1681 The_reloc_stub* stub = p->second;
1682 AArch64_address address = this->address() + stub->offset();
1683 gold_assert(address ==
1684 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1685 stub->write(oview + stub->offset(), stub->stub_size());
1686 }
1687
a48d0c12
HS
1688 // Write erratum stubs.
1689 unsigned int erratum_stub_start_offset =
1690 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1691 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1692 p != this->erratum_stubs_.end(); ++p)
1693 {
1694 The_erratum_stub* stub(*p);
1695 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1696 stub->stub_size());
1697 }
1698
83a01957
HS
1699 of->write_output_view(this->offset(), oview_size, oview);
1700}
1701
1702
1703// AArch64_relobj class.
1704
1705template<int size, bool big_endian>
1706class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1707{
1708 public:
1709 typedef AArch64_relobj<size, big_endian> This;
1710 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1711 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1712 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1713 typedef Stub_table<size, big_endian> The_stub_table;
a48d0c12
HS
1714 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1715 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
83a01957
HS
1716 typedef std::vector<The_stub_table*> Stub_table_list;
1717 static const AArch64_address invalid_address =
1718 static_cast<AArch64_address>(-1);
1719
1720 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1721 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1722 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1723 stub_tables_()
1724 { }
1725
1726 ~AArch64_relobj()
1727 { }
1728
1729 // Return the stub table of the SHNDX-th section if there is one.
1730 The_stub_table*
1731 stub_table(unsigned int shndx) const
1732 {
1733 gold_assert(shndx < this->stub_tables_.size());
1734 return this->stub_tables_[shndx];
1735 }
1736
1737 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1738 void
1739 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1740 {
1741 gold_assert(shndx < this->stub_tables_.size());
1742 this->stub_tables_[shndx] = stub_table;
1743 }
1744
2f0c79aa 1745 // Entrance to errata scanning.
5019d64a 1746 void
2f0c79aa
HS
1747 scan_errata(unsigned int shndx,
1748 const elfcpp::Shdr<size, big_endian>&,
1749 Output_section*, const Symbol_table*,
1750 The_target_aarch64*);
5019d64a
HS
1751
1752 // Scan all relocation sections for stub generation.
83a01957
HS
1753 void
1754 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1755 const Layout*);
1756
1757 // Whether a section is a scannable text section.
1758 bool
1759 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1760 const Output_section*, const Symbol_table*);
1761
1762 // Convert regular input section with index SHNDX to a relaxed section.
1763 void
1764 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1765 {
1766 // The stubs have relocations and we need to process them after writing
1767 // out the stubs. So relocation now must follow section write.
1768 this->set_relocs_must_follow_section_writes();
1769 }
1770
5019d64a
HS
1771 // Structure for mapping symbol position.
1772 struct Mapping_symbol_position
1773 {
1774 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1775 shndx_(shndx), offset_(offset)
1776 {}
1777
1778 // "<" comparator used in ordered_map container.
1779 bool
1780 operator<(const Mapping_symbol_position& p) const
1781 {
1782 return (this->shndx_ < p.shndx_
1783 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1784 }
1785
1786 // Section index.
1787 unsigned int shndx_;
1788
1789 // Section offset.
1790 AArch64_address offset_;
1791 };
1792
1793 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1794
83a01957
HS
1795 protected:
1796 // Post constructor setup.
1797 void
1798 do_setup()
1799 {
1800 // Call parent's setup method.
1801 Sized_relobj_file<size, big_endian>::do_setup();
1802
1803 // Initialize look-up tables.
1804 this->stub_tables_.resize(this->shnum());
1805 }
1806
1807 virtual void
1808 do_relocate_sections(
1809 const Symbol_table* symtab, const Layout* layout,
1810 const unsigned char* pshdrs, Output_file* of,
1811 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1812
5019d64a
HS
1813 // Count local symbols and (optionally) record mapping info.
1814 virtual void
1815 do_count_local_symbols(Stringpool_template<char>*,
1816 Stringpool_template<char>*);
1817
83a01957 1818 private:
a48d0c12
HS
1819 // Fix all errata in the object.
1820 void
1821 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1822
0ef3814f
HS
1823 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1824 // applied.
1825 bool
1826 try_fix_erratum_843419_optimized(
1827 The_erratum_stub*,
1828 typename Sized_relobj_file<size, big_endian>::View_size&);
1829
83a01957
HS
1830 // Whether a section needs to be scanned for relocation stubs.
1831 bool
1832 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1833 const Relobj::Output_sections&,
1834 const Symbol_table*, const unsigned char*);
1835
1836 // List of stub tables.
1837 Stub_table_list stub_tables_;
5019d64a
HS
1838
1839 // Mapping symbol information sorted by (section index, section_offset).
1840 Mapping_symbol_info mapping_symbol_info_;
83a01957
HS
1841}; // End of AArch64_relobj
1842
1843
5019d64a
HS
1844// Override to record mapping symbol information.
1845template<int size, bool big_endian>
1846void
1847AArch64_relobj<size, big_endian>::do_count_local_symbols(
1848 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1849{
1850 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1851
1852 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1853 // processing if not fixing erratum.
2f0c79aa
HS
1854 if (!parameters->options().fix_cortex_a53_843419()
1855 && !parameters->options().fix_cortex_a53_835769())
5019d64a
HS
1856 return;
1857
1858 const unsigned int loccount = this->local_symbol_count();
1859 if (loccount == 0)
1860 return;
1861
1862 // Read the symbol table section header.
1863 const unsigned int symtab_shndx = this->symtab_shndx();
1864 elfcpp::Shdr<size, big_endian>
1865 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1866 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1867
1868 // Read the local symbols.
1869 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1870 gold_assert(loccount == symtabshdr.get_sh_info());
1871 off_t locsize = loccount * sym_size;
1872 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1873 locsize, true, true);
1874
1875 // For mapping symbol processing, we need to read the symbol names.
1876 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1877 if (strtab_shndx >= this->shnum())
1878 {
1879 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1880 return;
1881 }
1882
1883 elfcpp::Shdr<size, big_endian>
1884 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1885 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1886 {
1887 this->error(_("symbol table name section has wrong type: %u"),
1888 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1889 return;
1890 }
1891
1892 const char* pnames =
1893 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1894 strtabshdr.get_sh_size(),
1895 false, false));
1896
1897 // Skip the first dummy symbol.
1898 psyms += sym_size;
1899 typename Sized_relobj_file<size, big_endian>::Local_values*
1900 plocal_values = this->local_values();
1901 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902 {
1903 elfcpp::Sym<size, big_endian> sym(psyms);
1904 Symbol_value<size>& lv((*plocal_values)[i]);
1905 AArch64_address input_value = lv.input_value();
1906
b91deca9
HS
1907 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1908 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1909 // symbols.
1910 // Mapping symbols could be one of the following 4 forms -
1911 // a) $x
1912 // b) $x.<any...>
1913 // c) $d
1914 // d) $d.<any...>
5019d64a
HS
1915 const char* sym_name = pnames + sym.get_st_name();
1916 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
b91deca9 1917 && (sym_name[2] == '\0' || sym_name[2] == '.'))
5019d64a
HS
1918 {
1919 bool is_ordinary;
1920 unsigned int input_shndx =
1921 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1922 gold_assert(is_ordinary);
1923
1924 Mapping_symbol_position msp(input_shndx, input_value);
1925 // Insert mapping_symbol_info into map whose ordering is defined by
1926 // (shndx, offset_within_section).
1927 this->mapping_symbol_info_[msp] = sym_name[1];
1928 }
1929 }
1930}
1931
1932
a48d0c12
HS
1933// Fix all errata in the object.
1934
1935template<int size, bool big_endian>
1936void
1937AArch64_relobj<size, big_endian>::fix_errata(
1938 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1939{
1940 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1941 unsigned int shnum = this->shnum();
1942 for (unsigned int i = 1; i < shnum; ++i)
1943 {
1944 The_stub_table* stub_table = this->stub_table(i);
1945 if (!stub_table)
1946 continue;
1947 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1948 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1949 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1950 while (p != end)
1951 {
1952 The_erratum_stub* stub = *p;
1953 typename Sized_relobj_file<size, big_endian>::View_size&
1954 pview((*pviews)[i]);
1955
1956 // Double check data before fix.
56b06706
HS
1957 gold_assert(pview.address + stub->sh_offset()
1958 == stub->erratum_address());
1959
1960 // Update previously recorded erratum insn with relocated
1961 // version.
a48d0c12
HS
1962 Insntype* ip =
1963 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1964 Insntype insn_to_fix = ip[0];
56b06706 1965 stub->update_erratum_insn(insn_to_fix);
a48d0c12 1966
0ef3814f
HS
1967 // First try to see if erratum is 843419 and if it can be fixed
1968 // without using branch-to-stub.
1969 if (!try_fix_erratum_843419_optimized(stub, pview))
1970 {
1971 // Replace the erratum insn with a branch-to-stub.
1972 AArch64_address stub_address =
1973 stub_table->erratum_stub_address(stub);
1974 unsigned int b_offset = stub_address - stub->erratum_address();
1975 AArch64_relocate_functions<size, big_endian>::construct_b(
1976 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1977 }
a48d0c12
HS
1978 ++p;
1979 }
1980 }
1981}
1982
1983
0ef3814f
HS
1984// This is an optimization for 843419. This erratum requires the sequence begin
1985// with 'adrp', when final value calculated by adrp fits in adr, we can just
1986// replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1987// in this case, we do not delete the erratum stub (too late to do so), it is
1988// merely generated without ever being called.)
1989
1990template<int size, bool big_endian>
1991bool
1992AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1993 The_erratum_stub* stub,
1994 typename Sized_relobj_file<size, big_endian>::View_size& pview)
1995{
1996 if (stub->type() != ST_E_843419)
1997 return false;
1998
1999 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2000 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2001 E843419_stub<size, big_endian>* e843419_stub =
2002 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2003 AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2004 Insntype* adrp_view = reinterpret_cast<Insntype*>(
2005 pview.view + e843419_stub->adrp_sh_offset());
2006 Insntype adrp_insn = adrp_view[0];
2007 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2008 // Get adrp 33-bit signed imm value.
2009 int64_t adrp_imm = Insn_utilities::
2010 aarch64_adrp_decode_imm(adrp_insn);
2011 // adrp - final value transferred to target register is calculated as:
2012 // PC[11:0] = Zeros(12)
2013 // adrp_dest_value = PC + adrp_imm;
2014 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2015 // adr -final value transferred to target register is calucalted as:
2016 // PC + adr_imm
2017 // So we have:
2018 // PC + adr_imm = adrp_dest_value
2019 // ==>
2020 // adr_imm = adrp_dest_value - PC
2021 int64_t adr_imm = adrp_dest_value - pc;
2022 // Check if imm fits in adr (21-bit signed).
2023 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2024 {
2025 // Convert 'adrp' into 'adr'.
f945ba50 2026 Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
0ef3814f
HS
2027 adr_insn = Insn_utilities::
2028 aarch64_adr_encode_imm(adr_insn, adr_imm);
2029 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2030 return true;
2031 }
2032 return false;
2033}
2034
2035
83a01957
HS
2036// Relocate sections.
2037
2038template<int size, bool big_endian>
2039void
2040AArch64_relobj<size, big_endian>::do_relocate_sections(
2041 const Symbol_table* symtab, const Layout* layout,
2042 const unsigned char* pshdrs, Output_file* of,
2043 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2044{
2045 // Call parent to relocate sections.
2046 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2047 pshdrs, of, pviews);
2048
2049 // We do not generate stubs if doing a relocatable link.
2050 if (parameters->options().relocatable())
2051 return;
2052
2f0c79aa
HS
2053 if (parameters->options().fix_cortex_a53_843419()
2054 || parameters->options().fix_cortex_a53_835769())
a48d0c12
HS
2055 this->fix_errata(pviews);
2056
83a01957
HS
2057 Relocate_info<size, big_endian> relinfo;
2058 relinfo.symtab = symtab;
2059 relinfo.layout = layout;
2060 relinfo.object = this;
2061
2062 // Relocate stub tables.
2063 unsigned int shnum = this->shnum();
2064 The_target_aarch64* target = The_target_aarch64::current_target();
2065
2066 for (unsigned int i = 1; i < shnum; ++i)
2067 {
2068 The_aarch64_input_section* aarch64_input_section =
2069 target->find_aarch64_input_section(this, i);
2070 if (aarch64_input_section != NULL
2071 && aarch64_input_section->is_stub_table_owner()
2072 && !aarch64_input_section->stub_table()->empty())
2073 {
2074 Output_section* os = this->output_section(i);
2075 gold_assert(os != NULL);
2076
2077 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2078 relinfo.reloc_shdr = NULL;
2079 relinfo.data_shndx = i;
2080 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2081
2082 typename Sized_relobj_file<size, big_endian>::View_size&
2083 view_struct = (*pviews)[i];
2084 gold_assert(view_struct.view != NULL);
2085
2086 The_stub_table* stub_table = aarch64_input_section->stub_table();
2087 off_t offset = stub_table->address() - view_struct.address;
2088 unsigned char* view = view_struct.view + offset;
2089 AArch64_address address = stub_table->address();
2090 section_size_type view_size = stub_table->data_size();
2091 stub_table->relocate_stubs(&relinfo, target, os, view, address,
2092 view_size);
2093 }
2094 }
2095}
2096
2097
2098// Determine if an input section is scannable for stub processing. SHDR is
2099// the header of the section and SHNDX is the section index. OS is the output
2100// section for the input section and SYMTAB is the global symbol table used to
2101// look up ICF information.
2102
2103template<int size, bool big_endian>
2104bool
2105AArch64_relobj<size, big_endian>::text_section_is_scannable(
2106 const elfcpp::Shdr<size, big_endian>& text_shdr,
2107 unsigned int text_shndx,
2108 const Output_section* os,
2109 const Symbol_table* symtab)
2110{
2111 // Skip any empty sections, unallocated sections or sections whose
2112 // type are not SHT_PROGBITS.
2113 if (text_shdr.get_sh_size() == 0
2114 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2115 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2116 return false;
2117
2118 // Skip any discarded or ICF'ed sections.
2119 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2120 return false;
2121
2122 // Skip exception frame.
2123 if (strcmp(os->name(), ".eh_frame") == 0)
2124 return false ;
2125
2126 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2127 os->find_relaxed_input_section(this, text_shndx) != NULL);
2128
2129 return true;
2130}
2131
2132
2133// Determine if we want to scan the SHNDX-th section for relocation stubs.
2134// This is a helper for AArch64_relobj::scan_sections_for_stubs().
2135
2136template<int size, bool big_endian>
2137bool
2138AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2139 const elfcpp::Shdr<size, big_endian>& shdr,
2140 const Relobj::Output_sections& out_sections,
2141 const Symbol_table* symtab,
2142 const unsigned char* pshdrs)
2143{
2144 unsigned int sh_type = shdr.get_sh_type();
2145 if (sh_type != elfcpp::SHT_RELA)
2146 return false;
2147
2148 // Ignore empty section.
2149 off_t sh_size = shdr.get_sh_size();
2150 if (sh_size == 0)
2151 return false;
2152
2153 // Ignore reloc section with unexpected symbol table. The
2154 // error will be reported in the final link.
2155 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2156 return false;
2157
2158 gold_assert(sh_type == elfcpp::SHT_RELA);
2159 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2160
2161 // Ignore reloc section with unexpected entsize or uneven size.
2162 // The error will be reported in the final link.
2163 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2164 return false;
2165
2166 // Ignore reloc section with bad info. This error will be
2167 // reported in the final link.
2168 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2169 if (text_shndx >= this->shnum())
2170 return false;
2171
2172 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2173 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2174 text_shndx * shdr_size);
2175 return this->text_section_is_scannable(text_shdr, text_shndx,
2176 out_sections[text_shndx], symtab);
2177}
2178
2179
2f0c79aa 2180// Scan section SHNDX for erratum 843419 and 835769.
5019d64a
HS
2181
2182template<int size, bool big_endian>
2183void
2f0c79aa 2184AArch64_relobj<size, big_endian>::scan_errata(
5019d64a
HS
2185 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2186 Output_section* os, const Symbol_table* symtab,
2187 The_target_aarch64* target)
2188{
2189 if (shdr.get_sh_size() == 0
2190 || (shdr.get_sh_flags() &
2191 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2192 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2193 return;
2194
2195 if (!os || symtab->is_section_folded(this, shndx)) return;
2196
2197 AArch64_address output_offset = this->get_output_section_offset(shndx);
2198 AArch64_address output_address;
2199 if (output_offset != invalid_address)
2200 output_address = os->address() + output_offset;
2201 else
2202 {
2203 const Output_relaxed_input_section* poris =
2204 os->find_relaxed_input_section(this, shndx);
2205 if (!poris) return;
2206 output_address = poris->address();
2207 }
2208
2209 section_size_type input_view_size = 0;
2210 const unsigned char* input_view =
2211 this->section_contents(shndx, &input_view_size, false);
2212
2213 Mapping_symbol_position section_start(shndx, 0);
2214 // Find the first mapping symbol record within section shndx.
2215 typename Mapping_symbol_info::const_iterator p =
2216 this->mapping_symbol_info_.lower_bound(section_start);
5019d64a
HS
2217 while (p != this->mapping_symbol_info_.end() &&
2218 p->first.shndx_ == shndx)
2219 {
2220 typename Mapping_symbol_info::const_iterator prev = p;
2221 ++p;
2222 if (prev->second == 'x')
2223 {
2224 section_size_type span_start =
2225 convert_to_section_size_type(prev->first.offset_);
2226 section_size_type span_end;
2227 if (p != this->mapping_symbol_info_.end()
2228 && p->first.shndx_ == shndx)
2229 span_end = convert_to_section_size_type(p->first.offset_);
2230 else
2231 span_end = convert_to_section_size_type(shdr.get_sh_size());
2f0c79aa
HS
2232
2233 // Here we do not share the scanning code of both errata. For 843419,
2234 // only the last few insns of each page are examined, which is fast,
2235 // whereas, for 835769, every insn pair needs to be checked.
2236
2237 if (parameters->options().fix_cortex_a53_843419())
2238 target->scan_erratum_843419_span(
2239 this, shndx, span_start, span_end,
2240 const_cast<unsigned char*>(input_view), output_address);
2241
2242 if (parameters->options().fix_cortex_a53_835769())
2243 target->scan_erratum_835769_span(
5019d64a
HS
2244 this, shndx, span_start, span_end,
2245 const_cast<unsigned char*>(input_view), output_address);
2246 }
2247 }
2248}
2249
2250
83a01957
HS
2251// Scan relocations for stub generation.
2252
2253template<int size, bool big_endian>
2254void
2255AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2256 The_target_aarch64* target,
2257 const Symbol_table* symtab,
2258 const Layout* layout)
2259{
2260 unsigned int shnum = this->shnum();
2261 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2262
2263 // Read the section headers.
2264 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2265 shnum * shdr_size,
2266 true, true);
2267
2268 // To speed up processing, we set up hash tables for fast lookup of
2269 // input offsets to output addresses.
2270 this->initialize_input_to_output_maps();
2271
2272 const Relobj::Output_sections& out_sections(this->output_sections());
2273
2274 Relocate_info<size, big_endian> relinfo;
2275 relinfo.symtab = symtab;
2276 relinfo.layout = layout;
2277 relinfo.object = this;
2278
2279 // Do relocation stubs scanning.
2280 const unsigned char* p = pshdrs + shdr_size;
2281 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2282 {
2283 const elfcpp::Shdr<size, big_endian> shdr(p);
2f0c79aa
HS
2284 if (parameters->options().fix_cortex_a53_843419()
2285 || parameters->options().fix_cortex_a53_835769())
2286 scan_errata(i, shdr, out_sections[i], symtab, target);
83a01957
HS
2287 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2288 pshdrs))
2289 {
2290 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2291 AArch64_address output_offset =
2292 this->get_output_section_offset(index);
2293 AArch64_address output_address;
2294 if (output_offset != invalid_address)
2295 {
2296 output_address = out_sections[index]->address() + output_offset;
2297 }
2298 else
2299 {
2300 // Currently this only happens for a relaxed section.
2301 const Output_relaxed_input_section* poris =
2302 out_sections[index]->find_relaxed_input_section(this, index);
2303 gold_assert(poris != NULL);
2304 output_address = poris->address();
2305 }
2306
2307 // Get the relocations.
2308 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2309 shdr.get_sh_size(),
2310 true, false);
2311
2312 // Get the section contents.
2313 section_size_type input_view_size = 0;
2314 const unsigned char* input_view =
2315 this->section_contents(index, &input_view_size, false);
2316
2317 relinfo.reloc_shndx = i;
2318 relinfo.data_shndx = index;
2319 unsigned int sh_type = shdr.get_sh_type();
2320 unsigned int reloc_size;
2321 gold_assert (sh_type == elfcpp::SHT_RELA);
2322 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2323
2324 Output_section* os = out_sections[index];
2325 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2326 shdr.get_sh_size() / reloc_size,
2327 os,
2328 output_offset == invalid_address,
2329 input_view, output_address,
2330 input_view_size);
2331 }
2332 }
2333}
2334
2335
2336// A class to wrap an ordinary input section containing executable code.
2337
2338template<int size, bool big_endian>
2339class AArch64_input_section : public Output_relaxed_input_section
2340{
2341 public:
2342 typedef Stub_table<size, big_endian> The_stub_table;
2343
2344 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2345 : Output_relaxed_input_section(relobj, shndx, 1),
2346 stub_table_(NULL),
2347 original_contents_(NULL), original_size_(0),
2348 original_addralign_(1)
2349 { }
2350
2351 ~AArch64_input_section()
2352 { delete[] this->original_contents_; }
2353
2354 // Initialize.
2355 void
2356 init();
2357
2358 // Set the stub_table.
2359 void
2360 set_stub_table(The_stub_table* st)
2361 { this->stub_table_ = st; }
2362
2363 // Whether this is a stub table owner.
2364 bool
2365 is_stub_table_owner() const
2366 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2367
2368 // Return the original size of the section.
2369 uint32_t
2370 original_size() const
2371 { return this->original_size_; }
2372
2373 // Return the stub table.
2374 The_stub_table*
2375 stub_table()
2376 { return stub_table_; }
2377
2378 protected:
2379 // Write out this input section.
2380 void
2381 do_write(Output_file*);
2382
2383 // Return required alignment of this.
2384 uint64_t
2385 do_addralign() const
2386 {
2387 if (this->is_stub_table_owner())
2388 return std::max(this->stub_table_->addralign(),
2389 static_cast<uint64_t>(this->original_addralign_));
2390 else
2391 return this->original_addralign_;
2392 }
2393
2394 // Finalize data size.
2395 void
2396 set_final_data_size();
2397
2398 // Reset address and file offset.
2399 void
2400 do_reset_address_and_file_offset();
2401
2402 // Output offset.
2403 bool
2404 do_output_offset(const Relobj* object, unsigned int shndx,
2405 section_offset_type offset,
2406 section_offset_type* poutput) const
2407 {
2408 if ((object == this->relobj())
2409 && (shndx == this->shndx())
2410 && (offset >= 0)
2411 && (offset <=
2412 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2413 {
2414 *poutput = offset;
2415 return true;
2416 }
2417 else
2418 return false;
2419 }
2420
2421 private:
2422 // Copying is not allowed.
2423 AArch64_input_section(const AArch64_input_section&);
2424 AArch64_input_section& operator=(const AArch64_input_section&);
2425
2426 // The relocation stubs.
2427 The_stub_table* stub_table_;
2428 // Original section contents. We have to make a copy here since the file
2429 // containing the original section may not be locked when we need to access
2430 // the contents.
2431 unsigned char* original_contents_;
2432 // Section size of the original input section.
2433 uint32_t original_size_;
2434 // Address alignment of the original input section.
2435 uint32_t original_addralign_;
2436}; // End of AArch64_input_section
2437
2438
2439// Finalize data size.
2440
2441template<int size, bool big_endian>
2442void
2443AArch64_input_section<size, big_endian>::set_final_data_size()
2444{
2445 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2446
2447 if (this->is_stub_table_owner())
2448 {
2449 this->stub_table_->finalize_data_size();
2450 off = align_address(off, this->stub_table_->addralign());
2451 off += this->stub_table_->data_size();
2452 }
2453 this->set_data_size(off);
2454}
2455
2456
2457// Reset address and file offset.
2458
2459template<int size, bool big_endian>
2460void
2461AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2462{
2463 // Size of the original input section contents.
2464 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2465
2466 // If this is a stub table owner, account for the stub table size.
2467 if (this->is_stub_table_owner())
2468 {
2469 The_stub_table* stub_table = this->stub_table_;
2470
2471 // Reset the stub table's address and file offset. The
2472 // current data size for child will be updated after that.
2473 stub_table_->reset_address_and_file_offset();
2474 off = align_address(off, stub_table_->addralign());
2475 off += stub_table->current_data_size();
2476 }
2477
2478 this->set_current_data_size(off);
2479}
2480
2481
2482// Initialize an Arm_input_section.
2483
2484template<int size, bool big_endian>
2485void
2486AArch64_input_section<size, big_endian>::init()
2487{
2488 Relobj* relobj = this->relobj();
2489 unsigned int shndx = this->shndx();
2490
2491 // We have to cache original size, alignment and contents to avoid locking
2492 // the original file.
2493 this->original_addralign_ =
2494 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2495
2496 // This is not efficient but we expect only a small number of relaxed
2497 // input sections for stubs.
2498 section_size_type section_size;
2499 const unsigned char* section_contents =
2500 relobj->section_contents(shndx, &section_size, false);
2501 this->original_size_ =
2502 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2503
2504 gold_assert(this->original_contents_ == NULL);
2505 this->original_contents_ = new unsigned char[section_size];
2506 memcpy(this->original_contents_, section_contents, section_size);
2507
2508 // We want to make this look like the original input section after
2509 // output sections are finalized.
2510 Output_section* os = relobj->output_section(shndx);
2511 off_t offset = relobj->output_section_offset(shndx);
2512 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2513 this->set_address(os->address() + offset);
2514 this->set_file_offset(os->offset() + offset);
2515 this->set_current_data_size(this->original_size_);
2516 this->finalize_data_size();
2517}
2518
2519
2520// Write data to output file.
2521
2522template<int size, bool big_endian>
2523void
2524AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2525{
2526 // We have to write out the original section content.
2527 gold_assert(this->original_contents_ != NULL);
2528 of->write(this->offset(), this->original_contents_,
2529 this->original_size_);
2530
2531 // If this owns a stub table and it is not empty, write it.
2532 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2533 this->stub_table_->write(of);
2534}
2535
2536
2537// Arm output section class. This is defined mainly to add a number of stub
2538// generation methods.
2539
2540template<int size, bool big_endian>
2541class AArch64_output_section : public Output_section
2542{
2543 public:
2544 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2545 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2546 typedef Stub_table<size, big_endian> The_stub_table;
2547 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2548
2549 public:
2550 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2551 elfcpp::Elf_Xword flags)
2552 : Output_section(name, type, flags)
2553 { }
2554
2555 ~AArch64_output_section() {}
2556
2557 // Group input sections for stub generation.
2558 void
2559 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2560 const Task*);
2561
2562 private:
2563 typedef Output_section::Input_section Input_section;
2564 typedef Output_section::Input_section_list Input_section_list;
2565
2566 // Create a stub group.
2567 void
2568 create_stub_group(Input_section_list::const_iterator,
2569 Input_section_list::const_iterator,
2570 Input_section_list::const_iterator,
2571 The_target_aarch64*,
2572 std::vector<Output_relaxed_input_section*>&,
2573 const Task*);
2574}; // End of AArch64_output_section
2575
2576
2577// Create a stub group for input sections from FIRST to LAST. OWNER points to
2578// the input section that will be the owner of the stub table.
2579
2580template<int size, bool big_endian> void
2581AArch64_output_section<size, big_endian>::create_stub_group(
2582 Input_section_list::const_iterator first,
2583 Input_section_list::const_iterator last,
2584 Input_section_list::const_iterator owner,
2585 The_target_aarch64* target,
2586 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2587 const Task* task)
2588{
2589 // Currently we convert ordinary input sections into relaxed sections only
2590 // at this point.
2591 The_aarch64_input_section* input_section;
2592 if (owner->is_relaxed_input_section())
2593 gold_unreachable();
2594 else
2595 {
2596 gold_assert(owner->is_input_section());
2597 // Create a new relaxed input section. We need to lock the original
2598 // file.
2599 Task_lock_obj<Object> tl(task, owner->relobj());
2600 input_section =
2601 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2602 new_relaxed_sections.push_back(input_section);
2603 }
2604
2605 // Create a stub table.
2606 The_stub_table* stub_table =
2607 target->new_stub_table(input_section);
2608
2609 input_section->set_stub_table(stub_table);
2610
2611 Input_section_list::const_iterator p = first;
2612 // Look for input sections or relaxed input sections in [first ... last].
2613 do
2614 {
2615 if (p->is_input_section() || p->is_relaxed_input_section())
2616 {
2617 // The stub table information for input sections live
2618 // in their objects.
2619 The_aarch64_relobj* aarch64_relobj =
2620 static_cast<The_aarch64_relobj*>(p->relobj());
2621 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2622 }
2623 }
2624 while (p++ != last);
2625}
2626
2627
2628// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2629// stub groups. We grow a stub group by adding input section until the size is
2630// just below GROUP_SIZE. The last input section will be converted into a stub
2631// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2632// after the stub table, effectively doubling the group size.
2633//
2634// This is similar to the group_sections() function in elf32-arm.c but is
2635// implemented differently.
2636
2637template<int size, bool big_endian>
2638void AArch64_output_section<size, big_endian>::group_sections(
2639 section_size_type group_size,
2640 bool stubs_always_after_branch,
2641 Target_aarch64<size, big_endian>* target,
2642 const Task* task)
2643{
2644 typedef enum
2645 {
2646 NO_GROUP,
2647 FINDING_STUB_SECTION,
2648 HAS_STUB_SECTION
2649 } State;
2650
2651 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2652
2653 State state = NO_GROUP;
2654 section_size_type off = 0;
2655 section_size_type group_begin_offset = 0;
2656 section_size_type group_end_offset = 0;
2657 section_size_type stub_table_end_offset = 0;
2658 Input_section_list::const_iterator group_begin =
2659 this->input_sections().end();
2660 Input_section_list::const_iterator stub_table =
2661 this->input_sections().end();
2662 Input_section_list::const_iterator group_end = this->input_sections().end();
2663 for (Input_section_list::const_iterator p = this->input_sections().begin();
2664 p != this->input_sections().end();
2665 ++p)
2666 {
2667 section_size_type section_begin_offset =
2668 align_address(off, p->addralign());
2669 section_size_type section_end_offset =
2670 section_begin_offset + p->data_size();
2671
2672 // Check to see if we should group the previously seen sections.
2673 switch (state)
2674 {
2675 case NO_GROUP:
2676 break;
2677
2678 case FINDING_STUB_SECTION:
2679 // Adding this section makes the group larger than GROUP_SIZE.
2680 if (section_end_offset - group_begin_offset >= group_size)
2681 {
2682 if (stubs_always_after_branch)
2683 {
2684 gold_assert(group_end != this->input_sections().end());
2685 this->create_stub_group(group_begin, group_end, group_end,
2686 target, new_relaxed_sections,
2687 task);
2688 state = NO_GROUP;
2689 }
2690 else
2691 {
2692 // Input sections up to stub_group_size bytes after the stub
2693 // table can be handled by it too.
2694 state = HAS_STUB_SECTION;
2695 stub_table = group_end;
2696 stub_table_end_offset = group_end_offset;
2697 }
2698 }
2699 break;
2700
2701 case HAS_STUB_SECTION:
2702 // Adding this section makes the post stub-section group larger
2703 // than GROUP_SIZE.
2704 gold_unreachable();
2705 // NOT SUPPORTED YET. For completeness only.
2706 if (section_end_offset - stub_table_end_offset >= group_size)
2707 {
2708 gold_assert(group_end != this->input_sections().end());
2709 this->create_stub_group(group_begin, group_end, stub_table,
2710 target, new_relaxed_sections, task);
2711 state = NO_GROUP;
2712 }
2713 break;
2714
2715 default:
2716 gold_unreachable();
2717 }
2718
2719 // If we see an input section and currently there is no group, start
2720 // a new one. Skip any empty sections. We look at the data size
2721 // instead of calling p->relobj()->section_size() to avoid locking.
2722 if ((p->is_input_section() || p->is_relaxed_input_section())
2723 && (p->data_size() != 0))
2724 {
2725 if (state == NO_GROUP)
2726 {
2727 state = FINDING_STUB_SECTION;
2728 group_begin = p;
2729 group_begin_offset = section_begin_offset;
2730 }
2731
2732 // Keep track of the last input section seen.
2733 group_end = p;
2734 group_end_offset = section_end_offset;
2735 }
2736
2737 off = section_end_offset;
2738 }
2739
2740 // Create a stub group for any ungrouped sections.
2741 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2742 {
2743 gold_assert(group_end != this->input_sections().end());
2744 this->create_stub_group(group_begin, group_end,
2745 (state == FINDING_STUB_SECTION
2746 ? group_end
2747 : stub_table),
2748 target, new_relaxed_sections, task);
2749 }
8e33481e 2750
83a01957
HS
2751 if (!new_relaxed_sections.empty())
2752 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2753
2754 // Update the section offsets
2755 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2756 {
2757 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2758 new_relaxed_sections[i]->relobj());
2759 unsigned int shndx = new_relaxed_sections[i]->shndx();
2760 // Tell AArch64_relobj that this input section is converted.
2761 relobj->convert_input_section_to_relaxed_section(shndx);
2762 }
2763} // End of AArch64_output_section::group_sections
3a531937 2764
053a4d68 2765
9363c7c3
JY
2766AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2767
3a531937 2768
053a4d68
JY
2769// The aarch64 target class.
2770// See the ABI at
2771// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2772template<int size, bool big_endian>
2773class Target_aarch64 : public Sized_target<size, big_endian>
2774{
2775 public:
83a01957 2776 typedef Target_aarch64<size, big_endian> This;
053a4d68
JY
2777 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2778 Reloc_section;
83a01957 2779 typedef Relocate_info<size, big_endian> The_relocate_info;
053a4d68 2780 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
2781 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2782 typedef Reloc_stub<size, big_endian> The_reloc_stub;
a48d0c12 2783 typedef Erratum_stub<size, big_endian> The_erratum_stub;
83a01957
HS
2784 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2785 typedef Stub_table<size, big_endian> The_stub_table;
2786 typedef std::vector<The_stub_table*> Stub_table_list;
2787 typedef typename Stub_table_list::iterator Stub_table_iterator;
2788 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2789 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2790 typedef Unordered_map<Section_id,
2791 AArch64_input_section<size, big_endian>*,
2792 Section_id_hash> AArch64_input_section_map;
5019d64a 2793 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
8e33481e 2794 const static int TCB_SIZE = size / 8 * 2;
053a4d68
JY
2795
2796 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2797 : Sized_target<size, big_endian>(info),
3a531937
JY
2798 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2799 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2800 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
83a01957
HS
2801 got_mod_index_offset_(-1U),
2802 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
0bf32ea9 2803 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
053a4d68
JY
2804 { }
2805
2806 // Scan the relocations to determine unreferenced sections for
2807 // garbage collection.
2808 void
2809 gc_process_relocs(Symbol_table* symtab,
2810 Layout* layout,
2811 Sized_relobj_file<size, big_endian>* object,
2812 unsigned int data_shndx,
2813 unsigned int sh_type,
2814 const unsigned char* prelocs,
2815 size_t reloc_count,
2816 Output_section* output_section,
2817 bool needs_special_offset_handling,
2818 size_t local_symbol_count,
2819 const unsigned char* plocal_symbols);
2820
2821 // Scan the relocations to look for symbol adjustments.
2822 void
2823 scan_relocs(Symbol_table* symtab,
2824 Layout* layout,
2825 Sized_relobj_file<size, big_endian>* object,
2826 unsigned int data_shndx,
2827 unsigned int sh_type,
2828 const unsigned char* prelocs,
2829 size_t reloc_count,
2830 Output_section* output_section,
2831 bool needs_special_offset_handling,
2832 size_t local_symbol_count,
2833 const unsigned char* plocal_symbols);
2834
2835 // Finalize the sections.
2836 void
2837 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2838
3a531937
JY
2839 // Return the value to use for a dynamic which requires special
2840 // treatment.
2841 uint64_t
2842 do_dynsym_value(const Symbol*) const;
2843
053a4d68
JY
2844 // Relocate a section.
2845 void
2846 relocate_section(const Relocate_info<size, big_endian>*,
2847 unsigned int sh_type,
2848 const unsigned char* prelocs,
2849 size_t reloc_count,
2850 Output_section* output_section,
2851 bool needs_special_offset_handling,
2852 unsigned char* view,
2853 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2854 section_size_type view_size,
2855 const Reloc_symbol_changes*);
2856
2857 // Scan the relocs during a relocatable link.
2858 void
2859 scan_relocatable_relocs(Symbol_table* symtab,
2860 Layout* layout,
2861 Sized_relobj_file<size, big_endian>* object,
2862 unsigned int data_shndx,
2863 unsigned int sh_type,
2864 const unsigned char* prelocs,
2865 size_t reloc_count,
2866 Output_section* output_section,
2867 bool needs_special_offset_handling,
2868 size_t local_symbol_count,
2869 const unsigned char* plocal_symbols,
2870 Relocatable_relocs*);
2871
2872 // Relocate a section during a relocatable link.
2873 void
2874 relocate_relocs(
2875 const Relocate_info<size, big_endian>*,
2876 unsigned int sh_type,
2877 const unsigned char* prelocs,
2878 size_t reloc_count,
2879 Output_section* output_section,
2880 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2881 const Relocatable_relocs*,
2882 unsigned char* view,
2883 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2884 section_size_type view_size,
2885 unsigned char* reloc_view,
2886 section_size_type reloc_view_size);
2887
3a531937
JY
2888 // Return the symbol index to use for a target specific relocation.
2889 // The only target specific relocation is R_AARCH64_TLSDESC for a
2890 // local symbol, which is an absolute reloc.
2891 unsigned int
2892 do_reloc_symbol_index(void*, unsigned int r_type) const
2893 {
2894 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2895 return 0;
2896 }
2897
2898 // Return the addend to use for a target specific relocation.
7fa5525f
RÁE
2899 uint64_t
2900 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3a531937 2901
9363c7c3
JY
2902 // Return the PLT section.
2903 uint64_t
2904 do_plt_address_for_global(const Symbol* gsym) const
2905 { return this->plt_section()->address_for_global(gsym); }
2906
2907 uint64_t
2908 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2909 { return this->plt_section()->address_for_local(relobj, symndx); }
2910
9726c3c1
HS
2911 // This function should be defined in targets that can use relocation
2912 // types to determine (implemented in local_reloc_may_be_function_pointer
2913 // and global_reloc_may_be_function_pointer)
2914 // if a function's pointer is taken. ICF uses this in safe mode to only
2915 // fold those functions whose pointer is defintely not taken.
2916 bool
2917 do_can_check_for_function_pointers() const
2918 { return true; }
2919
053a4d68
JY
2920 // Return the number of entries in the PLT.
2921 unsigned int
2922 plt_entry_count() const;
2923
2924 //Return the offset of the first non-reserved PLT entry.
2925 unsigned int
2926 first_plt_entry_offset() const;
2927
2928 // Return the size of each PLT entry.
2929 unsigned int
2930 plt_entry_size() const;
2931
83a01957
HS
2932 // Create a stub table.
2933 The_stub_table*
2934 new_stub_table(The_aarch64_input_section*);
2935
2936 // Create an aarch64 input section.
2937 The_aarch64_input_section*
2938 new_aarch64_input_section(Relobj*, unsigned int);
2939
2940 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2941 The_aarch64_input_section*
2942 find_aarch64_input_section(Relobj*, unsigned int) const;
2943
2944 // Return the thread control block size.
8e33481e
HS
2945 unsigned int
2946 tcb_size() const { return This::TCB_SIZE; }
2947
83a01957
HS
2948 // Scan a section for stub generation.
2949 void
2950 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2951 const unsigned char*, size_t, Output_section*,
2952 bool, const unsigned char*,
2953 Address,
2954 section_size_type);
2955
2956 // Scan a relocation section for stub.
2957 template<int sh_type>
2958 void
2959 scan_reloc_section_for_stubs(
2960 const The_relocate_info* relinfo,
2961 const unsigned char* prelocs,
2962 size_t reloc_count,
2963 Output_section* output_section,
2964 bool needs_special_offset_handling,
2965 const unsigned char* view,
2966 Address view_address,
2967 section_size_type);
2968
2969 // Relocate a single stub.
2970 void
2971 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2972 Output_section*, unsigned char*, Address,
2973 section_size_type);
2974
2975 // Get the default AArch64 target.
2976 static This*
2977 current_target()
2978 {
2979 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2980 && parameters->target().get_size() == size
2981 && parameters->target().is_big_endian() == big_endian);
2982 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2983 }
2984
5019d64a 2985
2f0c79aa 2986 // Scan erratum 843419 for a part of a section.
5019d64a
HS
2987 void
2988 scan_erratum_843419_span(
2989 AArch64_relobj<size, big_endian>*,
2f0c79aa
HS
2990 unsigned int,
2991 const section_size_type,
2992 const section_size_type,
2993 unsigned char*,
2994 Address);
2995
2996 // Scan erratum 835769 for a part of a section.
2997 void
2998 scan_erratum_835769_span(
2999 AArch64_relobj<size, big_endian>*,
3000 unsigned int,
5019d64a
HS
3001 const section_size_type,
3002 const section_size_type,
3003 unsigned char*,
3004 Address);
3005
9363c7c3
JY
3006 protected:
3007 void
3008 do_select_as_default_target()
3009 {
3010 gold_assert(aarch64_reloc_property_table == NULL);
3011 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3012 }
3013
3a531937
JY
3014 // Add a new reloc argument, returning the index in the vector.
3015 size_t
3016 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3017 unsigned int r_sym)
3018 {
3019 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3020 return this->tlsdesc_reloc_info_.size() - 1;
3021 }
3022
9363c7c3 3023 virtual Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
3024 do_make_data_plt(Layout* layout,
3025 Output_data_got_aarch64<size, big_endian>* got,
3026 Output_data_space* got_plt,
3027 Output_data_space* got_irelative)
9363c7c3 3028 {
3a531937
JY
3029 return new Output_data_plt_aarch64_standard<size, big_endian>(
3030 layout, got, got_plt, got_irelative);
9363c7c3
JY
3031 }
3032
83a01957
HS
3033
3034 // do_make_elf_object to override the same function in the base class.
3035 Object*
3036 do_make_elf_object(const std::string&, Input_file*, off_t,
3037 const elfcpp::Ehdr<size, big_endian>&);
3038
9363c7c3 3039 Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
3040 make_data_plt(Layout* layout,
3041 Output_data_got_aarch64<size, big_endian>* got,
3042 Output_data_space* got_plt,
3043 Output_data_space* got_irelative)
9363c7c3 3044 {
3a531937 3045 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
9363c7c3
JY
3046 }
3047
83a01957
HS
3048 // We only need to generate stubs, and hence perform relaxation if we are
3049 // not doing relocatable linking.
3050 virtual bool
3051 do_may_relax() const
3052 { return !parameters->options().relocatable(); }
3053
3054 // Relaxation hook. This is where we do stub generation.
3055 virtual bool
3056 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3057
3058 void
3059 group_sections(Layout* layout,
3060 section_size_type group_size,
3061 bool stubs_always_after_branch,
3062 const Task* task);
3063
3064 void
3065 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3066 const Sized_symbol<size>*, unsigned int,
3067 const Symbol_value<size>*,
3068 typename elfcpp::Elf_types<size>::Elf_Swxword,
3069 Address Elf_Addr);
3070
3071 // Make an output section.
3072 Output_section*
3073 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3074 elfcpp::Elf_Xword flags)
3075 { return new The_aarch64_output_section(name, type, flags); }
3076
053a4d68
JY
3077 private:
3078 // The class which scans relocations.
3079 class Scan
3080 {
3081 public:
3082 Scan()
3083 : issued_non_pic_error_(false)
3084 { }
3085
053a4d68
JY
3086 inline void
3087 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3088 Sized_relobj_file<size, big_endian>* object,
3089 unsigned int data_shndx,
3090 Output_section* output_section,
3091 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3092 const elfcpp::Sym<size, big_endian>& lsym,
3093 bool is_discarded);
3094
3095 inline void
3096 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3097 Sized_relobj_file<size, big_endian>* object,
3098 unsigned int data_shndx,
3099 Output_section* output_section,
3100 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3101 Symbol* gsym);
3102
3103 inline bool
3104 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
3105 Target_aarch64<size, big_endian>* ,
3106 Sized_relobj_file<size, big_endian>* ,
3107 unsigned int ,
3108 Output_section* ,
3109 const elfcpp::Rela<size, big_endian>& ,
3110 unsigned int r_type,
3111 const elfcpp::Sym<size, big_endian>&);
053a4d68
JY
3112
3113 inline bool
3114 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
3115 Target_aarch64<size, big_endian>* ,
3116 Sized_relobj_file<size, big_endian>* ,
3117 unsigned int ,
3118 Output_section* ,
3119 const elfcpp::Rela<size, big_endian>& ,
3120 unsigned int r_type,
3121 Symbol* gsym);
053a4d68
JY
3122
3123 private:
3124 static void
3125 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3126 unsigned int r_type);
3127
3128 static void
3129 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3130 unsigned int r_type, Symbol*);
3131
3132 inline bool
3133 possible_function_pointer_reloc(unsigned int r_type);
3134
3135 void
3136 check_non_pic(Relobj*, unsigned int r_type);
3137
9726c3c1
HS
3138 bool
3139 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3140 unsigned int r_type);
3141
053a4d68
JY
3142 // Whether we have issued an error about a non-PIC compilation.
3143 bool issued_non_pic_error_;
3144 };
3145
3146 // The class which implements relocation.
3147 class Relocate
3148 {
3149 public:
3150 Relocate()
3a531937 3151 : skip_call_tls_get_addr_(false)
053a4d68
JY
3152 { }
3153
3154 ~Relocate()
3155 { }
3156
3157 // Do a relocation. Return false if the caller should not issue
3158 // any warnings about this relocation.
3159 inline bool
3160 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
3161 Output_section*,
3162 size_t relnum, const elfcpp::Rela<size, big_endian>&,
3163 unsigned int r_type, const Sized_symbol<size>*,
3164 const Symbol_value<size>*,
3165 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3166 section_size_type);
3167
8e33481e 3168 private:
83a01957
HS
3169 inline typename AArch64_relocate_functions<size, big_endian>::Status
3170 relocate_tls(const Relocate_info<size, big_endian>*,
8e33481e
HS
3171 Target_aarch64<size, big_endian>*,
3172 size_t,
3173 const elfcpp::Rela<size, big_endian>&,
3174 unsigned int r_type, const Sized_symbol<size>*,
3175 const Symbol_value<size>*,
3176 unsigned char*,
3177 typename elfcpp::Elf_types<size>::Elf_Addr);
3178
83a01957 3179 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3180 tls_gd_to_le(
83a01957 3181 const Relocate_info<size, big_endian>*,
3a531937
JY
3182 Target_aarch64<size, big_endian>*,
3183 const elfcpp::Rela<size, big_endian>&,
3184 unsigned int,
3185 unsigned char*,
3186 const Symbol_value<size>*);
3187
9726c3c1
HS
3188 inline typename AArch64_relocate_functions<size, big_endian>::Status
3189 tls_ld_to_le(
3190 const Relocate_info<size, big_endian>*,
3191 Target_aarch64<size, big_endian>*,
3192 const elfcpp::Rela<size, big_endian>&,
3193 unsigned int,
3194 unsigned char*,
3195 const Symbol_value<size>*);
3196
83a01957 3197 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3198 tls_ie_to_le(
83a01957 3199 const Relocate_info<size, big_endian>*,
3a531937
JY
3200 Target_aarch64<size, big_endian>*,
3201 const elfcpp::Rela<size, big_endian>&,
3202 unsigned int,
3203 unsigned char*,
3204 const Symbol_value<size>*);
3205
83a01957 3206 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3207 tls_desc_gd_to_le(
83a01957 3208 const Relocate_info<size, big_endian>*,
3a531937
JY
3209 Target_aarch64<size, big_endian>*,
3210 const elfcpp::Rela<size, big_endian>&,
3211 unsigned int,
3212 unsigned char*,
3213 const Symbol_value<size>*);
3214
83a01957 3215 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 3216 tls_desc_gd_to_ie(
83a01957 3217 const Relocate_info<size, big_endian>*,
3a531937
JY
3218 Target_aarch64<size, big_endian>*,
3219 const elfcpp::Rela<size, big_endian>&,
3220 unsigned int,
3221 unsigned char*,
3222 const Symbol_value<size>*,
3223 typename elfcpp::Elf_types<size>::Elf_Addr,
3224 typename elfcpp::Elf_types<size>::Elf_Addr);
3225
3226 bool skip_call_tls_get_addr_;
3227
8e33481e 3228 }; // End of class Relocate
053a4d68
JY
3229
3230 // A class which returns the size required for a relocation type,
3231 // used while scanning relocs during a relocatable link.
3232 class Relocatable_size_for_reloc
3233 {
3234 public:
3235 unsigned int
3236 get_size_for_reloc(unsigned int, Relobj*);
3237 };
3238
3239 // Adjust TLS relocation type based on the options and whether this
3240 // is a local symbol.
3241 static tls::Tls_optimization
3242 optimize_tls_reloc(bool is_final, int r_type);
3243
3244 // Get the GOT section, creating it if necessary.
3245 Output_data_got_aarch64<size, big_endian>*
3246 got_section(Symbol_table*, Layout*);
3247
3248 // Get the GOT PLT section.
3249 Output_data_space*
3250 got_plt_section() const
3251 {
3252 gold_assert(this->got_plt_ != NULL);
3253 return this->got_plt_;
3254 }
3255
3a531937
JY
3256 // Get the GOT section for TLSDESC entries.
3257 Output_data_got<size, big_endian>*
3258 got_tlsdesc_section() const
3259 {
3260 gold_assert(this->got_tlsdesc_ != NULL);
3261 return this->got_tlsdesc_;
3262 }
3263
053a4d68
JY
3264 // Create the PLT section.
3265 void
3266 make_plt_section(Symbol_table* symtab, Layout* layout);
3267
3268 // Create a PLT entry for a global symbol.
3269 void
3270 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3271
3a531937
JY
3272 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3273 void
3274 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3275 Sized_relobj_file<size, big_endian>* relobj,
3276 unsigned int local_sym_index);
3277
3278 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3279 void
3280 define_tls_base_symbol(Symbol_table*, Layout*);
3281
3282 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3283 void
3284 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3285
3286 // Create a GOT entry for the TLS module index.
3287 unsigned int
3288 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3289 Sized_relobj_file<size, big_endian>* object);
3290
053a4d68
JY
3291 // Get the PLT section.
3292 Output_data_plt_aarch64<size, big_endian>*
3293 plt_section() const
3294 {
3295 gold_assert(this->plt_ != NULL);
3296 return this->plt_;
3297 }
3298
0ef3814f
HS
3299 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3300 // ST_E_843419, we need an additional field for adrp offset.
2f0c79aa
HS
3301 void create_erratum_stub(
3302 AArch64_relobj<size, big_endian>* relobj,
3303 unsigned int shndx,
3304 section_size_type erratum_insn_offset,
3305 Address erratum_address,
3306 typename Insn_utilities::Insntype erratum_insn,
0ef3814f
HS
3307 int erratum_type,
3308 unsigned int e843419_adrp_offset=0);
2f0c79aa 3309
5019d64a
HS
3310 // Return whether this is a 3-insn erratum sequence.
3311 bool is_erratum_843419_sequence(
3312 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3313 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3314 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3315
2f0c79aa
HS
3316 // Return whether this is a 835769 sequence.
3317 // (Similarly implemented as in elfnn-aarch64.c.)
3318 bool is_erratum_835769_sequence(
3319 typename elfcpp::Swap<32,big_endian>::Valtype,
3320 typename elfcpp::Swap<32,big_endian>::Valtype);
3321
053a4d68
JY
3322 // Get the dynamic reloc section, creating it if necessary.
3323 Reloc_section*
3324 rela_dyn_section(Layout*);
3325
3a531937
JY
3326 // Get the section to use for TLSDESC relocations.
3327 Reloc_section*
3328 rela_tlsdesc_section(Layout*) const;
3329
3330 // Get the section to use for IRELATIVE relocations.
3331 Reloc_section*
3332 rela_irelative_section(Layout*);
3333
053a4d68
JY
3334 // Add a potential copy relocation.
3335 void
3336 copy_reloc(Symbol_table* symtab, Layout* layout,
3337 Sized_relobj_file<size, big_endian>* object,
3338 unsigned int shndx, Output_section* output_section,
3339 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3340 {
3341 this->copy_relocs_.copy_reloc(symtab, layout,
3342 symtab->get_sized_symbol<size>(sym),
3343 object, shndx, output_section,
3344 reloc, this->rela_dyn_section(layout));
3345 }
3346
3347 // Information about this specific target which we pass to the
3348 // general Target structure.
3349 static const Target::Target_info aarch64_info;
3350
3351 // The types of GOT entries needed for this platform.
3352 // These values are exposed to the ABI in an incremental link.
3353 // Do not renumber existing values without changing the version
3354 // number of the .gnu_incremental_inputs section.
3355 enum Got_type
3356 {
3357 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3358 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3359 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3360 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3361 };
3362
3a531937
JY
3363 // This type is used as the argument to the target specific
3364 // relocation routines. The only target specific reloc is
3365 // R_AARCh64_TLSDESC against a local symbol.
3366 struct Tlsdesc_info
3367 {
3368 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3369 unsigned int a_r_sym)
3370 : object(a_object), r_sym(a_r_sym)
3371 { }
3372
3373 // The object in which the local symbol is defined.
3374 Sized_relobj_file<size, big_endian>* object;
3375 // The local symbol index in the object.
3376 unsigned int r_sym;
3377 };
3378
053a4d68
JY
3379 // The GOT section.
3380 Output_data_got_aarch64<size, big_endian>* got_;
3381 // The PLT section.
3382 Output_data_plt_aarch64<size, big_endian>* plt_;
3383 // The GOT PLT section.
3384 Output_data_space* got_plt_;
3a531937
JY
3385 // The GOT section for IRELATIVE relocations.
3386 Output_data_space* got_irelative_;
3387 // The GOT section for TLSDESC relocations.
3388 Output_data_got<size, big_endian>* got_tlsdesc_;
053a4d68
JY
3389 // The _GLOBAL_OFFSET_TABLE_ symbol.
3390 Symbol* global_offset_table_;
3391 // The dynamic reloc section.
3392 Reloc_section* rela_dyn_;
3a531937
JY
3393 // The section to use for IRELATIVE relocs.
3394 Reloc_section* rela_irelative_;
053a4d68
JY
3395 // Relocs saved to avoid a COPY reloc.
3396 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3a531937
JY
3397 // Offset of the GOT entry for the TLS module index.
3398 unsigned int got_mod_index_offset_;
3399 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3400 // specific relocation. Here we store the object and local symbol
3401 // index for the relocation.
3402 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3403 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3404 bool tls_base_symbol_defined_;
83a01957
HS
3405 // List of stub_tables
3406 Stub_table_list stub_tables_;
0bf32ea9
JY
3407 // Actual stub group size
3408 section_size_type stub_group_size_;
83a01957 3409 AArch64_input_section_map aarch64_input_section_map_;
8e33481e 3410}; // End of Target_aarch64
053a4d68 3411
3a531937 3412
053a4d68
JY
3413template<>
3414const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3415{
3416 64, // size
3417 false, // is_big_endian
3418 elfcpp::EM_AARCH64, // machine_code
3419 false, // has_make_symbol
3420 false, // has_resolve
3421 false, // has_code_fill
3422 true, // is_default_stack_executable
9726c3c1 3423 true, // can_icf_inline_merge_sections
053a4d68
JY
3424 '\0', // wrap_char
3425 "/lib/ld.so.1", // program interpreter
3426 0x400000, // default_text_segment_address
3b0357da 3427 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3428 0x1000, // common_pagesize (overridable by -z common-page-size)
3429 false, // isolate_execinstr
3430 0, // rosegment_gap
3431 elfcpp::SHN_UNDEF, // small_common_shndx
3432 elfcpp::SHN_UNDEF, // large_common_shndx
3433 0, // small_common_section_flags
3434 0, // large_common_section_flags
3435 NULL, // attributes_section
3436 NULL, // attributes_vendor
3437 "_start" // entry_symbol_name
3438};
3439
3440template<>
3441const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3442{
3443 32, // size
3444 false, // is_big_endian
3445 elfcpp::EM_AARCH64, // machine_code
3446 false, // has_make_symbol
3447 false, // has_resolve
3448 false, // has_code_fill
3449 true, // is_default_stack_executable
3450 false, // can_icf_inline_merge_sections
3451 '\0', // wrap_char
3452 "/lib/ld.so.1", // program interpreter
3453 0x400000, // default_text_segment_address
3b0357da 3454 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3455 0x1000, // common_pagesize (overridable by -z common-page-size)
3456 false, // isolate_execinstr
3457 0, // rosegment_gap
3458 elfcpp::SHN_UNDEF, // small_common_shndx
3459 elfcpp::SHN_UNDEF, // large_common_shndx
3460 0, // small_common_section_flags
3461 0, // large_common_section_flags
3462 NULL, // attributes_section
3463 NULL, // attributes_vendor
3464 "_start" // entry_symbol_name
3465};
3466
3467template<>
3468const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3469{
3470 64, // size
3471 true, // is_big_endian
3472 elfcpp::EM_AARCH64, // machine_code
3473 false, // has_make_symbol
3474 false, // has_resolve
3475 false, // has_code_fill
3476 true, // is_default_stack_executable
9726c3c1 3477 true, // can_icf_inline_merge_sections
053a4d68
JY
3478 '\0', // wrap_char
3479 "/lib/ld.so.1", // program interpreter
3480 0x400000, // default_text_segment_address
3b0357da 3481 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3482 0x1000, // common_pagesize (overridable by -z common-page-size)
3483 false, // isolate_execinstr
3484 0, // rosegment_gap
3485 elfcpp::SHN_UNDEF, // small_common_shndx
3486 elfcpp::SHN_UNDEF, // large_common_shndx
3487 0, // small_common_section_flags
3488 0, // large_common_section_flags
3489 NULL, // attributes_section
3490 NULL, // attributes_vendor
3491 "_start" // entry_symbol_name
3492};
3493
3494template<>
3495const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3496{
3497 32, // size
3498 true, // is_big_endian
3499 elfcpp::EM_AARCH64, // machine_code
3500 false, // has_make_symbol
3501 false, // has_resolve
3502 false, // has_code_fill
3503 true, // is_default_stack_executable
3504 false, // can_icf_inline_merge_sections
3505 '\0', // wrap_char
3506 "/lib/ld.so.1", // program interpreter
3507 0x400000, // default_text_segment_address
3b0357da 3508 0x10000, // abi_pagesize (overridable by -z max-page-size)
053a4d68
JY
3509 0x1000, // common_pagesize (overridable by -z common-page-size)
3510 false, // isolate_execinstr
3511 0, // rosegment_gap
3512 elfcpp::SHN_UNDEF, // small_common_shndx
3513 elfcpp::SHN_UNDEF, // large_common_shndx
3514 0, // small_common_section_flags
3515 0, // large_common_section_flags
3516 NULL, // attributes_section
3517 NULL, // attributes_vendor
3518 "_start" // entry_symbol_name
3519};
3520
3521// Get the GOT section, creating it if necessary.
3522
3523template<int size, bool big_endian>
3524Output_data_got_aarch64<size, big_endian>*
3525Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
9363c7c3 3526 Layout* layout)
053a4d68
JY
3527{
3528 if (this->got_ == NULL)
3529 {
3530 gold_assert(symtab != NULL && layout != NULL);
3531
3532 // When using -z now, we can treat .got.plt as a relro section.
3533 // Without -z now, it is modified after program startup by lazy
3534 // PLT relocations.
3535 bool is_got_plt_relro = parameters->options().now();
3536 Output_section_order got_order = (is_got_plt_relro
3537 ? ORDER_RELRO
3538 : ORDER_RELRO_LAST);
3539 Output_section_order got_plt_order = (is_got_plt_relro
3540 ? ORDER_RELRO
3541 : ORDER_NON_RELRO_FIRST);
3542
3543 // Layout of .got and .got.plt sections.
3544 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3545 // ...
3546 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3547 // .gotplt[1] reserved for ld.so (resolver)
3548 // .gotplt[2] reserved
3549
3550 // Generate .got section.
3551 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
9363c7c3 3552 layout);
053a4d68 3553 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
9363c7c3
JY
3554 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3555 this->got_, got_order, true);
053a4d68
JY
3556 // The first word of GOT is reserved for the address of .dynamic.
3557 // We put 0 here now. The value will be replaced later in
3558 // Output_data_got_aarch64::do_write.
3559 this->got_->add_constant(0);
3560
3561 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3562 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3563 // even if there is a .got.plt section.
3564 this->global_offset_table_ =
9363c7c3
JY
3565 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3566 Symbol_table::PREDEFINED,
3567 this->got_,
3568 0, 0, elfcpp::STT_OBJECT,
3569 elfcpp::STB_LOCAL,
3570 elfcpp::STV_HIDDEN, 0,
3571 false, false);
053a4d68
JY
3572
3573 // Generate .got.plt section.
3574 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3575 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
9363c7c3
JY
3576 (elfcpp::SHF_ALLOC
3577 | elfcpp::SHF_WRITE),
3578 this->got_plt_, got_plt_order,
3579 is_got_plt_relro);
053a4d68
JY
3580
3581 // The first three entries are reserved.
9363c7c3
JY
3582 this->got_plt_->set_current_data_size(
3583 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
053a4d68 3584
3a531937
JY
3585 // If there are any IRELATIVE relocations, they get GOT entries
3586 // in .got.plt after the jump slot entries.
3587 this->got_irelative_ = new Output_data_space(size / 8,
3588 "** GOT IRELATIVE PLT");
3589 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3590 (elfcpp::SHF_ALLOC
3591 | elfcpp::SHF_WRITE),
3592 this->got_irelative_,
3593 got_plt_order,
3594 is_got_plt_relro);
3595
3596 // If there are any TLSDESC relocations, they get GOT entries in
3597 // .got.plt after the jump slot and IRELATIVE entries.
3598 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3599 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3600 (elfcpp::SHF_ALLOC
3601 | elfcpp::SHF_WRITE),
3602 this->got_tlsdesc_,
3603 got_plt_order,
3604 is_got_plt_relro);
3605
053a4d68 3606 if (!is_got_plt_relro)
9363c7c3
JY
3607 {
3608 // Those bytes can go into the relro segment.
3609 layout->increase_relro(
3610 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3611 }
053a4d68
JY
3612
3613 }
3614 return this->got_;
3615}
3616
3617// Get the dynamic reloc section, creating it if necessary.
3618
3619template<int size, bool big_endian>
3620typename Target_aarch64<size, big_endian>::Reloc_section*
3621Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3622{
3623 if (this->rela_dyn_ == NULL)
3624 {
3625 gold_assert(layout != NULL);
3626 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3627 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3628 elfcpp::SHF_ALLOC, this->rela_dyn_,
3629 ORDER_DYNAMIC_RELOCS, false);
3630 }
3631 return this->rela_dyn_;
3632}
3633
3a531937
JY
3634// Get the section to use for IRELATIVE relocs, creating it if
3635// necessary. These go in .rela.dyn, but only after all other dynamic
3636// relocations. They need to follow the other dynamic relocations so
3637// that they can refer to global variables initialized by those
3638// relocs.
3639
3640template<int size, bool big_endian>
3641typename Target_aarch64<size, big_endian>::Reloc_section*
3642Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3643{
3644 if (this->rela_irelative_ == NULL)
3645 {
3646 // Make sure we have already created the dynamic reloc section.
3647 this->rela_dyn_section(layout);
3648 this->rela_irelative_ = new Reloc_section(false);
3649 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3650 elfcpp::SHF_ALLOC, this->rela_irelative_,
3651 ORDER_DYNAMIC_RELOCS, false);
3652 gold_assert(this->rela_dyn_->output_section()
3653 == this->rela_irelative_->output_section());
3654 }
3655 return this->rela_irelative_;
3656}
3657
3658
83a01957
HS
3659// do_make_elf_object to override the same function in the base class. We need
3660// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3661// store backend specific information. Hence we need to have our own ELF object
3662// creation.
3663
3664template<int size, bool big_endian>
3665Object*
3666Target_aarch64<size, big_endian>::do_make_elf_object(
3667 const std::string& name,
3668 Input_file* input_file,
3669 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3670{
3671 int et = ehdr.get_e_type();
3672 // ET_EXEC files are valid input for --just-symbols/-R,
3673 // and we treat them as relocatable objects.
3674 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3675 return Sized_target<size, big_endian>::do_make_elf_object(
3676 name, input_file, offset, ehdr);
3677 else if (et == elfcpp::ET_REL)
3678 {
3679 AArch64_relobj<size, big_endian>* obj =
3680 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3681 obj->setup();
3682 return obj;
3683 }
3684 else if (et == elfcpp::ET_DYN)
3685 {
3686 // Keep base implementation.
3687 Sized_dynobj<size, big_endian>* obj =
3688 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3689 obj->setup();
3690 return obj;
3691 }
3692 else
3693 {
3694 gold_error(_("%s: unsupported ELF file type %d"),
3695 name.c_str(), et);
3696 return NULL;
3697 }
3698}
3699
3700
3701// Scan a relocation for stub generation.
3702
3703template<int size, bool big_endian>
3704void
3705Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3706 const Relocate_info<size, big_endian>* relinfo,
3707 unsigned int r_type,
3708 const Sized_symbol<size>* gsym,
3709 unsigned int r_sym,
3710 const Symbol_value<size>* psymval,
3711 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3712 Address address)
3713{
3714 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3715 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3716
3717 Symbol_value<size> symval;
3718 if (gsym != NULL)
3719 {
3720 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3721 get_reloc_property(r_type);
3722 if (gsym->use_plt_offset(arp->reference_flags()))
3723 {
3724 // This uses a PLT, change the symbol value.
3725 symval.set_output_value(this->plt_section()->address()
3726 + gsym->plt_offset());
3727 psymval = &symval;
3728 }
3729 else if (gsym->is_undefined())
3730 // There is no need to generate a stub symbol is undefined.
3731 return;
3732 }
3733
3734 // Get the symbol value.
3735 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3736
3737 // Owing to pipelining, the PC relative branches below actually skip
3738 // two instructions when the branch offset is 0.
3739 Address destination = static_cast<Address>(-1);
3740 switch (r_type)
3741 {
3742 case elfcpp::R_AARCH64_CALL26:
3743 case elfcpp::R_AARCH64_JUMP26:
3744 destination = value + addend;
3745 break;
3746 default:
9726c3c1 3747 gold_unreachable();
83a01957
HS
3748 }
3749
a48d0c12 3750 int stub_type = The_reloc_stub::
83a01957 3751 stub_type_for_reloc(r_type, address, destination);
a48d0c12 3752 if (stub_type == ST_NONE)
5019d64a 3753 return;
83a01957
HS
3754
3755 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3756 gold_assert(stub_table != NULL);
3757
3758 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3759 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3760 if (stub == NULL)
3761 {
3762 stub = new The_reloc_stub(stub_type);
3763 stub_table->add_reloc_stub(stub, key);
3764 }
3765 stub->set_destination_address(destination);
3766} // End of Target_aarch64::scan_reloc_for_stub
3767
3768
3769// This function scans a relocation section for stub generation.
3770// The template parameter Relocate must be a class type which provides
3771// a single function, relocate(), which implements the machine
3772// specific part of a relocation.
3773
3774// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3775// SHT_REL or SHT_RELA.
3776
3777// PRELOCS points to the relocation data. RELOC_COUNT is the number
3778// of relocs. OUTPUT_SECTION is the output section.
3779// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3780// mapped to output offsets.
3781
3782// VIEW is the section data, VIEW_ADDRESS is its memory address, and
3783// VIEW_SIZE is the size. These refer to the input section, unless
3784// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3785// the output section.
3786
3787template<int size, bool big_endian>
3788template<int sh_type>
3789void inline
3790Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3791 const Relocate_info<size, big_endian>* relinfo,
3792 const unsigned char* prelocs,
3793 size_t reloc_count,
3794 Output_section* /*output_section*/,
3795 bool /*needs_special_offset_handling*/,
3796 const unsigned char* /*view*/,
3797 Address view_address,
3798 section_size_type)
3799{
3800 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3801
3802 const int reloc_size =
3803 Reloc_types<sh_type,size,big_endian>::reloc_size;
3804 AArch64_relobj<size, big_endian>* object =
3805 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3806 unsigned int local_count = object->local_symbol_count();
3807
3808 gold::Default_comdat_behavior default_comdat_behavior;
3809 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3810
3811 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3812 {
3813 Reltype reloc(prelocs);
3814 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3815 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3816 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3817 if (r_type != elfcpp::R_AARCH64_CALL26
3818 && r_type != elfcpp::R_AARCH64_JUMP26)
3819 continue;
3820
3821 section_offset_type offset =
3822 convert_to_section_size_type(reloc.get_r_offset());
3823
3824 // Get the addend.
3825 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3826 reloc.get_r_addend();
3827
3828 const Sized_symbol<size>* sym;
3829 Symbol_value<size> symval;
3830 const Symbol_value<size> *psymval;
3831 bool is_defined_in_discarded_section;
3832 unsigned int shndx;
3833 if (r_sym < local_count)
3834 {
3835 sym = NULL;
3836 psymval = object->local_symbol(r_sym);
3837
3838 // If the local symbol belongs to a section we are discarding,
3839 // and that section is a debug section, try to find the
3840 // corresponding kept section and map this symbol to its
3841 // counterpart in the kept section. The symbol must not
3842 // correspond to a section we are folding.
3843 bool is_ordinary;
3844 shndx = psymval->input_shndx(&is_ordinary);
3845 is_defined_in_discarded_section =
3846 (is_ordinary
3847 && shndx != elfcpp::SHN_UNDEF
3848 && !object->is_section_included(shndx)
3849 && !relinfo->symtab->is_section_folded(object, shndx));
3850
3851 // We need to compute the would-be final value of this local
3852 // symbol.
3853 if (!is_defined_in_discarded_section)
3854 {
3855 typedef Sized_relobj_file<size, big_endian> ObjType;
3856 typename ObjType::Compute_final_local_value_status status =
3857 object->compute_final_local_value(r_sym, psymval, &symval,
3858 relinfo->symtab);
3859 if (status == ObjType::CFLV_OK)
3860 {
3861 // Currently we cannot handle a branch to a target in
3862 // a merged section. If this is the case, issue an error
3863 // and also free the merge symbol value.
3864 if (!symval.has_output_value())
3865 {
3866 const std::string& section_name =
3867 object->section_name(shndx);
3868 object->error(_("cannot handle branch to local %u "
3869 "in a merged section %s"),
3870 r_sym, section_name.c_str());
3871 }
3872 psymval = &symval;
3873 }
3874 else
3875 {
3876 // We cannot determine the final value.
3877 continue;
3878 }
3879 }
3880 }
3881 else
3882 {
3883 const Symbol* gsym;
3884 gsym = object->global_symbol(r_sym);
3885 gold_assert(gsym != NULL);
3886 if (gsym->is_forwarder())
3887 gsym = relinfo->symtab->resolve_forwards(gsym);
3888
3889 sym = static_cast<const Sized_symbol<size>*>(gsym);
3890 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3891 symval.set_output_symtab_index(sym->symtab_index());
3892 else
3893 symval.set_no_output_symtab_entry();
3894
3895 // We need to compute the would-be final value of this global
3896 // symbol.
3897 const Symbol_table* symtab = relinfo->symtab;
3898 const Sized_symbol<size>* sized_symbol =
3899 symtab->get_sized_symbol<size>(gsym);
3900 Symbol_table::Compute_final_value_status status;
3901 typename elfcpp::Elf_types<size>::Elf_Addr value =
3902 symtab->compute_final_value<size>(sized_symbol, &status);
3903
3904 // Skip this if the symbol has not output section.
3905 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3906 continue;
3907 symval.set_output_value(value);
3908
3909 if (gsym->type() == elfcpp::STT_TLS)
3910 symval.set_is_tls_symbol();
3911 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3912 symval.set_is_ifunc_symbol();
3913 psymval = &symval;
3914
3915 is_defined_in_discarded_section =
3916 (gsym->is_defined_in_discarded_section()
3917 && gsym->is_undefined());
3918 shndx = 0;
3919 }
3920
3921 Symbol_value<size> symval2;
3922 if (is_defined_in_discarded_section)
3923 {
3924 if (comdat_behavior == CB_UNDETERMINED)
3925 {
3926 std::string name = object->section_name(relinfo->data_shndx);
3927 comdat_behavior = default_comdat_behavior.get(name.c_str());
3928 }
3929 if (comdat_behavior == CB_PRETEND)
3930 {
3931 bool found;
3932 typename elfcpp::Elf_types<size>::Elf_Addr value =
3933 object->map_to_kept_section(shndx, &found);
3934 if (found)
3935 symval2.set_output_value(value + psymval->input_value());
3936 else
3937 symval2.set_output_value(0);
3938 }
3939 else
3940 {
3941 if (comdat_behavior == CB_WARNING)
3942 gold_warning_at_location(relinfo, i, offset,
3943 _("relocation refers to discarded "
3944 "section"));
3945 symval2.set_output_value(0);
3946 }
3947 symval2.set_no_output_symtab_entry();
3948 psymval = &symval2;
3949 }
3950
3951 // If symbol is a section symbol, we don't know the actual type of
3952 // destination. Give up.
3953 if (psymval->is_section_symbol())
3954 continue;
3955
3956 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3957 addend, view_address + offset);
3958 } // End of iterating relocs in a section
3959} // End of Target_aarch64::scan_reloc_section_for_stubs
3960
3961
3962// Scan an input section for stub generation.
3963
3964template<int size, bool big_endian>
3965void
3966Target_aarch64<size, big_endian>::scan_section_for_stubs(
3967 const Relocate_info<size, big_endian>* relinfo,
3968 unsigned int sh_type,
3969 const unsigned char* prelocs,
3970 size_t reloc_count,
3971 Output_section* output_section,
3972 bool needs_special_offset_handling,
3973 const unsigned char* view,
3974 Address view_address,
3975 section_size_type view_size)
3976{
3977 gold_assert(sh_type == elfcpp::SHT_RELA);
3978 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3979 relinfo,
3980 prelocs,
3981 reloc_count,
3982 output_section,
3983 needs_special_offset_handling,
3984 view,
3985 view_address,
3986 view_size);
3987}
3988
3989
3990// Relocate a single stub.
3991
3992template<int size, bool big_endian>
3993void Target_aarch64<size, big_endian>::
3994relocate_stub(The_reloc_stub* stub,
3995 const The_relocate_info*,
3996 Output_section*,
3997 unsigned char* view,
3998 Address address,
3999 section_size_type)
4000{
4001 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4002 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4003 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4004
4005 Insntype* ip = reinterpret_cast<Insntype*>(view);
a48d0c12
HS
4006 int insn_number = stub->insn_num();
4007 const uint32_t* insns = stub->insns();
83a01957
HS
4008 // Check the insns are really those stub insns.
4009 for (int i = 0; i < insn_number; ++i)
4010 {
4011 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
a48d0c12 4012 gold_assert(((uint32_t)insn == insns[i]));
83a01957
HS
4013 }
4014
4015 Address dest = stub->destination_address();
4016
a48d0c12 4017 switch(stub->type())
83a01957 4018 {
a48d0c12 4019 case ST_ADRP_BRANCH:
83a01957
HS
4020 {
4021 // 1st reloc is ADR_PREL_PG_HI21
4022 The_reloc_functions_status status =
4023 The_reloc_functions::adrp(view, dest, address);
4024 // An error should never arise in the above step. If so, please
4025 // check 'aarch64_valid_for_adrp_p'.
4026 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4027
4028 // 2nd reloc is ADD_ABS_LO12_NC
4029 const AArch64_reloc_property* arp =
4030 aarch64_reloc_property_table->get_reloc_property(
4031 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4032 gold_assert(arp != NULL);
4033 status = The_reloc_functions::template
4034 rela_general<32>(view + 4, dest, 0, arp);
4035 // An error should never arise, it is an "_NC" relocation.
4036 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4037 }
4038 break;
4039
a48d0c12 4040 case ST_LONG_BRANCH_ABS:
83a01957
HS
4041 // 1st reloc is R_AARCH64_PREL64, at offset 8
4042 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4043 break;
4044
a48d0c12 4045 case ST_LONG_BRANCH_PCREL:
83a01957
HS
4046 {
4047 // "PC" calculation is the 2nd insn in the stub.
4048 uint64_t offset = dest - (address + 4);
4049 // Offset is placed at offset 4 and 5.
4050 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4051 }
4052 break;
4053
4054 default:
9726c3c1 4055 gold_unreachable();
83a01957
HS
4056 }
4057}
4058
4059
053a4d68
JY
4060// A class to handle the PLT data.
4061// This is an abstract base class that handles most of the linker details
4062// but does not know the actual contents of PLT entries. The derived
4063// classes below fill in those details.
4064
4065template<int size, bool big_endian>
4066class Output_data_plt_aarch64 : public Output_section_data
4067{
4068 public:
4069 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4070 Reloc_section;
4071 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4072
4073 Output_data_plt_aarch64(Layout* layout,
9363c7c3 4074 uint64_t addralign,
3a531937
JY
4075 Output_data_got_aarch64<size, big_endian>* got,
4076 Output_data_space* got_plt,
4077 Output_data_space* got_irelative)
9726c3c1 4078 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3a531937
JY
4079 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4080 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
053a4d68
JY
4081 { this->init(layout); }
4082
4083 // Initialize the PLT section.
4084 void
4085 init(Layout* layout);
4086
4087 // Add an entry to the PLT.
4088 void
9726c3c1
HS
4089 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4090
4091 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4092 unsigned int
4093 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4094 Sized_relobj_file<size, big_endian>* relobj,
4095 unsigned int local_sym_index);
4096
4097 // Add the relocation for a PLT entry.
4098 void
4099 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4100 unsigned int got_offset);
053a4d68 4101
3a531937
JY
4102 // Add the reserved TLSDESC_PLT entry to the PLT.
4103 void
4104 reserve_tlsdesc_entry(unsigned int got_offset)
4105 { this->tlsdesc_got_offset_ = got_offset; }
4106
4107 // Return true if a TLSDESC_PLT entry has been reserved.
4108 bool
4109 has_tlsdesc_entry() const
4110 { return this->tlsdesc_got_offset_ != -1U; }
4111
4112 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4113 unsigned int
4114 get_tlsdesc_got_offset() const
4115 { return this->tlsdesc_got_offset_; }
4116
4117 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4118 unsigned int
4119 get_tlsdesc_plt_offset() const
4120 {
4121 return (this->first_plt_entry_offset() +
4122 (this->count_ + this->irelative_count_)
4123 * this->get_plt_entry_size());
4124 }
4125
053a4d68
JY
4126 // Return the .rela.plt section data.
4127 Reloc_section*
4128 rela_plt()
4129 { return this->rel_; }
4130
3a531937
JY
4131 // Return where the TLSDESC relocations should go.
4132 Reloc_section*
4133 rela_tlsdesc(Layout*);
4134
4135 // Return where the IRELATIVE relocations should go in the PLT
4136 // relocations.
4137 Reloc_section*
4138 rela_irelative(Symbol_table*, Layout*);
4139
9363c7c3
JY
4140 // Return whether we created a section for IRELATIVE relocations.
4141 bool
4142 has_irelative_section() const
4143 { return this->irelative_rel_ != NULL; }
4144
053a4d68
JY
4145 // Return the number of PLT entries.
4146 unsigned int
4147 entry_count() const
3a531937 4148 { return this->count_ + this->irelative_count_; }
053a4d68
JY
4149
4150 // Return the offset of the first non-reserved PLT entry.
4151 unsigned int
3a531937 4152 first_plt_entry_offset() const
053a4d68
JY
4153 { return this->do_first_plt_entry_offset(); }
4154
4155 // Return the size of a PLT entry.
4156 unsigned int
4157 get_plt_entry_size() const
4158 { return this->do_get_plt_entry_size(); }
4159
3a531937
JY
4160 // Return the reserved tlsdesc entry size.
4161 unsigned int
4162 get_plt_tlsdesc_entry_size() const
4163 { return this->do_get_plt_tlsdesc_entry_size(); }
4164
9363c7c3
JY
4165 // Return the PLT address to use for a global symbol.
4166 uint64_t
4167 address_for_global(const Symbol*);
4168
4169 // Return the PLT address to use for a local symbol.
4170 uint64_t
4171 address_for_local(const Relobj*, unsigned int symndx);
4172
053a4d68
JY
4173 protected:
4174 // Fill in the first PLT entry.
4175 void
4176 fill_first_plt_entry(unsigned char* pov,
4177 Address got_address,
4178 Address plt_address)
4179 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4180
4181 // Fill in a normal PLT entry.
4182 void
4183 fill_plt_entry(unsigned char* pov,
4184 Address got_address,
4185 Address plt_address,
4186 unsigned int got_offset,
4187 unsigned int plt_offset)
4188 {
4189 this->do_fill_plt_entry(pov, got_address, plt_address,
4190 got_offset, plt_offset);
4191 }
4192
3a531937
JY
4193 // Fill in the reserved TLSDESC PLT entry.
4194 void
4195 fill_tlsdesc_entry(unsigned char* pov,
4196 Address gotplt_address,
4197 Address plt_address,
4198 Address got_base,
4199 unsigned int tlsdesc_got_offset,
4200 unsigned int plt_offset)
4201 {
4202 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4203 tlsdesc_got_offset, plt_offset);
4204 }
4205
053a4d68
JY
4206 virtual unsigned int
4207 do_first_plt_entry_offset() const = 0;
4208
4209 virtual unsigned int
4210 do_get_plt_entry_size() const = 0;
4211
3a531937
JY
4212 virtual unsigned int
4213 do_get_plt_tlsdesc_entry_size() const = 0;
4214
053a4d68
JY
4215 virtual void
4216 do_fill_first_plt_entry(unsigned char* pov,
4217 Address got_addr,
4218 Address plt_addr) = 0;
4219
4220 virtual void
4221 do_fill_plt_entry(unsigned char* pov,
4222 Address got_address,
4223 Address plt_address,
4224 unsigned int got_offset,
4225 unsigned int plt_offset) = 0;
4226
3a531937
JY
4227 virtual void
4228 do_fill_tlsdesc_entry(unsigned char* pov,
4229 Address gotplt_address,
4230 Address plt_address,
4231 Address got_base,
4232 unsigned int tlsdesc_got_offset,
4233 unsigned int plt_offset) = 0;
4234
053a4d68
JY
4235 void
4236 do_adjust_output_section(Output_section* os);
4237
4238 // Write to a map file.
4239 void
4240 do_print_to_mapfile(Mapfile* mapfile) const
4241 { mapfile->print_output_data(this, _("** PLT")); }
4242
4243 private:
4244 // Set the final size.
4245 void
4246 set_final_data_size();
4247
4248 // Write out the PLT data.
4249 void
4250 do_write(Output_file*);
4251
4252 // The reloc section.
4253 Reloc_section* rel_;
3a531937
JY
4254
4255 // The TLSDESC relocs, if necessary. These must follow the regular
4256 // PLT relocs.
4257 Reloc_section* tlsdesc_rel_;
4258
9363c7c3
JY
4259 // The IRELATIVE relocs, if necessary. These must follow the
4260 // regular PLT relocations.
4261 Reloc_section* irelative_rel_;
3a531937 4262
053a4d68
JY
4263 // The .got section.
4264 Output_data_got_aarch64<size, big_endian>* got_;
3a531937 4265
053a4d68
JY
4266 // The .got.plt section.
4267 Output_data_space* got_plt_;
3a531937
JY
4268
4269 // The part of the .got.plt section used for IRELATIVE relocs.
4270 Output_data_space* got_irelative_;
4271
053a4d68
JY
4272 // The number of PLT entries.
4273 unsigned int count_;
3a531937 4274
fa89cc82 4275 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
3a531937
JY
4276 // follow the regular PLT entries.
4277 unsigned int irelative_count_;
4278
4279 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4280 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4281 // indicates an offset is not allocated.
4282 unsigned int tlsdesc_got_offset_;
053a4d68
JY
4283};
4284
4285// Initialize the PLT section.
4286
4287template<int size, bool big_endian>
4288void
4289Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4290{
4291 this->rel_ = new Reloc_section(false);
4292 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4293 elfcpp::SHF_ALLOC, this->rel_,
4294 ORDER_DYNAMIC_PLT_RELOCS, false);
4295}
4296
4297template<int size, bool big_endian>
4298void
4299Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4300 Output_section* os)
4301{
4302 os->set_entsize(this->get_plt_entry_size());
4303}
4304
4305// Add an entry to the PLT.
4306
4307template<int size, bool big_endian>
4308void
9726c3c1
HS
4309Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4310 Layout* layout, Symbol* gsym)
053a4d68
JY
4311{
4312 gold_assert(!gsym->has_plt_offset());
9363c7c3 4313
9726c3c1
HS
4314 unsigned int* pcount;
4315 unsigned int plt_reserved;
4316 Output_section_data_build* got;
9363c7c3 4317
9726c3c1
HS
4318 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4319 && gsym->can_use_relative_reloc(false))
4320 {
4321 pcount = &this->irelative_count_;
4322 plt_reserved = 0;
4323 got = this->got_irelative_;
4324 }
4325 else
4326 {
4327 pcount = &this->count_;
4328 plt_reserved = this->first_plt_entry_offset();
4329 got = this->got_plt_;
4330 }
9363c7c3 4331
9726c3c1
HS
4332 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4333 + plt_reserved);
4334
4335 ++*pcount;
4336
4337 section_offset_type got_offset = got->current_data_size();
9363c7c3
JY
4338
4339 // Every PLT entry needs a GOT entry which points back to the PLT
4340 // entry (this will be changed by the dynamic linker, normally
4341 // lazily when the function is called).
9726c3c1 4342 got->set_current_data_size(got_offset + size / 8);
9363c7c3
JY
4343
4344 // Every PLT entry needs a reloc.
9726c3c1 4345 this->add_relocation(symtab, layout, gsym, got_offset);
9363c7c3
JY
4346
4347 // Note that we don't need to save the symbol. The contents of the
4348 // PLT are independent of which symbols are used. The symbols only
4349 // appear in the relocations.
4350}
4351
9726c3c1
HS
4352// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4353// the PLT offset.
4354
4355template<int size, bool big_endian>
4356unsigned int
4357Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4358 Symbol_table* symtab,
4359 Layout* layout,
4360 Sized_relobj_file<size, big_endian>* relobj,
4361 unsigned int local_sym_index)
4362{
4363 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4364 ++this->irelative_count_;
4365
4366 section_offset_type got_offset = this->got_irelative_->current_data_size();
4367
4368 // Every PLT entry needs a GOT entry which points back to the PLT
4369 // entry.
4370 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4371
4372 // Every PLT entry needs a reloc.
4373 Reloc_section* rela = this->rela_irelative(symtab, layout);
4374 rela->add_symbolless_local_addend(relobj, local_sym_index,
4375 elfcpp::R_AARCH64_IRELATIVE,
4376 this->got_irelative_, got_offset, 0);
4377
4378 return plt_offset;
4379}
4380
4381// Add the relocation for a PLT entry.
4382
4383template<int size, bool big_endian>
4384void
4385Output_data_plt_aarch64<size, big_endian>::add_relocation(
4386 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4387{
4388 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4389 && gsym->can_use_relative_reloc(false))
4390 {
4391 Reloc_section* rela = this->rela_irelative(symtab, layout);
4392 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4393 this->got_irelative_, got_offset, 0);
4394 }
4395 else
4396 {
4397 gsym->set_needs_dynsym_entry();
4398 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4399 got_offset, 0);
4400 }
4401}
4402
3a531937
JY
4403// Return where the TLSDESC relocations should go, creating it if
4404// necessary. These follow the JUMP_SLOT relocations.
4405
4406template<int size, bool big_endian>
4407typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4408Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4409{
4410 if (this->tlsdesc_rel_ == NULL)
4411 {
4412 this->tlsdesc_rel_ = new Reloc_section(false);
4413 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4414 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4415 ORDER_DYNAMIC_PLT_RELOCS, false);
4416 gold_assert(this->tlsdesc_rel_->output_section()
4417 == this->rel_->output_section());
4418 }
4419 return this->tlsdesc_rel_;
4420}
4421
4422// Return where the IRELATIVE relocations should go in the PLT. These
4423// follow the JUMP_SLOT and the TLSDESC relocations.
4424
4425template<int size, bool big_endian>
4426typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4427Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4428 Layout* layout)
4429{
4430 if (this->irelative_rel_ == NULL)
4431 {
4432 // Make sure we have a place for the TLSDESC relocations, in
4433 // case we see any later on.
4434 this->rela_tlsdesc(layout);
4435 this->irelative_rel_ = new Reloc_section(false);
4436 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4437 elfcpp::SHF_ALLOC, this->irelative_rel_,
4438 ORDER_DYNAMIC_PLT_RELOCS, false);
4439 gold_assert(this->irelative_rel_->output_section()
4440 == this->rel_->output_section());
4441
4442 if (parameters->doing_static_link())
4443 {
4444 // A statically linked executable will only have a .rela.plt
4445 // section to hold R_AARCH64_IRELATIVE relocs for
4446 // STT_GNU_IFUNC symbols. The library will use these
4447 // symbols to locate the IRELATIVE relocs at program startup
4448 // time.
4449 symtab->define_in_output_data("__rela_iplt_start", NULL,
4450 Symbol_table::PREDEFINED,
4451 this->irelative_rel_, 0, 0,
4452 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4453 elfcpp::STV_HIDDEN, 0, false, true);
4454 symtab->define_in_output_data("__rela_iplt_end", NULL,
4455 Symbol_table::PREDEFINED,
4456 this->irelative_rel_, 0, 0,
4457 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4458 elfcpp::STV_HIDDEN, 0, true, true);
4459 }
4460 }
4461 return this->irelative_rel_;
4462}
4463
9363c7c3
JY
4464// Return the PLT address to use for a global symbol.
4465
4466template<int size, bool big_endian>
4467uint64_t
4468Output_data_plt_aarch64<size, big_endian>::address_for_global(
4469 const Symbol* gsym)
4470{
4471 uint64_t offset = 0;
4472 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4473 && gsym->can_use_relative_reloc(false))
4474 offset = (this->first_plt_entry_offset() +
4475 this->count_ * this->get_plt_entry_size());
4476 return this->address() + offset + gsym->plt_offset();
4477}
4478
4479// Return the PLT address to use for a local symbol. These are always
4480// IRELATIVE relocs.
4481
4482template<int size, bool big_endian>
4483uint64_t
4484Output_data_plt_aarch64<size, big_endian>::address_for_local(
4485 const Relobj* object,
4486 unsigned int r_sym)
4487{
4488 return (this->address()
4489 + this->first_plt_entry_offset()
4490 + this->count_ * this->get_plt_entry_size()
4491 + object->local_plt_offset(r_sym));
053a4d68
JY
4492}
4493
4494// Set the final size.
9363c7c3 4495
053a4d68
JY
4496template<int size, bool big_endian>
4497void
4498Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4499{
3a531937
JY
4500 unsigned int count = this->count_ + this->irelative_count_;
4501 unsigned int extra_size = 0;
4502 if (this->has_tlsdesc_entry())
4503 extra_size += this->get_plt_tlsdesc_entry_size();
053a4d68 4504 this->set_data_size(this->first_plt_entry_offset()
3a531937
JY
4505 + count * this->get_plt_entry_size()
4506 + extra_size);
053a4d68
JY
4507}
4508
4509template<int size, bool big_endian>
4510class Output_data_plt_aarch64_standard :
4511 public Output_data_plt_aarch64<size, big_endian>
4512{
4513 public:
4514 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3a531937
JY
4515 Output_data_plt_aarch64_standard(
4516 Layout* layout,
4517 Output_data_got_aarch64<size, big_endian>* got,
4518 Output_data_space* got_plt,
4519 Output_data_space* got_irelative)
053a4d68 4520 : Output_data_plt_aarch64<size, big_endian>(layout,
9363c7c3 4521 size == 32 ? 4 : 8,
3a531937
JY
4522 got, got_plt,
4523 got_irelative)
053a4d68
JY
4524 { }
4525
4526 protected:
4527 // Return the offset of the first non-reserved PLT entry.
4528 virtual unsigned int
4529 do_first_plt_entry_offset() const
4530 { return this->first_plt_entry_size; }
4531
4532 // Return the size of a PLT entry
4533 virtual unsigned int
4534 do_get_plt_entry_size() const
4535 { return this->plt_entry_size; }
4536
3a531937
JY
4537 // Return the size of a tlsdesc entry
4538 virtual unsigned int
4539 do_get_plt_tlsdesc_entry_size() const
4540 { return this->plt_tlsdesc_entry_size; }
4541
053a4d68
JY
4542 virtual void
4543 do_fill_first_plt_entry(unsigned char* pov,
9363c7c3
JY
4544 Address got_address,
4545 Address plt_address);
053a4d68
JY
4546
4547 virtual void
4548 do_fill_plt_entry(unsigned char* pov,
9363c7c3
JY
4549 Address got_address,
4550 Address plt_address,
4551 unsigned int got_offset,
4552 unsigned int plt_offset);
053a4d68 4553
3a531937
JY
4554 virtual void
4555 do_fill_tlsdesc_entry(unsigned char* pov,
4556 Address gotplt_address,
4557 Address plt_address,
4558 Address got_base,
4559 unsigned int tlsdesc_got_offset,
4560 unsigned int plt_offset);
4561
053a4d68
JY
4562 private:
4563 // The size of the first plt entry size.
4564 static const int first_plt_entry_size = 32;
4565 // The size of the plt entry size.
4566 static const int plt_entry_size = 16;
3a531937
JY
4567 // The size of the plt tlsdesc entry size.
4568 static const int plt_tlsdesc_entry_size = 32;
053a4d68
JY
4569 // Template for the first PLT entry.
4570 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4571 // Template for subsequent PLT entries.
4572 static const uint32_t plt_entry[plt_entry_size / 4];
3a531937
JY
4573 // The reserved TLSDESC entry in the PLT for an executable.
4574 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
053a4d68
JY
4575};
4576
4577// The first entry in the PLT for an executable.
4578
4579template<>
4580const uint32_t
4581Output_data_plt_aarch64_standard<32, false>::
4582 first_plt_entry[first_plt_entry_size / 4] =
4583{
4584 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4585 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4586 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4587 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4588 0xd61f0220, /* br x17 */
4589 0xd503201f, /* nop */
4590 0xd503201f, /* nop */
4591 0xd503201f, /* nop */
4592};
4593
83a01957 4594
053a4d68
JY
4595template<>
4596const uint32_t
4597Output_data_plt_aarch64_standard<32, true>::
4598 first_plt_entry[first_plt_entry_size / 4] =
4599{
4600 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4601 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4602 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4603 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4604 0xd61f0220, /* br x17 */
4605 0xd503201f, /* nop */
4606 0xd503201f, /* nop */
4607 0xd503201f, /* nop */
4608};
4609
83a01957 4610
053a4d68
JY
4611template<>
4612const uint32_t
4613Output_data_plt_aarch64_standard<64, false>::
4614 first_plt_entry[first_plt_entry_size / 4] =
4615{
4616 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4617 0x90000010, /* adrp x16, PLT_GOT+16 */
4618 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4619 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4620 0xd61f0220, /* br x17 */
4621 0xd503201f, /* nop */
4622 0xd503201f, /* nop */
4623 0xd503201f, /* nop */
4624};
4625
83a01957 4626
053a4d68
JY
4627template<>
4628const uint32_t
4629Output_data_plt_aarch64_standard<64, true>::
4630 first_plt_entry[first_plt_entry_size / 4] =
4631{
4632 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4633 0x90000010, /* adrp x16, PLT_GOT+16 */
4634 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4635 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4636 0xd61f0220, /* br x17 */
4637 0xd503201f, /* nop */
4638 0xd503201f, /* nop */
4639 0xd503201f, /* nop */
4640};
4641
83a01957 4642
053a4d68
JY
4643template<>
4644const uint32_t
4645Output_data_plt_aarch64_standard<32, false>::
4646 plt_entry[plt_entry_size / 4] =
4647{
4648 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4649 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4650 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4651 0xd61f0220, /* br x17. */
4652};
4653
83a01957 4654
053a4d68
JY
4655template<>
4656const uint32_t
4657Output_data_plt_aarch64_standard<32, true>::
4658 plt_entry[plt_entry_size / 4] =
4659{
4660 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4661 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4662 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4663 0xd61f0220, /* br x17. */
4664};
4665
83a01957 4666
053a4d68
JY
4667template<>
4668const uint32_t
4669Output_data_plt_aarch64_standard<64, false>::
4670 plt_entry[plt_entry_size / 4] =
4671{
4672 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4673 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4674 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4675 0xd61f0220, /* br x17. */
4676};
4677
83a01957 4678
053a4d68
JY
4679template<>
4680const uint32_t
4681Output_data_plt_aarch64_standard<64, true>::
4682 plt_entry[plt_entry_size / 4] =
4683{
4684 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4685 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4686 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4687 0xd61f0220, /* br x17. */
4688};
4689
83a01957 4690
053a4d68
JY
4691template<int size, bool big_endian>
4692void
4693Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4694 unsigned char* pov,
9363c7c3
JY
4695 Address got_address,
4696 Address plt_address)
053a4d68
JY
4697{
4698 // PLT0 of the small PLT looks like this in ELF64 -
4699 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4700 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4701 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4702 // symbol resolver
4703 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4704 // GOTPLT entry for this.
4705 // br x17
4706 // PLT0 will be slightly different in ELF32 due to different got entry
4707 // size.
4708 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
9363c7c3
JY
4709 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4710
4711 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4712 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4713 // FIXME: This only works for 64bit
4714 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4715 gotplt_2nd_ent, plt_address + 4);
4716
4717 // Fill in R_AARCH64_LDST8_LO12
4718 elfcpp::Swap<32, big_endian>::writeval(
4719 pov + 8,
4720 ((this->first_plt_entry[2] & 0xffc003ff)
4721 | ((gotplt_2nd_ent & 0xff8) << 7)));
4722
4723 // Fill in R_AARCH64_ADD_ABS_LO12
4724 elfcpp::Swap<32, big_endian>::writeval(
4725 pov + 12,
4726 ((this->first_plt_entry[3] & 0xffc003ff)
4727 | ((gotplt_2nd_ent & 0xfff) << 10)));
053a4d68
JY
4728}
4729
83a01957 4730
053a4d68 4731// Subsequent entries in the PLT for an executable.
9363c7c3 4732// FIXME: This only works for 64bit
053a4d68
JY
4733
4734template<int size, bool big_endian>
4735void
4736Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4737 unsigned char* pov,
9363c7c3
JY
4738 Address got_address,
4739 Address plt_address,
4740 unsigned int got_offset,
4741 unsigned int plt_offset)
053a4d68
JY
4742{
4743 memcpy(pov, this->plt_entry, this->plt_entry_size);
9363c7c3
JY
4744
4745 Address gotplt_entry_address = got_address + got_offset;
4746 Address plt_entry_address = plt_address + plt_offset;
4747
4748 // Fill in R_AARCH64_PCREL_ADR_HI21
4749 AArch64_relocate_functions<size, big_endian>::adrp(
4750 pov,
4751 gotplt_entry_address,
4752 plt_entry_address);
4753
4754 // Fill in R_AARCH64_LDST64_ABS_LO12
4755 elfcpp::Swap<32, big_endian>::writeval(
4756 pov + 4,
4757 ((this->plt_entry[1] & 0xffc003ff)
4758 | ((gotplt_entry_address & 0xff8) << 7)));
4759
4760 // Fill in R_AARCH64_ADD_ABS_LO12
4761 elfcpp::Swap<32, big_endian>::writeval(
4762 pov + 8,
4763 ((this->plt_entry[2] & 0xffc003ff)
4764 | ((gotplt_entry_address & 0xfff) <<10)));
4765
053a4d68
JY
4766}
4767
3a531937
JY
4768
4769template<>
4770const uint32_t
4771Output_data_plt_aarch64_standard<32, false>::
4772 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4773{
4774 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4775 0x90000002, /* adrp x2, 0 */
4776 0x90000003, /* adrp x3, 0 */
4777 0xb9400042, /* ldr w2, [w2, #0] */
4778 0x11000063, /* add w3, w3, 0 */
4779 0xd61f0040, /* br x2 */
4780 0xd503201f, /* nop */
4781 0xd503201f, /* nop */
4782};
4783
4784template<>
4785const uint32_t
4786Output_data_plt_aarch64_standard<32, true>::
4787 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4788{
4789 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4790 0x90000002, /* adrp x2, 0 */
4791 0x90000003, /* adrp x3, 0 */
4792 0xb9400042, /* ldr w2, [w2, #0] */
4793 0x11000063, /* add w3, w3, 0 */
4794 0xd61f0040, /* br x2 */
4795 0xd503201f, /* nop */
4796 0xd503201f, /* nop */
4797};
4798
4799template<>
4800const uint32_t
4801Output_data_plt_aarch64_standard<64, false>::
4802 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4803{
4804 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4805 0x90000002, /* adrp x2, 0 */
4806 0x90000003, /* adrp x3, 0 */
4807 0xf9400042, /* ldr x2, [x2, #0] */
4808 0x91000063, /* add x3, x3, 0 */
4809 0xd61f0040, /* br x2 */
4810 0xd503201f, /* nop */
4811 0xd503201f, /* nop */
4812};
4813
4814template<>
4815const uint32_t
4816Output_data_plt_aarch64_standard<64, true>::
4817 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4818{
4819 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4820 0x90000002, /* adrp x2, 0 */
4821 0x90000003, /* adrp x3, 0 */
4822 0xf9400042, /* ldr x2, [x2, #0] */
4823 0x91000063, /* add x3, x3, 0 */
4824 0xd61f0040, /* br x2 */
4825 0xd503201f, /* nop */
4826 0xd503201f, /* nop */
4827};
4828
4829template<int size, bool big_endian>
4830void
4831Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4832 unsigned char* pov,
4833 Address gotplt_address,
4834 Address plt_address,
4835 Address got_base,
4836 unsigned int tlsdesc_got_offset,
4837 unsigned int plt_offset)
4838{
4839 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4840
4841 // move DT_TLSDESC_GOT address into x2
4842 // move .got.plt address into x3
4843 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4844 Address plt_entry_address = plt_address + plt_offset;
4845
4846 // R_AARCH64_ADR_PREL_PG_HI21
4847 AArch64_relocate_functions<size, big_endian>::adrp(
4848 pov + 4,
4849 tlsdesc_got_entry,
4850 plt_entry_address + 4);
4851
4852 // R_AARCH64_ADR_PREL_PG_HI21
4853 AArch64_relocate_functions<size, big_endian>::adrp(
4854 pov + 8,
4855 gotplt_address,
4856 plt_entry_address + 8);
4857
4858 // R_AARCH64_LDST64_ABS_LO12
4859 elfcpp::Swap<32, big_endian>::writeval(
4860 pov + 12,
4861 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4862 | ((tlsdesc_got_entry & 0xff8) << 7)));
4863
4864 // R_AARCH64_ADD_ABS_LO12
4865 elfcpp::Swap<32, big_endian>::writeval(
4866 pov + 16,
4867 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4868 | ((gotplt_address & 0xfff) << 10)));
4869}
4870
053a4d68
JY
4871// Write out the PLT. This uses the hand-coded instructions above,
4872// and adjusts them as needed. This is specified by the AMD64 ABI.
4873
4874template<int size, bool big_endian>
4875void
4876Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4877{
4878 const off_t offset = this->offset();
4879 const section_size_type oview_size =
4880 convert_to_section_size_type(this->data_size());
4881 unsigned char* const oview = of->get_output_view(offset, oview_size);
4882
4883 const off_t got_file_offset = this->got_plt_->offset();
9726c3c1
HS
4884 gold_assert(got_file_offset + this->got_plt_->data_size()
4885 == this->got_irelative_->offset());
4886
053a4d68 4887 const section_size_type got_size =
9726c3c1
HS
4888 convert_to_section_size_type(this->got_plt_->data_size()
4889 + this->got_irelative_->data_size());
053a4d68
JY
4890 unsigned char* const got_view = of->get_output_view(got_file_offset,
4891 got_size);
4892
4893 unsigned char* pov = oview;
4894
4895 // The base address of the .plt section.
4896 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
053a4d68 4897 // The base address of the PLT portion of the .got section.
3a531937
JY
4898 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4899 = this->got_plt_->address();
053a4d68 4900
3a531937 4901 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
053a4d68
JY
4902 pov += this->first_plt_entry_offset();
4903
4904 // The first three entries in .got.plt are reserved.
4905 unsigned char* got_pov = got_view;
4906 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4907 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4908
4909 unsigned int plt_offset = this->first_plt_entry_offset();
4910 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3a531937 4911 const unsigned int count = this->count_ + this->irelative_count_;
053a4d68
JY
4912 for (unsigned int plt_index = 0;
4913 plt_index < count;
4914 ++plt_index,
4915 pov += this->get_plt_entry_size(),
4916 got_pov += size / 8,
4917 plt_offset += this->get_plt_entry_size(),
4918 got_offset += size / 8)
4919 {
4920 // Set and adjust the PLT entry itself.
3a531937 4921 this->fill_plt_entry(pov, gotplt_address, plt_address,
9363c7c3 4922 got_offset, plt_offset);
053a4d68 4923
9363c7c3
JY
4924 // Set the entry in the GOT, which points to plt0.
4925 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
053a4d68
JY
4926 }
4927
3a531937
JY
4928 if (this->has_tlsdesc_entry())
4929 {
4930 // Set and adjust the reserved TLSDESC PLT entry.
4931 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4932 // The base address of the .base section.
4933 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4934 this->got_->address();
4935 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4936 tlsdesc_got_offset, plt_offset);
4937 pov += this->get_plt_tlsdesc_entry_size();
4938 }
4939
053a4d68
JY
4940 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4941 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4942
4943 of->write_output_view(offset, oview_size, oview);
4944 of->write_output_view(got_file_offset, got_size, got_view);
4945}
4946
9363c7c3
JY
4947// Telling how to update the immediate field of an instruction.
4948struct AArch64_howto
4949{
4950 // The immediate field mask.
4951 elfcpp::Elf_Xword dst_mask;
4952
4953 // The offset to apply relocation immediate
4954 int doffset;
4955
4956 // The second part offset, if the immediate field has two parts.
4957 // -1 if the immediate field has only one part.
4958 int doffset2;
4959};
4960
4961static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4962{
4963 {0, -1, -1}, // DATA
4964 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4965 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4966 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4967 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4968 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4969 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4970 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4971 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4972 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4973 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4974};
4975
4976// AArch64 relocate function class
4977
4978template<int size, bool big_endian>
4979class AArch64_relocate_functions
4980{
4981 public:
4982 typedef enum
4983 {
4984 STATUS_OKAY, // No error during relocation.
4985 STATUS_OVERFLOW, // Relocation overflow.
4986 STATUS_BAD_RELOC, // Relocation cannot be applied.
4987 } Status;
4988
9363c7c3
JY
4989 typedef AArch64_relocate_functions<size, big_endian> This;
4990 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
4991 typedef Relocate_info<size, big_endian> The_relocate_info;
4992 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4993 typedef Reloc_stub<size, big_endian> The_reloc_stub;
83a01957
HS
4994 typedef Stub_table<size, big_endian> The_stub_table;
4995 typedef elfcpp::Rela<size, big_endian> The_rela;
9726c3c1 4996 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
9363c7c3
JY
4997
4998 // Return the page address of the address.
4999 // Page(address) = address & ~0xFFF
5000
9726c3c1 5001 static inline AArch64_valtype
9363c7c3
JY
5002 Page(Address address)
5003 {
5004 return (address & (~static_cast<Address>(0xFFF)));
5005 }
5006
83a01957 5007 private:
9363c7c3
JY
5008 // Update instruction (pointed by view) with selected bits (immed).
5009 // val = (val & ~dst_mask) | (immed << doffset)
5010
5011 template<int valsize>
5012 static inline void
5013 update_view(unsigned char* view,
9726c3c1 5014 AArch64_valtype immed,
9363c7c3
JY
5015 elfcpp::Elf_Xword doffset,
5016 elfcpp::Elf_Xword dst_mask)
5017 {
5018 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5019 Valtype* wv = reinterpret_cast<Valtype*>(view);
5020 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5021
5022 // Clear immediate fields.
5023 val &= ~dst_mask;
5024 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5025 static_cast<Valtype>(val | (immed << doffset)));
5026 }
5027
5028 // Update two parts of an instruction (pointed by view) with selected
5029 // bits (immed1 and immed2).
5030 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5031
5032 template<int valsize>
5033 static inline void
5034 update_view_two_parts(
5035 unsigned char* view,
9726c3c1
HS
5036 AArch64_valtype immed1,
5037 AArch64_valtype immed2,
9363c7c3
JY
5038 elfcpp::Elf_Xword doffset1,
5039 elfcpp::Elf_Xword doffset2,
5040 elfcpp::Elf_Xword dst_mask)
5041 {
5042 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5043 Valtype* wv = reinterpret_cast<Valtype*>(view);
5044 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5045 val &= ~dst_mask;
5046 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5047 static_cast<Valtype>(val | (immed1 << doffset1) |
5048 (immed2 << doffset2)));
5049 }
5050
9726c3c1 5051 // Update adr or adrp instruction with immed.
9363c7c3
JY
5052 // In adr and adrp: [30:29] immlo [23:5] immhi
5053
5054 static inline void
9726c3c1 5055 update_adr(unsigned char* view, AArch64_valtype immed)
9363c7c3
JY
5056 {
5057 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
9363c7c3
JY
5058 This::template update_view_two_parts<32>(
5059 view,
5060 immed & 0x3,
5061 (immed & 0x1ffffc) >> 2,
5062 29,
5063 5,
5064 dst_mask);
5065 }
5066
3a531937
JY
5067 // Update movz/movn instruction with bits immed.
5068 // Set instruction to movz if is_movz is true, otherwise set instruction
5069 // to movn.
9726c3c1 5070
3a531937
JY
5071 static inline void
5072 update_movnz(unsigned char* view,
9726c3c1 5073 AArch64_valtype immed,
3a531937
JY
5074 bool is_movz)
5075 {
5076 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5077 Valtype* wv = reinterpret_cast<Valtype*>(view);
5078 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5079
5080 const elfcpp::Elf_Xword doffset =
5081 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5082 const elfcpp::Elf_Xword dst_mask =
5083 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5084
5085 // Clear immediate fields and opc code.
9726c3c1 5086 val &= ~(dst_mask | (0x3 << 29));
3a531937
JY
5087
5088 // Set instruction to movz or movn.
5089 // movz: [30:29] is 10 movn: [30:29] is 00
5090 if (is_movz)
9726c3c1 5091 val |= (0x2 << 29);
3a531937
JY
5092
5093 elfcpp::Swap<32, big_endian>::writeval(wv,
5094 static_cast<Valtype>(val | (immed << doffset)));
5095 }
5096
9726c3c1
HS
5097 // Update selected bits in text.
5098
5099 template<int valsize>
5100 static inline typename This::Status
5101 reloc_common(unsigned char* view, Address x,
5102 const AArch64_reloc_property* reloc_property)
5103 {
5104 // Select bits from X.
5105 Address immed = reloc_property->select_x_value(x);
5106
5107 // Update view.
5108 const AArch64_reloc_property::Reloc_inst inst =
5109 reloc_property->reloc_inst();
5110 // If it is a data relocation or instruction has 2 parts of immediate
5111 // fields, you should not call pcrela_general.
5112 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5113 aarch64_howto[inst].doffset != -1);
5114 This::template update_view<valsize>(view, immed,
5115 aarch64_howto[inst].doffset,
5116 aarch64_howto[inst].dst_mask);
5117
5118 // Do check overflow or alignment if needed.
5119 return (reloc_property->checkup_x_value(x)
5120 ? This::STATUS_OKAY
5121 : This::STATUS_OVERFLOW);
5122 }
5123
9363c7c3
JY
5124 public:
5125
a48d0c12
HS
5126 // Construct a B insn. Note, although we group it here with other relocation
5127 // operation, there is actually no 'relocation' involved here.
5128 static inline void
5129 construct_b(unsigned char* view, unsigned int branch_offset)
5130 {
5131 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5132 26, 0, 0xffffffff);
5133 }
5134
9363c7c3
JY
5135 // Do a simple rela relocation at unaligned addresses.
5136
5137 template<int valsize>
5138 static inline typename This::Status
5139 rela_ua(unsigned char* view,
5140 const Sized_relobj_file<size, big_endian>* object,
5141 const Symbol_value<size>* psymval,
9726c3c1 5142 AArch64_valtype addend,
9363c7c3
JY
5143 const AArch64_reloc_property* reloc_property)
5144 {
5145 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5146 Valtype;
5147 typename elfcpp::Elf_types<size>::Elf_Addr x =
5148 psymval->value(object, addend);
5149 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5150 static_cast<Valtype>(x));
5151 return (reloc_property->checkup_x_value(x)
5152 ? This::STATUS_OKAY
5153 : This::STATUS_OVERFLOW);
5154 }
5155
5156 // Do a simple pc-relative relocation at unaligned addresses.
5157
5158 template<int valsize>
5159 static inline typename This::Status
5160 pcrela_ua(unsigned char* view,
5161 const Sized_relobj_file<size, big_endian>* object,
5162 const Symbol_value<size>* psymval,
9726c3c1 5163 AArch64_valtype addend,
9363c7c3
JY
5164 Address address,
5165 const AArch64_reloc_property* reloc_property)
5166 {
5167 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5168 Valtype;
3a531937 5169 Address x = psymval->value(object, addend) - address;
9363c7c3
JY
5170 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5171 static_cast<Valtype>(x));
5172 return (reloc_property->checkup_x_value(x)
5173 ? This::STATUS_OKAY
5174 : This::STATUS_OVERFLOW);
5175 }
5176
5177 // Do a simple rela relocation at aligned addresses.
5178
5179 template<int valsize>
5180 static inline typename This::Status
5181 rela(
5182 unsigned char* view,
5183 const Sized_relobj_file<size, big_endian>* object,
5184 const Symbol_value<size>* psymval,
9726c3c1 5185 AArch64_valtype addend,
9363c7c3
JY
5186 const AArch64_reloc_property* reloc_property)
5187 {
9726c3c1 5188 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
9363c7c3 5189 Valtype* wv = reinterpret_cast<Valtype*>(view);
3a531937 5190 Address x = psymval->value(object, addend);
9726c3c1 5191 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
9363c7c3
JY
5192 return (reloc_property->checkup_x_value(x)
5193 ? This::STATUS_OKAY
5194 : This::STATUS_OVERFLOW);
5195 }
5196
5197 // Do relocate. Update selected bits in text.
5198 // new_val = (val & ~dst_mask) | (immed << doffset)
5199
5200 template<int valsize>
5201 static inline typename This::Status
5202 rela_general(unsigned char* view,
5203 const Sized_relobj_file<size, big_endian>* object,
5204 const Symbol_value<size>* psymval,
9726c3c1 5205 AArch64_valtype addend,
9363c7c3
JY
5206 const AArch64_reloc_property* reloc_property)
5207 {
5208 // Calculate relocation.
83a01957 5209 Address x = psymval->value(object, addend);
9726c3c1 5210 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
5211 }
5212
5213 // Do relocate. Update selected bits in text.
5214 // new val = (val & ~dst_mask) | (immed << doffset)
5215
5216 template<int valsize>
5217 static inline typename This::Status
5218 rela_general(
5219 unsigned char* view,
9726c3c1
HS
5220 AArch64_valtype s,
5221 AArch64_valtype addend,
9363c7c3
JY
5222 const AArch64_reloc_property* reloc_property)
5223 {
5224 // Calculate relocation.
5225 Address x = s + addend;
9726c3c1 5226 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
5227 }
5228
5229 // Do address relative relocate. Update selected bits in text.
5230 // new val = (val & ~dst_mask) | (immed << doffset)
5231
5232 template<int valsize>
5233 static inline typename This::Status
5234 pcrela_general(
5235 unsigned char* view,
5236 const Sized_relobj_file<size, big_endian>* object,
5237 const Symbol_value<size>* psymval,
9726c3c1 5238 AArch64_valtype addend,
9363c7c3
JY
5239 Address address,
5240 const AArch64_reloc_property* reloc_property)
5241 {
5242 // Calculate relocation.
3a531937 5243 Address x = psymval->value(object, addend) - address;
9726c3c1
HS
5244 return This::template reloc_common<valsize>(view, x, reloc_property);
5245 }
9363c7c3 5246
9363c7c3 5247
9726c3c1 5248 // Calculate (S + A) - address, update adr instruction.
9363c7c3 5249
9726c3c1
HS
5250 static inline typename This::Status
5251 adr(unsigned char* view,
5252 const Sized_relobj_file<size, big_endian>* object,
5253 const Symbol_value<size>* psymval,
5254 Address addend,
5255 Address address,
5256 const AArch64_reloc_property* /* reloc_property */)
5257 {
5258 AArch64_valtype x = psymval->value(object, addend) - address;
5259 // Pick bits [20:0] of X.
5260 AArch64_valtype immed = x & 0x1fffff;
5261 update_adr(view, immed);
5262 // Check -2^20 <= X < 2^20
5263 return (size == 64 && Bits<21>::has_overflow((x))
5264 ? This::STATUS_OVERFLOW
5265 : This::STATUS_OKAY);
9363c7c3
JY
5266 }
5267
5268 // Calculate PG(S+A) - PG(address), update adrp instruction.
5269 // R_AARCH64_ADR_PREL_PG_HI21
5270
5271 static inline typename This::Status
5272 adrp(
5273 unsigned char* view,
5274 Address sa,
5275 Address address)
5276 {
9726c3c1
HS
5277 AArch64_valtype x = This::Page(sa) - This::Page(address);
5278 // Pick [32:12] of X.
5279 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5280 update_adr(view, immed);
83a01957
HS
5281 // Check -2^32 <= X < 2^32
5282 return (size == 64 && Bits<33>::has_overflow((x))
9363c7c3
JY
5283 ? This::STATUS_OVERFLOW
5284 : This::STATUS_OKAY);
5285 }
5286
5287 // Calculate PG(S+A) - PG(address), update adrp instruction.
5288 // R_AARCH64_ADR_PREL_PG_HI21
5289
5290 static inline typename This::Status
5291 adrp(unsigned char* view,
5292 const Sized_relobj_file<size, big_endian>* object,
5293 const Symbol_value<size>* psymval,
5294 Address addend,
5295 Address address,
5296 const AArch64_reloc_property* reloc_property)
5297 {
5298 Address sa = psymval->value(object, addend);
9726c3c1
HS
5299 AArch64_valtype x = This::Page(sa) - This::Page(address);
5300 // Pick [32:12] of X.
5301 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5302 update_adr(view, immed);
9363c7c3
JY
5303 return (reloc_property->checkup_x_value(x)
5304 ? This::STATUS_OKAY
5305 : This::STATUS_OVERFLOW);
5306 }
5307
3a531937
JY
5308 // Update mov[n/z] instruction. Check overflow if needed.
5309 // If X >=0, set the instruction to movz and its immediate value to the
5310 // selected bits S.
5311 // If X < 0, set the instruction to movn and its immediate value to
5312 // NOT (selected bits of).
5313
5314 static inline typename This::Status
5315 movnz(unsigned char* view,
9726c3c1 5316 AArch64_valtype x,
3a531937
JY
5317 const AArch64_reloc_property* reloc_property)
5318 {
5319 // Select bits from X.
9726c3c1
HS
5320 Address immed;
5321 bool is_movz;
5322 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5323 if (static_cast<SignedW>(x) >= 0)
5324 {
5325 immed = reloc_property->select_x_value(x);
5326 is_movz = true;
5327 }
5328 else
3a531937 5329 {
9726c3c1 5330 immed = reloc_property->select_x_value(~x);;
3a531937
JY
5331 is_movz = false;
5332 }
5333
5334 // Update movnz instruction.
5335 update_movnz(view, immed, is_movz);
5336
5337 // Do check overflow or alignment if needed.
5338 return (reloc_property->checkup_x_value(x)
5339 ? This::STATUS_OKAY
5340 : This::STATUS_OVERFLOW);
5341 }
5342
83a01957
HS
5343 static inline bool
5344 maybe_apply_stub(unsigned int,
5345 const The_relocate_info*,
5346 const The_rela&,
5347 unsigned char*,
5348 Address,
5349 const Sized_symbol<size>*,
5350 const Symbol_value<size>*,
0bf32ea9
JY
5351 const Sized_relobj_file<size, big_endian>*,
5352 section_size_type);
83a01957 5353
3a531937
JY
5354}; // End of AArch64_relocate_functions
5355
5356
83a01957
HS
5357// For a certain relocation type (usually jump/branch), test to see if the
5358// destination needs a stub to fulfil. If so, re-route the destination of the
5359// original instruction to the stub, note, at this time, the stub has already
5360// been generated.
5361
5362template<int size, bool big_endian>
5363bool
5364AArch64_relocate_functions<size, big_endian>::
5365maybe_apply_stub(unsigned int r_type,
5366 const The_relocate_info* relinfo,
5367 const The_rela& rela,
5368 unsigned char* view,
5369 Address address,
5370 const Sized_symbol<size>* gsym,
5371 const Symbol_value<size>* psymval,
0bf32ea9
JY
5372 const Sized_relobj_file<size, big_endian>* object,
5373 section_size_type current_group_size)
83a01957
HS
5374{
5375 if (parameters->options().relocatable())
5376 return false;
5377
5378 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5379 Address branch_target = psymval->value(object, 0) + addend;
a48d0c12
HS
5380 int stub_type =
5381 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5382 if (stub_type == ST_NONE)
83a01957
HS
5383 return false;
5384
5385 const The_aarch64_relobj* aarch64_relobj =
5386 static_cast<const The_aarch64_relobj*>(object);
5387 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5388 gold_assert(stub_table != NULL);
5389
5390 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5391 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5392 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5393 gold_assert(stub != NULL);
5394
5395 Address new_branch_target = stub_table->address() + stub->offset();
5396 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5397 new_branch_target - address;
5398 const AArch64_reloc_property* arp =
5399 aarch64_reloc_property_table->get_reloc_property(r_type);
5400 gold_assert(arp != NULL);
aed56ec5 5401 typename This::Status status = This::template
83a01957
HS
5402 rela_general<32>(view, branch_offset, 0, arp);
5403 if (status != This::STATUS_OKAY)
5404 gold_error(_("Stub is too far away, try a smaller value "
0bf32ea9 5405 "for '--stub-group-size'. The current value is 0x%lx."),
add6016b 5406 static_cast<unsigned long>(current_group_size));
83a01957
HS
5407 return true;
5408}
5409
5410
5411// Group input sections for stub generation.
5412//
5413// We group input sections in an output section so that the total size,
5414// including any padding space due to alignment is smaller than GROUP_SIZE
5415// unless the only input section in group is bigger than GROUP_SIZE already.
5416// Then an ARM stub table is created to follow the last input section
5417// in group. For each group an ARM stub table is created an is placed
5418// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5419// extend the group after the stub table.
5420
5421template<int size, bool big_endian>
5422void
5423Target_aarch64<size, big_endian>::group_sections(
5424 Layout* layout,
5425 section_size_type group_size,
5426 bool stubs_always_after_branch,
5427 const Task* task)
5428{
5429 // Group input sections and insert stub table
5430 Layout::Section_list section_list;
5431 layout->get_executable_sections(&section_list);
5432 for (Layout::Section_list::const_iterator p = section_list.begin();
5433 p != section_list.end();
5434 ++p)
5435 {
5436 AArch64_output_section<size, big_endian>* output_section =
5437 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5438 output_section->group_sections(group_size, stubs_always_after_branch,
5439 this, task);
5440 }
5441}
5442
5443
5444// Find the AArch64_input_section object corresponding to the SHNDX-th input
5445// section of RELOBJ.
5446
5447template<int size, bool big_endian>
5448AArch64_input_section<size, big_endian>*
5449Target_aarch64<size, big_endian>::find_aarch64_input_section(
5450 Relobj* relobj, unsigned int shndx) const
5451{
5452 Section_id sid(relobj, shndx);
5453 typename AArch64_input_section_map::const_iterator p =
5454 this->aarch64_input_section_map_.find(sid);
5455 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5456}
5457
5458
5459// Make a new AArch64_input_section object.
5460
5461template<int size, bool big_endian>
5462AArch64_input_section<size, big_endian>*
5463Target_aarch64<size, big_endian>::new_aarch64_input_section(
5464 Relobj* relobj, unsigned int shndx)
5465{
5466 Section_id sid(relobj, shndx);
5467
5468 AArch64_input_section<size, big_endian>* input_section =
5469 new AArch64_input_section<size, big_endian>(relobj, shndx);
5470 input_section->init();
5471
5472 // Register new AArch64_input_section in map for look-up.
5473 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5474 this->aarch64_input_section_map_.insert(
5475 std::make_pair(sid, input_section));
5476
5477 // Make sure that it we have not created another AArch64_input_section
5478 // for this input section already.
5479 gold_assert(ins.second);
5480
5481 return input_section;
5482}
5483
5484
5485// Relaxation hook. This is where we do stub generation.
5486
5487template<int size, bool big_endian>
5488bool
5489Target_aarch64<size, big_endian>::do_relax(
5490 int pass,
5491 const Input_objects* input_objects,
5492 Symbol_table* symtab,
5493 Layout* layout ,
5494 const Task* task)
5495{
5496 gold_assert(!parameters->options().relocatable());
5497 if (pass == 1)
5498 {
0bf32ea9
JY
5499 // We don't handle negative stub_group_size right now.
5500 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5501 if (this->stub_group_size_ == 1)
83a01957
HS
5502 {
5503 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5504 // will fail to link. The user will have to relink with an explicit
5505 // group size option.
0bf32ea9
JY
5506 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5507 4096 * 4;
83a01957 5508 }
0bf32ea9 5509 group_sections(layout, this->stub_group_size_, true, task);
83a01957
HS
5510 }
5511 else
5512 {
5513 // If this is not the first pass, addresses and file offsets have
5514 // been reset at this point, set them here.
5515 for (Stub_table_iterator sp = this->stub_tables_.begin();
5516 sp != this->stub_tables_.end(); ++sp)
5517 {
5518 The_stub_table* stt = *sp;
5519 The_aarch64_input_section* owner = stt->owner();
5520 off_t off = align_address(owner->original_size(),
5521 stt->addralign());
5522 stt->set_address_and_file_offset(owner->address() + off,
5523 owner->offset() + off);
5524 }
5525 }
5526
5527 // Scan relocs for relocation stubs
5528 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5529 op != input_objects->relobj_end();
5530 ++op)
5531 {
5532 The_aarch64_relobj* aarch64_relobj =
5533 static_cast<The_aarch64_relobj*>(*op);
5534 // Lock the object so we can read from it. This is only called
5535 // single-threaded from Layout::finalize, so it is OK to lock.
5536 Task_lock_obj<Object> tl(task, aarch64_relobj);
5537 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5538 }
5539
5540 bool any_stub_table_changed = false;
5541 for (Stub_table_iterator siter = this->stub_tables_.begin();
5542 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5543 {
5544 The_stub_table* stub_table = *siter;
5545 if (stub_table->update_data_size_changed_p())
5546 {
5547 The_aarch64_input_section* owner = stub_table->owner();
5548 uint64_t address = owner->address();
5549 off_t offset = owner->offset();
5550 owner->reset_address_and_file_offset();
5551 owner->set_address_and_file_offset(address, offset);
5552
5553 any_stub_table_changed = true;
5554 }
5555 }
5556
5557 // Do not continue relaxation.
5558 bool continue_relaxation = any_stub_table_changed;
5559 if (!continue_relaxation)
5560 for (Stub_table_iterator sp = this->stub_tables_.begin();
5561 (sp != this->stub_tables_.end());
5562 ++sp)
5563 (*sp)->finalize_stubs();
5564
5565 return continue_relaxation;
5566}
5567
5568
5569// Make a new Stub_table.
5570
5571template<int size, bool big_endian>
5572Stub_table<size, big_endian>*
5573Target_aarch64<size, big_endian>::new_stub_table(
5574 AArch64_input_section<size, big_endian>* owner)
5575{
5576 Stub_table<size, big_endian>* stub_table =
5577 new Stub_table<size, big_endian>(owner);
5578 stub_table->set_address(align_address(
5579 owner->address() + owner->data_size(), 8));
5580 stub_table->set_file_offset(owner->offset() + owner->data_size());
5581 stub_table->finalize_data_size();
5582
5583 this->stub_tables_.push_back(stub_table);
5584
5585 return stub_table;
5586}
5587
5588
3a531937 5589template<int size, bool big_endian>
7fa5525f 5590uint64_t
3a531937 5591Target_aarch64<size, big_endian>::do_reloc_addend(
7fa5525f 5592 void* arg, unsigned int r_type, uint64_t) const
3a531937
JY
5593{
5594 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5595 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5596 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5597 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5598 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5599 gold_assert(psymval->is_tls_symbol());
5600 // The value of a TLS symbol is the offset in the TLS segment.
5601 return psymval->value(ti.object, 0);
5602}
9363c7c3 5603
053a4d68
JY
5604// Return the number of entries in the PLT.
5605
5606template<int size, bool big_endian>
5607unsigned int
5608Target_aarch64<size, big_endian>::plt_entry_count() const
5609{
5610 if (this->plt_ == NULL)
5611 return 0;
5612 return this->plt_->entry_count();
5613}
5614
5615// Return the offset of the first non-reserved PLT entry.
5616
5617template<int size, bool big_endian>
5618unsigned int
5619Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5620{
5621 return this->plt_->first_plt_entry_offset();
5622}
5623
5624// Return the size of each PLT entry.
5625
5626template<int size, bool big_endian>
5627unsigned int
5628Target_aarch64<size, big_endian>::plt_entry_size() const
5629{
5630 return this->plt_->get_plt_entry_size();
5631}
5632
3a531937 5633// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
053a4d68
JY
5634
5635template<int size, bool big_endian>
3a531937
JY
5636void
5637Target_aarch64<size, big_endian>::define_tls_base_symbol(
5638 Symbol_table* symtab, Layout* layout)
053a4d68 5639{
3a531937
JY
5640 if (this->tls_base_symbol_defined_)
5641 return;
5642
5643 Output_segment* tls_segment = layout->tls_segment();
5644 if (tls_segment != NULL)
5645 {
6b0ad2eb 5646 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
3a531937
JY
5647 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5648 Symbol_table::PREDEFINED,
5649 tls_segment, 0, 0,
5650 elfcpp::STT_TLS,
5651 elfcpp::STB_LOCAL,
5652 elfcpp::STV_HIDDEN, 0,
6b0ad2eb 5653 Symbol::SEGMENT_START,
3a531937
JY
5654 true);
5655 }
5656 this->tls_base_symbol_defined_ = true;
053a4d68
JY
5657}
5658
3a531937 5659// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
053a4d68
JY
5660
5661template<int size, bool big_endian>
3a531937
JY
5662void
5663Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5664 Symbol_table* symtab, Layout* layout)
053a4d68 5665{
3a531937
JY
5666 if (this->plt_ == NULL)
5667 this->make_plt_section(symtab, layout);
5668
5669 if (!this->plt_->has_tlsdesc_entry())
053a4d68 5670 {
3a531937
JY
5671 // Allocate the TLSDESC_GOT entry.
5672 Output_data_got_aarch64<size, big_endian>* got =
5673 this->got_section(symtab, layout);
5674 unsigned int got_offset = got->add_constant(0);
5675
5676 // Allocate the TLSDESC_PLT entry.
5677 this->plt_->reserve_tlsdesc_entry(got_offset);
053a4d68 5678 }
053a4d68
JY
5679}
5680
3a531937 5681// Create a GOT entry for the TLS module index.
053a4d68
JY
5682
5683template<int size, bool big_endian>
3a531937
JY
5684unsigned int
5685Target_aarch64<size, big_endian>::got_mod_index_entry(
5686 Symbol_table* symtab, Layout* layout,
5687 Sized_relobj_file<size, big_endian>* object)
5688{
5689 if (this->got_mod_index_offset_ == -1U)
5690 {
5691 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5692 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5693 Output_data_got_aarch64<size, big_endian>* got =
5694 this->got_section(symtab, layout);
5695 unsigned int got_offset = got->add_constant(0);
5696 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5697 got_offset, 0);
5698 got->add_constant(0);
5699 this->got_mod_index_offset_ = got_offset;
5700 }
5701 return this->got_mod_index_offset_;
5702}
5703
5704// Optimize the TLS relocation type based on what we know about the
5705// symbol. IS_FINAL is true if the final address of this symbol is
5706// known at link time.
5707
5708template<int size, bool big_endian>
5709tls::Tls_optimization
5710Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5711 int r_type)
5712{
5713 // If we are generating a shared library, then we can't do anything
5714 // in the linker
5715 if (parameters->options().shared())
5716 return tls::TLSOPT_NONE;
5717
5718 switch (r_type)
5719 {
5720 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5721 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5722 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5723 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5724 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5725 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5726 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5727 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5728 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5729 case elfcpp::R_AARCH64_TLSDESC_LDR:
5730 case elfcpp::R_AARCH64_TLSDESC_ADD:
5731 case elfcpp::R_AARCH64_TLSDESC_CALL:
5732 // These are General-Dynamic which permits fully general TLS
5733 // access. Since we know that we are generating an executable,
5734 // we can convert this to Initial-Exec. If we also know that
5735 // this is a local symbol, we can further switch to Local-Exec.
5736 if (is_final)
5737 return tls::TLSOPT_TO_LE;
5738 return tls::TLSOPT_TO_IE;
5739
9726c3c1
HS
5740 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5741 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5742 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5743 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
5744 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5745 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
5746 // These are Local-Dynamic, which refer to local symbols in the
5747 // dynamic TLS block. Since we know that we generating an
5748 // executable, we can switch to Local-Exec.
5749 return tls::TLSOPT_TO_LE;
5750
3a531937
JY
5751 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5752 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5753 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5754 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5755 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5756 // These are Initial-Exec relocs which get the thread offset
5757 // from the GOT. If we know that we are linking against the
5758 // local symbol, we can switch to Local-Exec, which links the
5759 // thread offset into the instruction.
5760 if (is_final)
5761 return tls::TLSOPT_TO_LE;
5762 return tls::TLSOPT_NONE;
5763
5764 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5765 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5766 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5767 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5768 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5769 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5770 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5771 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5772 // When we already have Local-Exec, there is nothing further we
5773 // can do.
5774 return tls::TLSOPT_NONE;
5775
5776 default:
5777 gold_unreachable();
5778 }
5779}
5780
5781// Returns true if this relocation type could be that of a function pointer.
5782
5783template<int size, bool big_endian>
5784inline bool
5785Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5786 unsigned int r_type)
5787{
5788 switch (r_type)
5789 {
9726c3c1
HS
5790 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5791 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5792 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5793 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5794 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
3a531937
JY
5795 {
5796 return true;
5797 }
5798 }
5799 return false;
5800}
5801
5802// For safe ICF, scan a relocation for a local symbol to check if it
5803// corresponds to a function pointer being taken. In that case mark
5804// the function whose pointer was taken as not foldable.
5805
5806template<int size, bool big_endian>
5807inline bool
5808Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5809 Symbol_table* ,
053a4d68
JY
5810 Layout* ,
5811 Target_aarch64<size, big_endian>* ,
5812 Sized_relobj_file<size, big_endian>* ,
5813 unsigned int ,
5814 Output_section* ,
5815 const elfcpp::Rela<size, big_endian>& ,
5816 unsigned int r_type,
5817 const elfcpp::Sym<size, big_endian>&)
5818{
9726c3c1 5819 // When building a shared library, do not fold any local symbols.
053a4d68 5820 return (parameters->options().shared()
9363c7c3 5821 || possible_function_pointer_reloc(r_type));
053a4d68
JY
5822}
5823
5824// For safe ICF, scan a relocation for a global symbol to check if it
5825// corresponds to a function pointer being taken. In that case mark
5826// the function whose pointer was taken as not foldable.
5827
5828template<int size, bool big_endian>
5829inline bool
5830Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5831 Symbol_table* ,
5832 Layout* ,
5833 Target_aarch64<size, big_endian>* ,
5834 Sized_relobj_file<size, big_endian>* ,
5835 unsigned int ,
5836 Output_section* ,
5837 const elfcpp::Rela<size, big_endian>& ,
5838 unsigned int r_type,
5839 Symbol* gsym)
5840{
5841 // When building a shared library, do not fold symbols whose visibility
5842 // is hidden, internal or protected.
5843 return ((parameters->options().shared()
9363c7c3
JY
5844 && (gsym->visibility() == elfcpp::STV_INTERNAL
5845 || gsym->visibility() == elfcpp::STV_PROTECTED
5846 || gsym->visibility() == elfcpp::STV_HIDDEN))
5847 || possible_function_pointer_reloc(r_type));
053a4d68
JY
5848}
5849
5850// Report an unsupported relocation against a local symbol.
5851
5852template<int size, bool big_endian>
5853void
5854Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5855 Sized_relobj_file<size, big_endian>* object,
5856 unsigned int r_type)
5857{
5858 gold_error(_("%s: unsupported reloc %u against local symbol"),
5859 object->name().c_str(), r_type);
5860}
5861
5862// We are about to emit a dynamic relocation of type R_TYPE. If the
5863// dynamic linker does not support it, issue an error.
5864
5865template<int size, bool big_endian>
5866void
5867Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
9363c7c3 5868 unsigned int r_type)
053a4d68
JY
5869{
5870 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5871
5872 switch (r_type)
5873 {
5874 // These are the relocation types supported by glibc for AARCH64.
5875 case elfcpp::R_AARCH64_NONE:
5876 case elfcpp::R_AARCH64_COPY:
5877 case elfcpp::R_AARCH64_GLOB_DAT:
5878 case elfcpp::R_AARCH64_JUMP_SLOT:
5879 case elfcpp::R_AARCH64_RELATIVE:
5880 case elfcpp::R_AARCH64_TLS_DTPREL64:
5881 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5882 case elfcpp::R_AARCH64_TLS_TPREL64:
5883 case elfcpp::R_AARCH64_TLSDESC:
5884 case elfcpp::R_AARCH64_IRELATIVE:
5885 case elfcpp::R_AARCH64_ABS32:
5886 case elfcpp::R_AARCH64_ABS64:
5887 return;
5888
5889 default:
5890 break;
5891 }
5892
5893 // This prevents us from issuing more than one error per reloc
5894 // section. But we can still wind up issuing more than one
5895 // error per object file.
5896 if (this->issued_non_pic_error_)
5897 return;
5898 gold_assert(parameters->options().output_is_position_independent());
5899 object->error(_("requires unsupported dynamic reloc; "
9363c7c3 5900 "recompile with -fPIC"));
053a4d68
JY
5901 this->issued_non_pic_error_ = true;
5902 return;
5903}
5904
9726c3c1
HS
5905// Return whether we need to make a PLT entry for a relocation of the
5906// given type against a STT_GNU_IFUNC symbol.
5907
5908template<int size, bool big_endian>
5909bool
5910Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5911 Sized_relobj_file<size, big_endian>* object,
5912 unsigned int r_type)
5913{
5914 const AArch64_reloc_property* arp =
5915 aarch64_reloc_property_table->get_reloc_property(r_type);
5916 gold_assert(arp != NULL);
5917
5918 int flags = arp->reference_flags();
5919 if (flags & Symbol::TLS_REF)
5920 {
5921 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5922 object->name().c_str(), arp->name().c_str());
5923 return false;
5924 }
5925 return flags != 0;
5926}
5927
053a4d68
JY
5928// Scan a relocation for a local symbol.
5929
5930template<int size, bool big_endian>
5931inline void
5932Target_aarch64<size, big_endian>::Scan::local(
8e33481e
HS
5933 Symbol_table* symtab,
5934 Layout* layout,
5935 Target_aarch64<size, big_endian>* target,
9363c7c3 5936 Sized_relobj_file<size, big_endian>* object,
8e33481e
HS
5937 unsigned int data_shndx,
5938 Output_section* output_section,
5939 const elfcpp::Rela<size, big_endian>& rela,
053a4d68 5940 unsigned int r_type,
9726c3c1 5941 const elfcpp::Sym<size, big_endian>& lsym,
053a4d68
JY
5942 bool is_discarded)
5943{
5944 if (is_discarded)
5945 return;
5946
8e33481e 5947 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3a531937
JY
5948 Reloc_section;
5949 Output_data_got_aarch64<size, big_endian>* got =
5950 target->got_section(symtab, layout);
5951 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8e33481e 5952
9726c3c1
HS
5953 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5954 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5955 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5956 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5957
053a4d68
JY
5958 switch (r_type)
5959 {
9363c7c3
JY
5960 case elfcpp::R_AARCH64_ABS32:
5961 case elfcpp::R_AARCH64_ABS16:
8e33481e
HS
5962 if (parameters->options().output_is_position_independent())
5963 {
5964 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5965 object->name().c_str(), r_type);
5966 }
5967 break;
5968
5969 case elfcpp::R_AARCH64_ABS64:
9363c7c3
JY
5970 // If building a shared library or pie, we need to mark this as a dynmic
5971 // reloction, so that the dynamic loader can relocate it.
9363c7c3
JY
5972 if (parameters->options().output_is_position_independent())
5973 {
8e33481e 5974 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8e33481e
HS
5975 rela_dyn->add_local_relative(object, r_sym,
5976 elfcpp::R_AARCH64_RELATIVE,
5977 output_section,
5978 data_shndx,
5979 rela.get_r_offset(),
5980 rela.get_r_addend(),
9726c3c1 5981 is_ifunc);
9363c7c3
JY
5982 }
5983 break;
5984
8e33481e
HS
5985 case elfcpp::R_AARCH64_PREL64:
5986 case elfcpp::R_AARCH64_PREL32:
5987 case elfcpp::R_AARCH64_PREL16:
5988 break;
5989
3a531937
JY
5990 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
5991 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
5992 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
5993 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5994 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
5995 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
5996 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
5997 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
5998 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 5999 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
3a531937 6000 break;
053a4d68 6001
8e33481e
HS
6002 // Control flow, pc-relative. We don't need to do anything for a relative
6003 // addressing relocation against a local symbol if it does not reference
6004 // the GOT.
6005 case elfcpp::R_AARCH64_TSTBR14:
6006 case elfcpp::R_AARCH64_CONDBR19:
6007 case elfcpp::R_AARCH64_JUMP26:
6008 case elfcpp::R_AARCH64_CALL26:
6009 break;
6010
6011 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6012 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6013 {
3a531937
JY
6014 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6015 optimize_tls_reloc(!parameters->options().shared(), r_type);
6016 if (tlsopt == tls::TLSOPT_TO_LE)
6017 break;
6018
8e33481e
HS
6019 layout->set_has_static_tls();
6020 // Create a GOT entry for the tp-relative offset.
8e33481e
HS
6021 if (!parameters->doing_static_link())
6022 {
6023 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6024 target->rela_dyn_section(layout),
6025 elfcpp::R_AARCH64_TLS_TPREL64);
6026 }
6027 else if (!object->local_has_got_offset(r_sym,
6028 GOT_TYPE_TLS_OFFSET))
6029 {
6030 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6031 unsigned int got_offset =
6032 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6033 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6034 gold_assert(addend == 0);
6035 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6036 object, r_sym);
6037 }
6038 }
6039 break;
6040
3a531937
JY
6041 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6042 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6043 {
6044 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6045 optimize_tls_reloc(!parameters->options().shared(), r_type);
6046 if (tlsopt == tls::TLSOPT_TO_LE)
6047 {
6048 layout->set_has_static_tls();
6049 break;
6050 }
6051 gold_assert(tlsopt == tls::TLSOPT_NONE);
6052
6053 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6054 GOT_TYPE_TLS_PAIR,
6055 target->rela_dyn_section(layout),
6056 elfcpp::R_AARCH64_TLS_DTPMOD64);
6057 }
6058 break;
6059
1a920511
JY
6060 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6061 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6062 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6063 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6064 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
6065 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6066 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6067 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6068 {
6069 layout->set_has_static_tls();
6070 bool output_is_shared = parameters->options().shared();
6071 if (output_is_shared)
3a531937 6072 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
8e33481e
HS
6073 object->name().c_str(), r_type);
6074 }
9363c7c3
JY
6075 break;
6076
9726c3c1
HS
6077 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6078 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6079 {
6080 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6081 optimize_tls_reloc(!parameters->options().shared(), r_type);
6082 if (tlsopt == tls::TLSOPT_NONE)
6083 {
6084 // Create a GOT entry for the module index.
6085 target->got_mod_index_entry(symtab, layout, object);
6086 }
6087 else if (tlsopt != tls::TLSOPT_TO_LE)
6088 unsupported_reloc_local(object, r_type);
6089 }
6090 break;
6091
6092 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6093 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
6094 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6095 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
6096 break;
6097
3a531937
JY
6098 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6099 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6100 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6101 {
6102 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6103 optimize_tls_reloc(!parameters->options().shared(), r_type);
6104 target->define_tls_base_symbol(symtab, layout);
6105 if (tlsopt == tls::TLSOPT_NONE)
6106 {
6107 // Create reserved PLT and GOT entries for the resolver.
6108 target->reserve_tlsdesc_entries(symtab, layout);
6109
6110 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6111 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6112 // entry needs to be in an area in .got.plt, not .got. Call
6113 // got_section to make sure the section has been created.
6114 target->got_section(symtab, layout);
6115 Output_data_got<size, big_endian>* got =
6116 target->got_tlsdesc_section();
6117 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6118 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6119 {
6120 unsigned int got_offset = got->add_constant(0);
6121 got->add_constant(0);
6122 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6123 got_offset);
6124 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6125 // We store the arguments we need in a vector, and use
6126 // the index into the vector as the parameter to pass
6127 // to the target specific routines.
6128 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6129 void* arg = reinterpret_cast<void*>(intarg);
6130 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6131 got, got_offset, 0);
6132 }
6133 }
6134 else if (tlsopt != tls::TLSOPT_TO_LE)
6135 unsupported_reloc_local(object, r_type);
6136 }
6137 break;
6138
6139 case elfcpp::R_AARCH64_TLSDESC_CALL:
6140 break;
6141
9363c7c3
JY
6142 default:
6143 unsupported_reloc_local(object, r_type);
053a4d68
JY
6144 }
6145}
6146
6147
6148// Report an unsupported relocation against a global symbol.
6149
6150template<int size, bool big_endian>
6151void
6152Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6153 Sized_relobj_file<size, big_endian>* object,
6154 unsigned int r_type,
6155 Symbol* gsym)
6156{
6157 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6158 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6159}
6160
6161template<int size, bool big_endian>
6162inline void
6163Target_aarch64<size, big_endian>::Scan::global(
9363c7c3
JY
6164 Symbol_table* symtab,
6165 Layout* layout,
6166 Target_aarch64<size, big_endian>* target,
8e33481e
HS
6167 Sized_relobj_file<size, big_endian> * object,
6168 unsigned int data_shndx,
6169 Output_section* output_section,
6170 const elfcpp::Rela<size, big_endian>& rela,
9363c7c3
JY
6171 unsigned int r_type,
6172 Symbol* gsym)
053a4d68 6173{
9726c3c1
HS
6174 // A STT_GNU_IFUNC symbol may require a PLT entry.
6175 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6176 && this->reloc_needs_plt_for_ifunc(object, r_type))
6177 target->make_plt_entry(symtab, layout, gsym);
6178
8e33481e
HS
6179 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6180 Reloc_section;
3a531937
JY
6181 const AArch64_reloc_property* arp =
6182 aarch64_reloc_property_table->get_reloc_property(r_type);
6183 gold_assert(arp != NULL);
6184
9363c7c3
JY
6185 switch (r_type)
6186 {
8e33481e
HS
6187 case elfcpp::R_AARCH64_ABS16:
6188 case elfcpp::R_AARCH64_ABS32:
9363c7c3 6189 case elfcpp::R_AARCH64_ABS64:
8e33481e
HS
6190 {
6191 // Make a PLT entry if necessary.
6192 if (gsym->needs_plt_entry())
6193 {
6194 target->make_plt_entry(symtab, layout, gsym);
6195 // Since this is not a PC-relative relocation, we may be
6196 // taking the address of a function. In that case we need to
6197 // set the entry in the dynamic symbol table to the address of
6198 // the PLT entry.
6199 if (gsym->is_from_dynobj() && !parameters->options().shared())
6200 gsym->set_needs_dynsym_value();
6201 }
6202 // Make a dynamic relocation if necessary.
8e33481e
HS
6203 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6204 {
6205 if (!parameters->options().output_is_position_independent()
6206 && gsym->may_need_copy_reloc())
6207 {
3a531937
JY
6208 target->copy_reloc(symtab, layout, object,
6209 data_shndx, output_section, gsym, rela);
8e33481e 6210 }
9726c3c1
HS
6211 else if (r_type == elfcpp::R_AARCH64_ABS64
6212 && gsym->type() == elfcpp::STT_GNU_IFUNC
6213 && gsym->can_use_relative_reloc(false)
6214 && !gsym->is_from_dynobj()
6215 && !gsym->is_undefined()
6216 && !gsym->is_preemptible())
6217 {
6218 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6219 // symbol. This makes a function address in a PIE executable
6220 // match the address in a shared library that it links against.
6221 Reloc_section* rela_dyn =
6222 target->rela_irelative_section(layout);
6223 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6224 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6225 output_section, object,
6226 data_shndx,
6227 rela.get_r_offset(),
6228 rela.get_r_addend());
6229 }
8e33481e
HS
6230 else if (r_type == elfcpp::R_AARCH64_ABS64
6231 && gsym->can_use_relative_reloc(false))
6232 {
6233 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6234 rela_dyn->add_global_relative(gsym,
6235 elfcpp::R_AARCH64_RELATIVE,
6236 output_section,
6237 object,
6238 data_shndx,
6239 rela.get_r_offset(),
6240 rela.get_r_addend(),
6241 false);
6242 }
6243 else
6244 {
6245 check_non_pic(object, r_type);
6246 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6247 rela_dyn = target->rela_dyn_section(layout);
6248 rela_dyn->add_global(
6249 gsym, r_type, output_section, object,
6250 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6251 }
6252 }
6253 }
6254 break;
6255
6256 case elfcpp::R_AARCH64_PREL16:
6257 case elfcpp::R_AARCH64_PREL32:
6258 case elfcpp::R_AARCH64_PREL64:
9363c7c3
JY
6259 // This is used to fill the GOT absolute address.
6260 if (gsym->needs_plt_entry())
6261 {
6262 target->make_plt_entry(symtab, layout, gsym);
6263 }
6264 break;
6265
3a531937
JY
6266 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6267 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6268 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6269 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6270 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6271 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6272 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6273 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6274 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 6275 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
9363c7c3 6276 {
3a531937
JY
6277 if (gsym->needs_plt_entry())
6278 target->make_plt_entry(symtab, layout, gsym);
6279 // Make a dynamic relocation if necessary.
6280 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6281 {
6282 if (parameters->options().output_is_executable()
6283 && gsym->may_need_copy_reloc())
6284 {
6285 target->copy_reloc(symtab, layout, object,
6286 data_shndx, output_section, gsym, rela);
6287 }
6288 }
9363c7c3
JY
6289 break;
6290 }
6291
6292 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6293 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6294 {
6295 // This pair of relocations is used to access a specific GOT entry.
6296 // Note a GOT entry is an *address* to a symbol.
6297 // The symbol requires a GOT entry
6298 Output_data_got_aarch64<size, big_endian>* got =
6299 target->got_section(symtab, layout);
6300 if (gsym->final_value_is_known())
6301 {
9726c3c1
HS
6302 // For a STT_GNU_IFUNC symbol we want the PLT address.
6303 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6304 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6305 else
6306 got->add_global(gsym, GOT_TYPE_STANDARD);
9363c7c3
JY
6307 }
6308 else
6309 {
9726c3c1
HS
6310 // If this symbol is not fully resolved, we need to add a dynamic
6311 // relocation for it.
9363c7c3 6312 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9726c3c1
HS
6313
6314 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6315 //
6316 // 1) The symbol may be defined in some other module.
6317 // 2) We are building a shared library and this is a protected
6318 // symbol; using GLOB_DAT means that the dynamic linker can use
6319 // the address of the PLT in the main executable when appropriate
6320 // so that function address comparisons work.
6321 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6322 // again so that function address comparisons work.
9363c7c3
JY
6323 if (gsym->is_from_dynobj()
6324 || gsym->is_undefined()
6325 || gsym->is_preemptible()
6326 || (gsym->visibility() == elfcpp::STV_PROTECTED
9726c3c1
HS
6327 && parameters->options().shared())
6328 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6329 && parameters->options().output_is_position_independent()))
9363c7c3
JY
6330 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6331 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6332 else
6333 {
9726c3c1
HS
6334 // For a STT_GNU_IFUNC symbol we want to write the PLT
6335 // offset into the GOT, so that function pointer
6336 // comparisons work correctly.
6337 bool is_new;
6338 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6339 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6340 else
6341 {
6342 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6343 // Tell the dynamic linker to use the PLT address
6344 // when resolving relocations.
6345 if (gsym->is_from_dynobj()
6346 && !parameters->options().shared())
6347 gsym->set_needs_dynsym_value();
6348 }
6349 if (is_new)
3a531937
JY
6350 {
6351 rela_dyn->add_global_relative(
6352 gsym, elfcpp::R_AARCH64_RELATIVE,
6353 got,
6354 gsym->got_offset(GOT_TYPE_STANDARD),
6355 0,
6356 false);
6357 }
9363c7c3
JY
6358 }
6359 }
6360 break;
6361 }
6362
8e33481e
HS
6363 case elfcpp::R_AARCH64_TSTBR14:
6364 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
6365 case elfcpp::R_AARCH64_JUMP26:
6366 case elfcpp::R_AARCH64_CALL26:
6367 {
6368 if (gsym->final_value_is_known())
6369 break;
6370
6371 if (gsym->is_defined() &&
6372 !gsym->is_from_dynobj() &&
6373 !gsym->is_preemptible())
6374 break;
6375
6376 // Make plt entry for function call.
9363c7c3
JY
6377 target->make_plt_entry(symtab, layout, gsym);
6378 break;
6379 }
6380
3a531937
JY
6381 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6382 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6383 {
6384 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6385 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6386 if (tlsopt == tls::TLSOPT_TO_LE)
6387 {
6388 layout->set_has_static_tls();
6389 break;
6390 }
6391 gold_assert(tlsopt == tls::TLSOPT_NONE);
6392
6393 // General dynamic.
6394 Output_data_got_aarch64<size, big_endian>* got =
6395 target->got_section(symtab, layout);
6396 // Create 2 consecutive entries for module index and offset.
6397 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6398 target->rela_dyn_section(layout),
6399 elfcpp::R_AARCH64_TLS_DTPMOD64,
6400 elfcpp::R_AARCH64_TLS_DTPREL64);
6401 }
6402 break;
6403
9726c3c1
HS
6404 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6405 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6406 {
6407 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6408 optimize_tls_reloc(!parameters->options().shared(), r_type);
6409 if (tlsopt == tls::TLSOPT_NONE)
6410 {
6411 // Create a GOT entry for the module index.
6412 target->got_mod_index_entry(symtab, layout, object);
6413 }
6414 else if (tlsopt != tls::TLSOPT_TO_LE)
6415 unsupported_reloc_local(object, r_type);
6416 }
6417 break;
6418
6419 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6b0ad2eb
JY
6420 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6421 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6422 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
9726c3c1
HS
6423 break;
6424
8e33481e 6425 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 6426 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
8e33481e 6427 {
9726c3c1 6428 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
3a531937
JY
6429 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6430 if (tlsopt == tls::TLSOPT_TO_LE)
6431 break;
6432
8e33481e
HS
6433 layout->set_has_static_tls();
6434 // Create a GOT entry for the tp-relative offset.
6435 Output_data_got_aarch64<size, big_endian>* got
6436 = target->got_section(symtab, layout);
6437 if (!parameters->doing_static_link())
6438 {
6439 got->add_global_with_rel(
6440 gsym, GOT_TYPE_TLS_OFFSET,
6441 target->rela_dyn_section(layout),
6442 elfcpp::R_AARCH64_TLS_TPREL64);
6443 }
6444 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6445 {
6446 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6447 unsigned int got_offset =
6448 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6449 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6450 gold_assert(addend == 0);
6451 got->add_static_reloc(got_offset,
6452 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6453 }
6454 }
6455 break;
6456
1a920511
JY
6457 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6458 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6459 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6460 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6461 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
6462 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6463 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
3a531937 6464 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
8e33481e
HS
6465 layout->set_has_static_tls();
6466 if (parameters->options().shared())
6467 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6468 object->name().c_str(), r_type);
6469 break;
6470
3a531937
JY
6471 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6472 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6473 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6474 {
6475 target->define_tls_base_symbol(symtab, layout);
6476 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6477 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6478 if (tlsopt == tls::TLSOPT_NONE)
6479 {
6480 // Create reserved PLT and GOT entries for the resolver.
6481 target->reserve_tlsdesc_entries(symtab, layout);
6482
6483 // Create a double GOT entry with an R_AARCH64_TLSDESC
6484 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6485 // entry needs to be in an area in .got.plt, not .got. Call
6486 // got_section to make sure the section has been created.
6487 target->got_section(symtab, layout);
6488 Output_data_got<size, big_endian>* got =
6489 target->got_tlsdesc_section();
6490 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6491 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6492 elfcpp::R_AARCH64_TLSDESC, 0);
6493 }
6494 else if (tlsopt == tls::TLSOPT_TO_IE)
6495 {
6496 // Create a GOT entry for the tp-relative offset.
6497 Output_data_got<size, big_endian>* got
6498 = target->got_section(symtab, layout);
6499 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6500 target->rela_dyn_section(layout),
6501 elfcpp::R_AARCH64_TLS_TPREL64);
6502 }
6503 else if (tlsopt != tls::TLSOPT_TO_LE)
6504 unsupported_reloc_global(object, r_type, gsym);
6505 }
6506 break;
6507
6508 case elfcpp::R_AARCH64_TLSDESC_CALL:
6509 break;
6510
9363c7c3 6511 default:
8e33481e 6512 gold_error(_("%s: unsupported reloc type in global scan"),
3a531937
JY
6513 aarch64_reloc_property_table->
6514 reloc_name_in_error_message(r_type).c_str());
9363c7c3 6515 }
053a4d68 6516 return;
9363c7c3
JY
6517} // End of Scan::global
6518
3a531937 6519
9363c7c3
JY
6520// Create the PLT section.
6521template<int size, bool big_endian>
6522void
6523Target_aarch64<size, big_endian>::make_plt_section(
6524 Symbol_table* symtab, Layout* layout)
6525{
6526 if (this->plt_ == NULL)
6527 {
6528 // Create the GOT section first.
6529 this->got_section(symtab, layout);
6530
3a531937
JY
6531 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6532 this->got_irelative_);
9363c7c3
JY
6533
6534 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6535 (elfcpp::SHF_ALLOC
6536 | elfcpp::SHF_EXECINSTR),
6537 this->plt_, ORDER_PLT, false);
6538
6539 // Make the sh_info field of .rela.plt point to .plt.
6540 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6541 rela_plt_os->set_info_section(this->plt_->output_section());
6542 }
6543}
6544
3a531937
JY
6545// Return the section for TLSDESC relocations.
6546
6547template<int size, bool big_endian>
6548typename Target_aarch64<size, big_endian>::Reloc_section*
6549Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6550{
6551 return this->plt_section()->rela_tlsdesc(layout);
6552}
6553
9363c7c3
JY
6554// Create a PLT entry for a global symbol.
6555
6556template<int size, bool big_endian>
6557void
6558Target_aarch64<size, big_endian>::make_plt_entry(
6559 Symbol_table* symtab,
6560 Layout* layout,
6561 Symbol* gsym)
6562{
6563 if (gsym->has_plt_offset())
6564 return;
6565
6566 if (this->plt_ == NULL)
6567 this->make_plt_section(symtab, layout);
6568
9726c3c1
HS
6569 this->plt_->add_entry(symtab, layout, gsym);
6570}
6571
6572// Make a PLT entry for a local STT_GNU_IFUNC symbol.
6573
6574template<int size, bool big_endian>
6575void
6576Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6577 Symbol_table* symtab, Layout* layout,
6578 Sized_relobj_file<size, big_endian>* relobj,
6579 unsigned int local_sym_index)
6580{
6581 if (relobj->local_has_plt_offset(local_sym_index))
6582 return;
6583 if (this->plt_ == NULL)
6584 this->make_plt_section(symtab, layout);
6585 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6586 relobj,
6587 local_sym_index);
6588 relobj->set_local_plt_offset(local_sym_index, plt_offset);
053a4d68
JY
6589}
6590
6591template<int size, bool big_endian>
6592void
6593Target_aarch64<size, big_endian>::gc_process_relocs(
6594 Symbol_table* symtab,
6595 Layout* layout,
6596 Sized_relobj_file<size, big_endian>* object,
6597 unsigned int data_shndx,
6598 unsigned int sh_type,
6599 const unsigned char* prelocs,
6600 size_t reloc_count,
6601 Output_section* output_section,
6602 bool needs_special_offset_handling,
6603 size_t local_symbol_count,
6604 const unsigned char* plocal_symbols)
6605{
6606 if (sh_type == elfcpp::SHT_REL)
6607 {
6608 return;
6609 }
6610
9363c7c3
JY
6611 gold::gc_process_relocs<
6612 size, big_endian,
6613 Target_aarch64<size, big_endian>,
6614 elfcpp::SHT_RELA,
6615 typename Target_aarch64<size, big_endian>::Scan,
6616 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
053a4d68
JY
6617 symtab,
6618 layout,
6619 this,
6620 object,
6621 data_shndx,
6622 prelocs,
6623 reloc_count,
6624 output_section,
6625 needs_special_offset_handling,
6626 local_symbol_count,
6627 plocal_symbols);
6628}
6629
6630// Scan relocations for a section.
6631
6632template<int size, bool big_endian>
6633void
6634Target_aarch64<size, big_endian>::scan_relocs(
6635 Symbol_table* symtab,
6636 Layout* layout,
6637 Sized_relobj_file<size, big_endian>* object,
6638 unsigned int data_shndx,
6639 unsigned int sh_type,
6640 const unsigned char* prelocs,
6641 size_t reloc_count,
6642 Output_section* output_section,
6643 bool needs_special_offset_handling,
6644 size_t local_symbol_count,
6645 const unsigned char* plocal_symbols)
6646{
6647 if (sh_type == elfcpp::SHT_REL)
6648 {
6649 gold_error(_("%s: unsupported REL reloc section"),
6650 object->name().c_str());
6651 return;
6652 }
9363c7c3 6653 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
053a4d68
JY
6654 symtab,
6655 layout,
6656 this,
6657 object,
6658 data_shndx,
6659 prelocs,
6660 reloc_count,
6661 output_section,
6662 needs_special_offset_handling,
6663 local_symbol_count,
6664 plocal_symbols);
6665}
6666
3a531937
JY
6667// Return the value to use for a dynamic which requires special
6668// treatment. This is how we support equality comparisons of function
6669// pointers across shared library boundaries, as described in the
6670// processor specific ABI supplement.
6671
83a01957 6672template<int size, bool big_endian>
3a531937 6673uint64_t
83a01957 6674Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
3a531937
JY
6675{
6676 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6677 return this->plt_address_for_global(gsym);
6678}
6679
83a01957 6680
053a4d68
JY
6681// Finalize the sections.
6682
6683template<int size, bool big_endian>
6684void
6685Target_aarch64<size, big_endian>::do_finalize_sections(
9363c7c3 6686 Layout* layout,
053a4d68 6687 const Input_objects*,
9363c7c3 6688 Symbol_table* symtab)
053a4d68 6689{
9363c7c3
JY
6690 const Reloc_section* rel_plt = (this->plt_ == NULL
6691 ? NULL
6692 : this->plt_->rela_plt());
6693 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6694 this->rela_dyn_, true, false);
6695
3a531937
JY
6696 // Emit any relocs we saved in an attempt to avoid generating COPY
6697 // relocs.
6698 if (this->copy_relocs_.any_saved_relocs())
6699 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6700
6701 // Fill in some more dynamic tags.
6702 Output_data_dynamic* const odyn = layout->dynamic_data();
6703 if (odyn != NULL)
6704 {
6705 if (this->plt_ != NULL
6706 && this->plt_->output_section() != NULL
6707 && this->plt_ ->has_tlsdesc_entry())
6708 {
6709 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6710 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6711 this->got_->finalize_data_size();
6712 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6713 this->plt_, plt_offset);
6714 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6715 this->got_, got_offset);
6716 }
6717 }
6718
9363c7c3
JY
6719 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6720 // the .got.plt section.
6721 Symbol* sym = this->global_offset_table_;
6722 if (sym != NULL)
6723 {
6724 uint64_t data_size = this->got_plt_->current_data_size();
6725 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6726
6727 // If the .got section is more than 0x8000 bytes, we add
6728 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6729 // bit relocations have a greater chance of working.
6730 if (data_size >= 0x8000)
6731 symtab->get_sized_symbol<size>(sym)->set_value(
6732 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6733 }
6734
6735 if (parameters->doing_static_link()
6736 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6737 {
6738 // If linking statically, make sure that the __rela_iplt symbols
6739 // were defined if necessary, even if we didn't create a PLT.
6740 static const Define_symbol_in_segment syms[] =
6741 {
6742 {
6743 "__rela_iplt_start", // name
6744 elfcpp::PT_LOAD, // segment_type
6745 elfcpp::PF_W, // segment_flags_set
6746 elfcpp::PF(0), // segment_flags_clear
6747 0, // value
6748 0, // size
6749 elfcpp::STT_NOTYPE, // type
6750 elfcpp::STB_GLOBAL, // binding
6751 elfcpp::STV_HIDDEN, // visibility
6752 0, // nonvis
6753 Symbol::SEGMENT_START, // offset_from_base
6754 true // only_if_ref
6755 },
6756 {
6757 "__rela_iplt_end", // name
6758 elfcpp::PT_LOAD, // segment_type
6759 elfcpp::PF_W, // segment_flags_set
6760 elfcpp::PF(0), // segment_flags_clear
6761 0, // value
6762 0, // size
6763 elfcpp::STT_NOTYPE, // type
6764 elfcpp::STB_GLOBAL, // binding
6765 elfcpp::STV_HIDDEN, // visibility
6766 0, // nonvis
6767 Symbol::SEGMENT_START, // offset_from_base
6768 true // only_if_ref
6769 }
6770 };
6771
6772 symtab->define_symbols(layout, 2, syms,
6773 layout->script_options()->saw_sections_clause());
6774 }
6775
053a4d68
JY
6776 return;
6777}
6778
6779// Perform a relocation.
6780
6781template<int size, bool big_endian>
6782inline bool
6783Target_aarch64<size, big_endian>::Relocate::relocate(
9363c7c3
JY
6784 const Relocate_info<size, big_endian>* relinfo,
6785 Target_aarch64<size, big_endian>* target,
053a4d68 6786 Output_section* ,
9363c7c3
JY
6787 size_t relnum,
6788 const elfcpp::Rela<size, big_endian>& rela,
6789 unsigned int r_type,
6790 const Sized_symbol<size>* gsym,
6791 const Symbol_value<size>* psymval,
6792 unsigned char* view,
6793 typename elfcpp::Elf_types<size>::Elf_Addr address,
053a4d68
JY
6794 section_size_type /* view_size */)
6795{
9363c7c3
JY
6796 if (view == NULL)
6797 return true;
6798
6799 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6800
6801 const AArch64_reloc_property* reloc_property =
6802 aarch64_reloc_property_table->get_reloc_property(r_type);
6803
6804 if (reloc_property == NULL)
6805 {
6806 std::string reloc_name =
6807 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6808 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6809 _("cannot relocate %s in object file"),
6810 reloc_name.c_str());
6811 return true;
6812 }
6813
6814 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6815
6816 // Pick the value to use for symbols defined in the PLT.
6817 Symbol_value<size> symval;
6818 if (gsym != NULL
6819 && gsym->use_plt_offset(reloc_property->reference_flags()))
6820 {
6821 symval.set_output_value(target->plt_address_for_global(gsym));
6822 psymval = &symval;
6823 }
6824 else if (gsym == NULL && psymval->is_ifunc_symbol())
6825 {
6826 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6827 if (object->local_has_plt_offset(r_sym))
6828 {
6829 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6830 psymval = &symval;
6831 }
6832 }
6833
6834 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6835
6836 // Get the GOT offset if needed.
6837 // For aarch64, the GOT pointer points to the start of the GOT section.
6838 bool have_got_offset = false;
6839 int got_offset = 0;
6840 int got_base = (target->got_ != NULL
6841 ? (target->got_->current_data_size() >= 0x8000
6842 ? 0x8000 : 0)
6843 : 0);
6844 switch (r_type)
6845 {
6846 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6847 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6848 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6849 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6850 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6851 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6852 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6853 case elfcpp::R_AARCH64_GOTREL64:
6854 case elfcpp::R_AARCH64_GOTREL32:
6855 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6856 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6857 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6858 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6859 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6860 if (gsym != NULL)
6861 {
6862 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6863 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6864 }
6865 else
6866 {
6867 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6868 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6869 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6870 - got_base);
6871 }
6872 have_got_offset = true;
6873 break;
8e33481e 6874
9363c7c3
JY
6875 default:
6876 break;
6877 }
6878
6879 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6880 typename elfcpp::Elf_types<size>::Elf_Addr value;
6881 switch (r_type)
6882 {
6883 case elfcpp::R_AARCH64_NONE:
6884 break;
6885
6886 case elfcpp::R_AARCH64_ABS64:
6887 reloc_status = Reloc::template rela_ua<64>(
6888 view, object, psymval, addend, reloc_property);
6889 break;
6890
6891 case elfcpp::R_AARCH64_ABS32:
6892 reloc_status = Reloc::template rela_ua<32>(
6893 view, object, psymval, addend, reloc_property);
6894 break;
6895
6896 case elfcpp::R_AARCH64_ABS16:
6897 reloc_status = Reloc::template rela_ua<16>(
6898 view, object, psymval, addend, reloc_property);
6899 break;
6900
6901 case elfcpp::R_AARCH64_PREL64:
6902 reloc_status = Reloc::template pcrela_ua<64>(
6903 view, object, psymval, addend, address, reloc_property);
83a01957 6904 break;
9363c7c3
JY
6905
6906 case elfcpp::R_AARCH64_PREL32:
6907 reloc_status = Reloc::template pcrela_ua<32>(
6908 view, object, psymval, addend, address, reloc_property);
83a01957 6909 break;
9363c7c3
JY
6910
6911 case elfcpp::R_AARCH64_PREL16:
6912 reloc_status = Reloc::template pcrela_ua<16>(
6913 view, object, psymval, addend, address, reloc_property);
83a01957 6914 break;
9363c7c3 6915
9726c3c1
HS
6916 case elfcpp::R_AARCH64_LD_PREL_LO19:
6917 reloc_status = Reloc::template pcrela_general<32>(
6918 view, object, psymval, addend, address, reloc_property);
6919 break;
6920
6921 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6922 reloc_status = Reloc::adr(view, object, psymval, addend,
6923 address, reloc_property);
6924 break;
6925
9363c7c3
JY
6926 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6927 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6928 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6929 reloc_property);
6930 break;
6931
6932 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6933 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6934 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6935 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6936 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6937 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6938 reloc_status = Reloc::template rela_general<32>(
6939 view, object, psymval, addend, reloc_property);
6940 break;
6941
3a531937
JY
6942 case elfcpp::R_AARCH64_CALL26:
6943 if (this->skip_call_tls_get_addr_)
6944 {
6945 // Double check that the TLSGD insn has been optimized away.
6946 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6947 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
6948 reinterpret_cast<Insntype*>(view));
6949 gold_assert((insn & 0xff000000) == 0x91000000);
6950
6951 reloc_status = Reloc::STATUS_OKAY;
6952 this->skip_call_tls_get_addr_ = false;
6953 // Return false to stop further processing this reloc.
6954 return false;
6955 }
83a01957
HS
6956 // Fallthrough
6957 case elfcpp::R_AARCH64_JUMP26:
6958 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
0bf32ea9
JY
6959 gsym, psymval, object,
6960 target->stub_group_size_))
83a01957
HS
6961 break;
6962 // Fallthrough
8e33481e
HS
6963 case elfcpp::R_AARCH64_TSTBR14:
6964 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
6965 reloc_status = Reloc::template pcrela_general<32>(
6966 view, object, psymval, addend, address, reloc_property);
6967 break;
6968
6969 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6970 gold_assert(have_got_offset);
6971 value = target->got_->address() + got_base + got_offset;
6972 reloc_status = Reloc::adrp(view, value + addend, address);
6973 break;
6974
6975 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6976 gold_assert(have_got_offset);
6977 value = target->got_->address() + got_base + got_offset;
6978 reloc_status = Reloc::template rela_general<32>(
6979 view, value, addend, reloc_property);
6980 break;
6981
3a531937
JY
6982 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6983 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
9726c3c1
HS
6984 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6985 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6986 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6987 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
6988 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6989 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8e33481e
HS
6990 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6991 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1a920511
JY
6992 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6993 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6994 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6995 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6996 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
6997 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6998 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6999 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3a531937
JY
7000 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7001 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7002 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7003 case elfcpp::R_AARCH64_TLSDESC_CALL:
8e33481e
HS
7004 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7005 gsym, psymval, view, address);
7006 break;
7007
3a531937
JY
7008 // These are dynamic relocations, which are unexpected when linking.
7009 case elfcpp::R_AARCH64_COPY:
7010 case elfcpp::R_AARCH64_GLOB_DAT:
7011 case elfcpp::R_AARCH64_JUMP_SLOT:
7012 case elfcpp::R_AARCH64_RELATIVE:
7013 case elfcpp::R_AARCH64_IRELATIVE:
7014 case elfcpp::R_AARCH64_TLS_DTPREL64:
7015 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7016 case elfcpp::R_AARCH64_TLS_TPREL64:
7017 case elfcpp::R_AARCH64_TLSDESC:
9363c7c3 7018 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3a531937 7019 _("unexpected reloc %u in object file"),
9363c7c3
JY
7020 r_type);
7021 break;
3a531937
JY
7022
7023 default:
7024 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7025 _("unsupported reloc %s"),
7026 reloc_property->name().c_str());
7027 break;
9363c7c3
JY
7028 }
7029
7030 // Report any errors.
7031 switch (reloc_status)
7032 {
7033 case Reloc::STATUS_OKAY:
7034 break;
7035 case Reloc::STATUS_OVERFLOW:
7036 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7037 _("relocation overflow in %s"),
7038 reloc_property->name().c_str());
7039 break;
7040 case Reloc::STATUS_BAD_RELOC:
7041 gold_error_at_location(
7042 relinfo,
7043 relnum,
7044 rela.get_r_offset(),
7045 _("unexpected opcode while processing relocation %s"),
7046 reloc_property->name().c_str());
7047 break;
7048 default:
7049 gold_unreachable();
7050 }
7051
053a4d68
JY
7052 return true;
7053}
7054
3a531937 7055
8e33481e
HS
7056template<int size, bool big_endian>
7057inline
83a01957 7058typename AArch64_relocate_functions<size, big_endian>::Status
8e33481e 7059Target_aarch64<size, big_endian>::Relocate::relocate_tls(
83a01957 7060 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7061 Target_aarch64<size, big_endian>* target,
7062 size_t relnum,
7063 const elfcpp::Rela<size, big_endian>& rela,
7064 unsigned int r_type, const Sized_symbol<size>* gsym,
7065 const Symbol_value<size>* psymval,
7066 unsigned char* view,
8e33481e
HS
7067 typename elfcpp::Elf_types<size>::Elf_Addr address)
7068{
83a01957 7069 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937 7070 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
8e33481e 7071
3a531937
JY
7072 Output_segment* tls_segment = relinfo->layout->tls_segment();
7073 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7074 const AArch64_reloc_property* reloc_property =
7075 aarch64_reloc_property_table->get_reloc_property(r_type);
8e33481e
HS
7076 gold_assert(reloc_property != NULL);
7077
3a531937
JY
7078 const bool is_final = (gsym == NULL
7079 ? !parameters->options().shared()
7080 : gsym->final_value_is_known());
7081 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7082 optimize_tls_reloc(is_final, r_type);
7083
83a01957 7084 Sized_relobj_file<size, big_endian>* object = relinfo->object;
3a531937 7085 int tls_got_offset_type;
8e33481e
HS
7086 switch (r_type)
7087 {
3a531937
JY
7088 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7089 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7090 {
7091 if (tlsopt == tls::TLSOPT_TO_LE)
7092 {
7093 if (tls_segment == NULL)
7094 {
7095 gold_assert(parameters->errors()->error_count() > 0
7096 || issue_undefined_symbol_error(gsym));
7097 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7098 }
7099 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7100 psymval);
7101 }
7102 else if (tlsopt == tls::TLSOPT_NONE)
7103 {
7104 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7105 // Firstly get the address for the got entry.
7106 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7107 if (gsym != NULL)
7108 {
7109 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7110 got_entry_address = target->got_->address() +
7111 gsym->got_offset(tls_got_offset_type);
7112 }
7113 else
7114 {
7115 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7116 gold_assert(
7117 object->local_has_got_offset(r_sym, tls_got_offset_type));
7118 got_entry_address = target->got_->address() +
7119 object->local_got_offset(r_sym, tls_got_offset_type);
7120 }
7121
7122 // Relocate the address into adrp/ld, adrp/add pair.
7123 switch (r_type)
7124 {
7125 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7126 return aarch64_reloc_funcs::adrp(
7127 view, got_entry_address + addend, address);
7128
7129 break;
7130
7131 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7132 return aarch64_reloc_funcs::template rela_general<32>(
7133 view, got_entry_address, addend, reloc_property);
7134 break;
7135
7136 default:
9726c3c1 7137 gold_unreachable();
3a531937
JY
7138 }
7139 }
7140 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7141 _("unsupported gd_to_ie relaxation on %u"),
7142 r_type);
7143 }
7144 break;
7145
9726c3c1
HS
7146 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7147 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7148 {
7149 if (tlsopt == tls::TLSOPT_TO_LE)
7150 {
7151 if (tls_segment == NULL)
7152 {
7153 gold_assert(parameters->errors()->error_count() > 0
7154 || issue_undefined_symbol_error(gsym));
7155 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7156 }
7157 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7158 psymval);
7159 }
7160
7161 gold_assert(tlsopt == tls::TLSOPT_NONE);
7162 // Relocate the field with the offset of the GOT entry for
7163 // the module index.
7164 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7165 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7166 target->got_->address());
7167
7168 switch (r_type)
7169 {
7170 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7171 return aarch64_reloc_funcs::adrp(
7172 view, got_entry_address + addend, address);
7173 break;
7174
7175 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7176 return aarch64_reloc_funcs::template rela_general<32>(
7177 view, got_entry_address, addend, reloc_property);
7178 break;
7179
7180 default:
7181 gold_unreachable();
7182 }
7183 }
7184 break;
7185
7186 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6b0ad2eb
JY
7187 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7188 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7189 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
9726c3c1
HS
7190 {
7191 AArch64_address value = psymval->value(object, 0);
7192 if (tlsopt == tls::TLSOPT_TO_LE)
7193 {
7194 if (tls_segment == NULL)
7195 {
7196 gold_assert(parameters->errors()->error_count() > 0
7197 || issue_undefined_symbol_error(gsym));
7198 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7199 }
9726c3c1
HS
7200 }
7201 switch (r_type)
7202 {
7203 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7204 return aarch64_reloc_funcs::movnz(view, value + addend,
7205 reloc_property);
7206 break;
7207
7208 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6b0ad2eb
JY
7209 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7210 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
9726c3c1
HS
7211 return aarch64_reloc_funcs::template rela_general<32>(
7212 view, value, addend, reloc_property);
7213 break;
7214
7215 default:
7216 gold_unreachable();
7217 }
7218 // We should never reach here.
7219 }
7220 break;
7221
8e33481e 7222 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 7223 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
8e33481e 7224 {
3a531937
JY
7225 if (tlsopt == tls::TLSOPT_TO_LE)
7226 {
7227 if (tls_segment == NULL)
7228 {
7229 gold_assert(parameters->errors()->error_count() > 0
7230 || issue_undefined_symbol_error(gsym));
7231 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7232 }
7233 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7234 psymval);
7235 }
7236 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7237
7238 // Firstly get the address for the got entry.
8e33481e
HS
7239 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7240 if (gsym != NULL)
7241 {
3a531937 7242 gold_assert(gsym->has_got_offset(tls_got_offset_type));
8e33481e 7243 got_entry_address = target->got_->address() +
3a531937 7244 gsym->got_offset(tls_got_offset_type);
8e33481e
HS
7245 }
7246 else
7247 {
7248 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7249 gold_assert(
3a531937 7250 object->local_has_got_offset(r_sym, tls_got_offset_type));
8e33481e 7251 got_entry_address = target->got_->address() +
3a531937 7252 object->local_got_offset(r_sym, tls_got_offset_type);
8e33481e 7253 }
3a531937
JY
7254 // Relocate the address into adrp/ld, adrp/add pair.
7255 switch (r_type)
8e33481e 7256 {
3a531937
JY
7257 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7258 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7259 address);
7260 break;
7261 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7262 return aarch64_reloc_funcs::template rela_general<32>(
7263 view, got_entry_address, addend, reloc_property);
7264 default:
9726c3c1 7265 gold_unreachable();
8e33481e 7266 }
8e33481e 7267 }
3a531937 7268 // We shall never reach here.
8e33481e
HS
7269 break;
7270
1a920511
JY
7271 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7272 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7273 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7274 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7275 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8e33481e
HS
7276 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7277 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7278 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7279 {
8e33481e 7280 gold_assert(tls_segment != NULL);
3a531937 7281 AArch64_address value = psymval->value(object, 0);
8e33481e
HS
7282
7283 if (!parameters->options().shared())
7284 {
3a531937
JY
7285 AArch64_address aligned_tcb_size =
7286 align_address(target->tcb_size(),
7287 tls_segment->maximum_alignment());
1a920511
JY
7288 value += aligned_tcb_size;
7289 switch (r_type)
7290 {
7291 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7292 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7293 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7294 return aarch64_reloc_funcs::movnz(view, value + addend,
7295 reloc_property);
7296 default:
7297 return aarch64_reloc_funcs::template
7298 rela_general<32>(view,
7299 value,
7300 addend,
7301 reloc_property);
7302 }
8e33481e
HS
7303 }
7304 else
7305 gold_error(_("%s: unsupported reloc %u "
7306 "in non-static TLSLE mode."),
7307 object->name().c_str(), r_type);
7308 }
7309 break;
7310
3a531937
JY
7311 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7312 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7313 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7314 case elfcpp::R_AARCH64_TLSDESC_CALL:
7315 {
7316 if (tlsopt == tls::TLSOPT_TO_LE)
7317 {
7318 if (tls_segment == NULL)
7319 {
7320 gold_assert(parameters->errors()->error_count() > 0
7321 || issue_undefined_symbol_error(gsym));
7322 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7323 }
7324 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7325 view, psymval);
7326 }
7327 else
7328 {
7329 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7330 ? GOT_TYPE_TLS_OFFSET
7331 : GOT_TYPE_TLS_DESC);
7332 unsigned int got_tlsdesc_offset = 0;
7333 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7334 && tlsopt == tls::TLSOPT_NONE)
7335 {
7336 // We created GOT entries in the .got.tlsdesc portion of the
7337 // .got.plt section, but the offset stored in the symbol is the
7338 // offset within .got.tlsdesc.
7339 got_tlsdesc_offset = (target->got_->data_size()
7340 + target->got_plt_section()->data_size());
7341 }
7342 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7343 if (gsym != NULL)
7344 {
7345 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7346 got_entry_address = target->got_->address()
7347 + got_tlsdesc_offset
7348 + gsym->got_offset(tls_got_offset_type);
7349 }
7350 else
7351 {
7352 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7353 gold_assert(
7354 object->local_has_got_offset(r_sym, tls_got_offset_type));
7355 got_entry_address = target->got_->address() +
7356 got_tlsdesc_offset +
7357 object->local_got_offset(r_sym, tls_got_offset_type);
7358 }
7359 if (tlsopt == tls::TLSOPT_TO_IE)
7360 {
7361 if (tls_segment == NULL)
7362 {
7363 gold_assert(parameters->errors()->error_count() > 0
7364 || issue_undefined_symbol_error(gsym));
7365 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7366 }
7367 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7368 view, psymval, got_entry_address,
7369 address);
7370 }
7371
7372 // Now do tlsdesc relocation.
7373 switch (r_type)
7374 {
7375 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7376 return aarch64_reloc_funcs::adrp(view,
7377 got_entry_address + addend,
7378 address);
7379 break;
7380 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7381 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7382 return aarch64_reloc_funcs::template rela_general<32>(
7383 view, got_entry_address, addend, reloc_property);
7384 break;
7385 case elfcpp::R_AARCH64_TLSDESC_CALL:
7386 return aarch64_reloc_funcs::STATUS_OKAY;
7387 break;
7388 default:
7389 gold_unreachable();
7390 }
7391 }
7392 }
7393 break;
7394
8e33481e
HS
7395 default:
7396 gold_error(_("%s: unsupported TLS reloc %u."),
7397 object->name().c_str(), r_type);
7398 }
7399 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
3a531937
JY
7400} // End of relocate_tls.
7401
7402
7403template<int size, bool big_endian>
7404inline
83a01957 7405typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7406Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
83a01957 7407 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7408 Target_aarch64<size, big_endian>* target,
7409 const elfcpp::Rela<size, big_endian>& rela,
7410 unsigned int r_type,
7411 unsigned char* view,
7412 const Symbol_value<size>* psymval)
7413{
83a01957 7414 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7415 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7416 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7417
7418 Insntype* ip = reinterpret_cast<Insntype*>(view);
7419 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7420 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7421 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7422
7423 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7424 {
7425 // This is the 2nd relocs, optimization should already have been
7426 // done.
7427 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7428 return aarch64_reloc_funcs::STATUS_OKAY;
7429 }
7430
7431 // The original sequence is -
7432 // 90000000 adrp x0, 0 <main>
7433 // 91000000 add x0, x0, #0x0
7434 // 94000000 bl 0 <__tls_get_addr>
7435 // optimized to sequence -
7436 // d53bd040 mrs x0, tpidr_el0
7437 // 91400000 add x0, x0, #0x0, lsl #12
7438 // 91000000 add x0, x0, #0x0
7439
7440 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7441 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7442 // have to change "bl tls_get_addr", which does not have a corresponding tls
7443 // relocation type. So before proceeding, we need to make sure compiler
7444 // does not change the sequence.
7445 if(!(insn1 == 0x90000000 // adrp x0,0
7446 && insn2 == 0x91000000 // add x0, x0, #0x0
7447 && insn3 == 0x94000000)) // bl 0
7448 {
7449 // Ideally we should give up gd_to_le relaxation and do gd access.
7450 // However the gd_to_le relaxation decision has been made early
7451 // in the scan stage, where we did not allocate any GOT entry for
7452 // this symbol. Therefore we have to exit and report error now.
7453 gold_error(_("unexpected reloc insn sequence while relaxing "
7454 "tls gd to le for reloc %u."), r_type);
7455 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7456 }
7457
7458 // Write new insns.
7459 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7460 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7461 insn3 = 0x91000000; // add x0, x0, #0x0
7462 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7463 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7464 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7465
7466 // Calculate tprel value.
7467 Output_segment* tls_segment = relinfo->layout->tls_segment();
7468 gold_assert(tls_segment != NULL);
7469 AArch64_address value = psymval->value(relinfo->object, 0);
7470 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7471 AArch64_address aligned_tcb_size =
7472 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7473 AArch64_address x = value + aligned_tcb_size;
7474
7475 // After new insns are written, apply TLSLE relocs.
7476 const AArch64_reloc_property* rp1 =
7477 aarch64_reloc_property_table->get_reloc_property(
7478 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7479 const AArch64_reloc_property* rp2 =
7480 aarch64_reloc_property_table->get_reloc_property(
7481 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7482 gold_assert(rp1 != NULL && rp2 != NULL);
7483
7484 typename aarch64_reloc_funcs::Status s1 =
7485 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7486 x,
7487 addend,
7488 rp1);
7489 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7490 return s1;
7491
7492 typename aarch64_reloc_funcs::Status s2 =
7493 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7494 x,
7495 addend,
7496 rp2);
7497
7498 this->skip_call_tls_get_addr_ = true;
7499 return s2;
7500} // End of tls_gd_to_le
7501
7502
9726c3c1
HS
7503template<int size, bool big_endian>
7504inline
7505typename AArch64_relocate_functions<size, big_endian>::Status
7506Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7507 const Relocate_info<size, big_endian>* relinfo,
7508 Target_aarch64<size, big_endian>* target,
7509 const elfcpp::Rela<size, big_endian>& rela,
7510 unsigned int r_type,
7511 unsigned char* view,
7512 const Symbol_value<size>* psymval)
7513{
7514 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7515 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7516 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7517
7518 Insntype* ip = reinterpret_cast<Insntype*>(view);
7519 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7520 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7521 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7522
7523 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7524 {
7525 // This is the 2nd relocs, optimization should already have been
7526 // done.
7527 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7528 return aarch64_reloc_funcs::STATUS_OKAY;
7529 }
7530
7531 // The original sequence is -
7532 // 90000000 adrp x0, 0 <main>
7533 // 91000000 add x0, x0, #0x0
7534 // 94000000 bl 0 <__tls_get_addr>
7535 // optimized to sequence -
7536 // d53bd040 mrs x0, tpidr_el0
7537 // 91400000 add x0, x0, #0x0, lsl #12
7538 // 91000000 add x0, x0, #0x0
7539
7540 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7541 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7542 // have to change "bl tls_get_addr", which does not have a corresponding tls
7543 // relocation type. So before proceeding, we need to make sure compiler
7544 // does not change the sequence.
7545 if(!(insn1 == 0x90000000 // adrp x0,0
7546 && insn2 == 0x91000000 // add x0, x0, #0x0
7547 && insn3 == 0x94000000)) // bl 0
7548 {
7549 // Ideally we should give up gd_to_le relaxation and do gd access.
7550 // However the gd_to_le relaxation decision has been made early
7551 // in the scan stage, where we did not allocate any GOT entry for
7552 // this symbol. Therefore we have to exit and report error now.
7553 gold_error(_("unexpected reloc insn sequence while relaxing "
7554 "tls gd to le for reloc %u."), r_type);
7555 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7556 }
7557
7558 // Write new insns.
7559 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7560 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7561 insn3 = 0x91000000; // add x0, x0, #0x0
7562 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7563 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7564 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7565
7566 // Calculate tprel value.
7567 Output_segment* tls_segment = relinfo->layout->tls_segment();
7568 gold_assert(tls_segment != NULL);
7569 AArch64_address value = psymval->value(relinfo->object, 0);
7570 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7571 AArch64_address aligned_tcb_size =
7572 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7573 AArch64_address x = value + aligned_tcb_size;
7574
7575 // After new insns are written, apply TLSLE relocs.
7576 const AArch64_reloc_property* rp1 =
7577 aarch64_reloc_property_table->get_reloc_property(
7578 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7579 const AArch64_reloc_property* rp2 =
7580 aarch64_reloc_property_table->get_reloc_property(
7581 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7582 gold_assert(rp1 != NULL && rp2 != NULL);
7583
7584 typename aarch64_reloc_funcs::Status s1 =
7585 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7586 x,
7587 addend,
7588 rp1);
7589 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7590 return s1;
7591
7592 typename aarch64_reloc_funcs::Status s2 =
7593 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7594 x,
7595 addend,
7596 rp2);
7597
7598 this->skip_call_tls_get_addr_ = true;
7599 return s2;
7600
7601} // End of tls_ld_to_le
7602
3a531937
JY
7603template<int size, bool big_endian>
7604inline
83a01957 7605typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7606Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
83a01957 7607 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7608 Target_aarch64<size, big_endian>* target,
7609 const elfcpp::Rela<size, big_endian>& rela,
7610 unsigned int r_type,
7611 unsigned char* view,
7612 const Symbol_value<size>* psymval)
7613{
7614 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7615 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7616 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7617
7618 AArch64_address value = psymval->value(relinfo->object, 0);
7619 Output_segment* tls_segment = relinfo->layout->tls_segment();
7620 AArch64_address aligned_tcb_address =
7621 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7622 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7623 AArch64_address x = value + addend + aligned_tcb_address;
7624 // "x" is the offset to tp, we can only do this if x is within
7625 // range [0, 2^32-1]
7626 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7627 {
7628 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7629 r_type);
7630 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7631 }
7632
7633 Insntype* ip = reinterpret_cast<Insntype*>(view);
7634 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7635 unsigned int regno;
7636 Insntype newinsn;
7637 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7638 {
7639 // Generate movz.
7640 regno = (insn & 0x1f);
7641 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7642 }
7643 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7644 {
7645 // Generate movk.
7646 regno = (insn & 0x1f);
7647 gold_assert(regno == ((insn >> 5) & 0x1f));
7648 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7649 }
7650 else
9726c3c1 7651 gold_unreachable();
3a531937
JY
7652
7653 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7654 return aarch64_reloc_funcs::STATUS_OKAY;
7655} // End of tls_ie_to_le
7656
7657
7658template<int size, bool big_endian>
7659inline
83a01957 7660typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7661Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
83a01957 7662 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
7663 Target_aarch64<size, big_endian>* target,
7664 const elfcpp::Rela<size, big_endian>& rela,
7665 unsigned int r_type,
7666 unsigned char* view,
7667 const Symbol_value<size>* psymval)
7668{
7669 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7670 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7671 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7672
7673 // TLSDESC-GD sequence is like:
7674 // adrp x0, :tlsdesc:v1
7675 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7676 // add x0, x0, :tlsdesc_lo12:v1
7677 // .tlsdesccall v1
7678 // blr x1
7679 // After desc_gd_to_le optimization, the sequence will be like:
7680 // movz x0, #0x0, lsl #16
7681 // movk x0, #0x10
7682 // nop
7683 // nop
7684
7685 // Calculate tprel value.
7686 Output_segment* tls_segment = relinfo->layout->tls_segment();
7687 gold_assert(tls_segment != NULL);
7688 Insntype* ip = reinterpret_cast<Insntype*>(view);
7689 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7690 AArch64_address value = psymval->value(relinfo->object, addend);
7691 AArch64_address aligned_tcb_size =
7692 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7693 AArch64_address x = value + aligned_tcb_size;
7694 // x is the offset to tp, we can only do this if x is within range
7695 // [0, 2^32-1]. If x is out of range, fail and exit.
7696 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7697 {
7698 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7699 "We Can't do gd_to_le relaxation.\n"), r_type);
7700 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7701 }
7702 Insntype newinsn;
7703 switch (r_type)
7704 {
7705 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7706 case elfcpp::R_AARCH64_TLSDESC_CALL:
7707 // Change to nop
7708 newinsn = 0xd503201f;
7709 break;
7710
7711 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7712 // Change to movz.
7713 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7714 break;
7715
7716 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7717 // Change to movk.
7718 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7719 break;
7720
7721 default:
7722 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7723 r_type);
7724 gold_unreachable();
7725 }
7726 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7727 return aarch64_reloc_funcs::STATUS_OKAY;
7728} // End of tls_desc_gd_to_le
7729
7730
7731template<int size, bool big_endian>
7732inline
83a01957 7733typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 7734Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
83a01957 7735 const Relocate_info<size, big_endian>* /* relinfo */,
3a531937
JY
7736 Target_aarch64<size, big_endian>* /* target */,
7737 const elfcpp::Rela<size, big_endian>& rela,
7738 unsigned int r_type,
7739 unsigned char* view,
7740 const Symbol_value<size>* /* psymval */,
7741 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7742 typename elfcpp::Elf_types<size>::Elf_Addr address)
7743{
7744 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 7745 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
7746
7747 // TLSDESC-GD sequence is like:
7748 // adrp x0, :tlsdesc:v1
7749 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7750 // add x0, x0, :tlsdesc_lo12:v1
7751 // .tlsdesccall v1
7752 // blr x1
7753 // After desc_gd_to_ie optimization, the sequence will be like:
7754 // adrp x0, :tlsie:v1
7755 // ldr x0, [x0, :tlsie_lo12:v1]
7756 // nop
7757 // nop
7758
7759 Insntype* ip = reinterpret_cast<Insntype*>(view);
7760 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7761 Insntype newinsn;
7762 switch (r_type)
7763 {
7764 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7765 case elfcpp::R_AARCH64_TLSDESC_CALL:
7766 // Change to nop
7767 newinsn = 0xd503201f;
7768 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7769 break;
7770
7771 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7772 {
7773 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7774 address);
7775 }
7776 break;
7777
7778 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7779 {
bb779192
HS
7780 // Set ldr target register to be x0.
7781 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7782 insn &= 0xffffffe0;
7783 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7784 // Do relocation.
3a531937
JY
7785 const AArch64_reloc_property* reloc_property =
7786 aarch64_reloc_property_table->get_reloc_property(
7787 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7788 return aarch64_reloc_funcs::template rela_general<32>(
7789 view, got_entry_address, addend, reloc_property);
7790 }
7791 break;
8e33481e 7792
3a531937
JY
7793 default:
7794 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7795 r_type);
7796 gold_unreachable();
7797 }
7798 return aarch64_reloc_funcs::STATUS_OKAY;
7799} // End of tls_desc_gd_to_ie
8e33481e 7800
053a4d68
JY
7801// Relocate section data.
7802
7803template<int size, bool big_endian>
7804void
7805Target_aarch64<size, big_endian>::relocate_section(
9363c7c3 7806 const Relocate_info<size, big_endian>* relinfo,
053a4d68 7807 unsigned int sh_type,
9363c7c3
JY
7808 const unsigned char* prelocs,
7809 size_t reloc_count,
7810 Output_section* output_section,
7811 bool needs_special_offset_handling,
7812 unsigned char* view,
7813 typename elfcpp::Elf_types<size>::Elf_Addr address,
7814 section_size_type view_size,
7815 const Reloc_symbol_changes* reloc_symbol_changes)
053a4d68 7816{
053a4d68 7817 gold_assert(sh_type == elfcpp::SHT_RELA);
9363c7c3
JY
7818 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7819 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7820 AArch64_relocate, gold::Default_comdat_behavior>(
7821 relinfo,
7822 this,
7823 prelocs,
7824 reloc_count,
7825 output_section,
7826 needs_special_offset_handling,
7827 view,
7828 address,
7829 view_size,
7830 reloc_symbol_changes);
053a4d68
JY
7831}
7832
7833// Return the size of a relocation while scanning during a relocatable
7834// link.
7835
7836template<int size, bool big_endian>
7837unsigned int
7838Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7839get_size_for_reloc(
7840 unsigned int ,
7841 Relobj* )
7842{
7843 // We will never support SHT_REL relocations.
7844 gold_unreachable();
7845 return 0;
7846}
7847
7848// Scan the relocs during a relocatable link.
7849
7850template<int size, bool big_endian>
7851void
7852Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8e33481e
HS
7853 Symbol_table* symtab,
7854 Layout* layout,
7855 Sized_relobj_file<size, big_endian>* object,
7856 unsigned int data_shndx,
053a4d68 7857 unsigned int sh_type,
8e33481e
HS
7858 const unsigned char* prelocs,
7859 size_t reloc_count,
7860 Output_section* output_section,
7861 bool needs_special_offset_handling,
7862 size_t local_symbol_count,
7863 const unsigned char* plocal_symbols,
7864 Relocatable_relocs* rr)
053a4d68 7865{
053a4d68 7866 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
7867
7868 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7869 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7870
7871 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7872 Scan_relocatable_relocs>(
7873 symtab,
7874 layout,
7875 object,
7876 data_shndx,
7877 prelocs,
7878 reloc_count,
7879 output_section,
7880 needs_special_offset_handling,
7881 local_symbol_count,
7882 plocal_symbols,
7883 rr);
053a4d68
JY
7884}
7885
7886// Relocate a section during a relocatable link.
7887
7888template<int size, bool big_endian>
7889void
7890Target_aarch64<size, big_endian>::relocate_relocs(
8e33481e 7891 const Relocate_info<size, big_endian>* relinfo,
053a4d68 7892 unsigned int sh_type,
8e33481e
HS
7893 const unsigned char* prelocs,
7894 size_t reloc_count,
7895 Output_section* output_section,
7896 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7897 const Relocatable_relocs* rr,
7898 unsigned char* view,
7899 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7900 section_size_type view_size,
7901 unsigned char* reloc_view,
7902 section_size_type reloc_view_size)
053a4d68 7903{
053a4d68 7904 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
7905
7906 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7907 relinfo,
7908 prelocs,
7909 reloc_count,
7910 output_section,
7911 offset_in_output_section,
7912 rr,
7913 view,
7914 view_address,
7915 view_size,
7916 reloc_view,
7917 reloc_view_size);
053a4d68
JY
7918}
7919
83a01957 7920
5019d64a
HS
7921// Return whether this is a 3-insn erratum sequence.
7922
7923template<int size, bool big_endian>
7924bool
7925Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7926 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7927 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7928 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7929{
7930 unsigned rt1, rt2;
7931 bool load, pair;
7932
7933 // The 2nd insn is a single register load or store; or register pair
7934 // store.
7935 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7936 && (!pair || (pair && !load)))
7937 {
7938 // The 3rd insn is a load or store instruction from the "Load/store
7939 // register (unsigned immediate)" encoding class, using Rn as the
7940 // base address register.
7941 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7942 && (Insn_utilities::aarch64_rn(insn3)
7943 == Insn_utilities::aarch64_rd(insn1)))
7944 return true;
7945 }
7946 return false;
7947}
7948
7949
2f0c79aa
HS
7950// Return whether this is a 835769 sequence.
7951// (Similarly implemented as in elfnn-aarch64.c.)
7952
7953template<int size, bool big_endian>
7954bool
7955Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
7956 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7957 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
7958{
7959 uint32_t rt;
7960 uint32_t rt2;
7961 uint32_t rn;
7962 uint32_t rm;
7963 uint32_t ra;
7964 bool pair;
7965 bool load;
7966
7967 if (Insn_utilities::aarch64_mlxl(insn2)
7968 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
7969 {
7970 /* Any SIMD memory op is independent of the subsequent MLA
7971 by definition of the erratum. */
7972 if (Insn_utilities::aarch64_bit(insn1, 26))
7973 return true;
7974
7975 /* If not SIMD, check for integer memory ops and MLA relationship. */
7976 rn = Insn_utilities::aarch64_rn(insn2);
7977 ra = Insn_utilities::aarch64_ra(insn2);
7978 rm = Insn_utilities::aarch64_rm(insn2);
7979
7980 /* If this is a load and there's a true(RAW) dependency, we are safe
7981 and this is not an erratum sequence. */
7982 if (load &&
7983 (rt == rn || rt == rm || rt == ra
7984 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
7985 return false;
7986
7987 /* We conservatively put out stubs for all other cases (including
7988 writebacks). */
7989 return true;
7990 }
7991
7992 return false;
7993}
7994
7995
7996// Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
7997
7998template<int size, bool big_endian>
7999void
8000Target_aarch64<size, big_endian>::create_erratum_stub(
8001 AArch64_relobj<size, big_endian>* relobj,
8002 unsigned int shndx,
8003 section_size_type erratum_insn_offset,
8004 Address erratum_address,
8005 typename Insn_utilities::Insntype erratum_insn,
0ef3814f
HS
8006 int erratum_type,
8007 unsigned int e843419_adrp_offset)
2f0c79aa
HS
8008{
8009 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8010 The_stub_table* stub_table = relobj->stub_table(shndx);
8011 gold_assert(stub_table != NULL);
8012 if (stub_table->find_erratum_stub(relobj,
8013 shndx,
8014 erratum_insn_offset) == NULL)
8015 {
8016 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
0ef3814f
HS
8017 The_erratum_stub* stub;
8018 if (erratum_type == ST_E_835769)
8019 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8020 erratum_insn_offset);
8021 else if (erratum_type == ST_E_843419)
8022 stub = new E843419_stub<size, big_endian>(
8023 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8024 else
8025 gold_unreachable();
2f0c79aa
HS
8026 stub->set_erratum_insn(erratum_insn);
8027 stub->set_erratum_address(erratum_address);
8028 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8029 // always the next insn after erratum insn.
8030 stub->set_destination_address(erratum_address + BPI);
8031 stub_table->add_erratum_stub(stub);
8032 }
8033}
8034
8035
8036// Scan erratum for section SHNDX range [output_address + span_start,
8037// output_address + span_end). Note here we do not share the code with
8038// scan_erratum_843419_span function, because for 843419 we optimize by only
8039// scanning the last few insns of a page, whereas for 835769, we need to scan
8040// every insn.
8041
8042template<int size, bool big_endian>
8043void
8044Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8045 AArch64_relobj<size, big_endian>* relobj,
8046 unsigned int shndx,
8047 const section_size_type span_start,
8048 const section_size_type span_end,
8049 unsigned char* input_view,
8050 Address output_address)
8051{
8052 typedef typename Insn_utilities::Insntype Insntype;
8053
8054 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8055
8056 // Adjust output_address and view to the start of span.
8057 output_address += span_start;
8058 input_view += span_start;
8059
8060 section_size_type span_length = span_end - span_start;
8061 section_size_type offset = 0;
8062 for (offset = 0; offset + BPI < span_length; offset += BPI)
8063 {
8064 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8065 Insntype insn1 = ip[0];
8066 Insntype insn2 = ip[1];
8067 if (is_erratum_835769_sequence(insn1, insn2))
8068 {
8069 Insntype erratum_insn = insn2;
8070 // "span_start + offset" is the offset for insn1. So for insn2, it is
8071 // "span_start + offset + BPI".
8072 section_size_type erratum_insn_offset = span_start + offset + BPI;
8073 Address erratum_address = output_address + offset + BPI;
73854cdd 8074 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
2f0c79aa
HS
8075 "section %d, offset 0x%08x."),
8076 relobj->name().c_str(), shndx,
8077 (unsigned int)(span_start + offset));
8078
8079 this->create_erratum_stub(relobj, shndx,
8080 erratum_insn_offset, erratum_address,
8081 erratum_insn, ST_E_835769);
8082 offset += BPI; // Skip mac insn.
8083 }
8084 }
8085} // End of "Target_aarch64::scan_erratum_835769_span".
8086
8087
5019d64a
HS
8088// Scan erratum for section SHNDX range
8089// [output_address + span_start, output_address + span_end).
8090
8091template<int size, bool big_endian>
8092void
8093Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8094 AArch64_relobj<size, big_endian>* relobj,
8095 unsigned int shndx,
8096 const section_size_type span_start,
8097 const section_size_type span_end,
8098 unsigned char* input_view,
8099 Address output_address)
8100{
8101 typedef typename Insn_utilities::Insntype Insntype;
8102
8103 // Adjust output_address and view to the start of span.
8104 output_address += span_start;
8105 input_view += span_start;
8106
8107 if ((output_address & 0x03) != 0)
8108 return;
8109
8110 section_size_type offset = 0;
8111 section_size_type span_length = span_end - span_start;
8112 // The first instruction must be ending at 0xFF8 or 0xFFC.
8113 unsigned int page_offset = output_address & 0xFFF;
8114 // Make sure starting position, that is "output_address+offset",
8115 // starts at page position 0xff8 or 0xffc.
8116 if (page_offset < 0xff8)
8117 offset = 0xff8 - page_offset;
8118 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8119 {
8120 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8121 Insntype insn1 = ip[0];
8122 if (Insn_utilities::is_adrp(insn1))
8123 {
8124 Insntype insn2 = ip[1];
8125 Insntype insn3 = ip[2];
a48d0c12
HS
8126 Insntype erratum_insn;
8127 unsigned insn_offset;
5019d64a
HS
8128 bool do_report = false;
8129 if (is_erratum_843419_sequence(insn1, insn2, insn3))
a48d0c12
HS
8130 {
8131 do_report = true;
8132 erratum_insn = insn3;
8133 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8134 }
5019d64a
HS
8135 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8136 {
8137 // Optionally we can have an insn between ins2 and ins3
8138 Insntype insn_opt = ip[2];
8139 // And insn_opt must not be a branch.
8140 if (!Insn_utilities::aarch64_b(insn_opt)
8141 && !Insn_utilities::aarch64_bl(insn_opt)
8142 && !Insn_utilities::aarch64_blr(insn_opt)
8143 && !Insn_utilities::aarch64_br(insn_opt))
8144 {
8145 // And insn_opt must not write to dest reg in insn1. However
8146 // we do a conservative scan, which means we may fix/report
8147 // more than necessary, but it doesn't hurt.
8148
8149 Insntype insn4 = ip[3];
8150 if (is_erratum_843419_sequence(insn1, insn2, insn4))
a48d0c12
HS
8151 {
8152 do_report = true;
8153 erratum_insn = insn4;
8154 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8155 }
5019d64a
HS
8156 }
8157 }
8158 if (do_report)
8159 {
73854cdd 8160 gold_info(_("Erratum 843419 found and fixed at \"%s\", "
a48d0c12
HS
8161 "section %d, offset 0x%08x."),
8162 relobj->name().c_str(), shndx,
8163 (unsigned int)(span_start + offset));
2f0c79aa 8164 unsigned int erratum_insn_offset =
a48d0c12 8165 span_start + offset + insn_offset;
2f0c79aa
HS
8166 Address erratum_address =
8167 output_address + offset + insn_offset;
8168 create_erratum_stub(relobj, shndx,
8169 erratum_insn_offset, erratum_address,
0ef3814f
HS
8170 erratum_insn, ST_E_843419,
8171 span_start + offset);
5019d64a
HS
8172 }
8173 }
8174
8175 // Advance to next candidate instruction. We only consider instruction
8176 // sequences starting at a page offset of 0xff8 or 0xffc.
8177 page_offset = (output_address + offset) & 0xfff;
8178 if (page_offset == 0xff8)
8179 offset += 4;
8180 else // (page_offset == 0xffc), we move to next page's 0xff8.
8181 offset += 0xffc;
8182 }
a48d0c12 8183} // End of "Target_aarch64::scan_erratum_843419_span".
5019d64a
HS
8184
8185
053a4d68
JY
8186// The selector for aarch64 object files.
8187
8188template<int size, bool big_endian>
8189class Target_selector_aarch64 : public Target_selector
8190{
8191 public:
9363c7c3 8192 Target_selector_aarch64();
053a4d68
JY
8193
8194 virtual Target*
8195 do_instantiate_target()
8196 { return new Target_aarch64<size, big_endian>(); }
8197};
8198
9363c7c3
JY
8199template<>
8200Target_selector_aarch64<32, true>::Target_selector_aarch64()
8201 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8202 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8203{ }
8204
8205template<>
8206Target_selector_aarch64<32, false>::Target_selector_aarch64()
8207 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8208 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8209{ }
8210
8211template<>
8212Target_selector_aarch64<64, true>::Target_selector_aarch64()
8213 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8214 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8215{ }
8216
8217template<>
8218Target_selector_aarch64<64, false>::Target_selector_aarch64()
8219 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8220 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8221{ }
8222
053a4d68
JY
8223Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8224Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8225Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8226Target_selector_aarch64<64, false> target_selector_aarch64elf;
8227
053a4d68 8228} // End anonymous namespace.
This page took 0.430202 seconds and 4 git commands to generate.